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Abstract

This dissertation is an outcome of three research projects which attempt to fill some existing

gaps in the statistical literature related to the design and analysis of single-arm clinical trials with

time-to-event endpoints following a Weibull distribution.

In the first project, we proposed a parametric maximum likelihood estimate based method for

designing single-arm clinical trials with a time-to-event endpoint that follows a Weibull distribution

with known shape parameter. The proposed method is quite flexible in the sense that it permits

investigators to incorporate various design features, such as expected loss to follow-up rate,

different accrual patterns, and administrative censoring. In the same context, three stochastic

curtailment methods (conditional power, predictive power, Bayesian predictive probability) are

presented which can be employed to obtain early evidence of efficacy or futility of an experimental

treatment. Finally, we have also discussed the implementation of group sequential designs using

the repeated significance approach.

The second project primarily focuses on the calculation of the Bayesian predictive probability

when a reasonably accurate estimate of the shape parameter of the Weibull distribution for the

underlying survival times is not available from historical studies. To suffice our purpose, two

approaches based on the posterior mode and the entire posterior distribution of the shape parameter

are presented. In addition to calculating the Bayesian predictive probability, we also explored the

utility of the internal pilot study approach for reestimating the study sample size based on data

accumulated at an interim stage.

In the third project, an R package is developed for designing single-arm clinical trials with a

time-to-event endpoint following the Weibull distribution, and to implement stochastic curtailment

methods discussed in the first two projects. The package will be made available to the scientific

community on the Comprehensive R Archive Network (CRAN).
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Chapter 1

Introduction

1.1 Background

Clinical trials are research studies involving human subjects to find novel ways of diagnosis,

prevention or treatment of a condition, and to manage symptoms and side effects from an

existing or a new treatment [1, 2]. There are four phases of clinical trials [2]. Phase I trials are

small sample studies, with about 15–30 subjects, to determine the maximum tolerated dose (MTD)

or the recommended phase II dose (RP2D) of an experimental treatment which is further evaluated

in a phase II trial with small to moderate sample sizes, usually less than 100, to obtain preliminary

evidence of its therapeutic effect and safety profile [2, 3]. In the subsequent large sample phase

III trials, an experimental treatment is compared with a standard treatment to obtain evidence of

efficacy and to monitor any adverse events, and finally, phave IV trials are post-marketing large

sample studies conducted to find evidence of safety and efficacy of an approved treatment [2].

The primary endpoints in different phases of oncology clinical trials include, but are not

limited to, objective response rate (ORR) or tumor response rate (TRR), progression-free survival

(PFS), disease-free survival (DFS), and overall survival (OS) [4]. Although ORR or TRR have

popularly been used as an endpoint in the early phase single-arm oncology trials, Rubinstein noted

that the time-to-event (TTE) endpoints PFS and OS are also being considered in the recent times

due to some medical and practical considerations [5]. Since the entire drug development process is

extremely expensive, both in terms of time as well as resources, it is critical to design early phase

single-arm trials with sound statistical properties that enable researchers to detect ineffective treat-

ments as soon as possible. This dissertation focuses on the design and other planning aspects for

single-arm phase II clinical trials with a TTE primary endpoint that permit researchers to evaluate
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the potential of an experimental treatment at an interim stage.

1.2 Aims and Scope

In this dissertation, we aim to fill gaps in the statistical literature related to various design aspects

of single-arm phase-II clinical trials when the Weibull distribution is appropriate for modeling

survival data derived from these studies. Our specific goals and objectives listed as below:

1. When a reasonably accurate estimate of the shape parameter of the Weibull distribution

is available from historical studies, we propose a parametric maximum likelihood estimate

(MLE) based method for designing single-arm clinical trials while incorporating flexible

features. In the same context, we describe three stochastic curtailment methods (conditional

power, predictive power, Bayesian predictive probability) for efficacy or futility testing based

on data accumulated at an interim stage. Furthermore, we discuss the implementation of

repeated significance testing approach for evaluating experimental treatments over the course

of an ongoing clinical trial. A detailed introduction to the concepts of stochastic curtailment

and repeated significance testing shall be presented in the later chapters.

2. We explore the effect of misspecification of the shape parameter of the Weibull distribution

on the desired operating characteristics (Type-I error and power). When no reliable estimates

of the nuisance shape parameter is available, we also discuss adaptation to the study sample

size based on data collected at an interim stage, and present two approaches for calculating

the Bayesian predictive probability for efficacy or futility testing.

3. We develop a computer package implementing the methods corresponding to the above-

mentioned objectives that will be made freely available to the scientific community.

1.3 Organization of Research

We followed a three manuscript format for this dissertation and it is organized in the following

order. The first manuscript is presented in Chapter 2 and it deals with the objectives listed in the

2



bullet point 1 in Section 1.2. The second manuscript, presented in Chapter 3, addresses the bullet

point 2 in Section 1.2. In Chapter 4, the third manuscript introducing the usage and functionalities

of our computer package is presented. Finally, we present some concluding remarks and future

research direction in Chapter 5.
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Chapter 2

Some Design Considerations Incorporating Early Futility for Single-Arm

Clinical Trials with Time-to-Event Primary Endpoints using Weibull

Distribution

This chapter has previously been published and is reprinted here with permission with minor
modifications. Waleed M, He J, Phadnis MA. Some design considerations incorporating early
futility for single-arm clinical trials with time-to-event primary endpoints using Weibull
distribution. Pharm Stat. 2021; 20(3): 610–644. https://doi.org/10.1002/pst.2097

Abstract

Sample size calculation is an essential component of the planning phase of a clinical trial.

In the context of single-arm clinical trials with time-to-event (TTE) endpoints, only a few

options with limited design features are available. Motivated from ethical or practical

considerations, two-stage designs are implemented for single-arm studies to obtain early

evidence of futility. A major drawback of such designs is that early stopping may only occur

at the conclusion of the first stage, even if lack of efficacy becomes apparent at any other

time point over the course of the clinical trial. In this manuscript, we attempt to fill some

existing gaps in the literature related to single-arm clinical trials with TTE endpoints. We

propose a parametric maximum likelihood estimate-based test whose variance component

accounts for the expected proportion of loss to follow-up and different accrual patterns (early,

late, or uniform accrual). For the proposed method, we present three stochastic curtailment

methods (conditional power, predictive power, Bayesian predictive probability) which can be

employed for efficacy or futility testing purposes. Finally, we discuss the implementation of
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group sequential designs for obtaining an early evidence of efficacy or futility at pre-planned

timings of interim analyses. Through extensive simulations, it is shown that our proposed

method performs well for designing these studies with moderate to large sample sizes. Some

examples are presented to demonstrate various aspects of the stochastic curtailment and

repeated significance testing methods presented in this manuscript.

2.1 Introduction

Single-arm trials are generally implemented to evaluate novel treatments during the early phases

of clinical research when it is unethical to conduct placebo-controlled trials, or investigators are

unable to implement randomized controlled trials due to practical considerations [3]. For instance,

single-arm trials are often conducted when the target population is small in size (as in the case

of rare diseases), or “window-of-opportunity” trials where subjects with a particular condition

are available for a limited period of time prior to receiving any available standard treatment [6].

After determining the maximum tolerated dose (MTD) or the recommended phase II dose (RP2D)

of an experimental treatment in a phase I trial, researchers conduct phase II studies with small

to moderate sample sizes to evaluate whether it has sufficient efficacy to warrant further investi-

gation in a subsequent phase III trial with a larger sample size [3]. In the absence of a widely

used standard treatment, single-arm phase II studies are often conducted in oncology to obtain

preliminary evidence of therapeutic effect of new cancer treatments, and to obtain additional safety

data [3, 5]. In the context of single-arm phase II oncology trials, tumor response rate is popularly

used as the primary endpoint [5]. In the recent times, however, progression-free survival (PFS) and

overall survival (OS) have also been used as the primary endpoints of interest (see Rubinstein [5]

for details). Given the time-consuming nature and skyrocketing costs associated with developing

new treatments, it is imperative to pay considerable attention towards designing such early phase

studies in a manner that can expedite evaluation of their efficacy or lack thereof, while preserving

desired operating characteristics. The subject matter of this manuscript deals with sample size

calculation and other planning aspects concerning single-arm phase II studies with time-to-event

5



(TTE) endpoints.

Upon literature review, it appears that only a limited number of options, primarily based on

the log-rank test and its weighted versions, are available at our disposal for calculating the sample

size needed to design single-arm clinical trials with TTE endpoints. Some of the existing methods

include the ones proposed by Finkelstein et al. [7], Kwak and Jung [8], Sun et al. [9], Wu [10],

and Phadnis [6]. Among these approaches, Wu’s method [10] offers an improvement to the earlier

methods by incorporating the exact variance of the log-rank test statistic into sample size

calculations, and his method has been implemented in commercial software PASS [11] and nQuery

[12]. Very recently, Phadnis [6] has extended the exact parametric approach by Narula and Li [13]

assuming Weibull distributed survival times, and proposed sample size calculation procedure that

adjusts for administrative censoring along with an ad-hoc inflation for random loss to follow-up.

Parametric maximum likelihood estimate (MLE) test based on the exponential model has also been

studied, but it is cautioned that this method may not be reliable under certain scenarios [14]. For

instance, Owzar and Jung [14] demonstrated that the MLE-based test may fail to maintain the

Type-I error when the underlying survival distribution does not follow the exponential distribution,

and a uniform censoring mechanism is considered. To our knowledge, the utility of the MLE-

based parametric test under the Weibull distribution has not been explored when the censoring

mechanism also follows the Weibull distribution, and subject accrual is not necessarily uniform

during accrual phase, such as observed in the studies with very early or late accrual patterns.

Two-stage designs (such as Simon’s optimal and minimax designs) are popularly used in single-

arm phase II oncology trials to obtain early evidence of futility of an experimental treatment which

warrants early stopping of the clinical trial [15, 16]. Although a single futility analysis is the most

likely scenario in a phase II trial, Kunz and Kieser [16] noted that a potential disadvantage of these

two-stage designs is that “early stopping is only allowed at the end of the first stage, even if it

becomes evident during the trial that a significant result is unlikely.” To address this limitation,

stochastic curtailment (SC) methods can be alternatively used to decide whether there is sufficient

evidence in favor of the null hypothesis to ‘curtail’ sampling beyond an interim analysis conducted
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over the course of a clinical trial [16, 17, 18]. Popular SC methods include: conditional power

(Lan, Simon and Halprin [19], Andersen [20]), predictive power (Spiegelhalter et al. [21]), and

Bayesian predictive probability (Herson [22], Choi and Pepple [23], Geisser [24], Dmitrienko and

Wang [25]). For studies with normal- and binary- endpoints, most of these methods have been

implemented in packages available in the statistical software R [26] and SAS [27]. For designing

two-arm studies with TTE endpoints, the software PASS [11] can be used to carryout conditional

power and predictive power calculations that are based on the log-rank test. From our review, it

appears that the SC methods have not been well-studied when the underlying survival data follows

the Weibull distribution, and various censoring mechanisms specific to survival analysis are under

consideration.

Contrary to the SC approach, if the total number and the corresponding timings of interim

analyses are pre-specified, group sequential design (GSD) plans can be developed using the

repeated significance testing (RST) approach wherein ‘stopping boundaries’ for each interim

analyses are constructed which dictate whether or not to continue the study beyond an interim

analysis [17, 18, 28]. More specifically, if the observed test statistic at an interim time point (often

referred as the ‘look time’) crosses either efficacy or futility boundary, researchers may terminate

the trial in consultation with the Data Safety Monitoring Board (DSMB) overseeing the clinical

trial [18, 29]. Some classical procedures for the implementation of RST approach include the

works by Pocock [30], O’Brien and Fleming [31], and Wang and Tsiatis [32]. Under the umbrella

of RST designs, error spending approaches (such as proposed by Lan and DeMets [33], Hwang,

Shih and DeCani [34], and Jennison and Turnbull [35]) are extremely flexible in the sense that

prior specification of the number and timing of interim analyses is not required.

The RST approach has been well-studied for normal- and binary- endpoints, such as described

in Jennison and Turnbull [17], and the references therein. The RST approach for such endpoints

has been implemented in various software such as PASS [11], nQuery [12], R [26], and SAS [27].

In comparison to studies with continuous or binary data where RST approach is implemented

after a ‘group’ of subjects complete the study, the distinguishing characteristic of TTE data is
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that all subjects, regardless of their survival status, contribute to the test statistic during interim

analyses [18, 29]. In the context of two-arm phase III studies with TTE endpoints, methods based

on the log-rank and its weighted versions, which assume exponentially distributed survival times

or proportional hazards (PH), are usually employed to construct GSD plans. Simulation-based

approach to implement such design with a variety of design options is available in the commercial

software PASS [11, 29]. When the assumption of proportional hazards or exponentially distributed

survival times is inappropriate, one may consider simulation-based approach recently proposed by

Phadnis and Mayo [29] which utilizes the concept of proportional time (PT) to construct GSD plans

for two-arm phase III studies. The method proposed by Phadnis and Mayo [29] for constructing

GSD plans for the special case of single-arm phase II clinical trials is yet to be addressed.

Based on our discussion above, it appears that various design aspects of single-arm phase-II

studies still need to be investigated when the parametric Weibull model is appropriate for modeling

survival data derived from such studies. To fill these gaps in the statistical literature, we aim to

achieve the following objectives in this manuscript. For the parametric Weibull model, we first

propose a parametric MLE-based test whose variance component can account for the expected

proportion of loss to follow-up and different subject accrual patterns. We discuss power and sample

size calculations for single-arm single-stage phase-II studies using our method. From a practical

perspective, the SC methods are extremely attractive, especially for futility monitoring, in such

single-arm phase II studies. To cater such needs, we present detailed mathematical development

and derive general results for performing interim analyses using three SC methods (conditional

power, predictive power, Bayesian predictive probability) for the Weibull model for single-arm

phase II studies with TTE endpoints. Finally, we briefly discuss the implementation of GSD plans

for designing single-arm studies with Weibull survival data using the RST approach.

This manuscript is organized in the following order. In Section 2.2, we describe a real-life

example which motivated the work presented in this manuscript. We describe our proposed method

for calculating the required sample size for single-arm phase II studies with TTE endpoints specific

to Weibull distributed survival times, derive results corresponding to the SC methods, and discuss
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implementation of the GSD plans in Section 2.3. We present some simulation studies and examples

to demonstrate these methods in Section 2.4. Finally, Section 2.5 entails a brief discussion on the

methods presented in this manuscript.

2.2 Motivating Example

In this section, we briefly introduce a real-life example of a single-arm phase II clinical trial

in oncology which motivated the methods presented in this manuscript. Recently, Phadnis [6]

contributed in the design of a phase II clinical trial to investigate whether the use of new combina-

tion therapies improves the PFS among patients suffering from chemotherapy refractory

advanced metastatic biliary cholangiocarcinoma, a “rare” but aggressive neoplasm. Such patients

have metastatic disease and undergo an initial treatment followed by a second-line treatment which

has a PFS rate of 5%–10% by 1 year. From historical control studies reported in the literature, it

is understood that such patients have a median PFS of 2.5 months with an interquartile range of

around 2–5 months. Due to dismal survival rates, researchers believe that the newly proposed

combination therapies hold sufficient promise to be evaluated in future large sample studies if they

yield a statistically significant improvement in the 25th, 50th and 75th percentile of PFS by a factor

of 1.5. Therefore, for design purposes, researchers hypothesized a consistent improvement in PFS

for all quantiles of the survival curve of the historical controls by a factor of 1.5, and the Weibull

distribution was deemed to be an appropriate choice for performing the sample size calculations.

The shape parameter for the Weibull distribution was estimated from the historical controls to

be 1.25 (increasing hazard). Due to practical considerations, researchers envisioned to conduct a

fixed sample study with an accrual time period of 2 years and a follow-up period of 3 years. In

addition, they anticipated the random loss to follow-up rate to be around 15%–20%. Using the

above design parameters, the method proposed by Phadnis [6] yielded a required sample size of 28

subjects when the nominal Type-I error and power were assumed to be 5% and 80%, respectively.

Due to ethical and administrative reasons, it would have been reasonable to design the above-

mentioned study in such a manner that permits study investigators to conduct interim analysis to
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obtain early evidence of efficacy or futility of the newly proposed combination therapies. To do so,

one may employ popular SC approaches such as conditional power, predictive power, or Bayesian

predictive probability. Since these methods have not been well-studied when the underlying

survival data follows the Weibull distribution, it is worthwhile to fill these gaps in the literature

as we anticipate to encounter similar studies with different design features (such as accrual

patterns and random loss to follow-up) in the future. For the sake of exposition, we shall use

simulated data sets to illustrate the methods presented in this manuscript.

2.3 Methods

2.3.1 Notation and Preliminaries

Suppose that a total of n subjects enroll during accrual phase of a single-arm phase II trial with a

TTE primary endpoint. Due to practical constraints, it may be infeasible to wait until all subjects

accrued into the study either experience an event or are lost to follow-up. Therefore, investigators

may decide to incorporate administrative censoring at a pre-defined calendar time τ , when all

remaining subjects in the study are censored and the resulting data are analyzed. For the ith

subject, let Ei denote the calendar time of his/her accrual into the clinical trial; Yi denote the

amount of time from Ei to the time of the event corresponding to the primary outcome; Ci denote

the amount of time from Ei to the time of loss to follow-up; Ai :=max(0,τ−Ei) denote the amount

of time from Ei to the calendar time of administrative censoring at time τ , and Zi := min(Ai,Ci)

represents the amount of time from Ei to the time of administrative censoring, or loss to follow-up.

We assume that the failure time is independent of the censoring time, and {Yi,Zi,∀i = 1, . . . ,n} are

independent and identically distributed. In summary, we have two pieces of information available

for the ith subject: (1) Xi := min(Yi,Zi), the amount of time in the study without experiencing

the event, being censored administratively, or being lost to follow-up, and (2) δi := 1(Yi<Zi), an

indicator variable representing whether the ith subject was observed to experience an event. Thus,

we have n pairs of data {(Xi,δi) , i = 1, . . . ,n} for subjects enrolled in the study.
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Distributional Assumptions

Throughout this manuscript, we assume the following event and censoring time distributions for

the ith subject (i = 1, . . . ,n) enrolled into the study:

1. Event or failure time Yi follows the Weibull distribution, with shape parameter κ and scale

parameter θ , having the probability density function (pdf) expressed as below:

fYi(y) =
κ

θ κ
yκ−1 exp

{
−
( y

θ

)κ}
, where: y > 0,κ > 0,θ > 0. (2.1)

The shape parameter κ of the Weibull(κ,θ) distribution determines the shape of the un-

derlying hazard function. More specifically, κ > 1 (κ < 1) corresponds to an increasing

(decreasing) hazard, and κ = 1 yields the special case of the exponential distribution having

a constant hazard rate [36].

We assume that a reasonably accurate estimate of the shape parameter κ is known in advance,

and therefore the scale parameter θ is the only unknown quantity. This assumption is deemed

justifiable based on the recent work by Phadnis et al. [37] in which they demonstrated that

a point estimate of the shape parameter is reasonably accurate when estimated from some

historical studies with at least 50 subjects, and censoring rate close to 20%.

2. Although maximum efforts should be put in place to avoid any non-negligible random loss

to follow-up in the early phase clinical trials, there are real-life situations, such as described in

Section 2.2, where researchers may feel appropriate to accommodate any expected

proportion of loss to follow-up during the design stage of a study. Assume that the random

loss to follow-up time Ci follows the Weibull distribution with the shape parameter κc and the

scale parameter η . We feel important to point out that the loss to follow-up is assumed

to be unrelated to the event of interest, that is, non-informative of the survival process.

When the shape parameters of event and censoring time distributions are different, that is

κ 6= κc, the appropriate scale parameter η ≡ η(κ,κc,θ ,υ) of the censoring time distribution

which ensures the expected loss to follow-up rate υ can be obtained by following the method
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outlined by Wan [38] and it satisfies the equation:

υ = P(δi = 0|κ,κc,θ ,η) = P(Ci ≤ Yi ≤ ∞,0≤Ci ≤ ∞)

=

ˆ
∞

0

κc

ηκc
cκc−1

i exp
{
−
(

ci

η

)κc
}

exp
{
−
(ci

θ

)κ}
dci

Since there is no closed form solution to the above equation, one must rely on numerical

calculations to obtain the corresponding estimate of the scale parameter η . It is also worth

noting that we would require reliable estimates of the two shape parameters (for the distribu-

tions of Ci and Yi) from the historical studies whenever we aim to accommodate the general

case κ 6= κc. It may not be feasible to incorporate the general case in the early phase studies

related to rare diseases such as the one described in Section 2.2. Since our main objective is

to accommodate the anticipated loss to follow-up rate υ within our sample size calculations

at the design stage instead of doing an ad-hoc inflation of the sample size (as described in

Phadnis [6]), we assume κc = κ throughout this manuscript. It can be conveniently verified

that η = θ ···
(

1−υ

υ

)1/κ

ensures the expected loss to follow-up rate υ .

3. Suppose that ω represents the maximum calendar time of accrual into the study. Instead of

using a uniform(0,ω) distribution for accrual time Ei, as used in the earlier works by Phadnis

[6] and Wu [10], we consider a rather general form of the continuous uniform distribution,

with an additional power parameter ϕ , having the following pdf (at a realized value e of Ei):

fEi(e) =
ϕeϕ−1

ωϕ
, where: e ∈ [0,ω] ,ϕ > 0. (2.2)

Since there is no standardized terminology in the literature, we shall refer to the above pdf

as Gen-Uniform(0,ω,ϕ) distribution in this manuscript. By letting ϕ = 1, we note that the

uniform(0,ω) distribution is a special of the Gen-Uniform(0,ω,ϕ) distribution. This choice

of accrual distribution is flexible in the sense that it enables us to incorporate accrual patterns

that may tend to occur early on or very late in the accrual phase. More specifically, subjects
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tend to get accrued early on in the accrual phase when ϕ → 0, and they tend to get accrued

very late into the accrual period when ϕ gets larger in magnitude.

4. Using the results presented in Casella and Berger [39], it can be verified that the pdf of

Zi = min(Ai,Ci) having parameters κ > 0,η > 0,ω > 0, and ϕ > 0 is given as:

fZi(z) =



κ

ηκ
zκ−1 exp

{
−
(

z
η

)κ}
if z ∈ [0,τ−ω)(

ϕ

τ− z
+

κ

ηκ
zκ−1

)(
τ− z

ω

)ϕ

exp
{
−
(

z
η

)κ}
if z ∈ [τ−ω,τ]

0 otherwise

(2.3)

The pdfs for the special cases of Zi are presented in Section A.1 of Appendix A.

2.3.2 Fixed Sample Design

In this section, we introduce a fixed sample design that can be used to obtain preliminary

evidence of efficacy of an experimental treatment in a single-arm phase II clinical trial with a TTE

primary endpoint. To suffice our purpose, we may test the null hypothesis H0 : M ≤M0 against the

alternative H1 : M > M0, where M = θ (ln2)1/κ is the median of the Weibull(κ,θ) distribution

specified in Eq. (2.1). Since a reasonable estimate of the shape parameter κ is assumed to be

known from historical studies, we may alternatively define our hypotheses as: H0 : θ ≤ θ0 versus

H1 : θ > θ0. In the context of parametric models in survival analysis, covariates are commonly

introduced through the scale parameter as θ = exp
{

γγγT xxx
}

, where: xxx = (1,x1, . . . ,xk)
T is the vector

of k+ 1 covariates, and γγγT = (γ0,γ1, . . . ,γk) is the corresponding vector of parameters to be esti-

mated [36]. When no covariates other than the experimental treatment administered to the subjects

are introduced into the model, the scale parameter can be expressed as θ = exp{γ}. Thus, our

hypotheses can be equivalently expressed as:

H0 : γ ≤ γ0

H1 : γ > γ0

(2.4)
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From Klein and Moeschberger [36], it is straightforward to verify that the maximum likelihood

estimator (MLE) γ̂ of γ is given as:

γ̂ = log
(

∑
n
i=1 Xκ

i

∑
n
i=1 δi

)1/κ

=
1
κ

log
(

Xκ

δ

)
, (2.5)

where Xκ =
1
n

n

∑
i=1

Xκ
i , δ =

1
n

n

∑
i=1

δi, and the definitions of these random variables and distributional

assumptions have been presented in Section 2.3.1.

It appears analytically intractable to obtain the exact distribution of γ̂ due to the underlying

correlation between a subject’s survival time and the corresponding survival status. Therefore,

we rely on asymptotic calculations to construct a parametric MLE-based statistic for testing the

hypotheses in Eq. (2.4). For this purpose, we first obtain the joint asymptotic distribution of Xκ

and δ using the multivariate central limit theorem, and subsequently employ the multivariate delta

method to obtain the asymptotic distribution of γ̂. Without loss of generality, it can be shown that

lim
n→∞

√
n(γ̂− γ)

d−→ Normal
(

0,σ2 =
1

κ2µ
δ̄

)
, (2.6)

where µ
δ̄
= 1−EZ1

(
exp
{
−
(

Z1

exp{γ}

)κ})
, and Z1 = min(A1,C1). We skip a detailed deriva-

tion of this result, and present the derivation of a similar but more general result in a later section.

Let σ̂2 ≡ σ2(γ̂) denote the MLE plugged-in estimate of σ2, then, under the null hypothesis,

the Wald’s test statistic is given as

Zstat =
γ̂− γ0

σ̂/
√

n
···∼ Normal(0,1). (2.7)

For a given level of significance α , we reject the null hypothesis in favor of the alternative

hypothesis when the observed test statistic Ẑstat > Z1−α , where Z1−α = Φ−1(1−α) represents

the upper α-quantile of the standard normal distribution.

For sample size calculations, researchers specify a clinically meaningful difference ε > 0 that

they are interested in detecting under the alternative hypothesis H0 : γ > γ1 (= γ0 + ε). Let σ2
1 ≡
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σ2(γ1) denote the plug-in estimator of σ2 under H1. The desired power 1−β of the Wald’s test

statistic should satisfy:

1−β = Prob(Zstat > Z1−α |H1)'Φ

(√
nε

σ1
−Z1−α

)
,

where Φ(···) denotes the cumulative distribution function (cdf) of the standard normal distribution.

The required sample size to detect the difference ε using the Wald’s test statistic in Eq. (2.7)

with a Type I error rate α and power 1−β satisfies:

n = σ
2
1 ···
(

Z1−β +Z1−α

ε

)2

.

To compute the required sample size, we can use numerical integration to calculate σ2
1 .

When we are interested in testing the two-sided alternatives H0 : γ = γ0 vs. H1 : γ 6= γ0, we

reject the null hypothesis H0 at an α level of significance if the magnitude of the observed test

statistic |Ẑstat | > Z1−α

2
. To design such a study with some pre-specified Type I error rate α and

power 1−β , the desired sample size n satisfies:

n = σ
2
1

(Z1−β +Z1−α

2

ε

)2

.

2.3.3 Stochastic Curtailment Methods

Due to ethical reasons, it is critical to detect lack of therapeutic effect of ineffective treatments

being evaluated in the early phase studies as soon as possible in an effort to minimize risk to the

subjects, and to direct resources to research on more promising treatments [17, 18]. When the

primary motive behind interim analyses is to find early evidence of futility, SC methods are

generally employed. These methods enable researcher to evaluate the likelihood of positive or

negative trial outcome if the study were to continue to its planned end, given the current data

[18]. In the context of parametric Weibull model considered in this manuscript, we discuss three

SC methods: conditional power (purely frequentist approach), predictive power (mixed Bayesian-
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frequentist approach), and Bayesian predictive probability (purely Bayesian approach).

2.3.3.1 Conditional Power

Introduced by Lan, Simon and Halprin [19], the conditional power relies on “predicting the dis-

tribution of the final outcome given the data already observed in the study [18].” Let Zk denote

the interim test statistic at the kth look time, and ZK represents the test statistic at the trial end.

For testing the one-sided hypotheses in Eq. (2.4) at an α level of significance, we may consider a

decision rule based on the conditional power [17, 18, 19] at an interim stage k defined as follows:

Pk(γ) = Probγ(ZK will reject H0|Zk) (2.8)

Lan, Simon and Halprin [19] also suggested rules to aid decision making regarding early termina-

tion of a clinical trial. A high value of Pk(γ0) suggest that the test is unlikely to accept H0 given

the current data at the interim stage k, even if H0 is true. Therefore, reject H0 at the kth look if

Pk(γ0) ≥ ζ , where ζ can range from 0.5 to 1, but it is recommended to be 0.8 or 0.9 [17, 18]. On

the other hand, a low value of Pk(γ1) suggests that the test is unlikely to reject H0 given the current

data at interim stage k, even if H1 is true. Therefore, it fails to reject H0 at the kth interim look if

1−Pk(γ1)≥ ζ ′, where ζ ′ can range from 0.5 to 1. In the literature, the quantity 1−Pk(γ1) is called

as futility index [17, 18].

Since SC methods can be implemented in a post-hoc manner without explicitly adjusting for the

repeated testing approach, we now present the conditional power function for doing interim test-

ing related to a fixed sample design in the context of the parametric Weibull model considered in

this manuscript [18]. Since the sequence of test statistics Z1, . . . ,ZK asymptotically follows a joint

multivariate normal distribution (described in Section 2.3.4), it can be verified [17] that the condi-

tional distribution of the final statistic ZK given the interim statistic Zk is:

ZK|Zk ∼ Normal
(

Zk
√

Ik +(γ− γ0)(IK−Ik)√
IK

,1− Ik

IK

)
,
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where Ik and IK represent the statistical information available at the interim look k, and the final

look K, respectively.

Following Jennison and Turnbull [17], the conditional power at the interim stage k = 1, . . . ,

K−1 can be expressed as:

Pk(γ) = Φ

(
Zk
√

Ik +(γ− γ0)(IK−Ik)−Z1−α

√
IK√

IK−Ik

)
, (2.9)

where Z1−α = Φ−1(1−α) is the upper α-quantile of the standard normal distribution.

To do conditional power calculations, we can compute IK using the information formula from

the fixed sample design, and Ik = Fk×IK where Fk is the proportion of the total information

IK available at the kth interim look. When unscheduled interim analyses are performed using the

conditional power calculations for fixed sample studies originally designed with Type-I error α

and Type-II error rate β , it has been shown by Lan, Simon and Halprin [19] that the Type-I and

Type-II error rates are bounded above by α/ζ and β/ζ ′, respectively. To ensure maximum Type-I

and Type-II error rates to be α and β , respectively, Jennison and Turnbull [17] have recommended

to design fixed sample studies with Type-I error rate αζ and Type-II error rate βζ ′.

Corresponding to the decision rules for early termination using the conditional power in Eq.

(2.9), it has been shown [17, 18] that the formal sequential stopping boundaries to reject H0 are

given by:

Zk ≥ Z1−α

√
IK

Ik
+Zζ

√
IK−Ik

Ik
. (2.10)

The sequential stopping boundaries to accept H0 at the kth interim look are given by:

Zk ≤ Z1−α

√
IK

Ik
−Zζ ′

√
IK−Ik

Ik
− (γ− γ0)

(
IK−Ik√

Ik

)
, (2.11)

where Z1−α = Φ−1(1−α), Zζ = Φ−1(ζ ), Zζ ′ = Φ−1(ζ ′), and Φ−1(···) is the inverse cdf of the

standard normal distribution.
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2.3.3.2 Predictive Power

One of the major criticism of conditional power is that it is computed using the values of γ

under the hypotheses which may not be supported by the current data [17, 18]. To address this

issue, Spiegelhalter et al. [21] recommended the use of “predictive power” at the interim stage k,

whereby conditional power function (frequentist component) is averaged over the posterior distri-

bution (Bayesian component) of γ given its interim estimate γ̂k. Mathematically, it is given as:

Pk =

ˆ
Pk(γ)π(γ|γ̂k)dγ (2.12)

where Pk(γ) denotes the conditional power function expressed in Eq. (2.9), and π(γ|γ̂k) is the

posterior distribution of γ given its estimate γ̂k at the interim stage k.

In the context of our problem, we have already expressed the asymptotic distribution of γ̂|γ in

Eq. (2.6). Since there exists a mean-variance relationship in the asymptotic distribution of γ̂|γ , it

appears intractable to derive a nice closed form asymptotic posterior distribution π(γ|γ̂k). In this

situation, we resort to the Metropolis-Hastings (MH) algorithm for generating samples from the

asymptotic posterior distribution:

π(γ|γ̂k) ∝ π(γ̂k|γ)π(γ),

where π(γ) denotes the prior distribution for the parameter γ . Assuming a vague normal prior for

γ , a step-by-step implementation of the MH algorithm is outlined in Section A.2 of Appendix A.

Alternatively, the posterior distribution π(γ|γ̂k) can also be generated using R2OPenBUGS package

available in the statistical software R.

After generating asymptotic posterior distribution of the parameter γ , we can numerically eval-

uate the predictive power at the kth interim stage using Eq. (2.12). We can use similar decision

rules to stop for efficacy or futility as the ones in conditional power calculations [17].
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2.3.3.3 Bayesian Predictive Probability

Since predictive power is a mixed Bayesian-frequentist approach, Jennison and Turnbull stated

that “neither Bayesian nor frequentist statisticians may be satisfied” with the decision rules based

on this method [35]. We may alternatively consider a fully Bayesian approach which relies on the

idea of predictive probability of obtaining a positive trial outcome at the end of the study, given the

current estimates at an interim stage [18, 25].

In TTE framework, let us consider that a study comprising of n subjects has been designed to

test the hypotheses H0 : γ ≤ γ0 vs. H1 : γ = γ1, where γ1 = γ0+ε and ε > 0 is a clinical meaningful

effect to be detected under the alternative hypothesis. Utilizing the same notations from Section

2.3.1, the MLE of γ at the planned end (at calendar time τ), denoted by γ̂K , is given in Eq. (2.5).

At the kth interim analysis, suppose that n−m subjects had already experienced an event or were

censored due to loss to follow-up. In addition, we suppose that the remaining m subjects were

still active in the study without experiencing the event of interest. Then, the MLE of γ at the

pre-planned end time τ can be equivalently expressed as:

γ̂K =
1
κ

log
(

Tk +TK−k

Dk +DK−k

)
, (2.13)

where Tk = ∑
n−m
i=1 Xκ

i and Dk = ∑
n−m
i=1 δi are the quantities corresponding to subjects who had

experienced an event or were censored due to loss to follow-up by the interim stage k; and TK−k =

∑
m
j=1 Xκ

j and DK−k = ∑
m
j=1 δ j is the final data information at stage K for those subjects who were

active in the study at the interim stage k.

Since TK−k and DK−k are not observable at the interim stage k, suppose that T̃K−k and D̃K−k

denote the predicted values of TK−k and DK−k at the interim stage k, respectively. Following

Dmitreinko and Wang [18], the predictive probability of obtaining a positive trial outcome at the

pre-planned end date of a clinical trial, given the data accumulated at the kth stage, is defined as:

Pk =

ˆ
1(Q>η∗) dP̃ (2.14)
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where Q = Prob
(
γ > γ1|Tk,T̃K−k,Dk,D̃K−k

)
, η∗ is a pre-specified threshold level of probability

of a successful trial outcome, and P̃ is the joint posterior predictive distribution of T̃K−k and D̃K−k.

The threshold level η∗ is recommended to be set between 0.90 and 0.975 in the literature [25].

In practice, Dmitreinko and Wang [25] note that researchers can terminate a trial at an interim

stage k to conclude efficacy (i.e., reject H0 in the favor of H1) if Pk ≥ ζ for some pre-specified

ζ ∈ [0.8,1], and conclude futility if Pk ≤ ζ ′ for some ζ ′ ∈ [0,0.2].

Returning to our main problem, we let D̃K−k = D̃K−k/m and T̃ K−k = T̃K−k/m, and note from

Eq. (2.13) that the estimated predicted MLE at the pre-planned study end can be re-expressed as:

̂̃γK =
1
κ

log

(
Tk +mT̃ K−k

Dk +mD̃K−k

)
. (2.15)

Given a threshold level η∗, we implement the following algorithm (using the asymptotic joint

posterior predictive distribution of D̃K−k and T̃ K−k) at an interim stage k to compute the predictive

probability of a positive outcome at the end of the study:

1. Obtain an estimate γ̂k of the parameter γ at the interim stage k, and use the MH algorithm to

generate samples from the asymptotic posterior distribution of γ as:

π(γ|γ̂k) ∝ π(γ̂k|γ)π(γ).

2. Let P̃ =
(
D̃K−k,T̃ K−k

)
. We can numerically obtain the asymptotic posterior predictive

distribution of P̃ as:

π
(
P̃|γ̂k

)
=

ˆ
π
(
P̃|γ
)
π(γ|γ̂k)dγ.

For plausible values of γ based on the asymptotic posterior distribution generated in Step 1,

let ϑ = exp{γ} be the scale parameter of the failure time distribution, and ϑc denote the scale

parameter of the loss to follow-up distribution. Using the multivariate central limit theorem,

it can be shown that the joint asymptotic distribution of D̃K−k and T̃ K−k has the following
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property:

lim
m→∞

√
m


D̃K−k

T̃ K−k

−
µ

δ̃

µX̃


 d−→ Normal


0

0

 ,

σ2
1 σ12

σ12 σ2
2


,

where:

σ
2
1 = µ

δ̃

(
1−µ

δ̃

)
σ12 = ϑ

κ
ξ −µ

δ̃
µX̃

σ
2
2 = EB1

(
B2κ

1
)
+2ϑ

2κ
ξ −µ

2
X̃

µ
δ̃
= 1−EB1

(
exp
{(

B1

ϑ

)κ}
EZ̃1

(
exp

{
−
(

Z̃1

ϑ

)κ
}))

µX̃ = EB1(B
κ
1 )+ϑ

κ
µ

δ̃

ξ = µ
δ̃
+

1
ϑ κ

(
EB1(B

κ
1 )−EB1

(
exp
{(

B1

ϑ

)κ}
EZ̃1

(
Z̃κ

1 exp

{
−
(

Z̃1

ϑ

)κ
})))

A detailed derivation of this result, and the pdfs of the random variables B1 and Z̃1 are pre-

sented in Appendix B.

3. For each plausible combination of D̃K−k and T̃ K−k among the remaining subjects, esti-

mate the MLE of γ at the end of the study using Eq. (2.15), and subsequently calculate the

corresponding quantity Q∗ = Prob
(

γ > γ1|Tk,T̃ K−k,Dk,D̃K−k

)
. Then the predictive prob-

ability of a successful outcome can be computed as:

Pk =

ˆ
1(Q∗>η∗)dP̃,

where P̃ is the asymptotic joint posterior predictive distribution of D̃K−k and T̃ K−k.

The above algorithm based on the asymptotic posterior distribution of γ̂k and the asymptotic joint
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posterior predictive distribution of D̃K−k and T̃ K−k can be implemented in software such as R and

SAS. Alternatively, a purely simulation-based algorithm for calculating the predictive probability

may also be adopted using R2OpenBUGS package in R [26], and it is outlined as below:

1. Using the data available at the interim stage k, generate the posterior distribution of the param-

eter γ , denoted by γ|γ̂k, using the Weibull model (available as dweib function) in R2OpenBUGS

package in R.

2. Create a sequence of length S of the plausible values of the parameter in the posterior distri-

bution generated in Step 1, and perform the following steps:

(a) For each value γ j in the sequence, generate ‘predicted’ survival data for the remaining

subjects (using appropriate truncated distributions) at the pre-planned end of the study.

Let us denote the vectors of predicted survival times and the corresponding survival

status as XXXm;pred and δδδ m;pred , respectively.

(b) Let XXX (n−m);obs and δδδ (n−m);obs denote the data for the n−m subjects completely observed

by the interim stage k. Using the observed and predicted data, generate the posterior

distribution of the parameter at study end using R2OpenBUGS, and determine whether

Prob
(
γ > γ1|δδδ (n−m);obs,δδδ m;pred,XXX (n−m);obs,XXXm;pred

)
> η

∗. (2.16)

(c) Repeat Steps 2a and 2b for a large number of times (say d = 10,000), and the probability

of success corresponding to a particular value of γ j is the proportion of d predicted

samples satisfying Eq. (2.16). In this manner, we are able to obtain an estimate of

Prob
(
Positive Outcome|γ j

)
.

3. Finally, we estimate the predicted probability of a positive trial outcome by:

Pk =
S

∑
j=1

Prob
(
Positive Outcome|γ j

)
Prob

(
γ j|γ̂k

)

Once the predictive probability of a positive outcome is computed, researchers make a decision
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regarding early termination in consultation with the DSMB overseeing the clinical trial.

2.3.4 Repeated Significance Testing for Group Sequential Design

Before discussing the RST approach in the context of single-arm studies for testing the hypothesis

in Eq. (2.4), let us introduce some additional notations used in this section. Let K ∈ N+ be the

total number of “looks” to be performed in the group sequential framework, and `k (k = 1, . . . ,K)

denote the calendar time corresponding to the kth look. Also, let ∆g = γg− γ0, and Ig,k represent

the corresponding statistical information at the kth look time under the hypothesis Hg (g = 0,1)

stated in Eq. (2.4). Furthermore, let Zg,k denote the MLE-based parametric test statistic at the kth

look time `k under Hg. Putting everything together, it follows that the observed test statistic

Ẑg,k = ∆̂g

√
Îg,k ∼̇ Normal

(
∆g

√
Ig,k , 1

)
,

at the kth interim look under the hypothesis Hg.

For a GSD plan with desired level of significance α , simply rejecting the null hypothesis at the

kth interim look if Z0,k > Z1−α = Φ−1(1−α) would result in the inflation of Type-I error [17].

To address this issue, several methods have been proposed in the literature, such as Pocock [30],

O’Brien and Fleming [31], Wang and Tsiatis [32], Lan and DeMets [33], Hwang, Shih and DeCani

[34], and Jennison and Turnbull [35], among others, to construct appropriate rejection boundaries.

Suppose Uk and Lk (k = 1, . . . ,K) denote the efficacy and futility stopping boundaries for a GSD

at the kth look time, respectively. The rejection boundaries for testing both efficacy as well as

futility can be constructed in the following manner:

1. To maintain an overall Type-I rate α , we allocate the local Type-I error rate αk (k = 1, . . . ,K)

for each of the k looks such that ∑
K
k=1 αk =α . In a similar fashion, we can maintain an overall

Type-II error β by allocating local Type-II error rates βk for each look such that ∑
K
k=1 βk = β

[17, 18, 30, 31].

2. The efficacy and futility stopping boundaries Uk and Lk (k= 1, . . . ,K−1) can be successively
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calculated such that

Prob
(
L1 < Z0,1 < U1, . . . ,Lk−1 < Z0,k−1 < Uk−1,Z0,k ≥Uk

)
= αk (2.17)

Prob
(
L1 < Z1,1 < U1, . . . ,Lk−1 < Z1,k−1 < Uk−1,Z1,k < Lk

)
= βk (2.18)

3. In the event trial continues to its pre-planned end, we must have LK =UK to ensure a decision

at the final look time `K .

From a theoretical perspective, we can follow Mütze et al. [40] to construct rejection

boundaries using the asymptotic joint multivariate distribution of the test statistics at each look

in order to implement the above mentioned RST approach for single-arm studies. Since our

proposed Wald’s test is based on the MLE of γ , therefore, following Scharfstein et al. [41], the

vector of Wald test statistics
(
Zg,1, . . . ,Zg,K

)
under the hypothesis Hg follows an asymptotic joint

multivariate normal distribution with mean µµµg ∈ RK and K×K-dimensional covariance matrix ΣΣΣg

expressed as below:

µµµg =



∆g
√

Ig,1

∆g
√

Ig,2

...

∆g
√

Ig,K


; ΣΣΣg =



σg,1,1 σg,1,2 · · · σg,1,K

σg,2,1 σg,2,2 · · · σg,2,K

...
... . . . ...

σg,K,1 σg,K,2 · · · σg,K,K


(2.19)

where σg,k1,k2 = σg,k2,k1 =
√

Ig,k1/Ig,k2 for 1 ≤ k1 ≤ k2 ≤ K. This is often referred as the

canonical joint distribution with information levels
{
Ig,1, . . . ,Ig,K

}
[17].

Once the joint multivariate distribution of the test statistics is known, numerical recursive

integration, such as described by Armitage, McPherson and Rowe [42], can be employed to

determine the efficacy and futility stopping boundaries.

The allocation of the local error rates can be done using the error spending approach,

initially proposed by Lan and DeMets [33], which is extremely flexible in the sense that it enables

researchers and DSMB to change the number and timing of interim looks [17, 18]. In this

24



manuscript, we consider the error spending functions proposed by Hwang, Shih and DeCani (HSD)

[34], and Jennison and Turnbull (JT) [35]. Let Fk ∈ (0,1) denote the fraction of information

observed by the kth interim look (k = 1, . . . ,K− 1), and FK = 1. The HSD α-spending function

[34] is defined as:

α(Fk) =


α ···
(
1− e−ψFk

)
1− e−ψ

if ψ 6= 0

α ···Fk if ψ = 0
(2.20)

On the other hand, the JT α-spending function [35] is given as:

α(Fk) = α ··· (Fk)
ψ . (2.21)

The parameter ψ in Eqs. (2.20) and (2.21) influences the amount of cumulative error rate spent at

each look, and hence influence the amount of local error rate to be spent at each look. Both of the

above-mentioned error spending functions provide approximations to Pocock [30], and O’Brien

and Fleming [31] methods for constructing stopping boundaries for designs with pre-specfied look

times [18]. The HSD α-spending function approximates the O’Brien and Fleming boundaries

when ψ = −4 or ψ = −5, whereas JT α-spending function approximates O’Brien and Fleming

boundaries when ψ = 3. Both HSD and JT α-spending functions approximate the Pocock stopping

boundaries when ψ = 1. The rejection boundaries for futility testing should be constructed using

desired β -spending function obtained in Eqs. (2.20) and (2.21).

For testing hypotheses defined in Eq. (2.4) for a GSD using the RST approach, the power of

the GSD with K looks with efficacy stopping boundaries U1, . . . ,UK is defined as:

Power = 1−Prob(Z1,1 < U1, . . . ,Z1,K < UK). (2.22)

Given the fraction of information Fk (k = 1, . . . ,K) available at the kth interim look, we observe

that the corresponding statistical information can be expressed in terms of the information at the

25



final look as Ig,k = Fk×Ig,K , where Fk ∈ (0,1) and FK = 1 at the final look time `K . As noted

in Jennison and Turnbull [17] and Mütze et al. [40] , the mean of the joint asymptotic multivariate

normal distribution of the test statistics expressed in Eq. (2.19) only depends on the maximum

information Ig,K as:

µµµg =

(
∆g
√

F1Ig,K ∆g
√

F2Ig,K . . . ∆g
√

Ig,K

)T

, (2.23)

and the entries of the K×K covariance matrix ΣΣΣg are given as σg,k1,k2 = σg,k2,k1 =
√

Fk1/Fk2 for

1≤ k1 ≤ k2 ≤ K.

For power and sample size calculations, researchers specify the effect ε that they are interested

in detecting under H1 as: ε = γ1− γ0. Consequently, the mean of the canonical joint distribution

under H1 can be expressed as:

µµµ1 =

(
ε
√

F1I1,K ε
√

F2I1,K . . . ε
√

I1,K

)T

.

This implies that I1,K is the only missing piece in Eq. (2.22), and it can be obtained by numerically

solving this equation. Once we do so, the required sample size for a K look single-arm GSD plan

with Type-I error rate α and desired power 1−β can be obtained by equating I1, f ix =I1,K, where

I1, f ix denotes the information under the alternative hypothesis H1 for a fixed sample design with

the same operating characteristics [40].

In Section A.3 of Appendix A, we have outlined a simulation-based approach for constructing

GSD plans for single-arm studies with TTE primary endpoints. This algorithm follows the general

framework implemented in the software PASS [11] for designing GSD plans for two-arm studies

with TTE endpoints, and offers flexibility to incorporate numerous user-defined options (such as

accrual and follow-up times, different accrual patterns, custom look times, binding or non-binding

futility, etc.) in its calculations.
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2.4 Simulations and Examples

In this section, we present some simulations studies and examples to demonstrate the methods

proposed in this manuscript. Statistical software R (Version 3.6.3) was used to perform all compu-

tations and simulations presented in this section.

2.4.1 Performance of the Wald’s Test Statistic

We conducted simulation studies to examine the performance of the Wald’s test statistic (presented

in Section 2.3.2) in terms of the empirical Type-I error and power under a wide range of scenarios.

For these simulations, the nominal Type-I error rate and power were set to be equal to 5% and 90%,

respectively. The maximum accrual time was assumed to be fixed at ω = 3 months. In addition,

varying values of the administrative censoring time (τ = 4,7,9 months), the common shape param-

eter (κ = 0.25,0.50,1.00,2.00,5.00), expected loss to follow-up rate (υ = 0%,10%,20%,30%),

power parameter of the accrual distribution (ϕ = 0.1− early; 1.0− uniform; 5.0− late), and

effect size (∆ = 1.2,1.4,1.6,1.8,2.0) were considered. Using Wu’s [10] notation, the effect size

was defined as ∆ = (M1/M0)
κ with the median survival time under the null hypothesis assumed

to be fixed at M0 = 1 month. A total of 10,000 simulations were performed after computing the

required sample size in each scenario, and these results are presented in Tables 2.1, 2.2, and 2.3.

We summarize the main findings as below:

1. In most of the cases, the empirical Type-I error was maintained within the nominal level. It is

worth noting that the empirical Type-I error tends to exceed the nominal level primarily when

either: (i) the effect size ∆ is very small (= 1.2) in magnitude, or (ii) the common shape

parameter κ is small (= 0.25) which results in larger magnitudes of the median under the

alternative hypothesis.

2. Empirical power was observed to be very close to the nominal levels. By referring to Table

2.1, one might argue that the proposed test is under-powered in most of the scenarios. It must

be noted, however, that our proposed test is based on the asymptotic approximations, whereas
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most of the sample sizes reported in Table 2.1 are less than 30. For moderate to large sample

sizes, we can observe that the empirical power is very close to the desired nominal level.

3. Keeping all other parameters fixed, it appears that the required sample size is bounded below

for a large value of the shape parameter κ , or corresponding values of large follow-up times.

Based on our simulation results, it appears that the desired study sample size is moderate to large

when there is at least some level (greater than 10% or so) of censoring due to loss to follow-up,

and the effect size is moderate to large in magnitude. In such scenarios, the proposed asymptotic

test statistic is most appropriate as it preserves the nominal Type-I error rate and power within our

desired levels.

Since the shape parameter of the Weibull distribution determines the shape of the underlying

hazard function, we also conducted a simulation study to assess the effect of its misspecification on

the Type-I error and power. For this purpose, we consider that a fixed sample study was originally

designed to detect an effect size ∆ = 1.2 and ∆ = 1.6 assuming exponential survival times (i.e.

κ = 1). Using varying values of other design parameters, we assessed the empirical Type-I error

and power when the true shape parameter was in fact 0.75 (decreasing hazard) and 1.25 (increasing

hazard). Corresponding results have been reported in Table 2.4. We summarize main findings of

this simulation study as below:

1. When the effect size is small (∆= 1.2), the empirical Type-I error tends to exceed the nominal

level in most of the cases. On the other hand, when the effect size is larger in magnitude

(∆ = 1.6), the empirical Type-I error was maintained within the nominal level except the

setting with late subject accrual and shorter follow-up time. This is also consistent with the

findings of our simulation studies described above.

2. Empirical power is significantly affected due to misspecification of the shape parameter of

the Weibull distribution. More specifically, we observe that the fixed sample study is over-

powered (under-powered) when the true shape parameter is larger (smaller) than the one used

at the design stage of the study.
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Table 2.1: Empirical Type-I error and power of the MLE-based test for hypothetical studies with
maximum accrual time ω = 3 months and administrative censoring time τ = 4 months under
varying values of the power parameter ϕ , loss to follow-up rate υ , shape parameter κ , and effect
size ∆ = (M1/M0)

κ with M0 = 1 month
ϕ υ κ

∆ = 1.2 ∆ = 1.4 ∆ = 1.6 ∆ = 1.8 ∆ = 2.0
n α 1−β n α 1−β n α 1−β n α 1−β n α 1−β

0.1

0%

0.25 469 0.0570 0.9011 153 0.0532 0.8976 86 0.0519 0.9009 61 0.0539 0.9068 47 0.0536 0.9057
0.50 386 0.0490 0.9036 124 0.0473 0.9110 69 0.0432 0.9201 48 0.0413 0.9220 37 0.0444 0.9279
1.00 295 0.0502 0.9009 91 0.0476 0.8998 49 0.0460 0.9072 33 0.0392 0.9176 25 0.0398 0.9222
2.00 262 0.0538 0.8856 77 0.0519 0.8774 40 0.0438 0.8797 26 0.0453 0.8802 19 0.0417 0.8835
5.00 259 0.0547 0.8877 76 0.0455 0.8777 39 0.0492 0.8797 25 0.0461 0.8767 18 0.0458 0.8744

10%

0.25 487 0.0530 0.8900 158 0.0572 0.8996 89 0.0528 0.9014 62 0.0561 0.9017 48 0.0534 0.9032
0.50 406 0.0514 0.9021 130 0.0471 0.9051 72 0.0463 0.9112 50 0.0451 0.9227 38 0.0398 0.9209
1.00 319 0.0494 0.8956 98 0.0460 0.9047 53 0.0418 0.9104 35 0.0424 0.9129 27 0.0417 0.9248
2.00 290 0.0503 0.8915 86 0.0448 0.8899 44 0.0458 0.8838 29 0.0450 0.8877 21 0.0411 0.8903
5.00 288 0.0499 0.8934 85 0.0489 0.8872 44 0.0430 0.8892 28 0.0448 0.8879 20 0.0441 0.8737

20%

0.25 510 0.0609 0.8931 165 0.0570 0.8981 92 0.0597 0.8975 64 0.0604 0.9011 50 0.0588 0.9008
0.50 431 0.0499 0.9017 137 0.0470 0.9120 76 0.0524 0.9145 52 0.0509 0.9213 40 0.0459 0.9228
1.00 350 0.0446 0.9018 107 0.0487 0.9046 57 0.0444 0.9086 38 0.0411 0.9139 29 0.0433 0.9204
2.00 326 0.0477 0.8962 96 0.0498 0.8947 50 0.0467 0.8899 32 0.0459 0.8879 23 0.0429 0.8927
5.00 323 0.0483 0.8941 95 0.0449 0.8884 49 0.0457 0.8829 32 0.0420 0.8932 23 0.0429 0.8937

30%

0.25 541 0.0592 0.8885 174 0.0617 0.8893 97 0.0655 0.8942 67 0.0592 0.9040 52 0.0600 0.8993
0.50 465 0.0522 0.9054 146 0.0517 0.9047 80 0.0519 0.9081 55 0.0537 0.9184 42 0.0568 0.9213
1.00 390 0.0515 0.9006 118 0.0507 0.9028 63 0.0453 0.9125 42 0.0467 0.9156 31 0.0462 0.9224
2.00 371 0.0493 0.8962 110 0.0463 0.8922 57 0.0476 0.8945 36 0.0461 0.8895 26 0.0455 0.8888
5.00 369 0.0510 0.9002 109 0.0486 0.8940 56 0.0436 0.8967 36 0.0418 0.8944 26 0.0480 0.8925

1.0

0%

0.25 505 0.0589 0.8908 166 0.0599 0.8895 94 0.0563 0.8942 66 0.0606 0.8991 52 0.0544 0.8978
0.50 439 0.0524 0.9010 143 0.0498 0.9105 80 0.0487 0.9094 56 0.0508 0.9118 44 0.0501 0.9215
1.00 352 0.0467 0.9054 111 0.0419 0.9052 61 0.0449 0.9098 42 0.0407 0.9230 32 0.0377 0.9318
2.00 290 0.0528 0.8909 88 0.0482 0.8930 47 0.0424 0.8974 31 0.0425 0.8990 23 0.0407 0.9051
5.00 268 0.0510 0.8878 80 0.0473 0.8863 41 0.0434 0.8858 27 0.0467 0.8862 20 0.0449 0.8834

10%

0.25 523 0.0645 0.8848 171 0.0573 0.8897 96 0.0593 0.8923 67 0.0611 0.8911 53 0.0589 0.8915
0.50 458 0.0541 0.9012 148 0.0536 0.9025 83 0.0531 0.9103 58 0.0522 0.9125 45 0.0532 0.9177
1.00 374 0.0486 0.9016 118 0.0463 0.9021 64 0.0451 0.9180 44 0.0388 0.9223 34 0.0394 0.9290
2.00 317 0.0480 0.8961 96 0.0452 0.9007 51 0.0442 0.8979 33 0.0407 0.9002 25 0.0405 0.9074
5.00 296 0.0493 0.8924 88 0.0472 0.8936 46 0.0439 0.8928 30 0.0460 0.8944 21 0.0394 0.8766

20%

0.25 546 0.0629 0.8905 177 0.0660 0.8880 100 0.0580 0.8812 69 0.0604 0.8849 54 0.0612 0.8841
0.50 483 0.0540 0.8990 155 0.0545 0.8978 86 0.0556 0.9085 60 0.0536 0.9111 46 0.0566 0.9093
1.00 402 0.0473 0.9020 126 0.0454 0.9126 69 0.0440 0.9156 47 0.0458 0.9150 35 0.0477 0.9228
2.00 350 0.0506 0.8999 106 0.0446 0.9022 56 0.0443 0.9034 36 0.0412 0.8956 27 0.0378 0.9110
5.00 331 0.0501 0.8998 98 0.0472 0.8917 51 0.0454 0.8894 33 0.0408 0.8927 24 0.0443 0.8949

30%

0.25 576 0.0685 0.8817 186 0.0656 0.8830 104 0.0668 0.8841 72 0.0654 0.8809 56 0.0693 0.8836
0.50 515 0.0557 0.8943 164 0.0577 0.8943 91 0.0572 0.8910 63 0.0558 0.9064 48 0.0567 0.9092
1.00 440 0.0516 0.8976 136 0.0483 0.9088 74 0.0441 0.9118 50 0.0506 0.9131 38 0.0499 0.9214
2.00 394 0.0490 0.8996 118 0.0473 0.9025 62 0.0472 0.9011 41 0.0481 0.9061 30 0.0446 0.9027
5.00 377 0.0447 0.8987 112 0.0504 0.8976 58 0.0505 0.8971 37 0.0442 0.8932 27 0.0450 0.8917

5.0

0%

0.25 549 0.0630 0.8787 181 0.0635 0.8770 103 0.0682 0.8746 72 0.0623 0.8824 57 0.0607 0.8847
0.50 514 0.0620 0.8888 169 0.0577 0.8908 96 0.0639 0.8961 67 0.0568 0.8869 53 0.0568 0.8963
1.00 454 0.0563 0.9028 148 0.0487 0.8991 83 0.0492 0.9059 58 0.0518 0.9114 45 0.0488 0.9126
2.00 376 0.0486 0.9028 119 0.0415 0.9062 66 0.0411 0.9152 45 0.0391 0.9220 35 0.0364 0.9272
5.00 303 0.0497 0.8992 92 0.0425 0.8912 49 0.0408 0.8967 32 0.0419 0.9004 24 0.0360 0.8995

10%

0.25 567 0.0665 0.8764 186 0.0658 0.8797 105 0.0680 0.8806 74 0.0597 0.8778 58 0.0648 0.8768
0.50 532 0.0588 0.8856 174 0.0651 0.8917 98 0.0612 0.8891 69 0.0592 0.8968 54 0.0648 0.8946
1.00 473 0.0543 0.8972 153 0.0559 0.8983 86 0.0565 0.9068 60 0.0552 0.9196 46 0.0522 0.9140
2.00 398 0.0459 0.9026 126 0.0472 0.9105 69 0.0468 0.9084 47 0.0415 0.9156 36 0.0430 0.9275
5.00 330 0.0475 0.8970 100 0.0424 0.8983 53 0.0416 0.8978 35 0.0401 0.8983 26 0.0369 0.9023

20%

0.25 589 0.0715 0.8745 192 0.0670 0.8837 109 0.0675 0.8778 76 0.0698 0.8736 59 0.0697 0.8713
0.50 555 0.0653 0.8789 180 0.0649 0.8895 102 0.0648 0.8886 71 0.0633 0.8872 55 0.0582 0.8851
1.00 498 0.0571 0.8923 160 0.0545 0.8975 89 0.0565 0.9006 62 0.0574 0.9120 48 0.0524 0.9054
2.00 427 0.0509 0.9060 134 0.0437 0.9052 73 0.0476 0.9057 50 0.0438 0.9165 38 0.0447 0.9174
5.00 364 0.0521 0.8988 110 0.0463 0.8976 58 0.0435 0.8990 38 0.0417 0.8962 28 0.0435 0.8965

30%

0.25 618 0.0724 0.8733 201 0.0719 0.8733 113 0.0704 0.8752 79 0.0762 0.8757 61 0.0700 0.8775
0.50 585 0.0695 0.8782 189 0.0660 0.8852 106 0.0629 0.8857 73 0.0681 0.8826 57 0.0708 0.8793
1.00 531 0.0587 0.8966 169 0.0565 0.8932 94 0.0559 0.8966 65 0.0622 0.9006 50 0.0581 0.9059
2.00 465 0.0505 0.9011 145 0.0467 0.9053 79 0.0509 0.9074 53 0.0504 0.9122 40 0.0532 0.9126
5.00 407 0.0503 0.9032 123 0.0464 0.9007 65 0.0450 0.9029 43 0.0490 0.9089 31 0.0480 0.8963

Note: Results are based on a total of 10,000 simulations.
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Table 2.2: Empirical Type-I error and power of the MLE-based test for hypothetical studies with
maximum accrual time ω = 3 months and administrative censoring time τ = 7 months under
varying values of the power parameter ϕ , loss to follow-up rate υ , shape parameter κ , and effect
size ∆ = (M1/M0)

κ with M0 = 1 month
ϕ υ κ

∆ = 1.2 ∆ = 1.4 ∆ = 1.6 ∆ = 1.8 ∆ = 2.0
n α 1−β n α 1−β n α 1−β n α 1−β n α 1−β

0.1

0%

0.25 437 0.0536 0.9006 142 0.0502 0.9069 80 0.0515 0.9102 56 0.0495 0.9115 43 0.0444 0.9134
0.50 345 0.0446 0.9065 110 0.0430 0.9098 61 0.0422 0.9196 42 0.0416 0.9285 32 0.0371 0.9300
1.00 269 0.0556 0.8894 81 0.0467 0.8866 43 0.0468 0.8967 28 0.0445 0.8947 21 0.0437 0.8944
2.00 258 0.0526 0.8832 76 0.0524 0.8828 39 0.0508 0.8759 25 0.0436 0.8727 18 0.0415 0.8718
5.00 258 0.0580 0.8764 76 0.0491 0.8797 39 0.0472 0.8800 25 0.0475 0.8741 18 0.0444 0.8707

10%

0.25 456 0.0547 0.9031 147 0.0526 0.9086 83 0.0529 0.9080 57 0.0477 0.9069 45 0.0525 0.9189
0.50 366 0.0473 0.9032 116 0.0438 0.9102 64 0.0437 0.9204 44 0.0429 0.9283 33 0.0421 0.9300
1.00 295 0.0482 0.8919 89 0.0492 0.8997 47 0.0491 0.9013 31 0.0405 0.9046 23 0.0447 0.9092
2.00 287 0.0500 0.8920 85 0.0481 0.8928 44 0.0448 0.8846 28 0.0458 0.8768 20 0.0434 0.8749
5.00 287 0.0509 0.8922 85 0.0487 0.8861 44 0.0480 0.8864 28 0.0438 0.8744 20 0.0432 0.8756

20%

0.25 480 0.0564 0.9003 154 0.0542 0.9051 86 0.0574 0.9032 60 0.0561 0.9122 46 0.0529 0.9088
0.50 393 0.0489 0.9030 123 0.0475 0.9047 67 0.0473 0.9161 46 0.0466 0.9217 35 0.0474 0.9244
1.00 329 0.0487 0.9004 98 0.0557 0.8944 51 0.0485 0.8969 34 0.0454 0.9002 25 0.0411 0.9060
2.00 323 0.0508 0.8905 95 0.0465 0.8966 49 0.0436 0.8927 31 0.0440 0.8829 23 0.0438 0.8901
5.00 323 0.0512 0.9006 95 0.0504 0.8880 49 0.0421 0.8835 31 0.0441 0.8843 23 0.0449 0.8907

30%

0.25 511 0.0625 0.8956 163 0.0534 0.9013 90 0.0574 0.9009 62 0.0581 0.9037 48 0.0562 0.9017
0.50 429 0.0482 0.9010 133 0.0503 0.9076 72 0.0527 0.9117 49 0.0504 0.9201 37 0.0483 0.9229
1.00 373 0.0449 0.8987 111 0.0489 0.8955 58 0.0446 0.9033 38 0.0488 0.8996 28 0.0460 0.9141
2.00 369 0.0499 0.8947 109 0.0477 0.8965 56 0.0453 0.8930 36 0.0463 0.8905 26 0.0472 0.8908
5.00 369 0.0488 0.8994 109 0.0455 0.8997 56 0.0494 0.8949 36 0.0469 0.8887 26 0.0452 0.8889

1.0

0%

0.25 455 0.0534 0.8973 148 0.048 0.9014 84 0.0493 0.9069 58 0.0483 0.9085 46 0.0498 0.9151
0.50 367 0.0482 0.9027 117 0.0467 0.9133 65 0.0419 0.9187 45 0.0401 0.9272 35 0.0421 0.9256
1.00 282 0.0508 0.8925 86 0.0466 0.8932 46 0.0430 0.9019 31 0.0422 0.9090 23 0.0375 0.9183
2.00 258 0.0495 0.8787 76 0.0484 0.8844 39 0.0524 0.8755 25 0.0450 0.8755 18 0.0433 0.8633
5.00 258 0.0547 0.8821 76 0.0524 0.8717 39 0.0479 0.8732 25 0.0496 0.8737 18 0.0442 0.8743

10%

0.25 473 0.0549 0.8946 153 0.0565 0.8988 86 0.0514 0.9106 60 0.0548 0.9046 47 0.0511 0.9092
0.50 387 0.0490 0.9081 123 0.0488 0.9065 68 0.0426 0.9149 47 0.0475 0.9228 36 0.0395 0.9255
1.00 307 0.0513 0.8958 93 0.0476 0.8994 50 0.0457 0.9068 33 0.0423 0.9075 25 0.0414 0.9203
2.00 287 0.0503 0.8856 85 0.0465 0.8767 44 0.0428 0.8827 28 0.0447 0.8800 20 0.0434 0.8764
5.00 287 0.0540 0.8861 85 0.0504 0.8848 44 0.0461 0.8875 28 0.0467 0.8805 20 0.0410 0.8813

20%

0.25 497 0.0559 0.8934 160 0.0574 0.8948 90 0.0597 0.9024 62 0.0567 0.9052 48 0.0579 0.9009
0.50 413 0.0493 0.9024 131 0.0483 0.9094 72 0.0479 0.9165 49 0.0510 0.9204 38 0.0449 0.9238
1.00 338 0.0488 0.8974 102 0.0480 0.9050 54 0.0471 0.9041 36 0.0460 0.9115 27 0.0400 0.9134
2.00 323 0.0488 0.8909 95 0.0465 0.8884 49 0.0471 0.8897 32 0.0413 0.8890 23 0.0446 0.8906
5.00 323 0.0507 0.8979 95 0.0508 0.8931 49 0.0486 0.8897 31 0.0457 0.8806 23 0.0450 0.8878

30%

0.25 528 0.0600 0.8952 169 0.0584 0.8934 94 0.0622 0.8986 65 0.0582 0.9044 50 0.0597 0.9018
0.50 448 0.0481 0.9053 140 0.0486 0.9067 77 0.0502 0.9118 52 0.0534 0.9147 40 0.0521 0.9211
1.00 380 0.0478 0.9050 114 0.0465 0.9016 60 0.0463 0.9059 40 0.0491 0.9092 29 0.0486 0.9092
2.00 369 0.0496 0.9007 109 0.0503 0.8904 56 0.0496 0.8957 36 0.0504 0.8966 26 0.0465 0.8934
5.00 369 0.0488 0.8981 109 0.0442 0.8954 56 0.0452 0.8935 36 0.0443 0.8915 26 0.0460 0.8943

5.0

0%

0.25 473 0.0537 0.8960 154 0.0568 0.894 87 0.0534 0.8992 61 0.0527 0.906 48 0.0503 0.9089
0.50 391 0.0489 0.9086 126 0.0462 0.9162 70 0.0451 0.9187 49 0.0442 0.9259 38 0.0442 0.9303
1.00 299 0.0449 0.8972 93 0.0451 0.9076 50 0.0443 0.9105 34 0.0392 0.9227 26 0.0377 0.9260
2.00 259 0.0526 0.8841 76 0.0517 0.8831 40 0.0455 0.8813 26 0.0462 0.8800 19 0.0428 0.8858
5.00 258 0.0505 0.8790 76 0.0535 0.8731 39 0.0474 0.8774 25 0.0473 0.8678 18 0.0426 0.866

10%

0.25 491 0.0523 0.8917 160 0.0505 0.8973 90 0.0529 0.8986 63 0.0594 0.9052 49 0.0575 0.9017
0.50 411 0.0527 0.9023 132 0.0457 0.9086 73 0.0464 0.9119 51 0.0477 0.9237 39 0.0455 0.9250
1.00 322 0.0467 0.9040 99 0.0451 0.9035 54 0.0449 0.9098 36 0.0394 0.9191 27 0.0437 0.9235
2.00 287 0.0525 0.8852 85 0.0498 0.8858 44 0.0464 0.8889 28 0.0475 0.8828 21 0.0431 0.8933
5.00 287 0.0536 0.8888 85 0.0444 0.8874 44 0.0465 0.8869 28 0.0434 0.8793 20 0.0421 0.8828

20%

0.25 514 0.0597 0.8927 166 0.061 0.8963 93 0.0512 0.8983 65 0.0548 0.8999 50 0.0544 0.8945
0.50 436 0.0497 0.9024 139 0.0475 0.9113 77 0.0459 0.9109 53 0.0514 0.9148 41 0.0522 0.9237
1.00 352 0.0471 0.8984 108 0.0444 0.9030 58 0.0430 0.9112 39 0.0432 0.9173 29 0.0445 0.9205
2.00 323 0.0498 0.8967 95 0.0509 0.8891 49 0.0418 0.8897 32 0.0444 0.8837 23 0.0431 0.8893
5.00 323 0.0538 0.8926 95 0.0533 0.8895 49 0.0468 0.8905 31 0.0467 0.8833 23 0.0403 0.8863

30%

0.25 545 0.0590 0.8894 175 0.0619 0.8912 98 0.0616 0.8961 68 0.0666 0.896 52 0.0617 0.8992
0.50 469 0.0548 0.9008 148 0.0539 0.9068 81 0.0535 0.9110 56 0.0556 0.9138 43 0.0578 0.0919
1.00 392 0.0495 0.9010 119 0.0474 0.9079 63 0.0467 0.9114 42 0.0467 0.9119 32 0.0448 0.9199
2.00 369 0.0485 0.9000 109 0.0505 0.8982 56 0.0473 0.8973 36 0.0426 0.8933 26 0.0447 0.8968
5.00 369 0.0473 0.9026 109 0.0479 0.8928 56 0.0477 0.8945 36 0.0491 0.8913 26 0.0463 0.8941

Note: Results are based on a total of 10,000 simulations.
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Table 2.3: Empirical Type-I error and power of the MLE-based test for hypothetical studies with
maximum accrual time ω = 3 months and administrative censoring time τ = 9 months under
varying values of the power parameter ϕ , loss to follow-up rate υ , shape parameter κ , and effect
size ∆ = (M1/M0)

κ with M0 = 1 month
ϕ υ κ

∆ = 1.2 ∆ = 1.4 ∆ = 1.6 ∆ = 1.8 ∆ = 2.0
n α 1−β n α 1−β n α 1−β n α 1−β n α 1−β

0.1

0%

0.25 410 0.0535 0.9052 133 0.0509 0.9068 74 0.0437 0.9166 52 0.0499 0.9260 40 0.0465 0.9238
0.50 315 0.0460 0.9055 99 0.0475 0.9047 54 0.0452 0.9128 37 0.0396 0.9222 28 0.0401 0.9282
1.00 260 0.0537 0.8848 77 0.0489 0.8766 40 0.0533 0.8829 26 0.0438 0.8773 19 0.0406 0.8773
2.00 258 0.0546 0.8813 76 0.0485 0.8768 39 0.0486 0.8763 25 0.0456 0.8752 18 0.0436 0.8728
5.00 258 0.0564 0.8832 76 0.0511 0.8769 39 0.0460 0.8760 25 0.0451 0.8736 18 0.0464 0.8753

10%

0.25 429 0.0510 0.9065 138 0.0481 0.9065 77 0.0509 0.9130 53 0.0428 0.9155 41 0.0486 0.9177
0.50 338 0.0515 0.9086 105 0.0430 0.9105 57 0.0449 0.9106 39 0.0439 0.9220 30 0.0393 0.9340
1.00 288 0.0543 0.8867 85 0.0435 0.8934 44 0.0443 0.8931 29 0.0430 0.8916 21 0.0437 0.8871
2.00 287 0.0514 0.8863 85 0.0502 0.8872 44 0.0455 0.8895 28 0.0426 0.8861 20 0.0403 0.8797
5.00 287 0.0534 0.8886 85 0.0504 0.8876 44 0.0510 0.8844 28 0.0455 0.8767 20 0.0445 0.8750

20%

0.25 454 0.0529 0.9038 145 0.0497 0.9061 81 0.0542 0.9127 56 0.0506 0.9208 43 0.0512 0.9191
0.50 366 0.0461 0.9055 113 0.0422 0.9063 61 0.0440 0.9164 41 0.0426 0.9164 31 0.0473 0.9222
1.00 323 0.0493 0.8958 96 0.0478 0.8919 49 0.0478 0.8905 32 0.0461 0.8883 23 0.0427 0.8882
2.00 323 0.0501 0.8903 95 0.0499 0.8914 49 0.0440 0.8931 31 0.0446 0.8853 23 0.0426 0.8949
5.00 323 0.0509 0.8939 95 0.0462 0.8869 49 0.0451 0.8902 31 0.0411 0.8839 23 0.0444 0.8877

30%

0.25 486 0.0552 0.8957 154 0.0556 0.8995 85 0.0534 0.9077 58 0.0541 0.9123 45 0.0537 0.9120
0.50 404 0.0444 0.9052 124 0.0430 0.9078 67 0.0490 0.9123 45 0.0473 0.9179 34 0.0468 0.9244
1.00 369 0.0458 0.8958 109 0.0497 0.8930 56 0.0470 0.8957 36 0.0464 0.8946 26 0.0461 0.8913
2.00 369 0.0440 0.8947 109 0.0452 0.8964 56 0.0469 0.8903 36 0.0450 0.8885 26 0.0476 0.8913
5.00 369 0.0510 0.8946 109 0.0521 0.9015 56 0.0466 0.8945 36 0.0519 0.8938 26 0.0473 0.8991

1.0

0%

0.25 419 0.0482 0.9005 136 0.0471 0.9099 76 0.0457 0.9114 53 0.0450 0.9168 41 0.0454 0.9228
0.50 325 0.0467 0.9013 103 0.0448 0.9093 56 0.0422 0.9140 39 0.0372 0.9279 30 0.0386 0.9356
1.00 262 0.0523 0.8880 78 0.0490 0.8867 41 0.0474 0.8893 27 0.0438 0.8919 20 0.0425 0.8991
2.00 258 0.0566 0.8865 76 0.0508 0.8836 39 0.0511 0.8800 25 0.0467 0.8711 18 0.0399 0.8694
5.00 258 0.0546 0.8887 76 0.0531 0.8795 39 0.0486 0.8732 25 0.0463 0.8756 18 0.0403 0.8654

10%

0.25 438 0.0495 0.9026 141 0.0486 0.9051 79 0.0493 0.9111 55 0.0506 0.9165 43 0.0510 0.9224
0.50 347 0.0485 0.9081 109 0.0444 0.9142 59 0.0454 0.9138 40 0.0426 0.9210 31 0.0406 0.9322
1.00 289 0.0498 0.8899 86 0.0507 0.8917 45 0.0484 0.8933 29 0.0465 0.8878 22 0.0436 0.9008
2.00 287 0.0494 0.8871 85 0.0458 0.8819 44 0.0476 0.8866 28 0.0425 0.8838 20 0.0444 0.8707
5.00 287 0.0530 0.8933 85 0.0490 0.8933 44 0.0445 0.8843 28 0.0452 0.8817 20 0.0393 0.8837

20%

0.25 463 0.0544 0.9011 148 0.0567 0.9038 82 0.0510 0.9099 57 0.0528 0.9087 44 0.0532 0.9194
0.50 375 0.0466 0.9058 117 0.0447 0.9056 63 0.0468 0.9158 43 0.0483 0.9221 33 0.0395 0.9300
1.00 324 0.0486 0.8927 96 0.0460 0.8941 50 0.0449 0.9035 32 0.0458 0.8925 24 0.0434 0.9076
2.00 323 0.0481 0.8970 95 0.0502 0.8889 49 0.0440 0.8866 31 0.0429 0.8843 23 0.0463 0.8922
5.00 323 0.0516 0.8872 95 0.0468 0.8888 49 0.0470 0.8853 31 0.0446 0.8898 23 0.0436 0.8881

30%

0.25 495 0.0577 0.8932 157 0.0561 0.9018 87 0.0553 0.9024 60 0.0576 0.9043 46 0.0536 0.9124
0.50 412 0.0499 0.9005 127 0.0469 0.9073 68 0.0483 0.9110 46 0.0505 0.9172 35 0.0461 0.9239
1.00 370 0.0477 0.9011 109 0.0448 0.8955 57 0.0488 0.9013 37 0.0484 0.8989 27 0.0445 0.8992
2.00 369 0.0504 0.8943 109 0.0490 0.8978 56 0.0464 0.8963 36 0.0465 0.8973 26 0.0453 0.8888
5.00 369 0.0461 0.8935 109 0.0467 0.8986 56 0.0445 0.8914 36 0.0470 0.8960 26 0.0492 0.8909

5.0

0%

0.25 428 0.0526 0.9000 139 0.0488 0.9071 78 0.0521 0.9112 54 0.0471 0.9096 42 0.0466 0.9198
0.50 335 0.0401 0.9111 106 0.0449 0.9117 59 0.0441 0.9252 40 0.0408 0.9260 31 0.0370 0.9309
1.00 264 0.0570 0.8896 79 0.0490 0.8840 42 0.0433 0.8905 28 0.0441 0.9048 20 0.0431 0.8947
2.00 258 0.0555 0.8791 76 0.0513 0.8786 39 0.0465 0.8717 25 0.0442 0.8793 18 0.0431 0.8706
5.00 258 0.0516 0.8826 76 0.0489 0.8806 39 0.0454 0.8717 25 0.0473 0.8763 18 0.0427 0.8699

10%

0.25 447 0.0525 0.9005 144 0.0528 0.9077 81 0.0519 0.9142 56 0.0524 0.9139 44 0.0492 0.9191
0.50 356 0.0444 0.9097 112 0.0423 0.9107 61 0.0451 0.9146 42 0.0414 0.9209 32 0.0435 0.9305
1.00 291 0.0494 0.8916 87 0.0458 0.8980 46 0.0482 0.8962 30 0.0429 0.8935 22 0.0413 0.9033
2.00 287 0.0487 0.8988 85 0.0485 0.8824 44 0.0464 0.8845 28 0.0430 0.8872 20 0.0442 0.8764
5.00 287 0.0525 0.8902 85 0.0495 0.8895 44 0.0466 0.8836 28 0.0427 0.8825 20 0.0399 0.8701

20%

0.25 471 0.0551 0.8978 151 0.0519 0.8990 84 0.0516 0.9064 58 0.0518 0.9093 45 0.0491 0.9114
0.50 383 0.0438 0.9042 120 0.0479 0.9133 65 0.0477 0.9094 44 0.0446 0.9178 34 0.0447 0.9307
1.00 326 0.0463 0.8972 97 0.0463 0.8921 50 0.0462 0.8855 33 0.0469 0.8991 24 0.0444 0.9040
2.00 323 0.0541 0.8951 95 0.0492 0.8912 49 0.0472 0.8867 31 0.0425 0.8829 23 0.0451 0.8874
5.00 323 0.0477 0.8918 95 0.0459 0.8874 49 0.0463 0.8872 31 0.0454 0.8805 23 0.0449 0.8912

30%

0.25 503 0.0595 0.8986 160 0.0574 0.8937 89 0.0548 0.9027 61 0.0581 0.9120 47 0.0566 0.9073
0.50 420 0.0535 0.8987 130 0.0462 0.9142 70 0.0479 0.9086 47 0.0521 0.9135 36 0.0448 0.9249
1.00 370 0.0498 0.8986 110 0.0469 0.8974 57 0.0489 0.9015 37 0.0461 0.9011 27 0.0457 0.8996
2.00 369 0.0519 0.8974 109 0.0462 0.8976 56 0.0497 0.9010 36 0.0473 0.8966 26 0.0452 0.8950
5.00 369 0.0535 0.8995 109 0.0440 0.8963 56 0.0448 0.8943 36 0.0484 0.8952 26 0.0483 0.8903

Note: Results are based on a total of 10,000 simulations.
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Based on our findings, we feel important to emphasize that the proposed method is most

appropriate when adequate data is available from historical control studies for reliably estimating

the shape parameter of the Weibull distribution. If such estimate of the shape parameter is not

available, it is recommended to incorporate adaptive features, such as sample size reassessment,

into our study design.

Table 2.4: Effect of misspecification of the shape parameter on Type-I error and power of the MLE-
based test when a fixed sample study was designed assuming exponential survival times (κ = 1)

ϕ υ
True

∆ = 1.2 ∆ = 1.6

κ
τ = 4 τ = 7 τ = 9 τ = 4 τ = 7 τ = 9

α 1−β α 1−β α 1−β α 1−β α 1−β α 1−β

0.1

0%
0.75 0.0466 0.6716 0.0507 0.6814 0.0503 0.6854 0.0425 0.6796 0.0417 0.6984 0.0449 0.6883
1.25 0.0488 0.9823 0.0527 0.9743 0.0546 0.9714 0.0429 0.9837 0.0463 0.9738 0.0466 0.9649

10%
0.75 0.0466 0.6820 0.0478 0.7043 0.0479 0.7017 0.0439 0.6954 0.0446 0.7042 0.0433 0.6919
1.25 0.0491 0.9815 0.0511 0.9727 0.0545 0.9745 0.0445 0.9839 0.0456 0.9747 0.0467 0.9682

20%
0.75 0.0499 0.6846 0.0507 0.7000 0.0515 0.6976 0.0431 0.6863 0.0446 0.6949 0.0517 0.6942
1.25 0.0489 0.9799 0.0492 0.9731 0.0465 0.9760 0.0456 0.9826 0.0427 0.9751 0.0489 0.9724

30%
0.75 0.0478 0.6918 0.0470 0.7016 0.0465 0.6989 0.0493 0.6909 0.0466 0.7031 0.0475 0.6962
1.25 0.0464 0.9817 0.0489 0.9800 0.0504 0.9737 0.0459 0.9835 0.0454 0.9763 0.0479 0.9760

1.0

0%
0.75 0.0453 0.6824 0.0507 0.6953 0.0540 0.6867 0.0446 0.6895 0.0435 0.7088 0.0410 0.6830
1.25 0.0496 0.9852 0.0544 0.9774 0.0555 0.9691 0.0449 0.9887 0.0482 0.9796 0.0514 0.9707

10%
0.75 0.0467 0.6862 0.0471 0.6911 0.0534 0.6890 0.0463 0.6854 0.0431 0.7065 0.0399 0.6839
1.25 0.0456 0.9841 0.0509 0.9806 0.0519 0.9735 0.0459 0.9874 0.0437 0.9831 0.0460 0.9733

20%
0.75 0.0532 0.6850 0.0464 0.6986 0.0501 0.6983 0.0477 0.6906 0.0448 0.7100 0.0421 0.6878
1.25 0.0461 0.9816 0.0526 0.9793 0.0518 0.9793 0.0469 0.9860 0.0458 0.9812 0.0460 0.9749

30%
0.75 0.0548 0.6845 0.0463 0.7087 0.0508 0.7038 0.0532 0.6869 0.0517 0.7066 0.0452 0.6938
1.25 0.0504 0.9830 0.0493 0.9789 0.0487 0.9765 0.0437 0.9847 0.0467 0.9795 0.0485 0.9765

5.0

0%
0.75 0.0505 0.6812 0.0506 0.7021 0.0547 0.6762 0.0542 0.7053 0.0409 0.7151 0.0451 0.6871
1.25 0.0499 0.9819 0.0554 0.9813 0.0562 0.9713 0.0488 0.9852 0.0509 0.9882 0.0461 0.9722

10%
0.75 0.0568 0.6898 0.0470 0.7036 0.0525 0.6908 0.0569 0.6946 0.0424 0.7217 0.0413 0.6849
1.25 0.0507 0.9816 0.0522 0.9839 0.0515 0.9746 0.0522 0.9842 0.0470 0.9870 0.0452 0.9741

20%
0.75 0.0579 0.6865 0.0449 0.7093 0.0487 0.6961 0.0593 0.6984 0.0449 0.7153 0.0462 0.6906
1.25 0.0565 0.9809 0.0502 0.9854 0.0460 0.9741 0.0532 0.9816 0.0453 0.9850 0.0438 0.9762

30%
0.75 0.0636 0.6857 0.0473 0.7046 0.0520 0.6925 0.0655 0.6997 0.0488 0.7036 0.0439 0.6976
1.25 0.0580 0.9791 0.0475 0.9830 0.0474 0.9817 0.0559 0.9829 0.0470 0.9859 0.0438 0.9774

Note: In this simulation study, we used nominal Type-I error = 5%, nominal power = 90%, maximum accrual
time ω = 3 months, and varying values of administrative censoring time τ (in months), power parameter ϕ , loss
to follow-up rate υ , and true shape parameter κ . Effect size is defined as ∆ = M1/M0 with M0 = 1 month. Results
are based on a total of 10,000 simulations.
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2.4.2 Futility Monitoring of Hypothetical Single-Arm Trials

To discuss the implementation of SC methods described in Section 2.3.3, we consider that a

hypothetical fixed sample study is designed to obtain preliminary evidence of efficacy of a

hypothetical drug X to treat some disease Y, and investigators may conduct unplanned futility

testing based on the recommendation of the DSMB overseeing this study. Based on historical

evidence, suppose that researchers believe that an improvement in the median progression free

survival time (in months) by a factor of 1.5 warrants a further investigation of the experimental

treatment in a larger phase III randomized trial. More specifically, suppose that investigators are

interested in testing the hypotheses H0 : M≤ 1 month vs. H1 : M > 1.5 months with nominal Type-I

error rate and power equal to 5% and 90%, respectively. For this hypothetical example, suppose

that researchers anticipate a uniform accrual pattern (ϕ = 1.00) during its accrual phase with the

maximum enrollment time equal to 3 months, and the maximum follow-up time of 9 months after-

wards. Furthermore, the shape parameter of the Weibull distribution was assumed to be κ = 1.25

(increasing hazard), and the expected loss to follow-up rate is around 15%.

Using the method described in Section 2.3.2, it was determined that a sample size n = 40 is

required for a fixed sample design. Consider an interim analysis is requested at 1 month after

the conclusion of accrual period (i.e., look time ` = 4 months). To observe how futility testing

statistics vary, we generated a sample of size n = 40 from each of the Weibull distributions with

varying values of the underlying median parameter (M = 0.75,1.00,1.25,1.50,2.00). SC methods

were applied to each of the five simulated data sets, and the results are summarized in Table 2.5.

We make the following observations:

1. As expected, the number of events observed at the kth interim time point, denoted by ne;k, is

the largest for the data generated under the assumption of the smallest median survival time

(0.75 months), and it decreases as the median survival time increases. The converse holds

true for the number of active subjects, na;k, remaining in the study at interim analyses.

2. Using ζ = ζ ′ = 0.80 for conditional power calculations, we note that the futility index
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corresponding to the data generated assuming the smallest median survival time (0.75 months)

is the largest (0.9167). This implies that the observed treatment difference for this simulated

data set is no longer consistent with the alternative hypothesis, and the study should be ter-

minated at the first interim analysis. As expected, we observe that the futility index decreases

as the median survival time increases. None of the other four cases indicates stopping due to

lack of efficacy at the first interim analysis.

3. Predictive power is also observed to be the smallest for the first case with the smallest median

survival time, and it increases with an increase in the median survival time. In other words,

we observe a direct relationship between the median survival time and the predictive power.

4. We also computed the Bayesian predictive probability of a successful trial outcome at the end

of the study using threshold probability η∗ = 0.95. We computed these probabilities using

both asymptotic, as well as purely simulation-based algorithms described in Section 2.3.3.3.

Consistent with our test hypotheses, we observe that the predictive probability of a positive

trial outcome is close to 0 for all four data sets generated with the underlying median time

M ≤ 1.5 months. The predictive probability of success for data generated using M = 2.00

months is well above 50% in both cases, and investigators may either conclude efficacy at

this stage, or decide to continue the trial according to the recommendation of DSMB.

5. We observe that the magnitude of the predictive power and the Bayesian predictive

probability computed through purely simulation-based approach using R2OpenBUGS in R

tends to be larger than those computed using our proposed asymptotic method. This is due

to the fact that the (interim) posterior densities generated using the purely simulation-based

approach tend to have heavier tails with an increase in the median survival time, which in

turn contributes to a more pronounced difference in the magnitude of these SC tests.
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We consider another hypothetical study in which investigators are interested in testing the

hypotheses H0 : M ≤ 2.50 months vs. H1 : M > 3.75 months using a fixed sample design with

nominal Type-I error rate 5%, and power 80%. We assume a non-uniform accrual pattern (ϕ =

1.25) during the accrual phase spanning 3 months, and a follow-up period of 9 months. The

common shape parameter is assumed to be κ = 1.50, and the proportion of censoring due to loss

to follow-up is around 15%. In this case, we found that a sample size of n = 21 is needed to

conduct a fixed sample study. Suppose an interim analysis is requested for testing futility after

3 months following the accrual phase (i.e, look time ` = 6 months). In this case, we generated

a survival data of size n = 21 from each of the Weibull distributions with the underlying median

parameter (M = 2.00,2.50,3.25,3.75,4.00), and the corresponding results are presented in Table

2.6. Comparing to our previous example, we note similar patterns in the number of events, futility

index, predictive power, and Bayesian predictive probability. While there is an agreement in

the conclusions based on the conditional power and the predictive power tests, we note that the

Bayesian predictive probability is large enough to warrant continuation of the trial (or to conclude

efficacy) only for the data simulated using the largest median parameter of the Weibull distribution.

2.4.3 Group Sequential Design Plans for a Hypothetical Single-Arm Trial

During public health emergencies, it may seem reasonable to construct sequential design plans to

expedite the process of drug testing and evaluation in early phase clinical trials. Suppose we are

interested in constructing GSD plans for the first example discussed in Section 2.4.2 for obtaining

preliminary evidence of efficacy and futility of a hypothetical drug X to treat some disease Y. We

compare and contrast various aspects of Pocock and O’Brien-Fleming GSD plans using 10,000

runs of the simulation-based algorithm outlined in Section A.3 of Appendix A. Throughout this

section, we used Hwang-Shih-DeCani error spending function [34] to obtain approximations of α-

and β - spending functions for Pocock and O’Brien-Fleming plans.

First, we present a GSD plan to evaluate both efficacy and futility at three equally-spaced

look times, and the corresponding results are reported in Table 2.7. We can clearly observe that
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the efficacy boundaries Uk (presented on the test statistic scale) for the Pocock plan (1.876) is

much smaller than that for the O’Brien-Fleming plan (2.651) at the first interim analysis because it

allocates a much larger portion of the Type-I error at the first look. We observe a similar pattern in

the futility boundaries Lk for both plans (0.936 for Pocock plan vs. −0.096 for O’Brien-Fleming

plan). As a consequence, the stopping probabilities are much higher for the Pocock plan than the

respective probabilities for the O’Brien-Fleming design at the first look, and the converse is true

at the last look. If the study continues to its pre-planned end date, we observe that the average

number of events needed to detect a difference using the Pocock plan are larger than those for the

O’Brien-Fleming plan (37.7662 for Pocock plan vs. 34.9959 for O’Brien-Fleming plan for futility

testing). Consistent with the literature, we also note that the Pocock plan requires a relatively

smaller number of expected events under the alternative hypothesis. This difference in the number

of required events may not seem apparent due to relatively small overall sample sizes needed for

both plans.

Second, we present equally-spaced GSD plans for evaluating efficacy and futility (with 1 skip)

in Table 2.8. In comparison to designs provided in Table 2.7, we note that the probability of stop-

ping under the null hypothesis during the first interim analysis drops considerably for both plans

(0.0702 for Pocock plan vs. 0.0504 for O’Brien-Fleming plan). At the second look time, however,

we note that these stopping probabilities are very high as the efficacy and futility boundaries are

much closer. In these plans, we may clearly observe that the expected number of events under the

alternative hypothesis using the Pocock plan is lower than that for the O’Brien-Fleming design.

Third, we present results corresponding to unequally-spaced efficacy-only GSD plans. The

efficacy stopping boundaries in this design are similar to the results for the design with 1-futility

skip presented in Table 2.8. We note that the stopping probability under H0 at any particular look

time is essentially equal to the local Type-I error rate spent at that particular look. We observe a

considerable difference in the magnitude of stopping probabilities under the alternative hypothesis

in Tables 2.8 and 2.9. Furthermore, the cumulative stopping probability under the alternative

hypothesis is slightly larger than the desired power.
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Pictorial comparison of stopping boundaries for the Pocock and O’Brien-Fleming designs for

all three scenarios is shown in Figure 2.1. We have also shown efficacy and futility boundaries

obtained using ζ = ζ ′ = 0.5 in the conditional power stopping boundaries in Eqs. (2.10) and

(2.11). Consistent with Davis and Hardy [43], we observe that the conditional power boundaries

with ζ = ζ ′ = 0.5 closely resemble the O’Brien-Fleming boundaries. Since the parameters ζ and

ζ ′ are typically chosen around 0.80, the O’Brien-Fleming testing procedure is more likely to trigger

an early stopping of a clinical trial in comparison to the approach based on conditional power [18].
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Figure 2.1: Stopping boundaries for the GSD plans in Tables 2.7–2.9
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Figure 2.2: Percent reduction in the average number of events for the Pocock and O’Brien-Fleming
GSD plans, in comparison to a fixed sample design, in Tables 2.7–2.9

To illustrate usefulness of the RST approach, we compared the relative benefit of the group

sequential designs to that of the fixed designs in terms of the percent reduction in the expected

(average) number of events. For each of the three examples discussed in this section, we plotted the

percent reduction in the expected (average) number of events needed for the Pocock and O’Brien-

Fleming plans against varying values of the effect size in Figure 2.2. It can be observed that the

43



percent reduction in the average number of events needed under the Pocock and O’Brien-Fleming

plans relative to the fixed design increases with an increase in the desired effect size. In addition,

we note that the Pocock plan offers greater percent reduction in the average number of events in

comparison to the O’Brien-Fleming plan. This is primarily due to the fact that the Pocock’s design

allocates relatively larger magnitudes of the Type-I and Type-II error rates at the earlier interim

analyses, which in turn may trigger early stopping of a clinical trial with a smaller number of

events.

2.5 Discussion

In this manuscript, we attempted to address some outstanding issues pertaining to the design of

single-arm phase II studies with TTE primary endpoints using Weibull distribution. First, we

presented a parametric Wald’s test statistic for designing fixed-sample single-arm studies which

can incorporate various flexible options including accrual patterns and expected loss to follow-

up rate. Our proposed method is able to maintain the desired Type-I error and power in most

cases, and it was demonstrated through extensive simulations that the proposed asymptotic method

performs the best when we are interested in designing single-arm phase II studies with moderate

to large sample sizes. The methods proposed by Phadnis [6] and Wu [10] appear to be reasonable

alternatives when the affordable sample sizes are small, or exact calculations are desired.

Second, we discussed the application of three SC methods (conditional power, predictive

power, Bayesian predictive probability) for futility monitoring. To our knowledge, these methods

have not been studied previously in the context of single-arm studies with TTE primary endpoints,

and therefore our work on these methods offers additional tools to aid decision making during

interim analyses in such studies with TTE outcomes.

Third, we discussed the construction of GSD plans using the RST approach for evaluating

efficacy and futility for single-arm phase II studies in the TTE framework. We also outlined a

simulation-based approach which follows a similar algorithm as the one presented by Phadnis and

Mayo [29], and seems reasonable to implement especially when designing single-arm studies with
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moderate to large sample sizes. While the stopping boundaries can be constructed in terms of the

test statistic in Section 2.3.2, this algorithm also permits us to obtain results in terms of median

survival time which may be more relevant to clinical researchers. In addition, it allows us to

incorporate flexible options such as futility skips, number of looks, and error spending function,

among others.

In this manuscript, we restricted our attention towards the construction of GSD plans when the

parametric Weibul model is appropriate for modeling TTE data in an early phase study. If such

assumption does not hold true, non-parametric methods based on increments of the log-rank test

statistics can be alternatively utilized to construct such study designs. For instance, we can utilize

the adaptive one-sample log-rank test proposed by Schmidt et al. [44] to compare the survival curve

of the patients under treatment to some pre-specified reference survival curve. They demonstrated

that their proposed method protects the study power and reduces the average sample number under

the null hypothesis in comparison to a fixed sample design.

Sequential designs allow researchers to perform interim analyses to obtain overwhelming

evidence of efficacy or futility of an experimental treatment that warrants early termination

before the pre-planned end date without compromising its operating characteristics [17, 18, 28].

As emphasized by Dmitreinko et al. [18], there are two key distinctions between the SC and RST

methods: (1) the RST approach depends on the pre-specified error spending function dictating the

characteristic of sequential tests and the subsequent decision-making, whereas the SC methods are

tied to final outcome of the trial in the sense that the decision to ‘curtail’ sampling depends of

likelihood of positive or negative outcome if trial continues to the planned end date; and (2) the

SC methods are “aimed toward predictive inferences, whereas repeated significance tests focus

on currently available data.” Due to safety or ethical concerns, it is not uncommon to implement

the SC methods in fixed trial designs, upon the recommendation of DSMB, in a post-hoc manner

without explicitly adjusting for repeated testing [18].

Throughout this manuscript, it is assumed that a reasonable estimate of the shape parameter of

the Weibull distribution is known from historical studies. It is quite possible to encounter real-life
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situations where sufficient amount of historical data is unavailable (for instance, in studies involv-

ing rare diseases, or lack of standard treatments for treating certain conditions), and thus hindering

our ability to obtain a reliable estimate. Since the shape parameter of the Weibull model determines

the shape of the underlying hazard function, it is critical to incorporate the best available estimate

into our sample size calculations. If no reliable estimate of the shape parameter is available, we

suggest designing the study assuming exponential survival times (i.e. shape parameter κ = 1). At

the interim stage, we can obtain an estimate of the nuisance shape parameter based on the accu-

mulated data, and then recalibrate our study design accordingly. Further investigation is needed to

study necessary adjustments related to the methods discussed in this manuscript.

As we realize, knowledge regarding the posterior distribution of a parameter of interest is a

prerequisite to performing the predictive power or the Bayesian predictive probability calculations

for futility monitoring. To generate the posterior distribution, however, we also need to elicit appro-

priate prior information in the context of a given problem. In the literature, there does not appear

a wider consensus on the appropriate choices of prior distributions [18, 25, 45]. Ideally, clinicians

and statisticians should work together to identify appropriate priors for the relevant parameters

in the model. In situations where it is not possible, statisticians may consider doing a sensitivity

analysis by calculating the predictive power and the Bayesian predicted probability under different

choices of the prior distribution.

In this manuscript, simulation-based approaches have been proposed to construct GSD plans,

and to perform calculations related to predictive power/probability for futility monitoring. It is

recommended to perform a sufficiently large number of simulations to minimize random noise

in the reported results. Although we have presented our results up to four significant digits, a

more formal investigation shall be conducted in the future to determine the number of simulations

needed to report results with such a degree of precision.

46



Chapter 3

Bayesian Predictive Probability for Single-Arm Clinical Trials with a

Time-to-Event Endpoint using Weibull Distribution with Unknown Shape

Parameter

Abstract

Bayesian predictive probability is an important method for conducting interim analyses to

obtain preliminary evidence of efficacy or futility of an experimental treatment warranting

early termination of a clinical trial. In the context of single-arm clinical trials with time-to-

event endpoints following Weibull distribution, we discuss the calculation of the Bayesian

predictive probability when the shape parameter of the Weibull distribution is unknown.

Based on the data accumulated at an interim stage, we propose two approaches which rely

on the posterior mode or the entire posterior distribution of the shape parameter. To account

for uncertainty in the shape parameter, it is recommended to incorporate its entire posterior

distribution in our calculations. In this manuscript, we also explore the utility of internal pilot

study (IPS) approach for reestimating sample size at the interim. Although IPS approach can

help rescue the study power, it is noted that the adjusted sample size can be as much as twice

the initially planned sample size, which may put substantial practical constraints to continue

the study.

3.1 Introduction

Single-arm clinical trails are often carried out in the early phases of oncology drug development to

evaluate safety and to obtain preliminary evidence of therapeutic effect of new cancer treatments [3,
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5]. In such trials, tumor response rate (TRR) or objective response rate (ORR) has popularly been

used as the primary endpoint to identify any potential of biological drug activity that is assessed in

terms of tumor shrinkage [5, 46]. As noted by Rubinstein [5], many phase II clinical trials are now

being designed to assess the promise of molecularly targeted agents which may not necessarily

improve TRR or ORR, but instead yield an improvement in other time-to-event (TTE) endpoints

such as progression-free survival (PFS) or overall survival (OS). This manuscript deals with some

unaddressed planning aspects concerning single-arm phase II clinical trials with TTE endpoints.

A limited number of options based on the log-rank test and its weighted versions are available

in the literature for designing single-arm clinical trials with TTE endpoints. Some of the existing

approaches include the ones proposed by Finkelstein et al. [7], Kwak and Jung [8], Sun et al. [9],

Wu [10], and Phadnis [6]. Among these approaches, the method proposed by Phadnis [6] is appro-

priate when the subject survival times are assumed to follow the Weibull distribution, and it can

be used for calculating the required sample size while adjusting for administrative censoring along

with an ad-hoc inflation for random loss to follow-up. Most recently, Waleed et al. [47] proposed

a parametric maximum likelihood estimate (MLE) test, based on the asymptotic approximation

of the scale parameter of the Weibull distribution, whose variance component can account for the

expected loss to follow-up rate and different accrual patterns (early, late, or uniform accrual). It

is worth mentioning that both methods (Phadnis [6], Waleed et al. [47]) assume that a reliable

estimate of the shape parameter of the Weibull distribution is known from historical studies.

Due to ethical and practical considerations, single-arm oncology trials are often conducted via

Simon’s two-stage approach which allows researchers to obtain early evidence of futility of an

experimental treatment, and consequently terminating the study in consultation with the Data

Safety Monitoring Board (DSMB) overseeing the clinical trial [15, 17, 16]. Alternatively,

stochastic curtailment (SC) methods can be employed to decide whether to continue or ‘curtail’

sampling beyond an interim analysis based on the likelihood of a positive or negative outcome

if the trial were to continue to its pre-planned end [17, 16, 18]. Conditional power (Lan, Simon

and Halprin [19], Andersen [20]), predictive power (Spiegelhalter et al. [21]), and Bayesian pre-
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dictive probability (Herson [22], Geisser [24], Dmitrienko and Wang [25]) are the most popularly

used SC methods. These methods have been well-studied for normal and binary endpoints, and

implemented in various statistical software including R [26] and SAS [27]. Very recently, Waleed

et al. [47] studied these SC methods in the context of single-arm oncology trials with TTE primary

endpoints. More specifically, they presented mathematical development of these methods when

the parametric Weibull model is appropriate for modeling survival data derived from such studies,

and different censoring mechanisms and accrual patterns are under consideration. A limitation of

the work by Waleed et al. [47] is that a reliable estimate of the shape parameter of the Weibull

distribution is assumed to be known, which may not hold true such as in the case of studies related

to rare diseases.

When reliable estimates of any nuisance parameters, such as the shape parameter of the Weibull

distribution for modeling survival data, are unavailable during the planning phase of a study,

adaptations to the sample size can be incorporated using the estimates of nuisance parameters

obtained using the data accumulated at an interim stage [48, 49, 50]. Besides other advantages,

such adaptive features in the study design enhance statistical efficiency of a clinical trial [48].

In this manuscript, we aim to build upon the framework developed by Waleed et al. [47] by

considering the scenario when adequate historical data is not available to obtain a reasonably

accurate estimate of the shape parameter. More specifically, the objective of this manuscript is

two-fold: first, we discuss adaptation to the sample size for single-arm phase II trials with TTE

endpoints via implementation of the internal pilot study (IPS) approach proposed by Wittes and

Brittain [49] and, secondly, we present calculation of the Bayesian predictive probability (BPP) for

efficacy or futility testing based on the data accumulated at the interim.

This manuscript is organized in the following order. After presenting a brief review of the

fixed sample design of Waleed et al. [47] in Section 3.2, we discuss sample size reestimation

at a prospectively planned interim stage, and calculation of the Bayesian predictive probability

in single-arm phase II clinical trials with TTE endpoints following the Weibull distribution with

unknown shape parameter. We present some simulation studies and examples to demonstrate the
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proposed approaches in Section 3.3. Finally, in Section 3.4, we present a discussion on the contents

presented in this manuscript.

3.2 Methods

3.2.1 Notation and Preliminaries

Suppose that a total of n subjects are accrued during the enrollment period of a single-arm phase II

clinical trial with a TTE endpoint. Due to practical constraints, administrative censoring is incor-

porated at a pre-specified calendar time τ , when all active subjects in the study are censored and

the resulting data are analyzed. For the ith subject, suppose Ei denotes its calendar time of accrual

into the study; Yi denotes the amount of time from Ei to the calendar time of event; Ci denotes

the amount of time from Ei to the time of loss to follow-up, and Zi := min(max(0,τ−Ei),Ci)

denotes the amount of time to being lost to follow-up or administrative censoring. We assume that

the loss to follow-up is unrelated to the event of interest, that is, non-informative of the survival

process, and {Yi,Zi, i = 1, . . . ,n} are independent and identically distributed. In summary, we have

n pairs of data {(Xi,δi) , i = 1, . . . ,n}, where Xi := min(Yi,Zi) is the subject’s survival time, and

δi := 1(Yi<Zi) is the corresponding survival status which equals 1 if Yi < Zi and 0 otherwise.

The event time Yi is assumed to follow the Weibull distribution having shape parameter κ and

scale parameter θ with the probability density function (pdf) expressed as below:

fYi(y) =
κ

θ κ
yκ−1 exp

{
−
( y

θ

)κ}
, where: y > 0,κ > 0,θ > 0. (3.1)

The Weibull distribution is flexible in the sense that it allows us to handle different shapes of

the underlying hazard function. More specifically, the hazard function is constant, increasing or

decreasing when the shape parameter κ is equal to, greater, or less than 1, respectively [36]. In

their proposed method, Waleed et al. [47] assume that a reasonably accurate estimate of the shape

parameter κ of the Weibull(κ,θ) distribution is known from historical studies. The random loss

to follow-up time Ci also follows the Weibull distribution having the same shape parameter κ and

50



scale parameter η . To accommodate anticipated loss to follow-up rate υ , it can be conveniently

verified, following Wan [38], that η = θ

(
1−υ

υ

)1/κ

ensures the loss to follow-up rate υ .

Suppose that ω represents the maximum calendar time of accrual into the study. The accrual

time Ei is assumed to follow a rather general form of uniform distribution, with an additional power

parameter ϕ , having the following pdf (at a realized value e of the random variable Ei):

fEi(e) =
ϕeϕ−1

ωϕ
, where: e ∈ [0,ω] , ϕ > 0. (3.2)

In addition to incorporating uniform accrual pattern with ϕ = 1, the above choice of accrual distri-

bution is flexible in the sense that it enables us to incorporate very early (late) accrual patterns by

choosing ϕ that is very small (large) in magnitude.

Under the aforementioned assumptions, it can be conveniently verified that the pdf of Zi =

min(max(0,τ−Ei),Ci) having four parameters κ > 0,η > 0,ω > 0, and ϕ > 0 is given as:

fZi(z) =



κ

ηκ
zκ−1 exp

{
−
(

z
η

)κ}
if z ∈ [0,τ−ω)(

ϕ

τ− z
+

κ

ηκ
zκ−1

)(
τ− z

ω

)ϕ

exp
{
−
(

z
η

)κ}
if z ∈ [τ−ω,τ]

0 otherwise

(3.3)

3.2.2 Fixed Sample Design

Before discussing sample size reestimation using the IPS approach, we present a brief overview of

the fixed sample design, proposed by Waleed et al. [47], for designing single-arm phase-II clini-

cal trials with TTE endpoints. Since covariates are commonly introduced [36] into the parametric

survival models through the scale parameter as θ = exp
{

γγγT xxx
}

, where: xxx = (1,x1, . . . ,xk)
T and

γγγT = (γ0,γ1, . . . ,γk) are the vectors of k+ 1 covariates and the corresponding parameters, respec-

tively, we can define the two alternatives as: H0 : θ ≤ θ0 versus H1 : θ > θ0. When no covariates

other than the experimental treatment administered to the subjects are introduced into the model,

the scale parameter can be expressed as θ = exp{γ}. Thus, our hypotheses can be equivalently
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expressed as:

H0 : γ ≤ γ0

H1 : γ > γ0

(3.4)

It is straightforward to verify that the MLE of γ , denoted by γ̂ , is given as:

γ̂ =
1
κ

log
(

Xκ

δ

)
, where: Xκ =

1
n

n

∑
i=1

Xκ
i and δ =

1
n

n

∑
i=1

δi. (3.5)

Since it appears analytically intractable to obtain the exact distribution of γ̂ due to the underlying

correlation between a subject’s survival time and the corresponding survival status, Waleed et al.

[47] relied on asymptotic calculations to construct a parametric MLE-based statistic for testing the

hypotheses in Eq. (3.4). Without loss of generality, they showed that

lim
n→∞

√
n(γ̂− γ)

d−→ Normal
(

0,σ2 =
1

κ2µ
δ̄

)
, (3.6)

where µ
δ̄
= 1−EZ1

(
exp
{
−
(

Z1

θ

)κ})
, θ = exp{γ}, and Z1 = min(τ−E1,C1).

Let σ̂2 denote the MLE plugged-in estimate of σ2. Under H0, the Wald’s test statistic is

Zstat =
γ̂− γ0

σ̂/
√

n
···∼ Normal(0,1). (3.7)

For a given Type-I error rate α , we reject the null hypothesis when the observed test statistic

Ẑstat > Z1−α , where Z1−α = Φ−1(1−α) represents the upper α-quantile of the standard normal

distribution.

For sample size calculations, researchers specify a clinically meaningful difference ε > 0 that

they are interested in detecting under the alternative hypothesis γ1 = γ0 + ε . The required sample

size to detect the difference ε using the Wald’s test statistic in Eq. (3.7) with Type-I error α and

power 1−β satisfies: n = σ2
1 ···
(

Z1−β+Z1−α

ε

)2
, where σ2

1 ≡ σ2(γ1) is the plug-in estimator of σ2
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under H1, Z1−β = Φ−1(1−β ), Z1−α = Φ−1(1−α), and Φ−1(···) denotes the inverse cumulative

distribution function (cdf) of the standard normal distribution. To compute the required sample

size, numerical integration can be used to calculate σ2
1 .

3.2.3 Sample Size Reestimation

A limitation of the fixed sample design, proposed by Waleed et al. [47], is that a reliable estimate

of the shape parameter of the Weibull distribution is assumed to be known from historical studies.

Sometimes due to the unavailability of adequate historical data, this assumption may not hold

true for designing studies related to small populations, such as in the case of rare diseases. It has

been demonstrated that gross misspecification of the shape parameter can have an adverse effect

on the study power [47]. To tackle this limitation, it is worthwhile to consider adaptation to the

study sample size. Since the variance of γ̂ provided in Eq. (3.6) depends on the shape parameter,

we discuss the implementation of the internal pilot study (IPS) approach, proposed by Wittes and

Brittain [49], to readjust the sample size at a prospectively planned time point [17, 49, 50]. The IPS

approach is carried out by adjusting the desired sample size based on an estimate of the nuisance

shape parameter obtained using the data available at the pre-specified interim stage [49]. More

specifically, it requires the following steps in our context:

1. Based on the best available estimate of the shape parameter κ during the planning phase,

obtain an initial estimate of the required sample size n.

2. Let p denote the proportion of events, or complete observations (which includes events as

well as censored observations) at which we intend to adjust the study sample size. At that

time point, we obtain an estimate κ̂new of the shape parameter from the accumulated data, and

subsequently obtain a new estimate of the desired sample size, say nnew, using the variance

σ2
1,int ≡ σ2(γ1|κ = κ̂new) as an estimate of σ2 under H1. The number of additional subjects

to be enrolled, say nadd, is: nadd = max(n,nnew)− n. Therefore, the updated sample size is:

N = n+nadd.

3. The final analysis is conducted using the data for all N subjects.
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It must be noted that the above IPS approach is restricted in the sense that it only permits upward

adjustment to the sample size [49, 50]. In our context, this restriction seems reasonable because

the TTE data for all subjects, regardless of their survival status, contributes to the estimation of the

shape parameter during an interim analysis [18].

3.2.4 Bayesian Predictive Probability

Bayesian predictive probability is a fully Bayesian SC method which can be utilized to calculate

the predictive probability of obtaining a positive trial outcome if the clinical trial were to continue

to its pre-planned end, conditional on the data accumulated at the interim stage [18, 25]. In our

context, suppose that n subjects are enrolled in a single-arm phase II clinical trial designed to

test the hypotheses H0 : γ ≤ γ0 vs. H1 : γ > γ1 (= γ0 + ε), where: ε > 0 is a clinical meaningful

effect to be detected under H1. At the interim stage k, suppose that the survival data corresponding

to n−m subjects is fully observed, that is, n−m subjects had already experienced an event or

were lost to follow-up, and the remaining m subjects were still active participants in the study. Let

XXXk = (X1, . . . ,Xn−m) and DDDk = (δ1, . . . ,δn−m), respectively, denote the vectors of survival times and

the corresponding survival status’ for the n−m subjects fully observed at the stage k. Similarly,

XXXK−k = (Xn−m+1, . . . ,Xn) and DDDK−k = (δn−m+1, . . . ,δn) denote the vectors of survival times and

status for the active subjects that are to be observed between the stage k and trial end stage K,

respectively. Since XXXK−k and DDDK−k are not observable at the interim stage k, suppose that X̃XXK−k

and D̃DDK−k denote the corresponding predicted vectors. When the shape parameter of the Weibull

distribution is known, the Bayesian predictive probability of a successful trial outcome is expressed

as follows:

Pk =

ˆ
1(Q>η∗) π(γ|κ, γ̂k)dγ (3.8)

where: Q= Prob
(
γ > γ1|XXXk, X̃XXK−k,DDDk, D̃DDK−k,κ

)
, η∗ is some pre-specified threshold level of prob-

ability of a successful trial outcome, and π(γ|κ, γ̂k) is the posterior distribution of γ based on the
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data accumulated at the interim stage k. Also, 1(Q>η∗) is an indicator variable equal to 1 if Q >η∗,

and 0 otherwise.

When the shape parameter κ is assumed to be known, a fully simulation-based algorithm,

outlined by Waleed et al. [47], can be easily implemented to calculate the Bayesian predictive

probability. In practice, Dmitreinko and Wang [25] recommended setting the threshold level η∗

between 0.90 and 0.975, and after consultation with DSMB, trial can be terminated to conclude

efficacy if Pk ≥ ζ for some pre-specified ζ ∈ [0.8,1], or to conclude futility if Pk ≤ ζ ′ for some

ζ ′ ∈ [0,0.2].

3.2.4.1 Calculating Bayesian Predictive Probability when κ is Unknown

When a reliable estimate of κ is not available from historical studies, an independent joint prior

specification of γ and κ is typically considered [51]. For this purpose, we assume that the prior

distributions γ ∼Normal
(
µ0,σ

2
0
)

and κ ∼Gamma(α0,β0). Suppose that d denotes the total num-

ber of observed events, that is, d = ∑
n
i=1 δi, then the joint posterior distribution of (γ,κ) can be

expressed as below:

π(γ,κ|Data) ∝ L(γ,κ|Data) π
(
γ|µ0,σ

2
0
)

π(κ|α0,β0)

=

[
n

∏
i=1

fYi(xi|γ,κ)δiSYi(xi|γ,κ)1−δi

]
π
(
γ|µ0,σ

2
0
)
π(κ|α0,β0)

∝ κ
α0+d−1 exp

{
(κ−1)

n

∑
i=1

δi log(xi)− e−γκ
n

∑
i=1

xκ
i −

1
2

(
γ−µ0

σ0

)2

− γκd−κβ0

}
(3.9)

Although it is analytically intractable to obtain a closed form for the joint posterior distribution of

(γ,κ), it can be conveniently verified that the conditional posterior distributions π(γ|κ,Data) and

π(κ|γ,Data) are log-concave, and Gibbs sampling can be implemented using statistical software,

such as R2OpenBUGS package available in R [26, 51, 52].

When a reliable estimate of the shape parameter is not available, we may consider two
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approaches to calculate Bayesian predictive probability of a successful trial outcome, in Eq. (3.8),

using the simulation-based approach in Waleed et al [47]. The first approach is to update the shape

parameter κ used at the design stage with the mode, say κmode, of the posterior distribution of κ

generated at the interim. This updated value of κ is subsequently used to generate a large number

of predicted data sets for the active subjects remaining in the study, and then the fully observed

and predicted data are used to calculate our desired quantity as defined below:

Pk,κmode =

ˆ
1(Qmode>η∗) π(γ|κ, γ̂k)dγ (3.10)

where Qmode = Prob
(
γ > γ1|XXXk, X̃XXK−k,DDDk, D̃DDK−k,κmode

)
.

The second approach to obtain predictive probability of successful trial outcome is to calculate

it as a weighted average over the entire posterior distribution π(κ|κ̂k) as below:

Pk,κfull =

ˆ
Pk ···π(κ|κ̂k) dκ (3.11)

where Pk is defined in Eq. (3.8).

3.2.4.2 Prior Elicitation for the Shape Parameter

We briefly discuss elicitation of appropriate Gamma(shape = α0, rate = β0) priors for the shape

parameter κ . For this purpose, we consider two approaches similar to the ones proposed by Mayo

and Gajewski [53] for eliciting appropriate beta priors in the context of the beta-binomial model.

Let F(κ|α0,β0) denote the cumulative distribution function of the Gamma prior, and therefore

F−1(q|α0,β0) is the corresponding q ··· 100th percentile. Suppose that W100(1−x) represents the

required width of the 100(1− x)th percent probability interval for the gamma prior. We may choose

x = 5% or 10% as available from the historical data. Using the best available knowledge about κ ,

statisticians may consider the following approaches to elicit prior parameters:

1. Mode method: Suppose that the best available estimate of the shape parameter, say κprior,

is considered to be the mode of the prior distribution. For a specified width W100(1−x), the
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unknown parameter α0 and β0 can be obtained by simultaneously solving the following system

of equations:

Median(π (κ|α0,β0)) =
α0−1

β0
= κprior

F−1
(

1− x
2
|α0,β0

)
−F−1

(x
2
|α0,β0

)
= W100(1−x)

2. Mean method: This approach differs from the first approach in the sense that it assumes κprior

to be the mean of the prior distribution. Therefore, the unknown parameter α0 and β0 can be

obtained by solving the two simultaneous equations:

E(π (κ|α0,β0)) =
α0

β0
= κprior

F−1
(

1− x
2
|α0,β0

)
−F−1

(x
2
|α0,β0

)
= W100(1−x)

It must be noted that small values of the specified width W100(1−x) yield a more informative prior

for the shape parameter. Since closed form solutions are not possible using either approaches, we

need to implement numerical methods to obtain the values of α0 and β0.

3.3 Simulations and Examples

We present some simulations studies and examples to demonstrate the methods discussed in this

manuscript. Statistical software R (Version 3.6.3) was used to perform all computations and

simulations. Due to their computationally intensive nature, Bayesian predictive probability

calculations were done using the high-performance computing (HPC) facilities operated by the

Center for Research Computing at the University of Kansas.
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Table 3.1: Effect of misspecification of the shape parameter κ on the empirical Type-I error and
power for the MLE-based test, for testing H0 : M ≤ 1 month vs. H1 : M > 1.5 months, for a study
designed assuming exponential survival times (κ = 1) when the true κ = 0.75 or 1.25

ϕ υ κ
τ = 7 τ = 9

n α 1−β n α 1−β

0.1

0%
0.75 – 0.0459 0.6813 – 0.0454 0.6888
1.00 55 0.0486 0.8892 54 0.0486 0.8859
1.25 – 0.0484 0.9690 – 0.0508 0.9689

10%
0.75 – 0.0456 0.6887 – 0.0471 0.6900
1.00 60 0.0440 0.8954 59 0.0464 0.8891
1.25 – 0.0447 0.9731 – 0.0421 0.9727

20%
0.75 – 0.0465 0.6906 – 0.0484 0.6953
1.00 67 0.0492 0.8962 66 0.0446 0.8910
1.25 – 0.0451 0.9761 – 0.0436 0.9739

30%
0.75 – 0.0465 0.7090 – 0.0482 0.7031
1.00 76 0.0446 0.8988 75 0.0504 0.8967
1.25 – 0.0478 0.9793 – 0.0472 0.9780

1.0

0%
0.75 – 0.0425 0.6768 – 0.0469 0.6876
1.00 57 0.0463 0.8914 54 0.0473 0.8855
1.25 – 0.0479 0.9732 – 0.0498 0.9672

10%
0.75 – 0.0440 0.6906 – 0.0469 0.6957
1.00 62 0.0462 0.8980 60 0.0404 0.8945
1.25 – 0.0448 0.9773 – 0.0442 0.9741

20%
0.75 – 0.0440 0.6915 – 0.0489 0.6980
1.00 69 0.0432 0.9020 67 0.0470 0.8984
1.25 – 0.0441 0.9760 – 0.0448 0.9748

30%
0.75 – 0.0469 0.6851 – 0.0468 0.6954
1.00 77 0.0465 0.9008 76 0.0481 0.9000
1.25 – 0.0491 0.9790 – 0.0485 0.9767

5.0

0%
0.75 – 0.0422 0.6808 – 0.0445 0.6806
1.00 60 0.0456 0.9033 55 0.0469 0.8894
1.25 – 0.0514 0.9793 – 0.0491 0.9733

10%
0.75 – 0.0431 0.6859 – 0.0431 0.6814
1.00 65 0.0447 0.9116 61 0.0474 0.8966
1.25 – 0.0487 0.9789 – 0.0454 0.9742

20%
0.75 – 0.0471 0.6847 – 0.0494 0.6862
1.00 71 0.0445 0.9017 67 0.0467 0.8933
1.25 – 0.0484 0.9800 – 0.0473 0.9733

30%
0.75 – 0.0466 0.6882 – 0.0455 0.6963
1.00 79 0.0489 0.9003 76 0.0440 0.8987
1.25 – 0.0459 0.9789 – 0.0446 0.9757

Note: In this simulation study, we used nominal Type-I error = 5%, nominal power = 90%, maximum accrual
time ω = 3 months, and varying values of the administrative censoring time τ (in months), power parameter of
the accrual distribution ϕ , and loss to follow-up rate υ . Results are based on a total of 10,000 simulations.
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3.3.1 Sample Size Reestimation using the IPS Approach

Suppose that a fixed sample study is being designed, using the method in Section 3.2.2, to test the

following alternatives about the median survival time H0 : M ≤ 1 month vs. H1 : M > 1.5 months

with the nominal Type-I error rate and power set to be 5% and 90%, respectively. Suppose that

the enrollment period will span a total of 3 months, that is, ω = 3 months. For this hypothetical

example, varying values of the administrative censoring time (τ = 7,9 months), loss to follow-up

rate (υ = 0%,10%,20%,30%), and power parameter of the accrual distribution (ϕ = 0.1 – early;

1.0 – uniform; 5.0 – late) were considered. In the absence of a reliably accurate estimate of the

shape parameter, suppose that the fixed sample study was originally designed assuming exponential

survival times, that is, κ = 1, and the corresponding sample sizes for all scenarios are reported in

Table 3.1.

To examine the performance of the asymptotic test statistic by Waleed et al. [47] in terms of

empirical Type-I error and power, a total of 10,000 simulations were performed after computing

the required sample sizes under the assumption of exponential survival times. We note that the

empirical Type-I error rate remains preserved within our desired nominal levels even when the

shape parameter was misspecified at the design stage. On the other hand, the empirical power

is significantly affected by misspecification of the shape parameter. More specifically, the fixed

sample study tends to be under-powered (over-powered) if the true shape parameter κ was in fact

smaller (larger) than 1.

To address this issue, suppose that the researchers plan to adjust the sample size using the

IPS approach of Wittes and Brittain, outlined in Section 3.2.3, after a proportion of the n enrolled

subjects, say pE , have experienced an event. For the sake of demonstration, we assume pE = 30%

and 50%, and study the properties of our design in terms of the expected sample size, empirical

Type-I error rate, and power. The corresponding results based on a total of 10,000 simulations are

reported in Table 3.2. We summarize our findings as below:

1. If the true shape parameter was equal to 0.75 (decreasing hazard), the expected sample size

obtained using the IPS approach is almost twice the sample size needed for a fixed study
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design. Such a significant increase in the expected sample size is likely to put substantial

practical constraints to carryout remainder of the study. We note that the expected sample

size is also greater than the original fixed sample size n even if the assumption of exponential

survival times (κ = 1) holds true. This increase in the expected sample size, however, is much

more achievable from a practical perspective. Finally, we observe a minimal increase in the

expected sample size when the true shape parameter was 1.25. As one might anticipate, the

expected sample size with pE = 50% is slightly smaller than that for pE = 30%.

2. As expected for the IPS approach [49, 50], the empirical Type-I error rate tends to be slightly

inflated in almost all of the scenarios. In our context, this inflation in the Type-I error rate

is more pronounced when subjects are accrued very late in the enrollment period (that is,

ϕ = 5.0) where it can be as much as twice the desired level in some cases.

3. The desired threshold for the empirical power is achieved with the adjustment of the study

sample size using the IPS approach. When the true shape parameter was 0.75, the study tends

to be over-powered due to very large expected sample sizes.

4. For a majority of scenarios, the empirical Type-I error rate and power corresponding to pE =

50% is slightly larger than that for pE = 30%. This is possibly explained due to the fact that,

as we implement the IPS approach after observing more events, we get a smaller but more

accurate estimate of the variance which results in slightly greater number of rejections under

the null and alternative hypotheses.

We also investigated our design properties when the IPS approach is implemented after a

proportion of the n enrolled subjects, say pO, is fully observed. That is, pO includes all those

subjects who have either experienced an event or were lost to follow-up. The corresponding

results are presented in Table 3.3. We note that the expected sample sizes are slightly larger in

this case, but the overall trends in the empirical Type-I error rate and power are virtually similar to

those observed using pE .
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Table 3.2: Properties of a study designed to test H0 : M ≤ 1 month vs. H1 : M > 1.5 months,
when sample size reestimation is done using the IPS approach after pE% of the n enrolled subjects
experienced the event of interest

ϕ υ
True

τ = 7 τ = 9

κ
pE = 30% pE = 50% pE = 30% pE = 50%

E(N) α 1−β E(N) α 1−β E(N) α 1−β E(N) α 1−β

0.1

0%
0.75 109 0.0585 0.9705 108 0.0627 0.9824 103 0.0613 0.9693 102 0.0598 0.9807
1.00 66 0.0654 0.9105 63 0.0622 0.9113 64 0.0630 0.9041 61 0.0637 0.9082
1.25 57 0.0639 0.8887 56 0.0643 0.8806 56 0.0633 0.8748 55 0.0636 0.8748

10%
0.75 117 0.0509 0.9737 116 0.0511 0.9843 111 0.0570 0.9709 111 0.0591 0.9829
1.00 71 0.0533 0.9125 68 0.0555 0.9114 69 0.0586 0.9119 67 0.0583 0.9119
1.25 62 0.0599 0.8876 61 0.0623 0.8885 61 0.0632 0.8817 60 0.0649 0.8828

20%
0.75 127 0.0517 0.9745 127 0.0520 0.9857 123 0.0436 0.9749 122 0.0495 0.9828
1.00 78 0.0505 0.9135 75 0.0536 0.9193 77 0.0566 0.9178 74 0.0511 0.9153
1.25 69 0.0534 0.8946 68 0.0552 0.8949 68 0.0526 0.8834 67 0.0545 0.8868

30%
0.75 141 0.0412 0.9798 140 0.0472 0.9893 136 0.0482 0.9789 137 0.0503 0.9877
1.00 87 0.0527 0.9191 85 0.0505 0.9156 86 0.0525 0.9217 83 0.0495 0.9174
1.25 77 0.0524 0.8992 77 0.0498 0.8933 77 0.0526 0.8892 76 0.0494 0.8891

1.0

0%
0.75 120 0.0657 0.9804 116 0.0773 0.9876 111 0.0605 0.9757 107 0.0659 0.9864
1.00 69 0.0574 0.9164 66 0.0624 0.9155 65 0.0606 0.9120 63 0.0634 0.9129
1.25 59 0.0601 0.8952 58 0.0642 0.8882 56 0.0613 0.8856 55 0.0641 0.8797

10%
0.75 127 0.0549 0.9818 123 0.0762 0.9884 120 0.0571 0.9795 115 0.0573 0.9874
1.00 74 0.0535 0.9221 71 0.0586 0.9226 71 0.0556 0.9174 68 0.0622 0.9145
1.25 63 0.0618 0.8914 63 0.0570 0.8915 62 0.0543 0.8883 61 0.0614 0.8857

20%
0.75 137 0.0539 0.9825 134 0.0795 0.9898 129 0.0453 0.9838 125 0.0547 0.9883
1.00 80 0.0517 0.9211 77 0.0595 0.9252 78 0.0513 0.9176 75 0.0562 0.9188
1.25 70 0.0525 0.8958 70 0.0574 0.8965 68 0.0543 0.8924 68 0.0574 0.8913

30%
0.75 150 0.0582 0.9857 144 0.0816 0.9902 143 0.0444 0.9826 139 0.0560 0.9881
1.00 89 0.0496 0.9283 86 0.0539 0.9237 88 0.0521 0.9195 85 0.0487 0.9207
1.25 78 0.0547 0.8988 78 0.0476 0.8955 77 0.0507 0.8986 77 0.0525 0.9027

5.0

0%
0.75 123 0.1119 0.9789 121 0.1613 0.9826 111 0.0671 0.9761 108 0.0766 0.9844
1.00 72 0.0587 0.9222 69 0.0638 0.9234 66 0.0628 0.9128 63 0.0604 0.9120
1.25 62 0.0632 0.8999 61 0.0632 0.8989 57 0.0641 0.8838 56 0.0624 0.8873

10%
0.75 130 0.1127 0.9826 129 0.1672 0.9835 120 0.0606 0.9778 117 0.0748 0.9845
1.00 77 0.0597 0.9245 74 0.0573 0.9203 71 0.0545 0.9153 69 0.0561 0.9159
1.25 67 0.0577 0.9014 66 0.0568 0.9017 63 0.0588 0.8887 62 0.0598 0.8873

20%
0.75 140 0.1102 0.9836 138 0.1637 0.9845 129 0.0545 0.9814 127 0.0718 0.9891
1.00 83 0.0539 0.9287 80 0.0558 0.9170 78 0.0557 0.9219 76 0.0515 0.9178
1.25 72 0.0516 0.9078 72 0.0500 0.9088 69 0.0545 0.8921 68 0.0512 0.8928

30%
0.75 152 0.0988 0.9811 149 0.1598 0.9792 141 0.0554 0.9814 140 0.0744 0.9883
1.00 91 0.0565 0.9220 88 0.0531 0.9173 88 0.0500 0.9216 84 0.0524 0.9146
1.25 80 0.0500 0.9035 80 0.0499 0.9058 77 0.0477 0.8959 77 0.0531 0.8955

Note: The fixed sample study was initially designed assuming exponential survival times (κ = 1). In this simula-
tion study, we used nominal Type-I error = 5%, nominal power = 90%, maximum accrual time ω = 3 months, and
varying values of the administrative censoring time τ (in months), power parameter of the accrual distribution ϕ

and loss to follow-up rate υ . Results are based on a total of 10,000 simulations.

3.3.2 Bayesian Predictive Probability for Hypothetical Single-Arm Trials

Suppose that a fixed sample study is designed to evaluate whether an experimental treatment yields

an improvement in the median PFS time (in months). More specifically, suppose that researchers
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Table 3.3: Properties of a study designed to test H0 : M ≤ 1 month vs. H1 : M > 1.5 months, when
sample size reestimation is done using the IPS approach after pO% of the n enrolled subjects have
been observed

ϕ υ
True

τ = 7 τ = 9

κ
pO = 30% pO = 50% pO = 30% pO = 50%

E(N) α 1−β E(N) α 1−β E(N) α 1−β E(N) α 1−β

0.1

0%
0.75 109 0.0585 0.9705 108 0.0627 0.9824 103 0.0613 0.9693 102 0.0598 0.9807
1.00 66 0.0654 0.9105 63 0.0622 0.9113 64 0.0630 0.9041 61 0.0637 0.9082
1.25 57 0.0639 0.8887 56 0.0643 0.8806 56 0.0633 0.8748 55 0.0636 0.8748

10%
0.75 119 0.0478 0.9719 117 0.0513 0.9844 113 0.0532 0.9710 112 0.0579 0.9806
1.00 72 0.0528 0.9118 69 0.0513 0.9137 70 0.0601 0.9131 68 0.0541 0.9160
1.25 62 0.0557 0.8918 61 0.0599 0.8888 61 0.0580 0.8842 60 0.0618 0.8818

20%
0.75 131 0.0458 0.9728 129 0.0472 0.9838 126 0.0477 0.9723 124 0.0467 0.9824
1.00 80 0.0531 0.9161 77 0.0535 0.9180 79 0.0542 0.9119 76 0.0544 0.9149
1.25 69 0.0554 0.8957 68 0.0549 0.8944 68 0.0522 0.8909 67 0.0546 0.8842

30%
0.75 147 0.0497 0.9726 144 0.0450 0.9836 141 0.0471 0.9723 139 0.0498 0.9834
1.00 91 0.0482 0.9237 87 0.0518 0.9196 89 0.0518 0.9178 86 0.0497 0.9219
1.25 79 0.0513 0.8999 77 0.0540 0.8932 78 0.0552 0.8996 76 0.0544 0.8899

1.0

0%
0.75 120 0.0617 0.9805 115 0.0814 0.9896 111 0.0643 0.9758 107 0.0605 0.9840
1.00 69 0.0616 0.9212 66 0.0548 0.9198 65 0.0609 0.9104 62 0.0591 0.9127
1.25 59 0.0636 0.8940 58 0.0614 0.8898 56 0.0690 0.8793 55 0.0603 0.8793

10%
0.75 129 0.0561 0.9796 125 0.0656 0.9872 120 0.0592 0.9773 116 0.0576 0.9854
1.00 75 0.0520 0.9200 72 0.0604 0.9167 72 0.0571 0.9137 69 0.0548 0.9120
1.25 64 0.0527 0.8947 63 0.0549 0.8952 62 0.0586 0.8876 61 0.0597 0.8817

20%
0.75 140 0.0503 0.9789 136 0.0606 0.9861 132 0.0476 0.9774 128 0.0480 0.9854
1.00 83 0.0542 0.9236 79 0.0555 0.9293 80 0.0534 0.9244 76 0.0559 0.9157
1.25 71 0.0533 0.9028 70 0.0551 0.9026 69 0.0545 0.8969 68 0.0568 0.8915

30%
0.75 155 0.0480 0.9789 151 0.0585 0.9872 147 0.0442 0.9803 144 0.0521 0.9869
1.00 92 0.0498 0.9256 89 0.0493 0.9257 91 0.0498 0.9260 87 0.0545 0.9239
1.25 79 0.0497 0.9048 78 0.0509 0.9015 78 0.0502 0.9021 77 0.0482 0.8953

5.0

0%
0.75 125 0.1168 0.9812 121 0.1618 0.9837 111 0.0673 0.9779 109 0.0742 0.9827
1.00 72 0.0624 0.9225 69 0.0555 0.9221 66 0.0593 0.9129 63 0.0608 0.9146
1.25 62 0.0630 0.9019 61 0.0589 0.9001 57 0.0638 0.8906 56 0.0646 0.8825

10%
0.75 133 0.1045 0.9800 129 0.1518 0.9869 122 0.0536 0.9799 117 0.0643 0.9832
1.00 78 0.0515 0.9249 75 0.0562 0.9237 72 0.0580 0.9206 70 0.0569 0.9161
1.25 67 0.0591 0.9082 66 0.0595 0.9062 63 0.0577 0.8959 62 0.0603 0.8904

20%
0.75 145 0.0962 0.9812 140 0.1370 0.9843 134 0.0508 0.9791 130 0.0600 0.9849
1.00 85 0.0557 0.9276 82 0.0558 0.9219 80 0.0551 0.9194 77 0.0525 0.9222
1.25 73 0.0512 0.9025 72 0.0553 0.9098 69 0.0513 0.8925 68 0.0520 0.8924

30%
0.75 160 0.0915 0.9799 154 0.1193 0.9844 150 0.0518 0.9794 144 0.0513 0.9838
1.00 95 0.0515 0.9300 91 0.0483 0.9210 91 0.0507 0.9220 88 0.0521 0.9197
1.25 81 0.0473 0.9074 80 0.0506 0.9070 78 0.0512 0.8998 77 0.0537 0.8973

Note: The fixed sample study was initially designed assuming exponential survival times (κ = 1). In this simula-
tion study, we used nominal Type-I error = 5%, nominal power = 90%, maximum accrual time ω = 3 months, and
varying values of the administrative censoring time τ (in months), power parameter of the accrual distribution ϕ

and loss to follow-up rate υ . Results are based on a total of 10,000 simulations. Observed subjects are defined as
those who have either experienced the event of interest or were censored by the interim look time.

are interested in testing the hypotheses H0 : M ≤ 1 month vs. H1 : M > 1.5 months with nomi-

nal Type-I error rate and power equal to 5% and 90%, respectively. For this hypothetical study,

investigators anticipate a uniform accrual pattern (ϕ = 1) with maximum enrollment time ω = 3

months, and administrative censoring time τ = 12 months. The expected loss to follow-up rate
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is υ = 15%. Assuming exponentially distributed survival times, n = 62 subjects are enrolled to

conduct this fixed sample study with the given characteristics.

On the recommendation of the DSMB, suppose that an interim analysis based on Bayesian

predictive probability is to be conducted one month after the conclusion of the accrual period

(that is, calendar time ` = 4 months). Suppose that we use threshold level η∗ = 95%, and the

following decision rules for the Bayesian predictive probability Pk: conclude efficacy (futility)

if Pk ≥ 0.80 (Pk ≤ 0.20), or decide to continue the trial if Pk ∈ (0.20,0.80). For the sake of

demonstration, we generated a sample of size n = 62 from each of the Weibull distributions with

different underlying median parameter (M = 0.75,1.00,1.25,1.50,2.00) and true shape parame-

ter (κ = 0.75,1.00,1.25). For this example, a non-informative normal prior was used for γ , and

κ ∼ Gamma(11,10) which has a unit mode. For calculating BPP using the simulation-based ap-

proach, a total of 1000 predicted data sets were generated for active subjects at the interim, and the

corresponding results are summarized in Table 3.4. We make the following observations:

1. As anticipated, the number of observed events at the interim analysis, denoted by ne;k, is

the largest for the data generated assuming the smallest median survival time (0.75 months),

and it decreases as the assumed median survival time increases. The converse holds true for

the number of active subjects na;k. The number of subjects lost to follow-up, nc;k, slightly

exceeded the expected loss to follow-up rate υ = 15%.

2. In all cases, the data dominates the assumed prior of κ in the sense that the mode of the poste-

rior distribution is pulled towards the true value of κ used for the underlying data distributions.

3. Irrespective of the true shape parameter κ , the predictive probability of a positive trial outcome

calculated using either approach is close to 1 for the data sets generated with underlying

median equal to 2.00 months, which suggests us to conclude efficacy of the experimental

treatment. We can draw appropriate conclusions for the rest of scenarios in accordance with

the decision rules specified above.

It is worth noting that there are some circumstances in which the two approaches lead us to

different conclusions at the interim stage. As an example, consider the data simulated assum-
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ing the underlying median survival time equal to 0.75 months and true shape parameter 1.25.

We note that the BPP calculated using the posterior mode and the entire posterior distribution

of κ is 0.0406 (conclude futility) and 0.3012 (continue trial), respectively. Since the posterior

mode of π(κ|γ, κ̂k) is 1.3268 suggesting increasing hazard (that is, shorter survival times),

it would be reasonable to take a rather conservative approach if ethically permissible, and

decide to continue the trial instead of terminating it at the interim. This example demonstrates

that it is of vital importance to take an informed decision by considering all the factors before

making a final conclusion.

4. In general, the predictive probability calculated by incorporating the entire conditional poste-

rior distribution π(κ|γ, κ̂k) tends to be greater than the one computed using its mode. In our

reported results in Table 3.4, we observe some scenarios where the BPP calculated using the

latter approach is larger in magnitude. For instance, for the data generated assuming the true

κ to be 1.25 and the underlying median equal to 1.25 months, the BPP is 0.9243 and 0.8364

for the posterior mode based and the full distribution approach, respectively. This discrepancy

can be explained by the fact that the BPP corresponding to some κ greater than the mode

(1.3282) of π(κ|γ, κ̂k) was smaller than 0.9243 (BPP corresponding to the posterior mode).

As a consequence, a smaller value of the BPP was obtained when a weighted average of the

predictive probabilities was computed over the entire posterior distribution of κ . Since these

calculations were conducted by simulating only 1000 predicted data sets for the active sub-

jects at the interim, it is recommended to generate a larger number of predicted data sets to

minimize the effect of such randomness in our results. Even though the BPP values under the

two approaches are quantitatively different, it must be noted that they qualitatively suggest the

same decision of stopping the trial due to a high predictive probability of a successful trial

outcome.
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Table 3.4: Bayesian predictive probability calculated at the interim look time `= 4 months for data
sets generated using varying values of the median survival time and true shape parameter κ for a
study designed to test the hypotheses H0 : M ≤ 1.00 month vs. H1 : M > 1.50 months

True Underlying Dist. Observed Status Mode of Bayesian Predictive Probability
κ Median ne;k nc;k na;k π(κ|γ, κ̂k) Using the mode of π(κ|γ, κ̂k) Using entire π(κ|γ, κ̂k)

0.75

0.75 38 13 11 0.9248 6.113×10−5 2.152×10−3

1.00 33 13 16 0.9212 0.0832 0.0612
1.25 30 12 20 0.8781 0.3429 0.4356
1.50 28 12 22 0.9509 0.7133 0.7546
2.00 21 12 29 0.8533 0.9988 0.9989

1.00

0.75 39 14 9 1.0695 4.012×10−4 6.057×10−2

1.00 37 13 12 1.1578 0.0204 0.1503
1.25 33 13 16 1.1592 0.4823 0.5329
1.50 29 13 20 1.0905 0.6589 0.9160
2.00 22 12 28 1.0459 0.9999 0.9993

1.25

0.75 43 14 5 1.3268 0.0406 0.3012
1.00 39 14 9 1.3382 0.1431 0.5015
1.25 34 13 15 1.3282 0.9243 0.8364
1.50 32 13 17 1.3979 0.9999 0.9733
2.00 21 12 29 1.2392 1.0000 0.9999

Note: For this study, we assume uniform accrual pattern (ϕ = 1.00), maximum accrual time ω = 3 months,
administrative censoring time τ = 12 months, and loss to follow-up rate υ = 15%. The fixed sample study was
designed assuming exponential survival times, and n = 62 subjects were enrolled during the accrual phase.

We consider another hypothetical study in which investigators are interested in testing the

alternatives H0 : M≤ 2.50 months vs. H1 : M > 3.75 months at a 5% level of significance with 80%

power. For this example, we assume a non-uniform accrual pattern (ϕ = 1.25) during the accrual

phase spanning ω = 3 months, and a follow-up period of 9 months (i.e., τ = 12 months). Assuming

exponential survival times (κ = 1), the sample size needed for the fixed sample design is n = 50

subjects when the expected loss to follow-up rate υ = 15%. Suppose that an interim analysis using

the BPP approach is requested at the calendar time ` = 6 months. We generated a sample of size

n = 50 subjects from each of the Weibull distributions with different values of the underlying me-

dian parameter (M = 2.00,2.50,3.25,3.75,4.50) and true shape parameter (κ = 0.50,1.00,1.50).

We consider the same threshold η∗ and decision rules as used in the previous example, and the cor-

responding results are presented in Table 3.5. Comparing these results to our previous example, we

can make similar observations regarding the subject survival status, posterior mode of π(κ|γ, κ̂k),

and BPP. When the true shape parameter is 0.50 (decreasing hazard), our results suggest that the

trial can be stopped for futility for each of the five data sets. On the other hand, when the true
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shape parameter is 1.00 (constant hazard) or 1.50 (increasing), the trial can be: (i) terminated to

conclude futility (efficacy) for the data generated from distributions with the underlying median

M ≤ 2.50 (M = 4.50), and (ii) continued to its pre-planned end in the remaining scenarios.

Table 3.5: Bayesian predictive probability calculated at the interim look time `= 6 months for data
sets generated using varying values of the median survival time and true shape parameter κ for a
study designed to test the hypotheses H0 : M ≤ 2.50 months vs. H1 : M > 3.75 months

True Underlying Dist. Observed Status Mode of Bayesian Predictive Probability
κ Median ne;k nc;k na;k π(κ|γ, κ̂k) Using the mode of π(κ|γ, κ̂k) Using entire π(κ|γ, κ̂k)

0.50

2.00 27 6 17 0.5575 0 4.127×10−5

2.50 27 6 17 0.5911 0 1.240×10−4

3.25 23 6 21 0.5628 5.267×10−3 0.0618
3.75 23 6 21 0.6144 0.0432 0.0692
4.50 23 6 21 0.6441 0.1409 0.1028

1.00

2.00 35 6 9 1.0778 0 4.933×10−4

2.50 32 6 12 1.0875 1.916×10−4 2.299×10−3

3.25 27 6 17 1.0353 0.0774 0.1628
3.75 24 6 20 1.0263 0.4222 0.5539
4.50 22 6 22 1.0568 0.8332 0.8509

1.50

2.00 39 7 4 1.5251 2.880×10−4 0.1049
2.50 36 6 8 1.5062 5.140×10−4 0.1514
3.25 30 6 14 1.4927 0.2911 0.3945
3.75 26 6 18 1.4147 0.7214 0.7356
4.50 20 6 24 1.3170 0.9941 0.9864

Note: For this study, we assume non-uniform accrual pattern (ϕ = 1.25), maximum accrual time ω = 3 months,
administrative censoring time τ = 12 months, and loss to follow-up rate υ = 15%. The fixed sample study was
designed assuming exponential survival times, and n = 50 subjects were enrolled during the accrual phase.

In both examples discussed above, we assumed κ ∼ Gamma(11,10) which has a unit mode,

and an equal-tailed 95% probability interval of width 1.2899. We also studied the impact of differ-

ent priors for κ on our calculations. For this purpose, we consider five different gamma priors with

a unit mode, and width of equal-tailed 95% probability interval to be 0.1, 0.5, 1.0, 2.0, and 5.0.

These priors are denoted by Pi (i = 1, . . . ,5), where P1 is the most informative gamma prior hav-

ing the smallest width (= 0.1) and P5 is the most non-informative gamma prior having the largest

width (= 5.0). The parameters for the appropriate gamma priors were computed by numerically

solving the two simultaneous equations in Section 3.2.4.2, and these priors are given as below:

P1 : Gamma(α0 = 1538.4076,β0 = 1537.4076)

P2 : Gamma(α0 = 63.2778,β0 = 62.2778)

P3 : Gamma(α0 = 17.1526,β0 = 16.1526)
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P4 : Gamma(α0 = 5.5452,β0 = 4.5452)

P5 : Gamma(α0 = 2.0917,β0 = 1.0917)

Table 3.6: Comparison of Bayesian predictive probability, calculated at the interim look time `= 4
months, for different priors for the shape parameter κ and data sets simulated using varying values
of the underlying median survival time in a study designed to test the hypotheses H0 : M ≤ 1.00
month vs. H1 : M > 1.50 months

Approach
True Prior Underlying Median of Simulated Data Distribution

κ for κ 0.75 1.00 1.25 1.50 2.00

Using the mode

0.75

P1 0 0.0157 0.3455 0.6670 0.9972

of π(κ|γ, κ̂k)

P2 3.384×10−6 0.0691 0.4726 0.7474 0.9954
P3 8.045×10−5 0.0833 0.3828 0.7524 0.9956
P4 4.057×10−6 0.0667 0.3965 0.7333 0.9989
P5 1.188×10−4 0.0887 0.4169 0.7250 0.9999
PU 1.314×10−4 0.0881 0.4466 0.7222 0.9998

1.00

P1 1.176×10−5 0.0068 0.4382 0.9858 1.0000
P2 3.287×10−4 0.0071 0.1952 0.9279 1.0000
P3 3.748×10−4 0.0222 0.4567 0.8191 1.0000
P4 3.662×10−4 0.0927 0.6336 0.6527 0.9988
P5 3.428×10−3 0.0937 0.4965 0.9747 0.9984
PU 1.099×10−3 0.0060 0.8380 0.8465 0.9968

1.25

P1 0 0.0030 0.5016 0.9428 1.0000
P2 1.753×10−3 0.1221 0.4235 0.9012 1.0000
P3 0.0272 0.7472 0.9260 0.9872 1.0000
P4 0.0295 0.4164 0.8905 0.9539 1.0000
P5 0.1727 0.4159 0.8523 1.0000 1.0000
PU 0.1728 0.7687 0.8777 1.0000 1.0000

Using the entire

0.75

P1 2.409×10−5 0.0371 0.3755 0.7254 0.9976

π(κ|γ, κ̂k)

P2 1.013×10−3 0.0509 0.4002 0.7416 0.9977
P3 1.638×10−3 0.0575 0.4527 0.7869 0.9982
P4 1.853×10−3 0.0606 0.3862 0.7714 0.9988
P5 2.393×10−3 0.0630 0.4070 0.7728 0.9986
PU 3.104×10−3 0.0737 0.4309 0.7376 0.9989

1.00

P1 1.726×10−4 0.0143 0.4553 0.9515 0.9999
P2 0.0176 0.0586 0.4266 0.9008 0.9998
P3 0.0537 0.1439 0.5281 0.9056 0.9997
P4 0.0667 0.1575 0.6203 0.9051 0.9990
P5 0.0849 0.2369 0.5955 0.9243 0.9989
PU 0.0756 0.2356 0.5983 0.9305 0.9969

1.25

P1 0 0.0094 0.5235 0.9093 1.0000
P2 0.0319 0.1391 0.5912 0.9130 1.0000
P3 0.0206 0.4452 0.7620 0.9616 1.0000
P4 0.3686 0.5846 0.8727 0.9869 1.0000
P5 0.4315 0.6309 0.8715 0.9844 1.0000
PU 0.4228 0.6315 0.8661 0.9838 1.0000

Note: For this study, we assume a uniform accrual pattern (ϕ = 1.00), maximum accrual time ω = 3 months,
administrative censoring time τ = 12 months, and loss to follow-up rate υ = 15%. The fixed sample study was
designed assuming exponential survival times, and n = 62 subjects were enrolled during the accrual phase.
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Table 3.7: Comparison of Bayesian predictive probability, calculated at the interim look time `= 6
months, for different priors for the shape parameter κ and data sets simulated using varying values
of the underlying median survival time in a study designed to test the hypotheses H0 : M ≤ 2.50
month vs. H1 : M > 3.75 months

Approach
True Prior Underlying Median of Simulated Data Distribution

κ for κ 2.00 2.50 3.25 3.75 4.50

Using the mode

0.50

P1 3.733×10−4 7.818×10−4 0.0811 0.1203 0.1424

of π(κ|γ, κ̂k)

P2 5.733×10−6 9.868×10−5 0.0614 0.0508 0.1504
P3 0 1.734×10−5 0.0094 0.0564 0.0094
P4 0 0 0.0247 0.0163 0.0802
P5 0 0 0.0135 0.0438 0.0321
PU 0 0 0.0021 0.0474 0.0948

1.00

P1 0 9.997×10−7 0.0458 0.3969 0.8238
P2 0 3.442×10−4 0.0509 0.4782 0.8650
P3 0 2.961×10−5 0.0547 0.4777 0.8173
P4 0 4.896×10−7 0.0705 0.3751 0.7449
P5 0 3.869×10−7 0.1464 0.5333 0.7483
PU 0 1.256×10−5 0.0668 0.4766 0.7169

1.50

P1 0 0 0.2513 0.8614 0.9975
P2 0 2.646×10−6 0.0645 0.7316 0.9982
P3 0 3.555×10−4 0.3139 0.7384 0.9951
P4 0.0107 0.0246 0.3323 0.7949 0.9741
P5 0.1102 0.1129 0.4515 0.8839 0.9673
PU 0.1089 0.3826 0.4539 0.8793 0.9789

Using the entire

0.50

P1 7.565×10−4 0.0017 0.0779 0.0919 0.1326

π(κ|γ, κ̂k)

P2 1.305×10−4 4.062×10−4 0.0521 0.0709 0.0971
P3 7.274×10−5 1.600×10−4 0.0502 0.0711 0.0941
P4 2.730×10−5 1.835×10−4 0.0519 0.0899 0.1267
P5 8.571×10−5 1.396×10−4 0.0989 0.0906 0.1403
PU 1.536×10−5 2.032×10−4 0.0988 0.1076 0.1405

1.00

P1 0 5.503×10−5 0.1038 0.4419 0.8377
P2 1.767×10−6 4.276×10−4 0.1535 0.5185 0.8408
P3 8.179×10−5 0.0016 0.1671 0.5357 0.8690
P4 2.973×10−4 0.0047 0.1801 0.5282 0.8451
P5 6.112×10−4 0.0052 0.1806 0.5641 0.8410
PU 0.0011 0.0051 0.2023 0.5551 0.8182

1.50

P1 0 0 0.2468 0.8007 0.9945
P2 3.224×10−4 6.007×10−4 0.1634 0.7088 0.9915
P3 0.0573 0.0753 0.2751 0.7098 0.9909
P4 0.2344 0.2921 0.5169 0.7649 0.9805
P5 0.3149 0.4088 0.5666 0.7891 0.9869
PU 0.3738 0.4239 0.6127 0.8277 0.9784

Note: For this study, we assume a non-uniform accrual pattern (ϕ = 1.25), maximum accrual time ω = 3 months,
administrative censoring time τ = 12 months, and loss to follow-up rate υ = 15%. The fixed sample study was
designed assuming exponential survival times, and n = 50 subjects were enrolled during the accrual phase.

We also considered a flat uniform prior, denoted by PU , for the shape parameter. Results for

both examples are presented in Tables 3.6 and 3.7. As discussed previously, calculations performed

by incorporating the entire posterior distribution of κ tends to yield larger BPP than the posterior
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mode based approach. Moreover, it is unsurprising to note that, for each of the 15 simulated data

sets, the Bayesian predictive probability tends to be the smallest when the most aggressive/infor-

mative gamma prior P1 is used, and it increases with the use of a more vague prior as it incorpo-

rates larger values of κ and therefore longer survival times. In addition, as one might expect, our

results corresponding to the vague (non-informative) gamma prior P5 are mostly similar to the

ones obtained using a flat uniform prior PU . We observe some discrepancies in BPP calculated by

using the posterior mode based approach. For instance, in Table 3.6, consider the scenario where

simulated data was generated assuming true κ = 0.75 and the underlying median survival time of

1.00 month, we note that the BPP calculated using the posterior mode based approach for a vague

prior turns out to be smaller the one computed using relatively aggressive priors. To avoid such

anomalies in our calculations, it is also recommended to use the entire posterior distribution of κ

for calculating the BPP.

3.4 Discussion

The fixed sample method, proposed by Waleed et al. [47], for designing single-arm phase II clinical

trials with TTE endpoints is appropriate under the assumption that a reliable estimate of the shape

parameter is known from some historical studies. Recently, Phadnis et al [37] demonstrated that a

reasonable estimate of the shape parameter can be obtained from historical studies with at least 50

subjects and censoring rate close to 20%. There are real life situations, such as studies involving

rare diseases, where adequate historical data may not be available for obtaining an estimate of

the shape parameter. When no prior information about the shape parameter is available, we could

design fixed sample studies assuming exponential survival times as done for the traditional methods

available in the literature, and subsequently consider an adjustment to the study sample size using

the data accumulated at some pre-specified stage. In this manuscript, we explored the utility of

the IPS approach, proposed by Wittes and Brittain [49], for sample size reestimation at an interim

stage. It was demonstrated that the power of the study is indeed rescued in our context. We noted

that the adjusted sample size using the IPS approach can be more than twice the initially planned
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sample size if the shape parameter is grossly misspecified at the design stage, and this may put

serious practical constraints to continue with the remaining study. In the future, it would be of

interest to compare different sample size reestimation procedures, such as based on the conditional

power or Bayesian predictive probability.

In this manuscript, we also discussed the calculation of the Bayesian predictive probability for

conducting interim analysis for single-arm phase II clinical trials with TTE endpoints following

Weibull distribution with unknown shape parameter. Based on the data accumulated at the interim

stage, we propose to generate posterior distributions for both shape as well as scale parameter of the

Weibull distribution. The predictive probability of a successful trial outcome can be calculated by

either using the posterior mode or the entire posterior distribution of the shape parameter. Although

we observed that the BPP calculated using the two approaches tends to differ quantitatively, they

yield same qualitative conclusion at the interim stage in most scenarios. It is worth pointing out

that the mode based approach may not be appropriate in some circumstances, for instance when

the posterior of the shape parameter is flatter or it has heavier tails. Therefore, to appropriately

account for uncertainty in the shape parameter, it is recommended to incorporate its entire posterior

distribution in our calculations.

Bayesian predictive probabilities are advantageous in the sense that they are easily interpretable,

and they can be incorporated in fixed sample designs in a post-hoc manner without an explicit

adjustment for repeated significance testing [18, 25, 45]. In this paper, we have used a gamma

prior for the shape parameter, as suggested by Ibrahim, Chen and Sinha [51] in the context of the

Weibull model. A statistician should utilize any available historical data, and work closely with

the clinicians to identify appropriate priors applicable in their area of research. Interested readers

can find a discussion on the choice of suitable priors in Dmitrienko and Wang [25].

In comparison to other SC methods such as conditional power and predictive power, a limitation

of the Bayesian predictive probabilities is that they require much more computationally intensive

calculations due to repeated sampling of the predicted survival data, for the active subjects at the

interim, from the posterior predictive distribution [45]. These calculations are becoming increas-
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ingly manageable with the advent of sophisticated high performance computing capabilities, and

therefore Bayesian predictive probabilities can be utilized to better inform decision making at an

interim stage.
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Chapter 4

SCM.SurvWeibull: An R Package for Stochastic Curtailment Methods in

Single-Arm Clinical Trials with a Survival Endpoint using Weibull

Distribution

Abstract

We introduce an R package, SCM.SurvWeibull, to design single-arm clinical trials with

a time-to-event endpoint following the Weibull distribution, and to implement stochastic

curtailment methods for efficacy or futility testing purposes. When the shape parameter of the

Weibull distribution is known from historical studies, the package implements

functions to calculate the required sample size of a trial, and executes simulations to evaluate

its operating characteristics in terms of the empirical Type-I error and power. In addition,

it implements three stochastic curtailment methods (conditional power, predictive power,

Bayesian predictive probability) to aid decision making based on data accumulated at an

interim stage. When the shape parameter is unknown, this package can also be employed

to compute Bayesian predictive probability by incorporating either the posterior mode or

the entire posterior distribution of the shape parameter generated at the interim stage. We

provide an overview of the methods implemented in the package. Some examples are also

presented to demonstrate its usage and functionalities. The package will be made available

to the scientific community on the Comprehensive R Archive Network (CRAN) in the near

future.
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4.1 Introduction

In the recent times, time-to-event (TTE) endpoints such as progression-free survival (PFS) or

overall survival (OS) are being considered in the early phase single-arm clinical trials to obtain

preliminary evidence of therapeutic effect of novel treatments [5]. To design such trials, a

limited number of options primarily based on the log-rank test and its weighted versions, such as

Finkelstein et al. [7], Kwak and Jung [8], Sun et al. [9], Wu [10], and Phadnis [6], are available.

The methods proposed by Phadnis [6] and Wu [10] have been implemented in the statistical

software PASS [11] and nQuery [12]. Among these, Phadnis’ method [6] is appropriate when

survival times are assumed to follow the Weibull distribution with known shape parameter (from

historical studies), and it can incorporate administrative censoring and an ad-hoc inflation for

random loss to follow-up. When the Weibull distribution is appropriate for modeling survival data,

Waleed et al. [47] recently proposed a parametric maximum likelihood estimate (MLE) based test

which can incorporate flexible design features such as administrative censoring, expected loss to

follow-up rate, and different accrual patterns (early, late, or uniform accrual). Thus far, the method

proposed by Waleed et al. [47] is not available in any widely used software.

Due to ethical, financial and administrative reasons, group sequential designs (GSD) or

stochastic curtailment (SC) methods are often incorporated in clinical trials at an interim stage

to obtain early evidence of efficacy or futility of an experimental treatment [17, 18]. In comparison

to GSD plans, SC methods are flexible in the sense that it is not uncommon to incorporate them in

a fixed sample design in a post-hoc manner without adjusting for repeated testing at the planning

phase [18]. Three most popular SC methods are: conditional power (Lan, Simon and Halprin [19],

Andersen [20]), predictive power (Spiegelhalter et al. [21]), and Bayesian predictive probability

(Herson [22], Geisser [24], Dmitrienko and Wang [25]). Different SC methods for normal and

binary endpoints have been studied previously, and implemented in various statistical software

such as PASS [11], R [26], and SAS [27]. Conditional power and predictive power calculations

based on the two-sample log-rank test are available in PASS [11]. For the two-sample scenario in

the TTE framework, conditional power can also be calculated using the CP package available in R
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[26, 54]. In the context of single-arm clinical trials with TTE endpoints, it appears that none of the

three SC methods have been implemented in any statistical software.

For the benefit of scientific community, we have develpoed an R package, SCM.SurvWeibull,

to design single-arm clinical trials with a TTE endpoint following a Weibull distribution, and to

implement the above-mentioned three SC methods in the same context. This package is based on

the work of Waleed et al. [47] when the Weibull distribution is appropriate for modeling survival

data derived from a single-arm clinical trial, and different design features (such as accrual patterns,

loss to follow-up rate, administrative censoring, etc.) are under consideration. It is worth pointing

out that the methods proposed by Waleed et al. [47] assume that a reasonably accurate estimate of

the shape parameter of the Weibull distribution is available from historical studies. When adequate

historical data is not available for estimating the shape parameter, Bayesian predictive probability

calculations based on the work of Waleed et al. [55] have also been implemented in the package.

The primary objective of this manuscript is to highlight the main functionalities and usage of

the package. For the sake of completeness, we provide a brief theoretical overview of the methods

proposed by Waleed et al. [47, 55] in Section 4.2 which have been implemented in this package.

We present various functions available in the package and demonstrate their usage with some

examples in Section 4.3. Some concluding remarks are presented in Section 4.4.

4.2 Methods

4.2.1 Notation and Mathematical Preliminaries

Suppose that n subjects are enrolled in a single-arm phase II clinical trial with a TTE primary

endpoint. We further suppose that the maximum accrual time and final study time on the calendar

time scale are denoted by ω and τ , respectively. For the ith subject:

• The time of enrollment into the clinical trial, Ei, is assumed to follow a general form of

uniform distribution with an additional power parameter ϕ with the following probability
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density function (pdf) :

fEi(a) =
ϕaϕ−1

ωϕ
, where: a ∈ [0,ω] , ϕ > 0. (4.1)

It is worth noting that a uniform accrual pattern can be incorporated by setting ϕ = 1, and very

early (late) accrual pattern can be incorporated by choosing ϕ → 0 (ϕ � 1).

In the package, users may also specify Ei to follow the truncated exponential distribution with

rate parameter λ having the pdf:

fE j(a) =
λe−λa

1− e−λω
, where: a ∈ [0,ω] ,λ > 0. (4.2)

• The amount of time to event, Yi, is assumed to follow the Weibull distribution having shape

parameter κ and scale parameter θ with its pdf expressed as below:

fYi(y) =
κ

θ κ
yκ−1 exp

{
−
( y

θ

)κ}
, where: y > 0,κ > 0,θ > 0. (4.3)

• The amount of time to random loss to follow-up, Ci, also follows the Weibull distribution with

the same shape parameter κ and scale parameter η = θ

(
1−υ

υ

)1/κ

that ensures the expected

loss to follow-up rate υ [38, 47].

• When Ei ∼Gen-Uniform(0,ω,ϕ), the amount of time from enrollment to being lost to follow-

up or administrative censoring, Zi := min(max(0,τ−Ei),Ci), has the pdf:

fZi(z) =



κ

ηκ
zκ−1 exp

{
−
(

z
η

)κ}
if z ∈ [0,τ−ω)(

ϕ

τ− z
+

κ

ηκ
zκ−1

)(
τ− z

ω

)ϕ

exp
{
−
(

z
η

)κ}
if z ∈ [τ−ω,τ]

0 otherwise

(4.4)
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On the other hand, when Ei ∼ Trunc-Exp(λ ,ω), the pdf of Zi can be expressed as:

fZi(z) =



κ

ηκ
zκ−1 exp

{
−
(

z
η

)κ}
if z ∈ [0,τ−ω)

exp
{
−
(

z
η

)κ}
1− e−λω


((

1− e−λ (τ−z)
)

κzκ−1

ηκ
+λe−λ (τ−z)

)
if z ∈ [τ−ω,τ]

0 otherwise

(4.5)

The random loss to follow-up is assumed to be non-informative of the survival process, and there-

fore {Yi,Zi, i = 1, . . . ,n} are independent and identically distributed random variables. Thus, we

have n pairs of data {(Xi,δi) , i = 1, . . . ,n}, where Xi := min(Yi,Zi) is the survival time for the ith

subject, and δi := 1(Yi<Zi) is its survival status which equals 1 if Yi < Zi, and 0 otherwise.

4.2.2 Fixed Sample Design

In their work, Waleed et al. [47] assume that adequate historical data is available to provide a

reasonably accurate estimate of the shape parameter of the Weibull distribution. Suppose that

M = θ (log(2))1/κ denotes the median of the Weibull(κ,θ) distribution. Then, our hypotheses can

be expressed as:

H0 : M ≤M0

H1 : M > M0

≡
H0 : θ ≤ θ0

H1 : θ > θ0

≡
H0 : γ ≤ γ0

H1 : γ > γ0

(4.6)

The above equivalence holds because covariates are usually introduced [36] into the parametric

survival models through the scale parameter as θ = exp
{

γγγT xxx
}

, where: xxx = (1,x1, . . . ,xk)
T and

γγγT = (γ0,γ1, . . . ,γk) respectively denote the vectors of k + 1 covariates and the corresponding

parameters. Further, in the context of a single-arm trial with a TTE endpoint, we assume that

the experimental treatment administered to the subjects is the only covariate introduced into the
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model so that θ = exp{γ}.

To test the hypotheses in Eq. (4.6), Waleed et al. [47] proposed a Wald’s test statistic based

on the asymptotic approximation of the MLE of the parameter γ . The sample size needed for a

single-arm clinical trial with a Weibull distributed TTE endpoint to detect a clinically meaningful

difference ε with Type-I error α and power 1−β satisfies:

n = σ
2
1 ···
(

Φ−1(1−β )+Φ−1(1−α)

ε

)2

, (4.7)

where σ2
1 =

[
κ2
(

1−EZ1

(
exp
{
−
(

Z1

exp{γ1}

)κ}))]−1

is the plug-in estimator of σ2 under

H1 : γ > γ1(= γ0 +ε), and Φ−1(···) denotes the inverse cumulative distribution function (cdf) of the

standard normal distribution.

Depending on the choice of the accrual distribution, the appropriate pdfs of Zi are provided in

Eqs. (4.4) and (4.5). Numerical methods can be implemented to calculate the value of σ2
1 .

4.2.3 Stochastic Curtailment Methods

In this section, we briefly touch upon three SC methods: conditional power, predictive power

(mixed Bayesian-frequentist approach), and Bayesian predictive probability (purely Bayesian

approach), which can be employed to determine if there is sufficient evidence in favor of the null

hypothesis to ‘curtail’ sampling beyond an interim analysis [17, 18].

4.2.3.1 Conditional Power

Conditional power is a purely frequentist SC approach which relies on “predicting the distribution

of the final outcome given the data already observed in the study [18].” For a single-arm clinical

trial designed to test the hypotheses in Eq. (4.6) with an α level of significance, the conditional

power [17, 18, 19, 47] at an interim stage k = 1, . . . ,K−1 is given as:

Pk(γ) = Φ

(
Zk
√

Ik +(γ− γ0)(IK−Ik)−Z1−α

√
IK√

IK−Ik

)
, (4.8)
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where Zk is the observed test statistic at the interim stage k, Z1−α = Φ−1(1−α) is the upper α-

quantile of the standard normal distribution, and Ik (IK) denote the information at the interim

stage k (trial end at stage K).

To compute the conditional power for a fixed sample design using Eq. (4.8), the final informa-

tion IK can be obtained using the variance formula in the asymptotic distribution of the parameter

γ in Waleed et al. [47], and Ik =Fk×IK where Fk is the proportion of the total information IK

available at the interim stage k.

Following decision rules have been recommended in the literature [17, 18, 19] for early termi-

nation of a clinical trial using the conditional power approach:

• Reject H0 in favor of H1 at the stage k if Pk(γ0)≥ ζ for some ζ ∈ [0.80,1] as it implies that the

test is unlikely to accept H0 given the accumulated data, even if H0 is assumed to be true.

• Fail to reject H0 at stage k if the futility index 1−Pk(γ1)≥ ζ ′, for some ζ ′ ∈ [0.80,1]. This is

because a large value of the futility index implies that the test is unlikely to reject H0 given the

current data at stage k, even if H1 is true.

4.2.3.2 Predictive Power

Predictive power is a mixed Bayesian-frequentist SC method in which the conditional power

(frequentist component) is averaged over the posterior distribution (Bayesian component) of the

parameter γ given its estimate γ̂k at stage k [21]. It is given as:

Pk =

ˆ
Pk(γ)π(γ|γ̂k,κ)dγ (4.9)

where Pk(γ) denotes the conditional power function in Eq. (4.8), and π(γ|γ̂k,κ) is the posterior

distribution of γ given its estimate γ̂k at stage k.

As suggested by Waleed et al. [47], posterior samples from π(γ|γ̂k,κ) can be generated by

either implementing the Metropolis-Hastings (MH) algorithm, or a purely simulation based via

R2OpenBUGS package available in R [26, 52]. Similar to the decision rules for conditional power,
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clinical trials can be terminated early to reject H0 (fail to reject H0) if the predictive power is greater

than 0.80 (less than 0.20) [17, 18].

4.2.3.3 Bayesian Predictive Probability

As the name suggests, Bayesian predictive probability is a fully Bayesian SC approach “which

relies on the idea of predictive probability of obtaining a positive trial outcome at the end of the

study, given the current estimates at an interim stage [18, 25, 47].” At an interim stage k of a study

designed to test the alternatives H0 : γ ≤ γ0 vs. H1 : γ > γ1(= γ0 + ε), where ε > 0 is a clinically

meaningful difference, suppose that n−m subjects had already experienced an event or were lost

to follow-up, and the remaining m subjects were still active in the study. The MLE of γ at the final

time τ can be expressed as:

γ̂K =
1
κ

log
(

Tk +TK−k

Dk +DK−k

)
=

1
κ

log
(

Tk +mT K−k

Dk +mDK−k

)
. (4.10)

where Tk = ∑
n−m
i=1 Xκ

i and Dk = ∑
n−m
i=1 δi are the quantities for subjects who had experienced an

event or were lost to follow-up; and T K−k = m−1
∑

m
j=1 Xκ

j and DK−k = m−1
∑

m
j=1 δ j correspond

to the active subjects observed between the interim stage k (at calendar time `k), and the final stage

K (at calendar time τ).

Since the random vector P=
(
T K−k,DK−k

)
is not observable at the interim stage k, we assume

that P̃ represents its predicted value. Then the predictive probability of a positive trial outcome at

the final study time τ is expressed as [18, 25, 47]:

Pk =

ˆ
1(Q>η∗) dP̃ (4.11)

where Q = Prob
(

γ > γ1|Tk,T̃ K−k,Dk,D̃K−k,κ
)

, η∗ is some pre-specified threshold probability

of a successful trial outcome, and P̃ is the posterior predictive distribution of T K−k and DK−k. A

detailed derivation of the asymptotic posterior predictive distribution of P̃ is provided in Waleed et

al [47].
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Let XXX (n−m);obs and δδδ (n−m);obs denote the vectors containing the survival times and the

corresponding survival status for the n−m subjects observed by the interim look time `k, respec-

tively. Similarly, XXXm;pred and δδδ m;pred denote the predicted survival times and survival status for the

m active subjects, respectively. The Bayesian predictive probability of a successful trial outcome

in Eq. (4.11) can be equivalently defined as follows:

Pk =

ˆ
1(Q∗>η∗) π(γ|γ̂k,κ)dγ (4.12)

where: Q∗ = Prob
(
γ > γ1|XXX (n−m);obs,XXXm;pred,δδδ (n−m);obs,δδδ m;pred,κ

)
, η∗ is some pre-specified

threshold probability of a successful trial outcome, and π(γ|κ, γ̂k) is the posterior distribution of γ

generated using the data accumulated at the interim stage k.

Algorithm 1 has been implemented in the package to calculate Bayesian predictive probability

defined in Eq. (4.11). Algorithm 2 has been implemented in the package to calculate Bayesian

predictive probability, defined in Eq. (4.12), using the purely simulation-based approach via

R2OPenBUGS package [52] in R [26].

Algorithm 1 Bayesian predictive probability using the asymptotic posterior predictive distribution
of P̃ (Waleed et al. [47])

1: Use the MH algorithm to generate the asymptotic posterior distribution of γ as:

π(γ|γ̂k,κ) ∝ π(γ̂k|γ,κ)π(γ).

2: Use numerical integration to obtain and normalize the asymptotic posterior predictive
distribution of P̃ given as:

π
(
P̃|γ̂k,κ

)
=

ˆ
π
(
P̃|γ,κ

)
π(γ|γ̂k,κ)dγ.

3: For each combination of D̃K−k and T̃ K−k in the support of π
(
P̃|γ̂k,κ

)
:

(i) Generate the posterior distribution of γ at final stage K.
(ii) Calculate the quantity Q = Prob

(
γ > γ1|Tk,T̃ K−k,Dk,D̃K−k,κ

)
.

4: Estimate the Bayesian predictive probability of a successful trial outcome as:

Pk =

ˆ
1(Q>η∗) dP̃≈∑

P̃

1(Q>η∗)π
(
P̃|γ̂k,κ

)
.
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Algorithm 2 Bayesian predictive probability using the purely simulation-based approach via
R2OPenBUGS package in R (Waleed et al. [47])

1: For the data accumulated by the kth interim stage (at look time `k):
(i) Use R2OpenBUGS to generate samples from π(γ|γ̂k,κ) via Gibbs sampling.

(ii) Normalize π(γ|γ̂k,κ).
(iii) For the support set X = (γmin,γmax) of π(γ|γ̂k,κ), create a sequence of γ of length H as:

γ1 = γmin < γ2 < · · ·< γmax = γH

2: for h = 1 to H do
3: for i = 1 to I do
4: for j = 1 to m do
5: Generate predicted survival time and survival status for the jth subject in the ith

predicted sample corresponding to the hth value of γ as:

Ỹh,i, j = Trunc-Weibull
(
shape = κ,scale = eγh ,min = `k−E j

)
C̃h,i, j = Trunc-Weibull

(
shape = κ,scale = eγh

(
1−υ

υ

)1/κ

,min = `k−E j

)
X̃h,i, j = min

(
max

(
0,τ−E j

)
,Ỹh,i, j,C̃h,i, j

)
δ̃h,i, j = 1(Ỹh,i, j<min(max(0,τ−E j),C̃h,i, j))

6: end for
7: Using the ith full data that comprises of the observed subjects and the ith predicted data

for the active subjects, generate the posterior distribution of γ and determine whether

Prob
(
γ > γ1|XXX (n−m);obs,XXXm;predi,δδδ (n−m);obs,δδδ m;predi

)
> η

∗.

8: end for
9: Estimate Prob(Successful Outcome|γh) as the proportion of I predicted samples which

satisfy the condition in Step 7.
10: end for
11: Estimate the Bayesian predictive probability of a successful trial outcome as:

Pk =

ˆ
1(Q∗>η∗) π(γ|γ̂k,κ)dγ ≈

H

∑
h=1

Prob(Successful Outcome|γh)π(γh|γ̂k,κ).
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In practice, the threshold level η∗ is usually set between 0.90 and 0.975. After consultation

with the Data Safety Monitoring Board (DSMB) overseeing the clinical trial, researchers may

terminate the trial at an interim stage k to reject H0 if Pk ≥ ζ for some ζ ∈ [0.8,1], and conclude

futility (i.e., fail to reject H0) if Pk ≤ ζ ′ for some ζ ′ ∈ [0,0.2]. See Dmitreinko and Wang for further

details [25].

Both Algorithms 1 and 2 assume that a reliable estimate of the shape parameter κ is avail-

able from some historical studies. Very recently, Phadnis et al. [37] demonstrated that the shape

parameter of the Weibull distribution is reasonably accurate when it is estimated from a historical

data comprising of at least 50 subjects and censoring rate close to 20%. When a sufficiently large

historical dataset is not available as prescribed by Phadnis et al. [37], such as in the case of clinical

trials concerning small population sizes, an independent joint prior specification of γ and κ can be

considered [51]. Assuming the prior distributions γ ∼ Normal
(
µ0,σ

2
0
)

and κ ∼ Gamma(α0,β0),

Waleed et al. proposed two approaches for calculating the Bayesian predicted probability [55].

In the first approach, the predicted data for active subjects is generated using the posterior

mode, κmode, of π(κ|γ,Data) generated at the interim stage. Thus, the Bayesian predictive

probability is defined as below:

Pk,κmode =

ˆ
1(Qmode>η∗) π(γ|κ, γ̂k)dγ (4.13)

where Qmode =Prob
(
γ > γ1|XXX (n−m);obs,XXXm;pred,δδδ (n−m);obs,δδδ m;pred,κmode

)
. Implementation of this

approach is essentially the same as the one presented in Algorithm 2 with κ replaced with the

posterior mode κmode in Step 5.

In the second approach, the Bayesian predictive probability is calculated as a weighted average

over the entire posterior distribution π(κ|κ̂k) as expressed below:

Pk,κfull =

ˆ
Pk ···π(κ|κ̂k) dκ (4.14)

where Pk is defined in Eq. (4.12). Implementation of this approach requires the execution of Steps
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2 – 11 in Algorithm 2 for all κ in the support of π(κ|κ̂k), and taking weighted average of the

results.

4.3 Description of the Package and Examples

The devtools package in R was used to build the SCM.SurvWeibull package that will be made

available on the Comprehensive R Archive Network (CRAN) in the future [56, 57]. By default,

the SCM.SurvWeibull package imports the following R packages for its successful execution:

R2OpenBUGS [52], survival [58], stats [59], RGeode [60], mvtnorm [61], truncdist [62].

In the current version, it contains seven core functions to implement the methods proposed by

Waleed et al. [47, 55]: n_calc, designProps, stats_calc, CP_calc, PP_calc, BPP_calc,

BPP_shape_calc. In this section, we demonstrate the usage of these functions with some hypo-

thetical examples.

n_calc

This function is used to calculate the sample size needed for a single-arm clinical trial with

various design features to detect some clinically meaningful difference with a desired Type-I error

rate α and power 1−β . The three parameters of interest in Eq. (4.6) are available as the input:

type = “median”, “scale”, or “gamma”. Since the shape parameter of the Weibull distribution

is assumed to be known, the user can input the values under the null and alternative hypotheses

for any parameter of interest, and they are automatically converted to the parameter γ for

internal calculations to be consistent with Waleed et al [47]. The user can input the desired

distribution for the accrual pattern as: dist.accrual = “GenUnif” for the generalized-uniform

distribution, or “TExp” for the truncated-exponential distribution. The input param.accrual

represents the power (rate) parameter of the accrual pattern following the generalized-uniform

(truncated-exponential) distribution.

Example 1: Suppose that we are interested in testing the alternatives H0 : M < 1 month vs.
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H1 : M ≥ 1.50 months at 5% level of significance and 90% power. Further suppose that the fixed

sample study is envisioned with a maximum accrual period of 3 months and study end time at 12

months. Also suppose that a uniform accrual pattern is anticipated, the expected loss to follow-

up rate is 15%, and the known shape parameter of the Weibull distribution is 1.25. The required

sample size can be computed as below:

> # Load the package into R environment

> library("SCM.SurvWeibull")

>

> # Define all relevant inputs for our design

> param <- "median" # Parameter to be tested

> H0_val <- 1.00 # Value of parameter under H0

> H1_val <- 1.50 # Value of parameter under H1

> kappa <- 1.25 # Shape parameter of the Weibull dist.

> alpha <- 0.05 # Desired Type-I error

> pow <- 0.90 # Desired power

> accType <- "GenUnif" # Type of accrual distribution

> omega <- 3.00 # Maximum accrual time

> phi <- 1.00 # Additional parameter of accrual dist.

> tau <- 12.00 # Final study time

> nu <- 0.15 # Expected loss to follow-up rate

>

> # Compute the desired sample size and print result

> n <- SCM.SurvWeibull::n_calc(type = param, H0 = H0_val, H1 = H1_val,

+ shape = kappa, sig.level = alpha, power = pow, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, study.end = tau, nu = nu)

>

84



> print(n)

[1] 40

designProps

This function executes simulations to evaluate the operating characteristics of the proposed method

(Waleed et al. [47]) in terms of the empirical Type-I error rate and power. In comparison to the

function n_calc, this function requires two additional inputs: the number of simulations to be

executed, n.sim, and the study sample size, n.size. If n.size is not provided as an input, this

function automatically computes the desired sample size and executes the simulation study. The

function outputs a data frame with the sample size (n), empirical Type-I error rate (T1.error), and

power (power).

Example 2: Suppose that we want to compute the sample size, and execute 10,000 simulations to

evaluate the empirical Type-I error rate and power for the same study described in Example 1. This

can be achieved as follows:

> set.seed(413412)

> MyProps <- SCM.SurvWeibull::designProps(n.sim = 10000, n.size = NA,

+ type = param, H0 = H0_val, H1 = H1_val, shape = kappa,

+ sig.level = alpha, power = pow, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, study.end = tau, nu = nu)

>

> print(MyProps)

n T1.error power

[1] 40 0.0427 0.8834

For the above example, suppose that we now want to evaluate the operating characteristics
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when the study sample size n.size = 25. From the results below, we note that the empirical

Type-I error rate is controlled with the desired level, but the study is grossly under-powered for

this sample size.

> set.seed(413412)

> MyProps_25 <- SCM.SurvWeibull::designProps(n.sim = 10000, n.size = 25,

+ type = param, H0 = H0_val, H1 = H1_val, shape = kappa,

+ sig.level = alpha, power = pow, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, study.end = tau, nu = nu)

>

> print(MyProps_25)

n T1.error power

[1] 25 0.0415 0.7306

stats_calc

This function fits the parametric Weibull model on an input dataset, and outputs a data frame with

the fitted values of all three parameters (M as median, θ as scale, γ as gamma) in Eq. (4.6),

shape of the fitted Weibull distribution (shape), estimated variance of γ (var.est), and the Wald’s

test statistic (z.stat) in Waleed et al [47]. It is important to note that the names of the columns

containing the subject survival times and the corresponding survival status in the input data frames

should be SurvTime and SurvStatus, respectively, for all functions requiring an input dataset in

the package.

Example 3: For the fixed sample study in Example 1, we simulate a hypothetical survival data

corresponding to the interim look time equal to 4 months with the assumption that the true value of

the median survival time is 2 months. For simulating hypothetical survival datasets in our context,
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we have also created a function example_data in the package. We can implement the function

stats_calc as below:

> set.seed(413412)

>

> # Simulate data at time = 4 months assuming the median time = 2 months

> MyData <- SCM.SurvWeibull::example_data(n.size = 40, type = param,

+ value = 2, shape = kappa, dist.accrual = accType, max.accrual = omega,

+ param.accrual = phi, nu = nu, study.end = tau, look.time = 4)

>

> # Obtain fitted values of the parameters and Wald’s test statistic

> MyStats <- SCM.SurvWeibull::stats_calc(interim.data = MyData,

+ type = param, H0 = H0_val, shape = kappa, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, nu = nu, look.time = 4)

>

> print(MyStats)

gamma scale median shape var.est z.stat

[1] 0.9633494 2.620459 1.954509 1.257842 0.02942184 3.90688

The large value of the test statistic in the above output suggests that the study might be

terminated early to reject the null hypothesis.

CP_calc

As the name suggests, this function can be used to calculate and output the conditional power

under three scenarios (H0,H1,MLE of γ) for an input dataset.

Example 4: For the study design and hypothetical data generated at the look time 4 months, we
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compute and output results of the CP_calc function as below:

> # Calculate conditional power for the data generated in Example 3

> MyCP <- SCM.SurvWeibull::CP_calc(interim.data = MyData, type = param,

+ H0 = H0_val, H1 = H1_val, shape = kappa, sig.level = alpha, power = pow,

+ dist.accrual = accType, max.accrual = omega, param.accrual = phi,

+ nu = nu, study.end = tau, look.time = 4)

>

> print(MyCP)

Scenario CP

[1] H0 0.7728

[2] H1 0.9992

[3] MLE 1.0000

Large values of the conditional power under all three scenarios suggests early termination of

the clinical trial to reject the null hypothesis.

PP_calc

This function can be used to calculate the predictive power for an input dataset. The posterior

distribution of γ can be generated using the input sim.method = "bugs" (Gibbs sampling using

R2OpenBUGS package) or sim.method = "mh" (implementation of the MH algorithm). The user

must also specify the number of equally-spaced γ , n.gamma, to be considered in the support of its

posterior distribution. The output of this function consists of a list object with three components:

1. a numeric variable PP containing the value of the predictive power

2. a data frame having the following five columns:

(i) gamma: the sequence of γ in π(γ|γ̂k,κ)
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(ii) post.pdf: the value of posterior density π(γ|γ̂k,κ) for each γ

(iii) std.post.pdf: the normalized posterior density for each γ

(iv) delta: the corresponding values ∆ = γ− γ0

(v) cp: the corresponding value of conditional power

3. a list object Post_Data containing the output of Gibbs sampling using R2OpenBUGS package,

or the posterior samples generated using the MH-algorithm.

Example 5: We continue working with the hypothetical survival data generated in Example 3 at

look time 4 months, and calculate the predictive power using the bugs approach:

>

> sim.method <- "bugs" # Method for generating the posterior samples

> n.iter <- 110000 # Number of posterior samples to be generated

> n.burn <- 10000 # Number of burn-in samples

> n.thin <- 10 # Thinning parameter

> n.gamma <- 100 # Number of gamma to be considered

> MyModel <- "C:/Mdl.txt" # Path of the Weibull model in bugs format

>

> # Calculate predictive power for the data generated in Example 3

> MyPP <- SCM.SurvWeibull::PP_calc(interim.data = MyData, type = param,

+ H0 = H0_val, H1 = H1_val, shape = kappa, sig.level = alpha, power = pow,

+ dist.accrual = accType, max.accrual = omega, param.accrual = phi,

+ nu = nu, study.end = tau, look.time = 4, sim.method, n.iter, n.burn,

+ n.thin, n.gamma, model.path = MyModel)

>
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> print(MyPP$PP) # Print value of the predictive power

[1] 0.9998

The large value of the predictive power also suggests an early termination of the trial to

conclude efficacy of the experimental treatment.

BPP_calc

This function is used to calculate the Bayesian predictive probability of a successful trial outcome

based on the data accumulated at an interim stage. In addition to the same inputs as the PP_calc

function, users must also specify the number of predicted datasets, n.pred.data, to be generated

when computing the Bayesian predictive probability using the bugs approach. In this case, the

output of this function consists of a list object with five components:

1. a numeric variable BPP containing the value of the Bayesian predictive probability

2. seq.gamma: a numeric vector containing the sequence of γ in π(γ|γ̂k,κ)

3. std.pdf.gamma: a numeric vector containing the normalized posterior density for each γ in

the vector seq.gamma

4. reject.prob: an n.pred.data× n.gamma matrix containing the posterior probability of

rejecting H0 for each of the predicted sample for each γ in the vector seq.gamma

5. BPP.gamma: a numeric vector containing the probability of successful trial outcome for each

γ in the vector seq.gamma

Example 6: We continue with the inputs defined in Example 5, and compute the Bayesian predic-

tive probability using the bugs approach for the data generated in Example 3.

> eta <- 0.95 # Threshold probability of a successful outcome
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> n.pred.data <- 250 # Number of predicted data sets to be generated

> MyProgress <- "Yes" # Whether or not print progress of the algorithm

>

> # Calculate the Bayesian predictive probability using R2OpenBUGS

> MyBPP <- SCM.SurvWeibull::BPP_calc(interim.data = MyData, type = param,

+ H0 = H0_val, H1 = H1_val, shape = kappa, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, nu = nu, study.end = tau,

+ look.time = 4, sim.method, n.iter, n.burn, n.thin, n.gamma,

+ model.path = MyModel, eta, n.pred.data, print.progress = MyProgress)

>

> print(MyBPP$BPP) # Print value of the Bayesian predictive probability

[1] 0.7526

In consultation with the DSMB overseeing the clinical trial, the study investigators may decide

to terminate the trial at the interim look time to reject the null hypothesis.

BPP_shape_calc

This function is appropriate for computing the Bayesian predictive probability when no

reasonably accurate estimate of the shape parameter is available from historical data. In this

case, we also generate the posterior distribution of the shape parameter at the interim stage, and

subsequently compute the predictive probability using either of the two approaches proposed

by Waleed et al [55]. A user can implement the posterior mode based and weighted average

approach by inputting shape.method ="mode" and "dist", respectively. The output of this

function consists of a list object with six components:

1. a numeric variable BPP containing the value of the Bayesian predictive probability

2. seq.gamma: a numeric vector containing the sequence of γ in π(γ|κ,Data)
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3. std.pdf.gamma: a numeric vector containing the normalized posterior density for each γ in

the vector seq.gamma

4. seq.shape: a numeric vector containing the sequence of κ in π(κ|γ,Data)

5. std.pdf.shape: a numeric vector containing the normalized posterior density for each κ in

the vector seq.shape

6. BPP.shape: a numeric vector (with same length as seq.shape) containing the Bayesian

predictive probability of a successful trial outcome corresponding to each κ in the vector

seq.shape

We feel important to point out that when no reasonable estimate of the shape parameter is

available, researchers can calculate the study sample size at the design stage under the assumption

of exponential survival times (κ = 1), and then reestimate it at the interim stage, if necessary.

Example 7: Suppose that the shape parameter was unknown while designing the study in

Example 1, and investigators calculated the required sample size assuming exponential survival

times (κ = 1). We compute the Bayesian predictive probability using the weighted average

approach for a hypothetical dataset at look time 4 months generated under the assumption that

the true median survival time and shape parameter of the Weibull distribution were 2.00 months

and 1.25, respectively.

> # Compute the initial sample size of the study in Example 1 assuming

> # exponential survival time, and printing the result

> n.new <- SCM.SurvWeibull::n_calc(type = param, H0 = H0_val, H1 = H1_val,

+ shape = 1.00, sig.level = alpha, power = pow, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, study.end = tau, nu = nu)

>
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> print(n.new)

[1] 62

>

> set.seed(413412)

>

> # Simulate data at time = 4 months with M = 2 months and κ = 1.25

> NewData <- SCM.SurvWeibull::example_data(n.size = 62, type = param,

+ value = 2, shape = 1.25, dist.accrual = accType, max.accrual = omega,

+ param.accrual = phi, nu = nu, study.end = tau, look.time = 4)

>

> # Path of the bugs Weibull model for generating samples for γ and κ

> mod_int <- "C:/model_interim.txt"

>

> # Compute Bayesian predictive prob. using the full dist. approach

>

> MyBPP_full <- SCM.SurvWeibull::BPP_shape_calc(interim.data = NewData,

+ type = param, H1 = H1_val, shape = 1.00, dist.accrual = accType,

+ max.accrual = omega, param.accrual = phi, nu = nu, study.end = tau,

+ look.time = 4, sim.method, n.iter = 11000, n.burn = 1000, n.thin = 1,

+ n.gamma = 30, gamma.init = 0, n.shape = 30, shape.init = 1.00,

+ shape.method = "dist", model.interim = mod_int , model.final = MyModel,

+ eta, n.pred.data, print.progress = MyProgress)

>

> # Print value of the Bayesian predictive probability

> print(MyBPP_full$BPP)

[1] 0.9999
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For the posterior mode based approach (shape.method = "mode"), the Bayesian predictive

probability turned out to be 1.0000. Since the Bayesian predictive probability is almost 1 in both

cases, the trial can be terminated at the interim look time to reject the null hypothesis.

4.4 Conclusions

The SCM.SurvWeibull package offers a free and accessible implementation of the methods

proposed by Waleed et al. [47, 55]. Based on the MLE based test by Waleed et al. [47], the

package can be used to design single-arm clinical trials with a TTE endpoint following a Weibull

distribution with a variety of design features, such as expected loss to follow-up, administrative

censoring, accrual patterns, etc. When the shape parameter of the Weibull distribution is known,

the package enables users to implement three SC methods (conditional power, predictive power,

Bayesian predictive probability) to aid decision making based on the data collected at an interim

stage. In addition, when the shape parameter is unknown, the two approaches proposed by Waleed

et al. [55] are also implemented to calculate the Bayesian predictive probability of a successful

trial outcome. In the current version, only numerical results are output by the package. In future

upgraded versions, we plan to build upon some of the functions by adding graphical features, such

as plots of the required study sample size vs unconditional power, effect size vs. study sample size,

and effect size vs. conditional power, etc.
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Chapter 5

Conclusions and Future Direction

In this dissertation, a parametric MLE-based method was proposed for designing flexible single-

arm clinical trials with time-to-event endpoints following a Weibull distribution with known shape

parameter. The proposed method can be utilized to incorporate various design features including

different accrual patterns and expected loss to follow-up rate, and we demonstrated that it maintains

the desired Type-I error rate and power in most scenarios. Furthermore, we presented mathematical

development of three stochastic curtailments, namely conditional power, predictive power and

Bayesian predictive probability, which can be employed for decision making regarding early

termination of a clinical trial at an interim stage. We also extended our work on Bayesian

predictive probability by addressing the case when the shape parameter of the Weibull distribution

is not known from historical studies. An R package was also developed to implement these methods

for the use of wider scientific community.

We feel important to reemphasize some issues related to the work presented in this dissertation:

1. The proposed asymptotic method performs the best for designing clinical trials with moderate

to large sample sizes. If the affordable study sample sizes are small or exact calculations are

desired, one may consider the methods proposed by Phadnis [6] and Wu [10].

2. The proposed MLE-based method is appropriate when a reasonably accurate estimate of the

shape parameter of the Weibull distribution is available from historical studies. If its estimate

is not available for some reasons, we may design the study assuming exponentially distributed

survival times (i.e., κ = 1), and reestimate the sample size using an estimate of the shape

parameter based on data collected at an interim stage, if necessary.
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3. Although Bayesian predictive probabilities are easily interpretable, a drawback is that there

calculations are extremely time-consuming, especially when both parameters of the Weibull

distribution are unknown, due to repeated sampling of the predicted survival data [45].

4. Unfortunately, there does not appear to be a wider consensus on the appropriate choices of

prior distributions [18, 25, 45]. Therefore, clinicians and statistician should work closely to

identify appropriate priors for the relevant parameters in the context of their specific research

questions.

Listed below are some of the avenues which could be explored in future research:

1. In our context, the design of single-arm clinical trials based on a fully Bayesian approach could

also be considered, and compared with the proposed parametric MLE-based method.

2. In this dissertation, we explored the utility of the internal pilot study approach for reestimating

sample size at an interim stage. Future studies could also explore sample size reestimation

based on different metrics, such as conditional power and Bayesian predictive probability.

3. Since multiple treatments can also be evaluated in the early phase clinical trials, the methods

proposed in this dissertation could be generalized to allow for the introduction of covariates

into the scale parameter of the Weibull distribution.

4. Though the Weibull distribution is a good choice for designing single arm trials owing to the

mathematical expressions having closed forms, the underlying assumption is of hazards that

increase from 0 to infinity, or, decrease from infinity to 0. For some diseases where this is

not true (e.g. hazard increases from 0 to a constant), other distributions may be considered by

adopting the general framework of mathematical derivations and asymptotic results discussed

in this dissertation.
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Appendix A

Supplementary Materials for Chapter 2

A.1 Probability Density Functions for the Special Cases of the Censoring Variable

1. When the ith subject is accrued into the study at the calendar time 0, that is, Ei = 0, and there

is no loss to follow-up, i.e., Ci→∞, then Zi = τ is a degenerate random variable with its entire

mass located at τ .

2. When all n subjects are accrued into the study at the calendar time 0, that is, Ei = 0 for all i =

1, . . . ,n, and Ci ∼Weibull(κ,η), then Zi = min(Ci,τ) follows a truncated Weibull distribution

with parameters κ > 0 and η > 0 having the pdf:

fZi(z) =



κ

ηκ
zκ−1 exp

{
−
(

z
η

)κ}
1− exp

{
−
(

τ

η

)κ} if z ∈ [0,τ]

0 otherwise.

3. When Ei ∼ Gen-Uniform(0,ω,ϕ), and there is no loss to follow-up, i.e., Ci → ∞ for all i =

1, . . . ,n, then the pdf of Zi = τ−Ei is given as:

fZi(z) =


ϕ (τ− z)ϕ−1

ωϕ
if z ∈ [τ−ω,τ]

0 otherwise
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A.2 Metropolis–Hastings Algorithm for Generating Posterior Samples from π(γ|γ̂)

In order to generate samples from the posterior distribution of γ given by π(γ|γ̂) ∝ π(γ̂|γ)π(γ),

we assume a flat normal prior π(γ)∼Normal
(
µ = 0,σ2 = 52), and π(γ̂|γ) is defined in Eq. (2.6).

We implement the MH algorithm to generate posterior samples from π(γ|γ̂) as follows:

1. Initialize γ(1) = 0.

2. At the i-th iteration of the algorithm, perform the following steps:

i. Draw a new candidate y from Normal

µ = γ(i),σ2 =
1

κ2µ
(i)
δ̄

n

 distribution, where: µ
(i)
δ̄

=

1−EZ

(
exp
{
−
(

Z
θ (i)

)κ})
, θ (i) = exp

{
γ(i)
}

, Z = min(A,C) = min(max(0,τ−E),C),

E ∼ Gen-Uniform(0,ω,ϕ), and C ∼Weibull

(
κ,θ (i)

(
1−υ

υ

)1/κ
)

.

ii. Compute π(γ = γ̂|y) and π

(
γ = γ̂|γ(i)

)
as:

π(γ = γ̂|y) ∝ π(γ̂|y)π(y).

π

(
γ = γ̂|γ(i)

)
∝ π

(
γ̂|γ(i)

)
π

(
γ
(i)
)
.

iii. Compute the acceptance probability α

(
γ(i),y

)
as follows:

α

(
γ
(i),y

)
= min

 g(y)q
(

γ(i),y
)

g
(
γ(i)
)
q
(
y,γ(i)

) ,1
= min

 π(γ̂|y)π(y)q
(

γ(i),y
)

π
(
γ̂|γ(i)

)
π
(
γ(i)
)
q
(
y,γ(i)

) ,1
,

where q
(

γ(i),y
)

is the density of Normal
(

y, σ2(y)
n

)
distribution evaluated at γ(i), and q

(
y,γ(i)

)
is the density of Normal

(
γ(i),

σ2(γ(i))
n

)
distribution evaluated at y.
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iv. Draw a uniform random number u between 0 and 1. If u < α

(
γ(i),y

)
, then

set γ
(i+1) = y,

else set γ
(i+1) = γ

(i).

3. Repeat steps 2(i)–2(iv) a large number of times, say 11000, and exclude the 1000 burn-in

samples from the generated posterior samples to obtain the estimated posterior distribution.

A.3 Simulation Algorithm for Constructing Group Sequential Design Plans for Single-Arm

Studies with a Time-to-Event Endpoint

The following simulation algorithm can be implemented in statistical software such as R [26], SAS

[27], etc., to construct GSD plans to evaluate both efficacy and futility (binding) during interim

analyses for single-arm clinical trials with a time-to-event primary endpoint.

1. After consultation with the researchers, specify the following inputs: (i) desired global Type-I

error rate α along with the parameter ψα for the α-spending function; (ii) Type-II error rate

β and parameter ψβ for our choice of the β -spending function; (iii) total number of looks K

to be performed, and the corresponding information fractions Fk (k = 1, . . . ,K); (iv) median

survival time under the null hypothesis to obtain log of the scale parameter, log(θ0) = γ0, for

the failure time distribution; (v) clinically meaningful effect ε > 0 to be detected under the

alternative hypothesis; (vi) a reasonable estimate of the common shape parameter κ of the

Weibull distribution for the failure and random censoring times; (vii) expected loss to follow-

up rate υ ; (viii) maximum accrual time ω; (ix) power parameter ϕ of the accrual distribution;

(x) final look time `K = τ; and (xi) a sufficiently large number of simulations S (≥ 10000) to

be performed.

2. For the user-defined information fractions Fk, determine the corresponding calendar time of

the kth interim analyses as: `k = τ ···Fk. Based on these information fractions and the pre-
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specified parameters ψα and ψβ , the local Type-I error rate αk and Type-II error rate βk to be

spent at the kth interim analysis are determined using the pre-specified choices of spending

function in Eqs. (2.20) and (2.21) of the manuscript.

3. Initialize sample size n = n(0).

4. For all n subjects in the sth simulated sample, generate the corresponding calendar times of

accrual into the study, denoted by ei,s (i = 1, . . . ,n;s = 1, . . . ,S), from the Gen-Uniform(0,ω,ϕ)

distribution.

5. Under the null hypothesis H0 : γ ≤ γ0, generate the amount of time from ei,s to failure (yi,s;H0) as

well as loss to follow-up (ci,s;H0) for the ith subject in the sth sample (i = 1, . . . ,n;s = 1, . . . ,S)

from Weibull(κ,θ0 = eγ0) and Weibull
(

κ,η = θ0
(1−υ

υ

)1/κ
)

distributions, respectively.

Repeat the same process under the alternative hypothesis H1 : γ = γ1 (= γ0 + ε with ε > 0) to

generate the times to failure (yi,s;H1) and loss to follow-up (ci,s;H1).

6. For each of the K interim analyses to be performed at calendar times `k (k = 1, . . . ,K), use

the data generated in Steps 4 and 5 to prepare appropriate survival data for all n subjects

within the sth sample under the hypothesis Hg, where s = 1, . . . ,S, and g = 0,1. Let xi,s,k;Hg

and δi,s,k;Hg , respectively, denote the survival time and survival status for the ith subject within

the sth sample at the calendar time `k for the kth interim analysis generated under Hg. The

components of the pair
(
xi,s,k;Hg,δi,s,k;Hg

)
of simulated survival data are obtained as follows:

• xi,s,k;Hg :=min
(
yi,s;Hg,zi,s,k;Hg

)
, where zi,s,k;Hg :=min

(
ci,s;Hg,max(0, `k− ei,s)

)
is the amount

of time from accrual into the study to being censored at the look time `k, and yi,s;Hg is defined

in Step 5

• δi,s,k;Hg := 1(yi,s;Hg<zi,s,k;Hg)
is the corresponding survival status at the look time `k.

7. Let γ̂s,k;Hg denote the estimated value of γ obtained by fitting the parametric Weibull model

(using the survreg function available in the survival [58] package in R) on the appropriate
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sth sample at the kth look (generated in Step 6) under the hypothesis Hg. We construct the

simulated efficacy and futility stopping boundaries (denoted by Ûk and L̂k, respectively) as

follows:

(a) At the first look time `1, obtain the sorted vector of the estimated values γ̂γγ1;Hg
=
{

γ̂s,1;Hg

}S
s=1

under the hypothesis Hg. The estimated stopping boundary for efficacy Û1 and futility L̂1

at the look time `1 is determined such that:

Prob(γ̂γγ1;H0
≥ Û1) = α1

Prob(γ̂γγ1;H1
≤ L̂1) = β1

(b) For k = 1, . . . ,K− 1, only those samples simulated under the hypothesis Hg progress from

the kth look to the (k+1)st look which yielded estimated values of parameter γ̂s,k;Hg such

that L̂k < γ̂s,k;Hg < Ûk. For the samples available at (k+ 1)st look, repeat the same proce-

dure as mentioned for the 1st look to compute the estimated efficacy and futility stopping

boundaries as:

Prob(γ̂γγk+1;H0
≥ Ûk+1) = αk+1

Prob(γ̂γγk+1;H1
≤ L̂k+1) = βk+1

8. Once we determine the estimated values of the final stopping boundaries ÛK and L̂K (using

Step 7) corresponding to the initial sample size n = n(0), update the sample size n = n(new) for

the next iteration of simulation algorithm as follows: increase (decrease) the candidate sample

size n if ÛK > L̂K (ÛK < L̂K) during the previous iteration.

9. Repeat Steps 4 – 8 until we find a value of sample size n such L̂K < ÛK for n−1, and L̂K ≥ ÛK

for n. This is the required sample size for our single-arm study in the GSD framework.

10. Since L̂K ≥ ÛK for our chosen sample size n, we need to make adjustment in the desired

107



power to ensure L̂K = ÛK at the final look time `K . Keeping our chosen sample size n as

fixed, we do the following:

(a) Deduct very small quantities from the global Type-II error rate β , and perform steps 4 – 8

using a duly updated β -spending function.

(b) Repeat Step 10a until we find some β ∗ smaller than the pre-specified β such that L̂K = ÛK ,

preferably up to 4 decimal places.

The above simulation algorithm can be used to construct appropriate GSD plan for a single-arm

study with sample size n and power 1−β ∗ for testing both efficacy and futility of an experimental

treatment during all of the K interim analyses.

To incorporate some other design features (such as futility skips, non-binding futility, etc.), few

adjustments in the above algorithm are necessary:

1. The above simulation approach assumes binding futility rules in its implementation. To incor-

porate non-binding futility rules instead, we simply need to make sure in Step 7 that all those

samples at the kth look, generated under the null hypothesis H0, progress to the (k+1)st look

for which γ̂s,k;H0 < Ûk (where k = 1, . . . ,K−1).

2. If the researcher desires futility skips during early interim analyses, we can incorporate such a

requirement by allocating no local Type-II error rate at the corresponding initial looks.

3. This algorithm simplifies considerably when we are interested in constructing GSD plans

with efficacy boundaries only. In such a scenario, there are no calculations for the futility

boundaries, and the desired sample size n is the one which ensures at least power 1−β at the

final look time K.

Expected Number of Events and Stopping Probabilities

It is also of interest to calculate the expected number of events and stopping probabilities during

interim analyses. Let Pk;Hg denote the probability of stopping the trial at the kth look (k = 1, . . . ,K)
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under the hypothesis Hg (g = 0,1). During the kth interim analysis, these probabilities can be

easily computed within our simulation algorithm as:

Pk;Hg = 1−Prob
(
L̂k < γ̂γγk;Hg

< Ûk

)
(A.1)

For GSD plans with efficacy boundaries only, note that Pk;H0 equals to the local error rate αk

spent at the kth look time, and Pk;H1 is the proportion of samples generated under H1 which yield

γ̂s,k;H1 > Ûk.

Under the hypothesis Hg, suppose that n̄e,k;Hg denotes the average number of events observed

across available simulated samples during the kth look. The expected number of events under the

hypothesis Hg, denoted by E
(
ne;Hg

)
, can be easily computed as:

E
(
ne;Hg

)
=

K−1

∑
k=1

(
n̄e,k;Hg ···Pk;Hg

)
+ n̄e,K;Hg ···

(
1−

K−1

∑
k=1

Pk;Hg

)
(A.2)

Examples

For the hypothetical study discussed in Section 2.4.3 of the manuscript, we present two additional

examples to compare and contrast aspects of the Pocock and O’Brien-Fleming GSD plans. First,

we present a GSD plan to evaluate both efficacy and futility at three unequally-spaced look times

(at time = 7, 10, 12 months), and the results are summarized in Table A.1. We observe that the

basic underlying differences between Pocock and O’Brien-Fleming plans are essentially similar to

the GSD plan with equally-spaced looks discussed in the manuscript. It must also be noted that

the stopping probabilities during the first interim analysis for this unequally-spaced are larger than

the ones observed for the GSD plan with equally-spaced look times. This is primarily due to the

fact that the timing of the first look in this design is later (time = 7 months) than those in Table 2.7

of the manuscript (time = 4 months). This amounts to a larger information fraction available at the

first interim analysis, and consequently tighter stopping boundaries, which in turn results in higher

stopping probabilities under both hypotheses.

109



Second, we implement a 4-look unequally-spaced design with 2 initial futility skips, and the

corresponding results are summarized in Table A.2. Similar to our previous findings, we note

that the O’Brien-Fleming plan yields stringent efficacy boundaries at the earlier looks than the

Pocock plan. Under the null hypothesis, stopping probabilities are very small at the first two looks

due to futility skips, which yields the largest stopping probabilities at the third look. We again

observe that the expected number of events for the Pocock plan under the alternative hypothesis is

comparatively smaller than the one for the O’Brien-Fleming design.

Pictorial comparison of the stopping boundaries for the Pocock and O’Brien-Fleming designs

for these two scenarios is shown in Figure A.1. We have also shown the efficacy and futility

boundaries obtained using ζ = ζ ′ = 0.5 in the conditional power stopping boundaries. Once again,

we observe that the conditional power boundaries with ζ = ζ ′ = 0.5 closely resemble the O’Brien-

Fleming boundaries. Since the parameters ζ and ζ ′ are typically chosen around 0.80, the O’Brien-

Fleming testing procedure is more likely to trigger an early stopping of a clinical trial in comparison

to the conditional power approach.
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Figure A.1: Stopping boundaries for the GSD plans in Tables A.1–A.2
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For the two examples discussed in this section, we plotted the percent reduction in the expected

(average) number of events needed for the Pocock and O’Brien-Fleming plans against varying

values of the effect size in Figure A.2. It can be observed that the percent reduction in the average

number of events needed under the Pocock and O’Brien-Fleming plans relative to the fixed design

increases with an increase in the desired effect size. In addition, we note that the Pocock plan

offers greater percent reduction in the average number of events in comparison to the O’Brien-

Fleming plan. This is primarily due to the fact that the Pocock’s design allocates relatively larger

magnitudes of the Type-I and Type-II error rates at the earlier interim analyses, which in turn may

trigger early stopping of a clinical trial with relatively smaller number of events.
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(a) Unequally-spaced – Table A.2
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(b) Unequally-spaced (2 futility skips) – Table A.2

Figure A.2: Percent reduction in the average number of events for the Pocock and O’Brien-Fleming
GSD plans, in comparison to a fixed sample design, in Tables A.1–A.2
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Appendix B

Joint Asymptotic Distribution of D̃K−k and T̃ K−k

B.1 Mathematical Preliminaries

Let `k and τ denote the calendar time of performing interim analysis and final analysis of the study,

respectively. At the interim look time `k, let ϑ and ϑc denote the scale parameter of the failure time

and random censoring distributions, respectively. For the jth subject ( j = 1, . . . ,m) remaining in

the study at the interim look time `k, let E j ∼Gen-Uniform(0,ω,ϕ) represent his/her accrual time

into the study, then under the assumption 0 < `k < τ , the maximum and minimum possible survival

time for this subject in this study is A j = max
(
0,τ−E j

)
and B j = max

(
0, `k−E j

)
, respectively.

Therefore, the random variables representing his/her predicted survival time X̃ j = min
(
Ỹj, Z̃ j

)
and

the corresponding survival status δ̃ j are defined as below:

X̃ j =


Ỹj if Ỹ j ≤ Z̃ j

Z̃ j if Ỹ j > Z̃ j

; δ̃ j =


1 if Ỹj ≤ Z̃ j

0 if Ỹj > Z̃ j

; Z̃ j = min
(
C̃ j,A j

)

Ỹj ∼ Truncated-Weibull
(
shape = κ,scale = ϑ ,min = B j

)
C̃ j ∼ Truncated-Weibull

(
shape = κ,scale = ϑc,min = B j

)
For the jth subject, we note that the pdf and cdf of Ỹ j ∼Weibull

(
κ,ϑ ,B j

)
are given as:

fỸ j
(y) =

κ

ϑ κ
yκ−1 exp

{(
B j

ϑ

)κ

−
( y

ϑ

)κ
}

FỸ j
(y) = 1− exp

{(
B j

ϑ

)κ

−
( y

ϑ

)κ
}
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The pdf and cdf of C̃ j is similar to that of Ỹj with ϑ replaced by ϑc. The pdf of Z̃ j is given as:

fZ̃ j
(z) =



κ

ϑ κ
c

zκ−1 exp
{(

B j

ϑc

)κ

−
(

z
ϑc

)κ}
if z ∈ [B j,τ−ω)(

ϕ

τ− z
+

κ

ϑ κ
c

zκ−1
)(

τ− z
ω

)ϕ

exp
{(

B j

ϑc

)κ

−
(

z
ϑc

)κ}
if z ∈ [τ−ω,τ]

0 otherwise

The pdf of B j = max
(
0, `k−E j

)
is given as:

fB j(b) =


ϕ (`k−b)ϕ−1

ωϕ
if b ∈ [`k−ω, `k]

0 otherwise

B.2 Derivation of the Joint Asymptotic Distribution

To derive the joint asymptotic distribution of D̃K−k =
1
m

m

∑
j=1

δ̃ j and T̃ K−k =
1
m

m

∑
j=1

X̃κ
j , we need to

derive the mean and variance of D̃K−k and T̃ K−k, and their covariance.

B.2.1 Mean and Variance of D̃K−k

Since δ̃ j’s are i.i.d. random variables, we observe that

E
(
D̃K−k

)
= E

(
1
m

m

∑
j=1

δ̃ j

)
=

1
m

m

∑
j=1

E
(

δ̃ j

)
=

1
m

m

∑
j=1

E
(

δ̃1

)
= E

(
δ̃1

)
.

By the law of iterated expectations, we note that

E
(

δ̃1

)
= EB1

(
EZ̃1

(
E

δ̃1

(
δ̃1|B1, Z̃1

)∣∣∣∣B1

))
. (B.1)

To evaluate the innermost expectation in Eq. (B.1), we observe that

E
δ̃1

(
δ̃1|B1, Z̃1

)
= 1 ···P

(
Ỹ1 ≤ Z̃1

)
+0 ···P

(
Ỹ1 > Z̃1

)
= P

(
Ỹ1 ≤ Z̃1

)
= FỸ1

(
Z̃1
)
. (B.2)
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Now we plug Eq. (B.2) into Eq. (B.1) to have that

E
(

δ̃1

)
= EB1

(
EZ̃1

(
FỸ1

(
Z̃1
)
|Z̃1
))

= 1−EB1

(
exp
{(

B1

ϑ

)κ}
EZ̃1

(
exp

{
−
(

Z̃1

ϑ

)κ
}))

(B.3)

From here onward, let us denote µ
δ̃
= E

(
δ̃1

)
. It can be easily verified that E

(
δ̃ 2

1

)
= E

(
δ̃1

)
, and

we again use the fact that δ̃ j’s are i.i.d. random variables to note that

Var
(
D̃K−k

)
= Var

(
1
m

m

∑
j=1

δ̃ j

)
=

1
m2

m

∑
j=1

Var
(

δ̃i

)
=

1
m2

m

∑
j=1

Var
(

δ̃1

)
=

Var
(

δ̃1

)
m

,

where:

Var
(

δ̃1

)
= E

(
δ̃

2
1

)
−
(

E
(

δ̃1

))2
= µ

δ̃
−µ

2
δ̃
= µ

δ̃

(
1−µ

δ̃

)
. (B.4)

B.2.2 Mean and Variance of T̃ K−k

Since X̃ j’s are also i.i.d. random variables, we also note that E
(
T̃ K−k

)
= E

(
X̃κ

1
)
, and use the law

of iterated expectations to observe that

E
(
X̃κ

1
)
= EB1

(
EZ̃1

(
EX̃1

(
X̃κ

1 |B1, Z̃1
)∣∣∣∣B1

))
.

For fixed B1 and Z̃1, the innermost conditional expectation EX̃1

(
X̃κ

1 |B1, Z̃1
)

is computed as:

EX̃1

(
X̃κ

1 |B1, Z̃1
)
= EX̃1

(
X̃κ

1 |Ỹ1 ≤ Z̃1
)
P
(
Ỹ1 ≤ Z̃1

)
+EX̃1

(
X̃κ

1 |Ỹ1 > Z̃1
)
P
(
Ỹ1 > Z̃1

)
= EỸ1

(
Ỹ κ

1 |Ỹ1 ≤ Z̃1
)
FỸ1

(
Z̃1
)
+ Z̃κ

1
(
1−FỸ1

(
Z̃1
))

. (B.5)

116



Given that B1 and Z̃1 are fixed, we compute EỸ1

(
Ỹ κ

1 |Ỹ1 ≤ Z̃1
)

by evaluating this expectation with

respect to corresponding truncated Weibull distribution:

EỸ1

(
Ỹ κ

1 |Ỹ1 ≤ Z̃1
)
=

1
FỸ1

(
Z̃1
) ˆ Z̃1

B1

ỹκ
1 fỸ1

(ỹ1)dỹ1 =
1

FỸ1

(
Z̃1
) ˆ Z̃1

B1

ỹκ
1

(
κ

ϑ κ

)
ỹκ−1

1 exp
{(

B1

ϑ

)κ

−
(

ỹ1

ϑ

)κ}
dỹ1

Using the substitution u =

(
ỹ1

ϑ

)κ

, we have that du =
(

κ

ϑ κ

)
ỹκ−1

1 dỹ1, and ỹκ
1 = uϑ κ . The above

integral can now be written as:

EỸ1

(
Ỹ κ

1 |Ỹ1 ≤ Z̃1
)
=

ϑ κ

FỸ1

(
Z̃1
) exp

{(
B1

ϑ

)κ}ˆ (
Z̃1
ϑ

)κ

(
B1
ϑ

)κ
ue−udu (B.6)

We evaluate the above integral using integration by parts by letting x = u and dy = e−udu, then

dx = du and y =−e−u, and get

ˆ (
Z̃1
ϑ

)κ

(
B1
ϑ

)κ
ue−udu =

(
−ue−u)∣∣∣∣

(
Z̃1
ϑ

)κ

(
B1
ϑ

)κ
+

ˆ (
Z̃1
ϑ

)κ

(
B1
ϑ

)κ
e−udu

=−

[(
Z̃1

ϑ

)κ

exp

{
−
(

Z̃1

ϑ

)κ
}
−
(

B1

ϑ

)κ

exp
{
−
(

B1

ϑ

)κ}]
−
(
e−u)∣∣∣∣

(
Z̃1
ϑ

)κ

(
B1
ϑ

)κ

=

(
B1

ϑ

)κ

exp
{
−
(

B1

ϑ

)κ}
−
(

Z̃1

ϑ

)κ

exp

{
−
(

Z̃1

ϑ

)κ
}

− exp

{
−
(

Z̃1

ϑ

)κ
}
+ exp

{
−
(

B1

ϑ

)κ}
(B.7)

By plugging Eq. (B.7) into Eq. (B.6), and doing some algebra yields

EỸ1

(
Ỹ κ

1 |Ỹ1 ≤ Z̃1
)
=

1
FỸ1

(
Z̃1
) [Bκ

1 − Z̃κ
1 exp

{(
B1

ϑ

)κ

−
(

Z̃1

ϑ

)κ
}
−θ

κ exp

{(
B1

ϑ

)κ

−
(

Z̃1

ϑ

)κ
}
+ϑ

κ

]

=
1

FỸ1

(
Z̃1
) [Bκ

1 − Z̃κ
1
(
1−FỸ1

(
Z̃1
))
−ϑ

κ
(
1−FỸ1

(
Z̃1
))

+ϑ
κ
]

=
1

FỸ1

(
Z̃1
) [Bκ

1 − Z̃κ
1
(
1−FỸ1

(
Z̃1
))

+ϑ
κFỸ1

(
Z̃1
)]

(B.8)
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By plugging Eq. (B.8) into Eq. (B.5), we have that

EỸ1

(
Ỹ κ

1 |B1, Z̃1
)
=

1
FỸ1

(
Z̃1
) [Bκ

1 − Z̃κ
1
(
1−FỸ1

(
Z̃1
))

+ϑ
κFỸ1

(
Z̃1
)]

FỸ1

(
Z̃1
)
+ Z̃κ

1
(
1−FỸ1

(
Z̃1
))

= Bκ
1 +ϑ

κFỸ1

(
Z̃1
)

Using the above expression, we obtain

E
(
X̃κ

1
)
= EB1

(
EZ̃1

(
EX̃1

(
X̃κ

1 |B1, Z̃1
)∣∣∣∣B1

))
= EB1

(
EZ̃1

(
Bκ

1 +ϑ
κFỸ1

(
Z̃1
)∣∣∣∣B1

))

= EB1(B
κ
1 )+ϑ

κ
µ

δ̃
(B.9)

Since X̃ j’s are i.i.d. random variables, we note that

Var
(
T̃ K−k

)
=

Var
(
X̃κ

1
)

m
=

E
(
X̃2κ

1
)
−µ2

X̃
m

,

where µX̃ = E
(
X̃κ

1
)
.

Similar to our previous calculations, we find the innermost conditional expectation of E
(
X̃2κ

1
)
=

EB1

(
EZ̃1

(
EX̃1

(
X̃2κ

1 |B1, Z̃1
)∣∣∣∣B1

))
as:

EX̃1

(
X̃2κ

1 |B1, Z̃1
)
= EỸ1

(
Ỹ 2κ

1 |Ỹ1 ≤ Z̃1
)
FỸ1

(
Z̃1
)
+ Z̃2κ

1
(
1−FỸ1

(
Z̃1
))

(B.10)

For fixed B1 and Z̃1, we note that the substitution u =

(
ỹ1

ϑ

)κ

yields

EỸ1

(
Ỹ 2κ

1 |Ỹ1 ≤ Z̃1
)
=

1
FỸ1

(
Z̃1
) ˆ Z̃1

B1

ỹ2κ
1 fỸ1

(ỹ1)dỹ1

=
ϑ 2κ

FỸ1

(
Z̃1
) exp

{(
B1

ϑ

)κ}ˆ (
Z̃1
ϑ

)κ

(
B1
ϑ

)κ
u2e−udu (B.11)
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Using Eq. (B.7) and integration by parts, we find that

ˆ (
Z̃1
ϑ

)κ

(
B1
ϑ

)κ
u2e−udu =

(
B1

ϑ

)2κ

exp
{
−
(

B1

ϑ

)κ}
−
(

Z̃1

ϑ

)2κ

exp

{
−
(

Z̃1

ϑ

)κ
}
+2

[(
B1

ϑ

)κ

exp
{
−
(

B1

ϑ

)κ}

−
(

Z̃1

ϑ

)κ

exp

{
−
(

Z̃1

ϑ

)κ
}
− exp

{
−
(

Z̃1

ϑ

)κ
}
+ exp

{
−
(

B1

ϑ

)κ}]
(B.12)

Plugging Eq. (B.12) into Eq. (B.11), and doing some algebra yields

EỸ1

(
Ỹ 2κ

1 |Ỹ1 ≤ Z̃1
)
=

[
B2κ

1 − Z̃2κ
1
(
1−FỸ1

(
Z̃1
))]

FỸ1

(
Z̃1
) +

2ϑ 2κ

FỸ1

(
Z̃1
) [(B1

ϑ

)κ

−
(

Z̃1

ϑ

)κ (
1−FỸ1

(
Z̃1
))

+FỸ1

(
Z̃1
)]

(B.13)

Now we substitute Eq. (B.13) into Eq. (B.10) to obtain

EX̃1

(
X̃2α

1 |B1, Z̃1
)
= B2κ

1 − Z̃2κ
1
(
1−FỸ1

(
Z̃1
))

+2ϑ
2κ

[(
B1

ϑ

)κ

−
(

Z̃1

ϑ

)κ (
1−FỸ1

(
Z̃1
))

+FỸ1

(
Z̃1
)]

+ Z̃2κ
1
(
1−FỸ1

(
Z̃1
))

= B2κ
1 +2ϑ

2κ

[
FỸ1

(
Z̃1
)
+

1
ϑ κ

(
Bκ

1 − Z̃κ
1
(
1−FỸ1

(
Z̃1
)))]

= B2κ
1 +2ϑ

2κ

[
FỸ1

(
Z̃1
)
+

1
ϑ κ

(
Bκ

1 − Z̃κ
1 exp

{(
B1

ϑ

)κ

−
(

Z̃1

ϑ

)κ
})]

(B.14)

Using the above expression, E
(
X̃2κ

1
)

is now given as:

E
(
X̃2κ

1
)
= EB1

(
EZ̃1

(
EX̃1

(
X̃2κ

1 |B1, Z̃1
)∣∣∣∣B1

))

= EB1

(
EZ̃1

(
B2κ

1 +2ϑ
2κ

[
FỸ1

(
Z̃1
)
+

1
ϑ κ

(
Bκ

1 − Z̃κ
1 exp

{(
B1

ϑ

)κ

−
(

Z̃1

ϑ

)κ
})]∣∣∣∣B1

))

= EB1

(
B2κ

1
)
+2θ

2κ
ξ (B.15)
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where:

ξ = µ
δ̃
+

1
θ κ

(
EB1(B

κ
1 )−EB1

(
exp
{(

B1

ϑ

)κ}
EZ̃1

(
Z̃κ

1 exp

{
−
(

Z̃1

ϑ

)κ
})))

. (B.16)

Using Eq. (B.9) and (B.15), we have that

Var
(
X̃κ

1
)
= EB1

(
B2κ

1
)
+2θ

2κ
ξ −µ

2
X̃ . (B.17)

B.2.3 Covariance between D̃K−k and T̃ K−k

Before computing the covariance, we note that Cov
(
D̃K−k,T̃ K−k

)
=Cov

(
∑

m
j=1 δ̃ j

m
,
∑

m
j=1 X̃κ

j

m

)
=

Cov
(

δ̃1, X̃κ
1

)
m

, and

Cov
(

δ̃1, X̃κ
1

)
= E

(
δ̃1X̃κ

1

)
−E

(
δ̃1

)
E
(
X̃κ

1
)
= E

(
δ̃1X̃κ

1

)
−µ

δ̃
µX̃ (B.18)

Now we need to compute E
(

δ̃1X̃κ
1

)
= EB1

(
EZ̃1

(
EX̃1

(
δ̃1X̃κ

1 |B1, Z̃1

)∣∣∣∣B1

))
. For fixed B1 and Z̃1,

we observe that X̃κ
1 = Ỹ κ

1 ···1(Ỹ1≤Z̃1) + Z̃κ
1 ···1(Ỹ1>Z̃1), and δ̃1 = 1(Ỹ1≤Z̃1). That is,

δ̃1X̃κ
1 =


Ỹ κ

1 if Ỹ1 ≤ Z̃1

0 if Ỹ1 > Z̃1

Using Eq. (B.8), we find that

EX̃1

(
δ̃1X̃κ

1 |B1, Z̃1

)
= EX̃1

(
δ̃1X̃κ

1 |Ỹ1 ≤ Z̃1

)
P
(
Ỹ1 ≤ Z̃1

)
+EX̃1

(
δ̃1X̃κ

1 |Ỹ1 > Z̃1

)
P
(
Ỹ1 > Z̃1

)
= EỸ1

(
Ỹ κ

1 |Ỹ1 ≤ Z̃1
)
FỸ1

(
Z̃1
)

= Bκ
1 − Z̃κ

1
(
1−FỸ1

(
Z̃1
))

+θ
κFỸ1

(
Z̃1
)
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Thus we can verify that

E
(

δ̃1X̃κ
1

)
= EB1

(
EZ̃1

(
Bκ

1 − Z̃κ
1
(
1−FỸ1

(
Z̃1
))

+ϑ
κFỸ1

(
Z̃1
)∣∣∣∣B1

))
= ϑ

κ
ξ (B.19)

where ξ is given in Eq. (B.16). Therefore, the covariance between D̃K−k and T̃ K−k is:

Cov
(

δ̃1, X̃κ
1

)
= ϑ

κ
ξ −µ

δ̃
µX̃ . (B.20)

Using Eqs. (B.3, B.4, B.9, B.17, B.20) , we conclude by virtue of the multivariate central limit

theorem that the joint asymptotic distribution of D̃K−k and T̃ K−k is given as:

lim
m→∞

√
m


D̃K−k

T̃ K−k

−
µ

δ̃

µX̃


 d−→ Normal


0

0

 ,

σ2
1 σ12

σ12 σ2
2


,

where:

σ
2
1 = µ

δ̃

(
1−µ

δ̃

)
,

σ12 = ϑ
κ

ξ −µ
δ̃

µX̃ ,

σ
2
2 = EB1

(
B2κ

1
)
+2ϑ

2κ
ξ −µ

2
X̃ ,

µ
δ̃
= 1−EB1

(
exp
{(

B1

ϑ

)κ}
EZ̃1

(
exp

{
−
(

Z̃1

ϑ

)κ
}))

,

µX̃ = EB1(B
κ
1 )+ϑ

κ
µ

δ̃
,

ξ = µ
δ̃
+

1
ϑ κ

(
EB1(B

κ
1 )−EB1

(
exp
{(

B1

ϑ

)κ}
EZ̃1

(
Z̃κ

1 exp

{
−
(

Z̃1

ϑ

)κ
})))

.
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