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Abstract 

In this dissertation, Bayesian adaptive design used to identify subgroup treatment effect is 

firstly explored. We investigate three Bayesian adaptive models for subgroup treatment effect 

identification: pairwise independent, hierarchical, and cluster hierarchical achieved via Dirichlet 

Process (DP). The impact of interim analysis and longitudinal data modeling on the personalized 

medicine study design is also explored. Interim analysis is considered since they can accelerate 

personalized medicine studies in cases where early stopping rules for success or futility are met. 

We apply integrated two-component prediction method (ITP) for longitudinal data simulation, 

and simple linear regression for longitudinal data imputation to optimize the study design. The 

designs’ performance in terms of power for the subgroup treatment effects and overall treatment 

effect, sample size, and study duration are investigated via simulation. We found that the 

hierarchical model with interim analysis and longitudinal modelling is an optimal approach to 

identifying subgroup treatment effects, and the cluster hierarchical model with interim analysis 

and longitudinal imputation is an excellent alternative approach in cases where sufficient 

information is not available for specifying the related priors. 

We then investigate several Bayesian designs incorporating historical control borrowing: 

power prior via overlapping area, commensurate prior, and some other methods. The impact of 

historical data type and different types of the threshold used in Bayesian decision rule are also 

explored. The designs’ performance in terms of power as a function of treatment effect, sample 

size, and posterior summary are investigated via simulation. It was found that it is a good 

consideration to apply the power prior adaptive design with power parameter determination via 

overlapping area of posterior distribution under certain values of true response rates of 
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concurrent control, historical control, and treatment effect. Study design with commensurate 

prior is an admissible choice as well, however, appropriate priors need to be specified.       

Lastly, we use logistic regression and classification and regression tree (CART) models 

to identify the risk factors of early preterm birth (ePTB) from maternal perspective based on 

birth data from Center for Disease Control (CDC) and National Center for Health Statistics 

(NCHS)’ 2014 Natality public file.  It revealed that the subgroup with a preterm birth history and 

a race designation as Black had the highest risk for ePTB. Those findings can provide valuable 

information for a future enrichment trial design. Moreover, both models can be applied to 

identify risk factors for other studies. 
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Chapter 1: Introduction  
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The clinical trial is a mandatory process for the development of new medicine. The safety 

and efficacy of the new medicine must be proved in order to be approved by the health authority 

before marketing. However, majority of the clinical trials are “negative” (e.g., p value>.05),  and 

it has been estimated that 85% ($200 billions) of the funding spent on the medical research each 

year is “a waste of money” (Macleod, Michie, et al. 2014). It is necessary to explore some 

creative studies designs to lower the cost and improve benefit of the clinical trial from statistical 

perspective. Food and Drug Administration (FDA) has also released some guidance to encourage 

to research the innovative clinical trial designs reference (Fda. 2012, Fda. 2019). In this 

dissertation, the related personalized medicine clinical trial and the trials that incorporates 

historical control are explored. 

 

1.1 Personalized Medicine   

In Chapter Two, the design and analysis of clinical trial for personalized medicine is 

explored. Personalized medicine clinical trials are designed to test for a treatment effect in a 

particular subgroup (Alosh, Huque, et al. 2017, Zhang, Mayo, et al. 2018). The subgroup factor 

is patient-specific characteristics, such as biomarkers, demographics, and disease sub-categories.  

Recently, researchers have proposed both frequentist and Bayesian approaches to 

identifying subgroup treatment effect. developed a frequentist non-parametric recursive 

partitioning method for the analysis of subgroup treatment effects was developed by some 

researchers (Lipkovich, Dmitrienko, et al. 2011). The random forests of interaction trees (RFIT), 

was proposed by Su et al.(Su, Peña, et al. 2018) to estimate subgroup treatment effects. Foster et 

al.(Foster, Taylor, et al. 2011) created the virtual twins method to identify the subgroup treatment 

effects. Bayesian adaptive designs can also be applied to identify the treatment effect for a 
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particular subgroup (Gajewski, Berry, et al. 2016). Bayesian adaptive designs have a 

straightforward interpretation and thus are friendly to scientific researchers with little statistical 

background. Additionally, the Food and Drug Administration (FDA) recently released guidelines 

that encourage the use of prespecified interim analysis in personalized medicine adaptive designs 

to evaluate subgroup factors and modify the subpopulation enrollment accordingly (Fda. 2012).  

The focus of this research is a prospective study design where different subgroup 

treatment effects have already been noted but must be investigated in a confirmatory 

environment among competing treatments that are used in practice (e.g. comparative 

effectiveness). Thus, this research aims to identify the best treatment by subgroup, avoiding the 

term “futility”, as one treatment’s futility is another’s success. We investigate three Bayesian 

adaptive models for subgroup treatment effect identification: pairwise independent, hierarchical, 

and cluster hierarchical achieved via Dirichlet Process (DP). The impact of interim analysis on 

the personalized medicine study design is also explored. In our research, interim analyses are 

specified at a fixed number of subjects enrolled; stopping rules for success are based on posterior 

probability criteria set for individual subgroups. It should be noted that our research does not 

adjust the randomization ratio after interim analysis. Longitudinal modelling imputation for 

missing data is also explored to improve the study design. We apply integrated two-component 

prediction method (ITP) for longitudinal data simulation, and simple linear regression for 

longitudinal data imputation to optimize the study design. The designs’ performance in terms of 

power for the subgroup treatment effects and overall treatment effect, sample size, and study 

duration are investigated via simulation. 
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1.2 Historical Control 

In Chapter Three, the Bayesian designs incorporated historical controls are explored. 

Generally, the historical control may come from real world data (RWD, such as medical chart 

(Clarke and Loudon 2011, Salman, Beller, et al. 2014), patient registry (Gliklich, Dreyer, et al. 

2014, Richesson 2011), natural history (NH) trial (Groft 2010)) and completed clinical trials 

(Bhuyan, Chen, et al. 2015). The historical control is beneficial to patients, especially for those 

studies aim of rare diseases treatment or unethical to provide placebo to the patients. The FDA 

has released guidance to regulate how to design a trial that borrows historical information (Fda. 

2019), which encourage researches to borrow the historical information. It is good for 

pharmaceutical companies since they have large amount of related control arm before a trial 

conducted (Liu 2018), and more resources can be used for the treatment arm.  

From statistical perspective, historical control application has some desired properties, 

such as increase in power, decrease the in size (Liu 2018), minimize the patient burden (Lim, 

Walley, et al. 2018), etc. The important thought of historical control borrowing is how to connect 

the historical data to concurrent data. There are several structures of the connection 

(Spiegelhalter, Abrams, et al. 2004): full equal, discounted equal, biased, similar (i.e., 

exchangeable), and functional dependent. Then the related methods were derived and applied 

accordingly. In Chapter Three, we mainly explore the commensurate prior and power prior; with 

a novel estimation approach in the latter. 

The connection between the historical and concurrent control of commensurate prior is 

the conditional distribution of parameter of concurrent data given the historical data (Gamalo-

Siebers, Savic, et al. 2017). The conditional distribution is served as the prior and incorporated 

with the concurrent data to have the posterior estimation of control parameter. Commensurate 
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prior is essentially a hierarchical model as well. However, it assumes that the historical response 

rate is non-systematically biased from the current response rate (Lim, Walley, et al. 2018).   

There are some explorations of power prior borrowing the historical data (Gravestock and 

Held 2018, Hobbs, Carlin, et al. 2011, Liu 2018). The degree of power prior borrowing is 

controlled by the power parameter of power prior. The borrowing changes from “full borrowing” 

to “no borrowing” as the power parameter goes from 1 to 0. The limitation of power prior is to 

specify an appropriate power parameter. Some researchers proposed an estimated power 

parameter to adjust the limitation. Specifically, the power parameter follows a distribution rather 

than fixed (Neelon and O' Malley 2010). However, this adjustment tends to heavily discount 

historical data and does not efficiently borrow the historical data unless a very informative prior 

used for the power parameter (Lim, Walley, et al. 2018). 

In Chapter three, we researched the performance of several study designs incorporating 

historical control via different Bayesian borrowing methods – power prior, commensurate prior 

and some reference borrowing method. The performance is compared by the simulating trials. 

The impact of historical data type and different types of the threshold used in Bayesian decision 

rule are also explored. The designs’ performance in terms of power as a function of treatment 

effect, sample size, and posterior summary are investigated via simulation.  

 

1.3 Subgroup Identification 

It is necessary to identify the subgroup factors, and then explore related statistical 

methodology accordingly. In Chapter Four, we mainly introduce how to use logistics regression 

and classification and regression tree (CART) to identify the risk factor of early preterm birth 
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(ePTB) from maternal perspective based on birth data from Center for Disease Control (CDC) 

and National Center for Health Statistics (NCHS)’ 2014 Natality public data file.  

The multivariate logistic regression model was applied to estimate odds ratios (OR) and 

the corresponding 95% confidence intervals (CI) to investigate the association of ePTB with the 

potential risk factors. All predictors entered the model and they were selected via backward 

elimination. The predicted probabilities were calculated for the validation cohort based on the 

model obtained from the training cohort. The calibration plot was generated to compare the 

average predicted probabilities and the average observed probabilities via the validation cohort. 

The c-index was calculated to identify the model discriminatory capacity in terms of the training 

and validation cohorts. 

CART model is a useful complement to a logistic regression model because the CART 

model can identify unknown interactions among the risk factors of ePTB. The most 

discriminating predictor is selected to partition the data to minimize the subgroup variance of the 

dependent variable (e.g. ePTB) (Lemon, Roy, et al. 2003). This step is executed repeatedly to the 

following partitions until the sample size of each subgroup (i.e., a terminal node) is at or below a 

pre-specified level. Then, a maximum tree was constructed and standard pruning strategies were 

applied to arrive at a parsimonious tree with a low misclassification rate and a high 

discriminatory capacity (Breiman, Friedman, et al. 1984). The final CART model can be 

visualized as an upside-down tree with the parent node of the tree containing the entire sample. 

The training cohort was used to generate an appropriate CART tree, and the validation cohort 

was utilized to evaluate the CART tree via the C-index and the misclassification rate. More 

details regarding the methods and how to apply them to analyze the ePTB data is introduced in 

Chapter Four.  
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Chapter 2: Designing and Analyzing Clinical Trials for Personalized Medicine via 

Bayesian Models 
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Other Contributors for this Chapter: Matthew S. Mayo, Jo A. Wick, Byron J. Gajewski 

Abstract 

Patients with different characteristics (e.g., biomarkers, risk factors) may have different 

responses to the same medicine. Personalized medicine clinical studies that are designed to 

identify patient subgroup treatment efficacies can benefit patients and save medical resources. 

However, subgroup treatment effect identification complicates the study design in consideration 

of desired operating characteristics. 

We investigate three Bayesian adaptive models for subgroup treatment effect 

identification: pairwise independent, hierarchical, and cluster hierarchical achieved via Dirichlet 

Process (DP). The impact of interim analysis and longitudinal data modeling on the personalized 

medicine study design is also explored. Interim analysis is considered since they can accelerate 

personalized medicine studies in cases where early stopping rules for success or futility are met. 

We apply integrated two-component prediction method (ITP) for longitudinal data simulation, 

and simple linear regression for longitudinal data imputation to optimize the study design. The 

designs’ performance in terms of power for the subgroup treatment effects and overall treatment 

effect, sample size, and study duration are investigated via simulation.  

We found that the hierarchical model with interim analysis and longitudinal modelling is 

an optimal approach to identifying subgroup treatment effects, and the cluster hierarchical model 

with interim analysis and longitudinal imputation is an excellent alternative approach in cases 

where sufficient information is not available for specifying the related priors. These findings can 

be applied to future personalized medicine studies with discrete or time-to-event endpoints.       



9 
 

Key words: Bayesian (cluster) hierarchical model, Dirichlet process, Interim analysis, 

Longitudinal modeling, Integrated two component prediction 

 

2.1 Introduction 

Personalized medicine is defined as the tailoring of treatment to patients based on their 

characteristics, needs, and preferences during medical care . Therefore, personalized medicine 

clinical trials are designed to test for a treatment effect in patient subgroups (Alosh, Huque, et al. 

2017, Zhang, Mayo, et al. 2018). In general, these subgroups are defined using “personalized” or 

patient-specific characteristics such as biomarkers, demographics, and disease sub-categories. 

Personalized randomized clinical trials (RCTs) can be categorized as prospective, prospective-

concurrent, prospective-retrospective, or retrospective based on the availability of the data 

relative to the design of the study (Ruberg and Shen 2015). Personalized RCTs are sufficiently 

powered to test for a treatment effect while controlling both the overall Type I error and the 

subgroup false positive rates (Alosh, Huque, et al. 2017). However, personalized RCTs that 

optimize time and resource use without sacrificing statistical rigor are both essential and 

unexplored. 

Recently, researchers have proposed both frequentist and Bayesian approaches to 

identifying subgroup treatment effect. Lipkovich et al.(Lipkovich, Dmitrienko, et al. 2011) 

developed a frequentist non-parametric recursive partitioning method for the analysis of 

subgroup treatment effects. Another non-parametric method, random forests of interaction trees 

(RFIT), was proposed by Su et al.(Su, Peña, et al. 2018) to estimate subgroup treatment effects. 

Additionally, Foster et al.(Foster, Taylor, et al. 2011) created the virtual twins method, and 

Altstein et al.(Altstein, Li, et al. 2011) suggested a new computational method for parameter 
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estimation of an accelerated failure time (AFT) model with subgroups identified by a latent 

variable. Alosh et al. also introduced the solutions to solve the issues of chance findings, low 

power of interaction statistical tests for the treatment-by-subgroup interaction, etc. when 

executing the subgroup analysis from frequentist perspective (Alosh, Huque, et al. 2017). 

Compared to the frequentist approaches, Bayesian adaptive designs have potential 

benefits for prospective personalized RCTs since they naturally extend from simple (Almirall, 

Compton, et al. 2012) to more complex but efficient models (Bayman, Chaloner, et al. 2010), 

have higher power for a given type I error rate, and facilitate decision making in advance via 

interim analysis (Gajewski, Berry, et al. 2015, Wang and Hung 2013). Bayesian adaptive designs 

also provide the probability that a treatment is best for a particular subgroup (Gajewski, Berry, et 

al. 2016), which has a straightforward interpretation and thus is friendly to scientific researchers 

with little statistical background. Additionally, the Food and Drug Administration (FDA) 

recently released guidelines that encourage the use of prespecified interim analysis in 

personalized medicine adaptive designs to evaluate subgroup factors and modify the 

subpopulation enrollment accordingly (Fda. 2018, Fda. 2012). Finally, Bayesian adaptive 

designs can illustrate the effectiveness of a treatment in subpopulations or the overall population 

with higher power when compared to a fixed design of the same size (Berry, Broglio, et al. 

2013).  

The focus of this research is a prospective study design where different subgroup 

treatment effects have already been noted but must be investigated in a confirmatory 

environment. A study design in terms of Bayesian models, longitudinal data, and interim analysis 

is involved (Alosh, Fritsch, et al. 2015, Alosh, Huque, et al. 2017, Dmitrienko, Muysers, et al. 

2016). Research has been done for trials whose purpose is to identify a single subgroup (Morita, 
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Yamamoto, et al. 2014), which may be useful for seamless phase II to III designs (Magnusson 

and Turnbull 2013, Rufibach, Chen, et al. 2016). In addition, Hobbs et al.(Hobbs and Landin 

2018) have proposed an innovative sequential basket trial design formulated with Bayesian 

monitoring rules based on multisource exchangeability and hierarchical modeling.  

Some studies (Mehta and Gao 2011, Simon and Simon 2013, Wassmer and Dragalin 

2015) refer to RCTs for adaptive personalized medicine. Personalized medicine designs adjust 

enrollment of subjects for specific subgroups at interims to maximize power and/or shorten study 

duration (Fda. 2018). It should be noted that our research does not adjust the randomization ratio 

after interim analysis. Additionally, this research is motivated by comparative effectiveness and 

thus aims to identify the best treatment by subgroup, avoiding the term “futility”, as one 

treatment’s futility is another’s success. 

One of the trending issues in RCTs for personalized medicine is the handling of 

multiplicity across subgroups. A well-calibrated RCT will have a Type I error rate of 5% (based 

on two-sided test) or 2.5% (based on one-sided test), and this frequentist calibration is also 

crucial for Bayesian RCTs (Grieve 2016, Jenkins, Stone, et al. 2011). Much effort in group 

sequential designs (Rosenblum, Luber, et al. 2016) is spent controlling the familywise Type I 

error rate because of the multiple points of testing due to both the number of subgroups and the 

number of interim analyses. Random effects linear models for identification of subgroup 

treatment effects with longitudinal data have also been presented (Facts 2018), but little research 

exists on Bayesian models for longitudinal data with subgroup treatment effects identification. A 

more effective modeling approach is to borrow strength across the subgroups via a Bayesian 

hierarchical model. Berry et al. (Berry, Broglio, et al. 2013) concluded that this type of modeling 

provides a better chance at identifying efficacy or futility than the models that promote 
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independence across subgroups. Gamalo-Siebers et al. (Gamalo-Siebers, Tiwari, et al. 2016) 

pointed out that in some instances, hierarchical models suffer from “over-shrinkage” and a 

Dirichlet Process (DP) prior is a possible alternative to the lighter-tailed alternatives. 

Hierarchical models and DP priors are also candidate models in this research.  

This research is the result of a National Center for Advancing Translational Sciences 

(NCATS) national working group with the name of Designing and Analyzing Clinical Trials for 

Personalized Medicine (DACTPerM), brought together to explore the properties of several 

statistical models to be applied to academic medical RCTs for personalized medicine. The 

exploration is done by simulating trials in which several treatments are tested simultaneously 

(e.g., two drugs tested in different sub-populations). Interim analyses are specified at a fixed 

number of subjects enrolled; stopping rules for success are based on posterior probability criteria 

set for individual subgroups. Longitudinal modelling imputation for missing data is also explored 

to improve the study design.   

In Section 2.2, we introduce the motivating study, Patient Assisted Intervention for 

Neuropathy: Comparison of Treatment in Real Life Situations (PAIN-CONTRoLS) (Barohn, 

Gajewski, et al. 2018), and several models for RCTs in personalized medicine are described as 

well. In Section 2.3, operating characteristics for the different possible designs are presented and 

compared. We demonstrate the models’ simulation-based performance. We conclude with 

discussion and conclusions in Section 2.4. 
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2.2 Method 

2.2.1 Motivating Study 

The objective of the PAIN-CONTRoLS study was to identify the most effective medicine 

for reducing pain and improving the quality of life in patients with Cryptogenic Sensory 

Polyneuropathy (CSPN). The study investigates four candidate medicines: nortriptyline, 

duloxetine, pregabalin, and mexiletine. The study found that both nortriptyline and duloxetine 

had the highest posterior probability of being the best treatment among the four candidates. 

However, an exploratory analysis found that nortriptyline and duloxetine had results that varied 

by subject characteristics such as gender, age, and race. Therefore, we wish to design a future 

prospective trial that verifies this subgroup hypothesis via an innovative and efficient Bayesian 

model. The primary endpoint, pain, is an approximately continuous measure of risk reduction in 

pain (scale 0-10) at 12-weeks relative to that at randomization. Specifically, it is equal to 
𝑃0−𝑃12

𝑃0
,  

where 𝑃0 is pain score at randomization and 𝑃12 is the one at 12 weeks.   

2.2.2 Model Specification 

Selecting a model for personalized medicine RCTs is important for optimizing operating 

characteristics. Generally, it is unlikely that one model can be recommended for all RCTs. The 

strategy for model selection is to pick the candidate model with the most desirable operating 

characteristics calculated via simulation. It is also a good strategy to build the candidate models 

from simple to complex. A pairwise independent subgroup model (i.e., a model for one subgroup 

is independent of those for the other subgroups) is a straightforward one to begin with. We also 

consider the hierarchical and cluster hierarchical model since these models adapt depending on 

the variation of the treatment effect across subgroups. 



14 
 

Generally, we assume the endpoints for all subjects from both treatment arms (A or B), 

i.e., both Arm A and B are active arms which means our research is based on effectiveness 

comparison, are normally distributed with identical standard deviations but different means. 

Specifically, observations from arm A are denoted: 

𝑌1𝑔
(𝐴), 𝑌2𝑔

(𝐴), 𝑌3𝑔
(𝐴), 𝑌4𝑔

(𝐴)….  𝑌
𝑁𝑔
(𝐴)
𝑔

(𝐴)
 ~ 𝑁 (𝛾𝑔, 𝜎

2); 

and for arm B: 

𝑌1𝑔
(𝐵), 𝑌2𝑔

(𝐵), 𝑌3𝑔
(𝐵), 𝑌4𝑔

(𝐵)….  𝑌
𝑁𝑔
(𝐵)
𝑔

(𝐵)
 ~ 𝑁 (𝛾𝑔 + 𝜃𝑔, 𝜎

2) 

where g is the index indicating the subgroup and 𝑔 ∈ {1, 2, 3, …𝑔𝑛}. 𝑁𝑔
(𝐴)

 and 𝑁𝑔
(𝐵)

 represent the 

sample size of subgroup g for treatment arm A and B, respectively. The common standard 

deviation is given by σ and the means for arm A and B are 𝛾𝑔 and 𝛾𝑔 + 𝜃𝑔, respectively. Thus, 𝜃𝑔 

represents the treatment difference for subgroup 𝑔.   

Pairwise Independent Model. In a pairwise independence model, separate priors are used 

for each treatment arm such that each 𝛾𝑔 and 𝜃𝑔 have normal prior distributions,  

𝛾𝑔 ~ 𝑁 (𝜇𝑔
(𝐴), 𝜏𝑔

(𝐴),2), 𝜃𝑔 ~ 𝑁 (𝜇𝑔
(𝐵), 𝜏𝑔

(𝐵),2), and 𝜎2 ~ 𝐼𝐺 (
𝜎𝑛

2
,   
𝜎𝜇
2𝜎𝑛

2
). 

We assume 𝜏𝑔
(𝐴),2

  is equal to 𝜏𝑔
(𝐵),2

 , and 𝜎𝜇 and 𝜎𝑛 are the central and weight parameters 

of the inverse gamma distribution. We use weakly informative priors whose information was 

obtained from the example study and inflate the related prior variance values to diminish the 

effect that priors play in the following simulations. The complete conditional distributions of 

treatment difference (𝜃𝑔) and treatment effect from arm A (𝛾𝑔), given data and all other 

parameters, are both normal. Specifically, 



15 
 

𝜃𝑔|𝑌1𝑔
(𝐵). . 𝑌

𝑁𝑔
(𝐵)
𝑔

(𝐵)
, 𝛾𝑔, 𝜎

2, 𝜇𝑔
(𝐵), 𝜏𝑔

(𝐵),2~ 𝑁 (
𝜏𝑔
(𝐵),2

𝑁𝑔
(𝐵)
(𝑌̅𝑔

(𝐵)
−𝛾𝑔)+𝜎

2𝜇𝑔
(𝐵)

𝑁𝑔
(𝐵)
𝜏𝑔
(𝐵),2

+𝜎2
,

𝜏𝑔
(𝐵),2

𝜎2

𝑁𝑔
(𝐵)
𝜏𝑔
(𝐵),2

+𝜎2
) (2.1), 

𝛾𝑔|𝑌1𝑔
(𝐴)
. . . , 𝑌1𝑔

(𝐵)
… , 𝜃𝑔, 𝜎

2, 𝜇𝑔
(𝐴)
, 𝜏𝑔
(𝐴),2

~ 𝑁(
𝜏𝑔
(𝐴),2 (𝑁𝑔

(𝐴)
𝑌̅𝑔
(𝐴)
+𝑁𝑔

(𝐵)
𝑌̅𝑔
(𝐵)

− 𝑁𝑔
(𝐵)
𝜃𝑔) + 𝜎

2𝜇𝑔
(𝐴)

(𝑁𝑔
(𝐴)
+𝑁𝑔

(𝐵)) 𝜏𝑔
(𝐴),2

+ 𝜎2
,

𝜏𝑔
(𝐴),2

𝜎2

(𝑁𝑔
(𝐴)
+ 𝑁𝑔

(𝐵)) 𝜏𝑔
(𝐴),2

+ 𝜎2
) (2.2) 

Hierarchical Model. The hierarchical model’s borrowing strength across subgroups is 

achieved through shared prior distributions for each treatment. Consequently, 𝜇𝛾
(𝐴)

, 𝜇𝛾
(𝐵)

 and 

𝜏𝛾
(𝐴),2, 𝜏𝛾

(𝐵),2 are considered random parameters from a set of shared distributions. For treatment 

arm A (𝛾𝑔):  

𝛾𝑔 ~ 𝑁 (𝜇𝛾
(𝐴), 𝜏𝛾

(𝐴),2), 𝜇𝛾
(𝐴) ~ 𝑁 (𝜇0, 𝜎0

2), 𝜏𝛾
(𝐴),2 ~ 𝐼𝐺 (

𝜏𝑛

2
,   
𝜏𝜇
2𝜏𝑛

2
); 

and for the difference between treatment arms in subgroup 𝑔 (𝜃𝑔):  

𝜃𝑔 ~ 𝑁 (𝜇𝛾
(𝐵)
, 𝜏𝛾
(𝐵),2

), 𝜇𝛾
(𝐵)
 ~ 𝑁 (𝜇0, 𝜎0

2), 𝜏𝛾
(𝐵),2

~ 𝐼𝐺 (
𝜏𝑛

2
,   
𝜏𝜇
2𝜏𝑛

2
). 

Here, 𝜇𝛾
(𝐴)

 and 𝜇𝛾
(𝐵)

are independent and identically distributed, as are 𝜏𝛾
(𝐴),2

 and 𝜏𝛾
(𝐵),2

. 

We specify the values of the hyperparameters 𝜇0, 𝜎0
2, 𝜏𝑛 and 𝜏𝜇

2 when simulation is executed. The 

expressions of the completely conditional distributions of the treatment difference (𝜃𝑔) and the 

treatment effect from arm A (𝛾𝑔) given data and all other parameters are identical to (2.1) and 

(2.2) from the pairwise independent model. However, the complete conditional distributions of 

𝜇𝛾
(𝐴) and 𝜇𝛾

(𝐵)
 given data and all other parameters are given by  
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𝜇𝛾
(𝐵)|𝜃1. . 𝜃𝑔𝑛 , 𝜏𝛾

(𝐵),2, 𝜇0, 𝜎0
2~ 𝑁 (

𝜎0
2 ∑ 𝜃𝑔

𝑔𝑛
𝑔=1 +𝜏𝛾

(𝐵),2
𝜇0

𝑔𝑛𝜎0
2+𝜏𝛾

(𝐵),2 ,
𝜏𝛾
(𝐵),2

𝜎0
2

𝑔𝑛𝜎0
2+𝜏𝛾

(𝐵),2) (2.3); 

𝜇𝛾
(𝐴)|𝛾1. . 𝛾𝑔𝑛 , 𝜏𝛾

(𝐴),2, 𝜇0, 𝜎0
2~ 𝑁 (

𝜎0
2 ∑ 𝛾𝑔

𝑔𝑛
𝑔=1 +𝜏𝛾

(𝐴),2
𝜇0

𝑔𝑛𝜎0
2+𝜏𝛾

(𝐴),2 ,
𝜏𝛾
(𝐴),2

𝜎0
2

𝑔𝑛𝜎0
2+𝜏𝛾

(𝐴),2) (2.4). 

Cluster Hierarchical Model. The cluster hierarchical model is a non-parametric Bayesian 

method that uses a Dirichlet process with scale parameter, 𝛼, and base distribution, 𝐺0. 

Specifically, a random distribution, 𝐺, is drawn from the base distribution, 𝐺0. The scale 

parameter 𝛼 determines the discreteness of the random distribution 𝐺, and it varies from a single 

discrete point mass to the base distribution 𝐺0 as 𝛼 goes from zero to infinity. The random 

distribution 𝐺 is considered a combination of clusters, and the data from one subgroup are drawn 

from some certain cluster. In the DACTPerM study, for subject i in subgroup 𝑔 from cluster 𝑤𝑐, 

the subject’s response is given by 

𝑌𝑖𝑔| 𝑤𝑐~ 𝐹(𝑤𝑐) 

𝑤𝑐 ~ 𝐺 

𝐺 ~ 𝐷𝑃 (𝛼, 𝐺0); 

where 𝐺0 = 𝑁 (𝜇0, 𝜎0
2), and 𝜇0 and 𝜎0

2 are identical to those from the hierarchical model 

presented previously. In addition, 𝐹(𝑤𝑐) = 𝑁 = ((𝜇𝛾
(𝐴) + 𝜇𝛾

(𝐵))|𝑤𝑐 , 𝜏𝛾
2|𝑤𝑐), and 𝜇𝛾

(𝐴) and 

𝜇𝛾
(𝐵) have the same interpretation as those from the hierarchical model. Here, 𝜏𝛾

2 is shared across 

arms A and B. Detailed specifications regarding the three models and derivations can be found in 

the appendix 2.1.   
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2.2.3 Study Design Considerations  

The study design is assessed by the properties and performance of candidate models 

under varying assumptions and conditions prior to study execution. However, when simulating a 

clinical trial, apart from the analysis model and its parameters, a variety of functional factors 

must be considered to obtain reliable results. Those factors include, but are not limited to, the 

number of interim analyses, visit information, treatment allocation ratios, and accrual and drop-

out rates. We define all the functional input as functional parameters, and those directly related 

to the response models, longitudinal modeling, and imputation as model parameters.  

Design Input - Models for treatment. As discussed in Section 2.2.2, three candidate 

models are considered for the statistical analysis plan and protocol: a pairwise independent 

model, a hierarchical model, and a cluster hierarchical model. All priors are specified based on 

the PAIN-CONTRoLS study.     

Design Input - Interim analysis and early evaluation criteria. Interim analysis is 

important for the execution of an adaptive clinical trial, as it provides the means by which the 

design uses accumulating data to adapt. In this simulation, scenarios that include and exclude 

interim analysis are considered to assess their impact on operating characteristics. If interim 

analysis is included, all related early evaluation criteria are specified simultaneously for all 

subgroups. Specifically, the early success definition is that the posterior probability of one arm 

better than the other one is greater than the criterion (i.e. threshold) since both arms are active. 

I.e., the early success definition is that 𝑃(𝜃𝑔 > 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔, which indicates 

Arm B is successful; or, 𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔, which indicates Arm A is 

successful. This study will stop for early success when it meets the early success definition.  
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Design Input - Final evaluation criteria. The final success criteria, like the early success 

criteria, are a function of the posterior probability one treatment arm being better than the other. 

Moreover, the final evaluation threshold values differ since we would like to control the overall 

type I error equal to 5%. Specifically, the final success definition is that the posterior probability 

of one arm better than the other one is greater than the threshold for some subgroup. I.e., the final 

success definition is that 𝑃(𝜃𝑔 > 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔, which indicates Arm B is 

successful; or, 𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔, which indicates Arm A is successful.  

To sum up, if no interim analysis is involved in the study design, the final success 

definition is that 𝑃(𝜃𝑔 > 0|𝐷𝑎𝑡𝑎) > criterion for some 𝑔; or, 𝑃(𝜃𝑔 < 0|𝐷𝑎𝑡𝑎) > criterion for 

some 𝑔. The type I error is controlled via the formula (2.5) below:  

Pr[𝑃(𝜃𝑔 > 0|𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻0] + 

Pr [𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻0] (2.5), 

where 𝐻0 is correspondent to no effect scenario (introduced in Section 2.2.3 - Simulation 

Description), and it means there is no treatment differences between Arm A and B for all 

subgroups. Criterion is adjusted to meet the type I error equal to 0.05 for each study design. The 

power is obtained via the formula (2.6) below: 

𝑃𝑟[𝑃(𝜃𝑔 > 0|𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻1] + 

𝑃𝑟[𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis| 𝐻1] (2.6), 
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where 𝐻1 is correspondent to alternative scenarios (introduced in Section 2.2.3 - Simulation 

Description), and it means there is treatment differences between Arm A and B for some/all 

subgroups. Given one study design, the thresholds for alternative scenarios are identical to those 

from no effect scenario. 

If interim analysis is involved in the study design, the early success definition is 𝑃(𝜃𝑔 >

0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔; or, 𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔. The final success 

definition is 𝑃(𝜃𝑔 > 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔; or, 𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for 

some 𝑔. The type I error is controlled via the formula (2.7) below: 

Pr [𝑃(𝜃𝑔 > 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔 at interim analysis|𝐻0] + 

Pr [𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔 at interim analysis|𝐻0] + 

Pr[𝑃(𝜃𝑔 > 0|𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻0] + 

Pr [𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻0] (2.7), 

The power is obtained via the formula (2.8) below: 

Pr [𝑃(𝜃𝑔 > 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔 at interim analysis|𝐻1] + 

Pr [𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for all 𝑔 at interim analysis|𝐻1] + 

Pr[𝑃(𝜃𝑔 > 0|𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻1] + 

Pr [𝑃(𝜃𝑔 < 0│𝐷𝑎𝑡𝑎) > criterion for some 𝑔 at final analysis|𝐻1] (2.8). 
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The meanings of 𝐻0 and 𝐻1 are identical to those introduced under the study designs 

without interim analysis involved.  

Given a specific study design involved in interim analysis, the thresholds of interim and 

final analyses are different, and they are twisted based on the proportions of type I error spending 

on interim and final analyses. Boolean logic “and” for each subgroup criterion is applied at the 

interim analysis, and “or” is applied at the final analysis. Moreover, we would like to control 

type I error less than 0.005 spending on interim analysis. These strategies will result in a longer 

study and provide more information for the researcher to draw the conclusion. The specific 

criteria value for interim and final analyses are provided in section 2.2.3 - Simulation Description 

(Table 2-5). Still, one the thresholds of interim and final analyses are identified under the no 

effect scenario, they will be identically applied to the alternative scenarios. 

Design Input - Rates of accrual and drop out. The accrual rate is an essential 

characteristic of a clinical trial since it determines trial duration. In adaptive designs, the accrual 

rate is even more important because the length of time between subject accrual and 

ascertainment of response determines the role of longitudinal data modeling in optimizing 

outputs. The accrual rate, together with drop-out rates, determine how many subjects are retained 

in the study. These rates for the simulation are based on the PAIN-CONTRoLS study. 

Virtual endpoints. The null scenario (no effect) is used to calibrate the study design to a 

Type I error rate of approximately 5%. This is done via an iterative process that updates early 

and final evaluation criteria until the Type I error rate approaches but does not exceed 5%.  

Several alternative hypothesis scenarios that use the same input parameters but have varying 

response values are investigated.  
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Integrated two component prediction (ITP) is used for virtual endpoint simulation when 

longitudinal modeling is incorporated into the design. ITP allows endpoints to follow an 

exponential model over time with a subject-specific random effect to scale the visit values to the 

visit-specific specification of subgroup responses. Additionally, ITP does not affect the 

distribution of the final endpoint (Facts 2018). Three elements—the mean final endpoint, the of 

inter-subject ‘noise,’ and the noise at the current visit—along with the exponential function’s 

visit time and shape parameters determine the longitudinal data simulation at each visit (Facts 

2018). Complete ITP specifications are in Appendix 2.2.  

Design Input - Imputation via longitudinal modeling. Longitudinal modeling is also 

applied for data imputation, and it is useful whether the trial is fixed or adaptive. Longitudinal 

modeling can be used in a fixed trial to impute endpoint values for patients that have dropped out 

of the study. Moreover, in an adaptive design, it can be used for imputing endpoints that have not 

yet been observed for an interim analysis, allowing the study to maximize the use of data to more 

efficiently adapt.  

Simple linear regression (SLR) for Bayesian multiple imputation is used to model the 

relationship between responses observed at each pre-final visit and the unobserved (future) final 

visit. Specifically, for the future final response of subject i in subgroup g and treatment arm j,  

𝑌𝑖,𝑔
(𝑗)
| 𝑦𝑖𝑡,𝑔

(𝑗)
~ 𝑁 (𝛼𝑡 + 𝛽𝑡𝑦𝑖𝑡,𝑔

(𝑗)
, 𝜆𝑡
2), 

 𝛼𝑡 ~ 𝑁 (𝛼𝜇, 𝛼𝜎
2), 𝛽𝑡 ~ 𝑁 (𝛽𝜇, 𝛽𝜎

2), 𝜆𝑡
2~ 𝐼𝐺 (

𝜆𝑛

2
,
𝜆𝜇
2𝜆𝑛

2
), 
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where 𝛼𝑡 and 𝛽𝑡 are the intercept and slope at visit time t, and 𝑦𝑖𝑡,𝑔
(𝑗)

 is the observed response for 

the subject i at visit time t. The model priors are specified identically across all visits (see Section 

2.2.3 - Simulation Description).  

The subjects’ pending endpoints at interim analysis or missing ones at final analysis are 

imputed by the predicted distribution generated from multiple imputation via the SLR model. 

The imputed value from the predicted distribution captures both the uncertainty in the estimate of 

the parameters of the SLR model and the uncertainty of the prediction of the endpoint given 

particular parameter values (Facts 2018). 

Design Input - Allocation. Unequal allocation may be applied in some studies where 

sample size or randomization ratio adjustments are performed. Here, a 1:1 randomization ratio of 

subjects to the two treatment arms is fixed within each subgroup.   

Design Output - Subgroup power. Power can also be calculated in Bayesian studies via 

simulation. Subgroup power is defined as the probability that a subgroup meets the success 

criteria under the assumption that the subgroup responses from the two treatment arms are 

different.  

Design Output - Overall power (study success). Simulations track the proportion of 

studies that show early success and final success based on the evaluation criteria (See Section 

2.2.3- Simulation Description). Overall power is calculated via the summation of both 

proportions, i.e., early and late success proportions. Both subgroup and overall power provide 

important model performance information and thus make the model assessment comprehensive.   
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Design Output - Sample size. Sample size is another key characteristic since it directly 

relates to the cost of running a trial. Thus, a study design that results in a lower sample size but 

similar power to a competing design is desirable. Compared to a fixed trial, an adaptive design 

can result in smaller sample sizes due to early stopping criteria.  

Design Output - Trial duration. The trial duration is highly dependent upon accrual and 

sample size goals. It serves as a complimentary operating characteristic that the sponsor may 

consider when calculating trial cost prior to study execution. 

Simulation Description. The simulation is executed for each study design in terms of an 

analysis model, interim analysis, and longitudinal modeling. Three analysis models are 

considered: pairwise independent, hierarchical, and cluster hierarchical.  For each model, interim 

analysis and longitudinal modeling are either included or not. As Table 2-1 below indicates, the 

simulation is composed of three factors; there are twelve different study designs for the 

simulations.  

Table 2-1 Levels of the three factors for study design 

Factor 1: Model 
Factor 2: interim analysis 

involvement 

Factor 3: Longitudinal modeling 

involvement 

Pairwise independent 

Hierarchical 

Cluster hierarchical 

Yes 

No 

Yes 

No 

To assess the designs comprehensively, we propose several alternative hypothesis 

scenarios that mimic the most frequent responses that can occur in real cases, and each scenario 

assumes a different response profile under two treatment arms. The specific scenarios include 

moderate and homogeneous effect, small and homogeneous effect, spread, opposite, and one 

nugget. Moreover, Arm B is assumed to have the effect for all the scenarios for the convenience 

of related formula and distribution specification. Supposing Arm A has the effect, the design 
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outputs will be symmetric, as the related ones in which Arm B has the effect. Tables 2-2 and 2-3 

present the specific virtual scenarios for four or eight patient subgroups. We assume the virtual 

response, a continuous measure of pain reduction, is normally distributed, in which higher values 

indicate better response to treatment. A common standard deviation (0.3) is specified for each 

subgroup of the two arms across all the scenarios, and this value is derived from the motivated 

example.  

Table 2-2 Four subgroup virtual response under six virtual treatment effect scenarios 

Scenario* Treatment Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 

No effect 
A 0 0 0 0 

B 0 0 0 0 

Moderate and 

homogeneous effect  

A 0 0 0 0 

B 0.17 0.17 0.17 0.17 

Small and 

homogeneous effect  

A 0 0 0 0 

B 0.085 0.085 0.085  0.085 

Spread 
A 0 0 0 0 

B 0.05 0.1 0.2 0.25 

Opposite 
A 0.17 0.17 0 0 

B 0 0 0.17 0.17 

One nugget 
A 0 0 0 0 

B 0 0.17 0 0 

*: The standard deviation of each subgroup virtual response for each scenario is 0.3. 

Weakly informative priors that reflect the PAIN-CONTRoLS study are applied. In the 

cluster hierarchical model, a larger DP scale parameter will result in the random distribution 

being close to the base distribution, whereas a smaller DP scale parameter will result in a more 

discrete (point mass) random distribution. To differentiate it from the hierarchical model, the DP 

scale parameter is set to 2. All subgroups are assumed to have identical priors for the coefficient 

and intercept of SLR within each treatment arm. Though the prior mean values of the coefficient 

and intercept were obtained from PAIN-CONTRoLS, the prior standard deviation values of the 

coefficient and intercept were increased to 0.4 and 0.1 from 0.04 and 0.01, respectively, to 
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reduce the impact of the motivating study data on simulation results. Table 2- 4 presents the 

specific values for all priors involved in the simulation.  
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Early and final success criteria are designed to identify subgroup effects and study 

success.  Boolean logic “and” is applied for the subgroup criterion at the interim analysis, and 

“or” is applied at study completion (specific criteria stated in Section 2.2.3 - Design Inputs). This 

results in a longer study and more conservative analysis. The concrete values for the early and 

final evaluation criteria are shown in Table 2- 5. Operating characteristics such as power, sample 

size, and study duration under other effective virtual treatment scenarios with identical 

evaluation criteria from related no effect scenario are obtained accordingly via the simulations. 

Table 2-6 presents the functional parameter values for the simulation, which are derived 

from PAIN-CONTRoLS. Subgroup sample sizes are set to 100, and the final sample size is 

determined via simulation with the consideration of Type I error and power. Study duration is 

specified as 12 weeks, and interim analysis will be executed once half the total number of 

subjects are enrolled. The study assumes three visits, with a 4-week lapse between consecutive 

visits. Each study design is simulated 10000 times. 

 

2.3. Results  

Subgroup power. For the designs with four subgroups without interim analysis or 

longitudinal modeling (Figure 2-1), the hierarchical model performs best in all the scenarios. The 

cluster hierarchical model performs similarly with mildly less power compared to the 

hierarchical model in the scenarios of opposite and one nugget. Similar findings are identified 

from Figure 2-2 which presents the designs with four subgroups without interim analysis and 

with longitudinal modeling. Each of the three models is with mildly higher power compared to 

that in each scenario under the design without interim analysis and without longitudinal 

modeling.   
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Table 2-6. Values of input functional parameters for study design 

Functional factor Value 

Sample size per subgroup 100 

Study duration 12 Weeks 

Interim analysis execution time* 
200 and 400 subjects enrolled for 

4 and 8 subgroups 

Visit times and duration between two consecutive visits* 
3 visits; 4 weeks between 

visits 

Allocation ratio of two arms within each subgroup 1:1 

Accrual rate   4 /week 

Drop-out rate 10 % 

*: Interim analysis execution time, specific visit times and duration between two consecutive 

visits are only involved when the study designs are with interim analysis and/or longitudinal data 

modeling. 

From Figure 2-3, which presents the subgroup power at the designs of three models with 

interim analysis and without longitudinal modeling, it can be observed that the three models’ 

performance order is identical to that from Figure 2-1. Each model is with a little less power 

compared to that in each scenario in Figure 2-1.  

In the designs of three models with interim analysis and with longitudinal modeling, the 

hierarchical model still performs best in all scenarios, and the performances of cluster 

hierarchical and pairwise independent model come to the second and third place. The power 

differences from hierarchical and cluster hierarchical models in one nugget scenario is larger 

than those from Figure 2-1 to 2-3. 

When subgroup number increases to 8, the subgroup power of the hierarchical model is 

still the highest within each subgroup of each scenario under the batch designs with identical 

involvement of interim analysis and longitudinal modeling. The power of the cluster hierarchical 

model for all subgroups within each subgroup under each design batch is lower than that from 

the hierarchical model but higher than that from a pairwise independent model. 
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Overall power (Study success). It is easy to directly obtain the study power for each of 

the scenarios since it is equal to the final success proportion output from the simulation except 

for the opposite case. In the opposite scenario for four and eight subgroups, the overall power is 

calculated by the summation of proportion of simulated studies with any of subgroups in which 

the posterior probability of response from one arm higher than the response from other one 

satisfying the success criteria. The logic for this calculation is that there exists two treatment 

comparators and the study is successful if either arm within any subgroup meets the criteria. The 

overall power for the one nugget is consistent to the power from subgroup 2 in Figure 2-1 to 2-8 

presenting the subgroup power of related designs under different scenarios for both four and 

eight subgroups.  

In the designs of three models without interim analysis and longitudinal modeling, 

overall power is high and quite similar to the three models under the scenarios of the moderate 

and homogeneous effect and spread. Under the opposite scenario, the power of the hierarchical 

model is still high, and the power goes down slightly but is still high for the cluster hierarchical 

and pairwise independent models. The power of the hierarchical model under the all scenarios of 

the small and homogeneous effect,  and one nugget is the highest. The power of the cluster 

hierarchical model under the same two scenarios decreases slightly, and the power of the 

pairwise independent model under the two scenarios is lower and with relatively larger 

differences compared to that from the hierarchical model. Similar findings are identified for the 

designs of three models without interim analysis and with longitudinal modeling. Each of the 

three models is with mildly higher power compared to that in each scenario under the design 

without interim analysis and without longitudinal modeling.    
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In the designs of three models with interim analysis and without longitudinal modeling, 

hierarchical and cluster hierarchical models perform similarly and have higher power than that 

for a pairwise independent model under each scenario.     

In the designs of the three models with interim analysis and with longitudinal modeling, 

the hierarchical model has the highest power compared to the other two models in each scenario, 

and cluster hierarchical model performs closely to the hierarchical model with mildly decreased 

power. Performance of the pairwise independent model, same as that from the other design 

batch, is with the lowest power in each scenario. The same or quite similar comparison results 

are observed from eight subgroups.  

Sample size. Figure 2-11 & 2-12 present the expected sample size of designs under 

different scenarios for both four and eight subgroups. For the design batches of three models 

without interim analysis and with/without longitudinal modeling, the sample size is fixed as 100 

subjects per subgroup. For the designs of the three models with interim analysis and without 

longitudinal modeling under the moderate and homogeneous effect and spread scenarios, the 

expected sample size dropped by 156 and 126 for hierarchical model, and by 141 and 115 for 

cluster hierarchical model, and by 119 and 104 for pairwise independent model. For the designs 

of the three models with interim analysis and with longitudinal modeling under the moderate and 

homogeneous effect and spread scenarios, the expected sample size approximately dropped by 

167 and 134 for hierarchical model, and by 154 and 124 for cluster hierarchical model, and by 

134 and 113 for pairwise independent model. The same trend is also observed under the small 

and homogeneous effect scenario, but all three models have higher expected sample size 

compared to the relevant one from the moderate and homogeneous effect and spread scenarios. 

However, under the scenarios of opposite and one nugget, pairwise independent is the best, and 
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the other two models have higher expected sample size and perform similarly. The average 

expected sample sizes are approximately 330 and 360 for the two scenarios under the designs of 

the two models with interim analysis and without longitudinal modeling. The average expected 

sample sizes are approximately 310 and 360 for the two scenarios under the designs of the two 

models with interim analysis and with longitudinal modeling. Similar trends and comparison 

results are observed for eight subgroups.   

 

Figure 2-7 expected sample size for study design under four subgroups. M = model 

without interim analysis and without longitudinal modelling imputation, M + LG = model 

without interim analysis and with longitudinal modelling imputation, M + IA = model 

with interim analysis and without longitudinal modelling imputation, M + IA + LG = 

model with interim analysis and with longitudinal modelling imputation. 
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Figure 2-8 expected sample size for study design under eight subgroups. M = model 

without interim analysis and without longitudinal modelling imputation, M + LG = model 

without interim analysis and with longitudinal modelling imputation, M + IA = model 

with interim analysis and without longitudinal modelling imputation, M + IA + LG = 

model with interim analysis and with longitudinal modelling imputation. 

 

Trial duration. Figure 2-13 & 2-14 presents the mean trial duration of the study designs 

under different scenarios for both four and eight subgroups. The same or similar findings of three 

models under different scenarios for both four and eight subgroups, as those from sample size 

observed since the trial duration is highly correlated to the sample size.   
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Figure 2-9 mean study duration for study desgin under four subgroups. M = model 

without interim analysis and without longitudinal modelling imputation, M + LG = model 

without interim analysis and with longitudinal modelling imputation, M + IA = model 

with interim analysis and without longitudinal modelling imputation, M + IA + LG = 

model with interim analysis and with longitudinal modelling imputation 
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Figure 2-10 mean study duration for study desgin under eight subgroups. M = model without 

interim analysis and without longitudinal modelling imputation, M + LG = model without 

interim analysis and with longitudinal modelling imputation, M + IA = model with interim 

analysis and without longitudinal modelling imputation, M + IA + LG = model with interim 

analysis and with longitudinal modelling imputation. 

Overall power comparison between hierarchical model and two independent sample t-

test. We also explored the overall power (study success) comparison between the hierarchical 

model and an approach that ignores the different subgroup effects and uses a classical-frequentist 

method—t-test without the involvement of interim analysis and longitudinal data. Table 2 - 7 

below presents the concrete values from the two approaches. The powers of the Bayesian 

hierarchical model are much higher for the opposite and one nugget scenarios. This is because 
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the subgroup treatment effects for these two scenarios are a challenge to identify at the study 

level for frequentist approach.  
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2.4. Discussion and Conclusion 

This paper explores the performance of three Bayesian models—pairwise independent, 

hierarchical, and cluster hierarchical—under different virtual responses for subgroups, including 

versions with interim analysis and longitudinal modeling.  For all scenarios under each design, 

the hierarchical model generally performs better than the other two. This is because the 

hierarchical model is able to analyze the data using a mixture model, flexibly borrowing 

information from all subgroups and shrinking the subgroup means towards the central one, 

according to how similar they appear. The final output is sensitive to prior distribution 

specification and related prior value setting, and thus the hyperprior setting is an essential factor 

in achieving the hierarchical model property, and different settings may affect the performance 

of the hierarchical model. The prior setting reflects the belief about the parameter before data is 

available. Informative prior, usually represented by location and scale parameters, is derived 

from researchers’ clear understanding or the availability of highly relevant data. Otherwise, non-

informative prior or weakly informative prior should be specified. The conjugate property of 

prior is another consideration when setting the prior from computing perspective. In our 

research, we incorporated the information from the example study and set the hyperprior 

following a normal distribution with mean and standard deviation equal to 0 and 0.1, which is 

weakly informative prior and conservative and leads to trials designs that mostly rely on data 

collected from the trial and not the prior. It is pronounced in the simulation results of the spread 

scenario of three models with interim analysis and longitudinal modeling involvement, the 

hierarchical model performs excellently in terms of reducing sample size by 40 percent and 

maintaining same power, compared to the simulation results of three models without interim 

analysis and longitudinal modeling involvement. For the scenarios of the moderate and 
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homogeneous effect and small and homogeneous effect, the hierarchical model still provides an 

acceptable power and a decreased sample size, compared to the models with no interim analysis. 

Additionally, as the subgroup number expands from four to eight, the improvement of the 

hierarchical model is the most among the three models. 

We also explored the study designs under the six scenarios for two subgroups. The 

performance of each model has a similar trend as that from four or eight subgroups in terms of 

subgroup power, overall power, sample size, and study duration. However, the three model 

performance differences for two subgroups are not as large as those from four or eight 

subgroups. It is mainly because a smaller number of subgroups limits the borrowing property of 

the hierarchical model. We consequently did not present them in this paper.   

Cluster hierarchical model is a good candidate for hierarchical model backup. Under 

some cases of the opposite or one nugget scenarios, cluster hierarchical model even performs 

better than a hierarchical one. Generally, clustered hierarchical model considers there are some 

“clusters” that exist among the subgroups, and subgroups in the same cluster have considerable 

influence on each other than they do on subgroups from other clusters (Facts 2018). DP scale 

parameter plays a more critical role in the cluster hierarchical model since as DP scale parameter 

goes from zero to infinite, the random distribution drawn from the base distribution behaves 

from very discrete to asymptotical to base distribution, i.e., the cluster number correspondingly 

changes from one to infinity. Consequently, when the DP scale parameter is set as greater than 

zero, cluster hierarchical model dilutes the impact of the hyperpriors, and it makes the cluster 

hierarchical model robust to the different value setting for hyperpriors. In our study, we set the 

DP scale parameter equal to two since the subgroup number is either four or eight. Thus, cluster 
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hierarchical model is a good choice when no substantial evidence exists to indicate the subgroup 

treatment difference, but the investigator believes it should exist.      

Interim analysis based on ongoing study data provides valuable information for the 

researcher to take related actions, such as adjusting the dosage, randomization ratio, sample size, 

or even stop the study as either success or futility in case there is strong proof to demonstrate it. 

In our DACTPerM, we keep interim analysis as one important input component of the design, 

which will decrease the sample size and mean study duration but maintain similar power under 

scenarios of moderate and homogeneous effect and spread for hierarchical and cluster 

hierarchical model. Type I error needs to be adjusted accordingly for interim and final analysis to 

meet the criteria that the overall Type I error rate is 0.05. We spend less than 0.005 proportion of 

Type I error for interim analysis and 0.045 to 0.05 for final analysis. Additionally, we define the 

early success under the condition that all subgroups meet the related thresholds, and the final 

success under the condition that some certain subgroup meet the related threshold. The initial 

twisting value (0.9) of the threshold at interim analysis meets our strategy. It is smaller, 

compared to those from the final analysis. For the final one, we need to calibrate it to meet the 

overall type I error, the sum of the proportions spending on both interim and final analysis, equal 

to 0.05. The trade-off between power and expected sample size is made in the scenarios of 

opposite and one nugget. The scale of trade-off is adjusted via the early stopping criteria rather 

than interim analysis itself. More conservative criteria will result in slight power loss, more 

subject enrolled and a longer study.  

Longitudinal modeling applied to clinical data is reasonable, and therefore, we applied it 

as one design factor to provide more study information and aid in the conclusion of subgroup 

treatment effect. ITP and SLR are used for longitudinal data simulation and imputation. There 
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are other methods for longitudinal data imputation. For example, a hierarchical model is a 

common approach, and its rationale is to generate correlated data within the visit via random 

effect. Based on the data from the example study, which implied the medicines work slowly and 

stably since earlier visits, longitudinal data simulated via ITP provides a medical process much 

closer to the natural process. Specifically, the responses before final visit slowly achieve the final 

one and maintain stably with a small variance. There are also other methods to carry out the 

longitudinal data imputation, like Last Observation Carried Forward (LOCF), kernel density 

model which is a good candidate in a case where no model assumption for the responses between 

interim and final ones, and so on. From the example study, the data indicates that SLR fits the 

data well, and provides informative priors for imputation. That SLR is straightforward and easy 

to understand is also a contribution for choosing it as the final imputation method. We are also 

the first to use ITP and SLR for longitudinal data simulation and imputation.  

Another important consideration of the longitudinal modeling application is rate of 

accrual and dropout (i.e., missing data). Lower accrual rate makes the application difficult to 

improve the performance since less data information is available when execution of the interim 

analysis. It is also necessary to specify a realistic dropout rate since an appropriate longitudinal 

modelling to impute the missing data will improve the design operation characteristics. 

Moreover, different imputation approaches will be applied based on the different missing data 

mechanism. In our research, we assume the data is missing at random (MAR). Meanwhile, it is a 

interesting topic for future research to explore the different imputation methods for other 

mechanism, like missing not at random (MNAR). 

Generally, when referring Bayesian adaptive clinical design, it usually means the 

adjustment of treatment dosage, randomization ratio, sample size, and so on. However, we do not 
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apply those in our DACTPerM project since it is based on Bayesian RAR design in which we 

adjust the randomization ratio based on interim analysis results. The main objective of 

DACTPerM is to identify the appropriate model to analyze the non-consistent treatment effect 

among different subgroups. All of the models we proposed are Bayesian related since our 

assumption is that there should have been some proof to indicate that the treatment effect is 

different among the subgroups before designing related subgroup analysis. The information from 

the proof should be served as the priors to facilitate the final findings. In consideration of the 

factors above, we propose and finalize our research, although there are many other interesting 

topics, even though we narrowed down the subgroup analysis for different treatment within the 

Bayesian adaptive design. 

The expected sample size and power are determined by simulation in our research. 

Specifically, we propose 100 per subgroup, and we tune the criteria of the posterior probability 

of treatment difference between two arms under the no effect scenario to achieve Type I error 

rate equal to 0.05. It is calculated via the summation of the proportion with simulated studies 

identified as successful under no effect scenario. The identical criteria then applied to other 

alternative response scenarios under the same study design to have the expected sample size and 

power via the simulation. 

Lastly, we explored the three models with interim analysis and longitudinal data model in 

a case where the endpoint is continuous. However, one can explore and apply the approach to 

categorical or time to event data. To sum up, the hierarchical model with interim analysis is a 

relatively better approach for different subgroup treatment effect identification, and cluster 

hierarchical model with interim analysis is a good backup for hierarchical model in case there is 

no sufficient information for hyperpriors. 
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Chapter 3: Historical Control Bayesian Designs Incorporating Historical Control 

Borrowing in Clinical Trials 
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Other Contributors for this Chapter: Zhaowei Hua, Geng Chen, Byron Gajewski 

Abstract 

Incorporating historical control to concurrent study can increase the power, decrease the 

sample size, minimize the patient burden. It is beneficial to patients and investigators. However, 

the appropriate borrowing method for the study design should be researched in terms of desired 

operating characteristics. 

We investigate several Bayesian designs incorporating historical control borrowing: 

power prior via overlapping area, commensurate prior, and some other reference methods. The 

impact of historical data type and different types of the threshold used in Bayesian decision rule 

are also explored. The designs’ performance in terms of power as a function of treatment effect, 

sample size, and posterior summary are investigated via simulation.  

We found that it is a good consideration to apply the power prior adaptive design with 

power parameter determination via overlapping area of posterior distribution under certain 

values of true response rates of concurrent control, historical control, and treatment effect. Study 

design with commensurate prior is an admissible choice as well, however, appropriate priors 

need to be specified.       

Key words: historical control borrowing, power prior, overlapping area, commensurate 

prior, adaptive design, threshold 
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3.1 Introduction 

There are several researches that incorporate external information into the current study. 

The external information may come from real world data (RWD, such as medical chart (Clarke 

and Loudon 2011, Salman, Beller, et al. 2014), patient registry (Gliklich, Dreyer, et al. 2014, 

Richesson 2011), natural history (NH) trial (Groft 2010)) and completed clinical trials (Bhuyan, 

Chen, et al. 2015). It is beneficial to patients, especially for those studies aim of rare diseases 

treatment or unethical to provide placebo to the patients. The Food and Drug Administration 

(FDA) has released guidance to regulate how to design a trial that borrows historical information 

(Fda. 2019). It is appealing for pharmaceutical companies since usually there are large amount of 

related clinical data available before a new one is conducted, especially for the control arm (Liu 

2018). More resources can be used for the treatment arm. 

The use of a historical control has some desired properties, such as increase in power, 

decrease the in size (Liu 2018), minimize the patient burden (Lim, Walley, et al. 2018), etc. The 

important thought of historical control borrowing is how to connect the historical data to 

concurrent data. There are several structures of the connection (Spiegelhalter, Abrams, et al. 

2004): full equal, discounted equal, biased, similar (i.e., exchangeable), and functional 

dependent. Then the related methods were derived and applied accordingly. 

The test-then-pool is a straightforward and frequentist method to borrow the historical 

control (Ghadessi, Tang, et al. 2020, Viele, Berry, et al. 2014). The idea of this method is to 

combine the historical control with concurrent control if the null hypothesis of equality is not 

rejected at significance level. In such case, the historical control is treated identically as the 

concurrent ones. Otherwise, historical control data will be totally ignored.  
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𝐻0: 𝜃ℎ𝑐 = 𝜃𝑐𝑐 vs.  𝐻1 : 𝜃ℎ𝑐 ≠ 𝜃𝑐𝑐 

It is the basic form of dynamic borrowing method. The important consideration to apply 

this approach is how to define the significance level of the equality hypothesis, and to measure 

the similarity of historical control and concurrent control accurately. 

The propensity score is a method that can remove the effects of confounder to borrow the 

external historical control. It is essentially a conditional probability of each patient being 

assigned to the treatment arm based on the covariates (Austin 2011, Rosenbaum and Rubin 

1984). There are generally four different propensity score methods - propensity score matching, 

stratification (or subclassification) on the propensity score, inverse probability of treatment 

weighting (IPTW) using the propensity score, and covariate adjustment using the propensity 

score (Austin 2011). In practice, an open-label and single arm study used the propensity score to 

evaluate the efficacy and safety of blinatumomab (i.e., Blincyto) in patients of minimal residual 

disease positive (MRD+) B-cell precursor acute lymphoblastic leukemia (ALL). It was approved 

by FDA (Ghadessi, Tang, et al. 2020). However, FDA commented that propensity score method 

can yield biased estimates due to the ignorance of important unmeasured or unknown covariates. 

Moreover, the comparability between groups after propensity score weighted analyses is not 

clear because of the small sample size. Consequently, it is necessary to have sufficient data when 

applying propensity score. 

The hierarchical model is explored and researched in historical control borrowing 

(Spiegelhalter, Abrams, et al. 2004, Viele, Berry, et al. 2014). The general idea is that the 

parameters of control data from different studies follow a prior distribution. The borrowing and 

shrinkage properties of hierarchical model are used to estimate the parameter of concurrent data. 
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Attention should be placed to the prior variance specification. The prior variance represents the 

degree of heterogeneity of the control parameters among the studies. The different type of priors 

(e.g., informative prior (Gelman 2006) or non-informative prior (Lambert, Sutton, et al. 2005)) 

reflects the similarity among the historical controls and concurrent control, and it will impact the 

concurrent parameter estimation.  

Some studies researched the meta analytic predictive (MAP) prior to borrow the 

historical control (Gsteiger, Neuenschwander, et al. 2013, Neuenschwander, Capkun-Niggli, et 

al. 2010). The MAP is essentially a hierarchical model. Generally, there are two steps in MAP 

prior methods (Neuenschwander, Capkun-Niggli, et al. 2010). The first one is to derive the 

predictive distribution of control based on the posterior distribution obtained from the multiple 

observed historical studies. Then the predictive distribution will be served as the prior and 

incorporated with current study to have the posterior of concurrent control. Thus, the application 

assumption of hierarchical model (i.e. the exchangeability of the study parameters or priors) 

should also be considered for MAP. Schmidli et al. (Schmidli, Gsteiger, et al. 2014) proposed the 

robust MAP prior to adjust the violation of MAP assumption. Specifically, the robust MAP prior 

is a mixture of a MAP prior and a comparatively vague prior. The weight of MAP prior depends 

on the similarity of historical control and concurrent control, which will affect differently on the 

final posterior estimation of concurrent control.  

Commensurate prior can be used to borrow historical control (Hobbs, Carlin, et al. 2011, 

Papageorgiou, Koretsi, et al. 2017). The connection between the historical and concurrent control 

is the conditional distribution of parameter of concurrent data given the historical data (Gamalo-

Siebers, Savic, et al. 2017). The conditional distribution is served as the prior and incorporated 

with the concurrent data to have the posterior estimation of control parameter. Commensurate 
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prior is essentially a hierarchical model as well. However, it assumes that the historical response 

rate is non-systematically biased from the current response rate (Lim, Walley, et al. 2018).   

There are some explorations of power prior borrowing the historical data (Gravestock and 

Held 2018, Hobbs, Carlin, et al. 2011, Liu 2018). The degree of power prior borrowing is 

controlled by the power parameter of power prior. The borrowing changes from “full borrowing” 

to “no borrowing” as the power parameter goes from 1 to 0. The limitation of power prior is to 

specify an appropriate power parameter. Some researchers proposed an estimated power 

parameter to adjust the limitation. Specifically, the power parameter follows a distribution rather 

than fixed (Neelon and O' Malley 2010). However, this adjustment tends to heavily discount 

historical data and does not efficiently borrow the historical data unless a very informative prior 

used for the power parameter (Lim, Walley, et al. 2018). 

This study is to research the performance of several study designs incorporating historical 

control via different Bayesian borrowing methods – power prior, commensurate prior and some 

reference borrowing method. The performance is compared by the simulating trials. In Section 

3.2, we introduce the motivating pilot study, effect of bazedoxifene and conjugated estrogen 

(duavee®) on breast cancer risk biomarkers in high risk women (Fabian, Nye, et al. 2019), and 

several Bayesian borrowing methods that a study design can incorporate. In Section 3.3, the 

parameters for simulations and related outputs (i.e., operating characteristics) for the different 

possible designs are presented and compared. We demonstrate the models’ simulation-based 

performance. Discussion and conclusion are presented in Section 3.4. 
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3.2 Method 

3.2.1 Motivating Study 

The objective of this research is to identify the most effective Phase II study design to 

borrow the historical control data from a pilot study (i.e. the motivating study) conducted in high 

risk women with breast cancer (Fabian, Nye, et al. 2019). The motivating study investigated the 

effect of treatment (bazedoxifene and conjugated estrogen, i.e., duavee®) via change from 

baseline in mammographic total fibroglandular volume at 6 months. Specifically, it is equal to 

𝑆6 − 𝑆0, where 𝑆6 and 𝑆0 are the fibroglandular volume at month 6 and baseline. It was observed 

that the proportion of the subjects with a non-increase volume at month 6 from treatment group 

was larger than that from the non-randomized control group. Moreover, the researchers do not 

want to waste the data that have already collected in the pilot study when conducting a lager 

phase II study. We wish to design a future prospective trial that can borrow the historical control 

via Bayesian method.  

3.2.2 Power Prior 

Power prior is a method that has been existing for a long time. In our research, the data 

from simulation and application studies is binary. 𝜃𝑐𝑐 and 𝜃ℎ𝑐  represent the response rate for the 

concurrent and historical control. 𝑫 and 𝑫𝟎 denote the concurrent and historical control data. We 

specify the Jeffrey prior for the historical data. 𝛼 is the power parameter.  

 Power prior

{
 
 

 
 Historical control {

Prior: 𝜋0(𝜃ℎ𝑐) = 𝐵𝑒𝑡𝑎 (0.5, 0.5)

Posterior: 𝜋(𝜃ℎ𝑐|𝑫𝟎) ∝ 𝐿(𝜃ℎ𝑐|𝑫𝟎)𝜋0(𝜃ℎ𝑐)
 

Concurrent control {

Prior: 𝐿(𝜃ℎ𝑐|𝑫𝟎)
𝛼𝜋0(𝜃ℎ𝑐) 

Posterior: 𝜋(𝜃𝑐𝑐|𝑫,𝑫𝟎, 𝛼) ∝ 𝐿(𝜃𝑐𝑐|𝑫)𝐿(𝜃ℎ𝑐|𝑫𝟎)
𝛼𝜋0(𝜃ℎ𝑐)

𝜃𝑐𝑐~Beta(𝑌𝑐𝑐 + 𝛼𝑌ℎ𝑐 + 0.5, (𝑛𝑐𝑐 − 𝑌𝑐𝑐) + 𝛼(𝑛ℎ𝑐 − 𝑌ℎ𝑐) + 0.5)
 ,⇒

(3.1) 
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where 𝑛𝑐𝑐 and 𝑛ℎ𝑐 represent the sample size of concurrent and historical control; 𝑌𝑐𝑐 and 

𝑌ℎ𝑐 represent the responder of concurrent and historical control.   

Conventionally, the power parameter (𝛼) is specified before the new clinical trial is 

conducted. It ranges from zero to one, which indicates the imparity to identity of historical and 

concurrent control. In our research, we let the data determine the power parameter using a 

heuristic algorithm, which is advantageous because of its ease in interpretation. As the adaptive 

design graph (Figure 3-1) indicates, the study temporally stops at interim analysis (IA) to 

compare the similarity of the historical and concurrent control data when half of the pre-specified 

same size are enrolled. The similarity is measured via the overlapping area of the posterior 

probability distributions of the historical and concurrent control response rate. The overlapping 

area (OA) is calculated via formula (3.2) denoted below: 

α = OA =
min(𝑃(𝜃𝐻𝐶 ≥ 𝜃𝐶𝐶), 𝑃(𝜃𝐻𝐶 < 𝜃𝐶𝐶))

0.5
, 0 ≤  OA ≤ 1 (3.2) 

It is equal to the multiplication of two and minimal value of posteriors of the historical 

control response rate (𝜃ℎ𝑐) greater than or equal to the concurrent control response rate (𝜃𝑐𝑐), and 

the historical control response rate (𝜃ℎ𝑐) less than the concurrent control response rate (𝜃𝑐𝑐). We 

specify that the power parameter is equal to the overlapping area because they both naturally 

range between zero and one. Moreover, as the value changes from zero to one, they both indicate 

the imparity and identity of historical and concurrent control. After the interim analysis, the 

concurrent control enrollment will decrease accordingly based on the similarity compared to 

historical control. As the Figure 3-1 indicates, the actual concurrent control enrolled after the 

comparison is equal to the half of the proposed concurrent control sample size minus the 
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multiplication of the overlapping area and historical control. If the calculated patients after the 

interim analysis is decimal, then we will have smallest integer that is greater than decimal. We 

assume the historical control sample size is no more than that from proposed concurrent control. 

We will not enroll the concurrent control patients if half of the proposed concurrent control is 

less than the multiplication of the overlapping area and historical control. There is no stopping 

rule applied at interim analysis since the treatment arm is always needed to be enrolled after 

interim analysis. The posterior probability of the control response rate via the power prior 

borrowing method follows a Beta (𝑌𝑐𝑐 + 𝛼𝑌ℎ𝑐 + 0.5, (𝑛𝑐𝑐 − 𝑌𝑐𝑐) + 𝛼(𝑛ℎ𝑐 − 𝑌ℎ𝑐) + 0.5), and we 

provide the related derivation in Appendix 3.1. It should be noted that power prior with interim 

analysis is the only one incorporated into the adaptive design, all other methods introduced in the 

following sections are under fixed design. Moreover, the treatment arm is not involved in interim 

analysis. 

 
Figure 3-1 adaptive design based on power prior borrowing. Pts stands for “patients” and 

OA stands for “overlapping area.” 

3.2.3 Commensurate Prior 

Commensurate prior is essentially a hierarchical model, and we adopt the framework 

from Gamalo-Siebers’ research (Gamalo-Siebers, Savic, et al. 2017). The conditional distribution 

of 𝜃𝑐𝑐 given 𝜃ℎ𝑐 follows a Beta distribution with parameters 𝜅𝜃ℎ𝑐, and 𝜅(1 − 𝜃ℎ𝑐). 𝜅 follows a 

Gamma distribution with the location parameter equal to 𝐾 and scale parameter equal to 1. In 

this notation, both mean and variance are equal to 𝐾, which is convenient to specify the different 

types of priors. In our research, we specify 𝐾 = 1, 50 and 100 to see the difference performances 

of the commensurate prior. The initial prior of 𝜃ℎ𝑐 follows a non-informative Jeffrey prior. The 
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commensurate prior is applied under the fixed study design, which is different from the power 

prior applied under the adaptive circumstance. Since the posterior probability of control response 

rate via the commensurate prior borrowing method does not have a close form, and we provide 

the related Stan code in the Appendix 3.2. 

Commensurate prior

{
 
 

 
 

Initial Prior for historical data 𝜋(𝜃ℎ𝑐) = 𝐵𝑒𝑡𝑎 (0.5, 0.5)

Prior {
𝜋(𝜃𝑐𝑐|𝜃ℎ𝑐) = 𝐵𝑒𝑡𝑎 (𝜅𝜃ℎ𝑐, 𝜅(1 − 𝜃ℎ𝑐))

𝜅 ~ 𝐺𝑎𝑚𝑚𝑎 (𝐾, 1)
𝐾 = 1, 50, 100

Posterior: 𝜋(𝜃𝑐𝑐|𝑫,𝑫𝟎, 𝜃ℎ𝑐) ∝ 𝐿(𝜃𝑐𝑐|𝑫)𝐿(𝜃ℎ𝑐|𝑫𝟎)𝜋(𝜃𝑐𝑐|𝜃ℎ𝑐)𝜋(𝜅)𝜋(𝜃ℎ𝑐)

(3.3) 

3.2.4 Other borrowing methods 

Full borrowing. It means that the control posterior is obtained under the combination of 

the historical and concurrent control. Jeffrey prior is specified for both historical and concurrent 

data. The posterior of the response rate follows a Beta distribution based on the conjugate 

property of Beta-Binomial distribution. The two parameters of Beta distribution are 

(𝑌𝑐𝑐 + 𝑌ℎ𝑐 + 0.5) and ((𝑛𝑐𝑐 − 𝑌𝑐𝑐) + (𝑛ℎ𝑐 − 𝑌ℎ𝑐) + 0.5). Attention should be placed if it is 

applied in a real study since the combination without differentiation may cause the incorrect 

posterior estimation. It is served as the reference in our research.  

Full borrowing framework {

Prior: 𝜋0(𝜃ℎ𝑐) = 𝐵𝑒𝑡𝑎 (0.5, 0.5)

Posterior: {
𝜋(𝜃𝑐𝑐|𝑫, 𝑫𝟎, 𝜃ℎ𝑐) ∝ 𝐿(𝜃𝑐𝑐|𝑫)𝐿(𝜃ℎ𝑐|𝑫𝟎)𝜋0(𝜃ℎ𝑐)

𝜃𝑐𝑐~𝐵𝑒𝑡𝑎(𝑌𝑐𝑐 + 𝑌ℎ𝑐 + 0.5, (𝑛𝑐𝑐 − 𝑌𝑐𝑐) + (𝑛ℎ𝑐 − 𝑌ℎ𝑐) + 0.5) 

 (3.4) 

No Borrowing. It is supposed that no historical data is involved in the posterior 

estimation. Still, Jeffrey prior is specified for the data. The posterior of the response rate also 

follows a Beta distribution with the parameters of (𝑌𝑐𝑐 + 0.5) and ((𝑛𝑐𝑐 − 𝑌𝑐𝑐) + 0.5). 

Similarly, it is served as the reference to be compared with the power prior and commensurate 

prior.     
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No borrowing framework{

Prior: 𝜋0(𝜃𝑐𝑐) = 𝐵𝑒𝑡𝑎 (0.5, 0.5)

Posterior: {
𝜋(𝜃𝑐𝑐|𝑫) ∝ 𝐿(𝜃𝑐𝑐|𝑫)𝜋0(𝜃𝑐𝑐)

𝜃𝑐𝑐 ~𝐵𝑒𝑡𝑎(𝑌ℎ𝑐 + 0.5, (𝑛𝑐𝑐 − 𝑌𝑐𝑐) + 0.5) 

 (3.5) 

Frequentist method. The frequentist estimation should be quite similar with the ones from 

Bayesian estimation under the no borrowing framework. The specific method applied is Chi-

square test. We adopt the frequentist estimation in terms of point estimation, bias and MSE to 

validate this assumption. It should be noted that it means Chi-square test when referring the 

Frequentist method in this paper. All other methods, including full borrowing, no borrowing and 

Frequentist, are under fixed designs. 

 

3.3 Simulation 

3.3.1 Simulation Input 

Control data. As specified in the method part, the data in our research is binary. The 

historical (𝜃ℎ𝑐) and concurrent control response rates (𝜃𝑐𝑐) range from 0.1 to 0.5 by 0.1. Table 3 

- 1 summarizes the parameter value for simulation. The concurrent control data is obtained via 

simulation. The historical control data is generated via simulation and “observation” which 

means the responder is calculated via the multiplication of response rate and the historical 

control sample size, supposing the historical data is observed.  

Effect size & treatment. In our research, we use the difference of response rate from the 

treatment and concurrent control arms as the effect size (denoted as 𝜃𝑡 − 𝜃𝑐𝑐). The proposed 

effect sizes range from 0.1 to 0.4 by 0.1. Together with the span of control data, they will 

evaluate the different Bayesian methods thoroughly and comprehensively. The treatment 

response rate is equal to the summation of concurrent response rate and effect size.  
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Table 3-1 Summary of the parameter values for simulation 

Parameter  Value 

𝜃ℎ𝑐 0.1, 0.2, 0.3, 0.4, 0.5 

𝜃𝑐𝑐 0.1, 0.2, 0.3, 0.4, 0.5 

𝜃𝑡−𝜃𝑐𝑐 0, 0.1, 0.2, 0.3, 0.4 

Proposed Sample size. From practical perspective, it is seldom that pivotal studies from 

routine disease area (e.g., hypertension, diabetes, oncology, etc.) incorporate historical control 

and get approved by FDA. Most of the pivotal studies that incorporated historical control are 

from rare disease (Ghadessi, Tang, et al. 2020). For our research, the proposed sample size 

cannot be large. The proposed historical control, concurrent control and treatment sample sizes 

in our research are 20, 20 and 40, respectively. The sample sizes of historical control and 

treatment are fixed. The expected sample size of concurrent control may be not identical to the 

proposed one depending on the similarity of historical and concurrent control. 

Threshold. We propose three types of the threshold – global, local and regional- for 

Bayesian decision rule. For the global threshold, it means that it controls type I error less than or 

equal to 0.025 for the study designs under all concurrent control response rates (i.e., 0.1 to 0.5 by 

0.1) given a specific response rate of historical control under the null hypothesis (i.e., effect size 

is equal to zero). For the local threshold, it means it controls type I error equal to 0.025 for the 

study design under the concurrent control response rate equal to the specific historical control 

response rate under the null hypothesis. For the regional threshold is chosen to partially 

guarantee that the type I error less than or equal to 0.025 for the study designs borrowing the 

historical control with a specific response rate and with a limited and related concurrent control 

response rates, i.e., 𝜃𝑐𝑐 ∈ [𝜃ℎ𝑐 − s. e. , 𝜃ℎ𝑐 + s. e. ]. The different threshold types reflect 

researchers’ belief of the similarity of concurrent and historical control. The number of simulated 
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studies for each method is 20,000, and the iteration number is 40,000 times for those designs 

with Bayesian borrowing.  

3.3.2 Simulation Output 

Type I error. Our research hypothesis is one-sided. Specifically, the null hypothesis is 

that the response rates from both arms are equal. The alternative hypothesis is that the treatment 

response rate is greater than the concurrent control response rate (expression (3.6) below). Type I 

error is controlled to 0.025. Given a specific study design, the threshold is twisted and 

determined to make the proportion of the simulated studies with the quantity of interest 

(i. e. , 𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎)) greater than the threshold under the null hypothesis is equal to 0.025. 

𝐻0: 𝜃𝑡 = 𝜃𝑐𝑐 vs.  𝐻1 : 𝜃𝑡 > 𝜃𝑐𝑐, where 𝜃𝑡 denotes the treatment response rate. (3.6) 

The thresholds of different type are determined by the definition accordingly. The 

Bayesian decision rule is that under the null hypothesis, the proportion of simulated studies with 

the posterior probability of quantity of interest great than threshold is less than or equal to 0.025 

(expression (3.7) below). The posterior of concurrent control has already incorporated historical 

control based on the specific borrowing method. The global threshold is chosen to guarantee that 

the type I error less than or equal to 0.025 for the study designs under all possible concurrent 

control response rates and borrowing the historical control with a specific response rate.  

[Pr[𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎) > threshold,where 𝜃𝑐𝑐 ∈ [0.1 to 0.5 by 0.1] |𝐻0] ≤ 0.025 (3.7) 

As the expression (3.8) below involved in the local threshold, the Bayesian decision rule 

is that under the null hypothesis, the proportion of simulated studies with the posterior 

probability of quantity of interest (i.e., 𝜃𝑡 > 𝜃𝑐𝑐) great than threshold is equal to 0.025. Still, the 
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posterior of concurrent control has already incorporated historical control based on the specific 

borrowing method. The local threshold is determined to only guarantee that the type I error is 

equal to 0.025 under the condition of the concurrent control response rate equal to the historical 

control for borrowing.  

Pr[𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎) > threshold,where 𝜃𝑐𝑐 = 𝜃ℎ𝑐  |𝐻0] = 0.025 (3.8) 

The definition of the regional threshold has the identical rationale as that from the global 

threshold. It is defined to guarantee that the type I error is less than or equal to 0.025 for the 

study designs borrowing the historical control with a specific response rate and with a limited 

range of and related concurrent control response rates that related to historical control response 

rate (expression (3.9) below). The different threshold types are only applicable for the methods 

that historical control is borrowed (i.e., power prior, commensurate prior and full borrowing), 

otherwise, threshold is only identified via the current study simulated data. The specific 

thresholds are provided in Appendix 3.3. 

Pr[𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎) > threshold,where 𝜃𝑐𝑐 ∈ [𝜃ℎ𝑐 − s. e. , 𝜃ℎ𝑐 + s. e. ] |𝐻0]  ≤ 0.025 (3.9) 

Power (Study success). Simulations track the proportion of studies that show success 

based on the evaluation criterion (i.e., threshold) identified under the hypothesis. Based on the 

Bayesian decision rule, the power is generally defined as the proportion of the simulated studies 

that meet the evaluation criteria under the alternative hypothesis (i.e., 𝜃𝑡 > 𝜃𝑐𝑐). The evaluation 

criterion is the quantity of interest satisfying the related threshold. The specific powers of study 

design with the historical borrowing based on different threshold types are then calculated based 

on each threshold value. (expression (3.10), (3.11) and (3.12) below).    
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Pr[𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎) > threshold,where 𝜃𝑐𝑐 ∈ [0.1 to 0.5 by 0.1] |𝐻1] (3.10) 

Pr[𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎) > threshold,where 𝜃𝑐𝑐 = 𝜃ℎ𝑐  |𝐻1] (3.11) 

Pr[𝑃(𝜃𝑡 > 𝜃𝑐𝑐|𝐷𝑎𝑡𝑎) > threshold,where 𝜃𝑐𝑐 ∈ [𝜃ℎ𝑐 − s. e. , 𝜃ℎ𝑐 + s. e. ] |𝐻1] (3.12) 

Expected sample size. Sample size is important operation characteristic since it directly 

relates to the difficulty and cost of running a trial, especially for the trials with a low accrual rate. 

A study design with a lower sample size but similar power to a competing design is desirable. In 

our research, only the design with power prior may have different expected sample size. All 

other designs are fixed, and the expected sample size is equal to the proposed sample size.  

Posterior summary. The posterior summary in terms of point estimation, credible 

interval, bias and mean square error (MSE) are presented to compare the performance of 

different study designs. 

3.3.3 Simulation Result  

Figure 3-2 presents the power of different study designs under different observed 

historical control rate and effect sizes via global thresholds. When historical control response rate 

(𝜃ℎ𝑐) and effect size (𝜃𝑡 − 𝜃𝑐𝑐) are both equal to 0.1, the powers of all the study designs with 

different borrowing methods are generally below 0.2 for all values of concurrent control 

response rate (𝜃𝑐𝑐′𝑠). When (𝜃𝑡 − 𝜃𝑐𝑐) becomes 0.2 and 𝜃ℎ𝑐 is still equal to 0.1, the powers of 

study designs with no borrowing and frequentist are generally between 0.3 and 0.4. They are 

higher than those of the study designs with other borrowing methods when 𝜃𝑐𝑐 is equal to 0.1, 

0.2 and 0.3. The powers of the study designs with commensurate priors (𝐾 = 50, 100) and full 

borrowing are quite similar (around 0.35) with that from the study design with no borrowing or 
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frequentist when 𝜃𝑐𝑐 is equal to 0.4, and they are higher (around 0.5) when 𝜃𝑐𝑐 is equal to 0.5. 

The powers of study design with power prior borrowing and commensurate priors (𝐾 = 1) are 

generally lower than those from the study design with other borrowing methods when 𝜃𝑐𝑐 is 

equal to 0.4 or 0.5, but higher than those from the study design with commensurate priors (𝐾 =

50, 100) and full borrowing when 𝜃𝑐𝑐 is equal to 0.1. Similar findings are identified for the 

figure panel where 𝜃ℎ𝑐 is equal to 0.1 and (𝜃𝑡 − 𝜃𝑐𝑐) is equal to 0.3 and 0.4. The main difference 

is that when 𝜃𝑐𝑐 are close to 0.3 or equal to 0.3, the powers of the designs with no borrowing or 

frequentist are similar with those from the study designs with commensurate priors (𝐾 =

50, 100) and full borrowing. 

When 𝜃ℎ𝑐 increases to 0.2, (𝜃𝑡 − 𝜃𝑐𝑐) ranges from 0.1 to 0.4 and, 𝜃𝑐𝑐 ranges from 0.1 to 

0.5, the power profiles are quite similar with those 𝜃ℎ𝑐 equal to 0.1. All study designs are with a 

general higher power. When 𝜃ℎ𝑐 increases to 0.3, the major change is from the power profiles 

where study designs with power prior. There is a clear trend that the power increases as 𝜃𝑐𝑐 

ranges from 0.1 to 0.5. When 𝜃ℎ𝑐 increases to 0.4 and 0.5, the overall power profiles are still 

similar compared to them where 𝜃ℎ𝑐 is equal to 0.2. Moreover, when 𝜃ℎ𝑐 is equal to 0.4, the 

power of the study design with power prior is almost close to the highest ones where 𝜃𝑐𝑐 is equal 

to 0.5 and (𝜃𝑡 − 𝜃𝑐𝑐) is equal to 0.2 or 0.3. When 𝜃ℎ𝑐 is equal to 0.5, the power profile of the 

study design with power prior is quite like a “bowl” where 𝜃𝑐𝑐 ranges from 0.1 to 0.5 and (𝜃𝑡 −

𝜃𝑐𝑐) is equal to 0.3. The power profiles of different study designs under different simulated 

historical control rate and effect sizes via global thresholds are generally similar with the related 

ones from Figure 3-2. The main distinction is that the power differences among the study designs 

are not so large as those from Figure 3-2. 
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Figure 3-4 & 3-5 present the power of different study designs under different observed 

and simulated historical control rate and effect sizes via local thresholds. It only presents the 

power profiles where 𝜃ℎ𝑐 = 𝜃𝑐𝑐, because it is more important to observe the power points in the 

graphs where 𝜃ℎ𝑐′𝑠 are equal to 𝜃𝑐𝑐′s since the thresholds are locally controlled type I error equal 

to 0.025 at  𝜃ℎ𝑐 = 𝜃𝑐𝑐. It is clearly observed that the powers of the study designs with different 

methods are quite similar with each other when (𝜃𝑡 − 𝜃𝑐𝑐) are equal to 0.1 and 𝜃ℎ𝑐 ranges from 

0.1 to 0.5. Generally, all the powers increase accordingly when (𝜃𝑡 − 𝜃𝑐𝑐) increases to 0.4. The 

powers of study designs with commensurate priors (𝐾 = 50, 100) and full borrowing are quite 

similar and higher than those from other study designs when (𝜃𝑡 − 𝜃𝑐𝑐) is larger than 0.1 and 𝜃ℎ𝑐 

is greater than 0.1 as well. The powers of study designs with commensurate priors (𝐾 = 1), full 

borrowing and no borrowing are quite similar and lower than those from other study designs, 

except for the scenarios where (𝜃𝑡 − 𝜃𝑐𝑐) is larger than 0.1 and 𝜃ℎ𝑐 is equal to 0.1. In some 

scenarios, the powers of the study designs with commensurate priors (𝐾 = 1) are the lowest one. 

The powers of the study designs with power priors are generally between these two “clusters”. 

Moreover, under related observed historical control rate scenarios, the power from the power 

prior borrowing method is quite close to the higher ones in the scenarios where 𝜃ℎ𝑐 and (𝜃𝑡 −

𝜃𝑐𝑐) are both equal to 0.3 and 0.4, and 𝜃ℎ𝑐 is equal to 0.5 and (𝜃𝑡 − 𝜃𝑐𝑐) are equal to 0.3.  
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Figure 3-2 Power of different study designs with different borrowing method under different observed historical 

control rate (HC Rate) (𝜃ℎ𝑐  ϵ [0.1 to 0.5 by 0.1]) and effect sizes (ES) (𝜃𝑡 − 𝜃𝑐𝑐ϵ[0.1 to 0.4 by 0.1]) via global   

thresholds. Concurrent Control Response Rate (𝜃𝑐𝑐  ϵ [0.1 to 0.5 by 0.1]). “Fixed” and “Adaptive” in the parenthesis 

of legend mean the related methods incorporated in the fixed or adaptive design.  
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Figure 3-3 Power of different study designs with different borrowing method under different observed historical 

control rate (HC Rate) (𝜃ℎ𝑐  ϵ [0.1 to 0.5 by 0.1]) and effect sizes (ES) (𝜃𝑡 − 𝜃𝑐𝑐ϵ[0.1 to 0.4 by 0.1]) via global 

thresholds. Concurrent Control Response Rate (𝜃𝑐𝑐  ϵ [0.1 to 0.5 by 0.1]). “Fixed” and “Adaptive” in the parenthesis 

of legend mean the related methods incorporated in the fixed or adaptive design. 
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Figure 3-4 Power of different study designs with different borrowing method under different observed historical 

control rate (𝜃ℎ𝑐 = 𝜃𝑐𝑐) and effect sizes (0.1 to 0.4 by 0.1) via local thresholds. “Fixed” and “Adaptive” in the 

parenthesis of legend mean the related methods incorporated in the fixed or adaptive design. 

 

 

Figure 3-5 Power of different study designs with different borrowing method under different simulated historical 

control rate (𝜃ℎ𝑐 = 𝜃𝑐𝑐) and effect sizes (0.1 to 0.4 by 0.1) via local thresholds. “Fixed” and “Adaptive” in the 

parenthesis of legend mean the related methods incorporated in the fixed or adaptive design. 

Figure 3-6 & 3-7 present the power of different study designs under different observed 

and simulated historical control rate and effect sizes via regional thresholds. We mainly focus on 

the response rate between 0.1 and 0.5. Thus, when 𝜃ℎ𝑐 is equal to 0.1, the stick values of 𝜃𝑐𝑐 on 

X-axis represent 0.1, 0.1 + 0.25se, 0.1 + 0.5se, 0.1 + 0.75se and 0.1 + se. When 𝜃ℎ𝑐 is equal to 

0.5, the stick values of 𝜃𝑐𝑐 on X-axis represent 0.5 – se, 0.5 - 0.75se, 0.5 - 0.5se, 0.5 - 0.25se, and 
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0.5. When 𝜃ℎ𝑐 is equal to 0.2, 0.3 or 0.4, the stick values of 𝜃𝑐𝑐 on X-axis represent 𝜃ℎ𝑐  ± se, 𝜃ℎ𝑐 

± 0.5se, and 𝜃ℎ𝑐. When 𝜃ℎ𝑐 is equal to 0.2, 0.3 or 0.4, the power profiles are generally similar 

with the pattern from the related study designs with global thresholds. The powers of the study 

designs with different methods are quite similar with each other when 𝜃𝑡 − 𝜃𝑐𝑐is equal to 0.1 and 

𝜃ℎ𝑐 ranges from 0.1 to 0.5. The powers of the study designs with commensurate priors (𝐾 =

50, 100) and full borrowing are quite similar and higher than those from other study designs 

when 𝜃𝑡 − 𝜃𝑐𝑐 is greater than 0.1, 𝜃ℎ𝑐 is greater than 0.2, and 𝜃𝑐𝑐 is equal to 𝜃ℎ𝑐 + 0.75se or 𝜃ℎ𝑐 

+ se. Correspondingly, the powers of study designs with commensurate priors (𝐾 = 1), full 

borrowing and no borrowing are quite similar and lower than those from other study designs, 

except for the scenarios where 𝜃ℎ𝑐 is equal to 0.1 or 0.2. However, when 𝜃𝑐𝑐 is equal to 𝜃ℎ𝑐 - 

0.75se or 𝜃ℎ𝑐 - se,  the powers of study designs with commensurate priors (𝐾 = 1), full 

borrowing and no borrowing are quite similar and higher than those from other study designs, 

except for the scenarios where 𝜃ℎ𝑐 is equal to 0.1 or 0.2. The powers of the study designs with 

power priors are generally between these two “clusters”. 

Table 3 - 2 below presents overlapping area (OA) and related concurrent control 

enrollment after interim analysis of the study designs with power prior borrowing under the 

global threshold. It is clearly observed that the OA is generally the largest and the concurrent 

control enrollment after the interim analysis is correspondingly the least when 𝜃ℎ𝑐 is equal to 𝜃𝑐𝑐. 

The OA generally decreases and the concurrent control enrollment after the interim analysis is 

correspondingly increase as the differences between 𝜃ℎ𝑐 and 𝜃𝑐𝑐 increase. The OA for simulated 

historical control is generally smaller and the concurrent control enrollment after the interim 

analysis is correspondingly larger, comparing related OA and enrollment from those designs 

with observed historical control. 
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Figure3-6 Power of different study designs with different borrowing method under different observed historical 

control rate (HC Rate) (𝜃ℎ𝑐  ϵ [0.1 to 0.5 by 0.1]) and effect sizes (0.1 to 0.4 by 0.1) via regional thresholds. 

*: For 𝜃ℎ𝑐 = 0.1, the 𝜃𝑐𝑐 value on X-axis: 1= 𝜃ℎ𝑐, 2= 𝜃ℎ𝑐+ 0.25se, 3= 𝜃ℎ𝑐+ 0.5se, 4= 𝜃ℎ𝑐+ 0.75se, 5=𝜃ℎ𝑐+ se.  

For 𝜃ℎ𝑐 = 0.2, 0.3 and 0.4, the X-axis stick represents 𝜃𝑐𝑐: 1= 𝜃ℎ𝑐- se, 2= 𝜃ℎ𝑐- 0.5se, 3= 𝜃ℎ𝑐, 4= 𝜃ℎ𝑐+ 0.5se, 5=𝜃ℎ𝑐+ se.  

For 𝜃ℎ𝑐 = 0.5, the 𝜃𝑐𝑐 value on X-axis: 1= 𝜃ℎ𝑐- se, 2= 𝜃ℎ𝑐- 0.75se, 3= 𝜃ℎ𝑐- 0.5se, 4= 𝜃ℎ𝑐- 0.25se, 5=𝜃ℎ𝑐. 

In each panel, “HC rate” means historical response rate, and ES means effect size. The “HC(0.1) & ES(0.1)” means 

historical response rate equal to 0.1 and effect size equal to 0.1. Same rationale for all other panels. 

“Fixed” and “Adaptive” in the parenthesis of legend mean the related methods incorporated in the fixed or adaptive 

design. 
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Figure 3-7 Power of different study designs with different borrowing method under different simulated historical 

control rate (𝜃ℎ𝑐  ϵ [0.1 to 0.5 by 0.1]) and effect sizes (0.1 to 0.4 by 0.1) via regional thresholds. 

*: For 𝜃ℎ𝑐 = 0.1, the 𝜃𝑐𝑐 value on X-axis: 1= 𝜃ℎ𝑐, 2= 𝜃ℎ𝑐+ 0.25se, 3= 𝜃ℎ𝑐+ 0.5se, 4= 𝜃ℎ𝑐+ 0.75se, 5=𝜃ℎ𝑐+ se.  

For 𝜃ℎ𝑐 = 0.2, 0.3 and 0.4, the X-axis stick represents 𝜃𝑐𝑐: 1= 𝜃ℎ𝑐- se, 2= 𝜃ℎ𝑐- 0.5se, 3= 𝜃ℎ𝑐, 4= 𝜃ℎ𝑐+ 0.5se, 5=𝜃ℎ𝑐+ se.  

For 𝜃ℎ𝑐 = 0.5, the 𝜃𝑐𝑐 value on X-axis: 1= 𝜃ℎ𝑐- se, 2= 𝜃ℎ𝑐- 0.75se, 3= 𝜃ℎ𝑐- 0.5se, 4= 𝜃ℎ𝑐- 0.25se, 5=𝜃ℎ𝑐. 

In each panel, “HC rate” means historical response rate, and ES means effect size. The “HC(0.1) & ES(0.1)” means 

historical response rate equal to 0.1 and effect size equal to 0.1. Same rationale for all other panels. 

“Fixed” and “Adaptive” in the parenthesis of legend mean the related methods incorporated in the fixed or adaptive 

design. 
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Table 3 - 3 below presents overlapping area (OA) and related concurrent control enrollment after 

interim analysis (IA) of the study designs with power prior borrowing under the local threshold. 

It is observed that only about half of the patients need to be enrolled after the interim analysis. 

The enrollment from the related simulated historical data needs slightly more patients enrolled. 

Table 3 - 4 below presents overlapping area (OA) and related concurrent control 

enrollment after interim analysis (IA) of the study designs with power prior borrowing under the 

regional threshold. Generally, it is clearly observed that only about half of the patients need to be 

enrolled after the interim analysis. the OA is generally the largest and the concurrent control 

enrollment after the interim analysis is correspondingly the least when 𝜃ℎ𝑐 is equal to 𝜃𝑐𝑐. The 

enrollment from the related simulated historical data needs slightly more patients enrolled. 

It may cover multiple pages to present the estimations, related bias and mean square error 

(MSE) for different study designs under different historical data type, threshold type and effect 

size. Table 3 - 5 presents the estimations, bias and MSE of different study designs with different 

borrowing methods under all the related parameters 𝜃ℎ𝑐, 𝜃𝑐𝑐 and 𝜃𝑡 − 𝜃𝑐𝑐 equal to 0.3. It clearly 

shows that all the borrowing methods are with quite close estimations to the parameter values for 

different historical data type and threshold type. 

Table 3-5 Estimation summary of different methods at 𝜃ℎ𝑐 = 0.3, 𝜃𝑐𝑐 = 0.3 and effect size = 0.3 

Scenario method# Trt.(95% CI)* Cctrl.(95% CI)* Eff.(95% CI)* MSE Bias 

Under 

Observed 

historical 

data and 

global 

threshold 

Full Borrowing 0.598(0.451, 0.744) 0.305(0.207, 0.403) 0.293(0.121, 0.464) 0.008 -0.007 

Power Prior 0.599(0.451, 0.744) 0.307(0.162, 0.458) 0.292(0.077, 0.496) 0.011 -0.008 

Frequentist 0.600(0.450, 0.750) 0.301(0.100, 0.500) 0.300(0.050, 0.550) 0.016 0.000 

No Borrowing 0.598(0.451, 0.744) 0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010 0.016 

Commensurate 

Prior(K=1) 
0.598(0.451, 0.744) 0.300(0.113, 0.488) 0.298(0.058, 0.533) -0.002 0.015 

Commensurate 

Prior(K=50) 
0.596(0.451, 0.744) 0.303(0.187, 0.420) 0.294(0.105, 0.472) -0.006 0.009 

Commensurate 

Prior(K=100) 
0.596(0.451, 0.744) 0.303(0.196, 0.412) 0.293(0.113, 0.466) -0.007 0.009 
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Under 

Simulated 

historical 

data and 

global 

threshold 

Full Borrowing 0.597(0.451, 0.744) 0.306(0.182, 0.451) 0.292(0.074, 0.488) 0.011 -0.008 

Power Prior 0.598(0.451, 0.744) 0.308(0.135, 0.491) 0.290(0.059, 0.513) 0.014 -0.010 

Frequentist 0.600(0.450, 0.750) 0.301(0.100, 0.500) 0.300(0.050, 0.550) 0.016 0.000 

No Borrowing 0.598(0.451, 0.744) 0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010 0.016 

Commensurate 

Prior(K=1) 
0.599(0.451, 0.744) 0.302(0.115, 0.491) 0.298(0.057, 0.537) -0.002 0.015 

Commensurate 

Prior(K=50) 
0.598(0.451, 0.744) 0.302(0.166, 0.443) 0.296(0.094, 0.493) -0.004 0.011 

Commensurate 

Prior(K=100) 
0.599(0.451, 0.744) 0.303(0.175, 0.452) 0.296(0.095, 0.499) -0.004 0.011 

Under 

Observed 

historical 

data and 

local 

threshold 

Full Borrowing 0.598(0.451, 0.744) 0.305(0.207, 0.403) 0.293(0.121, 0.464) 0.008 -0.007 

Power Prior 0.599(0.451, 0.744) 0.307(0.162, 0.458) 0.292(0.077, 0.496) 0.011 -0.008 

Frequentist 0.600(0.450, 0.750) 0.301(0.100, 0.500) 0.300(0.050, 0.550) 0.016 0.000 

No Borrowing 0.598(0.451, 0.744) 0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010 0.016 

Commensurate 

Prior(K=1) 
0.598(0.451, 0.744) 0.300(0.113, 0.488) 0.298(0.058, 0.533) -0.002 0.015 

Commensurate 

Prior(K=50) 
0.596(0.451, 0.744) 0.304(0.187, 0.42) 0.292(0.105, 0.477) -0.008 0.009 

Commensurate 

Prior(K=100) 
0.597(0.451, 0.744) 0.304(0.196, 0.412) 0.294(0.115, 0.468) -0.006 0.009 

Under 

Simulated 

historical 

data and 

local 

threshold 

Full Borrowing 0.597(0.451, 0.744) 0.306(0.182, 0.451) 0.292(0.074, 0.488) 0.011 -0.008 

Power Prior 0.598(0.451, 0.744) 0.308(0.135, 0.491) 0.290(0.059, 0.513) 0.014 -0.010 

Frequentist 0.600(0.450, 0.750) 0.301(0.100, 0.500) 0.300(0.050, 0.550) 0.016 0.000 

No Borrowing 0.598(0.451, 0.744) 0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010 0.016 

Commensurate 

Prior(K=1) 
0.594(0.451, 0.744) 0.299(0.113, 0.491) 0.295(0.059, 0.537) -0.005 0.015 

Commensurate 

Prior(K=50) 
0.597(0.451, 0.744) 0.302(0.166, 0.451) 0.295(0.077, 0.489) -0.005 0.011 

Commensurate 

Prior(K=100) 
0.599(0.451, 0.744) 0.303(0.175, 0.452) 0.296(0.095, 0.499) -0.004 0.011 

Under 

Observed 

historical 

data and 

regional 

threshold 

Full Borrowing 0.597(0.451, 0.744) 0.305(0.207, 0.403) 0.292(0.121, 0.464) -0.008 0.008 

Power Prior 0.598(0.451, 0.744) 0.307(0.162, 0.458) 0.29(0.072, 0.498) -0.010 0.011 

Frequentist 0.600(0.450, 0.750) 0.301(0.100, 0.500) 0.300(0.050, 0.550) 0.016 0.000 

No Borrowing 0.598(0.451, 0.744) 0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010 0.016 

Commensurate 

Prior(K=1) 
0.597(0.451, 0.744) 0.302(0.113, 0.488) 0.294(0.056, 0.515) -0.006 0.014 

Commensurate 

Prior(K=50) 
0.598(0.451, 0.744) 0.304(0.187, 0.42) 0.295(0.104, 0.477) -0.005 0.009 

Commensurate 

Prior(K=100) 
0.598(0.451, 0.744) 0.303(0.196, 0.412) 0.295(0.116, 0.472) -0.005 0.009 

Under 

Simulated 

historical 

data and 

regional 

threshold 

Full Borrowing 0.597(0.451, 0.744) 0.306(0.182, 0.451) 0.291(0.097, 0.488) -0.009 0.011 

Power Prior 0.598(0.451, 0.744) 0.308(0.135, 0.490) 0.290(0.060, 0.514) -0.010 0.013 

Frequentist 0.600(0.450, 0.750) 0.301(0.100, 0.500) 0.300(0.050, 0.550) 0.016 0.000 

No Borrowing 0.598(0.451, 0.744) 0.309(0.119, 0.500) 0.290(0.047, 0.528) -0.010 0.016 

Commensurate 

Prior(K=1) 
0.594(0.451, 0.744) 0.299(0.113, 0.491) 0.295(0.059, 0.537) -0.005 0.015 

Commensurate 

Prior(K=50) 
0.597(0.451, 0.744) 0.302(0.166, 0.451) 0.295(0.077, 0.489) -0.005 0.011 

Commensurate 

Prior(K=100) 
0.597(0.451, 0.744) 0.302(0.163, 0.452) 0.295(0.087, 0.491) -0.005 0.011 
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#: Methods of No borrowing and Frequentist are not involved in historical data. Thus, the related estimations, bias 

and MSE are identical for each scenarios.   

*: “Trt.”, “Cctrl.”, and “Eff.” represent the “treatment”, “Concurrent Control” and “Effect Size”. “CI” means 

credible interval obtained based on 2.5%  and 97.5% quantile of the posterior distribution for Bayesian method, and 

confidence interval for  Frequentist (Chi-square test) methods. 

 

4. Discussion & Conclusion 

In our research, we explored several different methods of incorporating historical control 

to concurrent control via Bayesian design. Power prior with interim analysis has been proposed 

and researched for a long time (Chen, Ibrahim, et al. 2000, Ibrahim and Chen 2000). Usually, the 

power parameter is fixed before the study based on the related expertise and knowledge. We 

propose that the data itself determines the power prior parameter at interim analysis via the OA 

of the posterior distributions of historical and concurrent control. It has the flexibility to adjust 

the power parameter between zero and one, which is correspondent to the methods of no and full 

borrowing. The proposed calculation method is straightforward. It is easy to interpret the 

adaptive design with power prior and the OA calculation to the study team. Moreover, there is no 

concerns of the bias of the posterior estimation due to the flexibility of adjustment. Under some 

scenarios (e.g., 𝜃ℎ𝑐 and 𝜃𝑐𝑐 are equal to 0.4, and (𝜃𝑡 − 𝜃𝑐𝑐) is close to 0.3), the power of the 

study designs with power prior is quite similar with those from commensurate prior or full 

borrowing, and it has fewer expected sample size. They are the desired properties that power 

maintains high and sample size is smaller. The response rates [(𝜃𝑐𝑐 = 0.44, 𝜃𝑡= 0.72, and 𝜃𝑡−𝑐𝑐= 

0.28] from the motivating study are just located in the “sweet spot”, and we recommend the 

adaptive design with power prior to the study team.    

There are plenty of researches regarding commensurate prior (Hong, Fu, et al. 2018, 

Murray, Hobbs, et al. 2014). Although there are bias between historical controls and concurrent 

ones, commensurate prior essentially is hierarchical model, and the conditional distribution of 
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concurrent control response rate given the historical control response rate is the measure of 

similarity between the “prior” from hierarchical model. The Gamma distribution that 𝜅 follows is 

equivalent to hyperprior of hierarchical model. In our research, we specify K equal to 1, 50 and 

100 to evaluate the different performances of commensurate prior borrowing. The commensurate 

prior is close to the full borrowing method when K is equal to 50 or 100, and close to the no 

borrowing method when K is equal to 1. Similar with the power parameter from power prior, the 

input and adjustment from expertise and knowledge is necessary when specifying the K.   

The methods of full borrowing, no borrowing and frequentist are served as the reference 

in our research. The full borrowing method is hard to be applied in the practice since it highly 

believes that the historical control is identical to concurrent control, which is difficult to persuade 

the researchers to accept it. The no borrowing method is not efficient, and it is served as 

reference as well. On the other hand, it is clearly observed that the performance similarity 

between the no borrowing and frequentist method. 

Another factor we considered in the research is historical control date type (i.e. the 

historical data is simulated or observed). Both sources are possible and depend on the research 

process status, and we mimic the cases that could happen in the real world to assess the study 

comprehensively. Generally, it can be observed that the related power from the simulated 

historical control is slightly lower than that from observed ones, which is caused by the variation 

of the simulated data.  

We also proposed three different types of thresholds (i.e. global, local and regional 

threshold). They reflect the different degrees of the researchers’ belief in the similarity of the 

historical control and concurrent data. The power will decrease when global threshold is applied 
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for the cases where there are obvious differences of historical and concurrent control data. 

However, type I error will increase largely when local threshold is applied and there are obvious 

differences of historical and concurrent control data. Regional threshold is optimal option 

between conservative and false positive result. The historical and concurrent control response 

rates are both located from 0.1 to 0.5 by 0.1. We did not explore the response rates less than 0.1 

due to the unlikeness occurrence in practice, and the response rates greater than 0.5 since the 

results will be symmetric to those corresponding response rates less than 0.5 (i.e., one minus the 

response rate). 

Our research focus is binary data, and the variance is associated with the response rate. It 

is worth researching other data types, especially the continuous ones that the variance is 

independent of location parameter. It should also be noted that there is no difference to specify 

the subject level or study level data for binary data if response rate and sample size are known. 

However, the methods may require different level data to conduct the borrowing. We mainly 

focus on small sample size. However, researchers can probably have larger data when designing 

a new related study (Liu 2018), the performance of those borrowing methods is worth being 

explored under a moderate or large sample size. Another limitation is that we did not consider 

the variety of the covariates. There are some proposed methods(Han, Zhan, et al. 2017), and it is 

a good future exploring.  

To sum up, it is a good consideration to apply the power prior adaptive design with 

power parameter determination via overlapping area of posterior distribution under 𝜃ℎ𝑐 and 𝜃𝑐𝑐 

close to 0.4, and effect size close to 0.3. Study design with commensurate prior is a general 

choice as well, however, appropriate priors need to be specified before study conducts.  
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Chapter 4: Subgroup identification of early preterm birth (ePTB): informing a 

future prospective enrichment clinical trial design 

Zhang, C., Garrard, L., Keighley, J., Carlson, S. E., & Gajewski, B. J. (2017). Subgroup 

identification of early preterm birth (ePTB): informing a future prospective enrichment clinical 

trial design. BMC Pregnancy and Childbirth, 17, 18.  
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Abstract 

Background: Despite the widely recognized association between the severity of early 

preterm birth (ePTB) and its related severe diseases, little is known about the potential risk 

factors of ePTB and the sub-population with high risk of ePTB. Moreover, motivated by a future 

confirmatory clinical trial to identify whether supplementing pregnant women with 

docosahexaenoic acid (DHA) has a different effect on the risk subgroup population or not in 

terms of ePTB prevalence, this study aims to identify potential risk subgroups and risk factors for 

ePTB, defined as babies born less than 34 weeks of gestation.  

Methods: The analysis data (N = 3,994,872) were obtained from CDC and NCHS’ 2014 

Natality public data file. The sample was split into independent training and validation cohorts 

for model generation and model assessment, respectively. Logistic regression and CART models 

were used to examine potential ePTB risk predictors and their interactions, including mothers’ 

age, nativity, race, Hispanic origin, marital status, education, pre-pregnancy smoking status, pre-

pregnancy BMI, pre-pregnancy diabetes status, pre-pregnancy hypertension status, previous 

preterm birth status, infertility treatment usage status, fertility enhancing drug usage status, and 

delivery payment source. 

Results: Both logistic regression models with either 14 or 10 ePTB risk factors produced 

the same C-index (0.646) based on the training cohort. The C-index of the logistic regression 

model based on 10 predictors was 0.645 for the validation cohort. Both C-indexes indicated a 

good discrimination and acceptable model fit. The CART model identified preterm birth history 

and race as the most important risk factors, and revealed that the subgroup with a preterm birth 

history and a race designation as Black had the highest risk for ePTB. The c-index and 
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misclassification rate were 0.579 and 0.034 for the training cohort, and 0.578 and 0.034 for the 

validation cohort, respectively. 

Conclusions: This study revealed 14 maternal characteristic variables that reliably 

identified risk for ePTB through either logistic regression model and/or a CART model. 

Moreover, both models efficiently identify risk subgroups for further enrichment clinical trial 

design.  

Key Words: early preterm birth; risk factor; interaction; classification and regression tree; 

logistic regression; enrichment trial design 

 

4.1 Background 

Preterm birth, also known as premature birth, is the birth of a baby at less than 37 weeks 

of gestational age (Cdc.). Preterm birth occurs in 9.57% of all U.S. births each year (Hamilton, 

Martin, et al. 2015) . Worldwide, approximately 15 million babies are born prematurely each 

year (Who. 2018). Preterm birth increases the risk of many severe health outcomes. Infants born 

preterm are more likely to experience early death than are infants born at term (Blencowe, 

Cousens, et al. 2012, Catov, Bertolet, et al. 2014); and preterm birth is the leading cause of both 

neonatal death and long-term neurological disabilities for children in the United States (Cdc. , 

Witt, Cheng, et al. 2014). Moreover, adults who were born preterm are at increased risk of 

having hypertension (Keijzer-Veen, Dulger, et al. 2010, Norman 2010), mental health disorders, 

chronic respiratory disease, and neurologic and learning disabilities (Gravett and Rubens 2012). 

Preterm birth causes great social and medical burdens both in the U.S. (Mccormick 1985, 

Russell, Green, et al. 2007) and worldwide (Christopherson and Penrose 2010, Lawn, Gravett, et 

al. 2010, Treyvaud, Doyle, et al. 2011). Early preterm birth (ePTB)—birth at less than 34 
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weeks—has the highest risk of mortality and other diseases in adulthood (Creasy 1993, Martius, 

Steck, et al. 1998). The importance of prevention is evident for preterm birth, including ePTB. 

Consequently, to identify the risk factors of preterm birth, especially for ePTB, is a highly 

important step that will provide valuable information for subsequent enrichment clinical trial 

designs of targeted preventions and/or treatment.     

Several recent studies have explored the risk factors for ePTB (Connealy, Carreno, et al. 

2014, Gandhimadhi and Mythili 2010, Little, Janiak, et al. 2015, Saccone, Perriera, et al. 2015). 

Researchers have identified a few potential maternal risk factors associated with preterm birth 

including maternal hypertension (Norman 2010), Factor V Leiden (Hiltunen, Laivuori, et al. 

2011), lower genital tract inflammatory milieu (Simhan, Bodnar, et al. 2011), prior preeclampsia 

(Connealy, Carreno, et al. 2014), and Crohn's disease (Stephansson, Larsson, et al. 2010). Not 

only were these trials limited in statistical power, few studies explored potential risk factors for 

ePTB, which has a higher risk for poor health outcomes (Martius, Steck, et al. 1998, Saigal and 

Doyle 2008). In addition, interaction among the risk factors was typically not considered, despite 

the important role played by the interaction among risk factors in the prevention and treatment of 

preterm birth, including ePTB. From a practical perspective, this analysis is motivated by a 

desire to inform a future confirmatory clinical trial designed to identify whether supplementing 

pregnant women with docosahexaenoic acid (DHA) can differently reduce the rate of ePTB for 

the subgroups. DHA supplementation provides a high yield, low risk provocative strategy to 

reduce ePTB delivery in the U.S. by up to 75% (Carlson, Colombo, et al. 2013). However, little 

is known regarding the effect profile of DHA on various populations; and it is possible for DHA 

to have different effects on different risk subgroups.  
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Based on findings from previous studies on preterm birth and our future research interest, 

the specific aim for this study is to identify potential risk subgroups and risk factors for the main 

outcome, ePTB, defined previously as babies born prior to 34 weeks of gestation (Creasy 1993, 

Neerhof, Cravello, et al. 1999).  We applied and compared both logistic regression and 

classification and regression tree (CART) models to identify potential risk subgroups and risk 

factors from maternal demographic characteristics (Tan, Wen, et al. 2007, Witt, Cheng, et al. 

2014) and maternal pre-pregnancy characteristics for ePTB. To the author’s best knowledge, this 

is the first study to explore the association of ePTB with risk factors, the interactions among the 

risk factors, and to identify potential subgroups to inform future enrichment trial designs.  

 

4.2 Method 

4.2.1 2014 Natality Public Data File 

The ePTB population data used for these analyses were obtained from the National Vital 

Statistics System’s 2014 Natality public data file, compiled by the Centers for Disease Control 

and Prevention’s (CDC) National Center for Health Statistics (NCHS). Since federal law 

mandates national collection and publication of births and other vital statistical data, all births 

occurring and registered within the U.S. in 2014 were collected directly from the 50 U.S. states, 

New York City, and the District of Columbia (DC) (Cdc 2014).  The overall database contains 

3,998,175 records comprised of demographic characteristics of the mother, father, and the child 

(e.g., gestation), maternal prenatal care, pregnancy history, and health data, etc. The public data 

and the corresponding user’s guide are available from the website: 

http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm 

http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm
http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm
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4.2.2 Study Population 

After excluding 3303 cases for which the gestation period from the original 2014 Natality 

public data file was unknown, the final analysis file for the current study included 3,994,872 

records. Since the main outcome variable is ePTB, a binary flag variable representing the ePTB 

status (i.e., 1 =  < 34 Wks: ePTB and 0 = ≥ 34 Wks) was created in the analysis file. The analysis 

file included selected maternal demographic characteristics considered relevant to ePTB, such as 

mothers’ age, mothers’ nativity, mothers’ race, mothers’ Hispanic origin, marital status, mothers’ 

education, delivery payment source. Delivery payment source was included as an additional 

covariate that may provide additional information on the implications of socioeconomic status 

for ePTB. Maternal pre-pregnancy characteristics and medical history were also included in the 

ePTB risk factor analysis. These factors included smoking status, body mass index (BMI), 

diabetes status, hypertension status, previous preterm birth status, infertility treatment usage 

status and fertility enhancing drug usage status. In total, 14 maternal variables from the database 

were used as risk predictors in statistical models. The father’s demographic characteristics were 

not considered for this study. 

A total of 142,851 (3.58%) observations from the analysis file contained at least one 

missing value for some of the predictors and those predictors were categorized as “missing.” 

Predictors with responses of “Unknown,” “Not Stated,” “Not Applicable,” and “Other,” were 

categorized together as shown in the descriptive statistics listed in Table 4 - 1 & 4 - 2.  

4.2.3 Statistical Analysis 

Training and validation datasets. The large sample size allowed for independent training 

and validation cohorts. The overall sample was divided randomly into a training cohort (70%) 

and a validation cohort (30%), stratifying by ePTB status to ensure a balanced partition. 
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Descriptive statistics were summarized to compare the demographic and pre-pregnancy 

information between the two cohorts of data.  The training sample was used to build models via 

both logistic regression and CART and the validation sample was used to evaluate the models 

obtained from the training cohort.  

Logistic Regression. In order to investigate the association of ePTB with the potential risk 

factors, a multivariate logistic regression model was applied to estimate odds ratios (OR) and the 

corresponding 95% confidence intervals (CI). All predictors entered the model and they were 

selected via backward elimination. We set the significance level to stay in the model for a 

predictor to 0.05. A further simplified logistic regression model was fitted using 10 covariates to 

explore risk subgroups of ePTB. The predicted probabilities were calculated for the validation 

cohort based on the simplified model obtained from the training cohort. Based on the validation 

cohort, the calibration plot was generated to compare the average predicted probabilities and the 

average observed probabilities. The c-index was calculated to identify the model discriminatory 

capacity in terms of the training and validation cohorts. 

CART model. CART model can be a very useful complement to a logistic regression 

model because the CART model can identify unknown interactions among the risk factors of 

ePTB. CART is a nonparametric method that derives hidden patterns in data by constructing a 

series of binary splits on the outcome of interest (Lei, Nollen, et al. 2015, Loh 2011, Nollen, 

Ahluwalia, et al. 2015). The most discriminating predictor is selected to form the first partition 

based on the ability of the variables to minimize the within-group variance of the dependent 

variable, so the observations within each subgroup share the same characteristics that influence 

the probability of belonging to the interested response group (Lemon, Roy, et al. 2003). This step 

is executed repeatedly to each partition until the sample size of each subgroup (i.e., a terminal 
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node) is at or below a pre-specified level. In this study, the terminal node was specified as 0.5% 

of the total sample (either the training sample or the validation sample). A maximum tree first 

was constructed and standard pruning strategies were then applied to arrive at a parsimonious 

tree with a low misclassification rate and a high discriminatory capacity (Breiman, Friedman, et 

al. 1984). The final CART model can be visualized as an upside-down tree with the parent node 

of the tree containing the entire sample. Additional child nodes can be created using the Gini 

splitting rule for binary outcomes(Gordon 2013), and the terminal nodes are where predictions 

and inferences are made. The training cohort was used to generate an appropriate CART tree, 

and the validation cohort was utilized to evaluate the CART tree via the C-index and the 

misclassification rate. 

All statistical tests were two-tailed with p ≤ 0.05 as the statistically significant level. The 

CART analysis was executed in SAS Enterprise Miner Workstation 13.1 (Gordon 2013), and all 

other statistical analyses and the data management were conducted with SAS 9.4. 

 

4.3 Results 

4.3.1 Characteristics of the Study Population and Training and Validation Datasets 

As previously mentioned, the analysis file included 3,994,872 records which contained 

134,009 cases of ePTB (< 34 weeks) and 3,860,863 cases of baby birth ≥ 34 weeks of gestation. 

The characteristics of the subjects stratified by ePTB status are shown in Table 4 - 1. For the 

training and validation cohorts, 70% (N = 2,796,411) and 30% (N = 1,198,461) of the total 

sample were generated for each cohort, respectively. The frequencies and related percentages of 

each predictor were similar after the random split stratified by the ePTB status, indicating that 

the partition is well-balanced (Table 4 - 2). 



87 
 

Table 4-1 Subject demography information 

Variable  

Newborn Gestational Age 

< 34 Wks: ePTB ≥ 34 Wks 

N = 134009 N = 3860863 

Mothers’ Age (%)   

≤ 24 Years 40711 (30.38) 1094793 (28.36) 

  25-29 Years 34831 (25.99) 1112643 (28.82) 

  30-34 Years 33578 (25.06) 1049775 (27.19) 

  ≥ 35 Years     24889 (18.57) 603652 (15.64) 
   

Mothers’ Nativity (%)   

  Born in U.S. 107578 (80.28) 2996531 (77.61) 

  Born Outside U.S. /Unknown/Not Stated 26431 (19.72) 864332 (22.39) 
   

Mothers’ Race (%)   

  White 88185 (65.81) 2938466 (76.11) 

  Black 36554 (27.28) 603921 (15.64) 

  American Indian/Alaskan Native/Asian or  

Pacific Islander 
9270 (6.92) 318476 (8.25) 

   

Mothers’ Hispanic Origin (%)   

  Non-Hispanic/Hispanic Origin Not Stated 105011 (78.36) 2968422 (76.88) 

  Hispanic   28998 (21.64) 892441 (23.12) 
   

Marital Status (%)   

  Married 65594 (48.95) 2323620 (60.18) 

  Unmarried 68415 (51.05) 1537243 (39.82) 
   

Mothers’ Education (%)   

  ≤ High School or GED/Unknown 62819 (46.88) 1512489 (39.17) 

  Associate/Some College Credit 37338 (27.86) 1086153 (28.13) 

  ≥ Bachelor's 29145 (21.75) 1124077 (29.11) 

  Missing 4707 (3.51) 138144 (3.58) 
     

Pre-pregnancy Smoking Status (%)   

  Nonsmoker 108663 (81.09) 3258557 (84.40) 

  Smoker/Unknown/Not Stated 20639 (15.40) 464162 (12.02) 

  Missing 4707 (3.51) 138144 (3.58) 
     

Pre-pregnancy BMI (%)   

  Under Weight-Normal ≤ 24.9 55824 (41.66) 1785913 (46.26) 

  Overweight 25.0-29.9 30288 (22.60) 918380 (23.79) 
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  Obesity ≥ 30.0/Unknown/Not Stated 43190 (32.23) 1018426 (26.38) 

  Missing 4707 (3.51) 138144 (3.58) 
     

Pre-pregnancy Diabetes Status (%)   

  No/Unknown/Not Stated 126901 (94.70) 3694967 (95.70) 

  Yes 2401 (1.79) 27752 (0.72) 

  Missing 4707 (3.51) 138144 (3.58) 
   

Pre-pregnancy Hypertension Status (%)   

  No/Unknown/Not Stated 123932 (92.48) 3667289 (94.99) 

  Yes 5370 (4.01) 55430 (1.44) 

  Missing 4707 (3.51) 138144 (3.58) 
   

Previous Preterm Birth Status (%)   

  No/Unknown/Not Stated 118468 (88.40) 3626879 (93.94) 

  Yes 10834 (8.08) 95840 (2.48) 

  Missing 4707 (3.51) 138144 (3.58) 
   

Infertility Treatment Usage Status (%)   

  No/Unknown/Not Stated 122859 (91.68) 3669850 (95.05) 

  Yes 6443 (4.81) 52869 (1.37) 

  Missing 4707 (3.51) 138144 (3.58) 
   

Fertility Enhancing Drug Usage Status (%)   

  No/Not Applicable/Unknown/Not Stated 126582 (94.46) 3697856 (95.78) 

  Yes 2720 (2.03) 24863 (0.64) 

  Missing 4707 (3.51) 138144 (3.58) 
   

Delivery Payment Source (%)   

  Medicaid 65048 (48.54) 1598851 (41.41) 

  Private Insurance 51753 (38.62) 1771814 (45.89) 

  Self-pay/Other/Unknown 12501 (9.33) 352054 (9.12) 

  Missing 4707 (3.51) 138144 (3.58) 

 

Table 4-2 Univariate difference between training sample and validation sample 

Variables  

Cohort 

Training Validation 

N = 2796411  N = 1198461  

Mothers’ Age (%)   
  ≤ 24 Years 794486 (28.41) 341018 (28.45) 

  25-29 Years 803113 (28.72) 344361 (28.73) 
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  30-34 Years 758087 (27.11) 325266 (27.14) 

  ≥ 35 Years 440725 (15.76) 187816 (15.67) 

   
Mothers’ Nativity (%)   
  Born in U.S. 2172903 (77.70) 931206 (77.70) 

  Born Outside U.S. /Unknown/Not 

Stated 
623508 (22.30) 267255 (22.30) 

   

Mothers’ Race (%)   

  White 2119115 (75.78) 907536 (75.73) 

  Black 447972 (16.02) 192503 (16.06) 

  American Indian/Alaskan 

Native/Asian or  Pacific Islander 
229324 (8.20) 98422 (8.21) 

   

Mothers’ Hispanic Origin (%)   

  Non-Hispanic/Hispanic Origin 

Not Stated 
2151766 (76.95) 921667 (76.90) 

  Hispanic 644645 (23.05) 276794 (23.10) 

   

Marital Status (%)   

  Married 1672583 (59.81) 716631 (59.80) 

  Unmarried 1123828 (40.19) 481830 (40.20) 

   

Mothers’ Education (%)   

  ≤ High School or GED/Unknown 1102757 (39.43) 472551 (39.43) 

  Associate/Some College Credit 786618 (28.13) 336873 (28.11) 

  ≥ Bachelor's 806822 (28.85) 346400 (28.90) 

  Missing 100214 (3.58) 42637 (3.56) 
   

Pre-pregnancy Smoking Status (%)   

  Nonsmoker 2357285 (84.30) 1009935 (84.27) 

  Smoker/Unknown/Not Stated 338912 (12.12) 145889 (12.17) 

  Missing 100214 (3.58) 42637 (3.56) 

   

Pre-pregnancy BMI (%)   

  Under Weight-Normal ≤ 24.9 1288811 (46.09) 552926 (46.14) 

  Overweight 25.0-29.9 664673 (23.77) 283995 (23.70) 

  Obesity ≥ 30.0/Unknown/Not 

Stated 
742713 (26.56) 318903 (26.61) 

  Missing 100214 (3.58) 42637 (3.56) 

   

Pre-pregnancy Diabetes Status (%)   

  No/Unknown/Not Stated 2675048 (95.66) 1146820 (95.69) 

  Yes 21149 (0.76) 9004 (0.75) 

  Missing 100214 (3.58) 42637 (3.56) 
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Pre-pregnancy Hypertension Status 

(%) 
  

  No/Unknown/Not Stated 2653410 (94.89) 1137811 (94.94) 

  Yes 42787 (1.53) 18013 (1.50) 

  Missing 100214 (3.58) 42637 (3.56) 

   

Previous Preterm Birth Status (%)   

  No/Unknown/Not Stated 2621496 (93.75) 1123851 (93.77) 

  Yes 74701 (2.67) 31973 (2.67) 

 Missing 100214 (3.58) 42637 (3.56) 

    

Infertility Treatment Usage Status 

(%) 
  

  No/Unknown/Not Stated 2654757 (94.93) 1137952 (94.95) 

  Yes 41440 (1.48) 17872 (1.49) 

  Missing 100214 (3.58) 42637 (3.56) 

   

Fertility Enhancing Drug Usage 

Status (%) 
  

  No/Not Applicable/Unknown/Not 

Stated 
2676910 (95.73) 1147528 (95.75) 

  Yes   19287 (0.69) 8296 (0.69) 

  Missing 100214 (3.58) 42637 (3.56) 

   

Delivery Payment Source (%)   

  Medicaid 1164617 (41.65) 499282 (41.66) 

  Private Insurance 1276362 (45.64) 547205 (45.66) 

  Self-pay/Other/Unknown 255218 (9.13) 109337 (9.12) 

  Missing 100214 (3.58) 42637 (3.56) 

   

Newborn Gestational Age (%)   

  < 34 Wks: ePTB 93751 (3.35) 40258 (3.36) 

  ≥ 34 Wks 2702660 (96.65) 1158203 (96.64) 

4.3.2  Logistic Regression 

14-Predictor model. Table 4 - 3 showed results from the logistic regression analysis for 

prevalence of ePTB with all 14 predictor variables. A relatively higher ePTB prevalence was 

observed in the older mother populations compared to younger mothers in the ≤ 24 years old 

reference group. The adjusted OR (95% CI) were 1.013 (0.995, 1.032), 1.130 (1.108, 1.152), and 

1.354 (1.325, 1.385) for mothers in the age groups of 25-29 years (non-significant, p=0.169), 30-
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34 years, and ≥ 35 years, respectively.  Mothers born outside of the U.S. were less likely to 

experience ePTB compared to mothers born in the U.S. with an adjusted OR (95% CI) of 0.880 

(0.863, 0.898). Black mothers and American Indian/Alaskan Native/Asian or Pacific Islander 

mothers were more likely to have an ePTB compared to White mothers with adjusted OR (95% 

CI) of 1.773 (1.743, 1.803) and 1.096 (1.066, 1.127), respectively. Mothers of Hispanic origin 

had a slightly higher ePTB prevalence compared to mothers of non-Hispanic origin with an 

adjusted OR (95% CI) of 1.033 (1.013, 1.053). ePTB was more likely to occur in the unmarried 

mother population compared to married mothers with an adjusted OR (95% CI) of 1.326 (1.304, 

1.347).  

Mothers with an associate degree or some college credit and mothers with a bachelor’s 

degree or higher education were less likely to experience ePTB compared to mothers with a high 

school/general educational development (GED) or less education. The corresponding adjusted 

OR (95% CI) for each subgroup was 0.842 (0.828, 0.856) and 0.713 (0.698, 0.729), respectively. 

Results from the subgroup with missing mother’s education were non-significant (p=0.873). In 

addition, since all the observations with missing predictors were all from the same subset, for the 

following parameters after mothers’ education, missing observations were automatically 

excluded from the analysis, and the corresponding parameters were automatically set to 0 due to 

they are from the same subset. 

Some maternal pre-pregnancy characteristics and medical history factors were also found 

to be related to ePTB. For Pre-pregnancy BMI, mothers in the overweight subgroup had a 

slightly lower prevalence of ePTB (p=0.047), with an adjusted OR (95% CI) of 0.983 (0.966, 

1.000) compared to mothers with underweight and/or normal BMI. However, the opposite result 

was obtained for the obese subgroup with an adjusted OR (95% CI) of 1.127 (1.109, 1.145), 
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compared with the underweight and/or normal BMI mothers. For other pre-pregnancy risk 

factors (i.e., smoking status, diabetes status, hypertension status, and previous preterm birth 

status), mothers in each risk sub-category were more likely to have a higher prevalence of ePTB 

compared to mothers who did not have the abovementioned risk factors. The corresponding 

adjusted OR (95% CI) were 1.183 (1.160, 1.206), 1.776 (1.685, 1.871), 1.984 (1.913, 2.056), 

3.004 (2.929, 3.081), respectively.  

In addition, mothers who used infertility treatment were much more likely to experience 

ePTB than those who had not used the infertility treatment, with an adjusted OR (95% CI) of 

5.103 (4.888, 5.328). On the other hand, a different outcome was observed with the usage of 

fertility enhancing drug. Mothers who used fertility enhancing drugs were less likely to have an 

ePTB compared to women who did not, with an adjusted OR (95% CI) of 0.820 (0.769, 0.873). 

Compared to women whose payer was Medicaid, the adjusted OR (95% CI) were 0.965 (0.948, 

0.983) and 1.079 (1.054, 1.105) for women who had private insurance and self-pay, respectively. 

Mothers with private insurance had a slightly lower prevalence of ePTB; whereas mothers with 

self-paid delivery had a slightly higher prevalence of ePTB. Although the p-values for both 

comparisons were statistically significant (< 0.0001), the numerical differences were small.  

Table 4-3. The estimate and adjusted OR of logistic regression analysis on the training cohort 

Parameter 
Estimat

e 

Adjusted OR (95% 

CI) 
P value 

Intercept -3.7154  - <.0001 
    

Mothers’ Age (%)    

  ≤ 24 Years  - 1.0 (1.0–1.0)  - 

  25-29 Years 0.0129 1.013 (0.995, 1.032) 0.169 

  30-34 Years 0.1221 1.130 (1.108, 1.152) <.0001 

  ≥ 35 Years 0.3034 1.354 (1.325, 1.385) <.0001 
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Mothers’ Nativity (%)    

  Born in U.S.  - 1.0 (1.0–1.0)  - 

  Born Outside U.S. /Unknown/Not 

Stated 
-0.1274 0.880 (0.863, 0.898) <.0001 

    
Mothers’ Race (%)    
  White  - 1.0 (1.0–1.0)  - 

  Black 0.5727 1.773 (1.743, 1.803) <.0001 

  American Indian/Alaskan Native/Asian 

or  Pacific Islander 
0.0917 1.096 (1.066, 1.127) <.0001 

 
   

Mothers’ Hispanic Origin (%)    

  Non-Hispanic/Hispanic Origin Not 

Stated 
- 1.0 (1.0–1.0)  - 

  Hispanic    0.0323 1.033 (1.013, 1.053) 0.009 
 

   
Marital Status (%)    
  Married  - 1.0 (1.0–1.0)  - 

  Unmarried 0.2819 1.326 (1.304, 1.347) <.0001 

    
Mothers’ Education (%)    
  ≤ High School or GED/Unknown  - 1.0 (1.0–1.0)  - 

  Associate/Some College Credit -0.1725 0.842 (0.828, 0.856) <.0001 

  ≥ Bachelor's -0.3382 0.713 (0.698, 0.729) <.0001 

  Missing 0.0031 1.003 (0.966, 1.042) 0.8727 
 

   
Pre-pregnancy Smoking Status (%) a    
  Nonsmoker  - 1.0 (1.0–1.0)  - 

  Smoker/Unknown/Not Stated 0.1677 1.183 (1.160, 1.206) <.0001 

    
Pre-pregnancy BMI (%) a    
  Under Weight-Normal ≤24.9  - 1.0 (1.0–1.0)  - 

  Overweight 25.0-29.9 -0.0174 0.983 (0.966, 1.000) 0.0472 

  Obesity ≥30.0/Unknown/Not Stated 0.1195 1.127 (1.109, 1.145) <.0001 
 

   
Pre-pregnancy Diabetes Status (%) a    
  No/Unknown/Not Stated  - 1.0 (1.0–1.0) - 

  Yes 0.5741 1.776 (1.685, 1.871) <.0001 
 

   
Pre-pregnancy Hypertension Status (%) 
a 

  
 

  No/Unknown/Not Stated  - 1.0 (1.0–1.0)  

  Yes 0.6849 1.984 (1.913, 2.056) <.0001 
 

   
Previous Preterm Birth Status (%) a    
  No/Unknown/Not Stated  - 1.0 (1.0–1.0) - 

  Yes 1.0999 3.004 (2.929, 3.081) <.0001 
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Infertility Treatment Usage Status (%) a    
  No/Unknown/Not Stated - 1.0 (1.0–1.0)  - 

  Yes 1.6299 5.103 (4.888, 5.328) <.0001 

    

Fertility Enhancing Drug Usage Status 

(%) a    
  No/Not Applicable/Unknown/Not 

Stated 
- 1.0 (1.0–1.0)  - 

  Yes -0.1988 0.820 (0.769, 0.873) <.0001 

    

Delivery Payment Source (%) a    
  Medicaid  - 1.0 (1.0–1.0)  - 

  Private Insurance -0.0352 0.965 (0.948, 0.983) <.0001 

  Self-pay/Other/Unknown 0.0762 1.079 (1.054, 1.105) <.0001 

 a: For the following parameters after mothers’ education, missing observations were 

automatically excluded from the analysis, and the corresponding parameters were automatically 

set to 0 due to they are from the same subset. 

 

10-Predictor model. After examining results from the 14-predictor model, four covariates 

- mothers’ nativity, mothers’ Hispanic origin, fertility enhancing drug usage status, and delivery 

payment source - were excluded for having minimal effects on ePTB and to explore further a 

smaller set of potential risk subgroups for ePTB. Moreover, the same C-index (0.646) was 

obtained from both logistic regression models with either 14 or 10 predictors based on the 

training cohort (Figure 4-1). The C-index was 0.645 after fitting the 10-predictor model on the 

validation data, indicating an acceptable model fit. Figure 4-2 showed the calibration plot based 

on the validation cohort to compare the average predicted probabilities and the average observed 

probabilities across quartiles. The average and range of both predicted and observed probability 

for each of the four potential subgroups were shown in Table 4 - 4, along with summarized 

maternal characteristics for each subgroup from the validation cohort.  
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For the first subgroup (i.e., first quartile), the average predicted and observed 

probabilities were 1.92% and 1.83% respectively, with a range of 0.55% for the predicted 

probability. A typical mother from this potential subgroup was between 30-34 years old, with a 

designation as white, married, with a bachelor's degree or higher education level, non-smoking, 

underweight to normal weight (BMI ≤24.9) before pregnancy, without notable pre-pregnancy 

risk factors (i.e., diabetes, hypertension, previous preterm birth), and without infertility 

treatment. The second subgroup (i.e., second quartile) had an average predicted and an average 

observed probability of 2.46% and 2.33% respectively, with a range of 0.52% for the predicted 

probability. Mothers from the second potential subgroup shared very similar characteristics with 

a typical mother from the first subgroup, with the exception of age (slightly younger, 25-29 years 

old) and slightly lower education level (associate degree or some college credit). The average 

and range of predicted probability for the third subgroup (i.e., third quartile) were 3.22% and 

0.95%; and the observed probability was 3.24%. Similar to trends observed from the second 

subgroup (in comparison with the first subgroup), a typical mother from the third subgroup was 

younger (≤ 24 years old) and with less education (≤ high school or GED/unknown). Lastly, the 

average predicted and observed probabilities for the highest risk subgroup (i.e., last 25% of data) 

were 6.02% and 6.07% respectively, with the predicted probability range of 60.6%. Mothers in 

this high-risk subgroup exhibit much different characteristics from the other three subgroups. 

They tended to be younger (≤ 24 years old), Black, unmarried, with a high school/GED or less 

education level, and generally obese (≥ 30.0 BMI). Moreover, compared to the other three 

subgroups, a relatively higher percentage of mothers in this high-risk subgroup had pre-

pregnancy diabetes, hypertension, previous preterm birth, and infertility treatment usage. 
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Table 4-4 The ePTB subgroup predicted /observed probability and maternal characteristics in 

validation cohort via logistic regression 

Variable  

Subgroup  

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile 

N = 299529 N = 299078  N = 299993 N = 299861 

Probability (%)     

 Average Predicted  1.92 2.46 3.22 6.02 

 Range Predicted 0.55 0.52 0.95 60.6 

 Average Observed 1.83 2.33 3.24 6.07 

     

Mothers’ Age (%)     

  ≤ 24 Years 36603 (12.22) 70681 (23.63) 127739 (42.58) 105995 (35.35) 

  25-29 Years 120779 (40.32) 83600 (27.95) 68003 (22.67) 71979 (24.00) 

  30-34 Years 129538 (43.25) 78439 (26.23) 56362 (18.79) 60927 (20.32) 

  ≥ 35 Years 12609 (4.21) 66358 (22.19) 47889 (15.96) 60960 (20.33) 
     

Mothers’ Race (%)     
  White 259978 (86.80) 273311 (91.38) 260128 (86.71) 114119 (38.06) 

  Black 0 (0.00) 872 (0.29) 18661 (6.22) 172970 (57.68) 

  American Indian/Alaskan 

Native/Asian or Pacific Islander 
39551 (13.20) 24895 (8.32) 21204 (7.07) 12772 (4.26) 

     

Marital Status (%)     
  Married 296804 (99.09) 246717 (82.49) 92320 (30.77) 80790 (26.94) 

  Unmarried 2725 (0.91) 52361 (17.51) 207673 (69.23) 219071 (73.06) 
     

Mothers’ Education (%)     
  ≤ High School or 

GED/Unknown 
10988 (3.67) 93778 (31.36) 192086 (64.03) 175699 (58.59) 

  Associate/Some College Credit 69843 (23.32) 117843 (39.40) 69455 (23.15) 79732 (26.59) 

  ≥ Bachelor's 217614 (72.65) 71541 (23.92) 21886 (7.30) 35359 (11.79) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
     

Pre-pregnancy Smoking Status 

(%)     
  Nonsmoker 295313 (98.59) 262159 (87.66) 234907 (78.30) 217556 (72.55) 

  Smoker/Unknown/Not Stated 3132 (1.05) 21003 (7.02) 48520 (16.17) 73234 (24.42) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
     

Pre-pregnancy BMI (%)     
  Under Weight-Normal ≤ 24.9 183032 (61.11) 142007 (47.48) 119757 (39.92) 108130 (36.06) 

  Overweight 25.0-29.9 82956 (27.70) 67818 (22.68) 70451 (23.48) 62770 (20.93) 

  Obesity ≥ 30.0/Unknown/Not 

Stated 
32457 (10.84) 73337 (24.52) 93219 (31.07) 119890 (39.98) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
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Pre-pregnancy Diabetes Status 

(%)     
  No/Unknown/Not Stated 298445 (99.64) 283149 (94.67) 282480 (94.16) 282746 (94.29) 

  Yes 0 (0.00) 13 (0.00) 947 (0.32) 8044 (2.68) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
     

Pre-pregnancy Hypertension 

Status (%)     
  No/Unknown/Not Stated 298445 (99.64) 283162 (94.68) 282293 (94.10) 273911 (91.35) 

  Yes 0 (0.00) 0 (0.00) 1134 (0.38) 16879 (5.63) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
     

Previous Preterm Birth Status (%)     
  No/Unknown/Not Stated 298445 (99.64) 283162 (94.68) 283427 (94.48) 258817 (86.31) 

  Yes 0 (0.00) 0 (0.00) 0 (0.00) 31973 (10.66) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
     

Infertility Treatment Usage Status 

(%)     
  No/Unknown/Not Stated 298445 (99.64) 283162 (94.68) 283427 (94.48) 272918 (91.01) 

  Yes 0 (0.00) 0 (0.00) 0 (0.00) 17872 (5.96) 

  Missing 1084 (0.36) 15916 (5.32) 16566 (5.52) 9071 (3.03) 
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Figure 4-1 ROC curve from logistic regression on the training dataset 

Figure 4-2 Calibration plot from the validation sample. Observed vs. Predicted Probability across 

the quartiles 

4.3.3 CART model 

For the CART model, sub-categories were collapsed for a couple of risk factors. The 

missing subgroup of previous preterm birth status was combined with the “no” group; and the 
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race category of American Indian/Alaskan Native/Asian or Pacific Islander was combined with 

the White group. Based on a pre-specified stopping rule of having the terminal node size no less 

than 0.5% of the total sample and the binary Gini splitting rule, the CART tree was created to 

explore the unknown interactions among the risk factors and identify potential risk subgroups 

(Figure 4-3). Overall, the CART model from the training cohort produced a misclassification rate 

of 0.034 and a C-index of 0.579. Moreover, the misclassification rate was 0.034 and the c-index 

was 0.578 from the validation cohort. By the percentage representing the observed prevalence of 

ePTB, CART identified four subgroups. Previous preterm birth status was identified as the most 

discriminating predictor for ePTB, followed by mothers’ race. 

From training cohort, 14.41% of mothers with a preterm birth history and a race 

designation as Black had an ePTB experience (n =16,750), indicating a higher risk of ePTB for 

Black mothers with a preterm birth history. The correspondent percentage of this subgroup from 

the validation cohort is 15.02% (n=7,085). This subgroup totally accounted for 0.60% of the 

overall 2014 U.S. births. 8.96% and 8.70% of mothers with a preterm birth history and a race 

designation as White had an ePTB experience from training (n = 57,951) and validation (n = 

24,888), and the subgroup birth prevalence (SBP) was 2.07%. Women without a preterm birth 

history who were Black had an ePTB experience of 5.37% (n = 431,222); while 2.75% of 

mothers without a preterm birth history who were White had an ePTB experience (n = 

2,290,488). The correspondent rates for the identical subgroups from the validation cohort are 

5.35% (n =185,418) and 2.76% (n = 981,070). These two subgroups accounted for 15.44% and 

81.89% of the overall birth data, respectively. 

It is also informative to interpret the CART tree in terms of risk factors that increase or 

decrease the probability of ePTB. One can compare the rates of ePTB among the four potential 
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subgroups to the average rate of ePTB of the total sample (3.35%, 3.36% for training and 

validation cohort, respectively). Three subgroups (with preterm birth history and Black, with 

preterm birth history and White, without preterm birth history and Black) had an increased 

probability of ePTB compared to the subgroup without a preterm birth history who were White.  

 

Figure 4-3 Classification and Regression Tree model for predicting ePTB 

The probability of ePTB (P) and the number of subject (N) are all given inside of each node for 

both training and validation cohort. In each end node, the subgroup birth prevalence (SBP) is 

also calculated. AI = American Indian; AN = Alaskan Native;  PI = Pacific Islander. 

 

4.4 Discussion 

This large sampled pioneer study aimed to explore potential risk factors and their 

interactions, and identify subgroup for the ePTB population via both logistic regression model 

and the CART model. Several important findings emerged from the current study. First, a subset 

of the most important and relevant covariates have been identified among the 14 risk factors 
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examined, such as race, diabetes history, hypertension history, preterm birth history, and 

infertility treatment usage. Second, although logistic regression model identified a set of 10 

predictors for the prevalence of ePTB, the CART model was able to examine multiple and 

complicated interactions among the selected predictors. The CART model clearly identified that 

the subgroup with a preterm birth history and a race designation as Black had the highest risk for 

ePTB. Third, although not presented in the current work, the risk ratios (RR) of a particular 

subgroup from the CART terminal nodes can be calculated to compare with the RR of other 

subgroups via the observed probabilities. RR also indirectly can inform the risk factors for ePTB.  

Previous preterm birth status and race were the most discriminating predictors for ePTB 

by the CART model, while another eight predictors were identified by the logistic regression 

analyses. As a well-known traditional statistical approach, logistic regression provided predicted 

probabilities based on the important demographics and characteristics for ePTB; however, it 

cannot identify complicated interactions among risk factors. On the other hand, the CART model 

presents a more straightforward picture of the potential high risk subgroups for ePTB for whom 

targeted prevention efforts can be implemented. Moreover, each subgroup accounted for a 

different percent of the overall simple size. Thus the difference in ePTB prevalence among the 

four subgroups identified by the CART model was much larger than that identified by the 

logistic regression model. Coupling both statistical approaches provides more efficiency for 

analyzing the overall objective of this study. It also further exemplifies the statistical analysis for 

similar studies.  

Additionally, from a long-term perspective, this pioneering study provides valuable 

information and direction for our further targeted subgroup enrichment clinical trials aiming at 
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decreasing the prevalence of ePTB among the interactive risk subgroups via supplement 

pregnant women with DHA. 

There are some limitations with this study. Some risk factors contained missing values 

and/or values of “Not Applicable”, “Unknown,” and “Not Stated,” which added complexity to 

the proposed analyses. However, data management is unavoidable for any concrete project, and 

we face the same issue for such a large database regarding birth data for the whole country. The 

solution taken was from an objective and general perspective, which could deduce the reasonable 

and acceptable results. Additionally, the risk predictors explored in this paper mainly from 

mothers’ demographics factors and Maternal pre-pregnancy characteristics, and it does include 

more highly specific biomarkers. This is due to no such predictors collected in the analysis 

database. Potentially, this limitation may lead to the relatively low c-index for both models. 

Further application and reference for these two models should be precautioned. 

 

4.5 Conclusions 

This study revealed 14 maternal characteristic variables that can be used reliably to 

identify risk factor subgroups for ePTB either through a logistic regression model and/or a 

CART model. Moreover, both models may be used efficiently to identify high risk subgroups for 

further enrichment clinical trial design. 

 

4.6 List of abbreviations 

BMI – body mass index 

CART - classification and regression tree 

CDC- Centers for Disease Control and Prevention’s 
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CI - confidence intervals 

DC - District of Columbia 

DHA - docosahexaenoic acid 

ePTB - early preterm birth 

GED - general educational development 

NCHS - National Center for Health Statistics 

OR - odds ratios 

RR - risk ratios 

SBP - subgroup birth prevalence 
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Chapter 5: Summary and Future Directions  
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In Chapter Two, we investigate batch of adaptive designs which are composed by 

analysis models (pairwise independent, hierarchical, and cluster hierarchical achieved via 

Dirichlet Process (DP)), interim analysis (Yes vs. No) and longitudinal data modeling (Yes vs. 

No). We found that the hierarchical model with interim analysis and longitudinal modelling is an 

optimal approach to identifying subgroup treatment effects, and the cluster hierarchical model 

with interim analysis and longitudinal imputation is an excellent alternative approach in cases 

where sufficient information is not available for specifying the related priors. There are several 

points that is worth exploring in the future. Firstly, our research is based on continues data, and it 

is interesting to validate that these findings can be applied to the with discrete or time-to-event 

endpoints. Secondly, there is only one interim analysis and randomization ratio is fixed in our 

research, however, it is good to explore Bayesian response adaptive randomization (Bayesian 

RAR) to update the randomization ratio based on each interim analysis result when no indication 

of effective treatment arms. Other factors, such as treatment dosage, sample size, etc. may also 

be adjusted accordingly under Bayesian adaptive designs. Lastly, we assume the missing data 

pattern is missing at random (MAR). Meanwhile, it is an interesting topic for future research to 

explore the different imputation methods for other mechanism, like missing not at random 

(MNAR). 

In Chapter Three, we investigate several Bayesian designs incorporating historical 

control borrowing: power prior via overlapping area, commensurate prior, and some other 

methods. The impact of historical data type and different types of the threshold used in Bayesian 

decision rule are also explored. We found that it is a good consideration to apply the power prior 

adaptive design with power parameter determination via overlapping area of posterior 

distribution under certain values of true response rates of concurrent control, historical control, 
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and treatment effect. Study design with commensurate prior is an admissible choice as well, 

however, appropriate priors need to be specified. Still, there are several points that is worth 

exploring in the future. Firstly, the commensurate prior is incorporated in the adaptive scenarios, 

is it possible to connect the interim analysis result to the commensurate prior parameter setting? 

If yes, then compare it with the designs incorporated power prior via overlapping area. Secondly, 

it is data type. Data type in our research is binary, and the summary data level is equivalent to the 

subject data level. Moreover, the variance of binary data is associated with the response rate. It is 

worth researching other data type, especially the continuous ones that the variance is independent 

of location parameter. Thirdly, we mainly focus on small sample size. However, researchers can 

probably have larger data when designing a new related study, the performance of those 

borrowing methods should be explored under a moderate or large sample size. Lastly, we did not 

consider the variety of the covariates. It is a good future exploring how to adjust the difference 

between the concurrent and historical controls via the different covariates. 

In Chapter Four, we logistic regression and CART models to identify the risk factors of 

ePTB from maternal perspective based on the birth data from CDC and NCHS’ 2014 Natality 

public file. We identify that the subgroup with a preterm birth history and a race designation as 

Black had the highest risk for ePTB. Those findings can provide valuable information for a 

future enrichment trial design. Moreover, both models can be applied to identify risk factors for 

other studies.  
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Appendix 2.1 the development of full complete conditional distribution of 

treatment effectiveness difference between Arm A and Arm B (θg), and of 

treatment effectiveness of Arm A (γg) under different models given subgroup g; 

DP specification. 

 

Pairwise independent model specification 

- Arm A :  

Suppose   

𝑌1𝑔
(𝐴), 𝑌2𝑔

(𝐴), 𝑌3𝑔
(𝐴), 𝑌4𝑔

(𝐴)….  𝑌
𝑁𝑔
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𝑔

(𝐴)
 ~ 𝑁 (𝛾𝑔, 𝜎
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(𝐴),2), 𝜎2 ~ 𝐼𝐺 (
𝜎𝑛

2
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2𝜎𝑛

2
),  

where “A” in the superscript stands for “Arm A”;  

g is the index of the subgroup, 𝑔 = {1, 2, 3, …𝑔𝑛}, e.g., 𝑔𝑛 = 4 refers there are four subgroups 

and 𝑔𝑛 = 8 refers there are eight subgroups; 

𝑁𝑔
(𝐴)

 represents for the sample size of the subgroup g from Arm A; 

𝛾𝑔 and 𝜎2 denote the mean and variance of the normal distribution from which the Arm A 

subgroup sample is drawn, and we assume all the distributions from which the sample is drawn 

have the same variance (𝜎2); 

𝜇𝑔
(𝐴)

 and 𝜏𝑔
(𝐴),2

 denote the mean and variance of normal distribution as which 𝛾𝑔 is distributed; 𝜎𝑛 

and 𝜎𝜇
2 are the fixed parameters of inverse gamma distribution as which 𝜎2 is distributed. 

- Arm B : 

Suppose   𝑌1𝑔
(𝐵), 𝑌2𝑔

(𝐵), 𝑌3𝑔
(𝐵), 𝑌4𝑔

(𝐵)….  𝑌
𝑁𝑔
(𝐵)
𝑔

(𝐵)
 ~ 𝑁 (𝛾𝑔 + 𝜃𝑔, 𝜎

2), 𝜃𝑔 ~ 𝑁 (𝜇𝑔
(𝐵), 𝜏𝑔

(𝐵),2), 

where "B" in the superscript stands for "Arm B ";  

𝑁𝑔
(𝐵)

 represents for the sample size of the subgroup 𝑔 from Arm B; 
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𝑔, 𝛾𝑔 and 𝜎2 have meanings and or are distributed identically to those from Arm A circumstance; 

𝜃𝑔 is the treatment difference between Arm B and Arm A given subgroup 𝑔;   

𝜇𝑔
(𝐵)

 and 𝜏𝑔
(𝐵),2

 denotes the mean and variance of normal distribution as which 𝜃𝑔 is distributed. 

-The full joint PDF under the pairwise independent model: 

∏∏
1

√2𝜋𝜎

𝑁𝑔
(𝐴)

𝑖=1

𝑔𝑛

𝑔=1

𝑒𝑥𝑝(−
(𝑌𝑖𝑔

(𝐴) − 𝛾𝑔)
2

2𝜎2
)∏∏

1

√2𝜋𝜎

𝑁𝑔
(𝐵)

𝑖=1

𝑔𝑛

𝑔=1

𝑒𝑥𝑝(−
(𝑌𝑖𝑔

(𝐵) − 𝛾𝑔 − 𝜃𝑔)
2

2𝜎2
) × 

∏
1

√2𝜋𝜏𝑔
(𝐴)
𝑒𝑥𝑝(−

(𝛾𝑔 − 𝜇𝑔
(𝐴)
)
2

2𝜏𝑔
(𝐴),2

)

𝑔𝑛

𝑔=1

∏
1

√2𝜋𝜏𝑔
(𝐵)
𝑒𝑥𝑝(−

(𝜃𝑔 − 𝜇𝑔
(𝐵)
)
2

2 𝜏𝑔
(𝐵),2

)

𝑔𝑛

𝑔=1

(

 
 
 
 
 (
𝜎𝜇
2𝜎𝑛
2 )

𝜎𝑛
2

𝑒𝑥𝑝(−

𝜎𝜇
2𝜎𝑛
2
𝜎2

)

(𝜎2)
𝜎𝑛
2
+1𝛤 (

𝜎𝑛
2 )

)

 
 
 
 
 

.  

-The full complete conditional distribution of treatment effectiveness difference between 

Arm A and Arm B given subgroup 𝒈 (𝜽𝒈): 

𝑃(𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝑔

(𝐵), 𝜏𝑔
(𝐵),2)  ∝ 𝑒𝑥𝑝(−

∑ (𝑌𝑖𝑔
(𝐵) − 𝛾𝑔 − 𝜃𝑔)

2𝑁𝑔
(𝐵)

𝑖=1

2𝜎2
)𝑒𝑥𝑝 (−

(𝜃𝑔 − 𝜇𝑔
(𝐵))

2

2𝜏𝑔
(𝐵),2

) 

= 𝑒𝑥𝑝(−
𝑁𝑔
(𝐵)𝜃𝑔

2 − 2𝜃𝑔∑ (𝑌𝑖𝑔
(𝐵) − 𝛾𝑔)

𝑁𝑔
(𝐵)

𝑖=1
+ ∑ (𝑌𝑖𝑔

(𝐵) − 𝛾𝑔)
2𝑁𝑔

(𝐵)

𝑖=1

2𝜎2
)𝑒𝑥𝑝(−

𝜃𝑔
2 − 2𝜃𝑔𝜇𝑔

(𝐵)
+ 𝜇𝑔

(𝐵),2

2𝜏𝑔
(𝐵),2

) 

∝ 𝑒𝑥𝑝 (
𝑁𝑔
(𝐵)𝜃𝑔

2 − 2𝜃𝑔 ∑ (𝑌𝑖𝑔
(𝐵) − 𝛾𝑔)

𝑁𝑔
(𝐵)

𝑖=1

2𝜎2
)𝑒𝑥𝑝 (−

𝜃𝑔
2 − 2𝜃𝑔𝜇𝑔

(𝐵)

2𝜏𝑔
(𝐵),2

)  

= 𝑒𝑥𝑝

(

  
 
−
𝜃𝑔
2
𝑁𝑔
(𝐵)

𝜎2
− 2𝜃𝑔

∑ (𝑌𝑖𝑔
(𝐵) − 𝛾𝑔)

𝑁𝑔
(𝐵)

𝑖=1

𝜎2

2

)

  
 
𝑒𝑥𝑝

(

  
 
−

𝜃𝑔
2 1

𝜏𝑔
(𝐵),2 − 2𝜃𝑔

𝜇𝑔
(𝐵)

𝜏𝑔
(𝐵),2

2

)
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= 𝑒𝑥𝑝

(

 
 
 
 
 

−

𝜃𝑔
2 (
𝑁𝑔
(𝐵)

𝜎2
+

1

𝜏𝑔
(𝐵),2) − 2𝜃𝑔 (

∑ (𝑌𝑖𝑔
(𝐵) − 𝛾𝑔)

𝑁𝑔
(𝐵)

𝑖=1

𝜎2
+
𝜇𝑔
(𝐵)

𝜏𝑔
(𝐵),2)

2

)

 
 
 
 
 

,⇒  

𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝑔

(𝐵), 𝜏𝑔
(𝐵),2~ 𝑁

(

 
 
 
 
∑ (𝑌𝑖𝑔

(𝐵) − 𝛾𝑔)
𝑁𝑔
(𝐵)

𝑖=1

𝜎2
+
𝜇𝑔
(𝐵)

𝜏𝑔
(𝐵),2

𝑁𝑔
(𝐵)

𝜎2
+

1

𝜏𝑔
(𝐵),2

,
1

𝑁𝑔
(𝐵)

𝜎2
+

1

𝜏𝑔
(𝐵),2

)

 
 
 
 

  

The mean and variance of the normal distribution arrived above can be simplified as 

𝜏𝑔
(𝐵),2

𝑁𝑔
(𝐵)
(𝑌̅𝑔

(𝐵)
−𝛾𝑔)+𝜎

2𝜇𝑔
(𝐵)

𝑁𝑔
(𝐵)
𝜏𝑔
(𝐵),2

+𝜎2
 and 

𝜏𝑔
(𝐵),2

𝜎2

𝑁𝑔
(𝐵)
𝜏𝑔
(𝐵),2

+𝜎2
 . 

- The full complete conditional distribution of treatment effectiveness of Arm A given 

subgroup 𝒈 (𝜸𝒈):  

𝑃(𝛾𝑔|𝒚⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝑔

(𝐴), 𝜏𝑔
(𝐴),2) 

∝ 𝑒𝑥𝑝(−
∑ (𝑌𝑖𝑔

(𝐴) − 𝛾𝑔)
2𝑁𝑔

(𝐴)

𝑖=1

2𝜎2
)𝑒𝑥𝑝(−

∑ (𝑌𝑖𝑔
(𝐵) − 𝛾𝑔 − 𝜃𝑔)

2𝑁𝑔
(𝐵)

𝑖=1

2𝜎2
)𝑒𝑥𝑝 (−

(𝛾𝑔 − 𝜇𝑔
(𝐴))

2

2𝜏𝑔
(𝐴),2

) 

∝ 𝑒𝑥𝑝 (−
(𝑁𝑔

(𝐴) + 𝑁𝑔
(𝐵))𝛾𝑔

2 − 2𝛾𝑔(𝑁𝑔
(𝐴)𝑌̅𝑔

(𝐴)
+ 𝑁𝑔

(𝐵)𝑌̅𝑔
(𝐵)
− 𝑁𝑔

(𝐵)𝜃𝑔)

2𝜎2
)𝑒𝑥𝑝(−

𝛾𝑔
2 − 2𝛾𝑔𝜇𝑔

(𝐴)

2𝜏𝑔
(𝐴),2

) 

= 𝑒𝑥𝑝 

(

  
 
−

𝛾𝑔
2 (
𝑁𝑔
(𝐴) +𝑁𝑔

(𝐵)

𝜎2
) − 2𝛾𝑔 (

𝑁𝑔
(𝐴)𝑌̅𝑔

(𝐴)
+𝑁𝑔

(𝐵)𝑌̅𝑔
(𝐵)
−𝑁𝑔

(𝐵)𝜃𝑔
𝜎2

)

2

)

  
 
𝑒𝑥𝑝

(

  
 
−

𝛾𝑔
2 1

𝜏𝑔
(𝐴),2 − 2𝛾𝑔

𝜇𝑔
(𝐴)

𝜏𝑔
(𝐴),2

2

)
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= 𝑒𝑥𝑝

(

  
 
−

𝛾𝑔
2 (
𝑁𝑔
(𝐴) + 𝑁𝑔

(𝐵)

𝜎2
+

1

𝜏𝑔
(𝐴),2) − 2𝛾𝑔 (

𝑁𝑔
(𝐴)𝑌̅𝑔

(𝐴)
+𝑁𝑔

(𝐵)𝑌̅𝑔
(𝐵)
−𝑁𝑔

(𝐵)𝜃𝑔
𝜎2

+
𝜇𝑔
(𝐴)

𝜏𝑔
(𝐴),2)

2

)

  
 
,⇒ 

𝛾𝑔|𝒀⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝑔

(𝐵), 𝜏𝑔
(𝐵),2~ 𝑁

(

  
 

𝑁𝑔
(𝐴)𝑌̅𝑔

(𝐴)
+ 𝑁𝑔

(𝐵)𝑌̅𝑔
(𝐵)
− 𝑁𝑔

(𝐵)𝜃𝑔
𝜎2

+
𝜇𝑔
(𝐴)

𝜏𝑔
(𝐴),2

𝑁𝑔
(𝐴) + 𝑁𝑔

(𝐵)

𝜎2
+

1

𝜏𝑔
(𝐴),2

,
1

𝑁𝑔
(𝐴) + 𝑁𝑔

(𝐵)

𝜎2
+

1

𝜏𝑔
(𝐴),2

)

  
 
  

The mean and variance can be simplified as  
𝜏𝑔
(𝐴),2

(𝑁𝑔
(𝐴)
𝑌̅𝑔
(𝐴)
+𝑁𝑔

(𝐵)
𝑌̅𝑔
(𝐵)
−𝑁𝑔

(𝐵)
𝜃𝑔)+𝜎

2𝜇𝑔
(𝐴)

(𝑁𝑔
(𝐴)
+𝑁𝑔

(𝐵)
)𝜏𝑔
(𝐴),2

+𝜎2
 and 

𝜏𝑔
(𝐴),2

𝜎2

(𝑁𝑔
(𝐴)
+𝑁𝑔

(𝐵)
)𝜏𝑔
(𝐴),2

+𝜎2
 . 

 

Hierarchical model specification 

- Arm A : 

Suppose  

 𝑌1𝑔
(𝐴), 𝑌2𝑔

(𝐴), 𝑌3𝑔
(𝐴), 𝑌4𝑔

(𝐴)….  𝑌
𝑁𝑔
(𝐴)
𝑔

(𝐴)
 ~ 𝑁 (𝛾𝑔, 𝜎

2), 

𝛾𝑔 ~ 𝑁 (𝜇𝛾
(𝐴)
, 𝜏𝛾
(𝐴),2

), 𝜇𝛾
(𝐴)
 ~ 𝑁 (𝜇0, 𝜎0

2), 𝜏𝛾
(𝐴),2

 ~ 𝐼𝐺 (
𝜏𝑛

2
,   
𝜏𝜇
2𝜏𝑛

2
), 

where “A” in the superscript still stands for “Arm A”;  

𝑔,𝑁𝑔
(𝐴), 𝛾𝑔, 𝜎

2, 𝜎𝑛 and 𝜎𝜇
2 have the meanings and are distributed identically to those from Arm A 

circumstance in pairwise independent model;  

𝛾𝑔 has the same meanings as that from Arm A in pairwise independent model but with different 

distribution; 

𝜇𝛾
(𝐴)

 and 𝜏𝛾
(𝐴),2

 denotes the mean and variance of normal distribution as which 𝛾𝑔 is distributed; 
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𝜇0 and 𝜎0
2 denotes the mean and variance of normal distribution as which 𝜇𝛾

(𝐴)
 is distributed; 

𝜏𝑛 and 𝜏𝜇
2 are  the fixed parameters of inverse gamma distribution as which 𝜏𝛾

(𝐴),2
 is distributed. 

- Arm B : 

Suppose 

𝑌1𝑔
(𝐵), 𝑌2𝑔

(𝐵), 𝑌3𝑔
(𝐵), 𝑌4𝑔

(𝐵)….  𝑌
𝑁𝑔
(𝐵)
𝑔

(𝐵)
 ~ 𝑁 (𝛾𝑔 + 𝜃𝑔, 𝜎

2), 

𝜃𝑔 ~ 𝑁 (𝜇𝛾
(𝐵), 𝜏𝛾

(𝐵),2), 𝜇𝛾
(𝐵) ~ 𝑁 (𝜇0, 𝜎0

2), 𝜏𝛾
(𝐵),2~ 𝐼𝐺 (

𝜏𝑛
2
,   
𝜏𝜇
2𝜏𝑛

2
), 

where "B" in the superscript still stands for "Arm B";  

𝑔,𝑁𝑔
(𝐵), 𝛾𝑔, 𝜎

2, 𝜎𝑛 and 𝜎𝜇
2 have the meanings and are distributed identically to those from Arm B 

circumstance in pairwise independent model; 

𝜃𝑔 has the same meanings as that from Arm B in pairwise independent model but with different 

distribution; 

𝜇𝛾
(𝐵)

 and 𝜏𝛾
(𝐵),2

 denotes the mean and variance of normal distribution as which 𝜃𝑔 is distributed; 

𝜇0 and 𝜎0
2 denotes the mean and variance of normal distribution as which 𝜇𝛾

(𝐵)
 is distributed, and 

𝜏𝑛 and 𝜏𝜇
2 are the fixed parameters of inverse gamma distribution as which  𝜏𝛾

(𝐵),2
 is distributed, 

which is identical to those from Arm A circumstance in Hierarchical Model. 

-The full joint PDF under the Hierarchical Model: 

∏∏
1

√2𝜋𝜎

𝑁𝑔
(𝐴)

𝑖=1

𝑔𝑛

𝑔=1

𝑒𝑥𝑝(−
(𝑌𝑖𝑔

(𝐴) − 𝛾𝑔)
2

2𝜎2
)∏∏

1

√2𝜋𝜎

𝑁𝑔
(𝐵)

𝑖=1

𝑔𝑛

𝑔=1

𝑒𝑥𝑝(−
(𝑌𝑖𝑔

(𝐵) − 𝛾𝑔 − 𝜃𝑔)
2

2𝜎2
) × 

∏
1

√2𝜋𝜏𝛾
(𝐴)
𝑒𝑥𝑝(−

(𝛾𝑔 − 𝜇𝛾
(𝐴))

2

2𝜏𝛾
(𝐴),2

)
1

√2𝜋𝜎0

𝑔𝑛

𝑔=1

𝑒𝑥𝑝(−
(𝜇𝛾

(𝐴) − 𝜇0)
2

2𝜎0
2 ) × 
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∏
1

√2𝜋𝜏𝛾
(𝐵)
𝑒𝑥𝑝(−

(𝜃𝑔 − 𝜇𝛾
(𝐵))

2

2 𝜏𝛾
(𝐵),2

)

𝑔𝑛

𝑔=1

 
1

√2𝜋𝜎0
𝑒𝑥𝑝(−

(𝜇𝛾
(𝐵) − 𝜇0)

2

2𝜎0
2 ) × 

(

 
 
 
 
 (
𝜎𝜇
2𝜎𝑛
2 )

𝜎𝑛
2

𝑒𝑥𝑝(−

𝜎𝜇
2𝜎𝑛
2
𝜎2

)

(𝜎2)
𝜎𝑛
2
+1𝛤 (

𝜎𝑛
2 )

)

 
 
 
 
 

(

 
 
 
 
 (
𝜏𝜇
2𝜏𝑛
2 )

𝜏𝑛
2

𝑒𝑥𝑝(−

𝜏𝜇
2𝜏𝑛
2

𝜏𝛾
(𝐴),2)

(𝜏𝛾
(𝐴),2)

𝜏𝑛
2
+1

𝛤 (
𝜏𝑛
2 )

)

 
 
 
 
 

(

 
 
 
 
 (
𝜏𝜇
2𝜏𝑛
2 )

𝜏𝑛
2

𝑒𝑥𝑝(−

𝜏𝜇
2𝜏𝑛
2

𝜏𝛾
(𝐵),2)

(𝜏𝛾
(𝐵),2)

𝜏𝑛
2
+1

𝛤 (
𝜏𝑛
2 )

)

 
 
 
 
 

.  

- The full complete conditional distribution of treatment effectiveness difference between 

Arm A and Arm B given subgroup 𝒈 (𝜽𝒈): 

𝑃(𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝛾

(𝐵), 𝜏𝛾
(𝐵),2, 𝜇0, 𝜎0

2) = 𝑃(𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝛾

(𝐵), 𝜏𝛾
(𝐵),2) ∝ 

𝑒𝑥𝑝(−
∑ (𝑌𝑖𝑔

(𝐵)
−𝛾𝑔−𝜃𝑔)

2𝑁𝑔
(𝐵)

𝑖=1

2𝜎2
)𝑒𝑥𝑝 (−

(𝜃𝑔−𝜇𝛾
(𝐵)
)
2

2𝜏𝛾
(𝐵),2 ),  which arrives at the similar expression 

𝑃(𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝑔

(𝐵), 𝜏𝑔
(𝐵),2) as in pairwise independent model. Finally, 

𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝛾

(𝐵), 𝜏𝛾
(𝐵),2, 𝜇0, 𝜎0

2 = 𝜃𝑔|𝒀⃗⃗ , 𝛾𝑔, 𝜎
2, 𝜇𝛾

(𝐵), 𝜏𝛾
(𝐵),2~  

𝑁

(

 
 
 
 
∑ (𝑌𝑖𝑔

(𝐵) − 𝛾𝑔)
𝑁𝑔
(𝐵)

𝑖=1

𝜎2
+
𝜇𝛾
(𝐵)

𝜏𝛾
(𝐵),2

𝑁𝑔
(𝐵)

𝜎2
+

1

𝜏𝛾
(𝐵),2

,
1

𝑁𝑔
(𝐵)

𝜎2
+

1

𝜏𝛾
(𝐵),2

)

 
 
 
 

  

The mean and variance can be simplified as 
𝜏𝛾
(𝐵),2∑ (𝑌𝑖𝑔

(𝐵)
−𝛾𝑔)

𝑁𝑔
(𝐵)

𝑖=1
+𝜎2𝜇𝛾

(𝐵)

𝑁𝑔
(𝐵)
𝜏𝛾
(𝐵),2

+𝜎2
 and 

𝜏𝛾
(𝐵),2

𝜎2

𝑁𝑔
(𝐵)
𝜏𝛾
(𝐵),2

+𝜎2
 . 

- The full complete conditional distribution of 𝝁𝜸
(𝑩)

: 

Since 𝜇𝛾
(𝐵) is considered as random variable in hierarchical model, the full complete conditional 

distribution of 𝜇𝛾
(𝐵)

 is derived below: 



127 
 

𝑃(𝜇𝛾
(𝐵)|𝜽⃗⃗ , 𝜏𝛾

(𝐵),2, 𝜇0, 𝜎0
2) ∝  𝑒𝑥𝑝(−

∑ (𝜃𝑔 − 𝜇𝛾
(𝐵))

2
𝑔𝑛
𝑔=1

2𝜏𝛾
(𝐵),2

)  𝑒𝑥𝑝 (−
(𝜇𝛾

(𝐵) − 𝜇0)
2

2𝜎0
2 ) 

∝ 𝑒𝑥𝑝 (−
𝑔𝑛𝜇𝛾

(𝐵),2 − 2𝜇𝛾
(𝐵)∑ 𝜃𝑔

𝑔𝑛
𝑔=1

2𝜏𝛾
(𝐵),2

)𝑒𝑥𝑝 (−
𝜇𝛾
(𝐵),2 − 2𝜇𝛾

(𝐵)𝜇0

2𝜎0
2 ) 

= 𝑒𝑥𝑝

(

  
 
−

𝜇𝛾
(𝐵),2 (

𝑔𝑛
𝜏𝛾
(𝐵),2 +

1
𝜎0
2) + 2𝜇𝛾

(𝐵) (
∑ 𝜃𝑔
𝑔𝑛
𝑔=1

𝜏𝛾
(𝐵),2 +

𝜇0
𝜎0
2)

2

)

  
 
,⇒ 

𝜇𝛾
(𝐵)|𝜽⃗⃗ , 𝜏𝛾

(𝐵),2, 𝜇0, 𝜎0
2~ 𝑁

(

  
 

∑ 𝜃𝑔
𝑔𝑛
𝑔=1

𝜏𝛾
(𝐵),2 +

𝜇0
𝜎0
2

𝑔𝑛
𝜏𝛾
(𝐵),2 +

1
𝜎0
2

,
1

𝑔𝑛
𝜏𝛾
(𝐵),2 +

1
𝜎0
2

)

  
 
  

The mean and variance can be simplified as  
𝜎0
2 ∑ 𝜃𝑔

𝑔𝑛
𝑔=1 +𝜏𝛾

(𝐵),2
𝜇0

𝑔𝑛𝜎0
2+𝜏𝑔

(𝐵),2  and 
𝜏𝑔
(𝐵),2

𝜎0
2

𝑔𝑛𝜎0
2+𝜏𝑔

(𝐵),2 . 

- The full complete conditional distribution of treatment effectiveness of Arm A given 

subgroup 𝒈 (𝛄𝐠): 

𝑃(𝛾𝑔|𝒀⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝛾

(𝐴), 𝜏𝛾
(𝐴),2, 𝜇0, 𝜎0

2) = 𝑃(𝛾𝑔|𝒀⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝛾

(𝐴), 𝜏𝛾
(𝐴),2) 

∝ 𝑒𝑥𝑝(−
∑ (𝑌𝑖𝑔

(𝐴)
−𝛾𝑔)

2𝑁𝑔
(𝐴)

𝑖=1

2𝜎2
)𝑒𝑥𝑝(−

∑ (𝑌𝑖𝑔
(𝐵)
−𝛾𝑔−𝜃𝑔)

2𝑁𝑔
(𝐵)

𝑖=1

2𝜎2
)𝑒𝑥𝑝 (−

(𝛾𝑔−𝜇𝛾
(𝐴)
)
2

2𝜏𝛾
(𝐴),2 ), which arrives at the 

similar expression as 𝑃(𝛾𝑔|𝒀⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝑔

(𝐴), 𝜏𝑔
(𝐴),2) in pairwise independent model. Finally, 

𝛾𝑔|𝒀⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝛾

(𝐴), 𝜏𝛾
(𝐴),2, 𝜇0, 𝜎0

2 = 𝛾𝑔|𝒀⃗⃗ , 𝜃𝑔, 𝜎
2, 𝜇𝛾

(𝐴), 𝜏𝛾
(𝐴),2 ~ 

(

  
 

𝑁𝑔
(𝐴)𝑌̅𝑔

(𝐴)
+ 𝑁𝑔

(𝐵)𝑌̅𝑔
(𝐵)
− 𝑁𝑔

(𝐵)𝜃𝑔
𝜎2

+
𝜇𝛾
(𝐴)

𝜏𝛾
(𝐴),2

𝑁𝑔
(𝐴) + 𝑁𝑔

(𝐵)

𝜎2
+

1

𝜏𝛾
(𝐴),2

,
1

𝑁𝑔
(𝐴) + 𝑁𝑔

(𝐵)

𝜎2
+

1

𝜏𝛾
(𝐴),2

)
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The mean and variance can be simplified as    
𝜏𝛾
(𝐴),2

(𝑁𝑔
(𝐴)
𝑌̅𝑔
(𝐴)
+𝑁𝑔

(𝐵)
𝑌̅𝑔
(𝐵)
−𝑁𝑔

(𝐵)
𝜃𝑔)+𝜎

2𝜇𝛾
(𝐴)

(𝑁𝑔
(𝐴)
+𝑁𝑔

(𝐵)
)𝜏𝛾
(𝐴),2

+𝜎2
 and 

𝜏𝛾
(𝐴),2

𝜎2

(𝑁𝑔
(𝐴)
+𝑁𝑔

(𝐵)
)𝜏𝛾
(𝐴),2

+𝜎2
 . 

- The full complete conditional distribution of 𝛍𝛄
(𝐀)

: 

Still, we need to get the full complete conditional distribution of 𝜇𝛾
(𝐴) given 𝜸⃗⃗ , 𝜏𝛾

(𝐴),2, 𝜇0, 𝜎0
2. Since 

𝜇𝛾
(𝐴)

 is served as a random variable in hierarchical model. 

𝑃(𝜇𝛾
(𝐴)|𝜸⃗⃗ , 𝜏𝛾

(𝐴),2, 𝜇0, 𝜎0
2) ∝  𝑒𝑥𝑝 (−

∑ (𝛾𝑔 − 𝜇𝛾
(𝐴))

2
𝑔𝑛
𝑔=1

2𝜏𝛾
(𝐴),2

)  𝑒𝑥𝑝 (−
(𝜇𝛾

(𝐴) − 𝜇0)
2

2𝜎0
2 ) 

∝ 𝑒𝑥𝑝 (−
𝑔𝑛𝜇𝛾

(𝐴),2 − 2𝜇𝛾
(𝐴)∑ 𝛾𝑔

𝑔𝑛
𝑔=1

2𝜏𝛾
(𝐴),2

)𝑒𝑥𝑝 (−
𝜇𝛾
(𝐴),2 − 2𝜇𝛾

(𝐴)𝜇0

2𝜎0
2 ) 

= 𝑒𝑥𝑝

(

  
 
−

𝜇𝛾
(𝐴),2 (

𝑔𝑛
𝜏𝛾
(𝐴),2 +

1
𝜎0
2) + 2𝜇𝛾

(𝐵) (
∑ 𝛾𝑔
𝑔𝑛
𝑔=1

𝜏𝛾
(𝐴),2 +

𝜇0
𝜎0
2)

2

)

  
 
,⇒ 

𝜇𝛾
(𝐴)|𝜸⃗⃗ , 𝜏𝛾

(𝐴),2, 𝜇0, 𝜎0
2~ 𝑵

(

  
 

∑ 𝛾𝑔
𝑔𝑛
𝑔=1

𝜏𝛾
(𝐴),2 +

𝜇0
𝜎0
2

𝑔𝑛
𝜏𝛾
(𝐴),2 +

1
𝜎0
2

,
1

𝑔𝑛
𝜏𝛾
(𝐴),2 +

1
𝜎0
2

)

  
 
  

The mean and variance can be simplified as  
𝜎0
2 ∑ 𝛾𝑔

𝑔𝑛
𝑔=1 +𝜏𝛾

(𝐴),2
𝜇0

𝑔𝑛𝜎0
2+𝜏𝑔

(𝐴),2  and 
𝜏𝑔
(𝐴),2

𝜎0
2

𝑔𝑛𝜎0
2+𝜏𝑔

(𝐴),2 . 
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DP specification   

-Model specification:    

 

The DP is intuitively introduced by the graph above. Specifically, 𝐺0 is the base distribution. It 

can be either continuous or discrete. From the perspective of easy understanding and our 

concrete research circumstance, it presents as Normal distribution in the right part of the graph 

above. 𝐴1, 𝐴2…𝐴𝑟 are a random partition of the support of 𝐺0. The "Bars" stands for a random 

discrete distribution, denoting as 𝐺, drawn from 𝐺0. 𝐺 can be considered as the "discrete" form 

of 𝐺0.  

The relationship between 𝐺 and 𝐺0 is: 𝐺 ~ 𝐷𝑃 (𝛼, 𝐺0), where 𝛼 is scaling parameter, 𝛼 > 0. 

Generally, 𝐺 is asymptotical to 𝐺0 as 𝛼 → ∞; G becomes very discrete (e.g., only several bars 

stand for 𝐺0) as 𝛼 → 0. 

(𝐺(𝐴1), 𝐺( 𝐴2)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟))~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼𝐺0(𝐴1), 𝛼𝐺0( 𝐴2)…𝛼𝐺0(𝐴𝑗)…𝛼𝐺0(𝐴𝑟)).    

∑𝐺(𝐴𝑗) = 1,∑𝛼𝐺0(𝐴𝑗) = 𝛼∑𝐺0(𝐴𝑗) = 𝛼 

𝑟

𝑗=1

 

𝑟

𝑗=1

𝑟

𝑗=1

 

Based on the moment formula of Dirichlet distribution: 
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𝐸 (𝐺(𝐴𝑗)) =
𝛼𝐺0(𝐴𝑗)

∑ 𝛼𝐺0(𝐴𝑗)
𝑟
𝑗=1

=
𝛼𝐺0(𝐴𝑗)

𝛼
= 𝐺0(𝐴𝑗) 

𝑉𝑎𝑟 (𝐺(𝐴𝑗)) =
𝛼𝐺0(𝐴𝑗) (∑ 𝛼𝐺0(𝐴𝑗)

𝑟
𝑗=1 − 𝛼𝐺0(𝐴𝑗))

(∑ 𝛼𝐺0(𝐴𝑗)
𝑟
𝑗=1 )

2
(∑ 𝛼𝐺0(𝐴𝑗)

𝑟
𝑗=1 + 1)

=
𝛼𝐺0(𝐴𝑗) (𝛼 − 𝛼𝐺0(𝐴𝑗))

𝛼2(𝛼 + 1)

=
𝐺0(𝐴𝑗) (1 − 𝐺0(𝐴𝑗))

𝛼 + 1
 

Data generation flow: 

Firstly, draw 𝑤̃1, 𝑤̃2…𝑤̃𝑐…𝑤̃𝑘0 from 𝐺, denote 𝒘̃ =  (𝑤̃1, 𝑤̃2…𝑤̃𝑐… 𝑤̃𝑘0). 𝑘0 can be thought as 

the number of "original" clusters (Please note that the 𝑤̃ and 𝑤 are the general notation rather 

than treatment difference as specified in Section 2.3)    

Next, draw the distinctive 𝑤1, 𝑤2…𝑤𝑐…𝑤𝑘 from 𝒘̃. Note that 𝒘̃ is from 𝐺, which means 𝑤𝑐 is 

originally from 𝐺. 𝑃(𝑤𝑔 ∈  𝐴𝑗) =  𝐺(𝐴𝑗). Denote 𝒘 = (𝑤1, 𝑤2…𝑤𝑐…𝑤𝑘). k is the number of 

distinctive elements of 𝐰 and k is the number of “real” clusters, 𝑘 ≤  𝑘0 . 

Finally, draw 𝒀 from 𝐰 = (𝑤1, 𝑤2…𝑤𝑐…𝑤𝑘).     

Overall, the model can be specified as:    

𝑌𝑖𝑔|𝑤𝑐 ~𝐹(𝑤𝑐) 

𝑤𝑐~ 𝐺 

𝐺 ~ 𝐷𝑃 (𝛼, 𝐺0) 

In our DACTPerM research, 𝑤𝑐 (still referring the general one) is the summation of Arm A 

treatment effect (𝛾𝑔) and treatment effect difference between two arms (𝜃𝑔); 𝐺0 = 𝑁 (𝜇0, 𝜎0
2) 

-Posterior distribution of  (𝑮(𝑨𝟏), 𝑮( 𝑨𝟐), …𝑮(𝑨𝒋)…𝑮(𝑨𝒓)).   

Let nj be the number of observed 𝑤̃𝑐 in 𝐴𝑗 , then  

(𝑛1, 𝑛2. . . 𝑛𝑗 . . . 𝑛𝑟)~𝑀𝑢𝑙𝑡 (𝑘0, 𝐺(𝐴1), 𝐺( 𝐴2)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)), where 𝑘0 = ∑ 𝑛𝑗
𝑟
𝑗=1 . 
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𝑃 (𝐺(𝐴1)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)|𝒘̃) =  𝑃 (𝐺(𝐴1)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)|𝑛1…𝑛𝑗 … 𝑛𝑟)   

∝ 𝑃 (𝑛1…𝑛𝑗 … 𝑛𝑟|𝑘0, 𝐺(𝐴1)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)) ∗ 𝑃 (𝐺(𝐴1)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟))  

= 𝑀𝑢𝑙𝑡 (𝑛1…𝑛𝑗 … 𝑛𝑟|𝐺(𝐴1)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)) ∗ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼𝐺0(𝐴1)…𝛼𝐺0(𝐴𝑗)…𝛼𝐺0(𝐴𝑟)) 

Due to the Dirichlet distribution conjugate to itself with respect to a Multinomial likelihood 

function, finally: 

𝑃 (𝐺(𝐴1)…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)|𝒘̃)~Dirichlet (𝛼𝐺0(𝐴1) + 𝑛1, … , 𝛼𝐺0(𝐴𝑗) + 𝑛𝑗 , … , 𝛼𝐺0(𝐴𝑟)

+ 𝑛𝑟),  

which indicates that 𝐺|𝑤̃ ~ 𝐷𝑃 (𝛼 + 𝑘0,
𝛼𝐺0(𝐴𝑗)+𝑛𝑗

𝛼+𝑘0
). 

-Predictive distribution of  w̃k0+1.   

𝑃 (𝑤̃𝑘0+1 ∈ 𝐴𝑗|𝒘̃) =  ∫𝑃(𝑤̃𝑘0+1 ∈ 𝐴𝑗 , 𝐺(𝐴𝑗)|𝒘̃)𝑑𝐺(𝐴𝑗)  

= ∫𝑃(𝑤̃𝑘0+1 ∈ 𝐴𝑗|𝐺(𝐴𝑗), 𝒘̃)𝑃(𝐺(𝐴𝑗)|𝒘̃)𝑑𝐺(𝐴𝑗) =  ∫𝑃(𝑤̃𝑘0+1 ∈ 𝐴𝑗|𝒘̃)𝑃(𝐺(𝐴𝑗)|𝒘̃)𝑑𝐺(𝐴𝑗) 

= ∫(𝐺(𝐴𝑗)|𝒘̃)𝑃(𝐺(𝐴𝑗)|𝒘̃)𝑑𝐺(𝐴𝑗) = 𝐸(𝐺(𝐴𝑗)|𝒘̃) =
1

𝛼 + 𝑘0
(𝛼𝐺0(𝐴𝑗) + 𝑛𝑗) 

The last step is due to the posterior distribution of (𝐺(𝐴1), 𝐺( 𝐴2),…𝐺(𝐴𝑗)…𝐺(𝐴𝑟)) is 

Dirichlet. Finally, 

𝑤̃𝑘0+1 ∈ 𝐴𝑗|𝒘̃ ~ 
1

𝛼+𝑘0
(𝛼𝐺0(𝐴𝑗) + 𝑛𝑗) =  

𝛼

𝛼+𝑘0
𝐺0(𝐴𝑗) + 

𝑛𝑗

𝛼+𝑘0
, which indicates that 𝑤̃𝑘0+1 

belongs to 𝐴𝑗 is a weighted summation of 𝐺0(𝐴𝑗) and 𝑛𝑗 . 
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Appendix 2.2: ITP specification for virtual endpoints simulation 

The formula used for endpoints simulation based on ITP is 

𝑌𝑖𝑡,𝑔
(𝑗)
= (𝜇𝑔

(𝑗)
+ 𝑆𝑖,𝑔

(𝑗)
+ 𝜀𝑖𝑡,𝑔

(𝑗)
) (

1−𝐸𝑋𝑃(𝑘𝑔
(𝑗)
𝑡)

1−𝐸𝑋𝑃(𝑘𝑔
(𝑗)
𝑇)
), 

where 𝑌𝑖𝑡,𝑔
(𝑗)

 is the endpoint for subject i from arm j and subgroup 𝑔 at visit t, j = [Arm A, Arm B]. 

𝜇𝑔
(𝑗)

 is the mean value of the final endpoint from arm j and subgroup 𝑔, and 𝜇𝑔
(𝑗)

 = 𝛾𝑔when j = 

Arm A and 𝜇𝑔
(𝑗)

 = 𝛾𝑔 + 𝜃𝑔 when j = Arm B. 𝑆𝑖,𝑔
(𝑗)

 is the specific random effect for subject i from 

arm j and subgroup 𝑔, 𝑆𝑖,𝑔
(𝑗)
 ~ 𝑁 (0, 𝜏𝑔

(𝑗),2
), and 𝜏𝑔

(𝑗),2
 = 𝜔𝑔

(𝑗)
𝜎2. 𝜔𝑔

(𝑗)
 is the fraction of the final 

response variance. 𝜀𝑖𝑡,𝑔
(𝑗)

 is the residual error for subject i from arm j and subgroup 𝑔,  

𝜀𝑖𝑡,𝑔
(𝑗)
~ (0, 𝜎𝑔

′,(𝑗),2
), and 𝜎𝑔

′,(𝑗),2
 = 𝜎2 − 𝜏𝑔

(𝑗),2
 = (1 − 𝜔𝑔

(𝑗)
)𝜎2, 𝜎2 = 𝜏𝑔

(𝑗),2
+ 𝜎𝑔

′,(𝑗),2
= 𝜔𝑔

(𝑗)
𝜎2 +

(1 − 𝜔𝑔
(𝑗)
)𝜎2. The variability (𝜎2, denoted as in Appendix A) for a subject divides two parts: 

per subject component (𝜔𝑔
(𝑗)
𝜎2) and a component ((1 − 𝜔𝑔

(𝑗)
)𝜎2) varying between visits. 𝑘𝑔

(𝑗)
 

is a shape parameter of the exponential component, and it controls how quickly the response 

approaching the final one. Generally, smaller 𝑘𝑔
(𝑗)

 value makes the responses within the study to 

achieve the final endpoint value quickly; we specify the 𝜔𝑔
(𝑗)

 and 𝑘𝑔
(𝑗)

 identically for all 

subgroups of the two arms, respectively; t is the specific visit time that 𝑌𝑖𝑡,𝑔
(𝑗)

 is observed; T is the 

final endpoint is observed. 

 

  



133 
 

Appendix 3.1: The derivation of posterior probability of response rate via power 

prior borrowing method 

𝜋(𝜃𝑐𝑐|𝑫,𝑫𝟎, 𝛼) ∝ 𝐿(𝜃𝑐𝑐|𝑫)𝐿(𝜃ℎ𝑐|𝑫𝟎)
𝛼𝜋0(𝜃ℎ𝑐) 

= (
𝑛𝑐𝑐
𝑦𝑐𝑐
) 𝜃𝑐𝑐

𝑦𝑐𝑐(1 − 𝜃𝑐𝑐)
(𝑛𝑐𝑐−𝑦𝑐𝑐) (

𝑛ℎ𝑐
𝑦ℎ𝑐

) (𝜃ℎ𝑐)
𝛼𝑦ℎ𝑐(1 − 𝜃ℎ𝑐)

𝛼∗(𝑛ℎ𝑐−𝑦ℎ𝑐)
Γ(1)

Γ(0.5)Γ(0.5)
𝜃ℎ𝑐

(0.5−1)(1

− 𝜃ℎ𝑐)
(0.5−1) 

∝ 𝜃𝑐𝑐
𝑦𝑐𝑐(1 − 𝜃𝑐𝑐)

(𝑛𝑐𝑐−𝑦𝑐𝑐)(𝜃ℎ𝑐)
𝛼𝑦ℎ𝑐((1 − 𝜃ℎ𝑐)

𝛼∗(𝑛ℎ𝑐−𝑦ℎ𝑐)𝜃ℎ𝑐
(0.5−1)(1 − 𝜃ℎ𝑐)

(0.5−1) 

= 𝜃𝑐𝑐
𝑦𝑐𝑐(1 − 𝜃𝑐𝑐)

(𝑛𝑐𝑐−𝑦𝑐𝑐)(𝜃𝑐𝑐)
𝛼𝑦ℎ𝑐(1 − 𝜃𝑐𝑐)

𝛼∗(𝑛𝑐𝑐−𝑦ℎ𝑐)𝜃𝑐𝑐
(0.5−1)(1 − 𝜃𝑐𝑐)

(0.5−1) 

= 𝜃𝑐𝑐
(𝑦𝑐𝑐+𝛼𝑦ℎ𝑐+0.5−1)(1 − 𝜃𝑐𝑐)

((𝑛𝑐𝑐−𝑦𝑐𝑐)+𝛼∗(𝑛𝑐𝑐−𝑦ℎ𝑐)+0.5−1) 

⇒ 𝜃𝑐𝑐  ~ 𝐵𝑒𝑡𝑎((𝑦𝑐𝑐 + 𝛼𝑦ℎ𝑐 + 0.5, (𝑛𝑐𝑐 − 𝑦𝑐𝑐) + (𝛼 ∗ (𝑛𝑐𝑐 − 𝑦ℎ𝑐)) + 0.5) 
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Appendix 3.2: Stan code of commensurate prior 

 

data { 

  int<lower=0> H; //Indicate how many studies 

  real k; 

  int Y[H];        //Responder from a specific study           

  int N[H];        //Sample size from a  specific study 

  int group[H];  //Vector of the studies 

} 

 

parameters { 

  real <lower = 0> kappa; 

  real <lower =0, upper =1> thetahc; 

  real <lower =0, upper =1> thetacc; 

  } 

 

model {   

      target +=   beta_lpdf(thetacc |kappa* thetahc, kappa*(1- thetahc)); 

      target +=  (group[1] == 1)*(binomial_lpmf(Y[1]|N[1], thetahc)); 

      target +=  (group[2] == 2)*(binomial_lpmf(Y[2]|N[2], thetacc));     

      kappa ~ gamma(k, 1); 

      thetahc ~ beta(0.5,0.5); 

  } 
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Appendix 3.3: threshold type values under different borrowing methods and 

historical control type 

Table  threshold type values under different borrowing methods and historical control type  

Method HC Type Threshold Type HC(0.1) HC(0.2) HC(0.3) HC(0.4) HC(0.5) 

Power Prior 

Observation 

Global 0.998 0.9975 0.9928 0.9805 0.9787 

Local 0.94689 0.9649 0.9612 0.9625 0.96444 

Regional 0.980625 0.98128 0.981001 0.97748 0.964776 

Simulation 

Global 0.9964 0.9958 0.992 0.9859 0.97755 

Local 0.97281 0.97746 0.97791 0.97521 0.97696 

Regional 0.988175 0.98718 0.98565 0.98515 0.976625 

Commensurate 

Prior (K = 1) 

Observation 

Global 0.99704 0.9946 0.99278 0.9914 0.9908 

Local 0.99704 0.98531 0.98085 0.9785 0.9769 

Regional 0.9971 0.99459 0.98253 0.98058 0.9772 

Simulation 

Global 0.99628 0.99333 0.99158 0.98955 0.9877 

Local 0.99628 0.9853 0.98064 0.97859 0.97833 

Regional 0.99645 0.9947 0.9832 0.98006 0.97833 

Commensurate 

Prior (K = 50) 

Observation 

Global 0.99945 0.9978 0.99336 0.98316 0.96135 

Local 0.95391 0.95424 0.96046 0.95823 0.96135 

Regional 0.98378 0.98236 0.9819 0.97853 0.96135 

Simulation 

Global 0.99963 0.99863 0.99576 0.98831 0.97304 

Local 0.97443 0.97439 0.97196 0.97273 0.97304 

Regional 0.98939 0.98885 0.98948 0.98764 0.973 

Commensurate  

Prior (K = 100) 

Observation 

Global 0.99968 0.99855 0.99495 0.98511 0.96346 

Local 0.9499 0.95216 0.9533 0.95581 0.96346 

Regional 0.98415 0.98354 0.98163 0.97873 0.96345 

Simulation 

Global 0.99979 0.99913 0.99675 0.99035 0.97445 

Local 0.97596 0.97621 0.97471 0.97464 0.97445 

Regional 0.99039 0.99075 0.99166 0.98935 0.97445 

Full Borrowing 

Observation 

Global 0.99985 0.99913 0.99615 0.987 0.952 

Local 0.9377 0.95288 0.9522 0.9474 0.952 

Regional 0.983925 0.985 0.987851 0.97898 0.962275 

Simulation 

Global 0.9999 0.99949 0.9975 0.99305 0.97836 

Local 0.97981 0.97799 0.97539 0.97841 0.97836 

Regional 0.991201 0.99298 0.99305 0.98913 0.978025 

No Borrowing NA NA 0.977925 0.97775 0.977201 0.974 0.977925 

 


