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Abstract

In this dissertation, Bayesian adaptive design used to identify subgroup treatment effect is
firstly explored. We investigate three Bayesian adaptive models for subgroup treatment effect
identification: pairwise independent, hierarchical, and cluster hierarchical achieved via Dirichlet
Process (DP). The impact of interim analysis and longitudinal data modeling on the personalized
medicine study design is also explored. Interim analysis is considered since they can accelerate
personalized medicine studies in cases where early stopping rules for success or futility are met.
We apply integrated two-component prediction method (ITP) for longitudinal data simulation,
and simple linear regression for longitudinal data imputation to optimize the study design. The
designs’ performance in terms of power for the subgroup treatment effects and overall treatment
effect, sample size, and study duration are investigated via simulation. We found that the
hierarchical model with interim analysis and longitudinal modelling is an optimal approach to
identifying subgroup treatment effects, and the cluster hierarchical model with interim analysis
and longitudinal imputation is an excellent alternative approach in cases where sufficient

information is not available for specifying the related priors.

We then investigate several Bayesian designs incorporating historical control borrowing:
power prior via overlapping area, commensurate prior, and some other methods. The impact of
historical data type and different types of the threshold used in Bayesian decision rule are also
explored. The designs’ performance in terms of power as a function of treatment effect, sample
size, and posterior summary are investigated via simulation. It was found that it is a good
consideration to apply the power prior adaptive design with power parameter determination via

overlapping area of posterior distribution under certain values of true response rates of



concurrent control, historical control, and treatment effect. Study design with commensurate

prior is an admissible choice as well, however, appropriate priors need to be specified.

Lastly, we use logistic regression and classification and regression tree (CART) models
to identify the risk factors of early preterm birth (ePTB) from maternal perspective based on
birth data from Center for Disease Control (CDC) and National Center for Health Statistics
(NCHS)’ 2014 Natality public file. It revealed that the subgroup with a preterm birth history and
a race designation as Black had the highest risk for ePTB. Those findings can provide valuable
information for a future enrichment trial design. Moreover, both models can be applied to

identify risk factors for other studies.
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Chapter 1: Introduction



The clinical trial is a mandatory process for the development of new medicine. The safety
and efficacy of the new medicine must be proved in order to be approved by the health authority
before marketing. However, majority of the clinical trials are “negative” (e.g., p value>.05), and
it has been estimated that 85% ($200 billions) of the funding spent on the medical research each
year is “a waste of money” (Macleod, Michie, et al. 2014). It is necessary to explore some
creative studies designs to lower the cost and improve benefit of the clinical trial from statistical
perspective. Food and Drug Administration (FDA) has also released some guidance to encourage
to research the innovative clinical trial designs reference (Fda. 2012, Fda. 2019). In this
dissertation, the related personalized medicine clinical trial and the trials that incorporates

historical control are explored.

1.1 Personalized Medicine

In Chapter Two, the design and analysis of clinical trial for personalized medicine is
explored. Personalized medicine clinical trials are designed to test for a treatment effect in a
particular subgroup (Alosh, Huque, et al. 2017, Zhang, Mayo, et al. 2018). The subgroup factor

is patient-specific characteristics, such as biomarkers, demographics, and disease sub-categories.

Recently, researchers have proposed both frequentist and Bayesian approaches to
identifying subgroup treatment effect. developed a frequentist non-parametric recursive
partitioning method for the analysis of subgroup treatment effects was developed by some
researchers (Lipkovich, Dmitrienko, et al. 2011). The random forests of interaction trees (RFIT),
was proposed by Su et al.(Su, Pefia, et al. 2018) to estimate subgroup treatment effects. Foster et
al.(Foster, Taylor, et al. 2011) created the virtual twins method to identify the subgroup treatment

effects. Bayesian adaptive designs can also be applied to identify the treatment effect for a



particular subgroup (Gajewski, Berry, et al. 2016). Bayesian adaptive designs have a
straightforward interpretation and thus are friendly to scientific researchers with little statistical
background. Additionally, the Food and Drug Administration (FDA) recently released guidelines
that encourage the use of prespecified interim analysis in personalized medicine adaptive designs

to evaluate subgroup factors and modify the subpopulation enrollment accordingly (Fda. 2012).

The focus of this research is a prospective study design where different subgroup
treatment effects have already been noted but must be investigated in a confirmatory
environment among competing treatments that are used in practice (e.g. comparative
effectiveness). Thus, this research aims to identify the best treatment by subgroup, avoiding the
term “futility”, as one treatment’s futility is another’s success. We investigate three Bayesian
adaptive models for subgroup treatment effect identification: pairwise independent, hierarchical,
and cluster hierarchical achieved via Dirichlet Process (DP). The impact of interim analysis on
the personalized medicine study design is also explored. In our research, interim analyses are
specified at a fixed number of subjects enrolled; stopping rules for success are based on posterior
probability criteria set for individual subgroups. It should be noted that our research does not
adjust the randomization ratio after interim analysis. Longitudinal modelling imputation for
missing data is also explored to improve the study design. We apply integrated two-component
prediction method (ITP) for longitudinal data simulation, and simple linear regression for
longitudinal data imputation to optimize the study design. The designs’ performance in terms of
power for the subgroup treatment effects and overall treatment effect, sample size, and study

duration are investigated via simulation.



1.2 Historical Control

In Chapter Three, the Bayesian designs incorporated historical controls are explored.
Generally, the historical control may come from real world data (RWD, such as medical chart
(Clarke and Loudon 2011, Salman, Beller, et al. 2014), patient registry (Gliklich, Dreyer, et al.
2014, Richesson 2011), natural history (NH) trial (Groft 2010)) and completed clinical trials
(Bhuyan, Chen, et al. 2015). The historical control is beneficial to patients, especially for those
studies aim of rare diseases treatment or unethical to provide placebo to the patients. The FDA
has released guidance to regulate how to design a trial that borrows historical information (Fda.
2019), which encourage researches to borrow the historical information. It is good for
pharmaceutical companies since they have large amount of related control arm before a trial

conducted (Liu 2018), and more resources can be used for the treatment arm.

From statistical perspective, historical control application has some desired properties,
such as increase in power, decrease the in size (Liu 2018), minimize the patient burden (Lim,
Walley, et al. 2018), etc. The important thought of historical control borrowing is how to connect
the historical data to concurrent data. There are several structures of the connection
(Spiegelhalter, Abrams, et al. 2004): full equal, discounted equal, biased, similar (i.e.,
exchangeable), and functional dependent. Then the related methods were derived and applied
accordingly. In Chapter Three, we mainly explore the commensurate prior and power prior; with

a novel estimation approach in the latter.

The connection between the historical and concurrent control of commensurate prior is
the conditional distribution of parameter of concurrent data given the historical data (Gamalo-
Siebers, Savic, et al. 2017). The conditional distribution is served as the prior and incorporated

with the concurrent data to have the posterior estimation of control parameter. Commensurate
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prior is essentially a hierarchical model as well. However, it assumes that the historical response

rate is non-systematically biased from the current response rate (Lim, Walley, et al. 2018).

There are some explorations of power prior borrowing the historical data (Gravestock and
Held 2018, Hobbs, Carlin, et al. 2011, Liu 2018). The degree of power prior borrowing is
controlled by the power parameter of power prior. The borrowing changes from “full borrowing”
to “no borrowing” as the power parameter goes from 1 to 0. The limitation of power prior is to
specify an appropriate power parameter. Some researchers proposed an estimated power
parameter to adjust the limitation. Specifically, the power parameter follows a distribution rather
than fixed (Neelon and O' Malley 2010). However, this adjustment tends to heavily discount
historical data and does not efficiently borrow the historical data unless a very informative prior

used for the power parameter (Lim, Walley, et al. 2018).

In Chapter three, we researched the performance of several study designs incorporating
historical control via different Bayesian borrowing methods — power prior, commensurate prior
and some reference borrowing method. The performance is compared by the simulating trials.
The impact of historical data type and different types of the threshold used in Bayesian decision
rule are also explored. The designs’ performance in terms of power as a function of treatment

effect, sample size, and posterior summary are investigated via simulation.

1.3 Subgroup Identification
It is necessary to identify the subgroup factors, and then explore related statistical
methodology accordingly. In Chapter Four, we mainly introduce how to use logistics regression

and classification and regression tree (CART) to identify the risk factor of early preterm birth



(ePTB) from maternal perspective based on birth data from Center for Disease Control (CDC)

and National Center for Health Statistics (NCHS)’ 2014 Natality public data file.

The multivariate logistic regression model was applied to estimate odds ratios (OR) and
the corresponding 95% confidence intervals (CI) to investigate the association of ePTB with the
potential risk factors. All predictors entered the model and they were selected via backward
elimination. The predicted probabilities were calculated for the validation cohort based on the
model obtained from the training cohort. The calibration plot was generated to compare the
average predicted probabilities and the average observed probabilities via the validation cohort.
The c-index was calculated to identify the model discriminatory capacity in terms of the training

and validation cohorts.

CART model is a useful complement to a logistic regression model because the CART
model can identify unknown interactions among the risk factors of ePTB. The most
discriminating predictor is selected to partition the data to minimize the subgroup variance of the
dependent variable (e.g. ePTB) (Lemon, Roy, et al. 2003). This step is executed repeatedly to the
following partitions until the sample size of each subgroup (i.e., a terminal node) is at or below a
pre-specified level. Then, a maximum tree was constructed and standard pruning strategies were
applied to arrive at a parsimonious tree with a low misclassification rate and a high
discriminatory capacity (Breiman, Friedman, et al. 1984). The final CART model can be
visualized as an upside-down tree with the parent node of the tree containing the entire sample.
The training cohort was used to generate an appropriate CART tree, and the validation cohort
was utilized to evaluate the CART tree via the C-index and the misclassification rate. More
details regarding the methods and how to apply them to analyze the ePTB data is introduced in

Chapter Four.



Chapter 2: Designing and Analyzing Clinical Trials for Personalized Medicine via
Bayesian Models



Other Contributors for this Chapter: Matthew S. Mayo, Jo A. Wick, Byron J. Gajewski

Abstract

Patients with different characteristics (e.g., biomarkers, risk factors) may have different
responses to the same medicine. Personalized medicine clinical studies that are designed to
identify patient subgroup treatment efficacies can benefit patients and save medical resources.
However, subgroup treatment effect identification complicates the study design in consideration

of desired operating characteristics.

We investigate three Bayesian adaptive models for subgroup treatment effect
identification: pairwise independent, hierarchical, and cluster hierarchical achieved via Dirichlet
Process (DP). The impact of interim analysis and longitudinal data modeling on the personalized
medicine study design is also explored. Interim analysis is considered since they can accelerate
personalized medicine studies in cases where early stopping rules for success or futility are met.
We apply integrated two-component prediction method (ITP) for longitudinal data simulation,
and simple linear regression for longitudinal data imputation to optimize the study design. The
designs’ performance in terms of power for the subgroup treatment effects and overall treatment

effect, sample size, and study duration are investigated via simulation.

We found that the hierarchical model with interim analysis and longitudinal modelling is
an optimal approach to identifying subgroup treatment effects, and the cluster hierarchical model
with interim analysis and longitudinal imputation is an excellent alternative approach in cases
where sufficient information is not available for specifying the related priors. These findings can

be applied to future personalized medicine studies with discrete or time-to-event endpoints.



Key words: Bayesian (cluster) hierarchical model, Dirichlet process, Interim analysis,

Longitudinal modeling, Integrated two component prediction

2.1 Introduction

Personalized medicine is defined as the tailoring of treatment to patients based on their
characteristics, needs, and preferences during medical care . Therefore, personalized medicine
clinical trials are designed to test for a treatment effect in patient subgroups (Alosh, Huque, et al.
2017, Zhang, Mayo, et al. 2018). In general, these subgroups are defined using “personalized” or
patient-specific characteristics such as biomarkers, demographics, and disease sub-categories.
Personalized randomized clinical trials (RCTs) can be categorized as prospective, prospective-
concurrent, prospective-retrospective, or retrospective based on the availability of the data
relative to the design of the study (Ruberg and Shen 2015). Personalized RCTs are sufficiently
powered to test for a treatment effect while controlling both the overall Type | error and the
subgroup false positive rates (Alosh, Huque, et al. 2017). However, personalized RCTs that
optimize time and resource use without sacrificing statistical rigor are both essential and

unexplored.

Recently, researchers have proposed both frequentist and Bayesian approaches to
identifying subgroup treatment effect. Lipkovich et al.(Lipkovich, Dmitrienko, et al. 2011)
developed a frequentist non-parametric recursive partitioning method for the analysis of
subgroup treatment effects. Another non-parametric method, random forests of interaction trees
(RFIT), was proposed by Su et al.(Su, Pefia, et al. 2018) to estimate subgroup treatment effects.
Additionally, Foster et al.(Foster, Taylor, et al. 2011) created the virtual twins method, and

Altstein et al.(Altstein, Li, et al. 2011) suggested a new computational method for parameter



estimation of an accelerated failure time (AFT) model with subgroups identified by a latent
variable. Alosh et al. also introduced the solutions to solve the issues of chance findings, low
power of interaction statistical tests for the treatment-by-subgroup interaction, etc. when

executing the subgroup analysis from frequentist perspective (Alosh, Huque, et al. 2017).

Compared to the frequentist approaches, Bayesian adaptive designs have potential
benefits for prospective personalized RCTs since they naturally extend from simple (Almirall,
Compton, et al. 2012) to more complex but efficient models (Bayman, Chaloner, et al. 2010),
have higher power for a given type | error rate, and facilitate decision making in advance via
interim analysis (Gajewski, Berry, et al. 2015, Wang and Hung 2013). Bayesian adaptive designs
also provide the probability that a treatment is best for a particular subgroup (Gajewski, Berry, et
al. 2016), which has a straightforward interpretation and thus is friendly to scientific researchers
with little statistical background. Additionally, the Food and Drug Administration (FDA)
recently released guidelines that encourage the use of prespecified interim analysis in
personalized medicine adaptive designs to evaluate subgroup factors and modify the
subpopulation enrollment accordingly (Fda. 2018, Fda. 2012). Finally, Bayesian adaptive
designs can illustrate the effectiveness of a treatment in subpopulations or the overall population
with higher power when compared to a fixed design of the same size (Berry, Broglio, et al.

2013).

The focus of this research is a prospective study design where different subgroup
treatment effects have already been noted but must be investigated in a confirmatory
environment. A study design in terms of Bayesian models, longitudinal data, and interim analysis
is involved (Alosh, Fritsch, et al. 2015, Alosh, Huque, et al. 2017, Dmitrienko, Muysers, et al.

2016). Research has been done for trials whose purpose is to identify a single subgroup (Morita,
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Yamamoto, et al. 2014), which may be useful for seamless phase Il to 111 designs (Magnusson
and Turnbull 2013, Rufibach, Chen, et al. 2016). In addition, Hobbs et al.(Hobbs and Landin
2018) have proposed an innovative sequential basket trial design formulated with Bayesian

monitoring rules based on multisource exchangeability and hierarchical modeling.

Some studies (Mehta and Gao 2011, Simon and Simon 2013, Wassmer and Dragalin
2015) refer to RCTs for adaptive personalized medicine. Personalized medicine designs adjust
enrollment of subjects for specific subgroups at interims to maximize power and/or shorten study
duration (Fda. 2018). It should be noted that our research does not adjust the randomization ratio
after interim analysis. Additionally, this research is motivated by comparative effectiveness and
thus aims to identify the best treatment by subgroup, avoiding the term “futility”, as one

treatment’s futility is another’s success.

One of the trending issues in RCTs for personalized medicine is the handling of
multiplicity across subgroups. A well-calibrated RCT will have a Type | error rate of 5% (based
on two-sided test) or 2.5% (based on one-sided test), and this frequentist calibration is also
crucial for Bayesian RCTs (Grieve 2016, Jenkins, Stone, et al. 2011). Much effort in group
sequential designs (Rosenblum, Luber, et al. 2016) is spent controlling the familywise Type |
error rate because of the multiple points of testing due to both the number of subgroups and the
number of interim analyses. Random effects linear models for identification of subgroup
treatment effects with longitudinal data have also been presented (Facts 2018), but little research
exists on Bayesian models for longitudinal data with subgroup treatment effects identification. A
more effective modeling approach is to borrow strength across the subgroups via a Bayesian
hierarchical model. Berry et al. (Berry, Broglio, et al. 2013) concluded that this type of modeling

provides a better chance at identifying efficacy or futility than the models that promote
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independence across subgroups. Gamalo-Siebers et al. (Gamalo-Siebers, Tiwari, et al. 2016)
pointed out that in some instances, hierarchical models suffer from “over-shrinkage” and a
Dirichlet Process (DP) prior is a possible alternative to the lighter-tailed alternatives.

Hierarchical models and DP priors are also candidate models in this research.

This research is the result of a National Center for Advancing Translational Sciences
(NCATS) national working group with the name of Designing and Analyzing Clinical Trials for
Personalized Medicine (DACTPerM), brought together to explore the properties of several
statistical models to be applied to academic medical RCTs for personalized medicine. The
exploration is done by simulating trials in which several treatments are tested simultaneously
(e.g., two drugs tested in different sub-populations). Interim analyses are specified at a fixed
number of subjects enrolled; stopping rules for success are based on posterior probability criteria
set for individual subgroups. Longitudinal modelling imputation for missing data is also explored

to improve the study design.

In Section 2.2, we introduce the motivating study, Patient Assisted Intervention for
Neuropathy: Comparison of Treatment in Real Life Situations (PAIN-CONTRoLS) (Barohn,
Gajewski, et al. 2018), and several models for RCTs in personalized medicine are described as
well. In Section 2.3, operating characteristics for the different possible designs are presented and
compared. We demonstrate the models’ simulation-based performance. We conclude with

discussion and conclusions in Section 2.4.
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2.2 Method
2.2.1 Motivating Study
The objective of the PAIN-CONTRoLS study was to identify the most effective medicine
for reducing pain and improving the quality of life in patients with Cryptogenic Sensory
Polyneuropathy (CSPN). The study investigates four candidate medicines: nortriptyline,
duloxetine, pregabalin, and mexiletine. The study found that both nortriptyline and duloxetine
had the highest posterior probability of being the best treatment among the four candidates.
However, an exploratory analysis found that nortriptyline and duloxetine had results that varied
by subject characteristics such as gender, age, and race. Therefore, we wish to design a future
prospective trial that verifies this subgroup hypothesis via an innovative and efficient Bayesian
model. The primary endpoint, pain, is an approximately continuous measure of risk reduction in
PO—P12’

pain (scale 0-10) at 12-weeks relative to that at randomization. Specifically, it is equal to —
0

where P, is pain score at randomization and P;, is the one at 12 weeks.

2.2.2 Model Specification

Selecting a model for personalized medicine RCTs is important for optimizing operating
characteristics. Generally, it is unlikely that one model can be recommended for all RCTs. The
strategy for model selection is to pick the candidate model with the most desirable operating
characteristics calculated via simulation. It is also a good strategy to build the candidate models
from simple to complex. A pairwise independent subgroup model (i.e., a model for one subgroup
is independent of those for the other subgroups) is a straightforward one to begin with. We also
consider the hierarchical and cluster hierarchical model since these models adapt depending on

the variation of the treatment effect across subgroups.
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Generally, we assume the endpoints for all subjects from both treatment arms (A or B),
i.e., both Arm A and B are active arms which means our research is based on effectiveness
comparison, are normally distributed with identical standard deviations but different means.

Specifically, observations from arm A are denoted:

4 @ A A 4 .
Ylg ,ng ,Y3g ,Y4g e YNéA)g ~N()/g;o-2),

and for arm B:

B y(B) y(B) y(B) (B)
A A D A YNéB)g ~N (v, + 64,0%)

where g is the index indicating the subgroup and g € {1, 2,3, ... g, }. N;A) and N;B) represent the
sample size of subgroup g for treatment arm A and B, respectively. The common standard

deviation is given by o and the means for arm A and B are y, and y, + 6, respectively. Thus, 6,

represents the treatment difference for subgroup g.

Pairwise Independent Model. In a pairwise independence model, separate priors are used

for each treatment arm such that each y, and 6, have normal prior distributions,

Yg ~ N (ﬂéA),TéA)'2>, Hg ~N (uéB),T;B)’Z), and g% ~ IG (%, 6‘2‘20”).

)

We assume P is equal to 7% , and g, and a,, are the central and weight parameters

g

of the inverse gamma distribution. We use weakly informative priors whose information was
obtained from the example study and inflate the related prior variance values to diminish the
effect that priors play in the following simulations. The complete conditional distributions of
treatment difference (6,) and treatment effect from arm A (y,), given data and all other

parameters, are both normal. Specifically,
14



(B),2 ,(B) ((B) _ 2,,(B) (B).2
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w 2y, 02 7§ (Ng 7@+ NPT - N eg)+o ub W52
YolVig - Yig™ ) 6g,0% 1g ", 75 "~ N @ ®) A2 ) (B) (4)2 22)
(Ng + N, )Tg “ + g2 (N +N, ) Ty + g2

Hierarchical Model. The hierarchical model’s borrowing strength across subgroups is

achieved through shared prior distributions for each treatment. Consequently, u(A) () and

y o+ Hy
T](,A)'Z, (B).2 are considered random parameters from a set of shared distributions. For treatment
arm A (yy):

A) (A A 2, BN
Vo~ N (1,557 i ~ N (o, 00), 107 ~ 16 (2, ),

and for the difference between treatment arms in subgroup g (6,):

n TaTn
6y~ N (17,177, ~ N (o, 08), 777~ 16 (2, ),

(4),2 (B), 2

Here, M(A) and u(B)are independent and identically distributed, as are 7,,”~“ and t,,
We specify the values of the hyperparameters y,, 0§, 7,, and 7;; when simulation is executed. The
expressions of the completely conditional distributions of the treatment difference (6,) and the
treatment effect from arm A (y,) given data and all other parameters are identical to (2.1) and

(2.2) from the pairwise independent model. However, the complete conditional distributions of

u® and 1P given data and all other parameters are given by
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Cluster Hierarchical Model. The cluster hierarchical model is a non-parametric Bayesian
method that uses a Dirichlet process with scale parameter, a, and base distribution, G,.
Specifically, a random distribution, G, is drawn from the base distribution, G,. The scale
parameter a determines the discreteness of the random distribution G, and it varies from a single
discrete point mass to the base distribution G, as a goes from zero to infinity. The random
distribution G is considered a combination of clusters, and the data from one subgroup are drawn
from some certain cluster. In the DACTPerM study, for subject i in subgroup g from cluster w,,

the subject’s response is given by
Yigl we~ F(wc)
w,~G
G ~ DP (a, Gy);

where G, = N (uo, &), and u, and o are identical to those from the hierarchical model

presented previously. In addition, F(w,) = N = ((u)(,A) + M](,B))Iwc, T)%le), and u* and

u)(,B) have the same interpretation as those from the hierarchical model. Here, T)% is shared across

arms A and B. Detailed specifications regarding the three models and derivations can be found in

the appendix 2.1.
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2.2.3 Study Design Considerations

The study design is assessed by the properties and performance of candidate models
under varying assumptions and conditions prior to study execution. However, when simulating a
clinical trial, apart from the analysis model and its parameters, a variety of functional factors
must be considered to obtain reliable results. Those factors include, but are not limited to, the
number of interim analyses, visit information, treatment allocation ratios, and accrual and drop-
out rates. We define all the functional input as functional parameters, and those directly related

to the response models, longitudinal modeling, and imputation as model parameters.

Design Input - Models for treatment. As discussed in Section 2.2.2, three candidate
models are considered for the statistical analysis plan and protocol: a pairwise independent
model, a hierarchical model, and a cluster hierarchical model. All priors are specified based on

the PAIN-CONTROLS study.

Design Input - Interim analysis and early evaluation criteria. Interim analysis is
important for the execution of an adaptive clinical trial, as it provides the means by which the
design uses accumulating data to adapt. In this simulation, scenarios that include and exclude
interim analysis are considered to assess their impact on operating characteristics. If interim
analysis is included, all related early evaluation criteria are specified simultaneously for all
subgroups. Specifically, the early success definition is that the posterior probability of one arm

better than the other one is greater than the criterion (i.e. threshold) since both arms are active.

l.e., the early success definition is that P(6, > 0 | Data) > criterion for all g, which indicates

Arm B is successful; or, P(6, < 0 | Data) > criterion for all g, which indicates Arm A is

successful. This study will stop for early success when it meets the early success definition.
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Design Input - Final evaluation criteria. The final success criteria, like the early success
criteria, are a function of the posterior probability one treatment arm being better than the other.
Moreover, the final evaluation threshold values differ since we would like to control the overall
type | error equal to 5%. Specifically, the final success definition is that the posterior probability

of one arm better than the other one is greater than the threshold for some subgroup. I.e., the final

success definition is that P(6, > 0 | Data) > criterion for some g, which indicates Arm B is

successful; or, P(6, < 0 | Data) > criterion for some g, which indicates Arm A is successful.

To sum up, if no interim analysis is involved in the study design, the final success
definition is that P(6, > 0|Data) > criterion for some g; or, P(6, < 0|Data) > criterion for

some g. The type | error is controlled via the formula (2.5) below:

Pr[P(Hg > O|Data) > criterion for some g at final analysis|H0] +

Pr[P(6, <0 | Data) > criterion for some g at final analysis|H,] (2.5),

where H, is correspondent to no effect scenario (introduced in Section 2.2.3 - Simulation
Description), and it means there is no treatment differences between Arm A and B for all
subgroups. Criterion is adjusted to meet the type I error equal to 0.05 for each study design. The

power is obtained via the formula (2.6) below:

Pr[P(Hg > O|Data) > criterion for some g at final analysis|H1] +

Pr[P(6, <0 | Data) > criterion for some g at final analysis| H,] (2.6),
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where H, is correspondent to alternative scenarios (introduced in Section 2.2.3 - Simulation
Description), and it means there is treatment differences between Arm A and B for some/all
subgroups. Given one study design, the thresholds for alternative scenarios are identical to those

from no effect scenario.

If interim analysis is involved in the study design, the early success definition is P(6, >
0| Data) > criterion for all g; or, P(6, < 0| Data) > criterion for all g. The final success

definitionis P(6, > 0 | Data) > criterion for some g; or, P(6, < 0 | Data) > criterion for

some g. The type | error is controlled via the formula (2.7) below:
Pr [P(Hg >0 | Data) > criterion for all g at interim analysis|H,] +
Pr[P(6, <0 | Data) > criterion for all g at interim analysis|H,] +
Pr[P(6, > 0|Data) > criterion for some g at final analysis|H,| +

Pr[P(6, <0 | Data) > criterion for some g at final analysis|H,] (2.7),

The power is obtained via the formula (2.8) below:
Pr[P(6, >0 | Data) > criterion for all g at interim analysis|H ] +

Pr[P(6, <0 | Data) > criterion for all g at interim analysis|H; ] +

Pr[P(Hg > 0|Data) > criterion for some g at final analysis|H1] +

Pr[P(6, <0 | Data) > criterion for some g at final analysis|H,] (2.8).
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The meanings of H, and H, are identical to those introduced under the study designs

without interim analysis involved.

Given a specific study design involved in interim analysis, the thresholds of interim and
final analyses are different, and they are twisted based on the proportions of type I error spending
on interim and final analyses. Boolean logic “and” for each subgroup criterion is applied at the
interim analysis, and “or” is applied at the final analysis. Moreover, we would like to control
type | error less than 0.005 spending on interim analysis. These strategies will result in a longer
study and provide more information for the researcher to draw the conclusion. The specific
criteria value for interim and final analyses are provided in section 2.2.3 - Simulation Description
(Table 2-5). Still, one the thresholds of interim and final analyses are identified under the no

effect scenario, they will be identically applied to the alternative scenarios.

Design Input - Rates of accrual and drop out. The accrual rate is an essential
characteristic of a clinical trial since it determines trial duration. In adaptive designs, the accrual
rate is even more important because the length of time between subject accrual and
ascertainment of response determines the role of longitudinal data modeling in optimizing
outputs. The accrual rate, together with drop-out rates, determine how many subjects are retained

in the study. These rates for the simulation are based on the PAIN-CONTROLS study.

Virtual endpoints. The null scenario (no effect) is used to calibrate the study design to a
Type | error rate of approximately 5%. This is done via an iterative process that updates early
and final evaluation criteria until the Type I error rate approaches but does not exceed 5%.
Several alternative hypothesis scenarios that use the same input parameters but have varying

response values are investigated.
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Integrated two component prediction (ITP) is used for virtual endpoint simulation when
longitudinal modeling is incorporated into the design. ITP allows endpoints to follow an
exponential model over time with a subject-specific random effect to scale the visit values to the
visit-specific specification of subgroup responses. Additionally, ITP does not affect the
distribution of the final endpoint (Facts 2018). Three elements—the mean final endpoint, the of
inter-subject ‘noise,” and the noise at the current visit—along with the exponential function’s
visit time and shape parameters determine the longitudinal data simulation at each visit (Facts

2018). Complete ITP specifications are in Appendix 2.2.

Design Input - Imputation via longitudinal modeling. Longitudinal modeling is also
applied for data imputation, and it is useful whether the trial is fixed or adaptive. Longitudinal
modeling can be used in a fixed trial to impute endpoint values for patients that have dropped out
of the study. Moreover, in an adaptive design, it can be used for imputing endpoints that have not
yet been observed for an interim analysis, allowing the study to maximize the use of data to more

efficiently adapt.

Simple linear regression (SLR) for Bayesian multiple imputation is used to model the
relationship between responses observed at each pre-final visit and the unobserved (future) final

visit. Specifically, for the future final response of subject i in subgroup g and treatment arm j,
YOy~ N (e + By, 22),

2
e~ N (@ 02), Be ~ N (B 2), 23~ 16 (22, 2ik),
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where a; and S, are the intercept and slope at visit time t, and yi(t{;

is the observed response for
the subject i at visit time t. The model priors are specified identically across all visits (see Section

2.2.3 - Simulation Description).

The subjects’ pending endpoints at interim analysis or missing ones at final analysis are
imputed by the predicted distribution generated from multiple imputation via the SLR model.
The imputed value from the predicted distribution captures both the uncertainty in the estimate of
the parameters of the SLR model and the uncertainty of the prediction of the endpoint given

particular parameter values (Facts 2018).

Design Input - Allocation. Unequal allocation may be applied in some studies where
sample size or randomization ratio adjustments are performed. Here, a 1:1 randomization ratio of

subjects to the two treatment arms is fixed within each subgroup.

Design Output - Subgroup power. Power can also be calculated in Bayesian studies via
simulation. Subgroup power is defined as the probability that a subgroup meets the success
criteria under the assumption that the subgroup responses from the two treatment arms are

different.

Design Output - Overall power (study success). Simulations track the proportion of
studies that show early success and final success based on the evaluation criteria (See Section
2.2.3- Simulation Description). Overall power is calculated via the summation of both
proportions, i.e., early and late success proportions. Both subgroup and overall power provide

important model performance information and thus make the model assessment comprehensive.
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Design Output - Sample size. Sample size is another key characteristic since it directly
relates to the cost of running a trial. Thus, a study design that results in a lower sample size but
similar power to a competing design is desirable. Compared to a fixed trial, an adaptive design

can result in smaller sample sizes due to early stopping criteria.

Design Output - Trial duration. The trial duration is highly dependent upon accrual and
sample size goals. It serves as a complimentary operating characteristic that the sponsor may

consider when calculating trial cost prior to study execution.

Simulation Description. The simulation is executed for each study design in terms of an
analysis model, interim analysis, and longitudinal modeling. Three analysis models are
considered: pairwise independent, hierarchical, and cluster hierarchical. For each model, interim
analysis and longitudinal modeling are either included or not. As Table 2-1 below indicates, the
simulation is composed of three factors; there are twelve different study designs for the
simulations.

Table 2-1 Levels of the three factors for study design

Factor 1: Model Factor_Z: interim analysis Factor 3: I._ongltudlnal modeling
involvement involvement
PalrW|_se mde_pendent Yes Yes
Hierarchical
No No

Cluster hierarchical

To assess the designs comprehensively, we propose several alternative hypothesis
scenarios that mimic the most frequent responses that can occur in real cases, and each scenario
assumes a different response profile under two treatment arms. The specific scenarios include
moderate and homogeneous effect, small and homogeneous effect, spread, opposite, and one
nugget. Moreover, Arm B is assumed to have the effect for all the scenarios for the convenience

of related formula and distribution specification. Supposing Arm A has the effect, the design
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outputs will be symmetric, as the related ones in which Arm B has the effect. Tables 2-2 and 2-3
present the specific virtual scenarios for four or eight patient subgroups. We assume the virtual
response, a continuous measure of pain reduction, is normally distributed, in which higher values
indicate better response to treatment. A common standard deviation (0.3) is specified for each
subgroup of the two arms across all the scenarios, and this value is derived from the motivated

example.

Table 2-2 Four subgroup virtual response under six virtual treatment effect scenarios

Scenario* Treatment Subgroup 1  Subgroup 2 Subgroup 3  Subgroup 4
No effect A 0 0 0 0
B 0 0 0 0
Moderate and A 0 0 0 0
homogeneous effect B 0.17 0.17 0.17 0.17
Small and A 0 0 0 0
homogeneous effect B 0.085 0.085 0.085 0.085
Spread A 0 0 0 0
B 0.05 0.1 0.2 0.25
. A 0.17 0.17 0 0
Opposite
B 0 0 0.17 0.17
One nugget A 0 0 0 0
B 0 0.17 0 0

*: The standard deviation of each subgroup virtual response for each scenario is 0.3.

Weakly informative priors that reflect the PAIN-CONTROLS study are applied. In the
cluster hierarchical model, a larger DP scale parameter will result in the random distribution
being close to the base distribution, whereas a smaller DP scale parameter will result in a more
discrete (point mass) random distribution. To differentiate it from the hierarchical model, the DP
scale parameter is set to 2. All subgroups are assumed to have identical priors for the coefficient
and intercept of SLR within each treatment arm. Though the prior mean values of the coefficient
and intercept were obtained from PAIN-CONTROLS, the prior standard deviation values of the

coefficient and intercept were increased to 0.4 and 0.1 from 0.04 and 0.01, respectively, to
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reduce the impact of the motivating study data on simulation results. Table 2- 4 presents the

specific values for all priors involved in the simulation.
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Early and final success criteria are designed to identify subgroup effects and study
success. Boolean logic “and” is applied for the subgroup criterion at the interim analysis, and
“or” is applied at study completion (specific criteria stated in Section 2.2.3 - Design Inputs). This
results in a longer study and more conservative analysis. The concrete values for the early and
final evaluation criteria are shown in Table 2- 5. Operating characteristics such as power, sample
size, and study duration under other effective virtual treatment scenarios with identical

evaluation criteria from related no effect scenario are obtained accordingly via the simulations.

Table 2-6 presents the functional parameter values for the simulation, which are derived
from PAIN-CONTROLS. Subgroup sample sizes are set to 100, and the final sample size is
determined via simulation with the consideration of Type I error and power. Study duration is
specified as 12 weeks, and interim analysis will be executed once half the total number of
subjects are enrolled. The study assumes three visits, with a 4-week lapse between consecutive

visits. Each study design is simulated 10000 times.

2.3. Results

Subgroup power. For the designs with four subgroups without interim analysis or
longitudinal modeling (Figure 2-1), the hierarchical model performs best in all the scenarios. The
cluster hierarchical model performs similarly with mildly less power compared to the
hierarchical model in the scenarios of opposite and one nugget. Similar findings are identified
from Figure 2-2 which presents the designs with four subgroups without interim analysis and
with longitudinal modeling. Each of the three models is with mildly higher power compared to
that in each scenario under the design without interim analysis and without longitudinal

modeling.
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Table 2-6. Values of input functional parameters for study design

Functional factor Value
Sample size per subgroup 100
Study duration 12 Weeks

. . L 200 and 400 subjects enrolled for
Interim analysis execution time*

4 and 8 subgroups

Visit times and duration between two consecutive Vvisits* 3 Visits; 4\\2’5558 between
Allocation ratio of two arms within each subgroup 1:1
Accrual rate 4 lweek
Drop-out rate 10 %

*: Interim analysis execution time, specific visit times and duration between two consecutive
visits are only involved when the study designs are with interim analysis and/or longitudinal data
modeling.

From Figure 2-3, which presents the subgroup power at the designs of three models with
interim analysis and without longitudinal modeling, it can be observed that the three models’
performance order is identical to that from Figure 2-1. Each model is with a little less power

compared to that in each scenario in Figure 2-1.

In the designs of three models with interim analysis and with longitudinal modeling, the
hierarchical model still performs best in all scenarios, and the performances of cluster
hierarchical and pairwise independent model come to the second and third place. The power
differences from hierarchical and cluster hierarchical models in one nugget scenario is larger

than those from Figure 2-1 to 2-3.

When subgroup number increases to 8, the subgroup power of the hierarchical model is
still the highest within each subgroup of each scenario under the batch designs with identical
involvement of interim analysis and longitudinal modeling. The power of the cluster hierarchical
model for all subgroups within each subgroup under each design batch is lower than that from

the hierarchical model but higher than that from a pairwise independent model.
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Overall power (Study success). It is easy to directly obtain the study power for each of
the scenarios since it is equal to the final success proportion output from the simulation except
for the opposite case. In the opposite scenario for four and eight subgroups, the overall power is
calculated by the summation of proportion of simulated studies with any of subgroups in which
the posterior probability of response from one arm higher than the response from other one
satisfying the success criteria. The logic for this calculation is that there exists two treatment
comparators and the study is successful if either arm within any subgroup meets the criteria. The
overall power for the one nugget is consistent to the power from subgroup 2 in Figure 2-1 to 2-8
presenting the subgroup power of related designs under different scenarios for both four and

eight subgroups.

In the designs of three models without interim analysis and longitudinal modeling,
overall power is high and quite similar to the three models under the scenarios of the moderate
and homogeneous effect and spread. Under the opposite scenario, the power of the hierarchical
model is still high, and the power goes down slightly but is still high for the cluster hierarchical
and pairwise independent models. The power of the hierarchical model under the all scenarios of
the small and homogeneous effect, and one nugget is the highest. The power of the cluster
hierarchical model under the same two scenarios decreases slightly, and the power of the
pairwise independent model under the two scenarios is lower and with relatively larger
differences compared to that from the hierarchical model. Similar findings are identified for the
designs of three models without interim analysis and with longitudinal modeling. Each of the
three models is with mildly higher power compared to that in each scenario under the design

without interim analysis and without longitudinal modeling.
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In the designs of three models with interim analysis and without longitudinal modeling,
hierarchical and cluster hierarchical models perform similarly and have higher power than that

for a pairwise independent model under each scenario.

In the designs of the three models with interim analysis and with longitudinal modeling,
the hierarchical model has the highest power compared to the other two models in each scenario,
and cluster hierarchical model performs closely to the hierarchical model with mildly decreased
power. Performance of the pairwise independent model, same as that from the other design
batch, is with the lowest power in each scenario. The same or quite similar comparison results

are observed from eight subgroups.

Sample size. Figure 2-11 & 2-12 present the expected sample size of designs under
different scenarios for both four and eight subgroups. For the design batches of three models
without interim analysis and with/without longitudinal modeling, the sample size is fixed as 100
subjects per subgroup. For the designs of the three models with interim analysis and without
longitudinal modeling under the moderate and homogeneous effect and spread scenarios, the
expected sample size dropped by 156 and 126 for hierarchical model, and by 141 and 115 for
cluster hierarchical model, and by 119 and 104 for pairwise independent model. For the designs
of the three models with interim analysis and with longitudinal modeling under the moderate and
homogeneous effect and spread scenarios, the expected sample size approximately dropped by
167 and 134 for hierarchical model, and by 154 and 124 for cluster hierarchical model, and by
134 and 113 for pairwise independent model. The same trend is also observed under the small
and homogeneous effect scenario, but all three models have higher expected sample size
compared to the relevant one from the moderate and homogeneous effect and spread scenarios.

However, under the scenarios of opposite and one nugget, pairwise independent is the best, and
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the other two models have higher expected sample size and perform similarly. The average
expected sample sizes are approximately 330 and 360 for the two scenarios under the designs of
the two models with interim analysis and without longitudinal modeling. The average expected
sample sizes are approximately 310 and 360 for the two scenarios under the designs of the two
models with interim analysis and with longitudinal modeling. Similar trends and comparison

results are observed for eight subgroups.

No Effect Moderate & homogeneous effect Small & homogeneous effect
400 — I~ 400
300 - - 300
200 - - 200
100 — - 100
. ] L
.%
L)
E 0= — - — -0
o Spread Opposite One Nugget
% 400 - 400
b 4 -
=
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300 - 300
200 | 200
100 — - 100
0 — 0 — -0

Design Choices

| O Pairwise Independent B Hierarchical @ ClusterHiemxthicaJl

Figure 2-7 expected sample size for study design under four subgroups. M = model
without interim analysis and without longitudinal modelling imputation, M + LG = model
without interim analysis and with longitudinal modelling imputation, M + 1A = model
with interim analysis and without longitudinal modelling imputation, M + IA + LG =
model with interim analysis and with longitudinal modelling imputation.
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Figure 2-8 expected sample size for study design under eight subgroups. M = model
without interim analysis and without longitudinal modelling imputation, M + LG = model
without interim analysis and with longitudinal modelling imputation, M + 1A = model
with interim analysis and without longitudinal modelling imputation, M + IA + LG =
model with interim analysis and with longitudinal modelling imputation.

Trial duration. Figure 2-13 & 2-14 presents the mean trial duration of the study designs
under different scenarios for both four and eight subgroups. The same or similar findings of three
models under different scenarios for both four and eight subgroups, as those from sample size

observed since the trial duration is highly correlated to the sample size.
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Figure 2-9 mean study duration for study desgin under four subgroups. M = model
without interim analysis and without longitudinal modelling imputation, M + LG = model
without interim analysis and with longitudinal modelling imputation, M + 1A = model
with interim analysis and without longitudinal modelling imputation, M + IA + LG =
model with interim analysis and with longitudinal modelling imputation
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Figure 2-10 mean study duration for study desgin under eight subgroups. M = model without
interim analysis and without longitudinal modelling imputation, M + LG = model without
interim analysis and with longitudinal modelling imputation, M + IA = model with interim
analysis and without longitudinal modelling imputation, M + 1A + LG = model with interim
analysis and with longitudinal modelling imputation.

Overall power comparison between hierarchical model and two independent sample t-
test. We also explored the overall power (study success) comparison between the hierarchical
model and an approach that ignores the different subgroup effects and uses a classical-frequentist
method—t-test without the involvement of interim analysis and longitudinal data. Table 2 - 7

below presents the concrete values from the two approaches. The powers of the Bayesian

hierarchical model are much higher for the opposite and one nugget scenarios. This is because
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the subgroup treatment effects for these two scenarios are a challenge to identify at the study

level for frequentist approach.
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2.4. Discussion and Conclusion

This paper explores the performance of three Bayesian models—pairwise independent,
hierarchical, and cluster hierarchical—under different virtual responses for subgroups, including
versions with interim analysis and longitudinal modeling. For all scenarios under each design,
the hierarchical model generally performs better than the other two. This is because the
hierarchical model is able to analyze the data using a mixture model, flexibly borrowing
information from all subgroups and shrinking the subgroup means towards the central one,
according to how similar they appear. The final output is sensitive to prior distribution
specification and related prior value setting, and thus the hyperprior setting is an essential factor
in achieving the hierarchical model property, and different settings may affect the performance
of the hierarchical model. The prior setting reflects the belief about the parameter before data is
available. Informative prior, usually represented by location and scale parameters, is derived
from researchers’ clear understanding or the availability of highly relevant data. Otherwise, non-
informative prior or weakly informative prior should be specified. The conjugate property of
prior is another consideration when setting the prior from computing perspective. In our
research, we incorporated the information from the example study and set the hyperprior
following a normal distribution with mean and standard deviation equal to 0 and 0.1, which is
weakly informative prior and conservative and leads to trials designs that mostly rely on data
collected from the trial and not the prior. It is pronounced in the simulation results of the spread
scenario of three models with interim analysis and longitudinal modeling involvement, the
hierarchical model performs excellently in terms of reducing sample size by 40 percent and
maintaining same power, compared to the simulation results of three models without interim

analysis and longitudinal modeling involvement. For the scenarios of the moderate and
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homogeneous effect and small and homogeneous effect, the hierarchical model still provides an
acceptable power and a decreased sample size, compared to the models with no interim analysis.
Additionally, as the subgroup number expands from four to eight, the improvement of the

hierarchical model is the most among the three models.

We also explored the study designs under the six scenarios for two subgroups. The
performance of each model has a similar trend as that from four or eight subgroups in terms of
subgroup power, overall power, sample size, and study duration. However, the three model
performance differences for two subgroups are not as large as those from four or eight
subgroups. It is mainly because a smaller number of subgroups limits the borrowing property of

the hierarchical model. We consequently did not present them in this paper.

Cluster hierarchical model is a good candidate for hierarchical model backup. Under
some cases of the opposite or one nugget scenarios, cluster hierarchical model even performs
better than a hierarchical one. Generally, clustered hierarchical model considers there are some
“clusters” that exist among the subgroups, and subgroups in the same cluster have considerable
influence on each other than they do on subgroups from other clusters (Facts 2018). DP scale
parameter plays a more critical role in the cluster hierarchical model since as DP scale parameter
goes from zero to infinite, the random distribution drawn from the base distribution behaves
from very discrete to asymptotical to base distribution, i.e., the cluster number correspondingly
changes from one to infinity. Consequently, when the DP scale parameter is set as greater than
zero, cluster hierarchical model dilutes the impact of the hyperpriors, and it makes the cluster
hierarchical model robust to the different value setting for hyperpriors. In our study, we set the

DP scale parameter equal to two since the subgroup number is either four or eight. Thus, cluster
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hierarchical model is a good choice when no substantial evidence exists to indicate the subgroup

treatment difference, but the investigator believes it should exist.

Interim analysis based on ongoing study data provides valuable information for the
researcher to take related actions, such as adjusting the dosage, randomization ratio, sample size,
or even stop the study as either success or futility in case there is strong proof to demonstrate it.
In our DACTPerM, we keep interim analysis as one important input component of the design,
which will decrease the sample size and mean study duration but maintain similar power under
scenarios of moderate and homogeneous effect and spread for hierarchical and cluster
hierarchical model. Type | error needs to be adjusted accordingly for interim and final analysis to
meet the criteria that the overall Type | error rate is 0.05. We spend less than 0.005 proportion of
Type I error for interim analysis and 0.045 to 0.05 for final analysis. Additionally, we define the
early success under the condition that all subgroups meet the related thresholds, and the final
success under the condition that some certain subgroup meet the related threshold. The initial
twisting value (0.9) of the threshold at interim analysis meets our strategy. It is smaller,
compared to those from the final analysis. For the final one, we need to calibrate it to meet the
overall type I error, the sum of the proportions spending on both interim and final analysis, equal
to 0.05. The trade-off between power and expected sample size is made in the scenarios of
opposite and one nugget. The scale of trade-off is adjusted via the early stopping criteria rather
than interim analysis itself. More conservative criteria will result in slight power loss, more

subject enrolled and a longer study.

Longitudinal modeling applied to clinical data is reasonable, and therefore, we applied it
as one design factor to provide more study information and aid in the conclusion of subgroup

treatment effect. ITP and SLR are used for longitudinal data simulation and imputation. There
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are other methods for longitudinal data imputation. For example, a hierarchical model is a
common approach, and its rationale is to generate correlated data within the visit via random
effect. Based on the data from the example study, which implied the medicines work slowly and
stably since earlier visits, longitudinal data simulated via ITP provides a medical process much
closer to the natural process. Specifically, the responses before final visit slowly achieve the final
one and maintain stably with a small variance. There are also other methods to carry out the
longitudinal data imputation, like Last Observation Carried Forward (LOCF), kernel density
model which is a good candidate in a case where no model assumption for the responses between
interim and final ones, and so on. From the example study, the data indicates that SLR fits the
data well, and provides informative priors for imputation. That SLR is straightforward and easy
to understand is also a contribution for choosing it as the final imputation method. We are also

the first to use ITP and SLR for longitudinal data simulation and imputation.

Another important consideration of the longitudinal modeling application is rate of
accrual and dropout (i.e., missing data). Lower accrual rate makes the application difficult to
improve the performance since less data information is available when execution of the interim
analysis. It is also necessary to specify a realistic dropout rate since an appropriate longitudinal
modelling to impute the missing data will improve the design operation characteristics.
Moreover, different imputation approaches will be applied based on the different missing data
mechanism. In our research, we assume the data is missing at random (MAR). Meanwhile, it is a
interesting topic for future research to explore the different imputation methods for other

mechanism, like missing not at random (MNAR).

Generally, when referring Bayesian adaptive clinical design, it usually means the

adjustment of treatment dosage, randomization ratio, sample size, and so on. However, we do not
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apply those in our DACTPerM project since it is based on Bayesian RAR design in which we
adjust the randomization ratio based on interim analysis results. The main objective of
DACTPerM is to identify the appropriate model to analyze the non-consistent treatment effect
among different subgroups. All of the models we proposed are Bayesian related since our
assumption is that there should have been some proof to indicate that the treatment effect is
different among the subgroups before designing related subgroup analysis. The information from
the proof should be served as the priors to facilitate the final findings. In consideration of the
factors above, we propose and finalize our research, although there are many other interesting
topics, even though we narrowed down the subgroup analysis for different treatment within the

Bayesian adaptive design.

The expected sample size and power are determined by simulation in our research.
Specifically, we propose 100 per subgroup, and we tune the criteria of the posterior probability
of treatment difference between two arms under the no effect scenario to achieve Type | error
rate equal to 0.05. It is calculated via the summation of the proportion with simulated studies
identified as successful under no effect scenario. The identical criteria then applied to other
alternative response scenarios under the same study design to have the expected sample size and

power via the simulation.

Lastly, we explored the three models with interim analysis and longitudinal data model in
a case where the endpoint is continuous. However, one can explore and apply the approach to
categorical or time to event data. To sum up, the hierarchical model with interim analysis is a
relatively better approach for different subgroup treatment effect identification, and cluster
hierarchical model with interim analysis is a good backup for hierarchical model in case there is

no sufficient information for hyperpriors.
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Chapter 3: Historical Control Bayesian Designs Incorporating Historical Control
Borrowing in Clinical Trials
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Other Contributors for this Chapter: Zhaowei Hua, Geng Chen, Byron Gajewski

Abstract

Incorporating historical control to concurrent study can increase the power, decrease the
sample size, minimize the patient burden. It is beneficial to patients and investigators. However,
the appropriate borrowing method for the study design should be researched in terms of desired

operating characteristics.

We investigate several Bayesian designs incorporating historical control borrowing:
power prior via overlapping area, commensurate prior, and some other reference methods. The
impact of historical data type and different types of the threshold used in Bayesian decision rule
are also explored. The designs’ performance in terms of power as a function of treatment effect,

sample size, and posterior summary are investigated via simulation.

We found that it is a good consideration to apply the power prior adaptive design with
power parameter determination via overlapping area of posterior distribution under certain
values of true response rates of concurrent control, historical control, and treatment effect. Study
design with commensurate prior is an admissible choice as well, however, appropriate priors

need to be specified.

Key words: historical control borrowing, power prior, overlapping area, commensurate

prior, adaptive design, threshold

49



3.1 Introduction

There are several researches that incorporate external information into the current study.
The external information may come from real world data (RWD, such as medical chart (Clarke
and Loudon 2011, Salman, Beller, et al. 2014), patient registry (Gliklich, Dreyer, et al. 2014,
Richesson 2011), natural history (NH) trial (Groft 2010)) and completed clinical trials (Bhuyan,
Chen, et al. 2015). It is beneficial to patients, especially for those studies aim of rare diseases
treatment or unethical to provide placebo to the patients. The Food and Drug Administration
(FDA) has released guidance to regulate how to design a trial that borrows historical information
(Fda. 2019). It is appealing for pharmaceutical companies since usually there are large amount of
related clinical data available before a new one is conducted, especially for the control arm (Liu

2018). More resources can be used for the treatment arm.

The use of a historical control has some desired properties, such as increase in power,
decrease the in size (Liu 2018), minimize the patient burden (Lim, Walley, et al. 2018), etc. The
important thought of historical control borrowing is how to connect the historical data to
concurrent data. There are several structures of the connection (Spiegelhalter, Abrams, et al.
2004): full equal, discounted equal, biased, similar (i.e., exchangeable), and functional

dependent. Then the related methods were derived and applied accordingly.

The test-then-pool is a straightforward and frequentist method to borrow the historical
control (Ghadessi, Tang, et al. 2020, Viele, Berry, et al. 2014). The idea of this method is to
combine the historical control with concurrent control if the null hypothesis of equality is not
rejected at significance level. In such case, the historical control is treated identically as the

concurrent ones. Otherwise, historical control data will be totally ignored.
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HO: HhC = HCC VS. H1 H HhC * HCC

It is the basic form of dynamic borrowing method. The important consideration to apply
this approach is how to define the significance level of the equality hypothesis, and to measure

the similarity of historical control and concurrent control accurately.

The propensity score is a method that can remove the effects of confounder to borrow the
external historical control. It is essentially a conditional probability of each patient being
assigned to the treatment arm based on the covariates (Austin 2011, Rosenbaum and Rubin
1984). There are generally four different propensity score methods - propensity score matching,
stratification (or subclassification) on the propensity score, inverse probability of treatment
weighting (IPTW) using the propensity score, and covariate adjustment using the propensity
score (Austin 2011). In practice, an open-label and single arm study used the propensity score to
evaluate the efficacy and safety of blinatumomab (i.e., Blincyto) in patients of minimal residual
disease positive (MRD+) B-cell precursor acute lymphoblastic leukemia (ALL). It was approved
by FDA (Ghadessi, Tang, et al. 2020). However, FDA commented that propensity score method
can yield biased estimates due to the ignorance of important unmeasured or unknown covariates.
Moreover, the comparability between groups after propensity score weighted analyses is not
clear because of the small sample size. Consequently, it is necessary to have sufficient data when

applying propensity score.

The hierarchical model is explored and researched in historical control borrowing
(Spiegelhalter, Abrams, et al. 2004, Viele, Berry, et al. 2014). The general idea is that the
parameters of control data from different studies follow a prior distribution. The borrowing and
shrinkage properties of hierarchical model are used to estimate the parameter of concurrent data.
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Attention should be placed to the prior variance specification. The prior variance represents the
degree of heterogeneity of the control parameters among the studies. The different type of priors
(e.g., informative prior (Gelman 2006) or non-informative prior (Lambert, Sutton, et al. 2005))
reflects the similarity among the historical controls and concurrent control, and it will impact the

concurrent parameter estimation.

Some studies researched the meta analytic predictive (MAP) prior to borrow the
historical control (Gsteiger, Neuenschwander, et al. 2013, Neuenschwander, Capkun-Niggli, et
al. 2010). The MAP is essentially a hierarchical model. Generally, there are two steps in MAP
prior methods (Neuenschwander, Capkun-Niggli, et al. 2010). The first one is to derive the
predictive distribution of control based on the posterior distribution obtained from the multiple
observed historical studies. Then the predictive distribution will be served as the prior and
incorporated with current study to have the posterior of concurrent control. Thus, the application
assumption of hierarchical model (i.e. the exchangeability of the study parameters or priors)
should also be considered for MAP. Schmidli et al. (Schmidli, Gsteiger, et al. 2014) proposed the
robust MAP prior to adjust the violation of MAP assumption. Specifically, the robust MAP prior
is a mixture of a MAP prior and a comparatively vague prior. The weight of MAP prior depends
on the similarity of historical control and concurrent control, which will affect differently on the

final posterior estimation of concurrent control.

Commensurate prior can be used to borrow historical control (Hobbs, Carlin, et al. 2011,
Papageorgiou, Koretsi, et al. 2017). The connection between the historical and concurrent control
is the conditional distribution of parameter of concurrent data given the historical data (Gamalo-
Siebers, Savic, et al. 2017). The conditional distribution is served as the prior and incorporated

with the concurrent data to have the posterior estimation of control parameter. Commensurate
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prior is essentially a hierarchical model as well. However, it assumes that the historical response

rate is non-systematically biased from the current response rate (Lim, Walley, et al. 2018).

There are some explorations of power prior borrowing the historical data (Gravestock and
Held 2018, Hobbs, Carlin, et al. 2011, Liu 2018). The degree of power prior borrowing is
controlled by the power parameter of power prior. The borrowing changes from “full borrowing”
to “no borrowing” as the power parameter goes from 1 to 0. The limitation of power prior is to
specify an appropriate power parameter. Some researchers proposed an estimated power
parameter to adjust the limitation. Specifically, the power parameter follows a distribution rather
than fixed (Neelon and O' Malley 2010). However, this adjustment tends to heavily discount
historical data and does not efficiently borrow the historical data unless a very informative prior

used for the power parameter (Lim, Walley, et al. 2018).

This study is to research the performance of several study designs incorporating historical
control via different Bayesian borrowing methods — power prior, commensurate prior and some
reference borrowing method. The performance is compared by the simulating trials. In Section
3.2, we introduce the motivating pilot study, effect of bazedoxifene and conjugated estrogen
(duavee®) on breast cancer risk biomarkers in high risk women (Fabian, Nye, et al. 2019), and
several Bayesian borrowing methods that a study design can incorporate. In Section 3.3, the
parameters for simulations and related outputs (i.e., operating characteristics) for the different
possible designs are presented and compared. We demonstrate the models’ simulation-based

performance. Discussion and conclusion are presented in Section 3.4,
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3.2 Method
3.2.1 Motivating Study

The objective of this research is to identify the most effective Phase Il study design to
borrow the historical control data from a pilot study (i.e. the motivating study) conducted in high
risk women with breast cancer (Fabian, Nye, et al. 2019). The motivating study investigated the
effect of treatment (bazedoxifene and conjugated estrogen, i.e., duavee®) via change from
baseline in mammaographic total fibroglandular volume at 6 months. Specifically, it is equal to
S¢ — Sy, Where S and S, are the fibroglandular volume at month 6 and baseline. It was observed
that the proportion of the subjects with a non-increase volume at month 6 from treatment group
was larger than that from the non-randomized control group. Moreover, the researchers do not
want to waste the data that have already collected in the pilot study when conducting a lager
phase Il study. We wish to design a future prospective trial that can borrow the historical control

via Bayesian method.

3.2.2 Power Prior

Power prior is a method that has been existing for a long time. In our research, the data
from simulation and application studies is binary. 6., and 6y, represent the response rate for the
concurrent and historical control. D and D denote the concurrent and historical control data. We

specify the Jeffrey prior for the historical data. « is the power parameter.

Prior: my(0.) = Beta (0.5,0.5)
Posterior: w(0.|Dg) < L(01,:|Dg)mo(Oc)
Prior: L(0yc|Dg) %o (Onc) 3.1)
Concurrent Control{ Posterior: m(8..|D, Dy, a) « L(0..|D)L(0y.|Dy)*1y(61.) ,=
O..~Beta(Y,, + a¥y. + 0.5, (n.. — Yoo) + a(nye — Vo) + 0.5)

Historical control {

Power prior
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where n.. and n;. represent the sample size of concurrent and historical control; Y, and

Y, represent the responder of concurrent and historical control.

Conventionally, the power parameter («) is specified before the new clinical trial is
conducted. It ranges from zero to one, which indicates the imparity to identity of historical and
concurrent control. In our research, we let the data determine the power parameter using a
heuristic algorithm, which is advantageous because of its ease in interpretation. As the adaptive
design graph (Figure 3-1) indicates, the study temporally stops at interim analysis (1A) to
compare the similarity of the historical and concurrent control data when half of the pre-specified
same size are enrolled. The similarity is measured via the overlapping area of the posterior
probability distributions of the historical and concurrent control response rate. The overlapping
area (OA) is calculated via formula (3.2) denoted below:

A min(P(HHC > 0cc), P(Oyc < 6’cc))
- 0.5

,0< 0A<1(3.2)

It is equal to the multiplication of two and minimal value of posteriors of the historical
control response rate (6;,.) greater than or equal to the concurrent control response rate (6,..), and
the historical control response rate (6;,.) less than the concurrent control response rate (6..). We
specify that the power parameter is equal to the overlapping area because they both naturally
range between zero and one. Moreover, as the value changes from zero to one, they both indicate
the imparity and identity of historical and concurrent control. After the interim analysis, the
concurrent control enrollment will decrease accordingly based on the similarity compared to
historical control. As the Figure 3-1 indicates, the actual concurrent control enrolled after the

comparison is equal to the half of the proposed concurrent control sample size minus the
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multiplication of the overlapping area and historical control. If the calculated patients after the
interim analysis is decimal, then we will have smallest integer that is greater than decimal. We
assume the historical control sample size is no more than that from proposed concurrent control.
We will not enroll the concurrent control patients if half of the proposed concurrent control is
less than the multiplication of the overlapping area and historical control. There is no stopping
rule applied at interim analysis since the treatment arm is always needed to be enrolled after
interim analysis. The posterior probability of the control response rate via the power prior
borrowing method follows a Beta (Y. + aY}. + 0.5, (n.. — Y:.) + a(np. — Yy) + 0.5), and we
provide the related derivation in Appendix 3.1. It should be noted that power prior with interim
analysis is the only one incorporated into the adaptive design, all other methods introduced in the

following sections are under fixed design. Moreover, the treatment arm is not involved in interim

analysis.
* Treatment: % Pts Compare the similarity of * Treatment: 2 Pts
» Concurrent Control: ¥ Pts historical & concurrent control * Concurrent Control: ¥ Pts — OA*historical control

Stage 1 (50% enrollment) Stage 2 (Final Analysis)

Figure 3-1 adaptive design based on power prior borrowing. Pts stands for “patients” and
OA stands for “overlapping area.”

3.2.3 Commensurate Prior

Commensurate prior is essentially a hierarchical model, and we adopt the framework
from Gamalo-Siebers’ research (Gamalo-Siebers, Savic, et al. 2017). The conditional distribution
of 8., given 6, follows a Beta distribution with parameters k6y,., and k(1 — 6y,). k follows a
Gamma distribution with the location parameter equal to K and scale parameter equal to 1. In
this notation, both mean and variance are equal to K, which is convenient to specify the different
types of priors. In our research, we specify K = 1, 50 and 100 to see the difference performances

of the commensurate prior. The initial prior of 8y, follows a non-informative Jeffrey prior. The

56



commensurate prior is applied under the fixed study design, which is different from the power
prior applied under the adaptive circumstance. Since the posterior probability of control response
rate via the commensurate prior borrowing method does not have a close form, and we provide

the related Stan code in the Appendix 3.2.

Initial Prior for historical data (6;,.) = Beta (0.5,0.5)
T(0cc|Onc) = Beta (kOpe, k(1 — Opc))
Commensurate prior Prior Kk ~ Gamma (K, 1) 3.3)
K =1,50,100
Posterior: T(8cc|D, Do, Opc) < L(Occ|DIL(Opc| Do) (Occ|Onc) (1) (Onc)

3.2.4 Other borrowing methods

Full borrowing. It means that the control posterior is obtained under the combination of
the historical and concurrent control. Jeffrey prior is specified for both historical and concurrent
data. The posterior of the response rate follows a Beta distribution based on the conjugate
property of Beta-Binomial distribution. The two parameters of Beta distribution are
(Yoo + Yie + 0.5) and ((nee — Yee) + (mpe — Yie) + 0.5). Attention should be placed if it is
applied in a real study since the combination without differentiation may cause the incorrect

posterior estimation. It is served as the reference in our research.

Prior: 7y (6y.) = Beta (0.5,0.5)
T(Occ|D, Do, Opc) X L(8cc|D)L(Opc| D)o (Opc) (3.4)

Full borrowing framework {Posterior' {
"(O,c~Beta(Y,, + Yy + 0.5 (n., — Yoo) + (npe — Vo) +0.5)

No Borrowing. It is supposed that no historical data is involved in the posterior
estimation. Still, Jeffrey prior is specified for the data. The posterior of the response rate also
follows a Beta distribution with the parameters of (Y., + 0.5) and ((ncc —-Y.)+ 0.5).

Similarly, it is served as the reference to be compared with the power prior and commensurate

prior.
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Prior: my(6,.) = Beta (0.5,0.5)
T(8cc|D) ¢ L(Occ|D)1o(Occ) (3.5)
0.c ~Beta(Yy. + 0.5, (ny — Y,) +0.5)

No borrowing framework :
Posterior:

Frequentist method. The frequentist estimation should be quite similar with the ones from
Bayesian estimation under the no borrowing framework. The specific method applied is Chi-
square test. We adopt the frequentist estimation in terms of point estimation, bias and MSE to
validate this assumption. It should be noted that it means Chi-square test when referring the
Frequentist method in this paper. All other methods, including full borrowing, no borrowing and

Frequentist, are under fixed designs.

3.3 Simulation
3.3.1 Simulation Input

Control data. As specified in the method part, the data in our research is binary. The
historical (8,.) and concurrent control response rates (6..) range from 0.1 to 0.5 by 0.1. Table 3
- 1 summarizes the parameter value for simulation. The concurrent control data is obtained via
simulation. The historical control data is generated via simulation and “observation” which
means the responder is calculated via the multiplication of response rate and the historical

control sample size, supposing the historical data is observed.

Effect size & treatment. In our research, we use the difference of response rate from the
treatment and concurrent control arms as the effect size (denoted as 8, — 6..). The proposed
effect sizes range from 0.1 to 0.4 by 0.1. Together with the span of control data, they will
evaluate the different Bayesian methods thoroughly and comprehensively. The treatment

response rate is equal to the summation of concurrent response rate and effect size.
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Table 3-1 Summary of the parameter values for simulation

Parameter Value

0, 0.1,0.2,0.3,0.4,0.5
0. 0.1,0.2,0.3,0.4,05
0,—6,. 0,0.1,0.2,0.3, 0.4

Proposed Sample size. From practical perspective, it is seldom that pivotal studies from
routine disease area (e.g., hypertension, diabetes, oncology, etc.) incorporate historical control
and get approved by FDA. Most of the pivotal studies that incorporated historical control are
from rare disease (Ghadessi, Tang, et al. 2020). For our research, the proposed sample size
cannot be large. The proposed historical control, concurrent control and treatment sample sizes
in our research are 20, 20 and 40, respectively. The sample sizes of historical control and
treatment are fixed. The expected sample size of concurrent control may be not identical to the

proposed one depending on the similarity of historical and concurrent control.

Threshold. We propose three types of the threshold — global, local and regional- for
Bayesian decision rule. For the global threshold, it means that it controls type I error less than or
equal to 0.025 for the study designs under all concurrent control response rates (i.e., 0.1 to 0.5 by
0.1) given a specific response rate of historical control under the null hypothesis (i.e., effect size
is equal to zero). For the local threshold, it means it controls type I error equal to 0.025 for the
study design under the concurrent control response rate equal to the specific historical control
response rate under the null hypothesis. For the regional threshold is chosen to partially
guarantee that the type | error less than or equal to 0.025 for the study designs borrowing the
historical control with a specific response rate and with a limited and related concurrent control
response rates, i.e., O.. € [0 — s. €., O, + s.e.]. The different threshold types reflect

researchers’ belief of the similarity of concurrent and historical control. The number of simulated
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studies for each method is 20,000, and the iteration number is 40,000 times for those designs

with Bayesian borrowing.

3.3.2 Simulation Output

Type | error. Our research hypothesis is one-sided. Specifically, the null hypothesis is
that the response rates from both arms are equal. The alternative hypothesis is that the treatment
response rate is greater than the concurrent control response rate (expression (3.6) below). Type |
error is controlled to 0.025. Given a specific study design, the threshold is twisted and

determined to make the proportion of the simulated studies with the quantity of interest

(i.e.,P(8; > 6..|Data)) greater than the threshold under the null hypothesis is equal to 0.025.
Hy: 0, = 0., vs. H; : 6, > 0.., where 6, denotes the treatment response rate. (3.6)

The thresholds of different type are determined by the definition accordingly. The
Bayesian decision rule is that under the null hypothesis, the proportion of simulated studies with
the posterior probability of quantity of interest great than threshold is less than or equal to 0.025
(expression (3.7) below). The posterior of concurrent control has already incorporated historical
control based on the specific borrowing method. The global threshold is chosen to guarantee that
the type | error less than or equal to 0.025 for the study designs under all possible concurrent

control response rates and borrowing the historical control with a specific response rate.
[Pr[P(68; > O..|Data) > threshold, where 6,.. € [0.1 to 0.5 by 0.1] |H,] < 0.025 (3.7)

As the expression (3.8) below involved in the local threshold, the Bayesian decision rule
is that under the null hypothesis, the proportion of simulated studies with the posterior

probability of quantity of interest (i.e., 8; > 6..) great than threshold is equal to 0.025. Still, the
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posterior of concurrent control has already incorporated historical control based on the specific
borrowing method. The local threshold is determined to only guarantee that the type I error is
equal to 0.025 under the condition of the concurrent control response rate equal to the historical

control for borrowing.

Pr[P(6; > 6..|Data) > threshold, where 6., = 68, |H,] = 0.025 (3.8)

The definition of the regional threshold has the identical rationale as that from the global
threshold. It is defined to guarantee that the type I error is less than or equal to 0.025 for the
study designs borrowing the historical control with a specific response rate and with a limited
range of and related concurrent control response rates that related to historical control response
rate (expression (3.9) below). The different threshold types are only applicable for the methods
that historical control is borrowed (i.e., power prior, commensurate prior and full borrowing),
otherwise, threshold is only identified via the current study simulated data. The specific

thresholds are provided in Appendix 3.3.

Pr[P(6; > 6..|Data) > threshold, where 8. € [0}, — s.e., 0. +s.e.] |Hy] < 0.025 (3.9)

Power (Study success). Simulations track the proportion of studies that show success
based on the evaluation criterion (i.e., threshold) identified under the hypothesis. Based on the
Bayesian decision rule, the power is generally defined as the proportion of the simulated studies
that meet the evaluation criteria under the alternative hypothesis (i.e., 8; > 6..). The evaluation
criterion is the quantity of interest satisfying the related threshold. The specific powers of study
design with the historical borrowing based on different threshold types are then calculated based

on each threshold value. (expression (3.10), (3.11) and (3.12) below).
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Pr[P(6; > 6..|Data) > threshold, where 6., € [0.1to 0.5 by 0.1] |H,] (3.10)

Pr[P(6; > 6..|Data) > threshold, where 6., = 0, |H,] (3.11)

Pr[P(6; > 6..|Data) > threshold, where 6., € [6}. — s.e., Oy + s.e.] |H;] (3.12)

Expected sample size. Sample size is important operation characteristic since it directly
relates to the difficulty and cost of running a trial, especially for the trials with a low accrual rate.
A study design with a lower sample size but similar power to a competing design is desirable. In
our research, only the design with power prior may have different expected sample size. All

other designs are fixed, and the expected sample size is equal to the proposed sample size.

Posterior summary. The posterior summary in terms of point estimation, credible
interval, bias and mean square error (MSE) are presented to compare the performance of

different study designs.

3.3.3 Simulation Result

Figure 3-2 presents the power of different study designs under different observed
historical control rate and effect sizes via global thresholds. When historical control response rate
(0xc) and effect size (6; — 6..) are both equal to 0.1, the powers of all the study designs with
different borrowing methods are generally below 0.2 for all values of concurrent control
response rate (6,..'s). When (8, — 6,..) becomes 0.2 and 6,,. is still equal to 0.1, the powers of
study designs with no borrowing and frequentist are generally between 0.3 and 0.4. They are
higher than those of the study designs with other borrowing methods when 6, is equal to 0.1,
0.2 and 0.3. The powers of the study designs with commensurate priors (K = 50,100) and full

borrowing are quite similar (around 0.35) with that from the study design with no borrowing or
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frequentist when 6, is equal to 0.4, and they are higher (around 0.5) when 6, is equal to 0.5.
The powers of study design with power prior borrowing and commensurate priors (K = 1) are
generally lower than those from the study design with other borrowing methods when 6, is
equal to 0.4 or 0.5, but higher than those from the study design with commensurate priors (K =
50, 100) and full borrowing when 6., is equal to 0.1. Similar findings are identified for the
figure panel where 6,,. is equal to 0.1 and (8; — 6..) is equal to 0.3 and 0.4. The main difference
is that when 6, are close to 0.3 or equal to 0.3, the powers of the designs with no borrowing or
frequentist are similar with those from the study designs with commensurate priors (K =

50, 100) and full borrowing.

When 6,,. increases to 0.2, (6; — 6..) ranges from 0.1 to 0.4 and, 6. ranges from 0.1 to
0.5, the power profiles are quite similar with those 6,,. equal to 0.1. All study designs are with a
general higher power. When 6,,. increases to 0.3, the major change is from the power profiles
where study designs with power prior. There is a clear trend that the power increases as 6.,
ranges from 0.1 to 0.5. When 6, increases to 0.4 and 0.5, the overall power profiles are still
similar compared to them where 6,,. is equal to 0.2. Moreover, when 8, is equal to 0.4, the
power of the study design with power prior is almost close to the highest ones where 6, is equal
to 0.5 and (6; — 6..) is equal to 0.2 or 0.3. When 6, is equal to 0.5, the power profile of the
study design with power prior is quite like a “bowl” where 8., ranges from 0.1 to 0.5 and (6, —
0..) is equal to 0.3. The power profiles of different study designs under different simulated
historical control rate and effect sizes via global thresholds are generally similar with the related
ones from Figure 3-2. The main distinction is that the power differences among the study designs

are not so large as those from Figure 3-2.
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Figure 3-4 & 3-5 present the power of different study designs under different observed
and simulated historical control rate and effect sizes via local thresholds. It only presents the
power profiles where 6,. = 6., because it is more important to observe the power points in the
graphs where 6,,.'s are equal to 8,..'s since the thresholds are locally controlled type I error equal
t0 0.025 at ;. = 6. Itis clearly observed that the powers of the study designs with different
methods are quite similar with each other when (6, — 6,..) are equal to 0.1 and 8,,. ranges from
0.1to 0.5. Generally, all the powers increase accordingly when (8, — 6,..) increases to 0.4. The
powers of study designs with commensurate priors (K = 50,100) and full borrowing are quite
similar and higher than those from other study designs when (8, — 6..) is larger than 0.1 and 6,
is greater than 0.1 as well. The powers of study designs with commensurate priors (K = 1), full
borrowing and no borrowing are quite similar and lower than those from other study designs,
except for the scenarios where (6, — 6,.) is larger than 0.1 and 6, is equal to 0.1. In some
scenarios, the powers of the study designs with commensurate priors (K = 1) are the lowest one.
The powers of the study designs with power priors are generally between these two “clusters”.
Moreover, under related observed historical control rate scenarios, the power from the power
prior borrowing method is quite close to the higher ones in the scenarios where 6. and (8, —

6..) are both equal to 0.3 and 0.4, and 6,,.. is equal to 0.5 and (6, — 6,..) are equal to 0.3.
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Figure 3-2 Power of different study designs with different borrowing method under different observed historical
control rate (HC Rate) (65, € [0.1 to 0.5 by 0.1]) and effect sizes (ES) (6, — 6..€[0.1 to 0.4 by 0.1]) via global
thresholds. Concurrent Control Response Rate (6. € [0.1 to 0.5 by 0.1]). “Fixed” and “Adaptive” in the parenthesis
of legend mean the related methods incorporated in the fixed or adaptive design.
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Figure 3-3 Power of different study designs with different borrowing method under different observed historical
control rate (HC Rate) (65, € [0.1 to 0.5 by 0.1]) and effect sizes (ES) (6, — 6..€[0.1 to 0.4 by 0.1]) via global

thresholds. Concurrent Control Response Rate (6, € [0.1 to 0.5 by 0.1]). “Fixed” and “Adaptive” in the parenthesis
of legend mean the related methods incorporated in the fixed or adaptive design.
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Figure 3-4 Power of different study designs with different borrowing method under different observed historical
control rate (6, = 6..) and effect sizes (0.1 to 0.4 by 0.1) via local thresholds. “Fixed” and “Adaptive” in the
parenthesis of legend mean the related methods incorporated in the fixed or adaptive design.
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Figure 3-5 Power of different study designs with different borrowing method under different simulated historical
control rate (6, = 6..) and effect sizes (0.1 to 0.4 by 0.1) via local thresholds. “Fixed” and “Adaptive” in the
parenthesis of legend mean the related methods incorporated in the fixed or adaptive design.

Figure 3-6 & 3-7 present the power of different study designs under different observed
and simulated historical control rate and effect sizes via regional thresholds. We mainly focus on
the response rate between 0.1 and 0.5. Thus, when 6,,. is equal to 0.1, the stick values of 6., on
X-axis represent 0.1, 0.1 + 0.25se, 0.1 + 0.5se, 0.1 + 0.75se and 0.1 + se. When 6,,. is equal to

0.5, the stick values of 8., on X-axis represent 0.5 —se, 0.5 - 0.75se, 0.5 - 0.5se, 0.5 - 0.25se, and
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0.5. When 6,,. is equal to 0.2, 0.3 or 0.4, the stick values of 8., on X-axis represent 8;,. * se, 0,
+ 0.5se, and 6,,.. When 6,,. is equal to 0.2, 0.3 or 0.4, the power profiles are generally similar
with the pattern from the related study designs with global thresholds. The powers of the study
designs with different methods are quite similar with each other when 6, — 6,..is equal to 0.1 and
0 ranges from 0.1 to 0.5. The powers of the study designs with commensurate priors (K =

50, 100) and full borrowing are quite similar and higher than those from other study designs
when 6, — 6., is greater than 0.1, 6,,. is greater than 0.2, and 6, is equal to 6;. + 0.75se or 6;,,
+ se. Correspondingly, the powers of study designs with commensurate priors (K = 1), full
borrowing and no borrowing are quite similar and lower than those from other study designs,
except for the scenarios where 6, is equal to 0.1 or 0.2. However, when 6, is equal to 6, -
0.75se or ;. - se, the powers of study designs with commensurate priors (K = 1), full
borrowing and no borrowing are quite similar and higher than those from other study designs,
except for the scenarios where 6, is equal to 0.1 or 0.2. The powers of the study designs with

power priors are generally between these two “clusters”.

Table 3 - 2 below presents overlapping area (OA) and related concurrent control
enrollment after interim analysis of the study designs with power prior borrowing under the
global threshold. It is clearly observed that the OA is generally the largest and the concurrent
control enrollment after the interim analysis is correspondingly the least when 6, is equal to 6,..
The OA generally decreases and the concurrent control enrollment after the interim analysis is
correspondingly increase as the differences between 6,,. and 8., increase. The OA for simulated
historical control is generally smaller and the concurrent control enrollment after the interim
analysis is correspondingly larger, comparing related OA and enrollment from those designs

with observed historical control.
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Figure3-6 Power of different study designs with different borrowing method under different observed historical
control rate (HC Rate) (6, € [0.1 to 0.5 by 0.1]) and effect sizes (0.1 to 0.4 by 0.1) via regional thresholds.

*: For 8. = 0.1, the 6., value on X-axis: 1= 6, 2= ).+ 0.25se, 3= 0,,.+ 0.5s¢, 4= 6, .+ 0.75s¢, 5=0,,.+ se.

For 6, = 0.2,0.3 and 0.4, the X-axis stick represents 0,.: 1= 0,,.- se, 2= 6},.- 0.5se, 3= 6., 4= 6.+ 0.5se, 5=6,, .+ se.
For 6,. = 0.5, the .. value on X-axis: 1= 8;,.- se, 2= 0;,.- 0.75se, 3= 0;.- 0.5se, 4= ,,.- 0.25se, 5=0,,,..

In each panel, “HC rate” means historical response rate, and ES means effect size. The “HC(0.1) & ES(0.1)” means
historical response rate equal to 0.1 and effect size equal to 0.1. Same rationale for all other panels.

“Fixed” and “Adaptive” in the parenthesis of legend mean the related methods incorporated in the fixed or adaptive
design.
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Figure 3-7 Power of different study designs with different borrowing method under different simulated historical

control rate (6, € [0.1 to 0.5 by 0.1]) and effect sizes (0.1 to 0.4 by 0.1) via regional thresholds.
*: For 8. = 0.1, the 6., value on X-axis: 1= 6., 2= 6,.+ 0.25se, 3= 6,,.+ 0.5se, 4= 6, .+ 0.75se, 5=0,,.+ se.

For 6, = 0.2,0.3 and 0.4, the X-axis stick represents 0,.: 1= 0,,.- se, 2= 6},.- 0.5se, 3= 6., 4= 6.+ 0.5se, 5=6,, .+ se.

For 6. = 0.5, the 6, value on X-axis: 1= 0;,.- se, 2= 0;,.- 0.75se, 3= 0,.- 0.5se, 4= 6,,.- 0.25s¢, 5=6,,,..

In each panel, “HC rate” means historical response rate, and ES means effect size. The “HC(0.1) & ES(0.1)” means

historical response rate equal to 0.1 and effect size equal to 0.1. Same rationale for all other panels.

“Fixed” and “Adaptive” in the parenthesis of legend mean the related methods incorporated in the fixed or adaptive

design.
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Table 3 - 3 below presents overlapping area (OA) and related concurrent control enrollment after
interim analysis (IA) of the study designs with power prior borrowing under the local threshold.
It is observed that only about half of the patients need to be enrolled after the interim analysis.

The enrollment from the related simulated historical data needs slightly more patients enrolled.

Table 3 - 4 below presents overlapping area (OA) and related concurrent control
enrollment after interim analysis (1A) of the study designs with power prior borrowing under the
regional threshold. Generally, it is clearly observed that only about half of the patients need to be
enrolled after the interim analysis. the OA is generally the largest and the concurrent control
enrollment after the interim analysis is correspondingly the least when 6,,. is equal to 6,... The

enrollment from the related simulated historical data needs slightly more patients enrolled.

It may cover multiple pages to present the estimations, related bias and mean square error
(MSE) for different study designs under different historical data type, threshold type and effect
size. Table 3 - 5 presents the estimations, bias and MSE of different study designs with different
borrowing methods under all the related parameters 6,,., 8., and 8, — 6., equal to 0.3. It clearly
shows that all the borrowing methods are with quite close estimations to the parameter values for
different historical data type and threshold type.

Table 3-5 Estimation summary of different methods at 8. = 0.3, 8., = 0.3 and effect size = 0.3

Scenario method# Trt.(95% CI)* Cctrl.(95% CI)* Eff.(95% CI)* MSE Bias
Full Borrowing 0.598(0.451, 0.744)  0.305(0.207, 0.403) 0.293(0.121, 0.464) 0.008  -0.007
Power Prior 0.599(0.451, 0.744)  0.307(0.162, 0.458)  0.292(0.077,0.496) 0.011  -0.008
Under Frequentist 0.600(0.450, 0.750)  0.301(0.100, 0.500)  0.300(0.050, 0.550) ~ 0.016  0.000
ﬁ,ﬁfg{,ﬁ? No Borrowing 0.598(0.451, 0.744)  0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010  0.016
dg}g;‘;d C%r;‘ig‘r‘z’l‘(s:{?te 0.508(0.451, 0.744)  0.300(0.113, 0.488) 0.298(0.058, 0.533) -0.002  0.015
threshold CS:POT(E’QS;%‘E 0.596(0.451,0.744)  0.303(0.187,0.420) 0.294(0.105,0.472) -0.006  0.009
Commensurate

Prior(K=100) 0.596(0.451, 0.744)  0.303(0.196, 0.412)  0.293(0.113,0.466) -0.007  0.009
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Under
Simulated
historical
data and

global
threshold

Full Borrowing
Power Prior
Frequentist

No Borrowing

Commensurate
Prior(K=1)
Commensurate
Prior(K=50)
Commensurate
Prior(K=100)

0.597(0.451, 0.744)
0.598(0.451, 0.744)
0.600(0.450, 0.750)
0.598(0.451, 0.744)

0.599(0.451, 0.744)
0.598(0.451, 0.744)

0.599(0.451, 0.744)

0.306(0.182, 0.451)
0.308(0.135, 0.491)
0.301(0.100, 0.500)
0.309(0.119, 0.500)

0.302(0.115, 0.491)
0.302(0.166, 0.443)

0.303(0.175, 0.452)

0.292(0.074, 0.488)
0.290(0.059, 0.513)
0.300(0.050, 0.550)
0.290(0.047, 0.528)

0.298(0.057, 0.537)
0.296(0.094, 0.493)

0.296(0.095, 0.499)

0.011
0.014
0.016
-0.010

-0.002

-0.004

-0.004

-0.008
-0.010
0.000
0.016

0.015

0.011

0.011

Under
Observed
historical

data and
local
threshold

Full Borrowing
Power Prior
Frequentist

No Borrowing
Commensurate
Prior(K=1)
Commensurate
Prior(K=50)
Commensurate
Prior(K=100)

0.598(0.451, 0.744)
0.599(0.451, 0.744)
0.600(0.450, 0.750)
0.598(0.451, 0.744)

0.598(0.451, 0.744)
0.596(0.451, 0.744)

0.597(0.451, 0.744)

0.305(0.207, 0.403)
0.307(0.162, 0.458)
0.301(0.100, 0.500)
0.309(0.119, 0.500)

0.300(0.113, 0.488)
0.304(0.187, 0.42)

0.304(0.196, 0.412)

0.293(0.121, 0.464)
0.292(0.077, 0.496)
0.300(0.050, 0.550)
0.290(0.047, 0.528)

0.298(0.058, 0.533)
0.292(0.105, 0.477)

0.294(0.115, 0.468)

0.008
0.011
0.016
-0.010

-0.002

-0.008

-0.006

-0.007
-0.008
0.000
0.016

0.015

0.009

0.009

Under
Simulated
historical
data and

local
threshold

Full Borrowing
Power Prior
Frequentist

No Borrowing

Commensurate
Prior(K=1)
Commensurate
Prior(K=50)
Commensurate
Prior(K=100)

0.597(0.451, 0.744)
0.598(0.451, 0.744)
0.600(0.450, 0.750)
0.598(0.451, 0.744)

0.594(0.451, 0.744)
0.597(0.451, 0.744)

0.599(0.451, 0.744)

0.306(0.182, 0.451)
0.308(0.135, 0.491)
0.301(0.100, 0.500)
0.309(0.119, 0.500)

0.299(0.113, 0.491)
0.302(0.166, 0.451)

0.303(0.175, 0.452)

0.292(0.074, 0.488)
0.290(0.059, 0.513)
0.300(0.050, 0.550)
0.290(0.047, 0.528)

0.295(0.059, 0.537)
0.295(0.077, 0.489)

0.296(0.095, 0.499)

0.011
0.014
0.016
-0.010

-0.005

-0.005

-0.004

-0.008
-0.010
0.000
0.016

0.015

0.011

0.011

Under
Observed
historical

data and
regional
threshold

Full Borrowing
Power Prior
Frequentist

No Borrowing

Commensurate
Prior(K=1)
Commensurate
Prior(K=50)
Commensurate
Prior(K=100)

0.597(0.451, 0.744)
0.598(0.451, 0.744)
0.600(0.450, 0.750)
0.598(0.451, 0.744)

0.597(0.451, 0.744)
0.598(0.451, 0.744)

0.598(0.451, 0.744)

0.305(0.207, 0.403)
0.307(0.162, 0.458)
0.301(0.100, 0.500)
0.309(0.119, 0.500)

0.302(0.113, 0.488)
0.304(0.187, 0.42)

0.303(0.196, 0.412)

0.292(0.121, 0.464)
0.29(0.072, 0.498)
0.300(0.050, 0.550)
0.290(0.047, 0.528)

0.294(0.056, 0.515)
0.295(0.104, 0.477)

0.295(0.116, 0.472)

-0.008
-0.010
0.016
-0.010

-0.006

-0.005

-0.005

0.008
0.011
0.000
0.016

0.014

0.009

0.009

Under
Simulated
historical
data and
regional
threshold

Full Borrowing
Power Prior
Frequentist

No Borrowing

Commensurate
Prior(K=1)
Commensurate
Prior(K=50)
Commensurate
Prior(K=100)

0.597(0.451, 0.744)
0.598(0.451, 0.744)
0.600(0.450, 0.750)
0.598(0.451, 0.744)

0.594(0.451, 0.744)
0.597(0.451, 0.744)

0.597(0.451, 0.744)

0.306(0.182, 0.451)
0.308(0.135, 0.490)
0.301(0.100, 0.500)
0.309(0.119, 0.500)

0.299(0.113, 0.491)
0.302(0.166, 0.451)

0.302(0.163, 0.452)

0.291(0.097, 0.488)
0.290(0.060, 0.514)
0.300(0.050, 0.550)
0.290(0.047, 0.528)

0.295(0.059, 0.537)
0.295(0.077, 0.489)

0.295(0.087, 0.491)

-0.009
-0.010
0.016
-0.010

-0.005

-0.005

-0.005

0.011
0.013
0.000
0.016

0.015

0.011

0.011
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#: Methods of No borrowing and Frequentist are not involved in historical data. Thus, the related estimations, bias
and MSE are identical for each scenarios.

* “Trt.”, “Cctrl.”, and “Eff.” represent the “treatment”, “Concurrent Control” and “Effect Size”. “CI” means
credible interval obtained based on 2.5% and 97.5% quantile of the posterior distribution for Bayesian method, and
confidence interval for Frequentist (Chi-square test) methods.

4. Discussion & Conclusion

In our research, we explored several different methods of incorporating historical control
to concurrent control via Bayesian design. Power prior with interim analysis has been proposed
and researched for a long time (Chen, Ibrahim, et al. 2000, Ibrahim and Chen 2000). Usually, the
power parameter is fixed before the study based on the related expertise and knowledge. We
propose that the data itself determines the power prior parameter at interim analysis via the OA
of the posterior distributions of historical and concurrent control. It has the flexibility to adjust
the power parameter between zero and one, which is correspondent to the methods of no and full
borrowing. The proposed calculation method is straightforward. It is easy to interpret the
adaptive design with power prior and the OA calculation to the study team. Moreover, there is no
concerns of the bias of the posterior estimation due to the flexibility of adjustment. Under some
scenarios (e.g., 8. and 6. are equal to 0.4, and (6; — 6..) is close to 0.3), the power of the
study designs with power prior is quite similar with those from commensurate prior or full
borrowing, and it has fewer expected sample size. They are the desired properties that power
maintains high and sample size is smaller. The response rates [(6.. = 0.44, 6,= 0.72, and 0;_..=
0.28] from the motivating study are just located in the “sweet spot”, and we recommend the

adaptive design with power prior to the study team.

There are plenty of researches regarding commensurate prior (Hong, Fu, et al. 2018,
Murray, Hobbs, et al. 2014). Although there are bias between historical controls and concurrent

ones, commensurate prior essentially is hierarchical model, and the conditional distribution of
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concurrent control response rate given the historical control response rate is the measure of
similarity between the “prior” from hierarchical model. The Gamma distribution that x follows is
equivalent to hyperprior of hierarchical model. In our research, we specify K equal to 1, 50 and
100 to evaluate the different performances of commensurate prior borrowing. The commensurate
prior is close to the full borrowing method when K is equal to 50 or 100, and close to the no
borrowing method when K is equal to 1. Similar with the power parameter from power prior, the

input and adjustment from expertise and knowledge is necessary when specifying the K.

The methods of full borrowing, no borrowing and frequentist are served as the reference
in our research. The full borrowing method is hard to be applied in the practice since it highly
believes that the historical control is identical to concurrent control, which is difficult to persuade
the researchers to accept it. The no borrowing method is not efficient, and it is served as
reference as well. On the other hand, it is clearly observed that the performance similarity

between the no borrowing and frequentist method.

Another factor we considered in the research is historical control date type (i.e. the
historical data is simulated or observed). Both sources are possible and depend on the research
process status, and we mimic the cases that could happen in the real world to assess the study
comprehensively. Generally, it can be observed that the related power from the simulated
historical control is slightly lower than that from observed ones, which is caused by the variation

of the simulated data.

We also proposed three different types of thresholds (i.e. global, local and regional
threshold). They reflect the different degrees of the researchers’ belief in the similarity of the

historical control and concurrent data. The power will decrease when global threshold is applied
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for the cases where there are obvious differences of historical and concurrent control data.
However, type | error will increase largely when local threshold is applied and there are obvious
differences of historical and concurrent control data. Regional threshold is optimal option
between conservative and false positive result. The historical and concurrent control response
rates are both located from 0.1 to 0.5 by 0.1. We did not explore the response rates less than 0.1
due to the unlikeness occurrence in practice, and the response rates greater than 0.5 since the
results will be symmetric to those corresponding response rates less than 0.5 (i.e., one minus the

response rate).

Our research focus is binary data, and the variance is associated with the response rate. It
is worth researching other data types, especially the continuous ones that the variance is
independent of location parameter. It should also be noted that there is no difference to specify
the subject level or study level data for binary data if response rate and sample size are known.
However, the methods may require different level data to conduct the borrowing. We mainly
focus on small sample size. However, researchers can probably have larger data when designing
a new related study (Liu 2018), the performance of those borrowing methods is worth being
explored under a moderate or large sample size. Another limitation is that we did not consider
the variety of the covariates. There are some proposed methods(Han, Zhan, et al. 2017), and it is

a good future exploring.

To sum up, it is a good consideration to apply the power prior adaptive design with
power parameter determination via overlapping area of posterior distribution under 6. and 6.,
close to 0.4, and effect size close to 0.3. Study design with commensurate prior is a general

choice as well, however, appropriate priors need to be specified before study conducts.
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Chapter 4: Subgroup identification of early preterm birth (ePTB): informing a
future prospective enrichment clinical trial design

Zhang, C., Garrard, L., Keighley, J., Carlson, S. E., & Gajewski, B. J. (2017). Subgroup

identification of early preterm birth (ePTB): informing a future prospective enrichment clinical
trial design. BMC Pregnancy and Childbirth, 17, 18.
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Abstract

Background: Despite the widely recognized association between the severity of early
preterm birth (ePTB) and its related severe diseases, little is known about the potential risk
factors of ePTB and the sub-population with high risk of ePTB. Moreover, motivated by a future
confirmatory clinical trial to identify whether supplementing pregnant women with
docosahexaenoic acid (DHA) has a different effect on the risk subgroup population or not in
terms of ePTB prevalence, this study aims to identify potential risk subgroups and risk factors for

ePTB, defined as babies born less than 34 weeks of gestation.

Methods: The analysis data (N = 3,994,872) were obtained from CDC and NCHS’ 2014
Natality public data file. The sample was split into independent training and validation cohorts
for model generation and model assessment, respectively. Logistic regression and CART models
were used to examine potential ePTB risk predictors and their interactions, including mothers’
age, nativity, race, Hispanic origin, marital status, education, pre-pregnancy smoking status, pre-
pregnancy BMI, pre-pregnancy diabetes status, pre-pregnancy hypertension status, previous
preterm birth status, infertility treatment usage status, fertility enhancing drug usage status, and

delivery payment source.

Results: Both logistic regression models with either 14 or 10 ePTB risk factors produced
the same C-index (0.646) based on the training cohort. The C-index of the logistic regression
model based on 10 predictors was 0.645 for the validation cohort. Both C-indexes indicated a
good discrimination and acceptable model fit. The CART model identified preterm birth history
and race as the most important risk factors, and revealed that the subgroup with a preterm birth

history and a race designation as Black had the highest risk for ePTB. The c-index and
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misclassification rate were 0.579 and 0.034 for the training cohort, and 0.578 and 0.034 for the

validation cohort, respectively.

Conclusions: This study revealed 14 maternal characteristic variables that reliably
identified risk for ePTB through either logistic regression model and/or a CART model.
Moreover, both models efficiently identify risk subgroups for further enrichment clinical trial

design.

Key Words: early preterm birth; risk factor; interaction; classification and regression tree;

logistic regression; enrichment trial design

4.1 Background

Preterm birth, also known as premature birth, is the birth of a baby at less than 37 weeks
of gestational age (Cdc.). Preterm birth occurs in 9.57% of all U.S. births each year (Hamilton,
Martin, et al. 2015) . Worldwide, approximately 15 million babies are born prematurely each
year (Who. 2018). Preterm birth increases the risk of many severe health outcomes. Infants born
preterm are more likely to experience early death than are infants born at term (Blencowe,
Cousens, et al. 2012, Catov, Bertolet, et al. 2014); and preterm birth is the leading cause of both
neonatal death and long-term neurological disabilities for children in the United States (Cdc. ,
Witt, Cheng, et al. 2014). Moreover, adults who were born preterm are at increased risk of
having hypertension (Keijzer-Veen, Dulger, et al. 2010, Norman 2010), mental health disorders,
chronic respiratory disease, and neurologic and learning disabilities (Gravett and Rubens 2012).
Preterm birth causes great social and medical burdens both in the U.S. (Mccormick 1985,
Russell, Green, et al. 2007) and worldwide (Christopherson and Penrose 2010, Lawn, Gravett, et

al. 2010, Treyvaud, Doyle, et al. 2011). Early preterm birth (ePTB)—nbirth at less than 34
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weeks—nhas the highest risk of mortality and other diseases in adulthood (Creasy 1993, Martius,
Steck, et al. 1998). The importance of prevention is evident for preterm birth, including ePTB.
Consequently, to identify the risk factors of preterm birth, especially for ePTB, is a highly
important step that will provide valuable information for subsequent enrichment clinical trial

designs of targeted preventions and/or treatment.

Several recent studies have explored the risk factors for ePTB (Connealy, Carreno, et al.
2014, Gandhimadhi and Mythili 2010, Little, Janiak, et al. 2015, Saccone, Perriera, et al. 2015).
Researchers have identified a few potential maternal risk factors associated with preterm birth
including maternal hypertension (Norman 2010), Factor V Leiden (Hiltunen, Laivuori, et al.
2011), lower genital tract inflammatory milieu (Simhan, Bodnar, et al. 2011), prior preeclampsia
(Connealy, Carreno, et al. 2014), and Crohn's disease (Stephansson, Larsson, et al. 2010). Not
only were these trials limited in statistical power, few studies explored potential risk factors for
ePTB, which has a higher risk for poor health outcomes (Martius, Steck, et al. 1998, Saigal and
Doyle 2008). In addition, interaction among the risk factors was typically not considered, despite
the important role played by the interaction among risk factors in the prevention and treatment of
preterm birth, including ePTB. From a practical perspective, this analysis is motivated by a
desire to inform a future confirmatory clinical trial designed to identify whether supplementing
pregnant women with docosahexaenoic acid (DHA) can differently reduce the rate of ePTB for
the subgroups. DHA supplementation provides a high yield, low risk provocative strategy to
reduce ePTB delivery in the U.S. by up to 75% (Carlson, Colombo, et al. 2013). However, little
is known regarding the effect profile of DHA on various populations; and it is possible for DHA

to have different effects on different risk subgroups.
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Based on findings from previous studies on preterm birth and our future research interest,
the specific aim for this study is to identify potential risk subgroups and risk factors for the main
outcome, ePTB, defined previously as babies born prior to 34 weeks of gestation (Creasy 1993,
Neerhof, Cravello, et al. 1999). We applied and compared both logistic regression and
classification and regression tree (CART) models to identify potential risk subgroups and risk
factors from maternal demographic characteristics (Tan, Wen, et al. 2007, Witt, Cheng, et al.
2014) and maternal pre-pregnancy characteristics for ePTB. To the author’s best knowledge, this
is the first study to explore the association of ePTB with risk factors, the interactions among the

risk factors, and to identify potential subgroups to inform future enrichment trial designs.

4.2 Method
4.2.1 2014 Natality Public Data File

The ePTB population data used for these analyses were obtained from the National Vital
Statistics System’s 2014 Natality public data file, compiled by the Centers for Disease Control
and Prevention’s (CDC) National Center for Health Statistics (NCHS). Since federal law
mandates national collection and publication of births and other vital statistical data, all births
occurring and registered within the U.S. in 2014 were collected directly from the 50 U.S. states,
New York City, and the District of Columbia (DC) (Cdc 2014). The overall database contains
3,998,175 records comprised of demographic characteristics of the mother, father, and the child
(e.g., gestation), maternal prenatal care, pregnancy history, and health data, etc. The public data
and the corresponding user’s guide are available from the website:

http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm
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4.2.2 Study Population

After excluding 3303 cases for which the gestation period from the original 2014 Natality
public data file was unknown, the final analysis file for the current study included 3,994,872
records. Since the main outcome variable is ePTB, a binary flag variable representing the ePTB
status (i.e., 1 = <34 Wks: ¢ePTB and 0 => 34 Wks) was created in the analysis file. The analysis
file included selected maternal demographic characteristics considered relevant to ePTB, such as
mothers’ age, mothers’ nativity, mothers’ race, mothers’ Hispanic origin, marital status, mothers’
education, delivery payment source. Delivery payment source was included as an additional
covariate that may provide additional information on the implications of socioeconomic status
for ePTB. Maternal pre-pregnancy characteristics and medical history were also included in the
ePTB risk factor analysis. These factors included smoking status, body mass index (BMI),
diabetes status, hypertension status, previous preterm birth status, infertility treatment usage
status and fertility enhancing drug usage status. In total, 14 maternal variables from the database
were used as risk predictors in statistical models. The father’s demographic characteristics were

not considered for this study.

A total of 142,851 (3.58%) observations from the analysis file contained at least one
missing value for some of the predictors and those predictors were categorized as “missing.”
Predictors with responses of “Unknown,” “Not Stated,” “Not Applicable,” and “Other,” were

categorized together as shown in the descriptive statistics listed in Table 4 -1 & 4 - 2.

4.2.3 Statistical Analysis
Training and validation datasets. The large sample size allowed for independent training
and validation cohorts. The overall sample was divided randomly into a training cohort (70%)

and a validation cohort (30%), stratifying by ePTB status to ensure a balanced partition.
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Descriptive statistics were summarized to compare the demographic and pre-pregnancy
information between the two cohorts of data. The training sample was used to build models via
both logistic regression and CART and the validation sample was used to evaluate the models

obtained from the training cohort.

Logistic Regression. In order to investigate the association of ePTB with the potential risk
factors, a multivariate logistic regression model was applied to estimate odds ratios (OR) and the
corresponding 95% confidence intervals (Cl1). All predictors entered the model and they were
selected via backward elimination. We set the significance level to stay in the model for a
predictor to 0.05. A further simplified logistic regression model was fitted using 10 covariates to
explore risk subgroups of ePTB. The predicted probabilities were calculated for the validation
cohort based on the simplified model obtained from the training cohort. Based on the validation
cohort, the calibration plot was generated to compare the average predicted probabilities and the
average observed probabilities. The c-index was calculated to identify the model discriminatory

capacity in terms of the training and validation cohorts.

CART model. CART model can be a very useful complement to a logistic regression
model because the CART model can identify unknown interactions among the risk factors of
ePTB. CART is a nonparametric method that derives hidden patterns in data by constructing a
series of binary splits on the outcome of interest (Lei, Nollen, et al. 2015, Loh 2011, Nollen,
Ahluwalia, et al. 2015). The most discriminating predictor is selected to form the first partition
based on the ability of the variables to minimize the within-group variance of the dependent
variable, so the observations within each subgroup share the same characteristics that influence
the probability of belonging to the interested response group (Lemon, Roy, et al. 2003). This step

is executed repeatedly to each partition until the sample size of each subgroup (i.e., a terminal
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node) is at or below a pre-specified level. In this study, the terminal node was specified as 0.5%
of the total sample (either the training sample or the validation sample). A maximum tree first
was constructed and standard pruning strategies were then applied to arrive at a parsimonious
tree with a low misclassification rate and a high discriminatory capacity (Breiman, Friedman, et
al. 1984). The final CART model can be visualized as an upside-down tree with the parent node
of the tree containing the entire sample. Additional child nodes can be created using the Gini
splitting rule for binary outcomes(Gordon 2013), and the terminal nodes are where predictions
and inferences are made. The training cohort was used to generate an appropriate CART tree,
and the validation cohort was utilized to evaluate the CART tree via the C-index and the

misclassification rate.

All statistical tests were two-tailed with p < 0.05 as the statistically significant level. The
CART analysis was executed in SAS Enterprise Miner Workstation 13.1 (Gordon 2013), and all

other statistical analyses and the data management were conducted with SAS 9.4.

4.3 Results
4.3.1 Characteristics of the Study Population and Training and Validation Datasets

As previously mentioned, the analysis file included 3,994,872 records which contained
134,009 cases of ePTB (< 34 weeks) and 3,860,863 cases of baby birth > 34 weeks of gestation.
The characteristics of the subjects stratified by ePTB status are shown in Table 4 - 1. For the
training and validation cohorts, 70% (N = 2,796,411) and 30% (N = 1,198,461) of the total
sample were generated for each cohort, respectively. The frequencies and related percentages of
each predictor were similar after the random split stratified by the ePTB status, indicating that

the partition is well-balanced (Table 4 - 2).
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Table 4-1 Subject demography information

Variable

Newborn Gestational Age

< 34 WKks: ePTB

> 34 Wks

N = 134009

N = 3860863

Mothers’ Age (%)
<24 Years
25-29 Years
30-34 Years
> 35 Years

Mothers’ Nativity (%)
Bornin U.S.

Born Outside U.S. /Unknown/Not Stated

Mothers’ Race (%)
White
Black

American Indian/Alaskan Native/Asian or

Pacific Islander

Mothers’ Hispanic Origin (%)
Non-Hispanic/Hispanic Origin Not Stated

Hispanic

Marital Status (%)
Married
Unmarried

Mothers’ Education (%)
< High School or GED/Unknown
Associate/Some College Credit

> Bachelor's
Missing

Pre-pregnancy Smoking Status (%)

Nonsmoker

Smoker/Unknown/Not Stated

Missing

Pre-pregnancy BMI (%)
Under Weight-Normal < 24.9
Overweight 25.0-29.9

40711 (30.38)
34831 (25.99)
33578 (25.06)
24889 (18.57)

107578 (80.28)
26431 (19.72)

88185 (65.81)
36554 (27.28)

9270 (6.92)

105011 (78.36)
28998 (21.64)

65594 (48.95)
68415 (51.05)

62819 (46.88)

37338 (27.86)

29145 (21.75)
4707 (3.51)

108663 (81.09)
20639 (15.40)
4707 (3.51)

55824 (41.66)
30288 (22.60)
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1094793 (28.36)
1112643 (28.82)
1049775 (27.19)
603652 (15.64)

2996531 (77.61)
864332 (22.39)

2938466 (76.11)
603921 (15.64)

318476 (8.25)

2968422 (76.88)
892441 (23.12)

2323620 (60.18)
1537243 (39.82)

1512489 (39.17)

1086153 (28.13)

1124077 (29.11)
138144 (3.58)

3258557 (84.40)
464162 (12.02)
138144 (3.58)

1785913 (46.26)
918380 (23.79)



Obesity > 30.0/Unknown/Not Stated
Missing

Pre-pregnancy Diabetes Status (%)
No/Unknown/Not Stated
Yes
Missing

Pre-pregnancy Hypertension Status (%)
No/Unknown/Not Stated
Yes
Missing

Previous Preterm Birth Status (%)
No/Unknown/Not Stated
Yes
Missing

Infertility Treatment Usage Status (%)
No/Unknown/Not Stated

Yes
Missing

Fertility Enhancing Drug Usage Status (%)

No/Not Applicable/Unknown/Not Stated
Yes
Missing
Delivery Payment Source (%)
Medicaid
Private Insurance

Self-pay/Other/Unknown
Missing

43190 (32.23)
4707 (3.51)

126901 (94.70)

2401 (1.79)
4707 (3.51)

123932 (92.48)

5370 (4.01)
4707 (3.51)

118468 (88.40)

10834 (8.08)
4707 (3.51)

122859 (91.68)

6443 (4.81)
4707 (3.51)

126582 (94.46)

2720 (2.03)
4707 (3.51)

65048 (48.54)

51753 (38.62)
12501 (9.33)
4707 (3.51)

1018426 (26.38)
138144 (3.58)

3694967 (95.70)
27752 (0.72)
138144 (3.58)

3667289 (94.99)
55430 (1.44)
138144 (3.58)

3626879 (93.94)
95840 (2.48)
138144 (3.58)

3669850 (95.05)
52869 (1.37)
138144 (3.58)

3697856 (95.78)
24863 (0.64)
138144 (3.58)

1598851 (41.41)
1771814 (45.89)
352054 (9.12)
138144 (3.58)

Table 4-2 Univariate difference between training sample and validation sample

Variables

Cohort

Training

Validation

N =2796411

N =1198461

Mothers’ Age (%)
<24 Years
25-29 Years

794486 (28.41)
803113 (28.72)

341018 (28.45)
344361 (28.73)
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30-34 Years
> 35 Years

Mothers’ Nativity (%)

Bornin U.S.

Born Outside U.S. /Unknown/Not
Stated

Mothers’ Race (%)
White
Black
American Indian/Alaskan
Native/Asian or Pacific Islander

Mothers’ Hispanic Origin (%)
Non-Hispanic/Hispanic Origin
Not Stated
Hispanic

Marital Status (%)
Married
Unmarried

Mothers’ Education (%)
< High School or GED/Unknown
Associate/Some College Credit
> Bachelor's
Missing

Pre-pregnancy Smoking Status (%)
Nonsmoker
Smoker/Unknown/Not Stated
Missing

Pre-pregnancy BMI (%)
Under Weight-Normal < 24.9
Overweight 25.0-29.9
Obesity > 30.0/Unknown/Not

Stated
Missing

Pre-pregnancy Diabetes Status (%)
No/Unknown/Not Stated
Yes
Missing

758087 (27.11)
440725 (15.76)

2172903 (77.70)
623508 (22.30)

2119115 (75.78)
447972 (16.02)

229324 (8.20)

2151766 (76.95)
644645 (23.05)

1672583 (59.81)
1123828 (40.19)

1102757 (39.43)
786618 (28.13)
806822 (28.85)
100214 (3.58)

2357285 (84.30)
338912 (12.12)
100214 (3.58)

1288811 (46.09)
664673 (23.77)

742713 (26.56)
100214 (3.58)

2675048 (95.66)
21149 (0.76)
100214 (3.58)

325266 (27.14)
187816 (15.67)

931206 (77.70)
267255 (22.30)

907536 (75.73)
192503 (16.06)

98422 (8.21)

921667 (76.90)
276794 (23.10)

716631 (59.80)
481830 (40.20)

472551 (39.43)

336873 (28.11)

346400 (28.90)
42637 (3.56)

1009935 (84.27)
145889 (12.17)
42637 (3.56)

552926 (46.14)
283995 (23.70)

318903 (26.61)
42637 (3.56)

1146820 (95.69)
9004 (0.75)
42637 (3.56)
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Pre-pregnancy Hypertension Status
(%)

No/Unknown/Not Stated

Yes

Missing

Previous Preterm Birth Status (%)
No/Unknown/Not Stated
Yes

Missing

Infertility Treatment Usage Status
(%)

No/Unknown/Not Stated

Yes

Missing

Fertility Enhancing Drug Usage
Status (%)

No/Not Applicable/Unknown/Not
Stated

Yes

Missing

Delivery Payment Source (%)
Medicaid
Private Insurance
Self-pay/Other/Unknown
Missing

Newborn Gestational Age (%)
<34 Wks: ePTB
> 34 Wks

2653410 (94.89)
42787 (1.53)
100214 (3.58)

2621496 (93.75)
74701 (2.67)
100214 (3.58)

2654757 (94.93)
41440 (1.48)
100214 (3.58)

2676910 (95.73)

19287 (0.69)
100214 (3.58)

1164617 (41.65)
1276362 (45.64)
255218 (9.13)
100214 (3.58)

93751 (3.35)
2702660 (96.65)

1137811 (94.94)
18013 (1.50)
42637 (3.56)

1123851 (93.77)
31973 (2.67)
42637 (3.56)

1137952 (94.95)
17872 (1.49)
42637 (3.56)

1147528 (95.75)

8296 (0.69)
42637 (3.56)

499282 (41.66)

547205 (45.66)
109337 (9.12)
42637 (3.56)

40258 (3.36)
1158203 (96.64)

4.3.2 Logistic Regression

14-Predictor model. Table 4 - 3 showed results from the logistic regression analysis for
prevalence of ePTB with all 14 predictor variables. A relatively higher ePTB prevalence was
observed in the older mother populations compared to younger mothers in the < 24 years old
reference group. The adjusted OR (95% CI) were 1.013 (0.995, 1.032), 1.130 (1.108, 1.152), and

1.354 (1.325, 1.385) for mothers in the age groups of 25-29 years (non-significant, p=0.169), 30-
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34 years, and > 35 years, respectively. Mothers born outside of the U.S. were less likely to
experience ePTB compared to mothers born in the U.S. with an adjusted OR (95% CI) of 0.880
(0.863, 0.898). Black mothers and American Indian/Alaskan Native/Asian or Pacific Islander
mothers were more likely to have an ePTB compared to White mothers with adjusted OR (95%
Cl) of 1.773 (1.743, 1.803) and 1.096 (1.066, 1.127), respectively. Mothers of Hispanic origin
had a slightly higher ePTB prevalence compared to mothers of non-Hispanic origin with an
adjusted OR (95% CI) of 1.033 (1.013, 1.053). ePTB was more likely to occur in the unmarried
mother population compared to married mothers with an adjusted OR (95% CI) of 1.326 (1.304,

1.347).

Mothers with an associate degree or some college credit and mothers with a bachelor’s
degree or higher education were less likely to experience ePTB compared to mothers with a high
school/general educational development (GED) or less education. The corresponding adjusted
OR (95% ClI) for each subgroup was 0.842 (0.828, 0.856) and 0.713 (0.698, 0.729), respectively.
Results from the subgroup with missing mother’s education were non-significant (p=0.873). In
addition, since all the observations with missing predictors were all from the same subset, for the
following parameters after mothers’ education, missing observations were automatically
excluded from the analysis, and the corresponding parameters were automatically set to 0 due to

they are from the same subset.

Some maternal pre-pregnancy characteristics and medical history factors were also found
to be related to ePTB. For Pre-pregnancy BMI, mothers in the overweight subgroup had a
slightly lower prevalence of ePTB (p=0.047), with an adjusted OR (95% CI) of 0.983 (0.966,
1.000) compared to mothers with underweight and/or normal BMI. However, the opposite result

was obtained for the obese subgroup with an adjusted OR (95% CI) of 1.127 (1.109, 1.145),
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compared with the underweight and/or normal BMI mothers. For other pre-pregnancy risk
factors (i.e., smoking status, diabetes status, hypertension status, and previous preterm birth
status), mothers in each risk sub-category were more likely to have a higher prevalence of ePTB
compared to mothers who did not have the abovementioned risk factors. The corresponding
adjusted OR (95% CI) were 1.183 (1.160, 1.206), 1.776 (1.685, 1.871), 1.984 (1.913, 2.056),

3.004 (2.929, 3.081), respectively.

In addition, mothers who used infertility treatment were much more likely to experience
ePTB than those who had not used the infertility treatment, with an adjusted OR (95% CI) of
5.103 (4.888, 5.328). On the other hand, a different outcome was observed with the usage of
fertility enhancing drug. Mothers who used fertility enhancing drugs were less likely to have an
ePTB compared to women who did not, with an adjusted OR (95% CI) of 0.820 (0.769, 0.873).
Compared to women whose payer was Medicaid, the adjusted OR (95% CI) were 0.965 (0.948,
0.983) and 1.079 (1.054, 1.105) for women who had private insurance and self-pay, respectively.
Mothers with private insurance had a slightly lower prevalence of ePTB; whereas mothers with
self-paid delivery had a slightly higher prevalence of ePTB. Although the p-values for both
comparisons were statistically significant (< 0.0001), the numerical differences were small.

Table 4-3. The estimate and adjusted OR of logistic regression analysis on the training cohort

Estimat  Adjusted OR (95%

Parameter o ch P value
Intercept -3.7154 - <.0001
Mothers’ Age (%)
<24 Years - 1.0 (1.0-1.0) -
25-29 Years 0.0129  1.013(0.995, 1.032) 0.169
30-34 Years 0.1221  1.130(1.108,1.152)  <.0001
> 35 Years 0.3034  1.354(1.325,1.385)  <.0001
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Mothers’ Nativity (%)

Bornin U.S.

Born Outside U.S. /Unknown/Not
Stated

Mothers’ Race (%)

White

Black

American Indian/Alaskan Native/Asian
or Pacific Islander

Mothers’ Hispanic Origin (%)
Non-Hispanic/Hispanic Origin Not
Stated
Hispanic

Marital Status (%)
Married
Unmarried

Mothers’ Education (%)
< High School or GED/Unknown
Associate/Some College Credit
> Bachelor's
Missing

Pre-pregnancy Smoking Status (%) @
Nonsmoker
Smoker/Unknown/Not Stated

Pre-pregnancy BMI (%) 2
Under Weight-Normal <24.9
Overweight 25.0-29.9
Obesity >30.0/Unknown/Not Stated

Pre-pregnancy Diabetes Status (%) 2
No/Unknown/Not Stated
Yes

Pre-pregnancy Hypertension Status (%)
a

No/Unknown/Not Stated
Yes

Previous Preterm Birth Status (%) 2
No/Unknown/Not Stated
Yes

-0.1274

0.5727
0.0917

0.0323

0.2819

-0.1725
-0.3382
0.0031

0.1677

-0.0174
0.1195

0.5741

0.6849

1.0999

1.0 (1.0-1.0)
0.880 (0.863, 0.898)

1.0 (1.0-1.0)
1.773 (1.743, 1.803)

1.096 (1.066, 1.127)

1.0 (1.0-1.0)
1.033 (1.013, 1.053)

1.0 (1.0-1.0)
1.326 (1.304, 1.347)

1.0 (1.0-1.0)
0.842 (0.828, 0.856)
0.713 (0.698, 0.729)
1.003 (0.966, 1.042)

1.0 (1.0-1.0)
1.183 (1.160, 1.206)

1.0 (1.0-1.0)
0.983 (0.966, 1.000)
1.127 (1.109, 1.145)

1.0 (1.0-1.0)
1.776 (1.685, 1.871)

1.0 (1.0-1.0)
1.984 (1.913, 2.056)

1.0 (1.0-1.0)
3.004 (2.929, 3.081)

<.0001

<.0001
<.0001

0.009

<.0001

<.0001
<.0001
0.8727

<.0001

0.0472
<.0001

<.0001

<.0001

<.0001
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Infertility Treatment Usage Status (%) ?

No/Unknown/Not Stated - 1.0 (1.0-1.0) -
Yes 1.6299  5.103 (4.888,5.328)  <.0001
Fertility Enhancing Drug Usage Status
(%) *
No/Not Applicable/Unknown/Not
Stated - 1.0 (1.0-1.0) -
Yes -0.1988  0.820(0.769, 0.873)  <.0001
Delivery Payment Source (%) ?
Medicaid - 1.0 (1.0-1.0) -
Private Insurance -0.0352  0.965 (0.948,0.983)  <.0001
Self-pay/Other/Unknown 0.0762  1.079 (1.054, 1.105) <.0001

2 For the following parameters after mothers’ education, missing observations were
automatically excluded from the analysis, and the corresponding parameters were automatically
set to O due to they are from the same subset.

10-Predictor model. After examining results from the 14-predictor model, four covariates
- mothers’ nativity, mothers’ Hispanic origin, fertility enhancing drug usage status, and delivery
payment source - were excluded for having minimal effects on ePTB and to explore further a
smaller set of potential risk subgroups for ePTB. Moreover, the same C-index (0.646) was
obtained from both logistic regression models with either 14 or 10 predictors based on the
training cohort (Figure 4-1). The C-index was 0.645 after fitting the 10-predictor model on the
validation data, indicating an acceptable model fit. Figure 4-2 showed the calibration plot based
on the validation cohort to compare the average predicted probabilities and the average observed
probabilities across quartiles. The average and range of both predicted and observed probability
for each of the four potential subgroups were shown in Table 4 - 4, along with summarized

maternal characteristics for each subgroup from the validation cohort.
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For the first subgroup (i.e., first quartile), the average predicted and observed
probabilities were 1.92% and 1.83% respectively, with a range of 0.55% for the predicted
probability. A typical mother from this potential subgroup was between 30-34 years old, with a
designation as white, married, with a bachelor's degree or higher education level, non-smoking,
underweight to normal weight (BMI <24.9) before pregnancy, without notable pre-pregnancy
risk factors (i.e., diabetes, hypertension, previous preterm birth), and without infertility
treatment. The second subgroup (i.e., second quartile) had an average predicted and an average
observed probability of 2.46% and 2.33% respectively, with a range of 0.52% for the predicted
probability. Mothers from the second potential subgroup shared very similar characteristics with
a typical mother from the first subgroup, with the exception of age (slightly younger, 25-29 years
old) and slightly lower education level (associate degree or some college credit). The average
and range of predicted probability for the third subgroup (i.e., third quartile) were 3.22% and
0.95%; and the observed probability was 3.24%. Similar to trends observed from the second
subgroup (in comparison with the first subgroup), a typical mother from the third subgroup was
younger (< 24 years old) and with less education (< high school or GED/unknown). Lastly, the
average predicted and observed probabilities for the highest risk subgroup (i.e., last 25% of data)
were 6.02% and 6.07% respectively, with the predicted probability range of 60.6%. Mothers in
this high-risk subgroup exhibit much different characteristics from the other three subgroups.
They tended to be younger (< 24 years old), Black, unmarried, with a high school/GED or less
education level, and generally obese (> 30.0 BMI). Moreover, compared to the other three
subgroups, a relatively higher percentage of mothers in this high-risk subgroup had pre-

pregnancy diabetes, hypertension, previous preterm birth, and infertility treatment usage.
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Table 4-4 The ePTB subgroup predicted /observed probability and maternal characteristics in
validation cohort via logistic regression

Subgroup
Variable 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile
N = 299529 N = 299078 N = 299993 N = 299861
Probability (%)
Average Predicted 1.92 2.46 3.22 6.02
Range Predicted 0.55 0.52 0.95 60.6
Average Observed 1.83 2.33 3.24 6.07
Mothers’ Age (%)
<24 Years 36603 (12.22) 70681 (23.63) 127739 (42.58) 105995 (35.35)
25-29 Years 120779 (40.32) 83600 (27.95) 68003 (22.67) 71979 (24.00)
30-34 Years 129538 (43.25) 78439 (26.23) 56362 (18.79) 60927 (20.32)
> 35 Years 12609 (4.21) 66358 (22.19) 47889 (15.96) 60960 (20.33)
Mothers’ Race (%)
White 259978 (86.80) 273311 (91.38) 260128 (86.71) 114119 (38.06)
Black 0 (0.00) 872 (0.29) 18661 (6.22) 172970 (57.68)
American Indian/Alaskan
Native/Asian or Pacific Islander 39551 (13.20) 24895 (8.32) 21204 (7.07) 12772 (4.26)
Marital Status (%)
Married 296804 (99.09) 246717 (82.49) 92320 (30.77) 80790 (26.94)
Unmarried 2725 (0.91) 52361 (17.51) 207673 (69.23) 219071 (73.06)

Mothers’ Education (%)
< High School or
GED/Unknown
Associate/Some College Credit
> Bachelor's
Missing

Pre-pregnancy Smoking Status
(%)
Nonsmoker
Smoker/Unknown/Not Stated
Missing

Pre-pregnancy BMI (%)
Under Weight-Normal < 24.9
Overweight 25.0-29.9
Obesity > 30.0/Unknown/Not

Stated
Missing

10988 (3.67)

69843 (23.32)
217614 (72.65)
1084 (0.36)

295313 (98.59)
3132 (1.05)
1084 (0.36)

183032 (61.11)
82956 (27.70)

32457 (10.84)
1084 (0.36)
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93778 (31.36)

117843 (39.40)
71541 (23.92)
15916 (5.32)

262159 (87.66)
21003 (7.02)
15916 (5.32)

142007 (47.48)
67818 (22.68)

73337 (24.52)
15916 (5.32)

192086 (64.03)

69455 (23.15)
21886 (7.30)
16566 (5.52)

234907 (78.30)
48520 (16.17)
16566 (5.52)

119757 (39.92)
70451 (23.48)

93219 (31.07)
16566 (5.52)

175699 (58.59)

79732 (26.59)
35359 (11.79)
9071 (3.03)

217556 (72.55)
73234 (24.42)
9071 (3.03)

108130 (36.06)
62770 (20.93)

119890 (39.98)
9071 (3.03)



Pre-pregnancy Diabetes Status
(%)
No/Unknown/Not Stated
Yes
Missing

Pre-pregnancy Hypertension
Status (%)
No/Unknown/Not Stated
Yes
Missing

Previous Preterm Birth Status (%)
No/Unknown/Not Stated
Yes
Missing

Infertility Treatment Usage Status
(%)

No/Unknown/Not Stated

Yes

Missing

298445 (99.64)

0 (0.00)
1084 (0.36)

298445 (99.64)

0 (0.00)
1084 (0.36)

298445 (99.64)

0 (0.00)
1084 (0.36)

298445 (99.64)

0 (0.00)
1084 (0.36)

283149 (94.67) 282480 (94.16) 282746 (94.29)
13 (0.00) 947 (0.32) 8044 (2.68)
15016 (5.32) 16566 (5.52) 9071 (3.03)

283162 (94.68) 282293 (94.10) 273911 (91.35)
0 (0.00) 1134 (0.38) 16879 (5.63)
15016 (5.32) 16566 (5.52) 9071 (3.03)

283162 (94.68) 283427 (94.48) 258817 (86.31)
0 (0.00) 0(0.00) 31973 (10.66)
15916 (5.32) 16566 (5.52) 9071 (3.03)

283162 (94.68) 283427 (94.48) 272918 (91.01)
0 (0.00) 0 (0.00) 17872 (5.96)
15916 (5.32) 16566 (5.52) 9071 (3.03)
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Figure 4-1 ROC curve from logistic regression on the training dataset
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Figure 4-2 Calibration plot from the validation sample. Observed vs. Predicted Probability across
the quartiles

4.3.3 CART model
For the CART model, sub-categories were collapsed for a couple of risk factors. The

missing subgroup of previous preterm birth status was combined with the “no” group; and the
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race category of American Indian/Alaskan Native/Asian or Pacific Islander was combined with
the White group. Based on a pre-specified stopping rule of having the terminal node size no less
than 0.5% of the total sample and the binary Gini splitting rule, the CART tree was created to
explore the unknown interactions among the risk factors and identify potential risk subgroups
(Figure 4-3). Overall, the CART model from the training cohort produced a misclassification rate
of 0.034 and a C-index of 0.579. Moreover, the misclassification rate was 0.034 and the c-index
was 0.578 from the validation cohort. By the percentage representing the observed prevalence of
ePTB, CART identified four subgroups. Previous preterm birth status was identified as the most

discriminating predictor for ePTB, followed by mothers’ race.

From training cohort, 14.41% of mothers with a preterm birth history and a race
designation as Black had an ePTB experience (n =16,750), indicating a higher risk of ePTB for
Black mothers with a preterm birth history. The correspondent percentage of this subgroup from
the validation cohort is 15.02% (n=7,085). This subgroup totally accounted for 0.60% of the
overall 2014 U.S. births. 8.96% and 8.70% of mothers with a preterm birth history and a race
designation as White had an ePTB experience from training (n = 57,951) and validation (n =
24,888), and the subgroup birth prevalence (SBP) was 2.07%. Women without a preterm birth
history who were Black had an ePTB experience of 5.37% (n = 431,222); while 2.75% of
mothers without a preterm birth history who were White had an ePTB experience (n =
2,290,488). The correspondent rates for the identical subgroups from the validation cohort are
5.35% (n =185,418) and 2.76% (n = 981,070). These two subgroups accounted for 15.44% and

81.89% of the overall birth data, respectively.

It is also informative to interpret the CART tree in terms of risk factors that increase or

decrease the probability of ePTB. One can compare the rates of ePTB among the four potential
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subgroups to the average rate of ePTB of the total sample (3.35%, 3.36% for training and
validation cohort, respectively). Three subgroups (with preterm birth history and Black, with
preterm birth history and White, without preterm birth history and Black) had an increased

probability of ePTB compared to the subgroup without a preterm birth history who were White.

Previous Preterm Birth Status

I
I |

No/Unknown/Not Stated or Missing Yes
Training  Validation Training Validation
P 3.17% 3.17% P 10.18%  10.10%
N 2721710 1166488 N 74701 31973
I I
Mother’s Race Mother’s Race
I |
I ] | |
Black ‘White or AVAN/Asian/PI Black White or AI/AN/Asian/PI
Training  Validation Training Validation Training  Validation Training Validation
P 537% 5.35% P 2.75% 2.76% P 14.41% 15.02% P 8.96% 8.70%
N 431222 185418 N 2200488 981070 N 16750 7085 N 57951 24888
SBP 15.44% SBP 81.89% SBP 0.60% SBP 2.07%

Figure 4-3 Classification and Regression Tree model for predicting ePTB
The probability of ePTB (P) and the number of subject (N) are all given inside of each node for

both training and validation cohort. In each end node, the subgroup birth prevalence (SBP) is
also calculated. Al = American Indian; AN = Alaskan Native; Pl = Pacific Islander.
4.4 Discussion

This large sampled pioneer study aimed to explore potential risk factors and their
interactions, and identify subgroup for the ePTB population via both logistic regression model

and the CART model. Several important findings emerged from the current study. First, a subset

of the most important and relevant covariates have been identified among the 14 risk factors
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examined, such as race, diabetes history, hypertension history, preterm birth history, and
infertility treatment usage. Second, although logistic regression model identified a set of 10
predictors for the prevalence of ePTB, the CART model was able to examine multiple and
complicated interactions among the selected predictors. The CART model clearly identified that
the subgroup with a preterm birth history and a race designation as Black had the highest risk for
ePTB. Third, although not presented in the current work, the risk ratios (RR) of a particular
subgroup from the CART terminal nodes can be calculated to compare with the RR of other

subgroups via the observed probabilities. RR also indirectly can inform the risk factors for ePTB.

Previous preterm birth status and race were the most discriminating predictors for ePTB
by the CART model, while another eight predictors were identified by the logistic regression
analyses. As a well-known traditional statistical approach, logistic regression provided predicted
probabilities based on the important demographics and characteristics for ePTB; however, it
cannot identify complicated interactions among risk factors. On the other hand, the CART model
presents a more straightforward picture of the potential high risk subgroups for ePTB for whom
targeted prevention efforts can be implemented. Moreover, each subgroup accounted for a
different percent of the overall simple size. Thus the difference in ePTB prevalence among the
four subgroups identified by the CART model was much larger than that identified by the
logistic regression model. Coupling both statistical approaches provides more efficiency for
analyzing the overall objective of this study. It also further exemplifies the statistical analysis for

similar studies.

Additionally, from a long-term perspective, this pioneering study provides valuable

information and direction for our further targeted subgroup enrichment clinical trials aiming at

101



decreasing the prevalence of ePTB among the interactive risk subgroups via supplement

pregnant women with DHA.

There are some limitations with this study. Some risk factors contained missing values
and/or values of “Not Applicable”, “Unknown,” and “Not Stated,” which added complexity to
the proposed analyses. However, data management is unavoidable for any concrete project, and
we face the same issue for such a large database regarding birth data for the whole country. The
solution taken was from an objective and general perspective, which could deduce the reasonable
and acceptable results. Additionally, the risk predictors explored in this paper mainly from
mothers’ demographics factors and Maternal pre-pregnancy characteristics, and it does include
more highly specific biomarkers. This is due to no such predictors collected in the analysis
database. Potentially, this limitation may lead to the relatively low c-index for both models.

Further application and reference for these two models should be precautioned.

4.5 Conclusions

This study revealed 14 maternal characteristic variables that can be used reliably to
identify risk factor subgroups for ePTB either through a logistic regression model and/or a
CART model. Moreover, both models may be used efficiently to identify high risk subgroups for

further enrichment clinical trial design.

4.6 List of abbreviations

BMI — body mass index

CART - classification and regression tree

CDC- Centers for Disease Control and Prevention’s
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ClI - confidence intervals

DC - District of Columbia

DHA - docosahexaenoic acid

ePTB - early preterm birth

GED - general educational development

NCHS - National Center for Health Statistics

OR - odds ratios

RR - risk ratios

SBP - subgroup birth prevalence
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Chapter 5: Summary and Future Directions
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In Chapter Two, we investigate batch of adaptive designs which are composed by
analysis models (pairwise independent, hierarchical, and cluster hierarchical achieved via
Dirichlet Process (DP)), interim analysis (Yes vs. No) and longitudinal data modeling (Yes vs.
No). We found that the hierarchical model with interim analysis and longitudinal modelling is an
optimal approach to identifying subgroup treatment effects, and the cluster hierarchical model
with interim analysis and longitudinal imputation is an excellent alternative approach in cases
where sufficient information is not available for specifying the related priors. There are several
points that is worth exploring in the future. Firstly, our research is based on continues data, and it
is interesting to validate that these findings can be applied to the with discrete or time-to-event
endpoints. Secondly, there is only one interim analysis and randomization ratio is fixed in our
research, however, it is good to explore Bayesian response adaptive randomization (Bayesian
RAR) to update the randomization ratio based on each interim analysis result when no indication
of effective treatment arms. Other factors, such as treatment dosage, sample size, etc. may also
be adjusted accordingly under Bayesian adaptive designs. Lastly, we assume the missing data
pattern is missing at random (MAR). Meanwhile, it is an interesting topic for future research to
explore the different imputation methods for other mechanism, like missing not at random

(MNAR).

In Chapter Three, we investigate several Bayesian designs incorporating historical
control borrowing: power prior via overlapping area, commensurate prior, and some other
methods. The impact of historical data type and different types of the threshold used in Bayesian
decision rule are also explored. We found that it is a good consideration to apply the power prior
adaptive design with power parameter determination via overlapping area of posterior

distribution under certain values of true response rates of concurrent control, historical control,
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and treatment effect. Study design with commensurate prior is an admissible choice as well,
however, appropriate priors need to be specified. Still, there are several points that is worth
exploring in the future. Firstly, the commensurate prior is incorporated in the adaptive scenarios,
is it possible to connect the interim analysis result to the commensurate prior parameter setting?
If yes, then compare it with the designs incorporated power prior via overlapping area. Secondly,
it is data type. Data type in our research is binary, and the summary data level is equivalent to the
subject data level. Moreover, the variance of binary data is associated with the response rate. It is
worth researching other data type, especially the continuous ones that the variance is independent
of location parameter. Thirdly, we mainly focus on small sample size. However, researchers can
probably have larger data when designing a new related study, the performance of those
borrowing methods should be explored under a moderate or large sample size. Lastly, we did not
consider the variety of the covariates. It is a good future exploring how to adjust the difference

between the concurrent and historical controls via the different covariates.

In Chapter Four, we logistic regression and CART models to identify the risk factors of
ePTB from maternal perspective based on the birth data from CDC and NCHS’ 2014 Natality
public file. We identify that the subgroup with a preterm birth history and a race designation as
Black had the highest risk for ePTB. Those findings can provide valuable information for a
future enrichment trial design. Moreover, both models can be applied to identify risk factors for

other studies.
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Appendix 2.1 the development of full complete conditional distribution of
treatment effectiveness difference between Arm A and Arm B (6g), and of
treatment effectiveness of Arm A (y,) under different models given subgroup g;

DP specification.

Pairwise independent model specification

-ArmA:

Suppose

(4) (4) (4 (4) (4) 4) _(A).2 on 0L,
Ylg ,ng ,Y3g ,Y4g T YNéA)g ~N (yglo-z), '}/g ~N (ﬂg ng )I 0—2 NIG (?’ #2 n)l

where “A” in the superscript stands for “Arm A”;

g is the index of the subgroup, g = {1,2, 3, ... g}, €.9., g = 4 refers there are four subgroups
and g, = 8 refers there are eight subgroups;

Ng(A) represents for the sample size of the subgroup g from Arm A,

¥, and o denote the mean and variance of the normal distribution from which the Arm A
subgroup sample is drawn, and we assume all the distributions from which the sample is drawn

have the same variance (o2);
MéA) and réA)’z denote the mean and variance of normal distribution as which y, is distributed; o,
and o7 are the fixed parameters of inverse gamma distribution as which o is distributed.

-ArmB :

B B B B B B B),2
Suppose Y2, v 2, y® y® | ylg(g)g ~N (vg + 05,0%),0,~N (15,7 )
g

where "B" in the superscript stands for "Arm B ";

N;B) represents for the sample size of the subgroup g from Arm B;
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9,vg @nd o® have meanings and or are distributed identically to those from Arm A circumstance;

8, is the treatment difference between Arm B and Arm A given subgroup g;

(B)

g~ and T(B) 2

denotes the mean and variance of normal distribution as which 6, is distributed.

-The full joint PDF under the pairwise independent model:

N 2 N 2
In g 4) (B)
[T Tem (- 1 Lo (-2 )
g=1 i= no no 20°
on 0L 0p
0.0 5
AP &
(A) In (9 (B))
(e e (-
9n
e O o e | e e

\

-The full complete conditional distribution of treatment effectiveness difference between

S~——_

Arm A and Arm B given subgroup g (8,):

N®

(B) 2 ) (B)
P(0.|¥ (B) (B)z o _2 (Y — Y 9‘9) _M
(gl JYgrO- ,ug T ) exp exp ZT(B),Z
g

202

NB

Bg2 _ 25 5 (1B ® _, ) 2 ® | )2
Ng gg_ 992{:1 (Ylg —Vg)+21 1 (Ylg _yg) exp( 9 —299 ug )

=exp| — 252 27 (3)2
g
N®
NP0z - 260,57 (v - v,) 62 - 26,u
X exp 252 exp —ZT‘(S—B)Z
NGB (B)
(B) (B) 1 Ky
HZNQ Zl 1(Y92 Vg) 9; (B)Z — 265~z (3)2
9
= exp| - 0?2 g exp| — g g

2
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®

(B) Ng (B) _ B)
N, i Y Y,
Qg< 1 ) 26, ll(lg .9)+l1g

oz T mn p 502
Ty Tg
=exp| — > =
N(B) ®)
(02 )"‘T(g)z "
v (B) (3)2 g
0glY,vg. 0% 1y 7y "~ N N(B) 1 N(B) 1
T+ @2 -+ B2
Tg Tg

The mean and variance of the normal distribution arrived above can be simplified as

réB)'ZNéB)(Y;B)—Vg)wLazu(B) and T;B)'Zoz
(B)_(B),2 (B)_(B),2 :
Ng 14 +02 Ng 14 +02

- The full complete conditional distribution of treatment effectiveness of Arm A given

subgroup g (v,):

Yg|y, o2 #qu), s(JA) 2)

N(A) N®

Y(A)_ 5o y® _o ) (4)
Vg) exp| — (Y ZGZV ) exp _(YZT#
g

X exp

X exp
20'2 ZTéA) 2

———2
52 Yg @2 Yo~z ;@2

) g

@ 4 @ Wy | yEFE _ yE) (4)
N N >_ 2 (Ng Y+ N77, - N ag» , 1 uy
g

= exp exp| —

@ |, (B Wy @) | BYFB) _ i (B)
( (NP + NP Y2 — 27, (N7 + NPT - NP6, ( yE - 2ygu(“‘))
exp| ————
( 2 L)

123



4 (B) (A)(4) (B)7(B) (B) 4)
o [Ny~ +Ng N 1 ) 2 Ny Yy +NgY;" — Ny, 4 Hg
Yg 02 LDz Yg o2 A2
=exp| — 9 g =

Wy . NBFE _ y® @
NATD + NPTE - NPo, b

VoIV, 0y, 0%, uP 12~ N - T‘éA)’z !
g g g ‘g N;A)_{_N;B) 1 ’N;A)_l_N;B) 1
\ P + TéA)'z 02 + TéA),z

(A2 (7 (A)5(A) , (B (B) _\(B) 4
2 (NPT NP TP NP o, ) +a?

g
and
(4), (B, (4)2
(Ng +Ng )Tg +02

The mean and variance can be simplified as

(A2 2
T4 0

(4) , (B))..(4)2 '
(Ng +Ng )‘L'g +02

Hierarchical model specification

-ArmA:

Suppose

(4) (4 (4 () (4
Yig  Yag 1 Yag's Yag™ woo. YNéA)g ~N (yg,az),

A A), A A), n TAT
Vo~ N (1?5507 i ~ N (o, 00, 1% ~ 16 (2, ),

where “A” in the superscript still stands for “Arm A”;

g, Ng(A),yg, 02,0, and o have the meanings and are distributed identically to those from Arm A
circumstance in pairwise independent model;

Y4 has the same meanings as that from Arm A in pairwise independent model but with different

distribution;

(4)

u® and £V

y~ denotes the mean and variance of normal distribution as which y, is distributed;
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o and o denotes the mean and variance of normal distribution as which u(A) is distributed:;

7, and 7/ are the fixed parameters of inverse gamma distribution as which r)(,A)'Z is distributed.
-ArmB:

Suppose

(B) v(B) (B) v (B) (B)
AP A il A ¢ ey ~N (v, + 6,,02),

2
T ,T
8y~ N (17, 7), 1 ~ N (o, 03), 5%~ IG <—2" ”2”>.

where "B" in the superscript still stands for "Arm B";

(B)
9,Ng

,Yg,0%, 0, and g have the meanings and are distributed identically to those from Arm B
circumstance in pairwise independent model;
6, has the same meanings as that from Arm B in pairwise independent model but with different

distribution;

(B)

py, ~ and T(B) 2

denotes the mean and variance of normal distribution as which 6, is distributed;

Lo and a2 denotes the mean and variance of normal distribution as which M( ) is distributed, and

T, and 7/ are the fixed parameters of inverse gamma distribution as which r](,B )2

is distributed,
which is identical to those from Arm A circumstance in Hierarchical Model.

-The full joint PDF under the Hierarchical Model:

(4) (B)
dn N 2 dn N 2
[ e (S o)
11 anexp Gexp 2072
g=1i=
2
dn
1 (Vg #iA)) 1 (“34) ~ “0)
n—exp — exp| —————— | X
V2 ZT](,A)'Z V2mo, 20§
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o 2 2
1—[ 1 (8 — 1) 1 (1" = o) y
exp exp
=1 \/27‘[1'](,3) 2 ‘[)(,B)'Z V2ma, 208
o oo Tn 21 T 121
un -n uln uln
00, 2 ox > TiTn ) 2 ox 5 TiTh ) 2 O
2 p o2 2 o 2 Pl ~ &)z
% Y
cn g, 2y i1
(o2)2 (=2 ()22 Tn B2 T
(7) (&%) (%) (&7%)* (%)

- The full complete conditional distribution of treatment effectiveness difference between

Arm A and Arm B given subgroup g (8,):

P(9g|?,yg,a 1z (B)z,#o,ao) (9g|?,yg, 2 48 ¢ (B)z)oc

NGB

2
.9 (v®_y 6 0,—uP ) _ . :
_Zim (Y — ) exp —% , which arrives at the similar expression
20
Y

exp

P(9g|7, Vg 02 1P, (B)Z) as in pairwise independent model. Finally,

v B B),2 B B 2
leyx)/g;o_ ,u)(/ )1 ( ) r,uO) O _9 IY Vg: uu](/ )) ( )
NP g
i (Y = %) |
g? T(B)Z 1
N )4
N(B) 1 N(B) 1
T+ —®2 7+ B2
V )’
(B2 Z{Vé )(Y(m -y ) +02ul® (B2 2
The mean and variance can be simplified as - ‘;1(3) 7, L and N(B)}f[(B)’2+02 .
) g9 Y

- The full complete conditional distribution of u(B).

(B) ;

Since p, " is considered as random variable in hierarchical model, the full complete conditional

(B) ;

distribution of " is derived below:
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(9 _ (B)) exp _(”58)_”0)2

P(,u](,B) |§, T](,B)'Z, Uo ag) X exp

2.7 203
B),2 B n
< exp gnﬂ)(/) ( )Zg 0, - ’u)(/B)Z 2‘u(B)M
21_}(/3)2 20§
@2 Gn 1), 5@ (Z651% | po
0 — 0 —
14 T](/B),Z 0-02 14 T)(/B)'Z 0-02
=exp| — )=
P 2
In
g=1 Hg +@
B) g ..(B)2 )4
()|9,T)(,) ,Uo, 0e~ N 7 T T
n +_ gn +
Bz G2 Bz 52
14
) ) . 22 L0+ (3)2 B2 2
The mean and variance can be simplified as ~ ;)2 £ and ng ‘Zg)z :
gnao+rg gnogtTg "

- The full complete conditional distribution of treatment effectiveness of Arm A given

subgroup g (vg):

P(yg|l7, 2 'u)(/A)’ (4), zqu, 00) (Vg|7, 0, 'H](/A)' (4), 2)

ol (v —y,)” EN‘(QB)(Y(B)—Y ~6,) (vg-u®)’
__Zi=1 ig g __“i=1 ig g -9 _\"9 v
o exp| ——— 5 |exp e, exp< —21§A)2 >WhICh arrives at the
similar expression as P(yg|7, 0, 0%, 1S, TS 2) in pairwise independent model. Finally,
v A A),2 A A 2
V|V, 05, 0% 1", 152, 10, 07 = 1|V, 85, 0%, 1, 1
(CVACY) (B)i7(B) (B) (4)
Ng Yy +Ng ¥ — Ny Hg_l_”V
y
4 (B) 7 a7 (4 (B)
Ng +Ng N 1 Ng + Ng N 1
2 T(A),Z g2 T(A),Z
Y Y
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(A2 (A 5(A)  yB)5(B)_\(B) (4)
2 (NPT NPT NP0, )+ o2y

Y
and
(4) , (B))..(4),2
(Ng +Ng )‘L’Y +02

The mean and variance can be simplified as

(A2 2
R

(4), \(B))..(4),2 '
(Ng +Ng )ry +02

- The full complete conditional distribution of p{®:

Still, we need to get the full complete conditional distribution of u\* given ¥, ©"?, o, 0. Since
,uiA) is served as a random variable in hierarchical model.
o (, _ @) @_ .\
P( (A)|—> (4),2 2) « _ g=1(yg Hy ) _ (“V “0)
nu]/ Y, Ty »Ho, O exp ZT(A)’Z exp 20_02
Y
(4),2 (4) y9n A),2 A
wexp (I T2 R\ (0 2 g
ZT)(,A)’Z 205
14 T)(/A),Z ag 14 T](/A).Z 002
= , =
exp >
g
gil yg + &
A2 002 1

(4),2

A)—
:u)(/ )|y1 Ty » Ho, O-gN N !

14 14
. N o3 £, v+t o 258

The mean and variance can be simplified as —2 129 a7 and —~——.
InopgtTg” gnogtTg”
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DP specification

-Model specification:

W, w, W, e Wi
Wi Wy . W o e A\ %\ m
A\ Y’YA‘ WY Y Yy Yoi Yp 1 Yig Yog Yn,g = Yik Yok o Yo i
Yi1 Yo 1g I2g ngg 1k 12k Yok f11 12 1 K

The DP is intuitively introduced by the graph above. Specifically, G, is the base distribution. It
can be either continuous or discrete. From the perspective of easy understanding and our

concrete research circumstance, it presents as Normal distribution in the right part of the graph
above. A4, A, ... A, are a random partition of the support of G,. The "Bars" stands for a random
discrete distribution, denoting as G, drawn from G,. G can be considered as the "discrete” form

of G,.

The relationship between G and G, is: G ~ DP («a, G,), where « is scaling parameter, a > 0.
Generally, G is asymptotical to G, as « — oo0; G becomes very discrete (e.g., only several bars

stand for Gy) as a — 0.

(G(Al), G(Ay) ..G(A)) .. G(Ar)) ~Dirichlet (aGo (A1), aGo(Ay) ... aGo(4;) ... aGO(AT)).

ZT:G(A]-) = 1,20500(,4]-) = ai Go(4) = a

j=1
Based on the moment formula of Dirichlet distribution:
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aGo(4;) _ aGo(4))
j=1 aGo(4;) a

E (G(Aj)) =

= Go(4))
aGo(4)) ( Ty aGo(4;) — aGO(Aj)) ~ aGo(4)) (a — aGO(A]-))
(B, aGo(4)) (Toy aGo(4) +1) @@+ 1D

_ Go(4;) (1 - GO(AJ‘))

a+1

var (G(4))) =

Data generation flow:

Firstly, draw W,, W, ... W, ... Wy, from G, denote W = (Wy, W, ... W ... Wy, ). ko can be thought as
the number of "original™ clusters (Please note that the i and w are the general notation rather
than treatment difference as specified in Section 2.3)

Next, draw the distinctive w;, w, ...w, ...wy from w. Note that w is from G, which means w, is
originally from G.P(w, € 4;) = G(4;). Denote w = (wy,w; ...w, ...wy). k is the number of
distinctive elements of w and k is the number of “real” clusters, k < k.

Finally, draw Y from w = (wy, wy ... W, ... wy).

Overall, the model can be specified as:

G ~ DP (a, Gy)
In our DACTPerM research, w,. (still referring the general one) is the summation of Arm A

treatment effect (y,) and treatment effect difference between two arms (6,); Go = N (1o, 0§)
-Posterior distribution of (G(Al), G(Az),..G(4;) .. G(AT)).
Let n; be the number of observed W, in 4;, then

(ny, ... 1., ) ~Mult (ko, G(A1),G(Ay) ..G(4)) .. G(Ar)), where ko = Y_; n;.
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P(G(A)) ..G(4)) ..G(A4)|W) = P(G(A)) ..G(4)) ..G(A)|ny ..y ... n;.)

o P(ny .ty .. 1|k, G(Ar) . G(A)) . G(A)) + P (G(AY) .. G(4)) .. G(4,))

= Mult (n1 T |G (AY) .. G(4)) ...G(Ar)) « Dirichlet (aGO(Al) . aGo(A;) ...aGO(Ar))

Due to the Dirichlet distribution conjugate to itself with respect to a Multinomial likelihood

function, finally:

P (G(A,) ...G(4)) ...G(A,)|W)~Dirichlet (aGo(4;) + ny, ..., aGo(4;) + ), ..., aGo(A,)
+n,),

aGO(Aj)+nj)
a+k0 ’

which indicates that G| ~ DP (& + ko,

-Predictive distribution of Wy 4.
P (W 41 € 4j|W) = fP(v'vk0+1 € 4;,G(4;)|W)dG(4))

= jp(v’r/ko+1 € 4;1G(4;), w)P(G(4;)|w)dG(4;) = fp(wk0+1 € A;|w)P(G(4;)|w)dG(4))

_ _ _ 1
- [ Ca)m)P(6(a)#)d0 () = E(E ()W) = g (w6o() +7)
The last step is due to the posterior distribution of (G(Al), G(Ay),..G(4)) .. G(Ar)) is

Dirichlet. Finally,

~ ~ 1 a n . . . ~
Wig+1 € Aj|W ~ m(aGo(Aj) +n) = EGO(AJ-) + o1 Which indicates that Wy,

belongs to 4; is a weighted summation of G,(4;) and n;.

131



Appendix 2.2: ITP specification for virtual endpoints simulation

The formula used for endpoints simulation based on ITP is
0)
) ) (J) () ) [ 1=EXP(kg D
Yieg = (Mg t Sig * gltg) <1—EXP(kéj)T) ’

where YY) i

it.g is the endpoint for subject i from arm j and subgroup g at visit t, j = [Arm A, Arm B].

ué’) is the mean value of the final endpoint from arm j and subgroup g, and u(’) = ygywWhen j =

Arm A and #(]) =y, + 65 whenj=ArmB. Si(”; is the specific random effect for subject i from

arm j and subgroup g, S(’) ~N (O > 2) and 177 = w{ 0%, 0 is the fraction of the final

6))

response variance. €itg

is the residual error for subject i from arm j and subgroup g,

e - (0,0;92), and 0;0? = 7 — 1 = (1 - 0P) 0%, 0% = 1 + 6} D% = w02 +

(1 - wéj)) a2. The variability (2, denoted as in Appendix A) for a subject divides two parts:
per subject component ( w ( () 2) and a component ((1 - wéj)) 02) varying between visits. kéj)
is a shape parameter of the exponential component, and it controls how quickly the response
approaching the final one. Generally, smaller ké(,j) value makes the responses within the study to
achieve the final endpoint value quickly; we specify the wéj) and kéj) identically for all

subgroups of the two arms, respectively; t is the specific visit time that Ylg; is observed; T is the

final endpoint is observed.
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Appendix 3.1: The derivation of posterior probability of response rate via power
prior borrowing method

T[(Hcch' Do, (Z) X L(HCCID)L(QhCIDO)aTEO (ehc)

ra)

n n
= ( CC) Hcyccc(l — QCC)(ncc_ZVcc) ( hC) (th)ay}lc(l — th)a*(nhc_th) WF(OS)

cc hc

‘9,16(0.5—1)(1

— 0,,,)©5D
o chccc(l _ QCC)(nCC_yCC)(th)ayhc((l _ Hhc)a*(nhc—yhc)ehC(O.S—l)(1 _ ghc)(O.S—l)
= gcyccc(l _ Qcc)(ncc—%c) (QCC)ath(]_ - ecc)a*(ncc—yhc)HCC(O.S—l)(1 _ QCC)(O.S—l)

= H§ZCC+ath+O'5_1)(1 — ecc)((ncc_YCc)"'a*(ncc_th)+0-5—1)

= O~ Beta((ycc + aypc + 0.5, (ncc - ycc) + (a * (ncc - yhc)) + 0-5)
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Appendix 3.2: Stan code of commensurate prior

data {
int<lower=0> H; //Indicate how many studies
real k;
int Y[H]; //Responder from a specific study
int N[H]; //Sample size from a specific study
int group[H]; //Vector of the studies

¥

parameters {
real <lower = 0> kappa;
real <lower =0, upper =1> thetahc;
real <lower =0, upper =1> thetacc;

ks

model {
target += beta_Ipdf(thetacc |kappa* thetahc, kappa*(1- thetahc));
target += (group[1] == 1)*(binomial_Ipmf(Y[1]|N[1], thetahc));
target += (group[2] == 2)*(binomial_Ipmf(Y[2]|N[2], thetacc));
kappa ~ gamma(k, 1);
thetahc ~ beta(0.5,0.5);
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Appendix 3.3: threshold type values under different borrowing methods and
historical control type

Table threshold type values under different borrowing methods and historical control type

Method HC Type  Threshold Type HC(0.1) HC(0.2) HC(0.3) HC(0.4) HC(0.5)
Global 0.998 09975  0.9928  0.9805  0.9787
Observation Local 0.94689 0.9649 0.9612 0.9625  0.96444
_ Regional 0.980625 0.98128 0.981001 0.97748 0.964776
Power Prior
Global 0.9964  0.9958 0.992 0.9859  0.97755
Simulation Local 0.97281 097746 0.97791 0.97521 0.97696
Regional 0.988175 0.98718 0.98565 0.98515 0.976625
Global 0.99704 09946  0.99278  0.9914  0.9908
Observation Local 0.99704 0.98531 0.98085 0.9785  0.9769
Commensurate Regional 0.9971 0.99459 0.98253 0.98058 0.9772
Prior (K =1) Global 0.99628 0.99333 0.99158 0.98955  0.9877
Simulation Local 0.99628  0.9853  0.98064 0.97859 0.97833
Regional 0.99645 0.9947  0.9832 0.98006 0.97833
Global 0.99945  0.9978  0.99336 0.98316 0.96135
Observation Local 0.95391 0.95424 0.96046 0.95823 0.96135
Commensurate Regional 0.98378 0.98236 0.9819 0.97853 0.96135
Prior (K = 50) Global 0.99963 0.99863 0.99576 0.98831 0.97304
Simulation Local 0.97443 097439 0.97196 0.97273 0.97304
Regional 0.98939 0.98885 0.98948 0.98764  0.973
Global 0.99968 0.99855 0.99495 0.98511 0.96346
Observation Local 0.9499  0.95216  0.9533  0.95581  0.96346
Commensurate Regional 0.98415 0.98354 0.98163 0.97873 0.96345
Prior (K = 100) Global 0.99979  0.99913 0.99675 0.99035 0.97445
Simulation Local 0.97596 0.97621 0.97471 0.97464 0.97445
Regional 0.99039 0.99075 0.99166 0.98935  0.97445
Global 0.99985 0.99913 0.99615  0.987 0.952
Observation Local 0.9377 0.95288 0.9522 0.9474 0.952
Full Borrowing Regional 0.983925 0.985 0.987851 0.97898 0.962275
Global 0.9999  0.99949  0.9975 0.99305 0.97836
Simulation Local 0.97981 0.97799 0.97539 0.97841 0.97836
Regional 0.991201 0.99298 0.99305 0.98913 0.978025
No Borrowing NA NA 0.977925 097775 0.977201  0.974  0.977925

135



