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Abstract 

In this dissertation, we explored three Bayesian methodological extensions, including an 

adaptive Bayesian design featuring participant reuse for comparative effectiveness clinical trials, 

an innovative Bayesian dose-response EMAX model for a mixture of normal distributions, and a 

Bayesian analysis of weight loss for a cluster randomized clinical trial.  

We first developed an adaptive Bayesian clinical trial design in the setting of comparative 

effectiveness clinical research where multiple treatments are of interest and the accrual rate is 

slow. Our proposed design mimics the real-world clinical practice that allows patients to switch 

treatments when the desired outcome is not achieved. As a result, each participant can have more 

than one observation, and hence it is possible to control for participant-specific variability which 

in turn results in a reduced number of participants needed. Additionally, response adaptive 

randomization is employed to improve trial efficiency by allocating more participants to the 

promising arms.    

We also developed an innovative Bayesian dose-response EMAX mixture model 

incorporating finite mixture distributions into the EMAX framework. It is the first time that an 

EMAX model being extended to a finite mixture distribution. The model was motivated by a 

proposal investigating the dose effect of DHA supplementation on preterm birth rate  (< 37 weeks 

of gestation), where gestational age was analyzed as continuous with a normal mixture 

distribution. We compared our proposed EMAX mixture model with an EMAX logistic model 

and an independent doses logistic model for a dichotomized endpoint using extensive  

simulations. Across the scenarios under consideration, the EMAX mixture model achieved 

higher power in detecting the effect of DHA supplementation on the PTB rate. It also resulted in 

smaller mean squared errors (MSE) in PTB rate estimates.  
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  Lastly, we reanalyzed the percent weight loss data from Rural Engagement in Primary 

Care for Optimizing Weight Reduction (REPOWER), a cluster randomized clinical trial, using a 

Bayesian hierarchical model. We showed that the Bayesian approach can derive probability 

estimates of direct clinical interest and can provide additional insights into data interpretation by 

utilizing posterior distributions for parameters of interest. We also demonstrated that the 

Bayesian approach can easily handle complex problems using the same statistical framework. 
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Chapter 1 : Introduction 
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Although the frequentist paradigm has been the predominant approach to clinical studies 

in the past several decades, some limitations associated with the frequentist null hypothesis 

testing that reports dichotomized P values have been recognized in statistic society  (1,2). On the 

other hand, the Bayesian paradigm derives probability estimates of model parameters reflecting 

the clinical interest and can provide better data interpretation. It has gained popularity in recent 

years owing to the advancement in powerful computing capacity and the invention of efficient 

Bayesian statistic software. In this dissertation, we explored three Bayesian methodological 

extensions, including an adaptive Bayesian design featuring participant reuse for comparative 

effectiveness clinical trials, an innovative Bayesian dose-response EMAX model for a mixture of 

normal distributions, and a Bayesian analysis of weight loss for a cluster randomized clinical 

trial.  

In chapter 2, we developed an adaptive Bayesian clinical trial design in the setting of 

comparative clinical research where multiple treatments are of interest and the accrual rate is 

slow. One of the biggest challenges in designing clinical trials for rare diseases is the slow 

accrual rate. This challenge is amplified in comparative effectiveness research where multiple 

treatments are compared to identify the treatment that works best for improving health. 

Motivated by real-world clinical practice that allows patients to switch therapies if the desired 

outcome is not achieved, we proposed a design that reuses participants. In our design, 

participants are randomized to one study drug as the initial treatment. If the participant responds 

to the initial treatment, then the participant completes the study and no more treatment will be 

assigned to the participant. On the other hand, if the participant does not respond to the initial 

treatment, the participant will be assigned a new treatment from the remaining therapies. This 



3 

 

process is repeated until either the desired treatment outcome is achieved, or all study treatments 

are given to the participant. With efficiency in mind, we further improve the reusing participants 

design by employing a Bayesian adaptive design. The basic idea is to utilize response adaptive 

randomization (RAR) to assign more participants to the most promising arms, by updating the 

randomization probability using interim analyses. The reusing participants RAR design starts by 

randomizing participants with equal probability to one of the study treatments. As enrollment 

continues, interim analyses will be performed according to a pre-specified schedule. The data 

available at the interim analyses will be used to calculate the posterior probabilities of treatments 

being the most effective, which will then be used to update the RAR allocation rates for future 

participants. Extensive simulations were used to compare this design with a conventional 

adaptive clinical design where each participant is randomized to one treatment only, a non-

adaptive design that reuses participants, and a non-adaptive design that does not reuse 

participants.  

In chapter 3, We developed an innovative Bayesian dose-response EMAX mixture model 

that incorporates finite mixture distributions into the EMAX framework. The model was 

motivated by a proposal investigating dose effect of DHA supplementation on preterm birth rate.  

One frequently used dose-response model is the pairwise independent doses model. In this 

model, no functional relationship is assumed between the dose and effect, and all doses are 

modeled independently and compared with each other. The independent doses model is often 

inefficient and results in lower power because of its lack of functional relationship assumption. 

When the dose-response relationship can be assumed monotonic, an EMAX (MAXimum Effect) 

model has been shown to provide a good empirical fit for designing and analyzing dose-response 

data across a wide range of pharmaceutical studies. The EMAX model assumes the dose-
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response relationship follows a nonlinear monotonic function with a parameter representing the 

maximum effect that can be achieved when the dose approaches infinity and another parameter 

representing the dose that achieves 50% of the maximum effect.  One option to evaluate the 

DHA dose effect on PTB is to apply the EMAX model treating PTB as a dichotomous endpoint. 

However, studies have shown that dichotomizing continuous endpoints resulted in a loss of 

information and reduced power (3,4,5). We propose a Bayesian EMAX model that analyzes 

gestational age as continuous.  Schwartz et al. showed that the distribution of gestational age can 

be described by a mixture of three normal distributions (6). Thus, we developed our EMAX 

mixture model for a continuous endpoint with a mixture distribution.  We compared our model 

with two models that dichotomize gestational age: the EMAX model (EMAX logistic model) 

and the independent doses logistic model. Extensive simulations showed that the EMAX Mixture 

model achieved a higher power for detecting the DHA dose effect on PTB than the other two 

models and resulted in smaller mean squared errors (MSEs) in estimates of PTB rates. 

Additionally, the EMAX Mixture model is attractive because it allows for statistically efficient 

estimates of PTB rates using different gestational age cut-points within the same parsimonious 

model. For example, we can estimate the rate of early preterm birth (<34 weeks gestation), 

preterm birth (<37 weeks gestation), and late-term birth (>41 weeks gestation) using the same 

model.  

In chapter 4, we reanalyzed the weight loss data from Rural Engagement in Primary Care 

for Optimizing Weight Reduction (REPOWER) clinical trial using a Bayesian approach. 

Repower is a cluster randomized clinical trial conducted to compare three delivery models of 

Intensive Behavioral Therapy for Obesity (IBT): the fee-for-service individual delivery model, 

the in-clinic group visits model, and the phone-based group visits model. Participant weight was 
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measured at baseline, 6, 18, and 24 months by trained staff. Frequentist methods were used to 

compare the three delivery models in the original analysis.  In this dissertation, we first analyzed 

the percent weight loss over time using a Bayesian three-level hierarchical model to answer 

questions such as what the probability of obtaining a greater weight loss in the in-clinic group 

visits arm vs. the individual visits arm is. we also used a four-level hierarchical model with an 

additional level to assess the group assignment impact on the effect of delivery models on weight 

loss. 
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2.0 Abstract 

Slow accrual rate is a major challenge in clinical trials for rare diseases and is identified 

as the most frequent reason for clinical trials to fail. This challenge is amplified in comparative 

effectiveness research where multiple treatments are compared to identify the best treatment. 

Novel efficient clinical trial designs are in urgent need in these areas. Our proposed response 

adaptive randomization (RAR) reusing participants trial design mimics the real-world clinical 

practice that allows patients to switch treatments when desired outcome is not achieved. The 

proposed design increases efficiency by two strategies: 1) Allowing participants to switch 

treatments so that each participant can have more than one observation and hence it is possible to 

control for participant specific variability to increase statistical power; and 2) Utilizing RAR to 

allocate more participants to the promising arms such that ethical and efficient studies will be 

achieved. Extensive simulations were conducted and showed that, compared with trials where 

each participant receives one treatment, the proposed participants reusing RAR design can 

achieve comparable power with a smaller sample size and a shorter trial duration, especially 

when the accrual rate is low. The efficiency gain decreases as the accrual rate increases.      

2.1 Introduction 

One of the biggest challenges in designing clinical trials for rare diseases is slow accrual 

rate. Recent studies show that slow accrual rate is a significant hurdle in advancing the 

translation of clinical discoveries (1), and a poor patient accrual is identified as the most frequent 

reason for clinical trials to be classified as “fail to complete” (2). This challenge is amplified in 

comparative effectiveness research where multiple treatments are compared to identify the 

treatment that works best for improving health. Frequently, investigators have to reduce the 
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number of arms because sufficient patients cannot be enrolled in a reasonable length of study 

duration.  Novel efficient clinical trial designs are in urgent need in these areas.  

In conventional parallel randomized clinical trial designs, participants are randomized to 

one study treatment and each participant contributes one observation regardless of the 

participant’s outcome. However, in real world clinical practice, patients often switch therapies if 

the desired outcome is not achieved. This motivated our proposal of reusing participants in a 

clinical trial design. In our design, participants are randomized to one study drug as the initial 

treatment. If the participant responds to the initial treatment, then the participant completes the 

study and no more treatment will be assigned to the participant. On the other hand, if the 

participant does not respond to the initial treatment, the participant will be assigned a new 

treatment from the remaining therapies. This process is repeated until either the desired treatment 

outcome is achieved, or all study treatments are given to the participant. The advantage of the 

proposed design is that it mimics the real-world clinical practice and it can achieve the desired 

power with fewer participants.  

The proposed reusing participants design is an extension to the two-arms crossover trial 

for absorbing binary endpoint proposed by Nason and Follmann (3). An absorbing binary 

endpoint is an outcome that cannot be repeated in the second period if  it occurs in the first 

period, such as mortality or pregnancy in infertility studies. In our proposed design, responding 

to a treatment is analyzed as an absorbing binary endpoint and participants will not switch to a 

new treatment if the desired outcome is achieved. It is more ethical than the conventional 

crossover design which requires participants to receive all candidate treatments in sequence (4) 

and results in participants who receive effective treatments first to cross-over to ineffective 

treatments.  
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With efficiency in mind, we further improve the reusing participants design by 

employing a Bayesian adaptive design. Bayesian adaptive designs have been broadly accepted to 

be able to increase efficacy, reduce duration, and provide more ethical clinical trials (5). The 

basic idea is to utilize response adaptive randomization (RAR) to assign more participants to the 

arms that are most promising, by updating the randomization probability using interim analyses. 

The reusing participants RAR design starts by randomizing participants with equal probability to 

one of the study treatments. As enrollment continues, interim analyses will be performed 

according to a pre-specified schedule.  The data available at the interim analyses will be used to 

calculate the posterior probabilities of treatments being the most effective, which will then be 

used to update the RAR allocation rates for future participants. It is worth noting that, in order to 

avoid overly complicating trial operations, the RAR randomization only applies to the initial 

treatment of each participant. Once the initial treatment is determined for a participant, the order 

of subsequent treatments will be determined using sampling without replacement from the 

remaining study treatments. Participants will receive treatments until they achieve the desired 

outcome or until the they go through all the study treatments. 

We will compare this design, called Reuse-RAR,  with conventional adaptive clinical 

design (Conventional-RAR) where each participant is randomized to one treatment only, such as 

the design described by Gajewski et al. (6). In addition, we will also compare the Reuse-RAR 

design with a non-adaptive design that reuses participants (Reuse-noRAR) and a non-adaptive 

design that does not reuse participants (Conventional-noRAR) . The remainder of this article is 

arranged as follows. In section 2.1, we first describe the motivation study and give an overall 

summary for each of the four designs in the context of the motivation study. In section 2.2, we 

describe the statistical models for designs that reuse participants (i.e., Reuse-noRAR and Reuse-
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RAR) and designs that do not reuse participants (i.e., Conventional-RAR and Conventional-

noRAR) separately. Section 2.3 – 2.9 cover accrual rate patterns, interim analysis schedule, 

response adaptive randomization, virtual response rate, success criteria and model calibration, 

carryover effect and period effect, and simulation. They are applied to both Reuse-RAR and 

Conventional-RAR designs to ensure a fair comparison is made. Extensive simulations are used 

to compare operating characteristics of the designs including power, duration of study, number 

of participants required. The results are summarized in section 3. In section 4, we draw 

conclusion from our analysis and discuss the advantages and limitations of our proposed Reuse-

RAR design. Section 5 is discussion and future work.  

2.2 Methods 

2.2.1 Trial summary  

To illustrate the method, we use the setting of Patient Assisted Intervention for 

Neuropathy: comparison of Treatment in Real Life Situations (PAIN-CONTRoLS) (6,7), a 

comparative effectiveness clinical trial studying four treatments for cryptogenic sensory 

polyneuropathy (CSPN). CSPN, also known as idiopathic polyneuropathy, is a diagnosis made 

when all known causes of neuropathy have been ruled out. Although CSPN accounts for 10 – 

30% of all polyneurophy cases (8), very few trials have been conducted to study the treatments 

of CSPN. There is an urgent need for evidence generating trials to guide physicians treating 

CSPN patients (7). PAIN-CONTRoLS is one of the first such trials. The primary endpoint is 

evaluated using visual analog scale pain score (VAS) (9). A subject is considered a responder if 

the VAS score drops by 50% or more after being on a treatment for 12 weeks. The goal of the 

study is to identify which drug is the most effective in reducing pain with fewest side effects.  

Although the actual PAIN-CONTRoLS trial had four arms we consider a “what-if” trial with five 
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arms and for simplicity we assume a binary endpoint rather than the trinary endpoint used in 

PAIN-CONTRoLS. Below is a summary for the four designs (Conventional-noRAR, 

Conventional-RAR, Reuse-noRAR, and Reuse-RAR) in the context of PAIN-CONTRoLS trial.  

In the Reuse-RAR design, participants are randomized to one of the five treatments as 

their initial treatment. At first the study uses equal randomization, which is then updated using 

RAR after the first interim analysis. The order of the subsequent treatment assignments is 

determined by sampling without replacement from the four remaining treatments. After 12 

weeks, depending on the VAS score measurements, the participants may be given the next 

treatment in line if the desired effect is not achieved, or be considered as a responder and 

complete the trial. Each participant can have multiple observations (between one and five).  

In the Conventional-RAR design, participants are randomized to one of the five 

treatments using the same sample randomization scheme as Reuse-RAR, however, no additional 

treatments will be assigned beyond the first treatment. Each participant can only have one 

observation.  

In both Reuse-RAR design and Conventional-RAR design, interim analyses will be 

performed according to a pre-specified schedule. At each interim, all current data will be 

analyzed, and the treatment allocation rates will be updated so that more participants will be 

allocated to the arm with the maximal effect.  

In the Reuse-noRAR design, participants are randomized to one of the five treatments as 

their initial treatment using equal randomization.  The order of the subsequent treatment 

assignments is determined by sampling without replacement from the four remaining treatments. 
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No interim analyses will be performed, and the allocation rates will stay the same for the whole 

study. Like the Reuse-RAR design, each participant can have one to five observations. 

In the Conventional-noRAR design, participants are randomized to one of the five 

treatments using equal allocation rates. Each participant will have one observation. No interim 

analysis will be performed.  

2.2.2 Statistical models 

In all four designs, we assume the five treatments are not ordered in any explicit manner.  

In Conventional-RAR and Conventional-noRAR design, each participant has exactly one 

observation. These designs will use an independent logistic model, described in section 2.2.1.  

In Reuse-RAR and Reuse-noRAR design, each participant can have more than one 

observation. The observations from the same participant are correlated due to participant 

variation (or participant disease severity), which is modeled by including participant as a random 

effect in a hierarchical logistic model (also known as linear mixed model). A normal, 

hierarchical prior on the logit scale is used for the participant effect. This approach is similar to 

that of Nason and Follmann(3), where participant variation was modeled using Beta distribution. 

Furthermore, we assume that the carryover effect is consistent across participants and treatments. 

A single carryover factor is used to model the amount of effect that is carried over from previous 

period. Furthermore, a period effect can also be incorporated to account for the effect of period.  

Model details are described in 2.2.2.   
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2.2.2.1 Independent logistic model (for Conventional-RAR design and Conventional-noRAR 

design) 

Let 𝒙𝑖 be a 5-element binary vector indicating the treatment participant 𝑖 received. For 

example, 𝑥𝑖 = (0,0,1,0,0) indicates participant 𝑖 received the 3rd treatment.  Let 𝑦𝑖  be the binary 

outcome variable (0 non-responder, 1 responder). Assuming 𝑦𝑖  follows a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

distribution, where  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝒙𝒊𝜷 

𝜷 = {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5}  is a 5-element vector denoting the treatment effect on logit scale.  𝜃𝑗 =

𝑒𝑥𝑝(𝛽𝑗)

1+𝑒𝑥𝑝(𝛽𝑗) 
 is the probability of being a responder for a participant received treatment 𝑗.  A vague 

normal prior, N(0, 52) is assigned to each 𝛽𝑗. When transformed back to probability scale using 

anti-logit function,  the vague prior gives a 95% equal-tailed interval of (0.001, 0.999). 

Hamiltonian Monte Carlo (10,11) is used to obtain the posterior distribution for  

{𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5|𝒚}. The best arm is defined as 𝑗𝑚𝑎𝑥 = arg max
𝑗∈(1,2,3,4,5)

(𝛽𝑗).  The probability of being 

the best arm for arm 𝑗 is denoted as 𝑝𝑟𝑜𝑏(𝑗 = 𝑗𝑚𝑎𝑥 |𝒚). 

2.2.2.2 Hierarchical logistic model (for Reuse-RAR design and Reuse-noRAR design) 

Let 𝑇𝑖  be the number of periods for participant 𝑖 and let 𝑡 ∈ {1, 2, … , 𝑇𝑖} denote the period 

index. Let 𝒙𝑖𝑡 be a 5-element binary vector indicating the treatment participant 𝑖 received during 

period t. For example, 𝑥𝑖𝑡 = (0,0,1,0,0) indicates participant 𝑖 received the 3rd treatment during 

period 𝑡. 𝑦𝑖𝑡 is the binary outcome variable for participant 𝑖 during period 𝑡 (0 for non-responder 

and 1 for responder), and follows a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑡) distribution, where  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡)  = 𝒙𝒊𝒕𝜷 + 𝜖𝑖  
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𝜷 = {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} is a 5-element vector denoting the treatment effect for the 5 treatments on 

logit scale. 𝜖𝑖  denotes the participant-specific effect (i.e. participant disease severity) on logit 

scale and it follows a normal distribution: 𝜖𝑖~𝑁(0, 𝜎𝜖
2). For priors, an independent normal 

distribution 𝑁(0,52) is used for 𝛽𝑗  and a truncated normal distribution 𝑁(0,32) is used for 𝜎𝜖
2.  

To accommodate the carryover effect, the model can be expanded as follows,    

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡) =  {
𝒙𝒊𝒕𝜷 + 𝜖𝑖 ,                                    𝑡 = 1

𝒙𝒊𝒕𝜷 + 𝜋 ∗ 𝒙𝒊(𝒕−𝟏)𝜷 + 𝜖𝑖 , 𝑡 > 1  
 

Where 𝜋 is the carryover factor which models the proportion of treatment effect that persists 

from one treatment to the next. A prior of 𝑁(0,0.52) is used for 𝜋.  

In cases where study period has important impact on treatment outcome, we can further 

expand the model as follows,  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡)  =  {
𝒙𝒊𝒕𝜷 + 𝜖𝑖 ,                                                        𝑡 = 1

𝒙𝒊𝒕𝜷 + 𝜋 ∗ 𝒙𝒊(𝒕−𝟏)𝜷 + 𝑓(𝑡) + 𝜖𝑖 ,                𝑡 > 1  
  

where 𝑓(𝑡) is a function of 𝑡, which can be chosen to model a potential period effect. It can be a 

polynomial function or a function representing flexible cubic splines. For example, a linear 

function is a reasonable choice for the PAIN-CONTRoLS study due to the small number of 

periods,   

𝒇(𝑡) = 𝛾1𝑡  

 where 𝛾1 is the regression coefficient. A vague 𝑁(0,52) prior is used for 𝛾1. 
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Hamiltonian Monte Carlo is used to obtain the posterior distribution for model 

parameters :  {𝛽1 , 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝜋, 𝛾1 |𝒚𝟏 , 𝒚𝟐 , . . 𝒚𝒏}. The best arm is defined as 𝑗𝑚𝑎𝑥 =

arg max
𝑗∈(1,2,3,4,5)

(𝛽𝑗).  The probability of being the best arm for arm 𝑗 is denoted as 𝑝𝑟𝑜𝑏(𝑗 = 𝑗𝑚𝑎𝑥 ).   

2.2.3 Accrual rate patterns 

We assume the distribution of participant accrual patterns follows a Poisson distribution. 

In order to investigate the operating characteristics of the trial designs, we run simulations using 

four different rates: 1.5 participants per week, 3 participants per week, 4.5 participants per week, 

and 6 participants per week. If a participant is reused in a trial, we assume no waiting time 

between their last visit and randomization to the next study drug.   

2.2.4 Interim analysis schedule  

For the Reuse-RAR design, each participant can have multiple observations (between 1 

and 5) with each observation corresponding to a treatment the participant received.  We will use 

number of observations initiated instead of number of participants enrolled to describe sample 

size. The interim analyses will be conducted when 300, 500, and 700 observations are initiated. 

Only observations with assessable endpoints (being on a treatment for 12 weeks and with an 

additional 4 weeks of lag for collecting and observing endpoints) will be included in the interim 

analyses. A final analysis will be conducted when 900 observations are assessable. 

Conventional-RAR design will have the same interim and final analysis schedule but in terms of 

participants enrolled.  For the Reuse-noRAR and Conventional-noRAR design, no interim 

analysis will be performed. A final analysis will be conducted after assessable endpoint is 

available for 900 observations in Reuse-noRAR design and 900 participants in Conventional-

noRAR design. 
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2.2.5 Response Adaptive Randomization (RAR) 

For Conventional-RAR and Reuse-RAR, at each interim, the randomization probability 

needs to be updated to allocate more future participants to the most promising arms. There are 

many choices of the formula for the randomization probability. For example, one choice is 

proportional to the posterior probabilities that the arms have maximum effect (i.e., Pr (𝑗 =

𝑗𝑚𝑎𝑥)). We use the information formula for RAR allocations (6), 𝑉𝑗 = √
Pr(𝑗=𝑗𝑚𝑎𝑥) 𝑉𝑎𝑟 (𝜃𝑗)

𝑛𝑗+1
, where  

𝑛𝑗 is the number of participants whose initial treatment is drug 𝑗 and 𝑣𝑎𝑟(𝜃𝑗) is the sample 

variance of 𝜃𝑗|𝒚𝒋, and 
𝑣𝑎𝑟(𝜃𝑗)

𝑛𝑗+1
 is the expected change in variance (a proxy for information 

gained). This approach balances the goal of randomizing to the arm with the maximum effect 

and the design to gain new information by allocating to under explored arms. .  

2.2.6 Virtual response rate 

Virtual response rate is the true efficacy rate used to generate participant response in 

simulations. We label 𝜽𝑇 = (𝜃1
𝑇 , 𝜃2

𝑇 , 𝜃3
𝑇 , 𝜃4

𝑇 , 𝜃5
𝑇) the virtual response rates for the five study 

treatments. If we assume there is no participant variation, which means participant outcome is 

solely determined by the treatment the participant received, the sampling distribution of the 

participant outcome is  𝑦𝑖𝑡  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑗
𝑇), where j represents the treatment participant 𝑖 

received during period 𝑡. For the purpose of the study, we investigated three scenarios. The first 

scenario assumes 𝜽𝑇 = (0.2, 0.2, 0.2, 0.2, 0.2), where all treatments are equivalent. In 

comparative effectiveness setting, the scenarios where all treatments are equivalent is the null 

scenarios. This is the null scenario, denoted by 𝐻0. The second scenario assumes 𝜽𝑇 =

(0.3, 0.3, 0.3, 0.4, 0.5), where treatment 5 is the most effective and treatment 4 is the second 

effective. We denote it by 𝐻1. The third scenario assumes 𝜽𝑇 = (0.3, 0.3, 0.3, 0.5, 0.5), where 
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treatment 5 and treatment 4 are equally effective. We denote it by 𝐻2. 𝐻1 and 𝐻2 are two 

alternative scenarios. 

In the real world, it is not realistic to assume there is no participant variation. The 

observations from the same participant are usually more alike than those from different 

participants. We assume, on logit scale, participant variation follows a normal distribution: 

𝜖𝑖
𝑇~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎

𝜖𝑇
2 ). And the sampling distribution of participant outcome becomes 

𝑦𝑖𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑙𝑜𝑔𝑖𝑡−1(𝑙𝑜𝑔𝑖𝑡(𝜃𝑗
𝑇) + 𝜖𝑖

𝑇)).  We use 𝜎
𝜖𝑇
2  = 0.25 in simulations, which can be 

translate to an ICC (intraclass correlation coefficient) of 0.07.   

2.2.7. Success criteria and Model calibration 

At the final analysis, an arm may be declared superior if its posterior probability of being 

the best arm meets a pre-specified success criterion, i.e. Pr(𝑗 = 𝑗𝑚𝑎𝑥 ) > 𝛿. Type I error is the 

proportion of simulations that meet the success threshold in null scenarios (12). Power is the 

proportion of simulations that meet the success threshold in alternative scenarios. Below we will 

discuss how to prespecify the success thresholds (𝛿). 

In order to make the designs comparable, success thresholds (𝛿) are chosen to achieve 

similar type I error rates across designs using simulations in null scenarios. For example, figure 

2.1 is the plot for the proportion of success (i.e. Type 1 error) by threshold (𝛿) based on 

simulations using the Conventional-noRAR design in the null scenario when 𝜆 = 1.5. As the 

threshold increases, the proportion of simulations meet the success criterion (i.e. type I error) 

decreases. When the threshold is 0.829, the type I error rate is roughly 4.9%. Using the same 

method, we identified 𝛿 is to be 0.829, 0.794, 0.832, and 0.827 for Conventional-noRAR, 

Conventional-RAR, Reuse-noRAR, and Reuse-RAR, respectively. It is worth noting that 
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Conventional-RAR has a lower cutoff than Conventional-noRAR (0.794 vs. 0.829) and Reuse-

RAR has a lower cutoff than Reuse-noRAR (0.827 vs. 0.832). The reason is that, in RAR 

designs, when one arm has a high response rate in the early stage of the study due to random 

variation, more participants will be assigned to that arm and the response rate will regress to the 

actual rate, and hence it will be less likely to observe simulations with extremely high 𝑝𝑟𝑜𝑏(𝑗 =

𝑗𝑚𝑎𝑥). Along the same lines of reasoning, Conventional-RAR has a much lower cutoff than the 

Reuse-RAR (0.794 vs. 0.827) because Reuse-RAR adapts much less aggressively than 

Conventional-RAR in two aspects: (1) Reuse-RAR runs much faster than the Conventional-RAR 

and has much less time to adapt; (2) RAR only applies to the first treatment of each participant in 

the Reuse-RAR while it applies to all the observations in Conventional-RAR.  

The success rates (Type I error rates) for each scenario under the null hypothesis are 

given in Table 2.1. All the Type I error rates are controlled at around 5%, with a range between 

4.8% and 5.1%.   
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Figure 2.1 Proportion of success (Type I error) by threshold (δ) based on simulations for Conventional-noRAR 

design in the null scenario when λ=1.5 

 

  Accrual rate 

Design Threshold 1.5 3 4.5 6 

Conventional-noRAR 0.829 4.9% 5.0% 5.0% 5.0% 

Conventional-RAR 0.794 4.9% 5.1% 5.0% 4.9% 

Reuse-noRAR 0.832 5.0% 5.0% 4.9% 5.1% 

Reuse-RAR 0.827 5.1% 4.8% 4.8% 4.8% 
 

Table 2.1 Type I error under H_0 

 

2.2.8. Carryover effect and period effect 

For Reuse-noRAR and Reuse-RAR, we assume there is a 20% carryover effect and no 

period effect. The sampling distribution is 

𝑦𝑖𝑡~{
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑙𝑜𝑔𝑖𝑡−1(𝑙𝑜𝑔𝑖𝑡(𝜃𝑗

𝑇) + 𝜖𝑖
𝑇))                                      𝑤ℎ𝑒𝑛 𝑡 = 1

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑙𝑜𝑔𝑖𝑡−1(𝑙𝑜𝑔𝑖𝑡(𝜃𝑗
𝑇 + 𝜋𝑇 ∗ 𝜃𝑗′

𝑇) + 𝜖𝑖
𝑇))                   𝑤ℎ𝑒𝑛 𝑡 > 1
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where 𝜃𝑗′
𝑇  is the virtual response rate of the treatment participant received during period 𝑡 − 1; 

𝜋𝑇 = 20%. 

2.2.9. Simulations 

In total, we investigated 12 scenarios: the combinations of 4 different accrual rates 

(𝜆: 1.5, 3, 4.5, and 6),  1 participant variation (𝜎
𝜖𝑇
2 : 0.25), and 3 virtual response rates (𝜽𝑇 =

(0.2, 0.2, 0.2, 0.2, 0.2), (0.3, 0.3, 0.3, 0.4, 0.5), (0.3, 0.3, 0.3, 0.5, 0.5)). Each scenarios will be 

conducted using 4 designs: Conventional-noRAR, Conventional-RAR, Reuse-noRAR, and 

Reuse-RAR. 

For each scenario, we run 10,000 simulations. The maximum 95% margin of error 

is1.96√0.5 ∗ 0.5/10000 < 0.01. With a Type I error of 0.05 or power of 0.90, the margin of 

error is much smaller,  1.96√0.05 ∗ 0.95/1000 = 0.004 and  is 1.96√0.1 ∗ 0.9/1000 = 0.005 

respectively.  

The simulations are implemented in R(13) and Stan( 14, 15). R is used to generate 

participant response data and Stan is used to perform interim and final analyses.  

2.3 Results 

In this section, we report the simulation results comparing the four designs in terms of the 

following operating characteristics: power, number of participants enrolled, trial duration, and 

proportion of observations that received the best treatment. We also explored the performance of 

the Reuse-RAR design when allowing RAR for subsequent treatments and the impact of 

participant dropouts on the Reuse-RAR design.  
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2.3.1 Power  

The power for different scenarios under 𝐻1 : 𝜽𝑇 = (0.3, 0.3, 0.3, 0.4, 0.5) and 𝐻2: 𝜽𝑇 =

(0.3, 0.3, 0.3, 0.5, 0.5) are given in Figure 2.2. For both 𝐻1and 𝐻2, Conventional-noRAR design 

had the lowest power and Conventional-RAR design had the highest power. The two Reuse 

designs had a power between that of the two Conventional designs, with Reuse-RAR higher than 

the Reuse-noRAR. RAR increased power in both Conventional designs and Reuse designs.  

Under 𝐻1, when there was a single drug that was better than the other drugs, 

Conventional-noRAR had a notably lower power than Reuse-noRAR. Given that both designs 

had exactly 900 observations, the reason to have such a big difference in power was that the 

independent logistic model used by Conventional-noRAR design did not control for patient 

specific variation while the hierarchical logistic model used by the Reuse-RAR did. On the other 

hand, we did not see a big difference between the Conventional-RAR and Reuse-RAR design. 

Two factors reduced the power advantage of the hierarchical logistic model used by Reuse-RAR 

design: (1) Reuse-RAR design ran faster than the Conventional-RAR and had less time to adapt; 

(2) RAR only applied to the first treatment of each participant in the Reuse-RAR while it applied 

to all the observations in Conventional-RAR. As a result, a smaller proportion of observations 

were assigned to the better treatments (Figure 2.5) and the efficient gain due to RAR in the 

Reuse-RAR design was less than in the Conventional-RAR design.   

Under 𝐻2, when there are two equally effective treatments, the power is much lower than 

under 𝐻1 across the designs and scenarios. In section 2.6, we define power as the proportion of 

simulations that meet the success threshold: Pr(𝑗 = 𝑗𝑚𝑎𝑥 ) > 𝛿. Treatment 4 and treatment 5 

compete against each other under 𝐻2 and the probability of meeting success threshold is much 
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lower than in 𝐻1. The success criterion we choose is not appropriate when there is no single 

winner arm.  We will discuss some other options in the discussion section.  

 

 

Figure 2.2 Power under 𝐻1 and 𝐻2 

 

2.3.2 Number of participants enrolled 

The numbers of participants enrolled in different scenarios are shown in Figure 2.3. 

Conventional-noRAR and Conventional-RAR design enrolled 900 participants in all scenarios. 

Reuse-noRAR and Reuse-RAR designs enrolled much fewer participants than the two 

conventional designs (less than 450) owing to their ability to reuse participants. The reduction in 

number of participants enrolled in the Reuse designs is the greatest when the accrual rate is low 

and it decreases gradually as accrual rate increases. Reuse-RAR enrolled slightly more 

participants than the Reuse-noRAR. This is because Reuse-RAR design assigns more 

participants to the better drugs as their initial treatment, which in turn deceases the average 

number of periods per participant. Consequently, with a fixed number of observations (900) for 

all designs, the number of participants enrolled in the Reuse-RAR is more than the Reuse-

noRAR. 
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Figure 2.3 Number of participants enrolled 

 

2.3.3 Trial duration:  

Trial duration for different scenarios are presented in Figure 2.4. It is directly related to 

the number of participants enrolled. Conventional-noRAR and conventional-RAR had roughly 

the same trial duration due to the same number of participants enrolled (900). The two Reuse 

designs had a much shorter trial duration than the two Conventional designs. The reduction in 

trial duration was the highest when accrual rate is low. And Reuse-RAR had a slight longer trial 

duration than the Reuse-noRAR. 

 

Figure 2.4 Trial duration in weeks 

 



25 

 

2.3.4 Proportion of observations that received treatment 5  

The proportion of observations that received treatment 5 (the best treatment under 𝐻1) in 

different scenarios are shown in Figure 2.5. Under 𝐻0, 20% of observations received treatment 5 

regardless of scenarios and designs. Under 𝐻1 and 𝐻2, the rates were about 20% for both 

Conventional-noRAR and Reuse-noRAR with reuse-noRAR slightly higher. Conventional-RAR 

had the highest proportion of observations receiving treatment 5, and it was followed by Reuse-

RAR.    

 

 

Figure 2.5 Proportion of observations received treatment 5 

 

2.3.5 Compare Reuse-RAR(complete) and Reuse-RAR  

In the introduction section, we pointed out that, the RAR randomization only applied to 

the initial treatment of each participant in order to avoid overly complicating trial conduction. 

We call this approach Reuse-RAR. We can further improve the efficiency of the Reuse-RAR 

design by increasing the aggressiveness of adaption to allow RAR randomization for the 

subsequent treatment assignments. Specifically, instead of using sampling without replacement 

to determine the order of subsequent treatments, 𝑣𝑗 of the remaining treatments were normalized 

and used to randomly assign treatment for the next period.  This approach is called Reuse-
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RAR(complete). Simulations were conducted to assess the impact of Reuse-RAR(complete) on 

operating characteristics. Figure 2.6 compares Reuse-RAR(complete)  and Reuse-RAR  under 

𝐻1 when the accrual rate is 3 and participant variation is 0.25.  The Reuse-RAR(complete)  

assigned slightly more observations to the best arm and increased power slightly. The number of 

participants enrolled and the trial duration are almost identical.  
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Figure 2.6 Compare Reuse-RAR(complete) and Reuse-RAR(initial) 

 

2.3.6 Participant dropouts  

In this section, we explored the impact of participant dropouts on operating 

characteristics. Figure 2.7 shows simulation result comparing the scenarios with 10% dropouts 

and the scenarios with no dropouts when accrual rate is 3 and participant variation is 0.25. 

Overall, in scenarios with a 10% dropout, the number of assessable observations decreased by 

around 10% and the power decreased by around 4% across all designs. While trial duration and 

number of participants enrolled were not affected by the dropouts in the Conventional-RAR and 

Conventional-noRAR design, they were slightly higher in the Reuse-RAR and Reuse-noRAR 

design when there was a 10% dropouts. Nonetheless, in both scenarios with or without dropouts, 
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the Reuse-RAR and Reuse-noRAR design were much more efficient in terms of trial duration 

and number of participants enrolled.       

 

 

Figure 2.7 Compare scenarios with a 10% dropout with scenarios with no dropouts 

 

2.4 Conclusion  

Our simulations showed that, of the four designs, Reuse-RAR is the most efficient design 

which can achieve a higher power with a shorter trial duration and a smaller number of 

participants. Conventional-noRAR is the least efficient design. RAR does improve efficiency in 

both Conventional designs and Reuse designs.  

When compared with Reuse-noRAR design, Reuse-RAR has a slightly higher power with 

a comparable number of participants and trial duration. This efficiency improvement is achieved 

by assigning more participants to the promising treatments.  
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When compared with Conventional-RAR design, the Reuse-RAR design can achieve a 

slightly lower power with a much smaller number of participants and a much shorter trial 

duration, especially when the accrual rate is low. This efficiency improvement is achieved by 

reusing participants, and it goes beyond the conventional-RAR design’s efficiency gain by 

assigning more participants to the promising arms. However, when the accrual rate increases, the 

efficiency gain decreases. This is because the Reuse-RAR runs much faster than the 

Conventional-RAR design and it has less time for the trial to adapt.  

2.5 Discussion 

The proposed Reuse-RAR design belongs to the large class of RAR designs. The 

aggressiveness and timing of adaptation have a significant impact on the RAR performance (1). 

Reuse-RAR(complete) can further improve the efficiency of the Reuse-RAR design by 

increasing the aggressiveness of adaption to allow RAR randomization for the subsequent 

treatment assignments. Our simulations showed that, compared with Reuse-RAR, Reuse-

RAR(complete)  assigned slightly more observations to the best arm and increased the power 

slightly.  However, the efficiency gain was at the cost of increased trial conduction complexity, 

which has been one of the major critiques of RAR design. Whether to employ Reuse-

RAR(complete) should be decided case by case by balancing the efficiency gain against the 

increased trial conduction complexity. 

The two designs that reuse participants (Reuse-RAR and Reuse-noRAR) require 

participants to be engaged in the study longer than Conventional-RAR and Conventional-

noRAR. In the extreme case where participants do not respond to any treatments, the time 

required to be engaged in the Reuse-RAR and Reuse-noRAR could be as long as 5 times that of 

the Conventional-RAR and Conventional-noRAR. As a result, Reuse-RAR and Reuse-noRAR 
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are more susceptible to dropouts. Simulations in section 3.7 showed that participant dropouts 

slightly increase the trial duration and number of participants for the designs that reuse 

participants, but not for the conventional designs. However, simulations also showed that, even 

in the presence of participant dropouts, Reuse-RAR and Reuse-noRAR performed better than the 

conventional designs by achieving a similar power with a much shorter trial duration and less 

participants. Another related concern caused by the long engagement time required in the Reuse 

designs is that participant characteristics, including disease stage, drug exposure, treatment 

resistance, etc., can evolve during the course of the treatment. Bias can be introduced because 

observations at later treatment periods may have more severe conditions or higher drug 

resistance. To mitigate the bias, we can expand the model by adjusting related participant 

characteristics. Furthermore, covariate-adjusted adaptive randomization (17), which allows 

allocation rules to consider both patient response and patient characteristics, can be used to 

further improve RAR.  

In the simulations, we assumed there was a carryover effect that was consistent across 

different participants and different treatments. This assumption may not be true in  general. The 

model can be modified to better capture the carryover effect according to substantive subject 

matter knowledge. Another frequently used approach is to include a washout period between two 

treatments. Including a washout period will increase the trial duration for Reuse-RAR and 

Reuse-noRAR. The extent to which the washout period will affect the trial duration is 

determined by the length of the washout period.   

In section 3.1, simulations showed that the power was much lower under 𝐻2, when there 

were two equally effective arms, than under 𝐻1, when there was a single treatment that was 

better than the rest of the treatments. Power was defined as the proportion of simulations that 
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meet the success threshold: Pr(𝑗 = 𝑗𝑚𝑎𝑥) > 𝛿. Under 𝐻2,  treatment 4 and treatment 5 compete 

against each other and the likelihood of having an arm to meet the success threshold 

Pr(𝑗 = 𝑗𝑚𝑎𝑥) > 𝛿 is very low. For scenarios with multiple arms that are equally effective, the 

success criterion we chose is not appropriate. An option is to assess the probability of being a 

better arm when compared with other arms. The success criterion can be defined as 

Pr(𝜃𝑗 > 𝜃𝑗′) > 𝛿′ for any 𝑗 ∈ (1,2,3,4,5) 𝑎𝑛𝑑 𝑗′ ∈ (1,2,3,4,5).    

Freidlin et al. (18) pointed out, for studies with only 2 arms, the RAR performs poorly 

and results in a lower power due to the deviation from the optimal 1:1 randomization. We should 

use fixed 1:1 randomization in two arms studies, if optimizing power is of primary concern (a 

caveat would be if one is willing to sacrifice a bit of power for placing participants on the better 

arm, see Wick et al. (19)). However, the reusing participant scheme is still relevant, and it may 

result in smaller and shorter clinical trial. The benefit may be small to moderate due to the fact 

each participant will contribute maximum of 2 observations. More research is needed to evaluate 

the performance of the reusing participants scheme in two arm studies. The Reuse participants 

scheme is best suit for studies with multiple arms and with a slow accrual rate.  
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Chapter 3 : Innovative Bayesian EMAX model with a mixture of normal 

distributions for dose-response in clinical trials 
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3.0 Abstract 

When a dose-response relationship is monotonic, the EMAX model has been shown to 

provide a good empirical fit for designing and analyzing dose-response data across a wide range 

of pharmaceutical studies. However, the EMAX model has never been applied to a finite mixture 

distribution. Motivated by a proposal investigating DHA dose effect on preterm birth (PTB, <37 

weeks gestation) rate, we developed an innovative Bayesian EMAX mixture model incorporating 

the three normal components finite mixture model into the EMAX framework. The proposed 

Bayesian EMAX mixture model analyzes gestational age as a continuous variable, which allows 

for statistically efficient estimates of PTB rate using various cut point with the same 

parsimonious model. For example, we can estimate the rate of early PTB (ePTB, <34 weeks 

gestation), PTB (<37 weeks gestation), and late-term birth (>41 weeks gestation) using the same 

model. We compared our proposed EMAX mixture model with an EMAX logistic model and an 

independent doses logistic model for a dichotomized endpoint using extensive simulations. 

Across the scenarios under consideration, the EMAX mixture model achieved higher power than 

the EMAX logistic model and the independent doses logistic model in detecting the effect of 

DHA supplementation on the PTB rate. The EMAX mixture model also resulted in smaller mean 

squared errors (MSE) in PTB rate estimates.  

3.1 Introduction 

Preterm birth (PTB) is defined as birth before 37 weeks gestation.  One in ten U.S. 

pregnancies ends in PTB, yielding nearly half a million preterm infants born each year. PTB is 

the primary cause of infant mortality, costs the U.S. health system billions of dollars annually, 

and, for many of the infants who survive, results in continued individual, family, and societal 

challenges due to associated morbidity and disabilities. Despite the significant investment of the 
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National Institutes of Health (NIH), the Centers for Disease Control and Prevention (CDC), and 

foundations such as the March of Dimes toward understanding and preventing PTB, researchers 

have only recently identified prevention strategies for spontaneous PTB. In a November 2018 

Cochrane Review (1), researchers concluded there was strong evidence that consumption of the 

omega-3 fatty acid docosahexaenoic acid (DHA) could reduce PTB by 11%, and early PTB 

(ePTB, <34 weeks gestation) by 42%. These results are compelling. However, additional 

research is necessary to move from an observed effect of DHA to a scalable preventive 

intervention for PTB. The critical issue is that the DHA dose needed to reduce PTB is unknown. 

At present, the National Academy of Medicine does not set a Dietary Reference Intake (DRI) for 

DHA in pregnancy because the amount of DHA required to reduce PTB has not been 

established. Most prenatal supplements available in the U.S. contain ~0.2g DHA, a much lower 

dose than provided in most randomized controlled trials (RCTs) included in the Cochrane 

Review (≥0.6g DHA). A dose-response study is necessary to develop evidence-based policy and 

advise women about the DHA dose needed to reduce PTB. Our goal is to identify an efficient 

trial design to evaluate the effect of DHA dose on PTB.  

One frequently used dose-response model is the pairwise independent doses model.  In 

this model, no functional relationship is assumed between the dose and effect, and all doses are 

modeled independently and compared with each other. The independent doses model is often 

inefficient and results in lower power because of its lack of functional relationship assumption. 

When the dose-response relationship can be assumed monotonic, an EMAX (MAXimum Effect) 

model has been shown to provide a good empirical fit for designing and analyzing dose-response 

data across a wide range of pharmaceutical studies (2). The EMAX model assumes the dose-

response relationship follows a nonlinear monotonic function with a parameter representing the 
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maximum effect that can be achieved when dose approaches to infinity and another parameter 

representing the dose that achieves 50% of the maximum effect.  One option to evaluate the 

DHA dose effect on PTB is to apply the EMAX model treating PTB as a dichotomous endpoint. 

However, studies have shown that dichotomizing continuous endpoints results in a loss of 

information and reduced power (3,4,5). We propose a Bayesian EMAX model that analyzes 

gestational age as continuous.  Schwartz et al. showed that the distribution of gestational age can 

be described by a mixture of three normal distributions (6). Thus, we developed our EMAX 

mixture model for a continuous endpoint with a mixture distribution.  We compared our model 

with two models that dichotomize gestational age: the EMAX model (EMAX logistic model) 

and the independent doses logistic model. Extensive simulations showed that the EMAX Mixture 

model achieved a much higher power for detecting the DHA dose effect on PTB than the other 

two models and resulted in much smaller mean squared errors (MSEs) in estimates of PTB rates. 

Additionally, the EMAX Mixture model is attractive because it allows for statistically efficient 

estimates of PTB rates using different gestational age cut-points within the same parsimonious 

model. For example, we can estimate the rate of early preterm birth (<34 weeks gestation), 

preterm birth (<37 weeks gestation), and late-term birth (>41 weeks gestation) using the same 

model.  

The remainder of the article is organized as follows. In Sections 2.1 and 2.2, we describe 

the study motivation and cover the three statistical models in detail (EMAX Mixture, EMAX 

logistic, and independent doses logistic). Section 2.3 describes the simulation scenarios used to 

assess model operating characteristics. Section 2.4 is model calibration and type I error, and 

Section 2.5 provides simulation details.  The simulation results are summarized in Section 3. In 

Section 4, we apply the three models to a simulated dataset to illustrate the models' application. 
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In Section 5, we conclude from our analysis and discuss the advantages and limitations of the 

EMAX Mixture model and future work. 

3.2 Methods 

3.2.1 Study summary  

Our research was motivated by a proposal whose primary aim was to evaluate the dose-

response relationship for  DHA supplementation on PTB by leveraging the data from six NICHD 

supported randomized clinical trials (RCTs) of DHA supplementation in pregnancy conducted 

between 2006 and 2020 (R21 HD058269, R21 HD059019; R01 HD084586; R01 HD086001, 

R01 HD047315, R01 HD083292). The trials combined enrolled over 2000 U.S. women with a 

singleton pregnancy in four metropolitan areas (Kansas City, Chicago, Cincinnati, and 

Columbus). Six DHA doses were used across the trials:  0g (n=350), 0.2g (n=700), 0.45g 

(n=175), 0.6g (n=180), 0.8g (n=150) and 1g (n=550).  

As a secondary aim, DHA supplementation was hypothesized to have a bigger effect on 

ePTB and/or PTB in participants with a lower phospholipid DHA level at enrollment.  By 

dividing the participants into two groups according to their phospholipid DHA (as a percent of 

total fatty acids) at enrollment (Low: phospholipid DHA <6%; High: phospholipid DHA ≥ 6%), 

the proposal wanted to determine if phospholipid DHA status at enrollment influences the effect 

of DHA supplement on ePTB and/or PTB.  

Our goal was to identify an efficient trial design to evaluate the primary and secondary 

aims of the proposal. 

3.2.2 Statistical models 

Let 𝑇𝑑𝑖  denote the gestational age for participant 𝑖 in arm 𝑑, where 𝑑 represents the DHA 

supplement dose and can take values of 0g, 0.2g, 0.45g, 0.6g, 0.8g, and 1g. The number of 
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participants in each arm, denoted by 𝑛𝑑, is 350, 700, 175, 180, 150, and 550 for the 6 doses, 

respectively. Let 𝑦𝑑 be the number of ePTBs in dose 𝑑, which can be determined by 𝑦𝑑 =

∑ 𝐼(𝑇𝑑𝑖 < 34)
𝑛𝑑
𝑖=1 , where 𝐼(𝑥 < 𝑎) = {

1  𝑖𝑓 𝑥 < 𝑎

0   𝑖𝑓 𝑥 ≥ 𝑎
.  This section will describe statistical models 

for the independent doses logistic model, EMAX logistic model, and the EMAX Mixture model.  

1.2.2.1Independent doses logistic model 

Let 𝑝𝑑 be the probability of an ePTB in dose 𝑑. The number of ePTBs in dose d follows a 

binomial distribution, 𝑦𝑑~𝐵𝑖𝑛(𝑛𝑑 , 𝑝𝑑), and it is modeled independently for each dose. A normal 

distribution 𝑁(0,52) is used as a vague prior for 𝜃𝑑 = log (
𝑝𝑑

1−𝑝𝑑
). When transformed back to 

probability scale using an anti-logit function,  the prior yields a 95% equal-tailed interval of 

(0.001, 0.999). Hamiltonian Monte Carlo (Betancourt; Gelman et al., 2014) is used to obtain the 

posterior distribution of 𝜃𝑑 . The posterior probability 𝑝𝑑 can be calculated using  𝑝𝑑 =

 
exp(𝜃𝑑)

1+exp(𝜃𝑑)
. The posterior probability of dose 𝑑 being better than the control arm, 𝑃𝑟(𝑝𝑑 <

𝑝0|𝑑𝑎𝑡𝑎), can be estimated as the proportion of Monte Carlo draws satisfying 𝑝𝑑 < 𝑝0. The trial 

success is achieved whenmax(𝑃𝑟(𝑝𝑑 < 𝑝0|𝑑𝑎𝑡𝑎)) > 𝛿𝑖𝑛𝑑.1. The threshold 𝛿𝑖𝑛𝑑.1 is chosen by 

simulations to ensure a 5% type I error rate.  

To determine whether phospholipid DHA at enrollment influences the effect of DHA 

supplementation, we model the high phospholipid DHA cohort and low phospholipid DHA 

cohort using the same model described above, but separately. We denote the odds ratio between 

the arm with the highest dose (𝑑 =1g) and the control arm (𝑑 = 0𝑔) using 𝑂 =
𝑝1

𝑝0
. The posterior 

probability of having a bigger DHA effect in the low phospholipid DHA cohort than in the high 

phospholipid DHA cohort is Pr(𝑂𝐿 < 𝑂𝐻|𝑑𝑎𝑡𝑎). It can be calculated as the proportion of Monte 
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Carlo draws satisfying 𝑂𝐿 < 𝑂𝐻 . Trial success is achieved when Pr(𝑂𝐿 < 𝑂𝐻|𝑑𝑎𝑡𝑎) > 𝛿𝑖𝑛𝑑.2. 

The threshold 𝛿𝑖𝑛𝑑.2 is chosen by simulations to ensure a 5% type I error rate.  

1.2.2.2 EMAX logistic model 

As in the independent doses logistic model, 𝑦𝑑~𝐵𝑖𝑛(𝑛𝑑, 𝑝𝑑). Instead of modeling 𝜃𝑑  

independently for each dose 𝑑, the EMAX function is used to model the relationship between 

𝜃𝑑  and 𝑑: 𝜃𝑑 =  𝑎1 +
𝑎2∗𝑑

𝑑+𝑎3
.  

• 𝑎1 is a constant offset. When 𝑑 = 0, 𝑎1 determines 𝜃0  solely, which in turn determines 

the ePTB rate in the control arm.  

• 𝑎2 is a scalar coefficient reflecting the dose effect. It is the theoretical maximum effect 

above the constant offset that can be achieved. As dose tends to infinity the theoretical 

maximum efficacy on the logit scale is 𝑎1 + 𝑎2, thus the model is called the EMAX 

model.  

• 𝑎3 is a positive scalar representing the effective dose strength that achieves 50% of the 

theoretical maximal effect above the constant offset. For an effective dose of 𝑑=𝑎3 the 

efficacy on logit scale is 𝑎1 +
𝑎2

2
.  

A non-informative prior distribution 𝑁(0,4) is used for 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎4. For 𝑎3, a half-

normal prior N(0,1) is used so that 𝑎3 can take positive values only. Hamiltonian Monte Carlo 

(Betancourt; Gelman et al., 2014) is used to obtain the posterior distribution of 𝑎1, 𝑎2,and 𝑎3 and 

the posterior probability 𝑝𝑑 can be calculated using  𝑝𝑑 =  
exp(𝜃𝑑)

1+exp(𝜃𝑑)
, where 𝜃𝑑 =  𝑎1 +

𝑎2∗𝑑

𝑑+𝑎3
. It 

is easy to prove that when 𝑎2 is negative, 𝜃𝑑  decreases as 𝑑 increases. Therefore, the success of a 

trial is defined as having a posterior probability of 𝑎2< 0 greater than a cutoff value, Pr(𝑎2 < 0) 

>𝛿𝐸𝑀𝐴𝑋.1. The threshold 𝛿𝐸𝑀𝐴𝑋.1 is chosen by simulations to ensure a 5% type I error rate. 
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To determine whether phospholipid DHA at enrollment influences the effect of DHA 

supplementation on PTB, we model the high and low phospholipid DHA cohorts using the same 

model described above separately. Let 𝑎2𝐻 and 𝑎2𝐿 denote EMAX parameters 𝑎2 in the high and 

low phospholipid DHA cohorts, respectively. The success of the trial is defined as having a 

posterior probability of 𝑎2𝐿 < 𝑎2𝐻 greater than a cutoff,  Pr(𝑎2𝐿 < 𝑎2𝐻|𝑑𝑎𝑡𝑎) > 𝛿𝐸𝑀𝐴𝑋.2, where 

Pr(𝑎2𝐿 < 𝑎2𝐻|𝑑𝑎𝑡𝑎) can be estimated using the proportion of Monte Carlo draws satisfying 

𝑎2𝐿 < 𝑎2𝐻,  and the threshold 𝛿𝐸𝑀𝐴𝑋.2 is chosen by simulations to ensure a 5% type I error rate. 

1.2.2.3 EMAX Mixture model 

In the finite mixture model developed by Schwartz et al.(6), gestational age 𝑇𝑑𝑖  follows a 

finite mixture model with three normal components that describe the mixture of high-, medium-, 

and low-risk groups: 𝑁1 = 𝑁(33.29,13.23), 𝑁2 = 𝑁(38.26, 2.48) , and 𝑁3 = 𝑁(39.59, 0.960). 

The probability distribution function of 𝑇𝑑𝑖  is  𝑓(𝑇𝑑𝑖|Δ1d , Δ2d , Δ3d) = 

Δ1dϕ(𝑇𝑑𝑖|33.29, 13.23) + Δ2dϕ(𝑇𝑑𝑖|38.26,2.48) + Δ3d𝜙(𝑇𝑑𝑖|39.59,0.96), where 

𝜙(𝑇|𝜇, 𝜎2) is the normal probability density function with mean 𝜇 and variance 𝜎2, and 

Δ1d , Δ2d , and Δ3d  are the mixture weights for arm 𝑑, which can take values between 0 and 1 and 

with Δ1d +  Δ2d +  Δ3d = 1. The three components represent the high, medium, and low-risk 

groups for ePTB and can model different populations by adjusting the mixture weights. The 

model was derived from the North Carolina Detailed Birth Record (NCDBR) registry, with 

336,129 records included in the final analysis. It is representative and has generalizability. It has 

been used successfully in other studies of PTB (12,13,14).  

Based on Schwartz’s finite mixture model, we propose a dose-response model that 

applies the EMAX function to finite mixture distributions. We call it the EMAX Mixture model. 

Let θ1d = log (
Δ1𝑑

Δ3𝑑
) represent the odds ratio of the mixture weights for the high- versus the low-
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risk groups’ normal components.  Similarly, θ2d = log (
Δ2𝑑

Δ3𝑑
) is the odds ratio for the medium- 

versus low-risk groups’ normal components.  The EMAX function is employed to model the 

relationship between the odds ratio comparing high- and low-risk groups, 𝜃1𝑑, and dose 𝑑. This 

relationship is given by  𝜃1𝑑 = 𝑎1 +
𝑎2𝑑

𝑑+𝑎3
. Without losing the model generalizability, we assume 

the odds ratio comparing medium- to low-risk groups, 𝜃2d, stays constant for all doses: 𝜃2𝑑 =

𝑎4.  

• 𝑎1 and 𝑎4 are the constant offsets. They determine the three mixture weights when the 

effective dose strength is 0: Δ10 =
exp(𝑎1)

1+exp(𝑎1)+exp (𝑎4)
 , Δ20 =

exp(𝑎4)

1+exp(𝑎1)+exp (𝑎4)
, and Δ30 =

1

1+exp(𝑎1)+exp (𝑎4)
. 

• 𝑎2 is the scalar coefficient reflecting the dose effect. When it is negative, as the dose 

increases the mixture weight of the 1st component (high risk) decreases and the mixing 

weights of the 2nd (median risk) and 3rd (low risk) components increase. 𝑎2 determines 

the theoretical maximum effect (the minimum weight of the 1st component) above the 

constant offset that can be achieved. When the effective dose strength is not 0: Δ1d =

exp(𝑎1+
𝑎2𝑑

𝑑𝑖+𝑎3
)

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)+exp (𝑎4)

 , Δ2d =
exp(𝑎4)

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)+exp (𝑎4)

, and Δ3d =
1

1+exp(𝑎1+
𝑎2𝑑

𝑑𝑖+𝑑
)+exp (𝑎4)

. 

• 𝑎3 is a positive scalar representing the effective dose strength that achieves 50% of the 

theoretical maximal effect.  

We use a vague prior N(0,4) for 𝑎1, 𝑎2, and 𝑎4, and a half-normal N(0,1) for 𝑎3 to restrict 

it to be positive. Hamiltonian Monte Carlo (Betancourt; Gelman et al., 2014) is used to obtain the 

posterior distribution of 𝑎1, 𝑎2,𝑎3, and 𝑎4. The posterior distribution for mixture weights 

Δ1𝑑 , Δ2𝑑 , Δ3𝑑 can be calculated using the formulas given above. The posterior probability of 
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having ePTB (<34 weeks gestation age) for dose 𝑑 can be calculated using 𝑝𝑑 =

∫ 𝑓(𝑡|Δ1d , Δ2d , Δ3d)
34

0 𝑑𝑡. By changing the upper integration bound, we can calculate the 

posterior probability of PTB rates at different cutoffs. For example, the posterior probability of 

having PTB ( <37 weeks gestation age) is ∫ 𝑓(𝑡|Δ1d , Δ2d , Δ3d)
37

0 𝑑𝑡. Allowing for statistically 

efficient PTB rate estimates using various cut points with the same parsimonious model makes 

the EMAX Mixture model attractive.  

The success of a trial is defined as having a posterior probability of 𝑎2 < 0 greater than a 

threshold, Pr(𝑎2 < 0) >𝛿𝐸𝑀𝐴𝑋_𝑀𝑖𝑥.1. The posterior probability of 𝑎2 < 0 can be estimated using 

the proportion of Monte Carlo draws with 𝑎2 < 0. 𝛿𝐸𝑀𝐴𝑋_𝑀𝑖𝑥.1is chosen using simulations to 

ensure a 5% type I error rate.  

The high and low baseline phospholipid DHA cohorts are modeled separately using the 

same model described above to investigate whether phospholipid DHA at enrollment iinfluences 

the effect of DHA supplementation. Let 𝑎2𝐻 and 𝑎2𝐿 denote the EMAX parameters 𝑎2 in the 

high and low phospholipid DHA cohorts, respectively. The success of the trial is defined as 

Pr(𝑎2𝐿 < 𝑎2𝐻|𝑑𝑎𝑡𝑎) > 𝛿𝐸𝑀𝐴𝑋_𝑀𝑖𝑥.2. The posterior probability of 𝑎2𝐿 < 𝑎2𝐻 can be estimated 

using the proportion of Monte Carlo draws with 𝑎2𝐿 < 𝑎2𝐻. 𝛿𝐸𝑀𝐴𝑋_𝑀𝑖𝑥.2is chosen using 

simulations to ensure a 5% type I error rate. 

3.2.3 Simulation scenarios 

Two sets of simulations were performed to compare the operating characteristics of the 

three models in consideration. The first set of simulations evaluates the dose-response 

relationship for the effect of DHA supplement. The second set evaluates whether phospholipid 

DHA at enrollment impacts the effect of DHA supplement. 
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Four virtual scenarios (Table 3.1) with realistic ePTB rates derived from an existing 

clinical trial were used to evaluate the dose-response relationship between DHA and ePTB. The 

“expected” scenario represents the most likely response we believe based on the result from 

Kansas University DHA Outcome Study (KUDOS) (7). The “optimistic” and “pessimistic” 

scenarios reflect the 97.5 th and 2.5th percentiles of the expected response. Lastly, the improbable 

scenario that serves as our null hypothesis is labeled “no effect” in Table 3.1. In this scenario, the 

assumed rates of ePTB are the same across different doses. Therefore, the extent to which this 

scenario is “successful” actually reflects the Type I error rate.  

 

      Dose (g/day)       

Scenario 

0 

(n=350) 

0.2 

(n=700) 

 
0.6 

(n=180) 

0.8 

(n=150) 

1 

(n=550) 

0.45 

(n=175) 

1 (optimistic) 6.27% 4.90% 3.91% 3.52% 3.13% 2.85% 

2 (expected) 3.34% 2.60% 2.00% 1.74% 1.47% 1.27% 

3 (pessimistic) 1.56% 1.17% 0.87% 0.75% 0.63% 0.54% 

4 (no effect) 3.34% 3.34% 3.34% 3.34% 3.34% 3.34% 
 

Table 3.1 Virtual scenarios (rate of ePTB) for evaluating dose-response relationship for the effect of DHA. 

 

Simulation scenarios investigating whether phospholipid DHA at enrollment impact 

DHA supplement's effect are given in Table 3.2. In the “optimistic” scenario, the high 

phospholipid DHA group has a very low but constant ePTB rate of 1.56% across different doses. 

The low phospholipid DHA group has decreasing ePTB rates that range from 11.01% when 𝑑 =

0𝑔 to 4.16% when 𝑑 = 1𝑔. The average ePTB rates of the high and low groups are equal to the 

“optimistic” scenario in Table 3.1 (6.27%, 4.9%, 3.91%, 3.52%, 3.31%, and 2.85% for dose of 

0g, 0.2g, 0.45g, 0.6g, 0.8g, and 1g, respectively). The “no effect” scenario represents the null 
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hypothesis where both high and low groups have ePTB rates equal to the “optimistic” scenario in 

Table 3.1. 

        Dose (g/day)     

Scenario DHA  

0 

(n=350) 

0.2 

(n=700) 

0.45 

(n=175) 

0.6 

(n=180) 

0.8 

(n=150) 

1 

(n=550) 

1 (optimistic) High 1.56% 1.56% 1.56% 1.56% 1.56% 1.56% 

 Low 11.01% 8.19% 6.20% 5.43% 4.69% 4.16% 

2 (no effect) High 6.27% 4.90% 3.91% 3.52% 3.13% 2.85% 

  Low 6.27% 4.90% 3.91% 3.52% 3.13% 2.85% 
 

Table 3.2 Scenarios (rate of ePTB) for investigating whether DHA status at enrollment impacts the effect of DHA 

supplementation. 

 

3.2.4 Model calibration 

According to the U.S. Department of Health and Human Services Food and Drug 

Administration, Center for Drug Evaluation and Research (CDER), and Center for Biologics 

Evaluation and Research (CBER), the type I error rate can be estimated by the proportion of 

simulations that meet the success threshold in null scenarios (8), and power can be estimated by 

the proportion of simulations that meet the success threshold in alternative scenarios. To make 

designs comparable, success thresholds are chosen to achieve similar type I error rates across 

designs using simulations. This process is called model calibration. For example, Figure 3.1 is 

the plot of the proportion of successes (type 1 error rate) by threshold values (𝛿𝐸𝑀𝐴𝑋_𝑀𝑖𝑥.1) based 

on simulations using the EMAX Mixture model under the null scenario. As the threshold 

increases, the proportion of simulations meeting the success criterion decreases. When the 

threshold is 0.845, the type I error rate is roughly 5%. The more simulations we run for each 

scenario, the more precise the type I error rate can be. Using the same method, we identified 

𝛿𝐸𝑀𝐴𝑋_𝑀𝑖𝑥.1 = 0.845 and 𝛿𝐸𝑀𝐴𝑋𝑀𝑖𝑥,2 = 0.74 for the EMAX Mixture model, 𝛿𝐸𝑀𝐴𝑋.1 = 0.955 and 
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𝛿𝐸𝑀𝐴𝑋,2 = 0.92 for the EMAX logistic model, and 𝛿𝑖𝑛𝑑.1 = 0.992 and 𝛿𝐼𝑛𝑑,2 = 0.97 for the 

independent doses logistic model. With these chosen thresholds, the null scenarios' success rates 

were controlled under 5% in all models. 

 

Figure 3.1 Type I error rate (Proportion of success) by threshold (δ_(EMAX_Mix.1)) based on simulations for the 

EMAX Mixture model in the null scenario 

 

3.2.5 Simulations 

For the independent doses logistic model and the EMAX logistic model, we simulated the 

number of participants with ePTB (𝑦𝑑) using binomial distributions with 𝑛𝑑 ∈ {350, 700, 175, 

180, 150} and 𝑝𝑑 given in Table 3.1 and Table 3.2.  

For the EMAX mixture model, we first used a trial and error method to find values of  

(𝑎1, 𝑎2,𝑎3, 𝑎4) that would result in the early preterm birth rates specified in Table 3.1 and Table 
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3.2. These values are given in Table 3.3 and Table 3.4, respectively. We then calculated (Δ1𝑑 , 

Δ2𝑑 , Δ3𝑑) for each dose using the formulas: Δ1d =
exp(𝑎1+

𝑎2𝑑

𝑑+𝑎3
)

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)+exp (𝑎4)

 , Δ2d =

exp(𝑎4)

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)+exp (𝑎4)

, and Δ3d =
1

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)+exp (𝑎4)

. And finally, we used the normal 

mixture distributions 𝑓(𝑇𝑑𝑖|Δ1d , Δ2d , Δ3d) to generate gestational ages 𝑇𝑑𝑖 .  

Scenario 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

1 (optimistic) -2.00 -1.85 1.15 -2.16 

2 (expected) -2.64 -3.6 2.5 -1.72 

3 (pessimistic) -3.53 -3.3 2 -2.52 

4 (no effect) -2.64 0 NA -1.72 
 

Table 3.3 Parameters used to simulate gestation ages for scenarios in Table 1. 

 

Scenario DHA  𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

1 (optimistic) High -3.53 0 NA -2.52 

 Low -1.30 -2.5 1.15 -1.85 

2 (no effect) High -2.00 -1.85 1.15 -2.16 

  Low -2.00 -1.85 1.15 -2.16 
 

Table 3.4 Parameters used to simulate gestation ages for scenarios in Table 2.3. 

For each model and each scenario in Table 3.1 and Table 3.2, we ran 10,000 simulations. 

The maximum 95% margin of error for a binomial is 1.96√0.5 ∗ 0.5/10,000 < 0.01, so for a 

type I error rate of 0.05 and power of 0.90, the margin of error is 1.96√0.05 ∗ 0.95/1000 =

0.004 and  is 1.96√0.1 ∗ 0.9/1000 = 0.005, respectively.  

The simulations were implemented in R (9 and 10) and Stan (11). R was used to generate 

gestation age data, and Stan was used to perform analyses.  
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3.3 Simulation Results 

In this section, we report the simulation results comparing the three models under 

different scenarios described in Section 2.3.  We assessed two critical aspects of model 

performance: statistical power in detecting the effect of DHA supplementation on the PTB rate 

and mean squared errors (MSE) and bias in PTB rate estimates.  

3.3.1 Power 

Table 3.5 shows the simulation results for power (proportions of success simulations) for 

the optimistic, expected, and pessimistic scenarios in Table 3.1, where the goal was to evaluate 

the dose-response relationship. The EMAX Mixture model had the highest power and 

independent doses logistic model had the lowest power across all scenarios. In the order of 

EMAX Mixture, EMAX logistic, and independent doses logistic, power was 99.98%, 84.89%, 

and 59.86% in the optimistic scenario; 99.79%, 73.35%, and 48.43% in the expected scenario; 

and 96.76%, 48.92%, and 24.75% in the pessimistic scenario.  

Table 3.6 shows the simulation results for power for the optimistic scenario in Table 3.2, 

where the aim was to investigate whether DHA level at enrollment impacted the effect of DHA 

supplement. The EMAX Mixture model had the highest power of 95.4%, and the EMAX logistic 

model of 35.1% followed it. The independent doses logistic model had the lowest power of 

27.6%.  

Compared with the independent doses logistic model, the EMAX Mixture and EMAX 

logistic models are more efficient because they take advantage of the monotonic dose-response 

relationship by using the EMAX function. Compared with the EMAX logistic model, the EMAX 

Mixture model is more efficient because it treats gestational age as a continuous variable, while 
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the EMAX logistic model uses a dichotomized gestational age variable. Studies have shown that 

dichotomizing continuous endpoints results in a loss of information and reduced power (3,4,5). 

Scenario 

EMAX 

Mixture 

EMAX 

logistic 

Independent 

logistic 

1 (optimistic) 99.98% 84.89% 59.86% 

2 (expected) 99.79% 73.35% 48.43% 

3 (pessimistic) 96.76% 48.92% 24.75% 
 

Table 3.5 Power for the effective scenarios in Table 1 where the goal was to evaluate the dose-response relationship 

for effect of DHA supplement on ePTB 

 

Scenario 

EMAX 

Mixture 

EMAX 

logistic 

Independent 

logistic 

1 (optimistic) 95.4% 35.1% 27.6% 
 

Table 3.6 Power for the effective scenarios in Table 2 where the aim was to investigate whether DHA level at 

enrollment had an impact on the effect of DHA supplement on PTBs 

3.3.2 MSE and bias 

As described in Section 2.2, the posterior distribution of the probability of ePTB, 𝑝𝑑, can 

be obtained using Monte Carlo simulations. Let �̂�𝑑|𝑑𝑎𝑡𝑎  denote the posterior mean of 𝑝𝑑, the 

expected posterior probability of ePTB can be obtained as the average of �̂�𝑑|𝑑𝑎𝑡𝑎 across 

simulations, 𝐸(�̂�𝑑|𝑑𝑎𝑡𝑎) =
∑ 𝑝𝑑𝑘|𝑑𝑎𝑡𝑎

𝑆
𝑘=1

𝑆
, where S is the number of simulations. The sample 

variance,�̂�𝑑, can be calculated as  �̂�𝑑 =
∑ (𝑝𝑑𝑘

−𝐸(𝑝𝑑))
2

𝑆
𝑘=1

𝑆−1
. The bias is the difference between the 

expected posterior probability 𝐸(�̂�𝑑) and the true probability 𝑝𝑑
𝑇, 𝑏𝑖𝑎𝑠 = 𝐸(�̂�𝑑) − 𝑝𝑑

𝑇. The mean 

squared error is 𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + �̂�𝑑.  

Table 3.7 shows the simulation results for MSE× 105 of 𝐸(�̂�𝑑). Across all scenarios and 

doses, the EMAX Mixture model had the lowest MSE, and the independent doses logistic model 
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had the highest MSE. When averaged across different doses, MSE× 105 for the three models 

(EMAX Mixture, EMAX logistic, and independent doses logistic) were 1.1, 4.0, and 16.3, 

respectively, in the Optimistic scenario; 0.8, 2.1, and 8.2, respectively, in the Expected scenario; 

0.3, 0.9, 3.6, respectively, in the Pessimistic scenario; 0.8, 2 .8, and 14.1, respectively, in the no 

effect scenario.  

Table 3.8 shows the simulation result for bias× 103 of 𝐸(�̂�𝑑).  In most cases, 

independent doses logistic model had the lowest bias. EMAX Mixture and the EMAX logistic 

had a comparable amount of bias. Nevertheless, the differences were very small in comparison 

with sample variance.  

Scenario Model Dose(g/day) Average 

  0 0.2 0.45 0.6 0.8 1  

Optimistic 

EMAX Mixture 2.3 0.9 0.6 0.7 1.0 1.3 1.1 

EMAX logistic 11.0 3.0 2.0 2.2 2.6 3.0 4.0 

Independent logistic 18.2 6.8 25.7 20.0 21.8 5.1 16.3 

Expected 

EMAX Mixture 2.0 0.7 0.4 0.4 0.5 0.8 0.8 

EMAX logistic 6.0 1.6 1.0 1.0 1.3 1.7 2.1 

Independent logistic 10.1 3.7 13.2 9.6 10.2 2.3 8.2 

Pessimistic 

EMAX Mixture 0.9 0.3 0.2 0.1 0.2 0.3 0.3 

EMAX logistic 2.7 0.6 0.4 0.4 0.5 0.6 0.9 

Independent logistic 4.7 1.7 5.7 4.3 4.4 1.0 3.6 

No effect 

EMAX Mixture 1.6 0.6 0.5 0.6 0.7 0.9 0.8 

EMAX logistic 5.3 1.9 1.7 2.0 2.6 3.3 2.8 

Independent logistic 9.9 4.8 21.9 18.7 23.5 5.8 14.1 
 

Table 3.7 MSE × 105 of the expected estimated posterior ePTB rate 𝐸(�̂�𝑑|𝑑𝑎𝑡𝑎) 
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Scenario Model 

Dose(g/day) Average 

0 0.2 
0.4

5 
0.6 0.8 1  

Optimistic 

EMAX Mixture 0.4 -1.3 0.0 0.8 1.7 2.4 0.7 

EMAX logistic 1.1 -1.3 -0.2 0.5 1.3 1.9 0.5 

Independent logistic -0.1 0.0 0.1 -0.1 -0.1 0.0 0.0 

Expected 

EMAX Mixture 1.9 -1.3 -0.5 0.3 1.3 2.1 0.6 

EMAX logistic 1.6 -1.4 -0.5 0.4 1.4 2.2 0.6 

Independent logistic -0.1 0.0 0.1 -0.1 -0.1 -0.1 0.0 

Pessimistic 

EMAX Mixture 1.4 -0.7 -0.2 0.2 0.7 1.1 0.4 

EMAX logistic 1.2 -0.6 0.1 0.5 1.0 1.5 0.6 

Independent logistic 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 

No effect 

EMAX Mixture 1.6 0.4 0.0 -0.2 -0.2 -0.3 0.2 

EMAX logistic 2.0 0.5 -0.1 -0.2 -0.2 -0.1 0.3 

Independent logistic -0.1 0.1 0.0 0.1 -0.2 0.0 0.0 
 

Table 3.8 Bias× 103 of expected estimated posterior ePTB rate 𝐸(�̂�𝑑|𝑑𝑎𝑡𝑎) 

3.4 Application to a simulated data set 

To illustrate the three models' application, we simulated a dataset using the expected 

scenario in Table 3.1. We then applied the three models to the simulated dataset and reported the 

analysis results.   

3.4.1 Generating the simulated dataset 

According to Section 2.5, to simulate a cohort with the true ePTB rates in the expected 

scenario in Table 3.1, 𝑎1 =-2.64, 𝑎2 = -3.6, 𝑎3= 2.5, and 𝑎4 = -1.72. The mixture weights for 

each dose were calculated using the formulas in Section 2.5 and they are given in Table 3.9. 

Gestational ages were then simulated using the normal mixture distributions. The descriptive 

statistics of the simulated data are given in Table 3.10. For dose 0 g/day, 0.2 g/day, 0.45 g/day, 

0.6 g/day, 0.8 g/day, and 1g/day, we simulated 325, 690, 150, 175, 140, and 550 gestational ages, 

respectively. The mean gestational ages were 39.0, 39.1, 39.2, 39.1, 39.1, 39.2 weeks, 
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respectively. The proportions of ePTB (<34 weeks) were 3.7%, 3.2%, 2.0%, 1.7%, 1.4%, and 

1.5%, respectively.  The proportions of PTB (<37 weeks) were 8.0%, 7.8%, 5.3%, 6.9%, 7.1%, 

and 6.0%, respectively.   

Mixture 

weights 

Dose(g/day) 

0 0.2 0.45 0.6 0.8 1 

Δ1d  0.0570 0.0442 0.0337 0.0292 0.0246 0.0212 

Δ2d 0.1430 0.1449 0.1465 0.1472 0.1479 0.1484 

Δ3d 0.8000 0.8108 0.8197 0.8236 0.8275 0.8304 
    

Table 3.9 Mixture weights used to simulate dataset. 

 

Dose 

(g/day) n mean sd min Q1 median Q3 max 

ePTB 

(%) 

PTB 

(%) 

0 325 39.0 1.8 30.3 38.6 39.3 40.0 42.0 3.7% 8.0% 

0.2 690 39.1 2.0 25.0 38.6 39.4 40.1 42.5 3.2% 7.8% 

0.45 150 39.2 2.0 22.5 38.6 39.3 40.2 43.4 2.00% 5.3% 

0.6 175 39.1 2.1 23.8 38.6 39.4 40.1 42.5 1.7% 6.9% 

0.8 140 39.1 1.6 31.7 38.4 39.3 40.2 42.7 1.4% 7.1% 
1 550 39.3 1.7 23.9 38.8 39.4 40.1 42.2 1.5% 6.0% 

 

Table 3.10 Descriptive statistics of the simulated dataset. 

3.4.2 Analysis of the simulated data 

The simulated gestational ages were analyzed as a continuous variable using the EMAX 

Mixture model. The numbers of ePTBs were analyzed as a binomial variable using the EMAX 

logistic model and independent doses logistic model. The STAN code for the three models can 

be found in the appendix.  

The posterior probabilities of ePTB and their credible intervals are reported in Figure 3.2. 

The credible intervals of all three models covered the true values (box in the plot). The 
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independent doses logistic model had the widest credible intervals. The EMAX mixture model 

and the EMAX logistic model had similar lengths of credible intervals.  

Both the EMAX Mixture model and EMAX logistic model had a Pr(𝑎2 < 0) greater than 

their corresponding cutoffs and can be claimed as successful: EMAX Mixture, Pr(𝑎2 < 0) = 

0.994 > 0.845; EMAX logistic, Pr(𝑎2 < 0) = 0.989 > 0.955.  The independent doses logistic 

model had a max(𝑝𝑟(𝑝𝑑 < 𝑝0|𝑑𝑎𝑡𝑎)) = 0.984, which is less than the cutoff of 0.992. The trial 

was not a success when the independent doses logistic model was used.  

As mentioned in Section 2.2, one advantage of the EMAX Mixture model is that it can 

estimate the posterior probability of different cut points. For example, the posterior probability of  

PTB (<37weeks) was 8.66%, 7.34%, 6.59%, 6.31%, 6.05%, and 5.87%, respectively. If we were 

to estimate the probabilities of PTBs (<37weeks) using the EMAX logistic model and 

independent doses logistic model, we would have to conduct another set of analyses using the 

numbers of gestational ages < 37 weeks.  
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Figure 3.2 Analysis result for the simulated dataset: the posterior probability of ePTB. 

3.5 Conclusion and discussion 

The EMAX model has never been applied to finite mixture distributions. The Bayesian 

EMAX Mixture model we proposed applies the EMAX model to a three normal components 

finite mixture distribution developed for gestational age by Schwartz et al. We compared the 

EMAX Mixture model with the EMAX logistic model and the independent doses logistic model 

using extensive simulations. Across different scenarios, the EMAX Mixture model achieved 

significantly higher power in detecting DHA effect on ePTB and resulted in much smaller MSE 

in the posterior expected estimate of ePTB rate. The EMAX Mixture model had comparable bias 

to the EMAX logistic model, but was slightly worse than the independent doses logistic model. 

Another attractive feature of the EMAX Mixture model is that it allows for statistically 

efficient estimates of PTB rates using various cut points with the same parsimonious model. For 
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example, we can estimate the rate of early preterm birth (<34 weeks gestation), preterm birth 

(<37 weeks gestation), and late-term birth (>41 weeks gestation) using the same model. In future 

work, when we conduct analyses on the data collected in the 6 RCTs, it will be valuable to report 

these estimates.    

Though the EMAX Mixture model was motivated by the three normal finite mixture 

model used for gestational age, it can have a much wider range of applications. It can be 

modified to accommodate almost all kinds of mixture distributions. For example, if there are 

two, instead of three, normal components in the mixture distribution, the EMAX Mixture model 

can be easily adapted by removing 𝜃2𝑑  from the model and the mixture weight can be written as:   

Δ1d =
exp(𝑎1+

𝑎2𝑑

𝑑𝑖+𝑎3
)

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)
 , and Δ2d =

1

1+exp(𝑎1+
𝑎2𝑑

𝑑+𝑎3
)
. Additionally, the EMAX Mixture model can 

also be applied to non-normal finite mixture distributions by modifying the density function 

𝑓(𝑇𝑑𝑖|Δ1d , Δ2d , Δ3d) accordingly. 

One limitation of our study is that we assumed the mean and variance of the three normal 

distributions for gestational age determined by Schwartz et al. from NCDBR fit the new data 

well. Although these parameters had been used successfully in the past (12,13,14), it is possible 

but unlikely that the data from the 6 RCTs under consideration are very different from the 

NCDBR registry. In that case, one possible solution is to allow the model to estimate the mean 

and variance of the three normal distributions. The model will be more complicated and may 

have convergence issues. This will be explored in our future work. 
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Chapter 4 : On the use of Bayesian models in weight loss clinical trials: a 
demonstration with a re-analysis of the REPOWER study 
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4.1 Introduction 

Obesity is a chronic condition affecting an increasing number of Americans. The 

prevalence increased from 14% in 1980(1) to 35% in 2010(2). And in 2017-2018, it increased to 

42% (3). Obesity is a serious health risk and is associated with a wide range of morbidities (4). 

The Centers for Medicare and Medicaid Services (CMS) approved to cover Intensive Behavioral 

Therapy for Obesity (IBT) with up to 22 individual 15-minute face-to-face visits over a 12-

month period in 2011(5). The CMS employs a fee-for-service delivery model which has been 

challenged and questioned. A variety of care delivery models have arisen in addition to the 

traditional face-to-face office visit. The Rural Engagement in Primary Care for Optimizing 

Weight Reduction (REPOWER) (6) is a cluster randomized clinical trial comparing the fee-for-

service individual delivery model to two alternatives: in-clinic group visits and phone-based 

group visits. Participant weight was measured at baseline, 6, 18, and 24 months by trained staff. 

The primary outcome was weight change at 24 months. Secondary outcomes included the 

proportion of participants who achieved 5% and 10% weight loss at 24 months.  

In the original analyses, frequentist methods were used:  A linear mixed-effect multilevel 

model for examining the percent weight loss over time and two separate generalized linear 

models for comparing the percentage of participants achieving 5% and 10% thresholds. 

Although frequentist paradigm has been the predominant approach to clinical studies in the past 

several decades, some limitations associated with the frequentist null hypothesis testing that 

reports dichotomized P values have been recognized in statistic society (7,8). On the other hand, 

the Bayesian paradigm derives probability estimates of model parameters reflecting the clinical 

interest and can provide better data interpretation. It has gained popularity in recent years owing 

to the advancement in powerful computing capacity and the invention of efficient Bayesian 
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statistic software. In this article, we reanalyzed the percent weight loss over time in REPOWER 

using a Bayesian hierarchical model to address some limitations of the frequentist approach.  

Moreover, the original analyses took into consideration the clustering of sites but ignored 

the clustering of group assignment in the two group-based arms. Because group assignment is 

only relevant to the in-person group visits and phone-based group visits arms, it is hard to 

assessing the impact of group assignment on the effect of delivery models. Bayesian approach 

can easily handle complex problems using the same statistical framework. In this article, we used 

a four-level hierarchical model with an additional level to assess the group assignment impact on 

the effect of delivery models on weight loss.    

4.2. Methods  

4.2.1 Study design and data structure 

REPOWER is a cluster randomized clinical trial with thirty six primary practices from 

three affiliations (KUMC, UNMC, and Marshfield clinic) randomly assigned to one of the three 

study arms in equal numbers: 1) in-clinic individual visits  in which the participants received 15-

minute face-to-face individual counseling sections; 2) in-clinic group visits in which the 

participants received group visits held at practices with a median of 14 participants per group; 3) 

Phone-based group visits in which participants received lifestyle intervention delivered remotely 

via audio-only conference calls with a median of 14 participants per group. 1407 participants 

enrolled in total. Weight was measure at baseline, 6, 18, and 24 months by trained staff. The 

primary outcome was change in weight (kg) at 24 months. Secondary outcomes included percent 

weight loss and the proportion of participants who achieved 5% and 10% weight loss at 24 

months. The detailed information about the trial conduction has been published by Befort et al 

(6). In this article, we will first analyze the percent weight loss using a three-level Bayesian 
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hierarchical model to compare the effect of different intervention delivery models on weight loss. 

A second Bayesian hierarchical model includes an additional level, group assignment, for the 

two group-based delivery methods to assess whether group assignment impacted the result.  

4.2.2 Model one: three level Bayesian hierarchical model for percent weight loss 

Let 𝑦𝑖𝑗𝑡 be the percent weight loss for participant 𝑗 from site 𝑖  at time 𝑡.  𝑥1 and 𝑥2 are the 

arm indicators: (0,0) for in-clinic individual visits, (1,0) for in-clinic group visits, and (0,1) for 

phone-based group visits. 𝑡18 and 𝑡24 are the time indicators: (0,0) for month 6, (1,0) for month 

18, and (0,1) for month24. We also include arm and time interactions so that delivery model 

effect can be evaluated at each time point. To be consistent with the original model, we include 

affiliation as covariates (denoted by 𝑥3 𝑎𝑛𝑑 𝑥4). The three-level Bayesian hierarchical model can 

be represented as follows.    

𝑦𝑖𝑗𝑡 = 𝛼0𝑖𝑗 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑡18 + 𝛽4𝑡24 + 𝛽5𝑥1 ∗ 𝑡18 + 𝛽6𝑥1 ∗ 𝑡24 + 𝛽7𝑥2 ∗ 𝑡18 + 𝛽8𝑥2 ∗ 𝑡24

+ β9𝑥3 + 𝛽10 𝑥4 + 𝜖𝑖𝑗𝑡    

𝛼0𝑖𝑗 = 𝛼0𝑖0 + 𝛾𝑗 

𝛼0𝑖0 = 𝛼000 + 𝜂𝑖  

Where 𝑎000 is the intercept;  ϵijt ~N(0, σ2) is within patient residual error; 𝛾𝑗~𝑁(0, 𝜎𝛾
2) 

is patient level variation; 𝜂𝑖~ 𝑁(0, 𝜎𝜂
2) is site level variation. To make apples to apples 

comparison with the frequentist analyses, noninformative priors are used:  flat priors for 𝑎000 

and 𝛽𝑠; truncated 𝑁+(0, 102 ) for 𝜎, 𝜎𝑟, and 𝜎𝜂  so that only positive values are allowed.  

Let Δ1 = 𝑎000 + 𝛽4 +
1

3
𝛽9 +

1

3
𝛽10 , Δ2 = 𝑎000 + 𝛽1 + 𝛽4 + 𝛽7 +

1

3
𝛽9 +

1

3
𝛽10 , and Δ3 =

𝑎000 + 𝛽2 + 𝛽4 + 𝛽8 +
1

3
𝛽9 +

1

3
𝛽10 . They represent the expected percent weight loss at 24 

months for in-clinic individual visits arm, in-clinic group visits arm, and phone-based group 
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visits arm, respectively. Their posterior distributions can be obtained from the MCMC samples 

of 𝑎000 and 𝛽′𝑠. The estimate of the expected percent weight loss for the three treatment arms 

can be obtained using their mean of MCMC samples. The absolute difference in weight loss 

when compared to the in-clinic individual visits arm, can be assessed using the posterior 

distribution of 𝛿2 = Δ2 − Δ1 =  𝛽1 for in-clinic group visits arm and 𝛿3 = Δ3 − Δ1 = 𝛽2 + 𝛽8 

for phone-based group visits arm. The probability of having a bigger weight loss compared with 

the in-clinic individual arm can be calculated as ∫ Pr(𝛿2|𝑑𝑎𝑡𝑎) 𝑑𝛿2
∞

0  for in-clinic group arm and 

∫ Pr(𝛿3|𝑑𝑎𝑡𝑎) 𝑑𝛿3
∞

0 .  Additionally, the posterior distribution of rate of achieving 5% weight loss 

at 24 months for each arm can be obtained by  ∫ ϕ(𝑥|Δ1, 𝜎2 + 𝜎𝑟
2 + 𝜎𝜂

2) 𝑑𝑥
∞

5 , ∫ ϕ(𝑥|Δ2, 𝜎2 +
∞

5

𝜎𝑟
2 + 𝜎𝜂

2) 𝑑𝑥, and ∫ ϕ(𝑥|Δ3, 𝜎2 + 𝜎𝑟
2 + 𝜎𝜂

2)𝑑𝑥
∞

5 , where 𝜙(𝑇|𝜇, 𝜎2) is the normal probability 

density function with mean 𝜇 and variance 𝜎2. The posterior distribution of achieving 10% 

weight loss at 24 months can be obtained by simply change the lower integration bound to 10. 

4.2.3 Model two: Bayesian hierarchical model for percent weight loss with group assignment 

In the in-clinic group visits arm and the phone-based group visits arm, the participants 

received the interventions in groups. We want to exam the impact of group assignment on the 

effect of group-based delivery models. Because group assignment is relevant only to the in-

person group visits and phone-based group visits arms, it is challenging to be incorporated into 

the linear mixed model framework and it was not tackled in the original analyses. In model two, 

we will use a four-level hierarchical Bayesian model to assess the impact of intervention group.  

For participants in In-clinic individual visits arm, the model is the same as in Model one. 

For participants in In-clinic group visits and Phone-based group visits, let 𝑘 index the 

intervention group. The four-level Bayesian hierarchical model can be represented as follows.    
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 𝑦𝑖𝑗𝑘𝑡 = 𝛼0𝑖𝑗𝑘 + 𝛽1 𝑥1 + 𝛽2𝑥2 + 𝛽3𝑡18 + 𝛽4𝑡24 + 𝛽5𝑥1 ∗ 𝑡18 + 𝛽6𝑥2 ∗ 𝑡18 + 𝛽7 ∗ 𝑡24 + 𝛽8𝑥2 ∗

𝑡24 + β9𝑥3 + 𝛽10𝑥4 + 𝜖𝑖𝑗𝑘𝑡    

𝛼0𝑖𝑗𝑘 = 𝛼0𝑖0𝑘 + 𝛾𝑗 

𝛼0𝑖0𝑘 = 𝛼0𝑖00 + 𝜃𝑘  

𝛼0𝑖00 = 𝛼0000 + 𝜂𝑖  

where 𝜃𝑘 ~𝑁(0,  𝜎𝜃
2) denotes the variation due to intervention group. Truncated normal 

distribution +𝑁(0, 102) is used for 𝜎𝜃
2. To answer whether intervention group impacts on the 

effect of delivery methods, we use two model selection methods, leave-one-out cross-validation 

(loo-cv) and widely available information criterion (WAIC) (9), to determine whether Model two 

improves model fit. 

4.2.4 Posterior distribution computation and software 

Hamiltonian Monte Carlo (10) was performed in Stan (11) to obtain the posterior 

distributions for parameters of interest. Figure representations of posterior distributions were 

computed from gaussian kernel density estimates, which provided a smoothed version of the 

sampled histograms. R package Rstan was used to as the interface to call Stan code(12). All the 

other analyses and plots were conducted in R.  

4.3 Results 

4.3.1 Model convergence assessment and predictive checking 

For both models we ran two parallel MCMC chains with starting points randomly 

generated from the prior distributions. For each chain, we allowed 3000 iterations for the sampler 

to converge and another 3000 for sampling the posterior distributions. Convergence were 

checked visually utilizing caterpillar plots and �̂� (13).   
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4.3.2 Model result 

4.3.2.1 Model I  

Table 4.1 summarizes the model parameters using posterior means and 95% credible 

intervals (CrI) based on their MCMC samples of posterior distributions. Because non-

informative priors were used, the means and 95% credible intervals were very close to the result 

from the original linear mixed-effect multilevel model.  

 

 

Mean 

 

Standard 

Deviation 2.50% 97.50% 

Intercept 𝑎000 -6.25 0.53 -7.27 -5.2 
In-clinic group  𝛽1  -2.65 0.67 -3.96 -1.32 
Phone-based group 𝛽2 -1.95 0.66 -3.28 -0.64 

18 months 𝛽3 2.26 0.27 1.72 2.78 

24 months 𝛽4 3.05 0.27 2.53 3.61 

In-clinic group*18 months 𝛽5 0.4 0.4 -0.36 1.16 
Phone-based group*18 months 𝛽6 0.1 0.39 -0.65 0.86 
In-clinic group:24 months 𝛽7 0.82 0.39 0.05 1.59 

Phone-based group*24 months 𝛽8 0.5 0.39 -0.27 1.27 

Affiliation: Marshfield Clinic 𝛽9 -0.05 0.6 -1.25 1.15 

Affiliation: UNMC 𝛽10  2.17 0.79 0.64 3.75 
Sigma 𝜎 3.91 0.06 3.8 4.03 

Site level variation 𝜎𝜂 0.97 0.37 0.18 1.68 

Patient level variation 𝜎𝑟 6.66 0.15 6.38 6.97 
 

Table 4.1 Posterior mean and 95% credible interval for model parameters in Model 1. 

Figure 4.1A displays the posterior distribution of the expected weight loss at 24 months 

for the three arms (i.e. Δ1, Δ2, and Δ3 ). The posterior mean and credible interval were 2.5%[95% 

CrI: 1.5, 3.5] for the in-clinic individual visits, 3.9%[95% CrI: 2.9, 4.9] for the phone-based 

group visits, and 4.3[95% CrI: 3.4, 5.3] for the in-clinic group visits. Because the non-

informative priors we used, the estimates were almost identical to the result reported in the 

original analysis: 2.5%[95%: 1.4, 3.5] for the in-clinic individual visits, 3.8[95% CI: 2.8,4.9] for 

the phone-based group visits, and 4.3[95% CI: 3.3, 5.3] for the in-clinic group arm.  
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Figure 4.1B displays the posterior distribution of the absolute difference in the expected 

percent weight loss at 24 months for the in-clinic group visits and the phone-based group visits 

when compared with the in-clinic individual visits. The posterior mean and 95% credible interval 

were 1.4%[95% CrI: 0.1, 2.8] for the phone-based group visits and 1.8%[95% CrI: 0.5,3.2] for 

the in-clinic group visits. The shaded areas (AUCs to the right of zero) represent the probability 

of having a greater weight loss in the phone-based group visits arm (98.1%) and in the in-clinic 

group visits arm (99.6%) than in the in-clinic individual visits arm. The original analysis reported 

there was a significant difference between the in-clinic group visits vs. the in-clinic individual 

visits (1.8%[95% CI: 0.4, 3.2; p value: 0.01]), but not in the phone-based visits (1.3[95% CI: -

0.1, 2.8; p value: 0.06]) because the p value was slightly bigger than 0.05. 

Figure 4.2A and Figure 4.3A display the posterior distribution for the probability of 

achieving 5% and 10% weight loss at 24 months. In the order of in-clinic individual visits, 

phone-based group visits, and in-clinic group visits, the posterior mean and the 95% credible 

interval were 37.4%[95% CrI: 33.7, 42.3], 44.6%[95% CrI: 40.0, 49.5], and 46.6%[95% CrI: 

41.7, 51.7] for achieving 5% weight loss; 16.8%[95% CrI: 13.7, 20.4], 21.9%[95% CrI: 18.1, 

25.8], and 23.4%[95% CrI: 19.7, 27.6] for achieving 10% weight loss. In the original analyses, 

two separate generalized mixed models were used to assess the proportions of 5% and 10% 

weight loss. The estimated proportion of 5% weight loss were 36.0% [95% CI:30.2, 42.3], 

41.4%[95% CI: 37.9, 50.6], and 44.1% [95% CI: 35.2, 47.8]. The estimated proportion of 10% 

weight loss were 17.1% [95% CI: 13.3, 21.8], 22.3% [95% CI: 17.9, 27.6], and 22.6% [95% CI: 

18.1, 27.9]. While the Bayesian point estimates for proportions of achieving 10% and 5% weight 

loss were close to original result, the interval widths were narrower in the Bayesian model 

because it leveraged the continuous model.  
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Figure 4.2B and Figure 4.3B display the absolute differences in the probability of 

achieving 5% and 10% weight loss for the phone-based group visits and the in-clinic group visits 

when compared with the in-clinic individual visits at 24 months. In the order of phone-based 

group visits and in-clinic group visits, the posterior mean and 95% credible interval were 

7.1%[95% CrI: 0.3, 13.4] and 9.2% [95% CrI: 2.5, 15.9] for achieving 5% weight loss, and 

5.0%[95% CrI: 0.2, 9.7] and 6.6% [95% CrI: 1.8, 11.5] for achieving 10% weight loss. The 

shaded areas (AUCs to the right of zero) represent the probability of having a higher rate of 

achieving 5% and 10% weight loss in the in-clinic group visits arm and in the phone-based group 

visits arm. For both 5% and 10% weight loss, the probabilities were 99.6% for in-clinic group 

arm and 98.4% for the phone-based group arm and they are consistent with the probability of 

having a greater weight loss than the in-clinic individual visits arm as shown in Figure 4.1B. In 

the original analyses, the odds ratios of achieving >5% and >10% weight loss were reported for 

the in-clinic group visits and the phone-based group visits: 1.4 [95% CI: 1.0, 2.0; p value: 0.07] 

and 1.3 [95% CI: 0.9, 1.8; p value: 0.22] for 5% weight loss, and 1.4 [95% CI: 0.9, 2.1; p value: 

0.09] and 1.4 [95% CI: 0.9, 2.1; p value: 0.11]. The authors concluded there was no significant 

difference in rate of achieving 5% and 10% weight loss for in-clinic group vs. in-clinic 

individual and phone-based group vs. in-clinic individual.   
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Figure 4.1 Posterior distributions of the expected weight loss(A) and the absolute difference in weight loss(B) at 24 

months 
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Figure 4.2 Posterior distributions of the probability of achieving 5% weight loss(A) and Posterior distributions of the 

absolute difference in the probability of achieving 5% weight loss when compared with in-clinic individual 

visits(B). 
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Figure 4.3 Posterior distributions of the probability of achieving 10% weight loss(A) and Posterior distributions of 

the absolute difference in the probability of achieving 10% weight loss when compared with in -clinic individual 

visits(B). 

4.3.2.2 Model 2 

Table 4.2 shows the posterior means and 95% credible intervals for model parameters in 

Model 2 based on their MCMC samples of the posterior distributions. The values were very 

close to Model 1 for the parameters in common. The mean and 95% credible interval for 𝜎𝜃 were 

0.59[95% CrI: 0.03, 1.44]. To assess whether including group assignment as an additional 

hierarchical level will improve model fit, we used leave-one-out cross-validation (loo-cv) and 
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widely available information criterion (WAIC) implemented in the loo R package (14). Both 

looic and WAIC were slightly smaller in Model 1: 22014 vs. 22017 and 21812 vs. 21819, 

respectively. The differences were small in comparison with their standard error: -3(6.8) and -

7(4.1). We concluded that Model 2 didn’t improve model fit. Therefore, including group 

assignment in the model didn’t impact the effect of the intervention delivery models.  

 

 

Mean 

 

Standard 

Deviation 2.50% 97.50% 

Intercept 𝑎000 -6.28 1.31 -8.94 -3.65 

In-clinic group 𝛽1  -2.64 1.37 -5.36 0.14 
Phone-based group 𝛽2 -1.91 1.39 -4.62 0.93 

18 months 𝛽3 2.26 0.28 1.71 2.79 

24 months 𝛽4 3.05 0.28 2.5 3.59 

In-clinic group*18 months 𝛽5 -0.04 0.49 -1 0.93 
Phone-based group*18 
months 

𝛽6 
2.18 0.68 0.86 3.5 

In-clinic group:24 months 𝛽7 0.42 0.39 -0.34 1.17 
Phone-based group*24 

months 
𝛽8 

0.11 0.4 -0.66 0.9 
Affiliation: Marshfield Clinic 𝛽9 0.84 0.39 0.06 1.6 

Affiliation: UNMC 𝛽10  0.52 0.39 -0.25 1.29 

Sigma 𝜎 3.92 0.06 3.81 4.03 

Site level variation 𝜎𝜂 1.24 0.43 0.25 2.02 
Group level variation 𝜎𝜃 0.59 0.39 0.03 1.44 

Patient level variation 𝜎𝑟 6.62 0.15 6.33 6.92 
 

Table 4.2 Posterior mean and 95% credible interval for model parameters in Model 2. 

 

   
 Looic (se) WAIC (se) 

Model 1 22013.5(126.9) 21812.0(122.4) 
Model 2 22016.5(127.9) 21819.0(123.2) 
Model 1 – Model 2 -3(6.8) -7(4.1) 

 

Table 4.3 Leave-one-out cross validation(loo-cv) and widely available information criterion(WAIC) for Model 1 

and Model 2. 
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4.4 Conclusion and discussion 

In the original analyses, the authors concluded that, the in-clinic group visits, compared 

with the in-clinic individual visits, resulted in a significantly greater weight loss at 24 months 

(difference: 1.8%[95% CI: 0.4, 3.2; p value: 0.01]), while the difference between phone group 

versus in-clinic individual was not significantly different (1.3%[95% CI: -0.1, 2.8; p value: 

0.06]). The proportions of achieving 5% and 10% weight loss were not significantly different 

between the in-clinic group vs. in-clinic individual visits( for 5% weight loss: OR=1.4 [95% CI: 

1.0, 2.0], p=0.07; for 10% weight loss: OR=1.4 [95% CI: 0.9, 2.1], p=0.09), nor between the 

phone-based group visits vs the in-clinic individual visits (for 5% weight loss: OR=1.3 [95% CI: 

0.9, 1.8], p=0.22; for 10% weight loss: (OR=1.4[95% CI: 0.9, 2.1], p=0.11). By contrast, the 

Bayesian analyses estimated 99.6% probability that in-clinic group visits, compared with in-

clinic individual visits, resulted in a bigger percent weight loss (1.8%[95% CI: 0.5,3.2]), a bigger 

proportion of achieving 5% threshold (9.2% [95% CI: 2.5, 15.9]),  and bigger proportion of 

achieving 10% threshold (6.6% [95% CI: 1.8, 11.5]). For phone-based group visits, there was a 

98.1% probability resulted in a bigger percent weight loss (1.4%[95% CI: 0.1, 2.8]), a bigger 

proportion of achieving 5% threshold (7.1%[95% CI: 0.3, 13.4]),  and bigger proportion of 

achieving 10% threshold (5.0%[95% CI: 0.2, 9.7]).  In Model 2, we concluded that group 

assignment did not impact model fit and did not impact the effect of intervention delivery 

methods significantly. 

Frequentist analyses base the inference on P-values and confidence intervals (CI). P value 

is the probability of observing data as extreme or more extreme if the study were to repeat many 

times under the null hypothesis (no treatment effect). The interpretation of P values is awkward 

and rarely reflects the questions clinicians interested in. Furthermore, the P values are often 
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dichotomized using the cut point of 0.05 for decision making. Thus, the original analyses 

concluded, when compared to in-clinic individual visit, there was a significantly greater weight 

loss at 24 months for in-clinic group visits (P value: 0.01), but not for phone-based group visits 

(P value: 0.06) and there were no significant differences for in-clinic group visits vs. in-clinic 

individual visits and phone-based group visits vs. in-clinic individual group in probability of 

achieving 5% weight loss(P values: 0.07 and 0.09) and in probability of achieving 10% weight 

loss(P values: 0.22 and 0.11).  The inconsistency in the conclusion for different endpoints 

demonstrated the drawback of reporting P values in frequentist analyses.  Bayesian analyses, on 

the other hand, enable a more direct interpretation by providing posterior distribution for 

parameters of interest. They can answer the clinician’s questions directly, such as “what is the 

probability that the participants in one arm will achieve more weight loss than the participants in 

another arm? ”. The Bayesian analysis provided consistent estimates of probabilities of resulting 

in more weight loss in-clinic group visits vs. in-clinic individual visits (99.6%) and phone-based 

visits vs. in-clinic individual visits (98.4%) for all three endpoints: percent weight loss, 

probability of achieving 5% weight loss, and probability of achieving 10% weight loss.  

Although the result of Model 2 was not significant, it showed another advantage of 

Bayesian approach that it can easily handle complex problems using the same statistical 

framework. In our analysis, we just simply expand the 3-level hierarchical model to a 4-level 

hierarchical model by including group assignment.   
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Chapter 5 : Summary and Future Directions 
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In chapter two, we developed an adaptive Bayesian clinical trial design in the setting of 

comparative clinical research where multiple treatments were of interest and the accrual rate was 

slow. Extensive simulations were conducted to compare our proposed Reuse-RAR design with a 

conventional adaptive clinical design where each participant was randomized to one treatment 

only, a non-adaptive design that reused participants, and a non-adaptive design that did not reuse 

participants. The simulation result showed that, of the four designs, Reuse-RAR was the most 

efficient design which achieved a higher power with a shorter trial duration and a smaller 

number of participants. Conventional-noRAR was the least efficient design. RAR improved 

efficiency in both Conventional designs and Reuse designs. One limitation of the Reuse designs 

is that they require participants to be engaged in the study longer than Conventional designs. In 

the extreme case where participants did not respond to any treatments, the time required to be 

engaged in a Reuse design could be as long as five times that of Conventional designs. 

Therefore, Reuse-RAR and Reuse-noRAR were more susceptible to dropouts. Another limitation 

is that we assumed there was a carryover effect that was consistent across different participants 

and different treatments. This assumption may not be true in general. However, the model can be 

modified to better capture the carryover effect according to substantive subject matter 

knowledge.  

In chapter three, we developed an innovative Bayesian dose-response EMAX mixture 

model that incorporated finite mixture distributions into the EMAX framework. The EMAX 

model has never been applied to finite mixture distributions. The Bayesian EMAX Mixture 

model we proposed applied the EMAX model to a three normal components finite mixture 

distribution developed for gestational age by Schwartz et al. We compared the EMAX Mixture 

model with the EMAX logistic model and the independent doses logistic model using extensive 
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simulations. Across different scenarios, the EMAX Mixture model achieved significantly higher 

power in detecting the DHA effect on ePTB rate and resulted in much smaller MSE in the 

posterior expected estimate of ePTB rate. The EMAX Mixture model had a comparable bias to 

the EMAX logistic model, but was slightly worse than the independent doses logistic model. 

Another attractive feature of the EMAX Mixture model is that it allows for statistically efficient 

estimates of PTB rates using various cut points with the same parsimonious model. In future 

work, when we conduct analyses on the data collected in the six RCTs, it will be valuable to 

report these estimates.  

In chapter 4, we reanalyzed the weight loss data from REPOWER using a Bayesian 

approach. We first analyzed the percent weight loss over time using a Bayesian three-level 

hierarchical model. The Bayesian analysis provided consistent estimates of probabilities of 

greater weight loss in-clinic group visits vs. in-clinic individual visits (99.6%) and phone-based 

visits vs. in-clinic individual visits (98.4%) for all three endpoints: percent weight loss, 

probability of achieving 5% weight loss, and probability of achieving 10% weight loss.  In 

contrast, the original analyses concluded a significantly greater weight loss at 24 months for in-

clinic group visits vs. in-clinic individual visit (P value: 0.01) but not for phone-based group 

visits vs. in-clinic individual visits(P value: 0.06) and no significant differences between in-clinic 

group visits vs. in-clinic individual visits and phone-based group visits vs. in-clinic individual 

group in the probability of achieving 5% weight loss(P values: 0.07 and 0.09) and in the 

probability of achieving 10% weight loss(P values: 0.22 and 0.11).  The inconsistency in the 

conclusion for different endpoints demonstrated the drawback of reporting P values in frequentist 

analyses. Additionally, we also used a four-level hierarchical Bayesian model to assess the group 

assignment impact on the effect of delivery models on weight loss, which was not explored in 
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the original analysis. Although the result of Model 2 was not significant, it showed another 

advantage of the Bayesian approach that it can easily handle complex problems using the same 

statistical framework. 
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Appendix A: Stan code for chapter 2 

          Stan code for Conventional-RAR design:  

          data { 
  int<lower=0> N; 
  int<lower=0> K; 
  matrix[N,K] X; 

  int<lower=0, upper=1> Success[N]; 
} 
parameters { 

  vector[K] b; 

} 
model { 

  b ~ normal(0,5) ; 
  Success ~ bernoulli_logit(X*b); 

} 
generated quantities{ 

 vector[K] p =exp(b)./(1+exp(b)); 
} 

 
           Stan code for Reuse-RAR and Reuse-noRAR design:  

data { 

  int<lower=0> N;  //number of observations 

  int<lower=0> J;  //number of participants 

  int<lower=0> K;  //number of treatments 

  matrix[N,K] X;   //treatment indicators 

  matrix[N,K] X1;  //prior treatment indicators 

  int<lower=0> ptid[N];   

  int<lower=0, upper=1> Success[N]; 

} 

parameters { 

  vector[K] b; 

  vector[J] theta; 

  real<lower=0> sigma; 

  real<lower=0> pi1; 
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} 

model { 

  theta~normal(0,1); 

  sigma~normal(0,3); 

  b~normal(0,5); 

  pi1~normal(0,0.5); 

  Success ~ bernoulli_logit(X*b+X1*b*pi1+theta[ptid]*sigma); 

} 

generated quantities{ 

 vector[K] p =exp(b)./(1+exp(b)); 

} 
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Appendix B: Stan code for chapter 3 

Stan code for EMAX Mixture model 

data { 

  int<lower=1> K; // number of mixture components 
  int<lower=1> N; // number of data points 
  real y[N]; // observations 
  real<lower=0> dose[N];//treatment 

  ordered[K] mu; 
  vector<lower=0>[K] sigma; 
} 
 

parameters{ 
  real a11; 
  real a12; 
  real<lower=0> a13; 

  real a21;  
 } 
 
model { 

  vector[K] theta; 
  real beta1;  
  real beta2; 
  vector[K] lps; 

  a11 ~ normal (0, 2);  
  a12 ~ normal (0, 2);  
  a13 ~ normal (0, 1);  
  a21 ~ normal (0, 2);  

 
  for (n in 1:N) { 
    beta1 = exp(a11+a12*dose[n]/(a13+dose[n])); 
    beta2 = exp(a21); 

    theta[1] = beta1/(1+beta1+beta2); 
    theta[2] = beta2/(1+beta1+beta2); 
    theta[3] = 1/(1+beta1+beta2); 
    lps=log(theta); 

    for (k in 1:K)  
        lps[k] += normal_lpdf(y[n] | mu[k], sigma[k]); 
    target += log_sum_exp(lps); 
    } 

}  
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Stan code for EMAX logistic model 

data { 
  int<lower=1> N; // number of data points 
  int<lower=0, upper=1> y[N]; // observations 

  real<lower=0> dose[N];//treatment 
} 
parameters{ 
  real a11; 

  real a12; 
  real<lower=0> a13; 
 } 
 

model { 
  real theta; 
  a11 ~ normal (0, 2);  
  a12 ~ normal (0, 2);  

  a13 ~ normal (0.5, 1);  
  for (n in 1:N) { 
    theta = a11+a12*dose[n]/(a13+dose[n]); 
    y[n]~ bernoulli_logit(theta); 

  } 
} 
 

Stan code for independent doses logistic model 

data { 
  int<lower=1> N; // number of data points 

  int<lower=0, upper=1> y[N]; // observations 
  matrix[N,6] dose;//6 treatments  
} 
parameters{ 

  vector[6] beta; 
 } 
model { 
  beta ~ normal(0,5); 

  y~ bernoulli_logit(dose * beta); 
 } 
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Appendix C: Stan code for chapter 4 

Stan code for model 1 

data { 
  int<lower=1> N;  // total number of observations 
  vector[N] Y;  // response variable 
  int<lower=1> K;  // number of fixed effects 

  matrix[N, K] X;  // design matrix 
 
  int<lower=1> N_1;  // number of sites 
  int<lower=1> M_1;  // number of site level coefficients 

  int<lower=1> J_1[N];  // site indicators 
  vector[N] Z_1_1; //site level predictor values 
   
  int<lower=1> N_2;  // number of patients 

  int<lower=1> M_2;  // number of patient level coefficients  
  int<lower=1> J_2[N];  // patient indication 
  vector[N] Z_2_1; //patient level predictor values 
   

 
  //predictive data 
  int<lower=1> N_tilde;  
  matrix[N_tilde, (K-1)] X_tilde; 

} 
transformed data { 
  int Kc = K - 1; 
  matrix[N, Kc] Xc;  // centered version of X without an intercept 

  vector[Kc] means_X;  // column means of X before centering 
  for (i in 2:K) { 
    means_X[i - 1] = mean(X[, i]); 
    Xc[, i - 1] = X[, i] - means_X[i - 1]; 

  } 
} 
parameters { 
  vector[Kc] b;  // fixed effects 

  real Intercept;  // temporary intercept for centered predictors 
  real<lower=0> sigma;  // residual SD 
  vector<lower=0>[M_1] sd_1;  //site level standard deviations 
  vector[N_1] z_1[M_1];  // standardized site level  effects 

  vector<lower=0>[M_2] sd_2;  // participant standard deviation 
  vector[N_2] z_2[M_2];  // standardized participant effects 
} 
transformed parameters { 

  vector[N_1] r_1_1;  // actual site level ef fects 
  vector[N_2] r_2_1;  // actual participant level effects 



86 

 

  vector[N] mu = Intercept + rep_vector(0.0, N); 
  r_1_1 = (sd_1[1] * (z_1[1])); 
  r_2_1 = (sd_2[1] * (z_2[1])); 

  for (n in 1:N)   mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_2_1[J_2[n]] * Z_2_1[n]; 
} 
model { 
  // likelihood including all constants 

  target += normal_id_glm_lpdf(Y | Xc, mu, b, sigma); 
  // priors including all constants 
 // target += normal_lpdf(Intercept | 0, 30); 
  target += normal_lpdf(sigma | 0, 10); 

  target += normal_lpdf(sd_1 | 0,10); 
  target += std_normal_lpdf(z_1[1]); 
  target += normal_lpdf(sd_2 | 0,10); 
  target += std_normal_lpdf(z_2[1]); 

} 
generated quantities { 
  // actual population-level intercept 
  real b_Intercept = Intercept - dot_product(means_X, b); 

  vector[N_tilde] y_tilde ;  
  vector[N_tilde] y_pred ;  
  vector [N_tilde] prob_5;  
  vector [N_tilde] prob_10; 

  vector [N] log_lik; 
    for (i in 1:N) { 
      log_lik[i] =normal_lpdf(Y[i] |mu[i] + Xc[i]*b, sigma); 
    } 

    for (i in 1:N_tilde) { 
      y_tilde[i]=normal_rng(b_Intercept+X_tilde[i]*b, 
sqrt(sd_1[1]^2+sd_2[1]^2+sigma^2)); 
      y_pred[i]=b_Intercept+X_tilde[i]*b; 

      prob_5[i] = 1-normal_cdf(5, b_Intercept+X_tilde[i]*b, 
sqrt(sd_1[1]^2+sd_2[1]^2+sigma^2));  
      prob_10[i] = 1-normal_cdf(10, b_Intercept+X_tilde[i]*b, 
sqrt(sd_1[1]^2+sd_2[1]^2+sigma^2)); 

    } 
} 
 
Stan code for model 2 

data { 
  int<lower=1> N;  // total number of observations 
  vector[N] Y;  // response variable 

  int<lower=1> K;  // number of fixed effects 
  matrix[N, K] X;  //  design matrix 
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  int<lower=1> N_1;  // number of sites 
  int<lower=1> M_1;  // number of site level coefficients  
  int<lower=1> J_1[N];  //site indicators 

  vector[N] Z_1_1; //site level predictor values 
 
  int<lower=1> N_2;  // number of participants 
  int<lower=1> M_2;  // number of participant level coefficients 

  int<lower=1> J_2[N];  // participant indicator  
  vector[N] Z_2_1;//Participant level predictor values 
   
  int<lower=1> N_3;  // number of intervention groups 

  int<lower=1> M_3;  // number of intervention group level coefficients  
  int<lower=1> J_3[N];  // intervention groups indicator 
  vector[N] Z_3_1; //intervention groups level predictor values 
   

  //predictive data 
  int<lower=1> N_tilde;  
  matrix[N_tilde, (K-1)] X_tilde; 
} 

transformed data { 
  int Kc = K - 1; 
  matrix[N, Kc] Xc;  // centered version of X without an intercept 
  vector[Kc] means_X;  // column means of X before centering 

  for (i in 2:K) { 
    means_X[i - 1] = mean(X[, i]); 
    Xc[, i - 1] = X[, i] - means_X[i - 1]; 
  } 

} 
parameters { 
  vector[Kc] b;  // fixed effects 
  real Intercept;  // intercept for centered predictors 

  real<lower=0> sigma;  // residual SD 
  vector<lower=0>[M_1] sd_1;  // site level standard deviations 
  vector[N_1] z_1[M_1];  // standardized site level effects 
   

  vector<lower=0>[M_2] sd_2;  // participant level standard deviations 
  vector[N_2] z_2[M_2];  // standardized participant level effects 
   
  vector<lower=0>[M_3] sd_3;  // intervention groups level standard deviations 

  vector[N_3] z_3[M_3];  // standardized intervention groups level effects 
} 
transformed parameters { 
  vector[N_1] r_1_1;  // actual site-level effects 

  vector[N_2] r_2_1;  // actual participant-level effects 
  vector[N_3] r_3_1;  // actual intervention group-level effects 
  vector[N] mu = Intercept + rep_vector(0.0, N); 
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  r_1_1 = (sd_1[1] * (z_1[1])); 
  r_2_1 = (sd_2[1] * (z_2[1])); 
  r_3_1 = (sd_3[1] * (z_3[1])); 

    for (n in 1:N) { 
      if (X[n, 2] == 0 && X[n,3]==0) mu[n] += r_1_1[J_1[n]] * Z_1_1[n]  + r_3_1[J_3[n]] 
* Z_3_1[n]; 
      else                           mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_2_1[J_2[n]] * Z_2_1[n] 

+ r_3_1[J_3[n]] * Z_3_1[n]; 
    } 
 } 
model { 

   // priors including all constants 
  target += normal_lpdf(b|0,10); 
  target += normal_lpdf(Intercept | -5,5); 
  target += normal_lpdf(sigma | 0,5); 

  target += normal_lpdf(sd_1 | 0,5); 
  target += std_normal_lpdf(z_1[1]); 
  target += normal_lpdf(sd_2 | 0,5); 
  target += std_normal_lpdf(z_2[1]); 

  target += normal_lpdf(sd_3 | 0,5); 
  target += std_normal_lpdf(z_3[1]); 
} 
generated quantities { 

  // actual population-level intercept 
  real b_Intercept = Intercept - dot_product(means_X, b); 
   
  vector[N_tilde] y_tilde ;  

  vector [N_tilde] prob_5;  
  vector [N_tilde] prob_10; 
  vector [N] log_lik; 
   for (i in 1:N) { 

      log_lik[i] =normal_lpdf(Y[i] |mu[i]+Xc[i]*b, sigma); 
    } 
  
    for (i in 1:N_tilde) { 

      y_tilde[i]=normal_rng(b_Intercept+X_tilde[i]*b, 
sqrt(sd_1[1]^2+sd_2[1]^2+sigma^2)); 
      prob_5[i] = normal_cdf(-5, b_Intercept+X_tilde[i]*b, 
sqrt(sd_1[1]^2+sd_2[1]^2+sigma^2));  

      prob_10[i] = normal_cdf(-10, b_Intercept+X_tilde[i]*b, 
sqrt(sd_1[1]^2+sd_2[1]^2+sigma^2)); 
    } 
}  

 
 


