
Enabling Task Level Parallelism in
HandelC

Thamer S. AbuYasin

Submitted to the Department of Electrical Engineering &
Computer Science and the Faculty of the Graduate School

of the University of Kansas in partial fulfillment of
the requirements for the degree of Master’s of Science

Thesis Committee:

Dr. David Andrews: Chairperson

Dr. Arvin Agah

Dr. Perry Alexander

Date Defended

2007/12/14

The Thesis Committee for Thamer S. AbuYasin certifies

That this is the approved version of the following thesis:

Enabling Task Level Parallelism in HandelC

Committee:

Chairperson

Date Approved

i

Chapter 1

Abstract

HandelC is a programming language used to target hardware and is similar in

syntax to ANSI-C. HandelC offers constructs that allow programmers to express

instruction level parallelism. Also, HandelC offers primitives that allow task level

parallelism. However, HandelC does not offer any runtime support that enables

programmers to express task level parallelism efficiently. This thesis discusses this

issue and suggests a support library called HCthreads as a solution. HCthreads

offers a subset of Pthreads functionality and interface relevant to the HandelC

environment. This study offers means to identify the best configuration of HC-

threads to achieve the highest speedups in real systems.

This thesis investigates the issue of integrating HandelC within platforms not

supported by Celoxica. A support library is implemented to solve this issue by

utilizing the high level abstractions offered by Hthreads. This support library

abstracts away any HWTI specific synchronization making the coding experience

quite close to software.

HCthreads is proven effective and generic for various algorithms with different

threading behaviors. HCthreads is an adequate method to implement recursive

algorithms even if no task level parallelism is warranted. Not only HCthreads of-

fers such versatility, it achieves modest speedups over instruction level parallelism

ad-hoc approaches. The Hthreads support library served its intended purpose by

allowing HCthreads real system tests to proceed on a third party platform. No

major issues were reported while conducting these tests, still additional investi-

gation and verification is required.

ii

Contents

Acceptance Page i

1 Abstract ii

2 Introduction 1

3 Problem Statement 3

3.1 Instruction Level Parallelism vs. Task Level Parallelism 3

3.2 Thesis Statement and Contributions 6

4 Background & Related Work 8

4.1 Field Programmable Gate Arrays 8

4.2 C to Hardware Translation . 9

4.3 The HandelC Language . 10

4.4 Parallel Programming Models . 12

4.4.1 Pthreads . 12

4.4.2 Hthreads . 13

5 HCthreads: Design, Architecture & Implementation 14

5.1 HCthreads Attributes . 16

5.1.1 DETACHED . 16

5.1.2 CONTAINER SIZE . 17

5.1.3 R2RSTACK . 17

5.1.4 NO FNUNITS . 18

5.2 HCthreads Components . 18

5.2.1 The Dispatcher . 18

5.2.2 The Terminator . 19

iii

5.2.3 The Functional Units . 20

5.3 The HCthreads Interface . 22

5.4 HCthreads Data Structures . 24

6 HCthreads: Supporting Utilities 27

6.1 Simple Data Streaming . 29

6.2 Full Integration with Hthreads . 31

6.3 HCthreads Fine Tuning . 32

7 Results 34

7.1 Programming Model Enhancement 35

7.2 Simulator Results . 37

7.3 ML310 Results . 42

7.4 Testing HandelC and Hthreads Integration 46

7.5 Fine Tuning Results . 48

8 Conclusion and Future Work 50

References 52

iv

List of Figures

5.1 HCthreads internals assuming three functional units 21

5.2 The HCthreads interface as defined by the developer and the library 23

7.1 Creating and Joining on Threads using HCthreads 36

7.2 Recursion Support & Function Parallelization using ILP Constructs 37

7.3 QuickSort Total Clock Cycles, Simulator 38

7.4 NQueens Total Clock Cycles, Simulator 39

7.5 Matrix Multiplier Total Clock Cycles, Simulator 40

7.6 QuickSort Total Execution Time, ML310 43

7.7 NQueens Total Execution Time, ML310 44

7.8 Matrix Multiplier Total Execution Time, ML310 45

v

List of Tables

7.1 Simulator Total Clock Cycles . 41

7.2 ML310 Total Clock Cycles . 45

7.3 ML310 System Minimum Period in nSeconds 46

7.4 ML310 Slices . 46

7.5 ML310 Core Minimum Period in nSeconds 47

7.6 Total Clock Cycles for Actual and Approximated Systems 49

vi

Chapter 2

Introduction

HandelC is a programming language and a hardware description language that

offers constructs which allow the programmer to express mainly instruction level

parallelism [9]. Nevertheless, these constructs can be used to express higher levels

of parallelism in a primitive manner. Programmers should come up with their

own framework to express higher levels of parallelism using these constructs. It

is expected for programmers to come up with different TLP solutions to solve

for different algorithms some efficient and some not. HCthreads was intended to

address this issue in detail and provide a global and an acceptable solution.

HCthreads is based on POSIX threads [6]. Pthreads is now a familiar thread

library with a widening base of programmers. The POSIX standard defines the

API or policy and not the implementation of the underlying middle layer, en-

abling portability across various platforms. It would be logical to assume that

this knowledge will be advantageous when modeling HCthreads after Pthreads.

On the other hand, given the makeup of hardware in general and HandelC in

particular HCthreads should be light weight so it does not inflect additional costs

in performance. This can be achieved by adapting the representation and seman-

1

tics of the proposed threading interface so all needs are covered adequately and

without surplus. Also, a fine tuning framework is described to help developers

minimize resources used by HCthreads as much as possible. This is done by pro-

filing the library when operating on a certain application. The profiling results

might indicate the need to expand or even shrink the library to achieve the highest

speedups in real systems.

This study also addresses the issue of integrating HandelC cores within plat-

forms not supported by Celoxica. The solution was to utilize the preexisting

Hthreads system and its distinction in bridging the HW/SW boundary [4]. In

this approach HandelC code resides as user logic inside a hardware thread, there-

fore it completely benefits from all services offered by the Hthreads system and

the HWTI.

The remainder of this thesis is organized as follows. First, the value of task

level parallelism over instruction level parallelism is discussed and then the con-

tributions of this thesis are listed. Second, a brief background of FPGAs, related

works and the HandelC language is presented. The major features of Pthreads

and Hthreads are then discussed.

A detailed description of the HCthreads attributes, components, interface,

data structures and the implementation aspects of the threading library is then

presented. The Hthreads support library and the fine tuning framework are then

discussed.

Finally, an experiment setup, presentation and analysis of results are presented

showing correctness, performance and utility. The conclusion is then presented

along with proposed future work.

2

Chapter 3

Problem Statement

The first section in this chapter tries to make the case against instruction

level parallelism. The history of ILP is investigated and its shortcomings are

presented. The justification for task level parallelism is then made and research

efforts relating to the topic are presented. Finally, the contributions of this thesis

are listed in the last section.

3.1 Instruction Level Parallelism vs. Task Level

Parallelism

For the past decade and a half a lot of research was conducted trying to

exploit FPGA flexibility to achieve speedups when compared to general purpose

processors.

The first notable effort in this field was the proposed PRISM system by

Athanas and Silverman [5]. PRISM was a HW/SW system that operated on

the assumption that certain computationally intensive algorithms spend most of

their execution time inside a small portion of the code. The system extracted fre-

3

quently accessed code blocks at compile time and synthesized them into hardware

images. On the other hand, the software images running on the processor would

include new custom instructions responsible for coordinating with the accelerated

code blocks on the FPGA.

The second major work in this field was the DISC system by Wirthlin and

Hutchings [27]. DISC follows the same concepts defined by PRISM with one major

difference. Instead of limiting the reconfigurable fabric to one custom instruction

DISC maintains a collection of synthesized custom instructions that can be paged

in and out of the FPGA using runtime reconfiguration.

The two systems mentioned above rely on the concept of instruction set meta-

morphosis to prove the utility of HW/SW co-design. The synthesized hardware in

these two systems exploited ILP at a basic level to achieve speedups. On the other

hand, TLP was not an option due to the limited reconfigurable fabric available in

that period.

Then GARP, by Callahan and Wawrzynekth, is one of the first research efforts

to directly address ILP [8] [7]. GARP borrowed techniques from VLIW processors

to indentify loops and exploit what was believed to be large degrees of ILP in

sequential code. GARP employs various techniques such as speculative execution,

pipelining, data dependency resolution and others to achieve ILP. However, the

overhead of synchronizing between the processor and the GARP array was larger

than the gains in most cases. There wasn’t much ILP for the co-processor to work

on.

SPARK is another major work, by a team of researchers from UCI, that deals

with ILP [14]. The major objective of SPARK is to translate behavioral descrip-

tions from ANSI-C to synthesizable VHDL. SPARK employs a lot of techniques

4

to enhance ILP such as scheduling, loop transformations and speculative code

motions. SPARK shows some decent results with regard to area and total de-

lay but no results with respect to total execution times and actual speedups are

presented.

There are other studies that extract ILP with new techniques such as DE-

FACTO and ASC [10] [17]. Regardless, these studies show that there is little

ILP to automatically or manually extract [26]. Likewise, ILP in general purpose

processors, through superscalar processing and pipelining, has reached it limits.

However, the field of parallel computing as well as the advent of CMPs and Hyper-

Threading helped show that performance gains in TLP are an order of magnitude

greater than gains attained with ILP alone [23]. Therefore, FPGAs can benefit

from TLP because they are flexible to adopt any computational model. Yet it is

important to mention that TLP is not an alternative but a supplement to ILP,

both explore parallelism in a different scope hence employing both will increase

possible performance gains even more.

In the venue of TLP and FPGAs four research efforts stand out. These works

were originally proposed to bridge the HW/SW boundary. Each outlined a MIMD

computational model and consequently a programming model that abstracts com-

munication and synchronization between threads running in hardware and soft-

ware.

Miljan in EPFL achieved this goal by expanding the concept of virtual mem-

ory to hardware platforms [24]. Platzner of Paderborn proposed a system called

ReconOS to reach this objective, particularly ReconOS offers runtime reconfigu-

ration support [16]. Vahid in UC Riverside constructed a simulation environment

that dynamically translates binaries to run on reconfigurable fabric [22]. Also,

5

Andrews et al. from the University of Kansas reached the same goal by adopting

the Pthreads programming model and by implementing the required middleware

directly into the reconfigurable fabric [3]. This expanded their targeted customer

base to include real time embedded systems developers [1].

These approaches enable the developer to include different numbers of hard-

ware and software threads, thus providing the FPGA audience with the desired

TLP. Unfortunately, these studies do not reflect on the TLP gains that might be

achieved. Most test cases and experimental results carried out with these systems

were to assert the validity of the model and the inflected overhead.

3.2 Thesis Statement and Contributions

The major objective of this thesis is to expand the capabilities of the HandelC

language by enabling TLP alongside native ILP techniques. HandelC has a large

domain of users that might benefit from such enhancement. This is done by con-

structing a simple library that allows HandelC developers to express parallel tasks

easily. This library employs only HandelC constructs thus eliminating additional

verification work with components outside the language boundary. The library is

fast enough to reduce the execution overhead over ILP ad-hoc approaches. The

library does not incur severe performance overheads in terms of area and timing

when compared to these approaches. The library defines a framework to allow the

prediction of utilization patterns of the library recourses. This framework helps

developers identify whether to increase or decrease the number of instantiated

components thus improving overall system performance.

The other goal of this work is to enable the integration of HandelC implemen-

tations within systems not supported by Celoxica. This is done by exploiting the

6

abstractions offered by Hthreads and the HWTI thus facilitating communication

and synchronization across the HW/SW boundary. This support library abstracts

away HWTI specific operations and signals such that the written HandelC code

resembles software.

7

Chapter 4

Background & Related Work

In this chapter a brief background of FPGAs is presented in the first section.

Second, related works in the field of C to Hardware translation are listed. Third,

details of the HandelC language are discussed. Aspects of Pthreads along Hthreads

are then presented in the last section.

4.1 Field Programmable Gate Arrays

The story of FPGAs started with Estrin and the well-known Pasta’s chal-

lenge in 1959 [12]. Then, Estrin proposed the variable plus fixed architecture,

which denotes the union between hardware and software systems. Limited by the

technology available in that time period, that novel system had to wait a couple

of decades before becoming a reality. Nowadays, FPGAs are taken for granted

and are becoming popular in various fields such as high performance computing,

networking, image processing and hardware prototyping.

FPGAs are made of a large collection of CLBs or configurable logic blocks.

Each CLB is made of a look up table and other combinational and synchronous

8

components. The lookup table allows the CLB to assume different Boolean func-

tions according to what is stored in its memory. A large collection of these CLBs

interconnected together builds a more complex digital circuit. FPGAs in practice

are made of such large collection of CLBs plus other specialized components such

as multipliers and general purpose processors. FPGA vendors, such as Xilinx and

Altera, use these principles in building their different product lines.

4.2 C to Hardware Translation

Section 3.1 went through some techniques that exploit ILP by transforming

ANSI-C code into hardware. GARP, DEFACTO, SPARK and ROCCC [13] are

research efforts that fall under this umbrella. These systems capitalize on ILP in

the transformed code to establish a SIMD model from the original SISD code. This

is the most common tactic when it comes to C to Hardware translation. Other

methods construct either a heavily pipelined SISD or MIMD circuits [2]. These

transformation tools require the programmer to use some pragmas to guide the

translation process. Also, these tools leave out important aspects of the ANSI-C

language such as pointer support and recursion. These tools were mainly con-

structed for academic investigation and they still fail in abstracting the HW/SW

boundary effectively.

On the other hand, some commercial tools such as HandelC, ImpulseC, NapaC

and DimeC are available with a higher success in achieving favorable C to Hard-

ware transformations on the one hand and HW/SW integration on the other hand.

These tools require the user to employ additional pragmas to guide the translation

process. Also, these tools limit the programmer in the set of supported ANSI-C

constructs that can be migrated to hardware. Edwards in his famous article [11]

9

sifts through these languages indentifying the weaknesses and the strengths of

entire C to Hardware movement, his final conclusion is why bother, which is not

without merit.

4.3 The HandelC Language

HandelC is a language based on the Communicating Sequential Processes al-

gebra and its embodiment in Occam [19]. HandelC was developed by researchers

in Oxford University, England and is currently maintained by Celoxica.

HandelC syntax is based on conventional C syntax and the language targets

low level hardware. Because HandelC is based on C syntax it is essentially sequen-

tial. However, in order for the language to reap the full benefits of hardware and

the massive performance increases it offers, it is important to use a parallel pro-

gramming model. HandelC provides native constructs that instructs the compiler

to build and execute statements in parallel supporting SIMD operations.

The main characteristic of HandelC forces assignments to happen in one clock

cycle. This restriction drives all expressions and control constructs in the language

to be implemented in pure combinational circuits so it can be evaluated instantly.

This feature makes the language cycle accurate. This fact insures that simulations

of implemented programs correctly map the behavior of hardware, consequently

reducing the development cycle considerably. Unfortunately this comes at a price,

in certain cases the combinational logic will become deep to the point where timing

constraints cannot be met.

When it comes to pointers HandelC is more flexible than other C to Hardware

translation tools. HandelC allows the use of pointer arithmetic, the indirection

operator, the address of operator and even pointers to functions. However, some

10

restrictions exist such as limits on casting, pointer comparison with each pointing

at a different array. Still, the main issue is the inability to allocate resources

dynamically, pointers may only hold valid addresses of preallocated registers at

compile time. However, this restriction is expected in hardware where there is no

free store by default.

HandelC offers different ways to express code encapsulation such as shared

functions, inlined functions and macro procedures. These methods have differ-

ent mappings to hardware. Some offer typed return values, some offer shared

hardware and others offer multiple copies. These constructs allow the program-

mer to choose the best way to express the current functionality depending on the

available resources and the timing requirements.

HandelC allows the programmer to implement more than one main function.

This allows the programmer to have independent threads of execution. These

mains can share the same global scope and synchronizing between them can be

achieved by the use of spinning semaphores. Different mains in HandelC can be

declared under different clock domains. Though this will add a penalty when try-

ing to synchronize or communicate between these different clock domains, certain

performance increases can be accomplished.

Channels are another important feature in HandelC. These abstract data types

are used primarily to communicate between parallel blocks of execution. Each

channel connects between two communication partners; any end will be halted till

the other end in the communication pair is ready. This behavior allows program-

mers to use channels as synchronization primitives between independent threads

of execution.

HandelC channels, spinning semaphores and parallel mains allow the program-

11

mer to implement TLP statically. However, the language does not offer runtime

support for TLP which is counter intuitive to programmers in general.

4.4 Parallel Programming Models

4.4.1 Pthreads

Threads can be used to implement parallelism in shared memory architectures.

Historically, hardware vendors have implemented their own proprietary versions

of threads making portability an issue for programmers. This was solved with the

arrival of the POSIX standards. For UNIX systems, a standardized C language

threads programming interface has been specified by the IEEE POSIX 1003.1c

standard. Implementations that adhere to this standard are referred to as POSIX

threads, or Pthreads [6].

Pthreads is most effective on multi-processor or multi-core systems where the

process flow can be scheduled to run on multiple processors thus gaining speedups

through parallel or distributed processing. Gains are also found on single processor

systems which exploit latency in I/O and other system functions which may halt

process execution.

Pthreads provides spinning locks and blocking mutexes as the basic synchro-

nization primitives. Also, Pthreads offers conditional variables, broadcasts, time-

outs and signals for better and more intuitive synchronization. Creating a thread

in Pthreads is done by calling the pthread create function passing a pointer to

the function to be executed and a pointer to the input structure. Joining on a

thread is done by calling pthread join and choosing which thread to join with, or

the programmer can join on threads by using mutexes and conditional variables.

Threads can be in the detached state by either setting the attributes when cre-

12

ated or calling the function thread detach. The functionality of Pthreads is quite

simple and well known to programmers.

4.4.2 Hthreads

Hthreads is a real-time operating system designed and implemented in the

University of Kansas and is compatible with Pthreads [15]. Although Hthreads

was designed and built under the idea of HW/SW co-design, the system enables

programmers to implement multiple threads in hardware and software seamlessly.

Hthreads can achieve true physical concurrency by enabling multiple hardware

threads to work hand in hand with software threads. Without Hthreads or similar

systems programming threads or parallel tasks in hardware is a difficult endeavor

with a very high initial investment for every new algorithm.

The major components of Hthreads are implemented in hardware yielding

faster scheduling cycles and fewer interruptions to the CPU. This will minimize

the number of context switches the CPU has to do. Also, Hthreads offers low jitter

and more deterministic execution times. It is worthy to mention that Hthreads

was the inspiration behind HCthreads.

13

Chapter 5

HCthreads: Design, Architecture

& Implementation

It was decided that a subset of the Pthreads interface is needed in HCthreads.

Pthreads APIs that deal with attribute maintenance are redundant in HCthreads.

Pthreads was intended to serve a large range of applications from enterprise so-

lutions to simple programs. However, HCthreads is meant to facilitate achieving

true physical concurrency for homogeneous threads on a limited platform, there

is no room for diversity. Hence, HCthreads was built to accommodate this fact

by expressing some attributes as compilation flags resolved at design time. This

helped slim down the interface, thusly conserving hardware as much as possible.

The other main segments of Pthreads not implemented in HCthreads are con-

ditional variables and blocking mutexes. Conditional variables and blocking mu-

texes are essential in achieving pseudo concurrency in a single processor platform.

In Pthreads, these synchronization primitives are the means programmers employ

to indicate which thread should be on the processor in a certain time period and

which should not. Schedulers depend on such a programming model to decide

14

which thread should be active and which should be dormant [21].

HandelC however provides spinning semaphores as a native construct in the

language, there is no need for blocking mutexes. In single processor platforms

there is no sense for a programmer to use a spinning mutex. The processor will

be occupied by the thread trying to lock the spinning mutex, no other thread can

run. Concurrency here can only be achieved through time slicing, thus a blocking

mutex is necessary. Also, in multiple processor platforms a thread trying to lock

a spinning semaphore for a long period of time will generate a lot of bus traffic.

The only justification for spinning semaphores in multi processor shared memory

architectures is when the spinning mutex can be acquired faster than a context

switch [21].

Fortunately that is not the case in HandelC. In HandelC and FPGAs concur-

rency is physical, functional units are duplicated and not shared. If one functional

unit is trying to get a hold of a spinning semaphore the others will be performing

their assigned tasks regardless. Also, HandelC does not employ a bus structure

internally. Thus, blocking on a spinning semaphore will not produce any over-

head. On the other hand, context switching has no meaning in HCthreads, thus

implementing blocking mutexes is not possible. In HCthreads functional units

are main threads of execution responsible for synchronizing threads as function

calls to hardware resources. After invocation, these functions can only exit when

they return. There is no notion of an instruction stream like in the Von Neumann

architecture, and there is no notion of state like in Hthreads. Nevertheless, the

concept of context switching along with state, conditional variables and blocking

mutexes can be added to HCthreads but with a cost that can never be justified

to both the programming model and FPGA resources.

15

In this chapter HCthreads attributes such as joinable threads versus detachable

threads are discussed in the first section. Second, the system main components are

presented. Third, the simple HCthreads interface is described. The HCthreads

data structures are then detailed in the last section.

5.1 HCthreads Attributes

Stand alone FPGAs are used to implement simple systems that may be di-

vided to homogeneous parallel tasks. These devices are not suitable for large scale

computer systems with heterogeneous parallel tasks. This assumption comes from

the original purpose FPGAs were made for. FPGAs were constructed for certain

applications such as high performance computing and embedded systems rather

than being the platform of choice for generic information systems [12] [25]. There-

fore, Pthreads attributes for individual threads were extracted to a collection of

compilation flags in HCthreads. These flags will force all threads in that partic-

ular system to expose the same behavior. Adopting this strategy helped save a

considerable amount of hardware and improved timing.

5.1.1 DETACHED

pthread detach was replaced by a compilation flag in HCthreads to conserve

hardware. Otherwise, the state registers for threads would have expanded and

extra logic would have been implemented to accommodate a joinable-detachable

scheme in the same design. Instead, a compilation flag defined by the programmer

at design time sets the intended behavior of all threads in the system. It is

advisable to implement a detachable threading strategy rather than a joinable one

due to the extra hardware and synchronization joinable designs require. Please

16

check Section 5.3.

5.1.2 CONTAINER SIZE

The default value for the flag CONTAINER SIZE in HCthreads is thirty two

entries. Though this size is quiet sufficient for most algorithms, the programmer

still can increase or decrease the number of entries in the ready to run container.

The programmer needs to define and assign a value to the compilation flag CON-

TAINER SIZE before including the HCthreads header file. CONTAINER SIZE

should assume a value according to the following equation:

CONTAINER SIZE = 2X , (5.1)

Where X ranges from 2 to 6. There is no point in having queues with 1,

2 or more than 64 entries. The reason for this restriction is the simplicity of

implementing queues using overflow in hardware. The ready to run container

might be required to behave like a queue. Then, it is easier to implement the

bound markers using over flow rather than adding extra logic.

5.1.3 R2RSTACK

The ready to run container by default exposes a queue behavior. However,

in certain algorithms, such as NQueens, it is wiser to make the ready to run

container expose a stack behavior. In these algorithms each thread will spawn a

good number of threads before terminating. If the queue behavior of the ready

to run container was kept, HCthreads might run into the limitation of a breadth

first search [20]. Every thread will spawn enough threads that will fill up the

ready to run container. Then the current executing threads are still occupying

17

the functional units unable to terminate because they still need to spawn more

threads. On the other hand, making the ready to run container expose a stack

behavior will force the threads to behave quite close to a depth first search solving

this problem.

5.1.4 NO FNUNITS

This flag specifies the number of functional units the current implementation

of HCthreads contains. Different algorithms require different optimal numbers

of cores running concurrently to improve overall performance. This is governed

by memory access patterns and the physical limitations of the targeted platform.

The designer is provided with a framework to assess the need for such resources

as described in Section 6.3.

5.2 HCthreads Components

The three HCthreads components are main functions other than main thread

of execution. HandelC allows programmers to implement any number of main

functions running independently from each other. HandelC provides channels

and spinning semaphores so programmers can synchronize between these mains.

5.2.1 The Dispatcher

This is a very light weight component that assigns threads to free functional

units and at the same time signals these functional units to start executing their

assigned threads. This component also initializes all state registers in HCthreads

during the first clock cycle when the system starts. The dispatcher after that

enters an infinite loop where every clock cycle it keeps looking for threads to

18

be scheduled by checking the availability of free functional units and threads

in the ready to run container. Once a scheduling decision is made the global

synchronization semaphore is locked and in the case or a ready to run stack in

three clock cycles a thread is assigned to a functional unit. Otherwise, in the case

of a ready to run queue a thread is assigned to a functional unit in two clock

cycles. The reason for this discrepancy is the difference in data dependency of the

ready to run container markers when behaving like a stack or a queue. During

the last clock cycle in a successful scheduling event the thread in question starts

to execute. This is done by sending a pointer of its argument from the thread

argument array via a HandelC channel. This will release the other end of the

communication channel in the free functional unit identified during the previous

clock cycle. These operations are carried out using simple combinational logic

including one priority encoder to retrieve the free functional unit, shift and bitwise

logic operations, a bunch of variable assignment and channel write statements.

5.2.2 The Terminator

The first implementation of the terminator is a separate component that works

with the other end of functional units. This implementation utilizes a special con-

struct in HandelC called the PriAlt statement. The PriAlt statement is control

statement constructed just like the switch statement. However, instead of branch-

ing to different segments of code depending on the value of the control variable,

the branching will happen according to the readiness of a communication channel

with one end being in the case list inside the PriAlt statement. When two commu-

nication channels are ready at the same time the arbitration scheme necessitates

that the transaction to be completed first is the communication case listed first,

19

the other one would be blocked until the next pass. In case of no ready commu-

nication channels, the PriAlt statement would block till one communication case

is ready. This implementation keeps HCthreads data structure manipulation for

thread exit in one central location. In this design the terminator will listen to all

functional units at the same time and once a functional unit signals completion

its id is saved. Then the global synchronization semaphore is locked and the state

of the functional unit in question is set to free and the finished thread is marked

joinable under a joinable design. In this design a single termination round takes

four clock cycles to execute in case of a joinable scheme and three clock cycles to

execute in case of a detachable scheme. Unfortunately, in certain instances this

design cannot simulate due to a known bug but can execute in hardware, therefore

another supplementary implementation was proposed.

The second implementation is to take the termination logic and duplicate it

at the end of each functional unit. This will eliminate the need for a separate

parallel main function to act as a terminator. Also, this implementation will get

rid of the second set of communication channels responsible for synchronizing all

functional units with central terminator. In this design a single termination round

takes two clock cycles in case of a joinable scheme and one clock cycles to execute

in case of a detachable scheme. This design is used only in simulation when the

first design fails; this design was never used in a the real system tests.

5.2.3 The Functional Units

These are a bunch of identical main functions each responsible for executing a

separate copy of the function the developer wishes to thread. Each of these func-

tions is implemented as an infinite loop where HandelC communication channels

20

maintain synchronization between thread calls and the dispatcher from one end

and the terminator from the other end depending on the terminator design. If the

dispatcher decides to schedule a thread on a certain functional unit, it will signal

that functional unit by sending a pointer to the input structure of that thread

using a communication channel. After that, the threaded function on that func-

tional unit starts to execute and upon completion the functional unit will do one

of the following. The functional unit in the first implementation of the terminator

will signal that component using a communication channel communicating its id.

After that, the functional unit will block again on the first channel waiting for the

dispatcher to schedule another thread. The termination logic in this case is carried

out inside the terminator component. On the other hand, the second terminator

implementation requires the termination logic to be implemented after the thread

call. The functional unit itself is responsible of locking the global synchronization

semaphore and properly updating the corresponding data structures.

Figure 5.1. HCthreads internals assuming three functional units

21

5.3 The HCthreads Interface

To keep things simple HCthreads allows the programmers to call two func-

tions only, hcthread create and hcthread join. These two functions behave like

their Pthreads counterparts, but they have different decelerations, signatures and

return values. hcthread join accepts only a thread id by value and halts the ex-

ecution of the current main function till the corresponding thread terminates.

hcthread join does not have a return value; the thread will either eventually join

or halt for eternity. However, joining on a valid thread id is guaranteed not to

halt giving that the thread in question is going actually to terminate and not halt

due to congestions in the functional units and/or the ready to run container. It

is recommended not to use a joinable thread scheme, it might generate deeper

control flow and worse timing scores, instead check Sections 7.2 7.3.

hcthread create was reduced to two inputs in the case of a joinable design and

only one input in case of a detachable design. For joinable designs the thread

id by reference and the input structure by value are needed. For detachable

designs the input structure by value is needed. The thread id section is still

common with pthread create, but it was kept like that to maintain compatibility

with hcthread join should the programmer choose to. Unlike in Pthreads the

input structure is passed by value due to HandelC pointer restrictions, for more

information refer to Sections 5.2. hcthread create needs to inform the programmer

if a thread was successfully created for the current call or not, so the return value

is binary, there is no other information to submit back.

Both hcthread create and hcthread join are inline functions. HandelC pro-

grammers might call different copies of these functions concurrently. To achieve

better parallelism different hardware copies of these functions should be respon-

22

sible for executing different invocations.

The hcthread create function is not expensive given that the function, after

locking the global synchronization semaphore, takes only two clock cycles if suc-

cessful and one clock cycles if not. The function contains one if statement with no

logic operators, one priority encoder, shift and bitwise logic operations and a hand-

ful of variable assignments. The hcthead join function in joinable designs contains

one while loop that locks the current thread of execution till the corresponding

thread is in a joinable state, that is done before locking the global synchroniza-

tion semaphore. Once the thread in question is ready to be joined, the global

semaphore is locked and in one clock cycle the state registers are updated using

shift and bitwise logic operations.

Figure 5.2. The HCthreads interface as defined by the developer
and the library

To complete the interface the developer is supposed to define the input struc-

23

ture and a prototype of the function to be accelerated according to specific names

and signatures. Due to limitations in the HandelC language and the difference

in pointer semantics between hardware and software, these two components can-

not be supplied at run time via pointers. Both should be statically laid out at

design time before including the HCthreads library so the library can preallocate

resources for its data structures and functional units before compilation.

5.4 HCthreads Data Structures

The HCthreads library employs few structures that maintain state for the

threads and the functional units in the system. These structures are the ready to

run container, its supporting markers, the arguments array, the functional unit id

to thread id translation array, the threads state, the number of live threads still

in the system and the functional units state.

The ready to run container keeps track of the order of threads being created.

The semantics of the ready to run container can change from a queue to a stack

as desired, it also requires two registers to maintain its bounds. The ready to run

container is accompanied by an array that maintains the values of input arguments

captured when creating threads. Also, the ready to run container comes with a

lookup table that maintains a current translation between functional units and the

threads currently running on them. Also, threads state and functional units state

are responsible for keeping track of state by marking the corresponding thread or

functional unit as busy, free or joinable. If the system is defined as detachable, a

counter will be declared to keep track of the number of live threads still active in

the system. This register can be read in the main thread of execution to verify if

all threads have terminated.

24

First, threads state, functional units state and joinable state are implemented

as bit fields. This allows the library to validate the availability of free threads

or functional units instantaneously without the need to loop over an array. State

is implemented as registers where each bit represents the state of a single unit

or thread. A high bit represents a free resource and a low bit represents a busy

resource. To verify the presence of free resources an if statement would do. If

there are any free threads or functional units the bit field will evaluate to true.

Otherwise, if all were occupied the bit field will evaluate to false. Also, by using

bit fields it is easy to retrieve the index of the next free resource by exploiting

priority encoders. Efficient and fast encoder macros were provided by the HandelC

standard library.

The ready to run container is implemented as a LUT RAM array of unsigned

integers. In LUT RAM arrays only one element can be accessed at the same clock

cycle to save resources. This access restriction is not harmful. A global semaphore

should be locked before accessing this container. That entails only one member

of that array is needed at a certain instant in time. Another array that parallels

the ready to run container is implemented to hold a copy of the argument object

for each created thread till pushed on a functional unit. HCthreads saves a copy

of the input argument rather than a pointer because in HandelC pointers are ref-

erences to locals or globals and should be resolved at compile time. The concept

of allocating and deallocating memory in the free store does not stand. If the

programmer passes a reference to a local, once the original variable in the calling

function goes out of scope the reference to that variable is invalidated. The only

option is for the programmer to implement input arguments as globals then pass-

ing references of these. Therefore, HCthreads takes care of that uniformly within

25

the HCthreads implementation. Finally, global registers are included to mark the

bounds of the ready to run container and the order of scheduling depending on

the desired stack or queue behavior.

One register is used to maintain the number of live threads in the system in

case of a detachable scheme. This register is initialized to zero, then incremented

inside the thread create call every time a thread is created and decremented within

the termination logic every time a thread finishes. The purpose of this register is

for the developer to block on in the main thread of execution after creating the

initial thread or threads. In this case the main thread of execution will halt till

the number of live threads in the system falls back to zero.

26

Chapter 6

HCthreads: Supporting Utilities

The HandelC development environment supports various FPGA platforms.

Some of these platforms are under the Celoxica brand. The development environ-

ment and the build tool chain work seamlessly when targeting these platforms.

Also, Celoxica issues support libraries and build scripts for third party platforms.

However, Celoxica doesn’t offer a global methodology to design and implement

HW/SW systems. Limited with the available equipment, and the desire bench-

mark different C to Hardware translation tools with the same platform, it was

decided to develop a solution for this problem. This solution should enable the

developers to use HandelC with a wider range of platforms. Xilinx currently holds

a large share of the FPGA market. Therefore, it would be rational to think of

extending HandelC support to their platforms first. This motivation was also

driven by the available ML310 platform.

The ML310 platform is built around the Virtex II Pro FPGA. This FPGA

includes, besides the standard reconfigurable fabric, embedded microprocessor

cores. For this chip, and others in the Virtex family, hardware co-processors are

abstracted in IPIC compatible cores. Using the IPIF these cores can be placed on

27

either the OPB or the PLB bus. This setup would make the integration between

the output of HandelC and the Virtex family possible. Yet, the Hthreads system

was a better starting point. Hthreads and the HWTI provide the required high

level abstractions for free.

Hthreads is an operating system that abstracts communication and synchro-

nization of hardware co-processors into hardware threads. Hthreads implements

an interface called the HWTI on top of the IPIC. The HWTI is a well estab-

lished interface. It was designed, implemented and thoroughly tested to provide

communication and memory abstractions from bus protocols and operations to

high level store and load operations. HandelC cores can be arranged nicely into

hardware threads using the HWTI. This will achieve the desired integration with

Xilinx platforms. Adopting this solution made the HandelC integration effort one

of the first solid customers for the Hthreads system.

The first iteration of this integration used the concept of data streaming. The

data was streamed via the hardware thread user logic to the HandelC core. The

hardware thread user logic then communicates the results back to shared memory.

This is detailed in first section in this chapter.

The other scheme replaced the hardware thread user logic completely with

HandelC code. That meant the HandelC core will assume an additional respon-

sibility of interfacing with the HWTI. This is presented in the second section.

The fine tuning framework and the underlying assumptions are then discussed

in the last section.

28

6.1 Simple Data Streaming

Hardware threads in the Hthreads system are implemented as sequential state

machines under the HWTI. These state machines carry the intended functionality

in a fashion very similar to programs implemented at the assembly language level.

It would be easy to for the HandelC core to set at one of these states. The hardware

thread logic would start execution when it is scheduled to run. Then, the user logic

state machine will retrieve the dataset needed by the HandelC core. This data

would be transferred to the HandelC core using a couple of simple communication

schemes, depending on the implemented algorithm. After that the HandelC core

will start working on that dataset. It will signal the user logic state machine when

it is done. After that, the results dataset will be transferred back to user logic

state machine using the same communication schemes mentioned earlier. Finally,

the user logic state machine will communicate the results dataset back to shared

memory using the HWTI.

Following the simple description above, one can tell that this scheme bene-

fits from using the user logic state machine by avoiding having to deal directly

with the HWTI. The fastest way for developers to write hardware threads in

the Hthreads system is to start from a template of the user logic state machine.

This template contains the implementation of the state machine according to the

HWTI specifications and the description of the minimal set of states needed to

code a hardware thread. In order for developers to incorporate a HandelC core

in this state machine, they have to add a bunch of additional states for data

handling and synchronization. This scheme is straight forward and quick to im-

plement. Unfortunately this scheme comes with two major drawbacks, the first

being the additional clock cycles needed for this additional synchronization and

29

the other being cutting off the HandelC core from the abstractions the HWTI and

the Hthreads system provide.

The number of cycles required for memory operations in the Hthreads system

depends on bus traffic and on the location of the memory segment being accessed.

Therefore, the communication framework between the user logic state machine

and the HandelC core should include synchronization signalS to flag when either

side of the channel is ready to read or write data. An additional overhead will

be added to the latency of memory operations. Also, this communication scheme

cannot be unified over different algorithms. Certain algorithms might require a

large dataset at a time such as QuickSort and Laplace while others might require

just one word as input such as FIR and NQueens. Hence, this communication

scheme has to be implemented manually and reevaluated on problem to problem

basis making it unattractive.

The second drawback of this scheme would be the obscuring of the HandelC

core from the abstractions offered by the HWTI. This is a major concern. To prove

this point it is sufficient to only mention one scenario where the HandelC core fails

to carry out its operation. Assume the HandelC core is supposed to sort a dataset

of a large number of records, the streaming scheme would have to transfer the

entire dataset or at least a considerable portion of it into the HandelC core first,

and this is quite clearly infeasible. Instead, it would be better if the HandelC core

had access to the off ship DRAM where such huge dataset resides. For this reason

the data streaming scheme fails to address all communication needs.

To solve the problems mentioned above a new method should be used. The

hardware thread user logic state machine should be bypassed. The HandelC core

should be able to interact to the HWTI directly.

30

6.2 Full Integration with Hthreads

HandelC is cycle accurate, which means it behaves like an HDL. That makes

it possible for HandelC to synchronize correctly with the HWTI. This is done by

unifying the interface the HandelC core exposes to the outside world to become

the same interface the user logic state machine entity used to expose. On the

other end, this interface will be wrapped by shared functions within the HandelC

core. Every time the user requires an action from the HWTI a simple call to one

of these functions would do. For instance, should the user within the HandelC

core require dereferencing a pointer within the shared memory address space, a

call to the load function passing the address as a parameter will do. Then the

HandelC core will issue the proper opcode to start a load operation. At the same

time the load function would take care of the timing requirements imposed by

the HWTI. It will drive the ports for the required number of clock cycles, and

then wait for the proper synchronization signal from the HWTI and ultimately

deliver the result back to the user in a form of a return value. Likewise, other

operations such as pop, push, thread exit and save are wrapped within similar

functions. Just like in the data streaming scheme the user does not have to deal

with the HWTI directly, nonetheless the user can request all HWTI services with

very little effort.

Currently, this method is done by including the Hthreads support library

hthreads.hch when developing a new hardware thread using HandelC. The library

currently contains implementations for the basic memory and synchronization

operations such as load, store, push, pop, thread exit and memory allocation op-

erations. Adding other opcodes supported by the HWTI such as Hthreads mutex

operations would be simply to add new shared functions to the library for each

31

new opcode. Coding these functions is a simple matter. The parameter list for a

given function should reflect what the HWTI expects the user to provide for that

opcode. The synchronization code required for all opcodes is the same.

6.3 HCthreads Fine Tuning

This framework was devised to help HandelC developers assess the required

recourses for the HCthreads library for different applications. It would be naive

to assume that a given HandelC core will utilize every functional unit just because

these components are there. On the other hand, it might be the case where more

functional units or bigger status containers are needed to achieve more parallelism.

Being able to assess what the algorithm under study actually needs in terms of

these components might yield some modest savings in space or it might provide

a boost in performance.

HandelC is cycle accurate, thus simulating a HandelC implementation for a

given input would yield the exact same result of running that implementation in

hardware. This allows developers to debug their HandelC code without having to

convert it first to a netlist or an HDL format and then simulate using third party

tools. Also, developers using the fine tuning capability of the HCthreads library

can assess if their implementation might require less or additional HCthreads

resources. This is achieved by defining the DEBUG compilation flag, running the

application and then investigating certain globals that indicate the resource usage

of the HCthreads components.

The only concern developers should take care of is the interaction of their

cores with the HWTI. Memory access times in the HWTI are dependent on the

portion of the shared address space to be accessed [2]. To solve this problem

32

the framework can either assume the problem away by letting all access times to

take one clock cycle or by modeling memory latencies. Modeling these memory

latencies should be relatively easy. First, the framework can safely model the

access times as a constant for the BRAM within the hardware thread the HandelC

core resides in. The probability of another thread accessing this portion of the

shared address space is almost NULL. On the other hand, access times for the off

chip RAM can be modeled by a different constant. This approximation should

be close enough to the actual case with an acceptable margin of error. This can

be rationalized easily by noting that the general case of HandelC cores under the

Hthreads system would consist of only one hardware thread in the entire system.

This hardware thread wraps around the HandelC core to provide FPGA platform

support. There the main thread of execution is blocked on the CPU trying to

join on that single hardware thread once it creates it. Therefore, there is no need

to expect heavy bus contention coming from other hardware or software threads.

Finally, programmers can readjust their HCthreads library according to the initial

profiling findings and repeat the process to their satisfaction. Being able to carry

out this iterative operation in the simulator rather than the real system will save

time.

33

Chapter 7

Results

The first objective of these tests is to demonstrate the programming model

enhancement when expressing TLP using HCthreads. The second objective is

to show that this enhancement does not come with severe performance costs

compared to the ILP technique in HandelC. The two programming models are

presented in the first section of this chapter.

The second and third sections deal with simple test cases implemented on two

platforms. The first platform is the HandelC simulator meant to present the ideal

case. The simulator abstracts memory latencies because the global arrays and

other data structures in the system require only once clock cycle to be accessed.

Speedups or slowdowns in execution times would be clearly visible in this platform.

The other targeted platform in these tests is the Xilinx ML310. This platform is

supposed to display the capabilities of HCthreads in a market available platform

with memory access limitations and other practical HW/SW considerations.

The tests executed on these platforms are simple algorithms with different

threading and memory characteristics. These tests are implemented in two forms.

The first form is the parallel implementation of these algorithms using the na-

34

tive HandelC construct par. Par acts as a simple scheduler and terminator for

parallel copies of the accelerated function. This form does not require extra cod-

ing except when it comes to recursive algorithms. In recursive algorithms a stack

should be implemented to support recursion where HandelC does not. The second

implementation of these test cases is done using HCthreads.

The first algorithm is Quicksort which is a recursive memory intensive program

suitable for a ready to run stack and a detached threading behavior. The second

algorithm is the solution to the NQueens problem. This is an embarrassingly

parallel algorithm with limited memory interaction suitable for a ready to run

stack arrangement under a detachable scheme. The final algorithm is a simple

implementation of a Matrix Multiplier. This program is suitable for a ready to

run queue under either a joinable or a detachable solution. Investigating the

HCthreads library with these algorithms covers testing for the behavior of the

ready to run container and the employed joinable or detachable threading scheme.

Finally, additional test cases are to verify the supporting utilities. The cor-

rectness of the Hthreads support library is discussed in the fourth section. Then

in the fifth section, some tests would shed a light on the validity of the proposed

fine tuning framework.

7.1 Programming Model Enhancement

The case to be made in this experiment is the facility HCthreads provides in

implementing TLP over other ILP implementations in HandelC. Though quanti-

tative results cannot be presented, qualitatively it is reasonable to state that a

parallel implementation using HCthreads is easier to code. Programmers these

days are familiar with the Pthreads interface. With few pointers and hints these

35

programmers can express parallel algorithms easily in HandelC using HCthreads.

The initial investment is minimal. On the other hand, it will be inconvenient

for programmers to implement parallel and recursive algorithms with just ILP

constructs. There is no predefined method, programmers need to come up with

their own parallelization framework. They need to code and test the correctness

of these implementations themselves. Consequently, the initial investment is not

marginal.

As shown in Figure 7.1 HCthreads calls are similar to Pthreads calls in terms

of syntax and semantics. The major difference rests in the extraction of the

properties of each individual thread to global definitions enforced over all threads

spawned in that particular solution. The other difference in syntax lies in the

signature of the hcthread create and the hcthread join functions where the lan-

guage pointer semantics and limitations forced the interface to be defined in this

fashion. Refer back to Section 5.3.

Figure 7.1. Creating and Joining on Threads using HCthreads

On the other hand, as portrayed in Figure 7.2, parallelism using pure ILP

HandelC constructs is not straight forward. While in the case of simple iterative

algorithms such as matrix multiplication, implementing parallelization is rather

simple. The programmers need only to worry about creating multiple copies of

the accelerated function and to coordinate the concurrent invocation of these

36

functions using the par construct. However, in the case of recursive algorithms

programmers have to add recursion support themselves. Even though the average

programmer will be able perform such a task effectively, HCthreads already offers

recursion support for free.

Figure 7.2. Recursion Support & Function Parallelization using ILP
Constructs

7.2 Simulator Results

The experiments carried out on this platform proved HCthreads quite useful.

As illustrated in the associated figures and tables HCthreads performed better

than the ILP implementation almost in all cases. First, for the Quicksort algo-

rithm the objective was to sort one thousand integers. The presented data shows

that the HCthreads implementation causes an additional overhead when compar-

37

Figure 7.3. QuickSort Total Clock Cycles, Simulator

ing single units. However, when the number of functional units is increased the

drops in total clock cycles will lessen the effect of the scheduling and termination

overhead. The reason behind this drop is that HCthreads schedules and termi-

nates tasks individually while the par construct does that in groups. In the case

of HCthreads a thread will be assigned to a functional unit right when created

and the functional unit will be freed when the current thread completes its com-

putation. On the other hand, the par construct will invoke multiple copies of the

accelerated function at the same instant, and it will wait for all these functions

to terminate before the second invocation round can commence. This means HC-

threads hardware utility is higher than the par solution. Also, HCthreads reached

its saturation point at least two units before the ILP implementation. In actual

systems this means savings in allotted physical resources and better timing results.

The results for the Eight Queens algorithm were also promising. Both parallel

38

Figure 7.4. NQueens Total Clock Cycles, Simulator

implementations were on an equal footing. Tasks in the NQueens solution take

almost the same number of clock cycles to terminate. That means there is no big

difference between scheduling threads in groups or independently. However, the

HCthreads implementation is faster by almost four thousand cycles when having

three functional units or more.

The Matrix Multiplier algorithm was to multiply two 14X14 matrices. Both

parallel implementations showed speedups over the single unit. Still, HCthreads

performing better in almost all instances. However, in the case of three functional

units both parallel implementations achieve their best results. The ILP imple-

mentation starts to slowdown after that. The reason behind such behavior can be

understood by explaining a reported bug in semaphore operations in HandelC. For

this algorithm the accelerated function is implemented using two nested for loops

with each taking exactly three clock cycles to execute; only one of these clock

39

Figure 7.5. Matrix Multiplier Total Clock Cycles, Simulator

cycles in both loops is protected with a semaphore. When running the algorithm

with three functional units, there would be no contention on the any semaphore

after the first inner iteration. However when running the algorithm with four

functional units there would be two functional units competing on the inner most

semaphore at any clock cycle. The assumption is that once the third functional

unit releases the semaphore the fourth functional unit should acquire it, that is

the case. Then the fourth unit is waiting already for a couple of clock cycles but

the first unit is about to join that waiting queue. At the next clock cycle right

when the semaphore is released control will be given to the first unit because it

is listed first in the code. The clock cycle after that, the second and fourth units

will be competing for that semaphore, again control will be given to the second,

then the third then the first again. The fourth unit will never get that semaphore

till the first three exit these loops. Thus, running four units in parallel will be

40

similar to running three units in parallel and after that one unit in sequence.

That will force the total number clock cycles to almost double when scheduling

a single batch, even though the expected behavior would be for the total number

of clock cycles to saturate when adding more unit after three. However, this bug

in semaphore arbitration is not an issue with HCthreads. Unlike in the ILP im-

plementation where threads are scheduled and terminated in groups, threads in

HCthreads are independently scheduled right when created and terminated right

when done. If one functional unit gets stuck the first three will work till all threads

are done, then the fourth unit will free itself and finish its assigned computation.

Finally, the detachable HCthreads implementation required less clock cycles to

run compared to the joinable build. Thus the recommendation of implementing

with detachable rather than joinable is valid.

Table 7.1. Simulator Total Clock Cycles
par construct

1 2 3 4 5
QS 53,338 39,370 36,901 34,833 33,594
NQ 225,063 119,712 82,810 63,557 52,099
MM 9,888 5,373 4,083 5,241 4,676

HCthreads
1 2 3 4 5

QS 55,335 34,124 30,523 29,746 29,761
NQ 236,791 118,627 79,383 59,662 47,926

MMJ1 9,961 5,423 4,313 4,313 4,313
MMD2 9,947 5,402 4,107 4,107 4,084

1Joinable Design
2Detached Design

41

7.3 ML310 Results

This section captures the implications of HCthreads when targeting a real

FPGA platform. In this platform, the HandelC component will reside as user

logic inside a hardware thread. This hardware thread using the HWTI will bridge

the gap between the HandelC component and the rest of the system. To capture

most accurately the total number of clock cycles passed during a single run. The

HandelC component incorporates a counter that starts counting clock cycles when

the component receives a thread start signal and resets itself when the thread exits.

The processor can schedule the hardware thread to run for an arbitrary number

of times, in our case a hundred. Every run the processor aggregates the total

number of clock cycles. Eventually the processor will average that aggregate and

report that number back as the total number of clock cycles needed for a single

run. This way the unknown effects of bus contention when accessing memory will

be distributed over a large set of samples.

First, the Quicksort algorithm will sort a set of ten thousand thirty two bit

integers. Looking at the results in Figure 7.6 the total execution time will get

worse as the number of units increases. The reason behind such slowdown is that

the memory latency when accessing the off chip DRAM is relatively large and

Quicksort is a memory intensive application. That entails the portion of the code

that can be accelerated by the presence of multiple units spends far less time

executing than the synchronized portion responsible for memory interaction, this

is a classic case of the limitation of Amdahl’s Law. On the other hand, when

more units are added to the system more reconfigurable resources are needed

generating more competition over routing resources. Coupled with that the circuit

for the semaphore acting as a memory guard will get more complex, thus the

42

Figure 7.6. QuickSort Total Execution Time, ML310

maximum delay on the longest combinational path will get worse. Both these

factors contribute to worse clock speeds with every added unit forcing the total

execution time to increase, even though the total number of clock cycles remained

virtually constant. In the case of Quicksort all gains achieved in the form of total

clock cycle reductions is exceeded by the longer clock durations. Although these

are negative results, there are a couple of positive points to report on. The first

point is the slight overhead of HCthreads when having only one unit running in

the system. That indicates the HCthreads library is an acceptable solution if

programmers are only worried about adding recursion support to their HandelC

implementations. The other positive result would be the slower rate in which

clock speeds fall when using HCthreads over the other. That indicates HCthreads

builds combinational circuits with smaller stage delays for the same number of

units. This was evident when the ILP implementation using four units even failed

43

to run, while HCthreads implementation using four units provided better results

than the ILP build with three units.

Figure 7.7. NQueens Total Execution Time, ML310

The Second test was the solution for the NQueens algorithm with eight queens.

The results for this algorithm are quite promising. HCthreads didn’t just achieve

modest speedups over the single unit case, but managed to achieve speedups over

the ILP implementation given the same number of units.

The Matrix Multiplier was supposed to multiply a 25X9 times a 9X13 matrix.

This algorithm achieved slowdowns for the same reasons Quicksort did, too little to

accelerate and worse clock speeds. However, just as it was the case for Quicksort,

HCthreads implementations provided better timing results compared to their ILP

counterparts.

44

Figure 7.8. Matrix Multiplier Total Execution Time, ML310

Table 7.2. ML310 Total Clock Cycles
par construct

1 2 3 4 5
QS 41,079,840 41,149,963 41,142,549 NA 1 NA 2

NQ 236,422 131,187 93,018 73,814 62,844
MM 224,534 221,606 225,799 221,805 215,298

HCthreads
1 2 3 4 5

QS 41,072,433 41,061,839 NA 3 41,055,250 NA1

NQ 238,324 120,794 80,906 60,999 49,115
MMD4 225,035 213,706 213,404 213,400 213,397
MMJ5 224,690 213,561 213,529 213,507 213,821

45

Table 7.3. ML310 System Minimum Period in nSeconds
par construct

1 2 3 4 5
QS 12.52 15.91 17.68 18.35 NA
NQ 12.42 12.41 12.49 12.42 12.44
MM 12.67 17.01 17.10 19.91 20.56

HCthreads
1 2 3 4 5

QS 12.46 12.45 NA 16.71 19.71
NQ 12.54 12.42 12.41 12.51 12.42

MMD 12.40 15.86 16.57 18.52 23.07
MMJ 13.02 18.43 17.63 21.02 19.99

Table 7.4. ML310 Slices
par construct

1 2 3 4 5
QS 2989 3641 4216 4872 NA
NQ 2541 2755 2914 3120 3253
MM 2612 3011 3373 3871 4230

HCthreads
1 2 3 4 5

QS 3387 3958 NA 5342 6114
NQ 3771 4017 4333 4651 4882

MMD 2737 3166 3535 4013 4454
MMJ 3021 3405 3789 4299 4691

7.4 Testing HandelC and Hthreads Integration

No separate test cases were carried out for this portion, yet the support library

was deemed satisfactory. When testing on the ML310 platform all HandelC cores

were placed inside a hardware thread. Therefore, the Hthreads support library

1System froze when executed
2System was not built, no need to generate results when the previouse case failed
3System could not be synthesized due to an error in the Xilinx tool chain
4Joinable Design
5Detached Design

46

Table 7.5. ML310 Core Minimum Period in nSeconds
par construct

1 2 3 4 5
QS 9.90 12.44 13.71 13.86 NA
NQ 9.62 9.64 9.84 9.86 10.00
MM 10.83 13.12 12.91 14.37 14.92

HCthreads
1 2 3 4 5

QS 9.29 10.54 NA 13.93 14.90
NQ 8.83 9.19 9.32 9.05 9.15

MMD 10.27 12.52 13.44 13.89 14.98
MMJ 10.27 12.91 13.36 14.45 15.03

was present in about thirty different test cases with millions of back and forth

transactions. These transactions contained the following opcodes and functions:

• OPCODE LOAD

• OPCODE STORE

• OPCODE PUSH

• OPCODE POP

• OPCODE CALL

• U FUNCTION RESET

• U FUNCTION USER SELECT

• U FUNCTION START

• FUNCTION HTHREAD EXIT

• FUNCTION MALLOC

• FUNCTION FREE

47

All these functions and opcodes performed as expected with no exception.

However, because one hardware thread were running there was no need to use

Hthreads mutexes, conditionals and other. To verify if this set of functions work

properly with the support library, a couple of pilot programs were constructed

and tested with successful results, with the exception of one scenario dealing with

mutexes still under investigation. The support library should undergo complete

verification to make sure that differences in the programming model between

HandelC cores and the user logic state machine it replaced is not severe enough

to corrupt future complex implementations.

7.5 Fine Tuning Results

The underlying assumption behind the fine tuning framework is that the sim-

ulator would be able to replicate the operation of a real system with random

memory latencies to an acceptable degree. If this assumption doesn’t hold, pro-

filing should be carried on the system itself to correctly identify the minimum

required resources for that problem. But if the assumption holds profiling can be

done on the simulator shortening the development cycle.

For this set of tests, the discrepancy will be recorded between the total number

of clock cycles produced for a certain algorithm using the simulator with artificial

constant memory latencies on the one hand and using the ML310 on the other.

Unfortunately, the results were negative. As seen in Table 7.6, the differences in

the case of Quicksort are outside any acceptable range, thus rending the assump-

tion invalid. In the case of memory intensive applications any profiling should be

carried out on the real system and not in the simulator.

2System froze when executed
1System could not be synthesized due to an error in the Xilinx tool chain

48

Table 7.6. Total Clock Cycles for Actual and Approximated Sys-
tems

NQueens
1 2 3 4 5

Actual 238,324 120,794 80,906 60,999 49,115
Aprox. 241,294 121,171 81,217 61,330 49,354
Diff. 2,970 377 311 331 239

Ratio to Actual 1.25% 0.31% 0.38% 0.54% 0.49%
Quicksort

1 2 3 4 5
Actual 1,326,236 1,313,656 NA 1 1,312,301 NA2

Aprox. 1,167,646 1,138,934 1,138,793 1,138,872 1,138,831
Diff. 158,590 174,722 NA 1 173,429 NA2

Ratio to Actual 11.96% 13.30% NA 1 13.22% NA2

49

Chapter 8

Conclusion and Future Work

The results proved HCthreads worthy, it served its initial purpose by mak-

ing TLP easier to express in HandelC with the added speedup over conventional

parallelization schemes. Also, the extra area and timing overhead caused by HC-

threads can be tolerated in the case of massively parallel applications. The results

reiterated the fact that TLP cannot be achieved without breaking the memory

bottle neck first and reaching close to true data parallelism [18]. Channels and

message passing might be one way to tackle this problem. Unfortunately, the

HCthreads system currently cannot show relevant results, because Hthreads does

not support such programming models yet.

With respect to future work, the Hthreads support library should be rigorously

tested. This should be done by recoding the original test cases for the HWTI into

HandelC. The results should be cross examined with previous tests. It would

be expected to encounter some variations in these results. The reason behind

such difference is the distinction in the programming models between the two

implementations, primarily the lack of state in HandelC cores. This difference

would not render the Hthreads support library useless, it would still be beneficial

50

in most cases. Nevertheless, points of weakness should be identified and avoided,

after all FPGAs are supposed to be flexible.

Second, The Hthreads support library and the HandelC language can be en-

hanced by incorporating the globally distributed memory address space directly

into the HandelC language address space. Currently, global memory accesses are

done via function calls that wrap synchronization logic with the HWTI. Hiding

these functions behind standard pointer operators will push HandelC closer to

becoming the language for HW/SW co-design.

Finally, additional room can be exploited in the fine tuning framework. The

idea would be to use a random variable with a certain distribution to model

memory latencies during simulation instead of constants. If successful in this

endeavor, profiling can be pushed back to the simulator. This will cut down on

the development cycle which will make the HCthreads system more desirable.

51

References

[1] J. M. Agron. Run-Time Scheduling Support for Hybrid CPU/FPGA SoCs, 2005.

[2] E. Anderson. Abstracting the Hardware / Software Boundary through a Standard

System Support Layer and Architecture. 2007.

[3] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp, R. Sass,

and D. Andrews. Enabling a Uniform Programming Model Across the Soft-

ware/Hardware Boundary. 2006.

[4] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass.

hThreads: A Hardware/Software Co-Designed Multithreaded RTOS Kernel. In

Proceedings of the 10th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), Catania, Sicily, September 2005.

[5] P. Athanas and H. Silverman. Processor Reconfiguration Through Instruction-Set

Metamorphosis, 1993.

[6] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1997.

[7] T. Callahan. Automatic Compilation of C for Hybrid Reconfigurable Architectures.

[8] T. Callahan, J. R. Hauser, and J. Wawrzynek. The GARP Architecture and C

Compiler, 2000.

[9] Celoxica. Handel-C Language Reference Manual, 2005.

[10] P. Diniz, M. Hall, and J. Park. Bridging the Gap between Compilation and Syn-

thesis in the DEFACTO System. 2001.

52

[11] S. A. Edwards. The Challenges of Synthesizing Hardware from C-Like Lan-

guagesSeamless Hardware-Software Integration in Reconfigurable Computing Sys-

tems. IEEE Design And Test of Computers, 2006.

[12] G. Estrin. Reconfigurable Computer Origins: The UCLA Fixed-Plus-Variable

(F+V) Structure Computer. 2002.

[13] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized Generation of Data-

Path from C Codes. In Proceedings of the ACM/IEEE Design Automation and

Test. 2005.

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK : A High-Level Synthesis

Framework For Applying Parallelizing Compiler Transformation. 2003.

[15] KU Hybridthreads. Project Wiki. http://wiki.ittc.ku.edu/hybridthread/Main Page.

[16] E. Lübbers and M. Platzner. ReconOS: An RTOS supporting Hard- and Soft-

ware Threads. In 17th International Conference on Field Programmable Logic and

Applications (FPL), Amsterdam, Netherlands, August 2007.

[17] O. Mencer. ASC: A Stream Compiler for Computing with FPGAs. 2005.

[18] A. Nakajima and R. Kobayashi. Limits of Thread-Level Parallelism in Non-

Numerical Programs. 2006.

[19] I. Page. Constructing Hardware-Software Systems from a Single Description. 1994.

[20] S. Russel and P. Norvig. Artificial Intelligence, A modern Approach. Prentice Hall,

2003.

[21] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts, 6th

Edition. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[22] G. Stitt and F. Vahid. Thread Warping: A Framework for Dynamic Synthesis

of Thread Accelerators. In Hardware/Software Codesign and System Synthesis

(CODES/ISSS), 2007.

[23] T. Ungerer. Multithreaded Processors. In British Computer Society, 2002.

[24] M. Vuletic, L. Pozzi, and P. Ienne. Seamless Hardware-Software Integration in

Reconfigurable Computing Systems. IEEE Design And Test of Computers, 2005.

53

[25] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and C. Kitchen. An overview

of FPGAs and FPGA programming; Initial experiences at Daresbury. 2006.

[26] D. W. Wall. Limits of Instruction-Level Parallelism. In ASPLOS, pages 176–188,

1991.

[27] M. J. Wirthlin and B. L. Hutchings. DISC: The Dynamic Instruction Set Com-

puter, 1995.

54

