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Abstract

The main focus of this dissertation is to develop new machine learning and statistical method-

ologies for classification problems, with a real–life application in healthcare. The dissertation has

three chapters. In the first chapter, we examine the construction of hybrid logistic regression–naïve

Bayes model, a restricted Bayesian network classifier that combines two probabilistic models in

a graphical way, with the aim of combining the strengths of both models. We follow the strategy

of balancing the tradeoff between model bias and variance with the objective of minimizing the

sum of these two errors. Specifically, we use training set size as a proxy for model variance and

conditional dependence among features as a proxy for model bias. Experimental results show that,

the resulting hybrid logistic regression–naïve Bayes model is a competitive alternative to a variety

of state-of-the-art classifiers.

In the second chapter, we focus on a regularization method, which is a technique of adding

information to the learning algorithm to improve the estimation of the model. Most of the ex-

isting regularization methods (e.g., lasso) rely on sparsity assumption, which reduces a model’s

variance by shrinking its coefficients towards zero. One limitation of lasso is that, in practice,

sparsity assumption is often violated. Shrinking the coefficients of influential predictors towards

zero introduces bias, and make the regression estimates suboptimal. As a consequence, lasso may

not perform well when the training set size is relatively large as compared to the number of pa-

rameters to be estimated. We argue that for such a situation, shrinking the coefficients towards a

low-variance data driven estimate could be a better strategy. For classification purposes, we pro-

pose a naïve Bayes regularized logistic regression, which shrinks its coefficients towards naïve

Bayes estimates, a well-known low variance estimator, instead of zero. This method is driven by

the fact that naïve Bayes and logistic regression converge toward identical classifiers if the naïve

Bayes’ conditional independence assumptions hold. Simulation and experimental results suggest
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that this method is highly competitive with a variety of state-of-the-art classifiers.

In the third chapter, we are collaborating with the U.S. Veterans Affairs’ (VA) Eastern Kansas

Health Care System, to help them construct a clinical model that can assist doctors in predicting

and diagnosing the post-traumatic stress disorder (PTSD). This study is motivated by the need to

provide more efficient service process of VA hospitals and reduce veterans’ waiting time. Specif-

ically, we propose a sparsity-enforcing l1 penalized Bayesian network-based model by addressing

three clinical challenges presented in veteran PTSD prediction problem: 1. probabilistic classi-

fication, 2. large amount of missing data, and 3. high dimensional search space. The proposed

model provides better prediction in veterans’ likelihood of suffering from PTSD as compared with

a variety of state-of-art probabilistic classifiers. In addition, our model identifies eight variables

which provide the most directly predictive power.
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Chapter 1

A Bias-Variance Based Heuristic for Constructing a Hybrid

Logistic Regression-Naïve Bayes Model for Classification

Abstract

Discriminative classifiers tend to have lower asymptotic classification errors, while genera-

tive classifiers can be more accurate when the training set size is small. In this paper, we

examine the construction of hybrid models from categorical data, where we use logistic re-

gression (LR) as a discriminative component, and naïve Bayes (NB) as a generative compo-

nent. We adopt a bias-variance tradeoff based strategy, with the objective of minimizing the

sum of these two errors. Specifically, the proposed heuristic consists of functions of training

sample size and conditional dependence among features. These functions serve as proxies

for model variance and model bias. We implement our method on 25 different classification

datasets, and find that the hybrid model does better than pure LR and pure NB. Our proposed

method is competitive with random forest. Although the hybrid model fails to beat LASSO

in predictive performance, as suggested by the experimental results, the difference appears

to be insignificant when the number of features is small. Also, the hybrid model requires less

training time than LASSO, which makes it more attractive when the training time is a big

concern.
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1.1 Introduction

For classification problems, people are often faced with a choice between a generative and a dis-

criminative classifier. Generative classifiers learn the joint probability distribution P(F1, . . . ,Fn,C)

of the features F1, . . . ,Fn, and the class C, make their predictions by using Bayes rule to compute

P(C | F1, . . . ,Fn), and then predict a label with the highest posterior probability. In contrast, dis-

criminative classifiers directly learn the conditional probability P(C | F1, . . . ,Fn), without assuming

anything about the feature distribution, P(F1, . . . ,Fn). When training data are large, discriminative

classifiers often achieve better prediction performance than generative classifiers, and hence are

widely preferred. However, generative classifiers often have better performance when the size of

training data is small [39]. Also, generative classifiers are more tolerant of missing values than

discriminative classifiers.

To take advantage of both worlds, this paper investigates the construction of hybrid models

from categorical data where we use logistic regression (LR) as a discriminative component, and

naïve Bayes (NB) as a generative component, for datasets in the general domain. Both LR and NB

belong to the family of probabilistic classifiers, and form a well known discriminative-generative

pair [49]. Because LR and NB models have few parameters, they scale well to high dimensions,

and can be trained very efficiently. It has been shown that LR can be modeled as a Bayesian

network [47]. The hybrid LR-NB model, first proposed by Kang and Tian [33], is recognized

as a restricted class of Bayesian network classifier that combines LR and NB in a graphical way.

The task we are concerned with is learning Bayesian network structures, i.e., deciding to which

part of the hybrid model a given feature should be assigned. Kang and Tian [33] use a greedy

method based on in-sample classification accuracy. We argue that this method may yield a local

optimal solution. Kang and Tian provide only one-round cross validation result for each dataset.

We conjecture that this resulting hybrid model may not perform well in terms of average out-of-

sample classification accuracy (with a suitably large number of trials). Also, their method is time

intensive.

In this paper, we propose a more efficient model construction heuristic that balances the trade-
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off between model bias and model variance. Specifically, LR produces the lowest prediction error

among all linear classifiers by achieving the lowest bias if there are sufficient training data. How-

ever, this is not the case when training set size is limited. LR estimates may overfit the data,

which makes the prediction less accurate due to high variance. On the other hand, NB overcomes

the overfitting issue by making a strong assumption of conditional independence, and thus learns

each parameter using the entire training sample. This makes NB work surprisingly well for small

datasets. However, as the conditional independence assumptions rarely hold in practice, NB esti-

mates are often suboptimal due to the introduction of bias in comparison to the situation where the

conditional independence assumptions are satisfied. Our heuristic consists of functions of train-

ing sample size and conditional dependence among features. These functions serve as proxies for

model variance and model bias. For each given feature, we estimate the bias and the variance in-

troduced if the feature is assigned to the LR or to the NB part of the hybrid model, respectively. By

minimizing the sum of bias and variance errors, we assign the feature to the corresponding part.

If all features are assigned to the LR (NB) part, the resulting model is pure LR (NB), otherwise

the resulting model is strictly hybrid. Our heuristic can be regarded as a selection mechanism that

helps make the choice between pure LR, pure NB and strictly hybrid models.

We conduct experiments on 25 different machine learning datasets from UCI Machine Learn-

ing Repository. We select these datasets such that we have a diversity of sample sizes, number of

features, and number of classes. We compare the 0-1 loss and root mean square error (RMSE) of

hybrid model with pure LR, pure NB, random forest (RF), and LASSO, which are widely recog-

nized as state-of-the-art classifiers, using paired t-tests with 0.05 significance level. Experimental

results show that the hybrid model constructed using our heuristic achieves a more accurate clas-

sification performance than both pure LR and pure NB models. Specifically, the Win/Draw/Loss

(W/D/L) of the hybrid model versus pure LR (pure NB) in terms of 0-1 loss and RMSE are 6/19/0

(18/2/5) and 10/14/1 (18/1/6), respectively. Also, the hybrid model is competitive with RF. It has a

higher 0-1 loss (W/D/L=5/7/13), but lower RMSE (W/D/L=14/2/9). LASSO is difficult to beat, in

terms of both 0-1 loss (5/10/10) and RMSE (1/14/10), in general. However, experimental results

3



suggest that the difference appears to be insignificant when the number of features is small. For

example, the W/D/L for 0-1 loss is 3/7/4, and for RMSE is 0/12/2 on datasets with fewer than 10

features. If we have a large number of features, estimating the parameters of a pure LR model by

maximizing the conditional log-likelihood can be computationally intensive. We also compare the

training time, showing that the hybrid model is more efficient than pure LR by assigning some of

the features to the NB part. Also, the training time for hybrid models is much lower on an average

than the corresponding RF and LASSO models.

An outline of the remainder of the chapter is as follows. In Section 1.2, we describe related

work on hybrid discriminative/generative classifiers, and state the contributions of our paper. Sec-

tion 1.3 sketches and compares the LR and the NB models. In Section 1.4, we describe the hybrid

model. Section 1.5 describes our method for constructing a hybrid model. Section 1.6 shows the

empirical results from our experiments using 25 datasets from the UCI Machine Learning Reposi-

tory. Finally, in Section 1.7, we summarize and conclude.

1.2 Related Literature

Our paper is related to the literature on the comparison of discriminative and generative classifiers,

which has a long history. Efron [10] presents theoretical and simulation studies showing that

linear discriminant analysis (LDA), a generative classifier, is asymptotically (between one third

and one half) more efficient than LR if the model is correctly specified. On the other hand, Ng

and Jordan [39] do an empirical and theoretical study of LR and NB models for classification.

They find that there are two distinct regimes of prediction performance with respect to training set

size. Particularly, an LR model has a lower asymptotic error compared to NB, but an NB model

approaches its asymptotic error much faster than an LR model. In other words, for large training

datasets, LR classifiers have higher accuracies, whereas for small training datasets, NB classifiers

may have higher accuracies than LR. In our construction of a hybrid model, we make use of results

discussed by Ng and Jordan [39] for penalizing the model complexity. Xue and Titterington [57]

conduct empirical and simulation studies, as a complement to Ng and Jordan’s work. However,
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they find no convincing evidence to support Ng and Jordan’s claim.

In the last two decades, several researchers have been exploring hybrid models that combine

discriminative and generative models into one model [2, 21, 33, 45, 49, 56]. These are discussed in

the following paragraphs.

Rubinstein and Hastie [49] are among the earliest to suggest combining discriminative and

generative models. They suggest that features that satisfy the assumption of a generative model be

retained in the generative part, with the remaining moved to the discriminative part. They compare

linear discriminant analysis (LDA), a generative model, with LR, a discriminative model, for three

different simulated datasets, and discover that LDA does better than LR when the class densities are

Gaussian, and vice-versa. They also compare NB, a generative model, with generalized additive

model (GAM), a discriminative model, for a simulated dataset with log-spline density that satisfies

the assumptions of the GAM model. Asymptotically, the GAM model achieves a lower error rate

than the NB model. However, when the training set is a small subset (25 observations) of the entire

dataset, NB model has a lower average error than GAM. While they propose combining the two

approaches, they do not describe any experimental results.

Raina et al. [45] investigate a hybrid model with LR as the discriminative component, and NB

as the generative component, in the context of text classification problems. They run experiments

using pairs of newsgroups from a dataset of USENET new postings, where the documents have two

disjoint regions—a subject region and a message body region. An NB model treats the two regions

in exactly the same way due to the strong conditional independence assumptions of an NB model.

A hybrid model treats the two regions differently using different weight parameters for each. As

the subject region has fewer words than the message body region, the words in the subject region

are weighted higher than the words in the message body region. Depending on how the weight

parameters are estimated from a dataset, the hybrid model reduces to an LR model. Experimental

results show that hybrid models can provide lower test error than either pure LR or pure NB.

Fujino et al. [21] investigate hybrid discriminative-generative classifiers similar to [45] for text

classification having multiple components (such as titles, hyperlinks, anchor text, images, etc.).
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They use a generative classifier for each component that are then combined using weights learnt

using the maximum entropy principle. They do an empirical evaluation on four text-classification

datasets, and find that hybrid classifiers outperform pure NB and pure LR models.

In an attempt to benefit from the advantages of both generative and discriminative approaches,

Bishop and Lasserre [2] propose a heuristic that interpolate between these two extremes by taking a

convex combination of the generative and discriminative log-likelihood functions. They apply their

approach to object recognition in static images. Each image has two sets of features—observable

features, and latent patch labels—in addition to class. They compare the performance of hybrid

models with different combination weights and find that the best performance is obtained with a

blend of generative and discriminative extremes.

The studies described above all focus on one specific domain. Our paper differs from these

prior works in that we examine the construction of the hybrid model that is applicable in general

for any domain.

Zaidi et al. [59, 60] discuss a weighted variant of NB with the goal of alleviating the feature

conditional independence assumption of NB, or using the maximum likelihood parametrization of

NB to pre-condition the discriminative search of LR. By exploiting the direct equivalence between

a weighted NB and LR, they introduce a hybrid discriminative-generative estimation approach,

i.e., minimization of either the negative conditional log-likelihood, or the mean squared error ob-

jective functions. As a result, the weighted NB learns models that are exactly equivalent to LR,

but computationally much more efficient. Experimental results suggest that the resulting weighted

NB is a competitive alternative to state-of-the-art classifiers, such as random forest, LR, and A1DE

(Average One-Dependence Estimators). Following the same intuition, Zaidi et al. [61] introduce

a hybrid discriminative-generative approach, called accelerated logistic regression (ALR), to train

LR with high-order features. They show that ALR significantly improves the efficiency of LR.

Moreover, by incorporating higher order features to reduce the bias, ALR predicts well as com-

pared to state-of-the-art classifiers including random forest and average n-dependence estimators,

especially on large datasets. All of these methods are driven by the fact that weighted NB has an
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equivalent functional form compared to LR. The model approach is hybrid in the sense of estimat-

ing a generative model discriminatively. In contrast, our focus is on a restricted Bayesian network

classifier, which combines two probabilistic models in a graphical way.

One of the closest to our work is that by Xue and Titterington [56]. They study hybrid

discriminative-generative classifiers where the discriminative component is LR, and the genera-

tive component is Fisher’s linear discriminant analysis (LDA). They test all features for univariate

normality, and those that fail the test are assigned to the LR portion of the hybrid model. Xue

and Titterington test their algorithm for 6 datasets that have only numeric features. They find that

for smaller sizes of the training set, the hybrid model does better than the pure LR and pure LDA

models. Our focus is on classification tasks for categorical data. Instead of using LDA, which is

applicable only for numeric features, we use NB, which is well suited for categorical features, as

the generative component. Although NB can also be used for numeric features, it involves mak-

ing distributional assumptions for the conditional distribution of a feature given the class, and this

makes a formal comparison messy.

Our study contributes to the literature by providing a new method on construction of such

a hybrid discriminative-generative classifier where the discriminative component is LR, and the

generative component is NB, first introduced by Kang and Tian [33]. Kang and Tian learn a hybrid

model by starting with an empty discriminative component, and then greedily add one feature at a

time (which results in the maximum in-sample classification accuracy gain) to the discriminative

component until the in-sample classification accuracy does not improve. They test their algorithm

for 20 different datasets, which are pre-processed so that there are no missing values, and all

features are categorical. They measure classification accuracy using either 10-fold cross-validation

(for small datasets) or 3-fold cross-validation (for large datasets). This is done just once, so they

get a point estimate of the classification accuracy. The average point estimate of the classification

errors for all 20 datasets is lowest for the hybrid LR-NB model. However, the average classification

accuracy (with a suitably large number of trials) is not captured, in terms of which the resulting

hybrid model may not outperform the benchmark models because it yields a local optimal solution.
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Also this method is computationally intensive.

The strategy of a recent work by Tan et al. [53] for constructing such a hybrid model is based on

reducing the conditional dependence of features in the NB part of the hybrid model. They estimate

the normalized conditional mutual information (norMI) given the class variable for all pairs of

features, and find a pair of features with highest norMI (using 0.05 as a cutoff point). Then for

each of these two features, the authors compare their second highest norMI and move the one with

higher value to the LR part. This strategy deals with the model bias, but ignores the impact of

model variance. Consequently, the resulting hybrid model outperforms the pure NB model, but

does worse than the pure LR model in the pairwise comparison.

In this paper, we construct the hybrid model by balancing the tradeoff between model bias

and model variance. The proposed heuristic consists of functions of training sample size and

conditional dependence among features. These functions serve as proxies for model variance and

model bias,and our objective is to minimize the sum of these two errors.

The contributions of this work are as follows:

◦ We investigate the strengths of hybrid LR-NB models by reviewing the literature on compar-

ison between LR and NB.

◦ We propose an efficient heuristic for constructing a hybrid LR-NB model. Experimental re-

sults show that the heuristic is effective in improving the classification performance of hybrid

model compared to pure LR and pure NB. Also, the resulting hybrid model is comparable in

classification accuracy to random forest. Although it fails to beat LASSO in general, exper-

imental results suggest that the difference in predictive performance between hybrid model

and LASSO appears to be insignificant when the number of features is small. Also, the train-

ing time for hybrid models is less on an average than corresponding LR, RF, and LASSO

models.

◦ We propose a novel idea for balancing the bias-variance tradeoff. Compared to traditional

bias-variance techniques, which add a regularizer to a loss function, our method proposes

proxies for both bias and variance, and then minimizes the sum of these two errors.
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1.3 LR versus NB

1.3.1 Logistic Regression

In this subsection, we discuss LR as a classification method for categorical data. Suppose we seek

to assign a class label c ∈ΩC of the class variable C to instances described by a set of n categorical

features F = (F1, . . .Fn) defined on the probabilistic space χ . For simplicity of exposition, we

assume that F1, . . . ,Fn are all Boolean. If feature Fj is not Boolean, i.e., has k j states with k j > 2,

we can represent Fj by k j−1 Boolean features Fj2, . . . ,Fjk j where Fjt = 1 if variable Fj takes state

t and Fjt = 0 otherwise, t = 2, . . . ,k j.

The LR model is a discriminative classifier that directly learns the conditional probability P(C |

F) by assuming that the log odds for a class c j is a linear function of the features:

ln
(

P(C = c j | f)
1−P(C = c j | f)

)
= β0 j +

n

∑
i=1

βi j fi, (1.1)

where f = ( f1, . . . fn).

We can derive the parametric form for the distribution P(C | F) by rewriting Eq. (1.1) as:

P(C = c j|f) =
exp(β0j +∑

n
i=1 βi jfi)

∑
c
k=1 exp(β0k +∑

n
i=1 βikfi)

. (1.2)

Notice that for a dataset that has a class variable with q classes, we have (q− 1) · (n + 1)

parameters. The small number of parameters is one reason for the simplicity and robustness of the

LR classifier. Using Eq. (1.2), we can compute the probability distribution of classes in C. The

predicted class is the one with the highest probability.

LR parameters are usually estimated by maximizing the conditional likelihood, i.e., choosing

parameters B that satisfy B← argmax
β

∏P(C = c j | f,β ), where β = (β0, . . . ,βn). As there is no

closed form solution with respect to B, one common approach is to use gradient-based methods.

Ng and Jordan [39] show that the prediction performance of LR converges to the best performance

of all linear classifiers as the training sample size goes to infinity. However, with a small training
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Figure 1.1: An LR Model as a Bayesian Network

Figure 1.2: An NB Model as a Bayesian Network

sample size, LR estimates may overfit the data, which makes the prediction less accurate. Also, the

gradient-based method can be computationally intensive especially for a large number of parame-

ters of interest. For datasets with large number of features, any speed-up to the parameter learning

process may be highly desired.

Rijmen [47] models an LR model as a Bayesian network, where Eq. (1.2) constitutes the

conditional probability distribution for C given F = (F1, . . .Fn). LR assumes a parametric form for

the distribution P(C|F), and has its model structure as shown in Fig. (1.1). In this figure, the dotted

oval around the features denotes that the Bayesian network structure of the feature variables is not

represented, as it is irrelevant to C, assuming that we have observed values of all features.

1.3.2 Naïve Bayes

In this subsection, we discuss NB model as a classification method for categorical data. Suppose C

is the class variable, whose value we wish to predict based on observation of a set of m categorical

features E = (E1, . . .Em).

The NB model is a generative classifier that learns the joint probability distribution P(C,E) by

making an assumption that features E = (E1, . . .Em) are mutually conditionally independent given

the class variable C. Fig. 1.2 is a Bayesian network depiction of an NB classifier. Using Bayes
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rule, it can be shown that

odds(C = c j | e) = odds(C = c j)
m

∏
i=1

lr(ei,C = c j), (1.3)

where e = (e1, . . .en) and lr(ei,C = c j) =
P(ei|C=c j)
P(ei|C 6=c j)

is the likelihood ratio for C = c j based on the

observed value Ei = ei. In words, the posterior odds of C = c j is equal to prior odds of C = c j times

the likelihood ratios of observed features for C = c j. If a feature is not observed, we can regard its

likelihood ratio as equal to 1.

We can also derive the parametric form of the posterior probability P(C | E) from Eq. (1.3) as

P(C = c j | e) =
P(C = c j)∏

m
i=1 P(ei | c j)

∑
c
k=1 P(C = ck)∏

m
i=1 P(ei | ck)

. (1.4)

As we are interested in the most probable value of C, we have the classification rule for NB

as :

C← argmax
c j

P(C = c j)∏
m
i=1 P(ei | c j)

∑
c
k=1 P(C = ck)∏

m
i=1 P(ei | ck)

. (1.5)

The conditional independence assumption reduces the complexity of the NB model (number

of parameters), which makes it a robust model. Specifically, if the class variable C has q classes,

and features E1, . . . , Em are all binary, the number of parameters to be estimated is qm+ q− 1.

Also, the conditional independence assumption helps overcome the overfitting issue by making

NB estimate its parameters using the entire training sample. In spite of its simplicity and strong

conditional independence assumption, NB performs surprisingly well, even against other more

sophisticated classifiers, especially when the training set size is small.

However, conditional independence assumption rarely holds in practice, and as a consequence

an NB model may not predict well. A great amount of literature addresses approaches to improving

the prediction performance of NB by either relaxing the conditional independence assumptions

between features given the class label [13, 18, 36, 42, 53, 63] or by weighting the features [17, 25,

60]. In the next section, we will describe a hybrid LR-NB classifier that relaxes the conditional
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independence assumptions in NB by assigning mutually conditionally dependent features to the

LR part of the hybrid model.

1.3.3 Comparison of LR and NB

In supervised learning, the prediction error for a given machine learning algorithm can always be

broken down into three parts: bias, variance, and irreducible error. Irreducible error is associated

with the inherent variability in the data, and there is nothing one can do about it. Thus, an effective

learning algorithm should minimize the sum of bias and variance errors.

The bias error is the result of erroneous assumptions in the given learning algorithm. A high

bias learner is usually less flexible, has a simpler functional form, and can be trained more effi-

ciently (than low bias learners). On the other hand, the variance reflects the sensitivity of learning

algorithm to the changes in the training dataset. A high variance learner is usually more flexi-

ble, has a more complex functional form, and is more likely to overfit the training data (than low

variance learners). Reducing the bias usually results in increasing the variance, and vice-versa.

As there is no way out of this inverse relationship between bias and variance, we need to balance

the trade-off between these two errors. Such bias-variance tradeoff forms the conceptual basis for

many regularization methods such as LASSO and ridge regression.

NB is a learning algorithm with lower variance, but higher bias, in comparison to LR. First, we

can show that the conditional independence assumption of NB implies the same parameteric form

of P(C | E) as P(C | F) in LR. To maximize the conditional likelihood of LR and NB using Eqs.

(1.2) and (1.5) respectively, we get a direct equivalence between LR and NB as eβ0, j ∝ P(C = c j)

and eβi, j ∝ P(ei | c j). This equivalence suggests that LR and NB have the same hypothesis space,

and asymptotically converge toward identical classifiers assuming that the conditional indepen-

dence assumptions of NB holds. As a result, they tend to produce the same classification error

as the number of training examples approach infinity. However, when the conditional indepen-

dence assumption does not hold, it introduces bias and consequently NB parameter estimates are

suboptimal, i.e., the asymptotic classification error for LR is often lower than that of NB.
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Figure 1.3: A Hybrid LR-NB Model as a Bayesian Network

On the other hand, the conditional independence assumption makes NB estimate the parameters

over the entire sample, thus exhibits low variance by preventing it from overfitting. Ng and Jordan

[39] also show that, the generative NB converges to its asymptotic error more quickly than the

discriminative LR. Accordingly, the low-variance learner NB is expected to achieve lower error

compared to LR, when the training set size is small.

1.4 A Hybrid LR-NB Model

In this section, we discuss a hybrid LR-NB model (hybrid, in short) as a classification method

for categorical data. The graphical structure of a hybrid model represented as Bayesian network

is shown in Fig. 1.3. Node C is the class variable, whose value we need to predict based on

observation of two sets of features: F = (F1, . . .Fn), the parents of C in Fig. 1.3, called the LR

part, and E = (E1, . . .Em), the children of C, called the NB part. As in Section 1.3, we assume that

F1, . . .Fn are all Boolean.

The conditional independence assumptions of a hybrid model are as follows. First, the features

in the LR part of the model are conditionally independent of the features in the NB part given

the class variable C. Second, the features in the NB part of the model are mutually conditionally

independent given the class variable C.

One implication of the first conditional independence assumption is that to learn the parameters

of the conditional distribution of C given the features in the LR part, the features in the NB part are

irrelevant for this task. Thus, one can use standard LR parameter estimation methods to learn these

parameters. Similarly, to learn the parameters of the NB part of the hybrid model, the features in
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the LR part are irrelevant for this task, and thus, we can use standard NB parameter estimation

methods for learning these parameters.

Making inferences in a hybrid model is easy. Using variable elimination [62], after we elimi-

nate the observed features in the LR part, the posterior distribution of the class variable C is given

by the LR model:

ln(odds(C = c j|f)) = β0, j +∑
n
i=1 βi, j fi,

where f = ( f1, . . . , fn), fi is the observed state of feature Fi in the LR part, and βi, j are the

parameters of the LR model.

This gives the posterior odds of C = c j given f = ( f1, . . . , fn) as:

odds(C = c j|f) = exp(β0, j +
n

∑
i=1

βi, j fi). (1.6)

After elimination of the features F in the LR part, what is left is an NB model such that the

prior distribution of C (defined as the posterior distribution of C given F = f) is as given in Eq.

(1.6). Thus, we can now compute the posterior distribution of C given F = f and E = e using the

NB model as follows:

odds(C = c j | e, f) = exp

(
β0, j +

n

∑
i=1

βi, j fi

)
m

∏
k=1

lr(ek,C = c j), (1.7)

where e = (e1, . . . ,em), and lr(ek,C = c j) =
P(ek|C=c j)
P(ek|C 6=c j)

is the likelihood ratio for C = c j based

on the observed state Ek = ek. Similar to NB model, if a feature in the NB part is not observed, we

can regard its likelihood ratio as equal to 1.

Eq. (1.7) is used for making inferences from a hybrid classifier, which estimates the probability

that the class variable C will take the value of c1, . . . ,cq ∈ Ωc given the observed values of all

features.

A hybrid model has an advantage of reducing the prediction error by relaxing the conditional

independence assumptions of an NB model. From Fig. 1.3, the LR part of hybrid model does not
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require a full model structure, and hence makes no conditional independence assumptions among

its features. Given a set of features that are highly conditionally dependent on each other given

the class variable, we can assign them to the LR part, as the conditional likelihood maximization

algorithm for LR part can easily adjust its parameters to maximize the conditional likelihood of

the data, hence reduce the bias of the hybrid model.

Apart from relaxing the conditional independence assumption of an NB model, hybrid model

retains the simplicity of LR and NB models. Assuming all the features in both LR and NB parts

of the model are binary-valued, then the number of parameters in the hybrid model is (q−1)(n+

1)+qm, where n is the number of features in the LR part of the model, m is the number of features

in the NB part of the model, and q is the number of classes of the class variable.

As a combination of LR model and NB model, the hybrid model is considered to be more

flexible in terms of training set size. When the training sample is large, we tend to assign features

to the LR part to reach the lowest bias among all linear classifiers. However, when the training

sample is small, we may sacrifice some bias to achieve a lower variance by assigning features to

the NB part. When the training sample is neither too large nor too small, we may assign some

features to the LR part, and some features to the NB part by balancing the bias-variance tradeoff

with the consideration of their conditional dependence with other features.

Finally, pure LR model can be computationally intensive, as its training time grows exponen-

tially with the number of parameters to be estimated. The hybrid model is capable of reducing the

LR‘s computational complexity by assigning some of the features to the NB part when we have a

large number of features. Consequently, there are fewer parameters in the LR part to be estimated.

Note that learning NB parameters does not require any optimization, thus offers a much faster

training step as compared to LR. On the other hand, because it is just as easy to make inferences

from a hybrid model as from pure LR and pure NB models, the hybrid model is computationally

efficient at classification time.

Constructing a hybrid model is strictly more general than making the selection between a pure

LR and a pure NB model. A hybrid model is identical to LR if all its features are assigned to the LR
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part, and is identical to NB if all its features are assigned to the NB part. However, other feature

assignments can result in classifiers that differ from both pure LR and pure NB. Later, we will

show that by implementing our hybrid model construction heuristic, the hybrid model is capable

of outperforming both pure LR and pure NB in many cases.

1.5 A Method for Constructing a Hybrid LR-NB Model

The main focus of this section is on construction of a hybrid model, with LR as the discriminative

component, and NB as the generative component, that predicts well. As there are 2m+n possible

hybrid model structures, where m+n is the total number of features in the hybrid model, searching

the space of all possible hybrid models is computationally intractable for large values of m+n.

To the best of our knowledge, not much work has been done to address this issue. Kang and

Tian [33] use a greedy method by starting with all features in the NB part, and they move one

feature at a time to the LR part until the in-sample classification accuracy does not increase. One

problem with this approach is that it may yield a local optimal solution. Also, this method is time

intensive. Tan et al. [53] select the NB part based on the conditional independence relations of

pairs of features. Their strategy tries to control for the model bias, however, it ignores the impact

of model variance. As a result, their heuristic fails to outperform pure LR.

In this section, we propose a new heuristic to select the LR and NB parts for a hybrid model.

Our heuristic only decides to which part a variable should be assigned. It does not serve as a feature

selection process, i.e., we use all features in the datasets to train a hybrid model.

1.5.1 Feature Evaluation

In this section, we adopt a bias-variance tradeoff based strategy to decide whether we should assign

a given feature to the LR part, or to the NB part, of a hybrid model. Traditional bias-variance

techniques, such as LASSO and ridge regression, balance the tradeoff by adding a regularizer

to a loss function. Our method differs from them in that we use a proxy for relative bias and
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relative variance of assigning features to either the LR part or to the NB part. Thus, we construct

a hybrid model by evaluating each feature to see if it favors high-bias, low-variance NB part or

high-variance, low-bias LR part.

At the heart of our model construction method are two proxies for relative bias and relative

variance of assigning features to either the LR or the NB part of a hybrid model, respectively,

based on the following observations:

1. Exponential Decrease: As the size of the training set increases, the prediction error for both

LR and NB model decreases exponentially.

2. Convergence Rate: NB’s strong assumption of conditional independence allows NB to esti-

mate the parameters using the entire training sample. This prevents NB from overfitting to

the training data, and makes NB converge to its asymptotic error more quickly than LR [39].

As a result, NB tends to produce lower variance.

3. Identical Classifier: Assuming that the NB model’s conditional independence assumption

holds, LR and NB converge toward identical classifiers as the number of training instances

tends to infinity.

4. Conditional Independence: A hybrid model assumes that features in the LR part are con-

ditionally independent of the features in the NB part given the class variable, and that all

features in the NB part are mutually conditionally independent given the class variable. In

other words, any feature in the NB part is assumed to be conditionally independent with all

other features in the hybrid model, and thus the violation of such conditional independence

assumption will result in a bias.

First, we define r̄i as the average conditional dependence given class variable C of feature Fi

with all other features. We use it as a proxy for relative bias error induced by assigning feature

Fi to the NB part, as compared with assigning the feature to the LR part, of a hybrid model:

B(Fi) = r̄i. The prediction performance of LR converges to the best performance of all linear

classifiers as the training sample size goes to infinity, i.e., LR produce the lowest bias among all
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linear classifiers; while, as per observations Identical Classifier and Conditional Independence, if

we assign a feature to the NB part of a hybrid model, it induces some additional bias by violating

the conditional independence assumptions of the hybrid model. In this paper, we use normalized

conditional mutual information as a measure of conditional dependence.

Next, we use the training set size as a proxy for relative variance error induced by assigning

feature Fi to the LR part, as compared with assigning the feature to the NB part, of a hybrid

model. Specifically, we adopt an exponential decay function relating the total number of instances

in the training set, N, to the relative variance of the learning algorithm: V (Fi) = e−λN , following

Exponential Decrease. It helps aviod the high influence of the sample size for large datasets. This

function form is also consistent with the observation Identical Classifier as it converges to zero

when N goes to infinite, and with the observation Convergence Rate as we set λ > 0.

Notice that both LR and NB models can handle numeric features. However, in the case of

an NB model, we need to make distributional assumptions for the conditional distributions of

numeric features given the class variable. Thus any violation of such distributional assumptions

will result in additional bias. Similarly, regarding missing data, in the case of an LR model, we need

to either ignore the corresponding instances, or impute the data, for example, with expectation-

maximization algorithm or Markov chain Monte Carlo approaches. Both listwise deletion and

data imputation result in additional variance. These add complexity to our heuristic. Therefore, we

only focus on categorical data with no missing values in this paper. In addition, we do not apply

any regularization in LR part of the hybrid model, because it increases the bias and reduces the

variance of the LR part by shrinking its coefficients towards zero. Our approach controls the model

variance by assigning features towards the NB part of the hybrid model.

1.5.2 Model Construction Algorithm

The previous paragraph describes the basic idea of the proposed heuristic in an intuitive manner.

Following the bias-variance tradeoff strategy, we define e(Fi) as a proxy for the relative model

reducible error if Fi is assigned to the LR part, as compared with assigning the feature to the NB
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part, of a hybrid model :

e(Fi) = V (Fi)−B(Fi)

= e−λN− r̄i (1.8)

Our heuristic criterion is described in Algorithm 1. First, we calculate the index of relative

reducible errors, e(Fi), for each of the features F1, . . . ,Fn using Eq. (1.8). Next, for any given

feature Fi, if e(Fi)≤ 0, then Fi is assigned to the LR part. Otherwise, Fi is assigned to the NB part.

We determine the value of the tuning parameter λ ≥ 0 using cross-validation, which is described

in Section 1.6.1.

Algorithm 1 Find structure of a hybrid model
Input: A set of labelled instances.
Output: A hybrid network structure with identified LR-part and NB-part.

1: Set NB-part = /0 and LR-part = /0.
2: For each Fi ∈ {F1, . . . ,Fn} :
3: Calculate the index of relative errors e(Fi) using Eq. (1.8).
4: If e(Fi)≤ 0, then LR-part = LR-part∪{Fi}
5: If e(Fi)> 0, then NB-part = NB-part∪{Fi}
6: end for;
7: end algorithm

1.6 Experimental Analysis

To evaluate the performance of hybrid models constructed using the heuristic introduced in Section

1.5, we conduct experiments on 25 different machine learning datasets from the UCI Machine

Learning Repository. A summary of these datasets is given in Table 1.1. The datasets are selected

such that we have a diversity of sample sizes, number of features, and binary/non-binary class

variables.

In Section 1.6.1, we start with the description of our experimental setup. In Section 1.6.2,

we compare the performance of hybrid models constructed using our heuristic with that of pure
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Table 1.1: A Summary of 25 Bench-Mark Datasets

Dataset # Features # Instances # Classes
Abalone 8 4,177 3
Balance Scale 4 625 3
Banknote Authentication 4 1,372 2
Qualitative Bankruptcy 6 250 2
Blogger 5 100 2
Blood Transfusion Service Center 4 748 2
Car Evaluation 6 1,728 4
Connectionist Bench 60 208 2
Credit Approval 15 690 2
Hepatitis 19 155 2
Heart Disease (Hungarian) 13 294 5
Hypothyroid 17 3,163 2
ILPD (Indian Liver Patient Dataset) 10 583 2

Dataset # Features # Instances # Classes
Iris 4 150 3
Liver Disorders 6 345 2
Magic Gamma Telescope 10 19,020 2
Mammographic Mass 5 961 2
Mushroom 21 8,124 2
New Thyroid 5 215 3
Pima Indians Diabetes 8 768 2
Statlog Vehicle Silhouettes 18 846 4
Vertebral Column 6 310 2
Congressional Voting Records 16 435 2
Wilt 5 4,839 2
Wine 13 178 3

LR and pure NB models. The training time of hybrid models is compared with that of pure LR

and pure NB models in Section 1.6.3. The performance of our proposed method is compared with

state-of-the-art classifiers, Random Forest (RF) and regularized LR (LASSO) in Sections 1.6.4 and

1.6.5 respectively.

1.6.1 Experimental Setup

The experiments are conducted using R. Numeric features in the original datasets are discretized

using an entropy-based method (minimum description length (MDL) method), proposed by Fayyad

and Irani [16]. We carry out the discretization procedure using a filter in WEKA. Besides, missing

values of any features are imputed with the conditional probability given the response variable,

i.e., P(Ei |C).

First, we randomly divide each dataset into two parts, a training set with about 90% of the

instances, and a test set with the remaining 10% of the instances. Using the training set, we

implement the Algorithm 1 described in Section 1.5 to identify the hybrid model structure, i.e., to

partition the feature set into an LR part and an NB part. Specifically, we select the value of tuning

parameter λ using 10-fold cross-validation in the training set by minimizing the root mean square

error (RMSE), which is calculated as follows:

20



RMSE =

√
∑

T
t=1 ∑

S
s=1(P̂(yts)− yts)2

T ·S

where yts is an indicator, which takes the value of 1 if the observed category of class variable y

for instance t is s, and 0 otherwise. P̂(yts) is the predicted probability of the class variable y for

instance t to take the category s, T is the total number of instances, and S is the total number of

categories for the class variable. Note that, the value of λ can also be chosen based on hybrid

models’ 0-1 loss, posterior likelihood, or AUC (for binary responses).

Next, we learn the parameters of the corresponding hybrid model with the entire training data.

The estimation of parameters of the NB part of hybrid model and also those of pure NB model

are conducted using the Laplace correction [40] to prevent the high influence of zero probabilities.

Specifically, we assume the training set is large enough that adding one to each count would not

make a significant difference in estimated probabilities.

Finally, we predict the class for instances in the test set. The prediction performance is mea-

sured using 0-1 loss, and RMSE.

We repeat the entire procedure (division of dataset, identification of model structure, estimation

of model parameters using the training set, and computation of prediction accuracies using the

test set) 1,000 times. For computational reasons, experiments for datasets with more than 8,000

instances, or 20 features (Connectionist, Magic, Mashroon) are conducted only 200 times. In

the remainder of this section, we report Win/Draw/Loss (W/D/L) results when comparing the 0-1

loss and RMSE of two models. A two-tail paired t-test is used and we consider the results to be

significant if its p-value is less than 0.05. The detailed results in terms of average structure of the

hybrid model, prediction accuracies measured by 0-1 loss (in units of %) and RMSE with their

standard errors, and training time are presented in the appendix.
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Table 1.2: Win/Draw/Loss: Hybrid versus LR, Hybrid versus NB

W/D/L Hybrid vs. LR Hybrid vs. NB
0-1 Loss 6/19/0 18/2/5
RMSE 10/14/1 18/1/6

1.6.2 Hybrid versus LR and NB

We start by examining the average structure of the hybrid model found using our heuristic before

making the comparison between hybrid model versus pure LR and pure NB. On an average for the

25 datasets, the hybrid model consists of 77.33% of the features in the LR part, with the remaining

22.67% in the NB part. Notice that if no feature is assigned to the LR (NB) part, then the hybrid

model is exactly the same as pure NB (LR) model. The resulting hybrid model is identical to pure

LR in 5 datasets, and possibly strictly hybrid in the remaining 20 datasets.

The Win/Draw/Loss (W/D/L) results of hybrid model against pure LR and pure NB are given

in Table 1.2. It can be seen that hybrid model has significantly better 0-1 loss and RMSE than both

pure LR and pure NB, indicating that our heuristic decribed in Section 1.5 is effective in improving

the classification performance of hybrid model compared to pure LR and pure NB.

It is also worth noting that for those 20 datasets where the resulting model is possibly strictly

hybrid, the hybrid model significantly outperforms both LR and NB in terms of 0-1 loss in 2 of

them, and in terms of RMSE in 4 of them. This suggests that the hybrid model can be more

powerful than making the selection between a pure LR and a pure NB model by providing the

additional model structure fexibility.

1.6.3 Training Time Comparison

LR is computationally expensive at training time. Given a large number of features, estimating

the parameters of an LR model by maximizing the conditional log-likelihood is a computationally

intensive task. In this section, we examine the effectiveness of hybrid model on reducing the

LR’s training time by assigning some of the features to the NB part, and consequently achieving

dimension reduction in the LR part.
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Figure 1.4: Average training time of hybrid model, LR and NB on all 25 or high-dimensional
datasets. Results are normalized with respect to hybrid model.

Table 1.3: Win/Draw/Loss: Hybrid versus RF

W/D/L 0-1 Loss RMSE
Hybrid vs. RF 5/7/13 14/2/9

A comparison of the training time of hybrid model versus LR and NB is given in Fig. 1.4. The

results shown are consistent with our expectation that hybrid model requires less training time than

pure LR. While over the entire 25 datasets, the hybrid model exhibits a slightly faster training speed

than pure LR, the difference is more significant over the high-dimensional datasets (7 datasets with

at least 15 features). Notice that we ignore the issue of classification time in this paper as hybrid

model, LR and NB are all quite efficient in terms of classification time.

1.6.4 Hybrid versus Random Forest

Random forest (RF) [4] is recognized as a state-of-the-art classification technique. It basically

consists of many classification trees, where each tree is trained using randomly selected (with

replacement) instances from the training set. The RF makes a classification by choosing the most

frequently selected category over all trees in the forest. We use 100 decision trees in this work.

The hybrid model is compared with RF in terms of W/D/L of 0-1 loss and RMSE in Table 1.3.

It can be seen that hybrid model has higher 0-1 loss, but lower RMSE than RF, indicating that our

heuristic results in a hybrid model that is competitive with the well known random forest. Also,

Figure 1.5 suggests that RF requires much more training time than the hybrid model.
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Figure 1.5: Average training time of hybrid model and RF on all 25 or high-dimensional datasets.
Results are normalized with respect to hybrid model.

Table 1.4: Win/Draw/Loss: Hybrid versus LASSO

W/D/L 0-1 Loss RMSE
Hybrid vs. LASSO 5/10/10 1/14/10

1.6.5 Hybrid versus LASSO

L1 regularized logistic regression, also known as LASSO [55], is a bias-variance technique that

performs both feature selection and shrinkage in order to improve the algorithm prediction power.

It reduces the variance at the expense of increasing its bias, by shrinking the coefficients towards

zero. By assuming sparsity, which reduces the model complexity and ensures the identifiability

of the true underlying sparse model given limited sample size, LASSO is particularly useful in

high-dimensional cases. We select the value of penalty parameter using 10-fold cross validation in

the training set by minimizing the MSE in this work.

Figure 1.6: Average training time of hybrid model and LASSO on all 25 or high-dimensional
datasets. Results are normalized with respect to hybrid model.
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The hybrid model is compared with LASSO in terms of W/D/L of 0-1 loss and RMSE in Table

1.4. Our method performs worse than LASSO over the entire 25 datasets in terms of both 0-1 loss

and RMSE. However, when the number of predictors is small, LASSO’s sparsity assumption is

more likely to be violated. As a result, the difference between hybrid model and LASSO appears

to be insignificant. For example, the W/D/L for 0-1 loss is 3/7/4, and for RMSE is 0/12/2 on

datasets with fewer than 10 features. Also, Figure 1.6 suggests that LASSO requires much more

training time than the hybrid model.

1.7 Summary and Conclusions

In this paper, we describe a new hybrid LR-NB model construction method that follows the strategy

of balancing the tradeoff between model bias and model variance, with the objective of minimiz-

ing the sum of these two errors. Our approach is primarily motivated by the intuition of taking

advantage of the strengths of both LR and NB, and takes into account the training sample size and

the conditional dependence among features. Experimental results are presented showing that the

hybrid model constructed using our heuristic can generally outperform both pure LR and pure NB

models. Hybrid model offers an improvement over pure LR in terms of training time by optimizing

fewer parameters in the LR part. Also its prediction performance is comparable to random forest.

Although the hybrid model fails to beat LASSO, the difference appears to be insignificant when

the number of features is small. Also, the hybrid model requires much less training time, which

makes it attractive when the training time is a big concern.

Our work adds to the literature that investigates the properties of LR and NB [38, 47], and

makes the comparison between them [39, 57]. Particularly, our heuristic posits functions that try

to link the training sample size and the conditional dependence among features, to the bias and the

variance of assigning a given feature to the LR and the NB part of a hybrid model respectively. By

balancing the tradeoff between bias and variance, we provide a selection mechanism that helps in

making the choice between pure LR, pure NB, and strictly hybrid models.
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Chapter 2

The Naïve Bayes Penalized Logistic Regression Model for

Classification

Abstract

Attempting to reduce the variance of the estimator and to prevent overfitting, regularization

techniques have attracted great interests from the statistics and machine learning commu-

nity. Most of the existing regularized methods rely on the sparsity assumption, thus work

particularly well in high-dimensional problems. However, the sparsity assumption may not

be necessary when the number of predictors is relatively small compared to the number of

training instances. In this paper, we argue that for such situations, shrinking the coefficients

towards a low-variance data-driven estimate could be a better regularization strategy. For the

classification problems, we propose a naïve Bayes regularized logistic regression (NBRLR),

that shrinks the logistic regression coefficients toward the naïve Bayes estimate to provide a

reduction in variance. Our approach is primarily motivated by the fact that naïve Bayes has

an equivalent functional form compared to logistic regression given that naïve Bayes’ condi-

tional independence assumption holds. We also present the consistency result for the NBRLR

estimator. Extensive simulation and empirical experimental results show that, NBRLR is a

competitive alternative to a variety of state-of-the-art classifiers.
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2.1 Introduction

Logistic regression (LR) is widely used in machine learning for classification problems. It is

a discriminative classifier, which directly learns the conditional probability of the class variable

given the predictors without assuming anything about the distribution of the predictors. As per Ng

and Jordan [39], LR converges to the best linear classifier when the training sample size, n, goes to

infinity by producing the smallest bias, and therefore is highly preferred amongst linear classifiers

when the training sample size is large. However, when the training sample is limited, or there is a

large number of parameters, p, to be estimated, regularization is required to avoid overfitting. Many

regularized methods have been proposed to improve prediction error in regression frameworks,

including lasso [55], SCAD [14], elastic net [64], and LARS [11]. These estimators rely largely

on the sparsity assumption, i.e., only a small proportion of predictors are likely to be informative.

Thus, they work particularly well in high-dimensional problems, i.e., p is relatively large compared

to n.

A good regularization strategy should be shrinking the regression coefficients towards the val-

ues which are close to the truth. One limitation of these approaches is that, in practice, sparsity

assumption is often violated. Especially, when p is relatively small compared to n, predictors are

less likely to be irrelevant with the class variable, and thus tend to be influential. Shrinking the co-

efficients of influential predictors towards zero introduces bias, and causes the regression estimates

to be suboptimal. As a result, traditional sparsity-enforced approaches may not perform well. Also

in this setting, there also tends to be less multicollinearity among predictors. This limits the benefit

of ridge regression [30], which is motivated by dealing with multicollinearity, not sparsity. We

argue that, when p is relatively small compared to n, a better strategy of regularization is to shrink

the coefficients towards a low–variance data–driven estimate.

It has been shown that naïve Bayes (NB), a probabilistic classifier with equivalent functional

form compared to LR, tends to have lower variance than LR [59, 60]. NB is a generative classifier

which learns the joint probability distribution of the predictors and the class variable. It infers the

posterior probability of a class label given data by using Bayes rules with an assumption about

27



the distribution of the predictors and that the predictors are mutually conditionally independent

of each other given the class variable. This assumption is mostly motivated by the need to learn

parameters from high-dimensional data, and to overcome overfitting. Consequently, NB performs

surprisingly well, even against other more sophisticated classifiers, especially when the training

set size is small [9, 26].

In this paper, we propose a naïve Bayes regularized logistic regression model (NBRLR) for

classification problems, which uses regularization to shrink the estimates of a LR model towards

the NB estimate. As LR and NB form a well known discriminative-generative pair, our work adds

to the literature that explore hybrid models which take advantage of both approaches. Such models

can be placed into two categories. The first category comprises two-stage approaches, which train

the model generatively with the NB model in one stage, while training the model discriminatively

with the LR model in the other stage. Raina et al. [45] and Fujino et al. [21] investigate a class of

hybrid model for supervised learning in the context of text classification problems, that are partly

generative and partly discriminative. Specifically, they allow different partitions of the predictors

into subgroups, each of which is modeled under the NB assumption, based on domain knowledge.

Then these subgenerative models are combined with weight parameters that are determined dis-

criminatively. Our study differs because we do not require any prior domain knowledge to fit a

model.

Kang and Tian [33] introduce a restricted class of Bayesian network classifier where they use

LR as the discriminative component, and NB as the generative component. Tan and Shenoy [52]

examine the construction of such hybrid models, i.e., to decide whether a given predictor should be

assigned to the LR part, or to the NB part. Specifically, they develop a metric to compare models,

which uses conditional independence as a proxy for model bias and training sample size as a proxy

for variance. The weakness of this method is that it serves as a selection mechanism, a predictor

is either classified as a NB or LR predictor with no middle ground. Our proposed method is a

shrinkage approach, which is more stable to small perturbations of data changes, and may improve

the prediction accuracy.
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Our work belongs to the second category, which uses the maximum likelihood parameteriza-

tion of NB to pre-condition the discriminative search of LR. Zaidi et al. [59,60] discuss a weighted

variant of NB with predictor weights selected by minimizing either the negative conditional log

likelihood or the mean squared error, rather than based on measures of predictiveness. Their strat-

egy can also be viewed as using weights to alleviate the predictor independence assumption of NB.

The resulting weighted NB model is exactly equivalent to LR, but computationally much more ef-

ficient. Zaidi et al. [61] introduces accelerated logistic regression for training LR with high-order

predictors. The proposed method significantly improves the efficiency and reduces the bias of LR,

which makes it particularly useful for large datasets. In these papers, authors search for the optimal

feature weights of the weighted NB by maximizing discriminative scores. Our work differs in that,

we estimate the LR coefficients by a penalized likelihood with coefficients being shrunk towards

the NB estimates.

An outline of the remainder of the chapter is as follows. In Section 2, we compare the LR

and the NB models, and describe our method for both the categorical and numerical predictors.

We also provide theoretical results, including consistency of our estimator. Section 3 presents the

coordinate descent algorithm we use. Section 4 includes simulations results to show how our esti-

mator performance is affected by the number of predictors and the dependence among predictors,

under three simulation settings. In Section 5, we provide empirical results from experiments using

ten datasets from the UCI Machine Learning Repository. Finally, in Section 6, we summarize and

conclude.

2.2 Naïve Bayes Penalized Logistic Regression

2.2.1 Logistic Regression

In this study, we consider the independent and identically distributed samples {yi,xi}n
i=1, with

xi = (1,xT
i1, . . . ,x

T
ip)

T , xi j = [xi j1, . . . ,xi j(d f j)]
T ∈ Rd f j and yi ∈ {0,1}. We consider two cases,

either the predictors are all continuous or all categorical. Where, d f j is the degrees of freedom of
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the jth predictor. For example, the main effect of a categorical predictor with 4 levels has d f = 3,

whereas a continuous predictor has d f = 1. Define d = ∑
p
j=1 d f j, then xi ∈ Rd+1.

LR is a discriminative classifier which directly learns the conditional probability P(yi = 1 | xi),

by assuming the form

P(yi = 1 | xi) =
exp(xT

i β
∗)

1+ exp(xT
i β
∗)
. (2.1)

where β
∗ = (β ∗0 ,β

∗
1

T
, . . . ,β ∗p

T
)T ∈ Rd+1 with β0 ∈ R being the intercept, and β j ∈ Rd f j being

the coefficient corresponding the the jth predictor. In LR, β
∗ is estimated by maximizing the

conditional likelihood as:

β̂ = argmax
β∈Rd+1

n

∏
i=1

P(yi = 1 | xi,β ).

LR is a well-known low-bias high-variance estimator. In fact, as shown by Ng and Jordan [39]

LR is asymptotically the best linear classifier. However, when the sample size is relatively small

compared to the number of predictors, LR estimates can have very large variances. In the cases of

perfect fits, they can be infinitely large. One advantage of regularization techniques, for example

lasso [55], is they increase the stability of the estimates.

For a vector a = (a1, . . . ,aq)
T ∈ Rq, define the Lp-norm as ||a||p = (∑

q
i=1 |ai|p)1/p. The lasso

estimator for logistic regression is defined as

β̂ λ = argmin
β∈Rd+1

[
−1

n
l (β )+

λ

n

p

∑
j=1
||β j||1

]
,

where l (β ) = ∑
n
i=1{yix′iβ − log [1+ exp(x′iβ )]} is the log-likelihood function. By assuming spar-

sity of the true β
∗, lasso is particularly useful in the high-dimensional situation. This assumption

is primarily driven by the "bet on sparsity" principle ( [28]):

“Use a procedure that does well in sparse problems, since no procedure does well in dense

problems.”
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Our intuition is that a good regularization strategy is to shrink the regression coefficient towards

the values which are close to the truth. In the cases where p is relatively small compared to n, the

sparsity assumption may not be necessary. Specifically, the predictors are less likely to be irrelevant

with the class variable, and tend to be influential. Shrinking the coefficients of influential predictors

towards zero introduces bias, and makes the regression estimates suboptimal. Ridge regression

is another common regularization method, but unlike lasso it does not assume sparsity. Ridge

estimators reduce the variance caused by correlated predictors, but a the cost of introducing bias to

the estimator. However, such sacrifice may not be worthy when p is relatively small compared to

n, as there tends to be less multicollinearity among predictors. In this paper, we propose a model

based approach for balancing the bias–variance tradeoff by shrinking β
∗ towards the NB estimate,

instead of zero. In some setting NB can be preferred to LR because of the low variance in NB

estimates. In the following we present the equivalent function forms of LR and NB, which, along

with the small variance in NB estimates, motivates our decision to shrink LR coefficients towards

the NB estimates.

2.2.2 Logistic Regression versus Naïve Bayes

Naïve Bayes (NB) is a simple and effective supervised classification model based on applying

Bayes’ rule with the strong assumption of conditional independence, i.e., predictors are condi-

tionally independent of each other given the class variable. Define P̃j(xi j|yi = ỹ) = ∏
d f j
k=1 P(xi jk =

1|yi = ỹ)xi jk . When the class variable is binary, NB can be expressed as:

P(yi = 1 | xi) =
P(yi = 1)∏

p
j=1 P̃j(xi j|yi = 1)

P(yi = 0)∏
p
j=1 P̃j(xi j|yi = 0)+P(yi = 1)∏

p
j=1 P̃j(xi j|yi = 1)

. (2.2)

The conditional independence assumption reduces the complexity of the naïve Bayes model,

and therefore naïve Bayes exhibits low variance, and performs surprisingly well when the training

set size is small [9, 26]. However, conditional independence assumption rarely holds in practice.

Any violation of the assumption will result in a bias, and make naïve Bayes estimates suboptimal.
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Accordingly, naïve Bayes is a low-variance high-bias classifier, in comparison to LR [?].

To take advantage of both approaches, many papers have explored hybrid models that combine

LR and NB into one model. One approach is to fit the model in two stages, a generative stage where

we fit a NB model and a discriminative stage where we fit an LR model. Methods in the second

category use the maximum likelihood parameterization of NB to pre-condition the discriminative

search of LR [59–61]. Our method belongs to the second category, but instead of searching for the

optimal feature weights of the weighted NB by maximizing discriminative scores, we estimate the

LR coefficients by a penalized likelihood with coefficients being shrunk towards the NB estimates.

2.2.3 Naïve Bayes Regularized Logistic Regression: Categorical Predictors

Our approach is primarily motivated by the fact that LR and NB converge toward the identical clas-

sifier assuming that NB’s conditional independence holds. Specifically, we rewrite the parametric

form of P(yi = 1 | xi) of NB as:

P(yi = 1 | xi) =
P(yi = 1)∏

p
j=1 P̃j(xi j|yi = 1)

P(yi = 0)∏
p
j=1 P̃j(xi j|yi = 0)+P(yi = 1)∏

p
j=1 P̃j(xi j|yi = 1)

=
exp
[
log P(yi=1)

P(yi=0) +∑
p
j=1 log P̃j(xi j|yi=1)

P̃j(xi j|yi=0)

]
1+ exp

[
log P(yi=1)

P(yi=0) +∑
p
j=1 log P̃j(xi j|yi=1)

P̃j(xi j|yi=0)

] . (2.3)

Define Gi j(a) = 1−∑
d f j
k=1 P(xi jk = 1|yi = a). Then (2.3) is equivalent to

P(yi = 1 | xi) =
exp
[
log P(yi=1)

P(yi=0) +∑
p
j=1 log Gi j(1)

Gi j(0)
+∑

p
j=1 log P̃j(xi j|yi=1)/Gi j(1)

P̃j(xi j|yi=0)/Gi j(0)

]
1+ exp

[
log P(yi=1)

P(yi=0) +∑
p
j=1 log Gi j(1)

Gi j(0)
+∑

p
j=1 log P̃j(xi j|yi=1)/Gi j(1)

P̃j(xi j|yi=0)/Gi j(0)

] . (2.4)

This is precisely the form of P(yi = 1 | xi) of LR, where the intercept is β0 = log P(yi=1)
P(yi=0) +

∑
p
j=1 log Gi j(1)

Gi j(0)
∈R and the remaining coefficients are β jk = log P(xi jk=1|yi=1)/Gi j(1)

P(xi jk=1|yi=0)/Gi j(0)
∈R. Then (2.1)

and (2.4) are equivalent.
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Next, we define the NBRLR model as a classification method for categorical data. Following

the conventional regularization methods set-up, we assume that {xi jk}n
i=1, the values for the kth

class of the jth predictor, are standardized so that ∑
n
i=1 xi jk = 0 and 1

n ∑i x2
i jk = 1 for all j and k.

Let’s denote by {η̂0, η̂ j} is the naïve Bayes estimate of the model defined as:

η̂0 = log
P(yi = 1)
P(yi = 0)

+
p

∑
j=1

log
Gi j(1)
Gi j(0)

,

η̂ jk = log
P(xi jk = 1 | yi = 1)/Gi j(1)
P(xi jk = 1 | yi = 0)/Gi j(0)

.

The NBRLR estimator β̂
λ ,η̂ is defined by

β̂
λ ,η̂ = argmin

β∈Rd+1

− 1
n

l(β )+
λ

n

p

∑
j=0
||β j− η̂ j||1, (2.5)

where λ ≥ 0 is the tuning parameter that controls the amount of regularization. Note that for λ = 0,

then β̂
λ ,η̂ is equivalent to the LR estimate. In addition for a sufficiently large value of λ , β̂

λ ,η̂

will provide predicted probabilities that are the same as NB. As the NB probabilities depend on

the value of the intercept, we need to shrink the intercept towards the NB estimate. That is why we

penalize the intercept, which is uncommon in traditional regularization techniques, such as lasso

and ridge regression.

In practice, when p is relative small as compared with n, the sparsity assumption is more likely

to be violated. However, this is not the case for NB’s assumption of conditional independence.

The smaller number of predictors raises the chance of satisfying the conditional independence

assumption among features, which makes the NB estimates more reliable. In these settings, we

believe that shrinking coefficients towards the NB estimates, instead of zero, will produce less bias

while still providing a reduction in the variance compared to LR. Although, the proposed NBRLR

estimator will have larger variance than Lasso because no coefficients will be set to zero and η̂ j

is an estimate for all j ∈ {0, . . . , p}. This issue will be more problematic for larger p. However,

the proposed method can outperform lasso when the predictors are informative and the number of
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predictors is small relative to the sample size.

2.2.4 Naïve Bayes Regularized Logistic Regression: Continuous Predictors

In this subsection, we extend the NBRLR model to cases where we have continuous predictors.

One common assumption for each continuous predictor xi j of a NB model is that, xi j | yi = 1 ∼

N(u j1,σ
2
j ) and xi j | yi = 0 ∼ N(u j0,σ

2
j ) and let f j(x j|y) be the corresponding conditional distri-

bution of x j. Note that the standard deviations σ j varies from predictor to predictor, but does not

depend on the value of yi. Thus, we can expand the summation term in the numerator of the Eq.

(2.3) as:

p

∑
j=1

log
[

f j(xi j|yi = 1)
f j(xi j|yi = 0)

]
=

p

∑
j=1

log

 1√
2πσ j

exp(− (xi j−u j1)
2

2σ2
j

)

1√
2πσ j

exp(− (xi j−u j0)2

2σ2
j

)

 .

Define ρ = P(yi = 1). We get the direct equivalence between LR and NB by substituting this

expression back into equation 2.3:

P(yi = 1 | xi) =
exp(log ρ

1−ρ
+∑

p
j=1

u2
j0−u2

j1

2σ2
j

+∑
p
j=1

u j1−u j0

σ2
j

xi j)

1+ exp(log ρ

1−ρ
+∑

p
j=1

u2
j0−u2

j1

2σ2
j

+∑
p
j=1

u j1−u j0

σ2
j

xi j)
.

We define the NB penalty {θ̂0, θ̂ j} for our NBRLR estimator as:

θ̂0 = log
ρ

1−ρ
+

p

∑
j=1

u2
j0−u2

j1

2σ2
j

,

θ̂ j =
u j1−u j0

σ2
j

.
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The NBRLR estimator β̂λ for continuous predictors is

β̂
λ ,η̂ = argmin

β∈Rp+1

− 1
n

l(β )+
λ

n

p

∑
j=0
|β j− θ̂ j|, (2.6)

where λ ≥ 0 is the tuning parameter that controls the amount of regularization.

2.2.5 Asymptotic Results

In this section we will provide a consistency result for the NBRLR estimator. In fact, the result is a

general result that will apply to shrinking towards any value. The asymptotic result does depend on

some conditions. In this setting, let xi = (1,xi1, . . . ,xiq)
> ∈ Rq+1, so in Section 2.3 we have q = d

and for Section 2.4 we have q = p. For the theoretical results we do not assume that all predictors

are categorical or all predictors are continuous. Let η̂ j represent the, potentially estimated, value

the jth coefficient is being shrunk towards and η = (η0, . . . ,ηq)
T ∈ Rq. Define,

Zn(β , η̂) =−1
n

n

∑
i=1

(yix′iβ − log
[
1+ exp(x′iβ )

]
)+

λ

n

q

∑
j=0
|β j− η̂ j| (2.7)

and

β̂
λ ,η̂ = argmin

β∈Rq+1

Zn(β , η̂). (2.8)

Define ψ jkm(β ) =
∂ 3

∂β j∂βk∂βm
l(β ). To prove β̂

λ ,η̂ is a consistent estimator of β
∗, as defined in

(2.1), we require the following conditions.

Condition 1. Let Σ and Σ
β
∗ be positive definite matrices where

1
n

n

∑
i=1

xixT
i → Σ

and
1
n

n

∑
i=1

xixT
i

exp(x′iβ
∗)[

1+ exp(x′iβ
∗)
]2 → Σ

β
∗.
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Condition 2. For some positive constant C1, define Bn = {β |||β −β
∗||2 ≤C1n−1/2}. There exist

positive constants C2 and C3 such that for all β ∈ Bn, j ∈ {0, . . . ,q}, k ∈ {0, . . . ,q} and m ∈

{0, . . . ,q} that

C2 <
∣∣ψ jkm(β )

∣∣<C3.

For Condition 1 Knight and Fu [35] make the same assumption about the design matrix in their

proof of consistency for a general class of regularized estimators, including lasso, with the least

squares loss function. The assumption regarding Σ
β
∗ provides that the asymptotic variance of the

LR estimator is well behaved. Condition 2 ensures that when β is close to β
∗ that l(β ) can be well

approximated by a second order Taylor expansion. Similar conditions have been made on the third

partial partial derivative of a likelihood, when analyzing the asymptotics of a penalized likelihood

method [15, 37].

Theorem 1. Assume that (2.1) and Conditions 1 and 2 hold and that λ = o(n) then ||β̂ λ ,η̂−β
∗||=

OP(n−1/2).

Proof. By the properties of convex functions, for more details see the proof of Theorem 2.1 in He

and Shi [29] and Corollary 25, p.47, of Eggleston [12], it is sufficient to show that there exists L

such that

P

 inf∣∣∣∣∣∣β−β
∗∣∣∣∣∣∣

2
=Ln−1/2

Zn(β , η̂)−Zn(β
∗, η̂)> 0

→ 1. (2.9)

By Taylor’s approximation, for any β there is β̃ between β and β
∗ such that

l(β )− l(β ∗) = (β −β
∗)T
[

∂

∂β
l(β ∗)

]
+

1
2
(β −β

∗)T
[

∂ 2

∂β
2 l(β ∗)

]
(β −β

∗)

+
q

∑
j=0

q

∑
k=0

q

∑
m=0

(β j−β
∗
j )(βk−β

∗
k )(βm−β

∗
m)ψ jkm(β̃ ).
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Notice,

∂

∂β
l(β ) = −1

n

n

∑
i=1

xi

[
yi−

exp(x′iβ )
1+ exp(x′iβ )

]
,

∂ 2

∂β
2 l(β ) =

1
n

n

∑
i=1

xixT
i

exp(x′iβ )[
1+ exp(x′iβ )

]2 .
Therefore by Condition 1

sup∣∣∣∣∣∣β−β
∗∣∣∣∣∣∣

2
=Ln−1/2

∣∣∣∣(β −β
∗)T
[

∂

∂β
l(β ∗)

]∣∣∣∣ = sup∣∣∣∣∣∣β−β
∗∣∣∣∣∣∣

2
=Ln−1/2

∣∣∣∣∣(β −β
∗)T 1√

n
1√
n

n

∑
i=1

xi

[
yi−

exp(x′iβ
∗)

1+ exp(x′iβ
∗)

]∣∣∣∣∣
= Op(n−1/2 ∣∣∣∣β −β

∗∣∣∣∣
2) = OP(n−1L).

In addition by Condition 1 there exists a positive constant C̃ such that

inf∣∣∣∣∣∣β−β
∗∣∣∣∣∣∣

2
=Ln−1/2

1
2
(β −β

∗)T
[

∂ 2

∂β
2 l(β ∗)

]
(β −β

∗)≥ C̃||β −β
∗||22 = C̃L2n−1.

By Condition 2

p

∑
j=0

q

∑
k=0

q

∑
m=0

(β j−β
∗
j )(βk−β

∗
k )(βm−β

∗
m)ψ jkm(β̃ ) ≤ C3

q

∑
j=0
|β j−β

∗
j |

q

∑
k=0
|βk−β

∗
k |

q

∑
m=0
|βm−β

∗
m|

≤ C3q3/2||β −β
∗||32,

and

q

∑
j=0

q

∑
k=0

q

∑
m=0

(β j−β
∗
j )(βk−β

∗
k )(βm−β

∗
m)ψ jkm(β̃ ) ≥ −C2

q

∑
j=0
|β j−β

∗
j |

q

∑
k=0
|βk−β

∗
k |

q

∑
m=0
|βm−β

∗
m|

≥ −C2q3/2||β −β
∗||32.
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Therefore

sup∣∣∣∣∣∣β−β
∗∣∣∣∣∣∣

2
=Ln−1/2

∣∣∣∣∣ q

∑
j=0

q

∑
k=0

q

∑
m=0

(β j−β
∗
j )(βk−β

∗
k )(βm−β

∗
m)ψ jkm(β̃ )

∣∣∣∣∣= OP(L3n−3/2).

Under the assumption that λ = o(n)

λ

n

q

∑
j=0
|β j− η̂ j|− |β ∗j − η̂ j| ≤

λ

n

q

∑
j=0
|β j−β

∗
j | ≤

λ

n
√

q||β −β
∗||2 = o(

√
qLn−1/2),

and

λ

n

q

∑
j=0
|β j− η̂ j|− |β ∗j − η̂ j| ≥ −

λ

n

q

∑
j=0
|β j−β

∗
j | ≥ −

λ

n
√

q||β −β
∗||2 = o(

√
qLn−1/2).

Therefore, for sufficiently large L the lower bound of the quadratic term will dominate the other

terms and (2.9) holds.

2.3 Algorithm

We consider a coordinate descent step for solving (2.8), which is a generalization of (3.2) and (3.3),

following Friedman et al. [27]. The unpenalized log-likelihood l(β ) is maximized by implement-

ing Newton’s method with iteratively reweighted least square algorithm. Specifically, given the

current estimates of the parameters β
old = (β old

0 ,β old
1 , . . . ,β old

p )T with corresponding probability

pold(xi) = P(yi = 1 | xi,β
old) for observation i, we obtain a quadratic approximation to the l(β )

as:

lQ(β ) =−
1
2

n

∑
i=1

pold(xi)
[
1− pold(xi)

]{
xT

i β
old +

yi− pold(xi)

pold(xi)
[
1− pold(xi)

] −xT
i β

}2

+C, (2.10)
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where C is a constant term. Then our task becomes minimizing the following penalized weighted

least-squares problem

− 1
n

lQ(β )+λ

q

∑
j=0
|β j− η̂ j|. (2.11)

Define soft-thresholding operator S(a,b) = sign(a)(|a|− b)+, the update of coordinate descent is

performed by

β
new
j ← η̂ j +

S(A− η̂ jB,λ )
B

(2.12)

where

A =
1
n

n

∑
i=1

pold(xi)
[
1− pold(xi)

]
xi j

[
xi jβ

old
j +

yi− pold(xi)

pold(xi)(1− pold(xi))

]
,

B =
1
n

n

∑
i=1

pold(xi)
[
1− pold(xi)

]
x2

i j.

Thus, equation (2.11) is minimized by iterating through j ∈ {0,1, . . . ,q} until its difference be-

tween two iterations is less than 10−7.

Given a fixed value of λ , we propose the following algorithm.

1. Begin with initial estimates of β̂
0
= {β̂ 0

0 , β̂
0
1 , . . . , β̂

0
q }.

2. For the tth step, where t ≥ 1, repeat the steps below until the difference of the penalized log-

likelihood (3.2) between (t−1)th and tth step is less than 10−7.

(a) Update the quadratic approximation łQ with the current parameters β̂ t−1.

(b) Given current łQ, the tth iterative estimate of β is:

β̂
t
= argmin

β

− 1
n

lQ(β )+λ

q

∑
j=0
|β j− η̂ j|,

where it can be solved following the coordinate descent solution from (2.12) using β̂ t−1
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as the current estimate β old .

An R package implementing the described algorithm will be made publicly available upon accep-

tance of publication of this work.

2.4 Simulations

In this section, we compare the naïve Bayes regularized logistic estimator with pure LR, pure NB,

and regularized LR (lasso). Lasso is fit using the glmnet package [27] in R. We use 10-folds cross

validation with the objective of minimizing the out-of-sample prediction error to determine the

turning parameter in each case. When the predictors are categorical, the estimation of parameters

of pure NB model is conducted using the Laplace correction [40] to prevent the high influence of

zero probabilities. Specifically, we add one of each class to the data. The Laplace corrected values

are used for the NBLR estimator.

Under each simulation setting, we generate 100 training sample to fit the models, and 1000

testing samples to assess their prediction performance. Let N be the testing sample size, yi be the

observed class for the ith testing observation, ŷi be the estimated class for testing observation i and

P̂(yi = 0) be the estimated probability that yi is 0. If the predicted probability of an observation is

below .5 than we predict that sample belongs to class 0, otherwise we predict it belongs to class 1.

We compare the prediction performance of the models using the average prediction 0-1 loss (L0-1)

and root squared prediction error (RSPE), which are defined as

L0-1 = 1− 1
N

N

∑
i=1

1(yi = ŷi),

and

RSPE =

√
1

2 ·N

N

∑
i=1
{(P̂(yi = 0)−1(yi = 0))2 +(P̂(yi = 1)−1(yi = 1))2}.

We also report the mean squared error of the estimator β̂ , MSE(β̂ ), which for the truth β
∗ is

defined as
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MSE(β̂ ) =
1

p+1
||β̂ −β

∗||22.

We repeat the entire procedure 100 times. When comparing the L0-1, RSPE and MSE(β̂ ) of

the model, we present boxplots of the value of the three metrics in all simulations. Further, we

compare the results of NBRLR to the other three methods by reporting the averages of the three

metrics, performing two-tailed, paired t-tests and report the corresponding p-values.

Three simulation settings are considered in this section. First, we consider generating data

with categorical predictors from a discriminative LR model. Second, we consider generating data

with categorical predictors from a generative NB model. Third, we generate data with continuous

predictors from a discriminative LR model. In addition, we vary the number of predictors and the

dependence among predictors (conditional dependence for the second simulation setting) in each

simulation, to see how these two factors affect the models’ performance.

2.4.1 Simulation Setting 1: Binomial Predictor 1

In the first simulation, p categorical variables xi = {xi1, . . .xip} are simulated by first generating

x̃i ∼ N(0p,Σp×p), where Σ j j = 1 and Σ jk = r for j 6= k and then xi j is dichotomized as 0 if x̃i j is

smaller than 0, and 1 otherwise. The class variable yi is then simulated from

P(yi = 1 | xi) =
exp(β0 +∑

p
j=1 β jxi j)

1+ exp(β0 +∑
p
j=1 β jxi j)

where β = (0,−1T
p/2,1

T
p/2)

T . We consider four situations in which p∈ {10,50} and r ∈ {0.1,0.6}.

Comparisons of the four estimators in terms of MSE(β̂ ), L0-1 and RSPE across all the combi-

nations of p and r for this setting are reported in Figure 2.1 - 2.3, respectively. Table 2.1 provides

the averages of the three metrics across the four different combinations of p and r and includes

p-values from a two-sided, paired t-test comparing the performance of NBRLR to the other three

methods. Notice that in this section, the boxplots of MSE(β̂ ), reported in Figure 2.1, use a log-10

scale for the Y axis due to LR’s excessively poor performance in parameter estimation, especially
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Table 2.1: Summary of results from simulation setting 1 comparing NBRLR with pure LR, pure
NB and Lasso, at different numbers of predictors p and different levels of conditional dependence
among predictors r. The Esti. columns present the averages across the 100 simulations and the
p-values are from a two-sided, paired t-test comparing the performance of NBRLR with the corre-
sponding estimator.

Simulation1 NBRLR LR NB Lasso
p r Esti. Esti. p-value Esti. p-value Esti. p-value

MSE
10

0.1 0.325 0.450 <0.001 0.292 0.083 0.575 <0.001
0.6 0.437 0.936 0.085 0.623 <0.001 0.693 <0.001

50
0.1 0.744 4107.500 0.053 0.648 0.257 0.860 0.190
0.6 0.822 25369.000 <0.001 1.421 <0.001 0.899 0.322

L0-1

10
0.1 0.301 0.295 <0.001 0.308 <0.001 0.304 0.042
0.6 0.361 0.353 <0.001 0.402 <0.001 0.371 0.001

50
0.1 0.285 0.301 <0.001 0.298 <0.001 0.339 <0.001
0.6 0.337 0.356 <0.001 0.427 <0.001 0.397 <0.001

RSPE
10

0.1 0.445 0.446 0.442 0.445 0.571 0.447 0.019
0.6 0.470 0.472 0.044 0.500 <0.001 0.473 0.002

50
0.1 0.446 0.544 <0.001 0.448 0.447 0.472 <0.001
0.6 0.475 0.581 <0.001 0.574 <0.001 0.492 <0.001

when p is large. The results show that our proposed NBRLR estimator generally performs the best,

especially with respsect to RSPE. One exception is that when we compare L0-1 on low-dimensional

datasets, p = 10, NBRLR does worse than LR. This might be because low-dimensional simulation

setting favors the low bias estimator. Note, NB is competitive with or outperforms NBRLR in

terms of MSE(β̂ ) and RSPE when r = 0.1. In this situation, the conditional correlation among pre-

dictors given the class variable is low, which favors NB. Specifically, the conditional correlation,

which is measured by standardized conditional mutual information, is on an average 0.005 for p =

10, and 0.004 for p = 50 . However, they will increase to 0.134 and 0.129, respectively, when r =

0.6.

2.4.2 Simulation Setting 2: Binomial Predictor 2

In the second simulation, we generate the class variable yi from yi∼Bern(0.5). Then, p categorical

variables xi = {xi1, . . .xip} are simulated in a two step process. First, x̃i | yi = 1 ∼ N(u1,Σp×p)
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Figure 2.1: MSE results for 100 simulations in setting 1 for the four different combinations of p
and r.
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Figure 2.2: L0-1 results for 100 simulations in setting 1 for the four different combinations of p and
r.
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Figure 2.3: RSPE results for 100 simulations in setting 1 for the four different combinations of p
and r.
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Table 2.2: Summary results from simulation setting 2 comparing NBRLR with pure LR, pure NB
and Lasso, at different numbers of predictors p and different levels of conditional dependence
among predictors r. The Esti. columns present the averages across the 100 simulations and the
p-values are from a two-sided, paired t-test comparing the performance of NBRLR with the corre-
sponding estimator.

Simulation2 NBRLR LR NB Lasso
p r Esti. Esti. p-value Esti. p-value Esti. p-value

MSE
10

0.1 0.217 0.342 <0.001 0.191 0.016 0.331 <0.001
0.6 0.372 1.610 0.058 0.489 <0.001 0.690 <0.001

50
0.1 0.337 2846.410 0.150 0.275 0.032 0.357 0.493
0.6 0.701 9498.500 <0.001 1.028 <0.001 1.029 <0.001

L0-1

10
0.1 0.330 0.334 <0.001 0.331 0.179 0.350 <0.001
0.6 0.306 0.309 0.020 0.334 <0.001 0.316 <0.001

50
0.1 0.175 0.278 <0.001 0.171 0.003 0.244 <0.001
0.6 0.149 0.243 <0.001 0.247 <0.001 0.205 <0.001

RSPE
10

0.1 0.462 0.469 <0.001 0.461 0.022 0.469 <0.001
0.6 0.441 0.448 <0.001 0.464 <0.001 0.447 <0.001

50
0.1 0.356 0.522 <0.001 0.350 <0.001 0.416 <0.001
0.6 0.321 0.476 <0.001 0.439 <0.001 0.376 <0.001

where u1 = {0.2p/2,−0.2p/2}, and x̃i | yi = 0 ∼ N(u0,Σp×p) where u0 = {−0.2p/2,0.2p/2}. For

both distributions Σ j j = 1 and Σ jk = r if j 6= k. Define xi = (xi1, . . . ,xip)
T ∈Rp as a vector of ones

and zeros, where xi j is zero if x̃i j is smaller than 0 and xi j is one otherwise. To get the value of β
∗

we generate 500,000 training samples, fit an LR model and treat the corresponding coefficients as

β
∗.

Comparisons of the four estimators in terms of MSE(β̂ ), L0-1 and RSPE for different simulation

models are reported in Figure 2.4 - 2.6, respectively. Table 2.2 is the equivalent of Table 2.1, but

for simulation setting 2. When r = 0.1, NB is competitive with or outperforms NBRLR because

the conditional independence assumption is only weakly violated. However, NBRLR performs the

best in the rest of the settings.
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Figure 2.4: MSE results for simulation setting 2. The x-axis includes the four different combina-
tions of p and r.
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Figure 2.6: RSPE results for simulation setting 2. includes the four different combinations of p
and r.
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Table 2.3: Summary of results from simulation setting 3 comparing NBRLR with pure LR, pure
NB and Lasso, at different numbers of predictors p and different levels of conditional dependence
among predictors r. The Esti. columns present the averages across the 100 simulations and the
p-values are from a two-sided, paired t-test comparing the performance of NBRLR with the corre-
sponding estimator.

Simulation3 NBRLR LR NB Lasso
p r Esti. Esti. p-value Esti. p-value Esti. p-value

MSE
10

0.1 0.207 0.463 <0.001 0.330 <0.001 0.387 <0.001
0.6 0.282 0.428 <0.001 0.549 <0.001 0.429 <0.001

50
0.1 0.542 129.925 <0.001 0.650 <0.001 0.860 <0.001
0.6 0.620 782.520 <0.001 0.785 <0.001 0.844 <0.001

L0-1

10
0.1 0.199 0.195 <0.001 0.230 <0.001 0.200 0.255
0.6 0.260 0.256 <0.001 0.378 <0.001 0.262 0.217

50
0.1 0.248 0.259 0.002 0.289 <0.001 0.298 <0.001
0.6 0.282 0.289 0.038 0.434 <0.001 0.320 <0.001

RSPE
10

0.1 0.372 0.375 0.003 0.396 <0.001 0.372 0.830
0.6 0.421 0.422 0.042 0.498 <0.001 0.421 0.698

50
0.1 0.418 0.501 <0.001 0.446 <0.001 0.451 <0.001
0.6 0.444 0.532 <0.001 0.590 <0.001 0.464 <0.001

2.4.3 Simulation Setting 3: Continuous Predictor

The third simulation setting is the same as the first one, but with all predictors being generated

directly from the multivariate normal distribution and without dichotomization. NB estimates

are made by, correctly, assuming the conditional distribution of the predictors given the response

class is normal as outlined in Section 2.4. Figures 2.7 - 2.9 show the MSE(β̂ ), L0-1 and RSPE,

respectively, for each simulation in setting 3. Table 2.3 is the equivalent of Tables 2.1 and 2.2, but

for simulation setting 3. The results in Figures 2.7 - 2.9 and Table 2.3 demonstrate that generally

NBRLR outperforms the other three methods, but there are some exceptions. When p = 10, LR

outperforms NBRLR with respect to L0-1, while differences with Lasso in terms of L0-1 and RSPE

are not significant.
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Figure 2.7: MSE results for simulation setting 3. The x-axis includes the four different combina-
tions of p and r.
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2.4.4 Bias and Variance Analysis

Our proposed method follows traditional bias-variance tradeoff strategy. To provide valuable in-

sight into the components of the error of the classifiers, we discuss the squared bias and variance of

the four methods we compared. Let β̂ k = (β̂0,n, . . . , β̂p,n) ∈ Rp+1 represent an estimator from the

kth simulation and B̂= (β̂ 1, . . . , β̂ 100)∈Rp+1×100 represent the 100 estimators for a given method.

The squared bias and variance of an estimator for a given simulation setting, with a true coefficient

vector of β
∗, is

Bias2(B̂) =
1

p+1

p

∑
j=0

(
β
∗
j −

1
100

100

∑
n=1

β̂ j,n

)2

,

and

Var(B̂) =
1

p+1
· 1

99

p

∑
j=0

100

∑
n=1

(
β̂ j,n−

1
100

100

∑
n=1

β̂ j,n

)2

.

Table 2.4 and 2.5 presents the results Bias2(B̂) and the Var(B̂) of the 4 estimators given dif-

ferent simulation models, respectively. The results are mostly consistent with our intuition. The

proposed NBRLR estimator has in general higher variance, but lower bias than NB and Lasso. In

addition, NBRLR does better than LR in terms of both bias and variance, which may due to the

convergence failures in LR, especially when p is large and n is relatively small.

2.5 Empirical Results

In this section, we evaluate the performance of our proposed NBRLR estimator on 12 different ma-

chine learning datasets from the UCI Machine Learning Repository. A summary of these datasets

is given in Table 2.6, including the number of predictors, instances and the predictor type. The

datasets are selected such that we have six datasets with categorical predictors, and six datasets

with continuous predictors. For datasets with missing values, the missing values of categorical

predictors are imputed with the conditional probability given the response variable, i.e. P(xi j | yi).

For continuous predictors with missing values, we assume they are conditionally normally dis-
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Table 2.4: Squared bias of the four compared estimators at different numbers of predictors, p, and
different levels of dependence among predictors, r, for the three different simulation settings.

Simulation Setting p r NBRLR LR NB Lasso

1
10

0.1 0.011 0.033 0.101 0.458
0.6 0.020 0.067 0.300 0.596

50
0.1 0.196 602.373 0.379 0.804
0.6 0.205 4008.615 0.534 0.847

2
10

0.1 0.001 0.013 0.005 0.263
0.6 0.032 0.120 0.225 0.535

50
0.1 0.003 193.509 0.005 0.265
0.6 0.116 1190.092 0.315 0.808

3
10

0.1 0.001 0.104 0.274 0.324
0.6 0.002 0.065 0.500 0.336

50
0.1 0.400 40.987 0.603 0.840
0.6 0.332 195.665 0.727 0.800

tributed given the response variable, xi j | yi = a ∼ N(u ja,σ
2
ja). The missing values of continuous

predictors are imputed with the corresponding conditional distribution given the response variable,

i.e. f (xi j | yi). The imputation procedure is conducted before we analyze the data.

We randomly divide each dataset into two parts, a training set with about 90% of the instances,

and a test set with the remaining 10% of the instances. In the training set, the same methods used in

Section 2.4 are used to fit the data. In the test set, we only compare the L0-1 and RSPE of different

estimators, as we do not assume to know the true β ∗ of the predictors. We repeat the experiments

100 times for each dataset. Similar to the simulations section we compare L0-1, and RSPE of the

different estimators using boxplots to show the results for each experiment. Again, we perform

two-tailed, paired t-tests to compare NBRLR to the other three methods.
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Table 2.5: Variance of the four compared estimators at different numbers of predictors, p, and
different levels of dependence among predictors, r, for the three different simulation settings.

Simulation Setting p r NBRLR LR NB Lasso

1
10

0.1 0.317 0.421 0.193 0.118
0.6 0.421 0.877 0.326 0.097

50
0.1 0.554 3540.557 0.272 0.057
0.6 0.623 21575.680 0.896 0.052

2
10

0.1 0.218 0.332 0.188 0.068
0.6 0.343 1.505 0.267 0.157

50
0.1 0.337 2679.698 0.272 0.093
0.6 0.591 8392.322 0.720 0.223

3
10

0.1 0.208 0.363 0.057 0.064
0.6 0.283 0.364 0.049 0.094

50
0.1 0.143 89.836 0.047 0.021
0.6 0.291 592.785 0.058 0.045

2.5.1 Categorical Datasets

Models are fit to the training data using NBRLR, as outlined in Section 2.3, and the other three

methods used in Section 4. Figures 2.10–2.11 report the L0-1, and RSPE, respectively, for the

different methods on the different data sets. The y-axis of Figure 2.11 is on a log-10 scale to

better present the difference between estimators. In terms of L0-1, NBRLR performs the best on

Qualitative Bankruptcy, Blogger, and Tic-Tac-Toe Endgame. However, it does worse than both

LR and Lasso on SPECT Heart and Congressional Voting Records. All four estimators perform

the same with perfect classification on Balloons. In terms of RSPE, NBRLR performs the best on

Blogger. It does worse than LR on Balloons and Qualitative Bankruptcy, and worse than Lasso on

SPECT Heart, Tic-Tac-Toe Endgame and Congressional Voting Records.
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Figure 2.10: L0-1 from the 100 experiments for the six categorical datasets.
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Figure 2.11: RSPE from the 100 experiments for the six categorical datasets.
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Table 2.6: A Summary of the 12 datasets used in the empirical results. The Type column indicates
if the predictors are categorical or continuous. Instances is the number of observations in the data
set.

Dataset # Predictors # Instances # Type
Balloons 4 20 Categorical
Qualitative Bankruptcy 6 250 Categorical
Blogger 5 100 Categorical
SPECT Heart 22 267 Categorical
Tic-Tac-Toe Endgame 9 958 Categorical
Congressional Voting Records 16 435 Categorical
Blood Transfusion Service Center 4 748 Continuous
Connectionist Bench 60 208 Continuous
Haberman’s Survival 3 306 Continuous
Liver Disorders 6 345 Continuous
Pima Indians Diabetes 8 768 Continuous
Vertebral Column 6 310 Continuous

2.5.2 Continuous Datasets

For the continuous datasets the NBRLR estimator is fit using the approach outlined in Section

2.4, including assuming the conditional distribution of the predictors given the response class is

normal. The four methods are compared using L0-1 and RSPE, with results of these from the

100 experiments for each continuous dataset reported in Figures 2.12–2.13, respectively. Table

2.8 includes the averages of RSPE and L0-1 for all six continuous datasets. In addition the table

includes p-values from a two-sided paired t-test comparing NBRLR to the other three methods.

The boxplot of RSPE is in a log-10 scale for the Y axis to better present the difference between

estimators.

With respect to L0-1, NBRLR achieves the best performance or comparable with the best per-

formance on Blood Transfusion Service Center, Connectionist Bench, Haberman’s Survival, and

Pima Indians Diabetes. However, it does worse than both LR and Lasso on Vertebral Column. It

also performs slightly worse than Lasso on Liver Disorders. In terms of RSPE, NBRLR performs
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Table 2.7: Summary of empirical results for the six datasets with categorical predictors compar-
ing NBRLR with pure LR, pure NB and lasso. The Esti. columns present the averages across
the one hundred experiments. The p-values come from a two-sided, paired t-test comparing the
performance of NBRLR with the corresponding estimator.

Categorical Datasets
NBRLR LR NB Lasso

Esti. Esti. p-value Esti. p-value Esti. p-value

L0-1

Balloons 0.000 0.000 1.000 0.000 1.000 0.000 1.000
Qualitative Bankruptcy 0.002 0.004 0.158 0.006 0.001 0.003 0.320

Blogger 0.254 0.254 1.000 0.262 0.011 0.265 0.016
SPECT Heart 0.178 0.174 0.436 0.213 <0.001 0.152 <0.001

Tic-Tac-Toe Endgame 0.017 0.018 0.049 0.302 <0.001 0.017 0.320
Congressional Voting Records 0.040 0.038 0.356 0.094 <0.001 0.034 0.003

RSPE

Balloons 0.001 0.000 <0.001 0.250 <0.001 0.001 0.337
Qualitative Bankruptcy 0.024 0.018 0.045 0.029 <0.001 0.033 <0.001

Blogger 0.415 0.434 <0.001 0.416 0.570 0.420 0.082
SPECT Heart 0.345 0.350 0.008 0.418 <0.001 0.340 0.018

Tic-Tac-Toe Endgame 0.122 0.125 <0.001 0.432 <0.001 0.121 <0.001
Congressional Voting Records 0.168 0.168 0.994 0.285 <0.001 0.006 <0.001

the best or comparable with the best on Connectionist Bench, Pima Indians Diabetes, and Vertebral

Column. It does worse than LR on Blood Transfusion Service Center and Liver Disorders, worse

than NB on Haberman’s Survival, and worse than Lasso on Blood Transfusion Service Center, and

Liver Disorders.

2.6 Conclusion

In this paper, we present a naïve Bayes regularized logistic regression model for classification

problems. As LR is a low–bias, high–variance classifier, many regularized methods have been

proposed to overcome LR’s overfitting issue, which may leads to the poor prediction performance

when the training sample is limited, or there is a large number of parameters to be estimated.

Most of these methods assume that the true coefficients of LR are sparse, however, this sparsity

assumption is often violated when p is relatively small compared to n, which makes the regression

estimates suboptimal. Meanwhile, there also tends to be less multicollinearity among predictors.

This limits the benefits of ridge regression, which is not motivated by the sparsity. We argue
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Figure 2.12: L0-1 from the 100 experiments for the six continuous datasets.
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Figure 2.13: RSPE from the 100 experiments for the six continuous datasets.
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Table 2.8: Summary of empirical results for the six datasets with continuous predictors compar-
ing NBRLR with pure LR, pure NB and lasso. The Esti. columns present the averages across
the one hundred experiments. The p-values come from a two-sided, paired t-test comparing the
performance of NBRLR with the corresponding estimator.

Continuous Datasets
NBRLR LR NB Lasso

Esti. Esti. p-value Esti. p-value Esti. p-value

L0-1

Blood Transfusion Service Center 0.228 0.228 0.657 0.238 <0.001 0.228 0.470
Connectionist Bench 0.227 0.250 0.010 0.301 <0.001 0.262 <0.001
Haberman’s Survival 0.268 0.272 0.007 0.268 1.000 0.271 0.118

Liver Disorders 0.306 0.305 0.765 0.394 <0.001 0.305 0.482
Pima Indians Diabetes 0.208 0.209 0.140 0.209 0.733 0.209 0.664

Vertebral Column 0.146 0.145 0.181 0.274 <0.001 0.145 0.482

RSPE

Blood Transfusion Service Center 0.391 0.391 0.007 0.406 <0.001 0.391 0.232
Connectionist Bench 0.396 0.484 <0.001 0.494 <0.001 0.418 <0.001
Haberman’s Survival 0.432 0.432 0.545 0.432 0.356 0.432 0.725

Liver Disorders 0.457 0.456 <0.001 0.481 <0.001 0.457 <0.001
Pima Indians Diabetes 0.374 0.373 0.712 0.387 <0.001 0.374 0.547

Vertebral Column 0.306 0.306 0.384 0.432 <0.001 0.307 0.012

that when p is relatively small compared to n, shrinking the coefficients towards a low–variance

data–driven estimate could be a better regularization strategy.

Our approach is primarily motivated by the fact that NB has an equivalent functional form

compared to LR given NB’s conditional independence assumption holds. The resulting classifier

tends to have higher variance but lower bias as compared to Lasso, when p is relatively small

compared to n. Simulation and empirical experimental results suggest that, NBRLR can generally

outperform both LR and NB, and is highly competitive with Lasso on low and moderate dimension

datasets. We present how to use the method for the cases of categorical predictors and continuous

predictors.
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Chapter 3

A New Bayesian Network-Based Approach for PTSD Detection

Abstract
Prediction of post-traumatic stress disorder (PTSD) has gained great interest in clinical stud-

ies. It can not only provide key guidance for making personal mental healthcare decisions,

but also help identify high-risk PTSD population. This paper aims to address the challenge of

providing veterans with timely healthcare access by improving VA PTSD diagnostic process

with a diversion strategy. Specifically, we propose a sparsity-enforcing l1 penalized Bayesian

network-based model to measure the veterans’ risk of suffering from PTSD based on easily

available information. This will allow VA to send high-risk patients to the mental health

provider directly. Experimental results show that our proposed model exhibits better out-of-

sample prediction power as compared with a variety of state-of-art probabilistic classifiers.

We also identify eight variables which provide the most directly predictive power.

3.1 Introduction

Post-traumatic stress disorder (PTSD) is a prevalent and seriously impairing disorder, especially

for veterans. Prediction of PTSD is a research domain which has attracted great attention in the

last two decades. Many studies focused on seeking for the risk factors of PTSD [3, 5, 24], which

can not only provide key guidance for making personal mental healthcare decisions, but also be

a great help for government or other healthcare organizations to identify high-risk population of

PTSD. In recent years, machine learning techniques have been applied on PTSD prediction to

fill in the gap between scientific discovery of risk factors for PTSD, and practical application in
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making accurate prediction of PTSD in individuals. Commonly used methods include support

vector machine (SVM) [22, 23, 34], random forest [50], logistic regression [31], and naive Bayes

[41].

While the experience of combat and military sexual trauma are significant risk factors, veterans

are associated with high risk for the development of PTSD. As there is a dramatic increase in the

number of veterans seeking help for PTSD in last few decades, the Department of Veterans Affairs

(VA) has been facing with the significant challenges in providing veterans with timely access due

to the lack of availability of mental health providers. Patients diversion is one of the most widely

adopted strategies to improve healthcare efficiency, with the purpose of making high-risk patients

exposed to healthcare resources earlier. Then the goal of our study is to accurately measure the

veterans’ risk of suffering from PTSD based on easily available information.

In this paper, we introduce a novel, generic, scalable network based method for veterans’ PTSD

prediction. We identify three challenges that occur during our study: that is, the proposed model

should be a probabilistic classifier, tolerant of a large amount of missing data, and the network

construction algorithm should be efficient under the context of high dimensional search space.

Specifically, we propose a Bayesian network model with the conditional probability distribution of

each node identified with multivariate logistic regression. l1 group penalization is applied in order

to learn a sparser network structure which makes the model estimation more stable under the con-

text of large amount of missing data. We test the validity of our approach on a real data set obtained

from VA Informatics and Computing Infrastructure (VINCI), which is a Health Services Research

& Development (HSR&D) Resource Center that provides researchers with a nationwide view of

detailed VA patients data. Out-of-sample prediction results indicate that the proposed model pro-

vides a better measure of the risk of suffering from PTSD for veterans, as compared with a variety

baseline probabilistic classifiers. Our study also contribute to the literature by identifying a group

of features which are in the Markov boundary of PTSD for the proposed Bayesian network model.

Such features tend to provide the most directly predictive power of PTSD given the population of

veterans.
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This chapter is organized as follows: Section 2 motivates our study by introducing the back-

ground of PTSD among veterans, current VA diagnostic process, and how diversion strategy may

help to improve the process efficiency and to reduce waiting time. We also identify three chal-

lenges we face in this study while providing an accurate measure of the veterans’ risk of suffering

from PTSD. Section 3 describes our data and variables. In Section 4, we describe our method and

present the algorithm we use to construct the model. Section 5 includes empirical results based on

a real data set obtained from VINCI. Finally, in Section 6, we summarize and conclude.

3.2 Veteran PTSD Diagnostic Process

3.2.1 Background

Post-traumatic stress disorder (PTSD), occurs in persons who have experienced or witnessed a

traumatic event. It has been recognized as one of the most disabling psychopathological condi-

tions affecting the U.S. veteran population. Veterans are more exposed to life-threatening events,

including combat or military exposure, terrorist attacks, and military sexual trauma, thus have a

much higher prevalence of PTSD than non-veterans. As per the National Center for PTSD, the

diagnosed number of PTSD in veterans varies by service era: it is between 11–20% for Opera-

tion Iraqi Freedom and Enduring Freedom, about 12% for Gulf War, and about 15% for Vietnam

War. These numbers are all significantly higher than that of U.S. civilians (about 7–8%). A criti-

cal review of prevalence estimates of combat-related PTSD among veterans also suggests that the

lifetime PTSD prevalence for veterans is 10–30% [46].

The U.S. government provides a wide range of benefits, including cash payments and VA-

sponsored services, for veterans with disabilities that are the result of a disease or injury incurred

or aggravated during active military service. The VA PTSD claims and benefits paid-out have been

increasing rapidly over the recent decades. During 1999–2004, the number of veterans receiving

VA disability payments for PTSD increased by 79.5%, as compared to 12.2% for other disabilities

[20]. By 2016, PTSD has grown to be the third most compensated disability from all wars [8].
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Figure 3.1: Traditional process for PTSD diagnosis

A current diagnosis from a VA hospital is one of the requirements that make up a claim for

PTSD. Thus the increase of VA PTSD claims indicates a growing population of veterans seeking

PTSD diagnosis and treatment, which combined with an acute shortage of mental health provider

(MHP), has led to months-long waiting times. A VA audit (2014) show that the average waiting

time for 51% of PTSD veterans is 50 days. The lack of provider appointment availability has

become the largest barrier of providing timely and effective PTSD treatment for VA hospital.

3.2.2 PTSD Diagnostic Process

Fig. 3.1 illustrates the common PTSD diagnostic process for VA hospital. The process starts

with the registration through which VA staffs capture patients’ demographic information, military

history information, and previous healthcare records. It follows with the appointment of medi-

cal providers. Medical providers work as general practice physicians. When they recognize the

symptoms of PTSD of a patient, they make a referral to mental health providers. Mental health

providers are professionals who diagnose PTSD and provide treatment. Besides, some of the pa-

tients are offered the psychological tests to confirm the diagnosis and help develop the treatment

plan.
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Figure 3.2: Proposed process for PTSD diagnosis

Different diversion strategies have been widely adopted to improve process efficiency and re-

duce waiting time in healthcare settings. The general purpose of diversion is to make patients

exposed to healthcare resources earlier. In this work, we propose a proactive protocol which uti-

lizes patients’ personal information to identify those with high-risk of suffering PTSD. Same as

the common process, patients need to make an appointment with medical providers after the regis-

tration. In the meantime however, high-risk patients are sent to the mental health provider directly

or even skip to the treatment stage (in this situation, mental health provider will try to confirm the

PTSD diagnosis during the treatment), instead of waiting for the referrals from medical providers.

In addition, we suggest having a preliminary psychological test ordered at the registration stage to

improve both the accuracy of our veterans’ PTSD risk measurement and the efficiency of diagnos-

tic process. The details of proposed PTSD diagnostic process is shown in Fig. 3.2.

3.2.3 PC-PTSD-5

The Primary Care PTSD Screen for Diagnostic and Statistical Manual of Mental Disorders 5 (PC-

PTSD-5) [44] was designed to identify individuals with probable PTSD. The PC-PTSD-5 was

used by VA starting from 2015, and has demonstrated strong results for PTSD diagnostic accu-
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racy. The PC-PTSD-5 is a required screening instrument for all veterans. Thus, it exhibit less

sample selection bias that those who have taken the PC-PTSD-5 are more likely to have PTSD.

More importantly, the PC-PTSD-5 is a 5-item screen and very easy to understand, such that the

participants would feel comfortable completing it. This makes the PC-PTSD-5 more acceptable as

a preliminary test at the registration stage in our proposed PTSD diagnostic process.

3.2.4 Challenges

At the heart of this proposed PTSD diagnostic process is a supervised predictive model that tries

to bridge the gap between the existing academic/clinical knowledge about PTSD, and veteran per-

sonal level PTSD diagnostics. We identify three challenges presented in veteran PTSD detection

problem and discuss how each challenge can be addressed.

Challenge 1: Probabilistic classification. The proposed model should be a probabilistic clas-

sifier that is able to predict the probability distribution over a set of classes. In this study, such

probability can interpreted as a measure of veterans’ risk of suffering from PTSD given existing in-

formation, which is the basis of how we divert patients. Support vector machine (SVM) [22,23,34]

has been the most popular machine learning technique to improve the prediction of PTSD. How-

ever, it is a deterministic approach which has no notion of probability involved, but simply returns

the class (PTSD & non-PTSD) of the patients. Treating such discrete classes as the measure of

risk level is too arbitrary. Other commonly used techniques include random forest [50], logistic

regression [31], and naïve Bayes [41].

In this paper, we explore the use of Bayesian network, a method of probabilistic graphical

model to predict the likelihood of visiting patients suffering from PTSD.

Challenge 2: Large amount of missing data. Our proposed model need to deal with extremely

large amount of missing data, especially in terms of historical military information. For example,

as shown in Table 3.4, the proportion of missing data is 94.88% for both southwest asian flag and

combat flag. This makes statistical estimates unstable and reduces the predictive power, especially

of complex models.
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Figure 3.3: The structure for Bayesian network model constructed using score-based technique
(BIC)

Figure 3.3 represents the regular Bayesian network structure constructed using a score-based

technique (Bayes information criterion, BIC). Missing data are imputed with the conditional prob-

ability given veterans’ PTSD diagnostic status. Notice that, this Bayesian network model has a

very dense structure, which leads to a large number of parameters to be estimated. For the com-

mon situations, this should not be a big concern because our data set is quite rich. However, the

estimation of conditional probability may not be reliable when the corresponding observed training

instances is limited. For example, the number of observations with Southwest Asian Conditions

flag, Agent Orange flag, and TBI diagnosis is 0 for young and old veterans, and is 9 for middle

aged veterans.
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In this study, we adopt a sparsity-enforcing l1-regularized Bayesian network learning algorithm

to reduce the model complexity. Missing data are addressed using multiple imputation (MI).

Challenge 3: Large search space of network structure. Learning a Bayesian network structure

from data has been known to be an NP-hard problem, because that the network structure has to

be a directed acyclic graph (DAG). As our task is to construct a Bayesian network with 15 nodes

from more than 1 million instances, many of the commonly used methods are computationally

expensive, and thus hard to implement. In this study, we adopt an ordering-based search strategy,

and integrate it with significant domain knowledge, to improve the efficiency of our structure

learning algorithm.

3.3 Data

We obtain data from VA Informatics and Computing Infrastructure (VINCI), which is a Health

Services Research & Development (HSR&D) Resource Center that provides researchers with a

nationwide view of detailed VA patients data. We start by searching for veterans who have ever

taken the PC-PTSD-5 test by the end of 2019. Veterans’ personal level information is obtained by

aggregating across their lifetime visits to the VA hospital. We exclude veterans who reached the

age of over 120 in the database, which is very unlikely and is probably misrecorded. Finally, our

search identifies 1,113,676 distinct veterans.

3.3.1 Variable Definition and Miscellaneous Issues

This section introduces the variables that we use for constructing the Bayesian network model, and

explains the issues related to how we collect the data.

Multiple descriptive epidemiologic studies have been conducted to examine the patterns of

PTSD in response to a range of demographic factors [1, 19, 24, 43, 51]. Following the literature,

we start by collecting the veterans’ information of Age, Gender, Marital Status, Ethnicity, and

Race. We also include the information of veterans’ military experience to explain the variation
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in veterans’ risk of suffering PTSD. As we discussed in Section 3.2 that the prevalence of veter-

ans with PTSD varies by service era, such military experience information can be an indicator of

veterans’ combat situation. Specifically, we include whether a veteran has ever attended a com-

bat (CombatFlag), which combat he/she has attended (AgentOrangeFlag, IonizingRadiationFlag,

SWAsiaConditionsFlag), and the trauma types that veterans have experienced (MilitarySexualTrau-

maFlag, ServiceConnectedFlag). These indicator variables will take the value of one if the veteran

has ever answered "yes" in response of corresponding questions during his/her life time visits to

the VA, and zero if he/she always say "no". Next, we collect the lifetime PC-PTSD-5 test results.

For veterans who have taken the test multiple times, we take the average of all the scores. Finally,

we investigate veterans’ historical diagnosis of PTSD which is our variable of interest, and TBI

which has been widely recognized as a cause of PTSD. The variables will take the value of one if

the veteran has ever been diagnosed with PTSD or TBI, respectively, and zero otherwise.

Other data collecting issues are discussed below.

◦ Inconsistent Records - For demographic information, veterans may provide inconsistent re-

sponses during different visit to the VA. In such situation, we treat the corresponding variables

as missing.

◦ Numeric Variables - To handle numeric variables, i.e., Age and PC-PTSD-5, we discretized

the variables using supervised discretization with decision tree model. Specifically, we train

a decision tree using the age/PC-PTSD-5 to predict PTSD. As a result, Age is discretized into

three categories of young (<52), middle (52-76), old (>76), and PC-PTSD-5 is discretized

into three categories of low (<0.04545), median (0.04545-1.0625), high (>1.0625).

3.3.2 Summary Statistics

Table 3.1 provides the summary statistics for our key variables. Given the sample of 1,113,676

veterans, 23.09% of them have ever been diagnosed with PTSD and only 2.73% of them have ever

been diagnosed with traumatic brain injury (TBI). Most of the veterans are male (91.82%), white
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Table 3.1: Summary statistics for our key variables. We report the category values with corre-
sponding frequencies and proportions. The category of ‘NA’ stands for missing data.

Variables Values Frequencies Proportions (in %)

Age
Young 227641 20.44
Middle 682393 61.27

Old 203642 18.29

Gender
F 91098 8.18
M 1022578 91.82

MaritalStatus

Divorced 350143 31.44
Married 605050 54.33
Single 152772 13.72

NA 5711 0.51

Ethnicity
Hispanic/Latino 72362 6.50

Non-Hispanic/Latino 1002472 90.01
NA 38842 3.49

Race

Black 209196 18.78
Other 85398 7.67
White 794939 71.38

NA 24143 2.17

Religion
Christian 801801 72.00

Other 51382 4.61
NA 260493 23.39

CombatFlag
N 15582 1.40
Y 126059 11.32

NA 972035 87.28

Variables Values Frequencies Proportions (in %)

AgentOrange
N 290080 26.05
Y 120519 10.82

NA 703077 63.13

IonizingRadiation
N 308323 27.69
Y 2229 0.20

NA 803124 72.11

SWAsiaConditions
N 29496 2.65
Y 27552 2.47

NA 1056628 94.88

MilitarySexualTrauma
N 17461 1.57
Y 39517 3.55

NA 1056698 94.88

ServiceConnected
N 32027 2.88
Y 644294 57.85

NA 437355 39.27

PC-PTSD-5
Low 819633 73.60

Median 63945 5.74
High 230098 20.66

TBI
N 1083282 97.27
Y 30394 2.73

PTSD
N 856552 76.91
Y 257124 23.09

(71.38%), married (54.33%), not hispanic or latino (90.01%), and at the age of 52-76 (61.27%). It

is worth noting that there is large amount of missing data for military experience related variables.

For example, the proportion of missing data is 87.28% for combat flag, 94.88% for southwest asian

flag, and 94.88% for military sexual trauma flag.

We present the prevalence of PTSD for our sample with respect to different categories of other

variables in Figure 3.4. The bar-plots show that young, female veterans are more likely to suffer

from PTSD. Also, attending a combat, experiencing military sexual trauma and service connected

trauma will increase the risk of PTSD. Finally, high score of PC-PTSD-5 test is a strong indicator

of PTSD.

3.4 Model

Our proposed model is based on sparsity-enforcing l1-regularized Bayesian network, incorporat-

ing Challenge 1-3 described in Section 3.2. A Bayesian network is a directed acyclic graphi-

cal model with a set of m nodes {X1, . . . ,Xm}. We define Pa(X j) as the vector of parents of a

73



Figure 3.4: Prevalence of PTSD with respect to different categories of other variables.

node X j, i.e., there is a directed arc from Xi to X j if Xi ∈ Pa(X j). Given categorical data, we

use a multivariate logistic regression for the conditional probability distribution of each node

P(X j = x j,k | Pa(X j),β j,k) =
exp(Pa(X j)

′β j,k)

∑k exp(Pa(X j)′β j,k)
, where β j,k = (β j,k,0,β

T
j,k,1, . . . ,β

T
j,k,m)

T is the vector

of unknown parameters to be estimated from data. Our task becomes obtaining a sparse estimate

of β j,k,i’s where Xi ∈ Pa(X j), under the constraint that the estimated Bayesian network structure

G must be a directed acyclic graph (DAG). The nonzero values of β j,k,i’s indicate the presence of

edges in the structure G.

To tackle the challenge of structural learning of Bayesian network from high-dimensional data,

Huang et al. [32] proposed a Sparse Bayesian Network (SBN) structure learning algorithm. Given

fully observed data X = [x1, . . . ,xm], where x j is a vector of N observations for node X j, the

estimate of β j,k,i’s is obtained by minimizing the negative log-likelihood of data with the sparsity

enforcing l1 penalty as:
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min
β j

1
N

m

∑
j=1

NLL(x j,x− j,β j)+λ

m

∑
j=1
||β j||1 s.t. G ∈ DAG, (3.1)

where X− j is the set of all nodes excluding X j by assuming all of these nodes are candidate parents

of node X j, and NLL(x j,x− j,β j) is the negative log-likelihood for node X j. Given the estimate of

β j’s, the set of parents for node X j can be found as Pa(X j) = {Xi | β j,.,i 6= 0}. Tuning parameter

λ determines the strength of regularization, and can be determined by out-of-sample prediction

performance.

3.4.1 Multiple Imputation

As we discussed in Section 3.2, the statistical analysis of the veterans PTSD likelihood and its in-

fluencing factors is hindered by the missing data. According to the VA psychologists, this was due

largely to the item nonresponse in registration questionnaire as most of the questions are optional

for veterans. The nonresponse rate is incredibly high especially for military experience informa-

tion. Thus, ignoring incomplete cases may lead to significant information loss, and our statistical

inference can be biased if the data is not missing completely at random. EM algorithm [7] is an-

other commonly used method for handling missing data. However, it becomes overwhelmed and

increasingly impractical to use with millions of data points.

In this subsection, we adopt multiple imputation (MI) to address the problem of missing data.

MI was first proposed by Rubin [48], and has been widely used in large-scale healthcare/medical

studies. It has practical advantages of preserving sample size and statistical power, providing

unbiased parameter estimates, and allowing standard complete-data methods of analysis to be used.

Essentially, MI is an iterative form of stochastic imputation which tries to the variability of missing

data. MI has three basic steps:

1. Imputation: impute the missing entries D times. This step results in D complete datasets.

2. Analysis: analyze each of the D completed data sets.

3. Pooling: integrate the D analysis results into a final result.
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Figure 3.5: Multiple Imputation

When multi-level predictors and responses are present, lasso may not be satisfactory as it

only selects individual dummy variables instead of whole factors, and the lasso solution also

depend on how the dummies are encoded. Yuan and Lin [58] proposed grouped lasso to over-

come these issues, while Chen and Wang [6] extended this idea to multiply-imputed data in

order to select or remove the estimated regression coefficients associated with the same vari-

able together across different imputed datasets. In this paper, we denote β̂ j,1, . . . , β̂ j,D be the

vectors of estimated regression coefficients for child node X j on the D imputed datasets, where

β̂ j,d = (β̂ T
j,0,d, β̂

T
j,1,d, . . . , β̂

T
j, j−1,d, β̂

T
j, j+1,d, . . . , β̂

T
j,m,d)

T . Here, β̂ j,0,d ∈ Rd f j0 is the estimated vector

of intercept with degree of freedom d f j0, and β̂ j,i,d ∈Rd f ji is the estimated vector of regression co-

efficient of parent node Xi with degree of freedom d f ji. Let’s also define β̂ j,i =(β̂ T
j,i,1, . . . , β̂

T
j,i,D)

T ∈

Rd f ji·D. If Xi is important for predicting X j, β̂ j,i,d should be all nonzero, and if Xi is not important

for predicting X j, β̂ j,i,d should be all zero for any given imputed dataset d. Thus, we obtain the

estimate of β j,i,d by minimizing the following objective function:

min
β j,i,d

1
N ·m ·D

m

∑
j=1

D

∑
d=1

NLL(x j,x− j,β j,d)+λ

m

∑
j=1

∑
i 6= j

√
p j,i||β j,i||2 s.t. G ∈ DAG. (3.2)

Here, ||β j,i||2 =
√

∑
D
d=1 ∑

d f ji
k=1 β 2

j,i,k,d is called the group lasso penalty where β j,i,k,d ∈ β j,i,d , and

p j,i = d f ji ·D is the varying group size. The penalty function is adjusted by √p j,i to ensure that
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the same degree of penalization is applied to large and small groups. The group LASSO penalty

gaurantees the consistency of edges selection with respect to all different predictor levels, response

levels, and imputed datasets.

3.4.2 Ordering-Based Search

Solving the optimization Eqs. (3.2) can be challenging given the constraint that the estimated

Bayesian network structure G must be a DAG because of the huge search space of network struc-

tures. Much work has been done to address this problem, but only a few outperform the baseline

of greedy hill-climbing with tabu lists. In this paper, we adopt ordering-based search strategy [54],

and use greedy hill-climbing search, with a tabu list. Determining an appropriate ordering is a dif-

ficult problem, however, our strong causality based clinical knowledge helps significantly reduce

our search space.

We conduct ordering-based search by seeking for the best ordering≺ over X1, . . . ,Xm, such that

if Xi is a potential candidate for Pa(X j), then Xi ≺ X j. Once the ordering ≺ is determined, finding

the optimal Bayesian network that consistent with ≺ is no longer NP-hard because we can easily

implement regular grouped LASSO on each node separately. We use hill-climbing to find ≺, i.e.,

only consider swapping a pair of adjacent nodes in the ordering for each move until the value of

objective function (3.2) does not decrease:

(. . . ,Xi−1,Xi,Xi+1,Xi+2, . . .)→ (. . . ,Xi−1,Xi+1,Xi,Xi+2, . . .)

As there are only two new neighborhood are generated: (Xi−1,Xi+1) and (Xi,Xi+2) for each move,

we use tabu list to prevent the algorithm from reversing a swap that was executed recently in the

search.

We use domain knowledge to reduce the search space of possible ordering ≺. Specifically, we

divide the nodes into five layers, which is illustrated in Fig. (3.6), based on causality. For example,

personal characteristics at the first layer are what people born with, thus can never be affected by

the other nodes; while as suggested by VA psychologists, TBI is usually a cause of PTSD. If a
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Figure 3.6: Ordering-based search

node Xi is at the upper layer of node X j, then Xi should always precede X j in ≺. In this way, we

restrict our ordering search space only within the second layer.

With a predetermined ordering ≺, Eq. (3.2) can be transformed as:

min
β j,i,d

1
m

m

∑
j=1

[
1

N ·D

D

∑
d=1

NLL(x j,xi≺ j,β j,i,d)+λ ∑
i≺ j

√
p j,i||β j,i||2] (3.3)

that our task becomes solving m optimization problems independently. The grouped LASSO

penalty function is singular at the origin point. We apply the local quadratic approximation pro-

posed by Li and Fan [14] to overcome this issue. For each given node X j, we minimize the objective

function iteratively. Suppose the estimation at the tth iteration is β
(t)
j,i,d , we can have the following

approximation: √
∑

D
d=1 ∑

d f ji
k=1 β 2

j,i,k,d ≈
∑

D
d=1 ∑

d f ji
k=1 β 2

j,i,k,d√
∑

D
d=1 ∑

d f ji
k=1 β

(t)2
j,i,k,d

.

Thus, the objective function 3.3 can be approximated by:

min
β j,i,d

1
m ·D

m

∑
j=1

D

∑
d=1

[
1
N

NLL(x j,xi≺ j,β j,i,d)+λ ∑
i≺ j

√
p j,i
||β j,i||22
||β (t)

j,i ||2
], (3.4)

such that the estimated coefficient β̂
(t+1)
j,i,d can be obtained by solving m ·D separate weighted ridge
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regression. We iterate the above step until the convergence is reached.

3.4.3 Model Construction

The previous paragraphs sketched out the basic idea of how we address challenge 1-3. In general,

we learn a Bayesian network based model by minimizing the negative log-likelihood of data with

sparsity enforcing l1 penalty across multiple imputed dataset with respect to a pre-specified level of

regularization. Given a fixed value of regularization parameter λ , a summary of our model training

procedure is presented in Alg. 2.

Algorithm 2 Construction of Sparsity-enforcing Bayesian Network
Input: A set of veterans with a panel of unique predictive personal characteristics.
Output: A sparsity-enforcing Bayesian network model for PTSD prediction.

1: Impute the missing values of training set D times with a pre-specified model.
2: Start with pre-specified order ≺0= (X01, . . . ,X0m)

3: Obtain the initial estimate of β̂
(0)
j,i,d by implementing regular LASSO on each imputed

dataset. Set t = 0.
4: Calculate w j,i =

√p j,i/||β (t)
j,i ||2 for each j, i.

5: Let t = t + 1. Solving Eq. 3.4 by conducting m ·D separate ridge regression with
weight w j,i.

6: Iterate between Row 4 and Row 5 until the estimates converges.
7: Considering all successors (the search space is restricted as Fig. 3.6) of current ≺

by performing adjacent swap, and pick ≺′ by minimizing Eq. 3.3. Stop until Eq. 3.3 does
not improve.

8: Integrate the estimation of β̂ j,i,d into a final result based on Rubin’s rule: β̂ j,i =
1
D ∑

D
d=1 β̂ j,i,d .

9: end algorithm

3.5 Results

In this section, we discuss the results of our proposed sparsity-enforcing l1 penalized Bayesian

network-based model compared to the baselines. All models are evaluated in terms of the 0-1 loss

(L0-1) and mean squared error (MSE), which are defined as
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L0-1 = 1− 1
N

N

∑
i=1

1(PTSDi = ˆPTSDi),

and

MSE =
1
N

N

∑
i=1
{P̂(PTSDi = 1)−1(PTSDi = 1)}2.

Here N is the testing sample size, PTSDi is the observed PTSD status for the ith testing observa-

tion, ˆPTSDi is the predicted PTSD status for testing observation i, P̂(PTSDi = 1) is the predicted

probability that the ith testing observation is suffering from PTSD, and 1() is an indicator function

for the condition in the parenthesis.

We start by randomly dividing our sample into three parts, a training set with 913,676 ob-

servations, a test set with 100,000 observations, and a validation set with the remaining 100,000

observations. In the training set, the method described in Section 3.4 with pre-specified a sequence

of lambda values is used to train the model. For variables with missing values, we impute them 5

times with the traditional Bayesian network model presented in Figure 3.3. As our goal is to mea-

sure veterans’ risk of suffering PTSD, we compare the MSE of models trained with different values

of lambda in the test set to determine λ value. Specifically, we follow the “one-standard-error" rule

by selecting the largest λ value with its MSE within one standard error of λmin. The main idea is

to choose the simplest model whose accuracy is comparable with the best one. Finally, we com-

pare the resulting model with regular Bayesian network, regularized logistic regression (lasso), and

naïve Bayes in the validation set.

Figure 3.7 reports the MSE score for the proposed sparsity-enforcing l1 penalized Bayesian

network-based model with a pre-specified sequence values of penalty parameter λ . As we see,

the model with λmin = 0.00005 achieves the lowest MSE (0.1358659). The red dash line is one

standard error above this lowest MSE value. Following the "one-standard-error" rule, we choose

λ1se = 0.002.

The structure of the resulting Bayesian network model with λ = 0.002 is presented in Figure

3.8. As compared with the regular Bayesian network model in Figure 3.3, our proposed model ex-
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Figure 3.7: Searching for λ value

hibit sparser structure which is more tolerant with missing values. 8 variables (Age, AgentOrange,

MaritalStatus, MilitarySexualTrauma, Race, ServiceConnected, TBI, and PC5) are in the Markov

Boundary of PTSD. We recommend VA to mark the corresponding 8 questions as mandatory, as

they provide the most direct predictive power. This will make our model more reliable, and the

proposed patients diversion process more efficient.

Comparison of our model with regular Bayesian network, regularized logistic regression (lasso),

and naïve Bayes in terms of L0-1 and MSE are reported in Table 3.2. For regularized logistic re-

gression, we do multiple imputation with group penalty to address the problem of missing data.

The penalty parameter is determined by conducting training-testing validation following the "one-

standard-error" rule with respect to out-of-sample MSE, same as what we did for sparsity-enforcing

l1 penalized Bayesian network-based model. The estimation of parameters of regular Bayesian net-

work and naïve Bayes model is conducted using the Laplace correction [40] to prevent the high

influence of zero probabilities. Specifically, we add one of each class to the data. The results show

that our proposed model outperforms regular Bayesian network, regularized logistic regression and

naïve Bayes model for both L0-1 and MSE.
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Figure 3.8: The structure for sparsity-enforcing l1 penalized Bayesian network-based model at
λ = 0.002.

82



Table 3.2: Summary of results comparing sparsity-enforcing l1 penalized Bayesian network-based
model with regular Bayesian network, regularized logistic regression (lasso), and naïve Bayes in
terms of L0-1 and MSE.

l1-BN BN Lasso NB
L0-1 0.1868 0.2128 0.1870 0.1881
MSE 0.1358 0.1804 0.1361 0.1386

3.6 Conclusion

In this paper, we improve the performance of traditional probabilistic classifier for PTSD detection

by introducing a new Bayesian network based approach. We start by identifying three challenges

presented in veteran PTSD detection problem: probabilistic classification, large amount of miss-

ing data, large search space of network structure, and thus our proposed model addresses these

challenges accordingly. Particularly, we represent a Bayesian network model with the conditional

probability distribution of each node defined with multivariate logistic regression. We add an l1

penalty, which yields a sparser model, to make the model estimation more stable under the con-

text of large amount of missing data. A ordering-based search algorithm with strong causality

based clinical knowledge is adopted to search for the network structure. As a result, our proposed

sparsity-enforcing l1 penalized Bayesian network-based model provides better prediction in vet-

erans’ likelihood of suffering from PTSD as compared with a variety of state-of-art probabilistic

classifiers.

Our study contributes to the Department of Veterans Affairs in two ways. First, the proposed

model measures veterans’ risk of suffering from PTSD only based on some basic information,

which are easy to obtain. VA can apply a diversion strategy by assigning the high-risk patient

directly to the mental health provider to make them access to the healthcare resource earlier. Such

strategy will improve the efficiency of VA’s PTSD diagnostic process, and reduce veterans’ waiting

time. Second, we identify 8 variables which provide the most directly predictive power by looking

at the Markov boundary of PTSD in the Bayesian network model. This helps VA to identify the
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high-risk veteran population for PTSD, and provides further guidance for the psychologists at the

clinical treatment.

84



References

[1] ADAMS, R. E., AND BOSCARINO, J. A. Differences in mental health outcomes among

Whites, African Americans, and Hispanics following a community disaster. Psychiatry: In-

terpersonal and Biological Processes 68, 3 (2005), 250–265.

[2] BISHOP, C. M., AND LASSERRE, J. Generative or discriminative? Getting the best of both

worlds. In Bayesian Statistics 8. Oxford Univ. Press, 2007, pp. 3–24.

[3] BOSCARINO, J. A., ERLICH, P. M., HOFFMAN, S. N., AND ZHANG, X. Higher FKBP5,

COMT, CHRNA5, and CRHR1 allele burdens are associated with PTSD and interact with

trauma exposure: implications for neuropsychiatric research and treatment. Neuropsychiatric

Disease and Treatment 8 (2012), 131–139.

[4] BREIMAN, L. Random forests. Machine Learning 45, 1 (2001), 5–32.

[5] BREWIN, C. R., ANDREWS, B., AND VALENTINE, J. D. Meta-analysis of risk factors for

posttraumatic stress disorder in trauma-exposed adults. Journal of Consulting and Clinical

Psychology 68, 5 (2000), 748–766.

[6] CHEN, Q., AND WANG, S. Variable selection for multiply-imputed data with application to

dioxin exposure study. Statistics in Medicine 32, 21 (2013), 3646–3659.

[7] DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Method-

ological) 39, 1 (1977), 1–38.

[8] DEPARTMENT OF VETERANS AFFAIRS. Veterans benefits administration annual benefits re-

port fiscal year 2018. https://www.benefits.va.gov/REPORTS/abr/docs/2018-abr.

pdf.

85

https://www.benefits.va.gov/REPORTS/abr/docs/2018-abr.pdf
https://www.benefits.va.gov/REPORTS/abr/docs/2018-abr.pdf


[9] DOMINGOS, P., AND PAZZANI, M. Beyond independence: Conditions for the optimality of

the simple Bayesian classifier. In Proc. 13th Intl. Conf. Machine Learning (1996), pp. 105–

112.

[10] EFRON, B. The efficiency of logistic regression compared to normal discriminant analysis.

Journal of the American Statistical Association 70, 352 (1975), 892–898.

[11] EFRON, B., HASTIE, T., JOHNSTONE, I., AND TIBSHIRANI, R. Least angle regression.

The Annals of Statistics 32, 2 (2004), 407–499.

[12] EGGLESTON, H. G. Convexity. Cambridge University Press, 1958.

[13] EZAWA, K. J., AND SCHUERMANN, T. Fraud/uncollectible debt detection using a Bayesian

network based learning system: A rare binary outcome with mixed data structures. In Pro-

ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (1995), Morgan

Kaufmann Publishers Inc., pp. 157–166.

[14] FAN, J., AND LI, R. Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American Statistical Association 96, 456 (2001), 1348–1360.

[15] FAN, J., AND PENG, H. Nonconcave penalized likelihood with a diverging number of pa-

rameters. The Annals of Statistics 32, 3 (2004), 928–961.

[16] FAYYAD, U. M., AND IRANI, K. B. Multi-interval discretization of continuous-valued at-

tributes for classification learning. In Proceedings of the 13th International Joint Conference

on Artificial Intelligence (1993), Morgan Kaufmann Publishers Inc., pp. 1022–1027.

[17] FERREIRA, J., DENISON, D., AND HAND, D. Weighted naïve Bayes modelling for data

mining, 2001.

[18] FRIEDMAN, N., GEIGER, D., AND GOLDSZMIDT, M. Bayesian network classifiers. Ma-

chine Learning 29, 2–3 (1997), 131–163.

86



[19] FRUEH, B. C., GRUBAUGH, A. L., ACIERNO, R., ELHAI, J. D., CAIN, G., AND MA-

GRUDER, K. M. Age differences in posttraumatic stress disorder, psychiatric disorders, and

healthcare service use among veterans in Veterans Affairs primary care clinics. The American

Journal of Geriatric Psychiatry 15, 8 (2007), 660–672.

[20] FRUEH, B. C., GRUBAUGH, A. L., ELHAI, J. D., AND BUCKLEY, T. C. US department of

veterans affairs disability policies for posttraumatic stress disorder: Administrative trends and

implications for treatment, rehabilitation, and research. American Journal of Public Health

97, 12 (2007), 2143–2145.

[21] FUJINO, A., UEDA, N., AND SAITO, K. A hybrid generative/discriminative approach to

text classification with additional information. Information Processing and Management 43,

2 (2007), 379–392.

[22] GALATZER-LEVY, I. R., KARSTOFT, K.-I., STATNIKOV, A., AND SHALEV, A. Y. Quan-

titative forecasting of PTSD from early trauma responses: A machine learning application.

Journal of Psychiatric Research 59 (2014), 68–76.

[23] GALATZER-LEVY, I. R., MA, S., STATNIKOV, A., YEHUDA, R., AND SHALEV, A. Y.

Utilization of machine learning for prediction of post-traumatic stress: a re-examination of

cortisol in the prediction and pathways to non-remitting PTSD. Translational Psychiatry 7,

3 (2017), 1070.

[24] GAVIRIA, S. L., ALARCÓN, R. D., ESPINOLA, M., RESTREPO, D., LOTERO, J.,

BERBESI, D. Y., SIERRA, G. M., CHASKEL, R., ESPINEL, Z., AND SHULTZ, J. M. Socio-

demographic patterns of posttraumatic stress disorder in Medellin, Colombia and the context

of lifetime trauma exposure. Disaster Health 3, 4 (2016), 139–150.

[25] HALL, M. A decision tree-based attribute weighting filter for naïve Bayes. Knowledge-Based

Systems 20, 2 (2007), 120–126.

87



[26] HAND, D. J., AND YU, K. Idiot’s Bayes—not so stupid after all? International statistical

review 69, 3 (2001), 385–398.

[27] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software 33, 1 (2010), 1–22.

[28] HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., AND FRANKLIN, J. The elements of statis-

tical learning: data mining, inference and prediction. The Mathematical Intelligencer 27, 2

(2005), 83–85.

[29] HE, X., AND SHI, P. Convergence rate of B-spline estimators of nonparametric conditional

quantile functions. Journal of Nonparametric Statistics 3, 3-4 (1994), 299–308.

[30] HOERL, A. E., AND KENNARD, R. W. Ridge regression: Biased estimation for nonorthog-

onal problems. Technometrics 12, 1 (1970), 55–67.

[31] HOLEVA, V., AND TARRIER, N. Personality and peritraumatic dissociation in the prediction

of PTSD in victims of road traffic accidents. Journal of Psychosomatic Research 51, 5 (2001),

687–692.

[32] HUANG, S., LI, J., YE, J., FLEISHER, A., CHEN, K., WU, T., REIMAN, E., INITIATIVE,

A. D. N., ET AL. A sparse structure learning algorithm for Gaussian Bayesian network iden-

tification from high-dimensional data. IEEE Transactions on Pattern Analysis and Machine

Intelligence 35, 6 (2012), 1328–1342.

[33] KANG, C., AND TIAN, J. A hybrid generative/discriminative Bayesian classifier. In Pro-

ceedings of the 19th International Florida Artificial Intelligence Research Society Conference

(2006), AAAI Press, pp. 562–567.

[34] KARSTOFT, K.-I., GALATZER-LEVY, I. R., STATNIKOV, A., LI, Z., AND SHALEV, A. Y.

Bridging a translational gap: using machine learning to improve the prediction of PTSD.

BMC Psychiatry 15, 1 (2015), 30.

88



[35] KNIGHT, K., AND FU, W. Asymptotics for lasso-type estimators. The Annals of Statistics

28, 5 (2000), 1356–1378.

[36] KONONENKO, I. Semi-naïve Bayesian classifier. In Proceedings of the Sixth European

Working Session on Learning (1991), Springer, pp. 206–219.

[37] KWON, S., AND KIM, Y. Large sample properties of the SCAD-penalized maximum likeli-

hood estimation on high dimensions. Statistica Sinica 22, 2 (2012), 629–653.

[38] MITCHELL, T. M. Machine Learning. WCB/McGraw-Hill, Boston, MA, 1997.

[39] NG, A. Y., AND JORDAN, M. I. On discriminative vs. generative classifiers: A compari-

son of logistic regression and naïve Bayes. In Advances in Neural Information Processing

Systems (2002), pp. 841–848.

[40] NIBLETT, T. Constructing decision trees in noisy domains. In Proceedings of the Second

European Working Session on Learning (Bled, Yugoslavia, 1987), Sigma, pp. 67–78.
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Appendix A

Appendix

A.1 Detailed Results for Chapter 1

This appendix presents the detailed results for average structure of the hybrid model, prediction

accuracies measured by 0-1 loss (in units of %) and RMSE, and training time.
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Table A.1: Average Structure of the Hybrid Model

Dataset # Features # LR-part # NB-part
Abalone 8 8 0
Balance Scale 4 4 0
Banknote Authentication 4 4 0
Qualitative Bankruptcy 6 4.872 1.128
Blogger 5 1.402 3.598
Blood Transfusion Service Center 4 3.89 0.11
Car Evaluation 6 6 0
Connectionist Bench 60 47.505 12.495
Credit Approval 15 7.109 7.891
Hepatitis 19 13.747 5.253
Heart Disease (Hungarian) 13 5.555 7.445
Hypothyroid 17 16.019 0.981
ILPD (Indian Liver Patient Dataset) 10 9.926 0.074

Dataset # Features # LR-part # NB-part
Iris 4 1.133 2.867
Liver Disorders 6 5.858 0.142
Magic Gamma Telescope 10 10 0
Mammographic Mass 5 4.74 0.26
Mushroom 21 15.376 5.624
New Thyroid 5 2.302 2.698
Pima Indians Diabetes 8 7.313 0.687
Statlog Vehicle Silhouettes 18 15.585 2.415
Vertebral Column 6 4.656 1.344
Congressional Voting Records 16 15.4 0.6
Wilt 5 4.489 0.511
Wine 13 1.314 11.686

Table A.2: Summary of Average 0-1 Loss of Hybrid Model, LR, NB, RF, and LASSO in units of
% (SE in parentheses).

Dataset Hybrid LR NB RF LASSO
Abalone 36.34 (0.14) 36.34 (0.14) 41.26 (0.16) 36.11 (0.14) 36.26 (0.14)
Balance Scale 1.84 (0.06) 1.84 (0.06) 8.59 (0.11) 16.21 (0.14) 1.47 (0.04)
Banknote Authentication 5.39 (0.06) 5.39 (0.06) 7.18 (0.06) 5.41 (0.06) 5.38 (0.06)
Qualitative Bankruptcy 0.86 (0.06) 0.77 (0.06) 0.76 (0.05) 0.00 (0.00) 0.58 (0.05)
Blogger 27.68 (0.41) 27.00 (0.42) 28.54 (0.41) 15.71 (0.37) 28.66 (0.43)
Blood Transfusion Service Center 22.30 (0.14) 22.30 (0.14) 24.70 (0.15) 22.61 (0.15) 22.34 (0.15)
Car Evaluation 6.59 (0.06) 6.59 (0.06) 14.73 (0.09) 2.78 (0.04) 6.71 (0.06)
Connectionist Bench 18.16 (0.29) 20.48 (0.28) 19.77 (0.30) 10.31 (0.24) 12.81 (1.00)
Credit Approval 13.54 (0.12) 14.37 (0.13) 13.25 (0.12) 13.71 (0.12) 13.93 (0.13)
Hepatitis 11.38 (0.26) 13.20 (0.28) 11.72 (0.25) 9.07 (0.22) 9.81 (0.23)
Heart Disease (Hungarian) 33.13 (0.26) 33.02 (0.26) 34.21 (0.26) 33.29 (0.25) 34.29 (0.25)
Hypothyroid 0.81 (0.02) 0.79 (0.02) 1.29 (0.02) 0.84 (0.02) 0.76 (0.02)
ILPD (Indian Liver Patient Dataset) 27.53 (0.16) 27.52 (0.16) 31.29 (0.18) 29.51 (0.17) 28.51 (0.17)
Iris 5.97 (0.18) 5.82 (0.18) 5.53 (0.17) 5.03 (0.17) 6.13 (0.18)
Liver Disorders 33.33 (0.24) 33.27 (0.24) 35.59 (0.24) 31.23 (0.23) 33.06 (0.24)
Magic Gamma Telescope 15.12 (0.07) 15.12 (0.07) 21.63 (0.08) 14.29 (0.06) 15.13 (3.16)
Mammographic Mass 17.21 (0.11) 17.19 (0.11) 16.20 (0.11) 17.10 (0.11) 16.88 (0.11)
Mushroom 0.00 (0.00) 0.00 (0.00) 5.51 (0.10) 0.00 (0.00) 0.00 (0.00)
New Thyroid 5.07 (0.15) 5.60 (0.16) 3.81 (0.12) 3.35 (0.12) 4.11 (0.13)
Pima Indians Diabetes 18.74 (0.13) 18.74 (0.13) 19.82 (0.14) 20.29 (0.14) 18.71 (0.13)
Statlog Vehicle Silhouettes 25.48 (0.15) 25.31 (0.16) 34.92 (0.16) 22.92 (0.14) 24.65 (0.15)
Vertebral Column 15.27 (0.19) 15.84 (0.20) 21.14 (0.22) 15.21 (0.19) 15.84 (0.20)
Congressional Voting Records 3.80 (0.09) 3.77 (0.09) 8.90 (0.13) 3.05 (0.08) 3.25 (0.08)
Wilt 2.78 (0.02) 2.78 (0.02) 5.38 (0.03) 2.91 (0.02) 2.78 (0.02)
Wine 2.34 (0.11) 3.09 (0.14) 1.16 (0.08) 1.18 (0.08) 1.64 (0.10)
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Table A.3: Summary of Average RMSE of Hybrid Model, LR, NB, RF, and LASSO (SE in paren-
theses).

Dataset Hybrid LR NB RF LASSO
Abalone 0.3899 (0.0005) 0.3899 (0.0005) 0.4513 (0.0009) 0.4100 (0.0007) 0.3895 (0.0005)
Balance Scale 0.0841 (0.0021) 0.0841 (0.0021) 0.2837 (0.0007) 0.2807 (0.0009) 0.0651 (0.0012)
Banknote Authentication 0.2018 (0.0009) 0.2018 (0.0009) 0.2264 (0.0007) 0.2169 (0.0012) 0.2016 (0.0009)
Qualitative Bankruptcy 0.0411 (0.0024) 0.0359 (0.0025) 0.0361 (0.0015) 0.0448 (0.0010) 0.0419 (0.0017)
Blogger 0.4331 (0.0029) 0.4440 (0.0030) 0.4272 (0.0027) 0.3315 (0.0034) 0.4322 (0.0023)
Blood Transfusion Service Center 0.3962 (0.0009) 0.3962 (0.0009) 0.4103 (0.0010) 0.4406 (0.0015) 0.3963 (0.0009)
Car Evaluation 0.1498 (0.0006) 0.1498 (0.0006) 0.2272 (0.0004) 0.1326 (0.0003) 0.1500 (0.0006)
Connectionist Bench 0.4070 (0.0038) 0.4369 (0.0034) 0.3866 (0.0032) 0.3218 (0.0013) 0.2896 (0.0022)
Credit Approval 0.3179 (0.0014) 0.3188 (0.0013) 0.3237 (0.0015) 0.3173 (0.0012) 0.3159 (0.0012)
Hepatitis 0.2792 (0.0039) 0.3157 (0.0044) 0.2831 (0.0040) 0.2677 (0.0023) 0.2703 (0.0028)
Heart Disease (Hungarian) 0.2959 (0.0010) 0.2985 (0.0010) 0.3022 (0.0011) 0.2999 (0.0011) 0.2921 (0.0009)
Hypothyroid 0.0840 (0.0008) 0.0832 (0.0008) 0.1017 (0.0009) 0.0812 (0.0007) 0.0809 (0.0008)
ILPD (Indian Liver Patient Dataset) 0.4162 (0.0009) 0.4161 (0.0009) 0.4601 (0.0013) 0.4348 (0.0011) 0.4137 (0.0008)
Iris 0.1351 (0.0032) 0.1457 (0.0031) 0.1258 (0.0031) 0.1271 (0.0029) 0.1373 (0.0025)
Liver Disorders 0.4537 (0.0010) 0.4534 (0.0010) 0.4655 (0.0008) 0.4723 (0.0016) 0.4538 (0.0010)
Magic Gamma Telescope 0.3347 (0.0005) 0.3347 (0.0005) 0.3903 (0.0007) 0.3309 (0.0006) 0.3348 (0.0006)
Mammographic Mass 0.3424 (0.0010) 0.3422 (0.0010) 0.3565 (0.0012) 0.3592 (0.0012) 0.3421 (0.0009)
Mushroom 0.0000 (00000) 0.0002 (0.0001) 0.2065 (0.0062) 0.0061 (0.0002) 0.0035 (0.0001)
New Thyroid 0.1308 (0.0027) 0.1416 (0.0033) 0.1130 (0.0022) 0.1264 (0.0018) 0.1214 (0.0025)
Pima Indians Diabetes 0.3689 (0.0010) 0.3691 (0.0010) 0.3784 (0.0011) 0.3771 (0.0011) 0.3694 (0.0010)
Statlog Vehicle Silhouettes 0.2910 (0.0008) 0.2942 (0.0009) 0.3695 (0.0009) 0.2750 (0.0007) 0.2803 (0.0007)
Vertebral Column 0.3435 (0.0017) 0.3461 (0.0016) 0.3879 (0.0021) 0.3481 (0.0023) 0.3448 (0.0014)
Congressional Voting Records 0.1640 (0.0024) 0.1635 (0.0025) 0.2761 (0.0022) 0.1572 (0.0015) 0.1481 (0.0018)
Wilt 0.1584 (0.0006) 0.1584 (0.0006) 0.1911 (0.0006) 0.1630 (0.0006) 0.1584 (0.0006)
Wine 0.0751 (0.0029) 0.0909 (0.0033) 0.0431 (0.0022) 0.0994 (0.0011) 0.0690 (0.0022)
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Table A.4: Summary of Average Train Time of Hybrid Model, LR, NB and RF in seconds.

Dataset Hybrid LR NB RF LASSO
Abalone 0.5224 0.5204 0.0090 2.5621 27.9373
Balance Scale 0.0206 0.0211 0.0023 0.1575 5.1914
Banknote Authentication 0.0339 0.0330 0.0030 0.4136 2.1155
Qualitative Bankruptcy 0.0050 0.0049 0.0026 0.0229 0.3455
Blogger 0.0056 0.0055 0.0021 0.0240 0.2145
Blood Transfusion Service Center 0.0084 0.0083 0.0024 0.1022 0.4382
Car Evaluation 0.1188 0.1185 0.0038 0.5156 10.5964
Connectionist Bench 0.0222 0.0226 0.0169 0.0781 0.6644
Credit Approval 0.0183 0.0204 0.0056 0.1418 1.2105
Hepatitis 0.0134 0.0132 0.0070 0.0434 1.1598
Heart Disease (Hungarian) 0.0130 0.0200 0.0043 0.0750 1.2388
Hypothyroid 0.0715 0.0722 0.0116 0.9972 3.7391
ILPD (Indian Liver Patient Dataset) 0.0087 0.0088 0.0038 0.0956 0.4695
Iris 0.0045 0.0074 0.0020 0.0178 0.7708
Liver Disorders 0.0091 0.0092 0.0034 0.0789 0.3703
Magic Gamma Telescope 2.0696 2.0794 0.0291 18.5753 21.2618
Mammographic Mass 0.0118 0.0114 0.0031 0.1633 0.6603
Mushroom 0.4388 0.5057 0.0239 2.1637 12.6604
New Thyroid 0.0065 0.0079 0.0022 0.0281 0.8481
Pima Indians Diabetes 0.0127 0.0132 0.0037 0.1518 0.5654
Statlog Vehicle Silhouettes 0.1260 0.1734 0.0065 0.4541 11.1105
Vertebral Column 0.0054 0.0047 0.0025 0.0346 0.3363
Congressional Voting Records 0.0178 0.0187 0.0065 0.0932 0.8938
Wilt 0.0519 0.0463 0.0062 0.9906 3.1263
Wine 0.0082 0.0134 0.0042 0.0276 0.6744
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