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Abstract

Compositional data, in which a vector of observed variables are constrained by a sum

total, imposes a unique correlation structure among its components. Considering the

abundance of components in a biological sample is inherently compositional, that is to

say it is constrained by the amount of collected biomass, it is not surprising that com-

positional data frequently arises in the field of biomedical research. Failing to account

for compositional effects compromises statistical inference, and may lead to spurious

results that are not reproducible. Development and application of statistical techniques

that honor compositionality in the context of biomedical research is therefore of great

importance.

In this dissertation, we first investigate microbial composition in the pancreatic micro-

biome (not well characterized prior to this research) and surrounding tissue using a

variety of different statistical methods. We identify similarities between tissue types

and differences between tissues from subjects with different types of pancreatic cancer

and tissues from non-cancer subjects. Identification of microbes commonly found in

oral cavities then motivates the question whether consistent patterns of the microbial

landscape with respect to disease can be found between the mouth and the gut.

Since there is no established method to test for these patterns in microbiome data,

we continue by presenting a suitable Bayesian testing framework that is able to ad-

dress the unique challenges posed by microbial abundance data. We elaborate how

the method simultaneously applies to a variety of different data models and different

types of estimates of microbial abundance, and demonstrate its ability to detect desired

associations via simulation studies. Further, analysis of microbiome profiles derived

from gut and oral cavity samples collected from pancreatic cancer cases are used to

successfully identify microbes that exhibit consistent patterns of interest.
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This dissertation closes with methodological developments for the analysis of DNA

methylation levels of bulk samples with heterogeneous cell composition. Building

on novel modelling approaches that are able to detect cell type specific methylation

based on bulk samples, we introduce a Bayesian hierarchical modelling strategy that

leverages spatial correlation of proximal CpG dinucleotides. We elaborate how our

method was empirically motivated by whole blood methylation data of isolated cell

types and demonstrate its performance improvement in terms of prediction accuracy

and statistical power compared to non-spatial models.

iv



Acknowledgements

First and foremost, I would like to thank my parents who never stopped loving and

supporting me on my winding path through life; not even when I decided to move to

the other side of the earth. I want to thank them for always putting their children first,

for never failing to encourage us and for teaching us more than I could ever come close

to writing down.

I want to thank my brothers for watching out for me, for teaching me kindness, for

teaching me how to fight for myself, for challenging me to become a better person and

for putting up with me for all these years.

I would like to thank my grandparents, who always worked hard through many adver-

sities to raise and support their children and grandchildren. Your love will always be

the cornerstone of our family and I miss you dearly.

I want to praise and thank my wife, Guangyi. Without her unending love and support

this dissertation would not have been possible. She is my closest friend, my biggest

cheerleader and my guiding compass. Thank you for being in my life and inspiring

me to become the best version of myself every day.

Thank you to all my family and friends, who make my life worth living.

Special thanks goes to the Statistical Omics Working Group who have persistently

provided me with helpful advise and feedback.

I also want to extend my sincere appreciation to my dissertation committee, Dr. Jeffrey

Thompson, Dr. Byron Gajewski, Dr. Prabhakar Chalise, and Dr. Mary Markiewicz. I

want to say “thank you” for the valuable time, the support and the revealing insights

that they have provided me.

Last but by no means least, I have to express my most sincere gratitude to my advisor

and dissertation committee chair, Dr. Devin Koestler. Throughout the entirety of my

v



journey at the University of Kansas Medical Center, he has been a relentless source of

positivity, encouragement and guidance. His continuous support, his passion for my

research and his deep insight were integral to the progress of my dissertation. It has

been a true privilege to work with such an outstanding mentor.

vi



Contents

1 Introduction 1

2 The Microbiomes of Pancreatic and Duodenum Tissue Overlap and are Highly Sub-

ject Specific but Differ between Pancreatic Cancer and Non-Cancer Subjects 4

2.1 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Study population and sample collection . . . . . . . . . . . . . . . . . . . 7

2.4.2 16S rRNA amplicon Illumina sequencing . . . . . . . . . . . . . . . . . . 10

2.4.3 Taxonomic assignment pipeline of 16S rRNA amplicon sequencing data . . 10

2.4.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Within and between sample diversity analysis . . . . . . . . . . . . . . . . 13

2.5.3 Associations of host factors with microbial communities . . . . . . . . . . 18

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 A Bayesian framework for identifying consistent patterns of microbial abundance

between body sites 30

3.1 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



3.4.3 Formal Definition of Pairwise Stratified Association (PASTA) . . . . . . . 39

3.4.4 Testing for PASTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.5 Pancreatic Cancer Patient Dataset . . . . . . . . . . . . . . . . . . . . . . 42

3.4.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.7 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Applying the Approach to Biological Data . . . . . . . . . . . . . . . . . 50

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Leveraging Spatial Correlation to Improve Analysis of Cell Type Specific Methylation

from Whole Blood 58

4.1 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 CpG Methylation and Cell Type Deconvolution . . . . . . . . . . . . . . . 61

4.4.2 Biological Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.4 Emprical Analysis of DNAm Autocorrelation . . . . . . . . . . . . . . . . 64

4.4.5 Definition of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.6 Estimation and Model Fit Characteristics . . . . . . . . . . . . . . . . . . 68

4.4.7 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.7.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.7.2 Data Generating Process for Simulation A . . . . . . . . . . . . 69

4.4.7.3 Data Generating Process for Simulation B & C . . . . . . . . . . 70

4.4.7.4 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



4.4.8 Cluster Generating Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Preliminary Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Evaluating Marginal Model Fit . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.3 Performance in the Two-Arm Design When Cell Proportions Are Balanced 80

4.5.4 Performance in the Two-Arm Design When Cell Proportions Are Unbalanced 86

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Summary and Future Directions 96

References 99

Appendix A - Declarations and Supplementary Material for Chapter 1 113

Appendix B - Declarations and Supplementary Material for Chapter 2 127

Appendix C - Declarations and Supplementary Material for Chapter 3 136

ix



List of Figures

2.1 (A) RIH Males with ICD code (C25, C24 or K86); (B) RIH Females with ICD code

(C25, C24, or K86). Distribution of bacteria relative abundance by genus level in

all the studied body habitats based on read taxa attribution using V3-V4 hypervari-

able region of 16S rRNA genes. All names are at genera level except for those with

c_ which denotes class for multigenera taxa (within that class). Colored bars next

to legend reflect taxa at class level: TM7 (lime); Gammaproteobacteria (purple);

Epsilonproteobacteria (light grey); Betaproteobacteria (dark grey); Fusobacteriia

(pink); Clostridia (green); Bacilli (blue); Bacteroides (Gold); Coriobacteriia (red);

Actinobacteria (marron). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 (A) NDRI Males; (B) NDRI Females. Distribution of bacteria relative abundance

by genus level in all the studied body habitats based on read taxa attribution using

V3-V4 hypervariable region of 16S rRNA genes. All names are at genera level ex-

cept for those with c_ which denotes class for multigenera taxa (within that class).

Colored bars next to legend reflect taxa at class level: TM7 (lime); Gammapro-

teobacteria (purple); Epsilonproteobacteria (light grey); Betaproteobacteria (dark

grey); Fusobacteriia (pink); Clostridia (green); Bacilli (blue); Bacteroides (Gold);

Coriobacteriia (red); Actinobacteria (marron). . . . . . . . . . . . . . . . . . . . . 16

2.3 Jaccard Index (proportion of shared genera) for paired comparison of tissue sam-

ples in NDRI and RIH subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Comparative alpha diversity analyses of bacterial communities in anatomical sites

(based on a simulated data set subsampled from the input OTU table). Alpha

diversity metrics: (A) Richness, (B) Shannon diversity index, (C) Simpson index,

and (D) Phylogenetic diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

x



2.5 PCoA plots showing the relatedness of microbial communities among samples

from RIH subjects and NDRI donors using the Bray-Curtis dissimilarity index.

Individual datasets are colored according to their (A) RIH and NDRI sample type,

(B) RIH anatomical site, and (C) NDRI anatomical site. . . . . . . . . . . . . . . 19

3.1 Overview of the experimental setup to test for pairwise stratified association (PASTA).

Oral and gut samples are obtained from cancer patients and 16S rRNA sequencing

is performed on each sample. The resulting microbial abundance data is used to

fit a statistical regression model to each observed OTU across all samples. Finally,

abundance estimates across strata are used to test whether abundance patterns in

disease status are preserved between mouth and gut. . . . . . . . . . . . . . . . . 36

3.2 Visualization of pairwise stratified association (PASTA). Let θ represent a popula-

tion parameter of interest, for example the mean relative abundance of a particular

OTU. Each column of sub-figures below the table are examples of a PASTA re-

lationship, i.e. of h being an increasing function. The first row plots parameter

values of mouth and gut side-by-side and demonstrates that a variety of different

scenarios are covered by this definition. In the second row, plotting parameter val-

ues of gut against parameter values of mouth reveals their association through a

trend. T denotes Pearson correlation values between gut and mouth. . . . . . . . . 40

3.3 Observed relationships between marginal distributions of ω and φ estimated from

the pancreatic cancer dataset. For both the genus and the ASV level, parame-

ters were estimated marginally for each OTU across all observations without any

stratification. When plotting marginal parameter estimates of ω and φ a linear rela-

tionship can be observed on the log scale. This relationship was utilized to sample

φ conditionally on ω in the simulation studies. . . . . . . . . . . . . . . . . . . . 46

xi



3.4 Results of the simulation studies. Power plots are displayed for testing PASTA

of various population parameters with tc = 0 at both ASV and genus level. The

term “n per group” refers to the number of samples available in each of the eight

sub-group combinations resulting from two body sites and four different levels of

disease status. H0 was rejected if Pr(Tθ |Y ≤ 0) < 0.05. Type 1 error rates are

displayed in white colored boxes with black fonts. Power values less than 0.8 are

colored blue, values larger than 0.9 are colored red and values between 0.8 and 0.9

are colored orange. Genus level pseudo data generally has higher statistical power

than the ASV level. High performance is achieved by the non-zero mean ω , while

an increased sample size is required for the probability of absence p. Tests of the

overall mean µ result in low performance, when only mildly constraining sparsity. 48

3.5 Effects of the relative precision of parameter estimates on the posterior distribution

of Tθ . The first row shows the average point estimate of posterior quantiles of Tθ

across simulation runs for various simulation scenarios. The second row shows the

associated plots of the parameters’ posterior means versus their true values across

simulation runs. As the relative precision of parameter estimates decreases, the

posterior distribution of Tθ becomes more diffuse and more biased towards 0. . . . 49

4.1 Conceptual overview of the spatial model structure. Displayed is a snapshot of a

hypothetical chromosome, represented by a horizontal axis line. Mean methyla-

tion levels of CpGs are denoted as vertical tic marks along the axis line. Mean

methylation values within the same cluster k are shrunk towards the overall cluster

mean µC
k and cluster means are in turn shrunk towards the overall super cluster

mean µS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



4.2 Pearson correlations of sample beta values for blood cell types as a function of

base-pair distance. Orange lines in each plot represent loess smoothed correlation

values via the “ggplot2” R-package. Similar patterns emerge regardless of cell

type or genomic location. Correlation values exhibit higher concentration towards

positive values. In the range of a base-pair distance of less than 3000, concentration

towards higher correlation values appears to be more pronounced, a trend which

diminishes as distance increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Cell type specific analysis comparing type 1 error for spatial SCM2 and non-

spatial TM models when testing for differential methylation of individual CpGs

in simulation C using the fixed, 95% credible interval decision rule. Here, “al-

pha” refers to the cell type specific parameter that was used to draw cell pro-

portions via a Dirichlet distribution; a higher value corresponds to consistently

drawing higher cell proportions. “scenario” refers to the following configurations:

1→ (σ [B],σ [C]) = (0.01,0.01); 2→ (σ [B],σ [C]) = (0.01,0.1); 3→ (σ [B],σ [C]) =

(0.1,0.01); 4→ (σ [B],σ [C]) = (0.1,0.1). For each model type scenarios tend to on

average produce similar error rates. No clear trend with cell proportion is observed. 88

xiii



4.4 Cell type specific analysis comparing statistical power for spatial SCM2 and non-

spatial TM models when testing for differential methylation of individual CpGs

in simulation C when type 1 error is calibrated: In each scenario, the rejection

rule employs the q% credible interval, where q is chosen such that the type 1 er-

ror is controlled at a 10% level. In cases where the widest considered credible

interval leads to a larger type 1 error rate in spatial models, both model classes

are calibrated to this error rate instead. Here, “alpha” refers to the cell type spe-

cific parameter that was used to draw cell proportions via a Dirichlet distribu-

tion; a higher value corresponds to consistently drawing higher cell proportions.

“scenario” refers to the following configurations: 1→ (σ [B],σ [C]) = (0.01,0.01);

2→ (σ [B],σ [C]) = (0.01,0.1); 3→ (σ [B],σ [C]) = (0.1,0.01); 4→ (σ [B],σ [C]) =

(0.1,0.1). Statistical power follows a similar trend across scenarios for each model

type and for each cell type. No clear trend with cell proportion is observed. For

each cell type, spatial models achieve consistently higher power than non-spatial

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Bacterial taxonomy (genera level) for the control samples of bacterial mock com-

munities included in each of the MiSeq runs for this project. . . . . . . . . . . . . 120

A.2 Range of sequence counts in all the samples (after rarefaction at 500 counts). . . . 121

xiv



B.1 Additional results of the simulation study for µ . A) depicts the case when calibrat-

ing the lower bound of the credible interval of Tθ for a type 1 error rate of 0.05;

B) depicts the case when allowing none of the strata to contain exclusively zero

valued relative abundances; C) depicts the case when both conditions from A and

B are met simultaneously. In part A, H0 was rejected if Pr(Tθ |Y ≤ 0) < 0.05. In

part B and C, H0 was rejected if Pr(Tθ |Y≤ 0)< q, where q was adjusted for cali-

bration. Power plots are displayed for testing PASTA of µ with tc = 0 at both ASV

and genus level. The term “n per group” refers to the number of samples available

in each of the eight sub-group combinations resulting from two body sites and four

different levels of disease status. Type 1 error rates are displayed in white colored

boxes with black fonts. Power values less than 0.8 are colored blue, values larger

than 0.9 are colored red and values between 0.8 and 0.9 are colored orange. While

calibration does improve the power compared to the original simulations, restrict-

ing sparseness in strata leads to an even stronger improvement in performance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xv



B.2 Results of the supplementary simulation studies. Each row represents one sim-

ulation scenario. Scenario A represents a Poisson regression model, Scenario B

represents a log count ratio Aitchison model and Scenario C represents a Zero-

inflated Poisson regression model. DGOF refers to the degrees of freedom of the

chisquared distribution used to sample means of Poisson distributions, that were

in turn used to generate count data, used to form pseudo response values. Large

DGOF mimic testing highly abundant microbes and small DGOF mimic testing

microbes with low abundance. In each scenario, statistical power and type 1 er-

ror was evaluated when performing a PASTA test for the mean of the response.

The term “n per group” refers to the number of samples available in each of the

eight sub-group combinations resulting from two body sites and four different lev-

els of disease status. Type 1 error rates are displayed in white colored boxes with

black fonts. Power values less than 0.8 are colored blue, values larger than 0.9 are

colored red and values between 0.8 and 0.9 are colored orange. . . . . . . . . . . 134

B.3 Plots of parameter estimates within strata when testing for PASTA between gut

and mouth on the genus level. Only OTUs with at least marginal significance are

displayed. Each row displays the results of an OTU for the three main population

parameters of interest. PASTA test results are summarized above each plot. “TP”

is Tθ when utilizing Pearson correlation and “TS” is Tθ when utilizing Spearman

correlation. Within each plot, circles and squares represent the posterior mean,

while vertical lines represent 95% credible intervals. Body site is color coded

in red and blue. For µ and ω , relative abundance values are plotted next to the

credible intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvi



C.1 Pearson correlations of sample beta values for blood cell types as a function of

base-pair distance in chromosome X. Orange lines in each plot represent loess

smoothed correlation values via the “ggplot2” R-package. While the genomic lo-

cation was picked at random, the cell types were selected to showcase the variety

of trends observed in the data. Overall, smooth trends are similar to those observed

in autosomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvii



List of Tables

2.1 Distribution of demographic, lifestyle, and health conditions variables among pa-

tients with diseases of the foregut, primarily pancreatic diseases, and deceased

controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Results from multivariable zero-inflated β regression models comparing bacteria

presence/absence and relative abundance in tissue and swab samples from NDRI

and RIH subjectsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Results from multivariable zero-inflated β regression models comparing bacteria

presence/absence and relative abundance in tissue and swab samples from NDRI

and RIH subjectsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Hypothetical example of a microbial abundance data table. Rows represent genera,

which are groups of closely related microbes and an example of a type of opera-

tional taxonomic unit (OTU). For a given sample and OTU, each cell in the table

counts how often said OTU was observed in said sample through the 16S rRNA

sequencing technique. All counts in this type of table are expected to increase with

the total number of observed OTUs in the respective sample. These column totals

can be understood as the sample signal intensity and change based on experimental

parameters for each sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Genus level OTUs showing evidence of PASTA between gut and mouth sites when

dividing ICD10 code into four groups. For a given genus, a parameter is included

in this table if it was marginally significant, or when significance is achieved when

T is either Pearson or Spearman correlation. For a given population parameter

θ , marginal significance (Pr(T |Y ≤ 0) < 0.1) is denoted by θ .. and significance

(Pr(T |Y ≤ 0) < 0.05) is denoted by θ ∗. Three parameters were investigated:

µ,ω, p. Due to low power in this exploratory setting multiple testing was not

adjusted for. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xviii



3.3 Genus level OTUs showing evidence of PASTA between mouth sites when divid-

ing ICD10 code into four groups. For a given genus, a parameter is included in

this table if it was marginally significant, or when significance is achieved when

T is either Pearson or Spearman correlation. For a given population parameter

θ , marginal significance (Pr(T |Y ≤ 0) < 0.1) is denoted by θ .. and significance

(Pr(T |Y ≤ 0) < 0.05) is denoted by θ ∗. Three parameters were investigated:

µ,ω, p. Due to low power in this exploratory setting multiple testing was not

adjusted for. Six OTUs showing association for only one pair of mouth sites are

not shown in this table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Average posterior mean RMSPE of the testing data for a variety of different mod-

els in simulation type A. Each row in the table corresponds to a separate candidate

model, while each column represents a different simulation scenario. Here, σ [B]

denotes the standard deviation employed when drawing beta values. Row name

suffixes denote the employed types of prior distribution: “wip” for weakly infor-

mative priors, “ip1” for informative priors of type 1 and “ip2” for informative

priors of type 2. The type of employed prior distribution had a stronger effect on

prediction error than the effect of model structure. Within each type of prior distri-

bution, spatial models consistently achieve smaller average prediction errors than

non-spatial models. Informative priors of type 2 consistently achieve the smallest

prediction errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xix



4.2 Average model complexity rates for a variety of different models in simulation type

A. Each row in the table corresponds to a separate model, while each column repre-

sents a different simulation scenario. σ [B] denotes the standard deviation employed

when drawing beta values. Row name suffixes denote the employed types of prior

distribution: “wip” for weakly informative priors, “ip1” for informative priors of

type 1 and “ip2” for informative priors of type 2. Values of complexity rates de-

note by what factor on average a target model is more complex than the “TM.wip”

model. Within each type of prior distribution, spatial models consistently achieved

lower average complexity than non-spatial models. . . . . . . . . . . . . . . . . . 79

4.3 Average posterior mean RMSPE of the testing data for the TM and SCM2 candi-

date models in simulation type B when ∆ = 0.2. Errors were all based on the eval-

uation of chromosome 1. Each row in the table corresponds to a separate candidate

model, while each column represents a different simulation scenario. σ [B] denotes

the standard deviation employed when drawing beta values and σ [C] denotes the

effect size standard deviation. Since there was no pronounced difference between

effect size correlations (ρ [C]) of 0.5 and 0.2 in any of the considered scenarios,

only results for ρ [C] = 0.5 are shown. Row name suffixes denote the employed

types of prior distribution: “wip” for weakly informative priors, “ip1” for infor-

mative priors of type 1 and “ip2” for informative priors of type 2. The type of

employed prior distribution had a stronger effect on prediction error than the effect

of model structure. Within each type of prior distribution, spatial SCM2 models

consistently achieved smaller average prediction errors than non-spatial models.

Informative priors of type 2 consistently achieve the smallest prediction errors. . . 81

xx



4.4 Average model complexity rates for a variety of TM and SCM2 candidate models

in simulation type B when ∆ = 0.2. Rates were all based on the evaluation of

chromosome 1. Each row in the table corresponds to a separate model, while

each column represents a different simulation scenario. σ [B] denotes the standard

deviation employed when drawing beta values and σ [C] denotes the effect size

standard deviation. Since there was no pronounced difference between effect size

correlations (ρ [C]) of 0.5 and 0.2 in any of the considered scenarios, only results

for ρ [C] = 0.5 are shown. Row name suffixes denote the employed types of prior

distribution: “wip” for weakly informative priors, “ip1” for informative priors of

type 1 and “ip2” for informative priors of type 2. Values of complexity rates denote

by what factor on average a target model is more complex than the “TM.wip”

model. Within each type of prior distribution, spatial SCM2 models consistently

achieve lower average complexity than non-spatial models. . . . . . . . . . . . . . 81

4.5 Overall power analysis comparing spatial SCM2 and non-spatial TM models when

testing for differential methylation of individual CpGs in simulation B for the fol-

lowing rejection rule: Reject H0 if the 95% credible interval of the mean differ-

ence between the two arms excludes 0. “iterations” refers to the number simu-

lations used to estimate operating characteristics. “t1e” denotes type 1 error rate

and “pow” denotes statistical power. σ [B] denotes the standard deviation employed

when drawing beta values and σ [C] denotes the effect size standard deviation. . . . 83

xxi



4.6 Overall power analysis comparing spatial SCM2 and non-spatial TM models when

testing for differential methylation of individual CpGs in simulation B when type

1 error is calibrated: In each scenario, the rejection rule employs the q% credible

interval, where q is chosen such that the type 1 error is controlled at a 10% level.

In cases where the widest considered credible interval leads to a larger type 1

error rate in spatial models, both model classes are calibrated to this error rate

instead. “iterations” refers to the number simulations used to estimate operating

characteristics. “t1e” denotes type 1 error rate and “pow” denotes statistical power.

σ [B] denotes the standard deviation employed when drawing beta values and σ [C]

denotes the effect size standard deviation. . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Overall power analysis comparing spatial SCM2 and non-spatial TM models when

testing for differential methylation of individual CpGs in simulation C. The “rule”

column specifies the employed rejection rule. Rule “F” rejects H0 if the 95% cred-

ible interval of the mean difference between the two arms excludes 0. In rule “C”

type 1 error is calibrated such that in each scenario the rejection rule employs the

q% credible interval, where q is chosen such that the type 1 error is controlled at a

10% level. In cases where the widest considered credible interval leads to a larger

type 1 error rate in spatial models, both model classes are calibrated to this error

rate instead. “iterations” refers to the number simulations used to estimate oper-

ating characteristics. “t1e” denotes type 1 error rate and “pow” denotes statistical

power. σ [B] denotes the standard deviation employed when drawing beta values

and σ [C] denotes the effect size standard deviation. . . . . . . . . . . . . . . . . . 87

A.1 Number of samples per anatomical site from the Rhode Island Hospital [RIH] and

the National Disease Research Interchange [NDRI]. . . . . . . . . . . . . . . . . 122

A.2 Results (at the species level) from multivariable zero-inflated beta regression mod-

els comparing bacteria presence/absence and relative abundance in tissue and swab

samples from NDRI and RIH subjects* . . . . . . . . . . . . . . . . . . . . . . . 123

xxii



A.3 Results from zero-inflated beta regression models comparing bacteria presence/ab-

sence and relative abundance across subject disease ICD codes* . . . . . . . . . . 125

A.4 Results from multivariable zero-inflated beta regression models comparing bacte-

ria presence/absence and relative abundance across subject disease ICD codes for

RIH samples (excluding NDRI samples)* . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Cell type specific power analysis comparing spatial SCM2 and non-spatial TM

models when testing for differential methylation of individual CpGs in simulation

C. The rejection rule employs the q% credible interval, where q is chosen such that

the type 1 error is controlled at a 10% level. In cases where the widest considered

credible interval leads to a larger type 1 error rate in spatial models, both model

classes are calibrated to this error rate instead. Here, “alpha” refers to the cell type

specific parameter that was used to draw cell proportions via a Dirichlet distribu-

tion; a higher value corresponds to consistently drawing higher cell proportions.

“t1e” denotes type 1 error rate and “pow” denotes statistical power. The column

“pow.diff” containes differences in power obtained when subtracting TM values

from SCM2 values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xxiii



Chapter 1

Introduction

Compositional data traditionally refers to collections of non-negative random vectors in which each

vector sums to a fixed (often arbitrary) constant and in which each component of a random vector

contains relative information (Quinn et al., 2018), i.e. information that is carried by ratios of vec-

tor components and not by the values of components themselves (Pawlowsky-Glahn & Egozcue,

2016). Compositional data is encountered in many research settings across a wide variety of fields,

and most commonly arises when the data of interest can be expressed as proportions of a total. Fail-

ing to acknowledge the constant-sum constraint that underlies compositional data can have serious

implications for experiments that aim to assess how individual components of the random vectors

associate. Negative correlations among components of compositional random vectors are favored

and will necessarily arise (Chayes, 1960), since an increase in one component necessarily causes

the decrease of other components. Spurious associations frequently arise, especially when trying

to subset or aggregate the data, and classical methods that assume independence run the risk of

assigning significance to false-positive, non-reproducible associations that are solely a product of

the constraints and of which components are included into the analysis (Gloor et al., 2017; Quinn

et al., 2019).

In biomedical analyses, compositional data often emerge because biological landscapes are in-

herently heterogeneous, comprising complex ensembles of interacting molecules, cells and func-

tional structures, which all sum to the total biomass collected in a given sample. This issue is

compounded by the fact that in the research of severe diseases that are challenging to effectively

cure, such as many forms of cancer, mechanisms on the cellular level and their connection to dis-

ease are evaluated especially frequently. An intuitive example that has received a lot of attention

in recent years due to its association with many diseases, is the analysis of microbial abundance

(Tsilimigras & Fodor, 2016; Gloor et al., 2017). In microbial abundance data, the number of times

that a microbial species is observed in a given biological sample is limited by the total number of
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microbes either observed or contained in that sample. On the other hand, one of the most influen-

tial and powerful set of tools to study cellular processes, next generation sequencing techniques,

are inherently based on an array of counts whose magnitude is dictated by the sequencing depth of

samples (Quinn et al., 2018, 2019)). Even if the primary outcome of a target study is not compo-

sitional in nature, outcomes affecting covariates that are themselves compositional can complicate

the analysis. Ongoing research in the field of compositional data analysis (Martino et al., 2019;

Quinn et al., 2019; Hawinkel et al., 2019; Ishiya & Aburatani, 2019)) shows that it is crucial to

consider development and application of statistical methods that acknowledge compositionality.

In Chapter 2, the overall microbiome in pancreatic tissue, which was not well known prior to

this research, is characterized. Differences and similarities in microbial composition between gut

tissues of pancreatic cancer and non-cancer subjects are analyzed by employing multivariate, dis-

tance based approaches, as well as via univariate Beta regression that explores groups of microbial

species individually. Microbes for which abundance shows a significant difference between cancer

and non-cancer subjects after adjusting for potential confounders are successfully identified. Re-

gardless of disease status, the microbial landscape of biological samples was found to be highly

subject specific while also exhibiting clear similarities between pancreatic and duodenum tissue.

Both pancreatic and duodenum tissues contained, but were not limited to, microbes commonly

identified in the oral cavity.

These results in combination with other studies that found associations between diseases of the

gut and microbiomes in both gut and mouth motivate the question of whether there are microbes

that show consistent patterns of association with respect to some phenotype of interest, between

mouth and gut. Identification of such patterns could potentially provide information about the

microbial composition in the gut based on the microbial composition of oral samples, which can

be collected using minimally invasive techniques. Further, the identification of consistent patterns

of microbial composition between the gut and oral cavity, two anatomically distinct sites, may offer

new insights into the interrelatedness of the microbiome throughout the human body. While oral

microbiome samples were collected on pancreatic cancer cases used in the first research project,
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there remains a gap in the literature in terms of statistical methods designed to identify these

types of patterns given the unique characteristics of microbiome data, e.g., compositional, high

dimensional, sparse (zero-inflated).

In Chapter 3 we address this unmet need using a novel Bayesian framework that allows re-

searchers to formally test whether the abundance of a group of microbes is associated between

body sites with respect to some phenotypic variable. This method is built to be applicable to a

variety of different statistical models, making it suitable to address the unique challenges posed by

sparse compositional data. Viability of the approach is first demonstrated using a variety of simu-

lation studies that consider different degrees of association and different data models. The chapter

concludes by applying the approach to data derived from pancreatic cancer cases and successfully

identifying microbes that exhibit consistent patterns between gut and mouth with respect to disease

subtype.

Chapter 4 shifts the focus towards recently developed statistical methods for DNA methyla-

tion analyses that estimate cell-type specific methylation levels from bulk samples. While exist-

ing statistical methods adequately account for, and even take advantage of the underlying cell-

composition of a given sample, they do not consider the well-recognized spatial correlation be-

tween genomically proximal CpG loci. In this chapter, a Bayesian hierarchical modelling strategy

is presented that builds on existing methods and leverages spatial correlation in the methylation

levels of nearby CpGs to improve the operating characteristics of statistical tests for differential

methylation with respect to some condition or exposure. First, tuning parameters of the method

are informed based on empirical evaluation of whole blood methylation data of isolated cell types.

Next, extensive simulation studies are employed to both identify the most suitable hierarchical

model among a set of candidate models, and to compare benefits of spatial models compared to

non-spatial models. The results of our simulation studies demonstrated improved prediction accu-

racy and statistical power of the proposed spatial models as compared to models that ignore the

spatial correlation in the methylation levels of nearby CpGs.

3



Chapter 2

The Microbiomes of Pancreatic and Duodenum Tissue Overlap and are

Highly Subject Specific but Differ between Pancreatic Cancer and

Non-Cancer Subjects

This chapter has previously been published and is reprinted here with permission with minor adap-
tations. del Castillo, E.∗, Meier, R.∗, Chung, M., Koestler, D. C., Chen, T., Paster, B. J., Charp-
entier, K. P., Kelsey, K.T., Izard, J., Michaud, D. S. (2019). The Microbiomes of Pancreatic and
Duodenum Tissue Overlap and are Highly Subject Specific but Differ between Pancreatic Cancer
and Non-Cancer Subjects. Cancer Epidemiol. Biomark. Prev. 28(2):370-383.

∗ del Castillo, E. and Meier, R. both share first authorship

2.1 Statement of Contributions

In this project, I, Richard Meier, performed data cleaning and all statistical analyses that utilize

zero-inflated Beta regression models. I also helped to interpret results and to write the original

manuscript. Contributions of other authors are listed below.

KPC contributed to the identification of patients and collection of specimens. ED carried out

the DNA extractions and preparation of sample for sequencing. TC conducted the taxonomic

assignment of the 16S rRNA amplicon sequencing data. RM, MC, DCK performed the statistical

analysis. TC, ED contributed to the QIIME analysis. DSM, JI, KPC contributed to the design and

funding of the study. DSM, BJP, KTK participated in the coordination of the study. DSM, ED, RM

helped write the manuscript. All authors were involved in the interpretation of results and editing

of the final manuscript.

2.2 Abstract

Background: In mice, bacteria from the mouth can translocate to the pancreas and impact pancre-

atic cancer progression. In humans, oral bacteria associated with periodontal disease have been
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linked to pancreatic cancer risk. It is not known if DNA bacterial profiles in the pancreas and

duodenum are similar within individuals.

Methods: Tissue samples were obtained from 50 subjects with pancreatic cancer or other con-

ditions requiring foregut surgery at the Rhode Island Hospital (RIH), and from 34 organs obtained

from the National Disease Research Interchange. 16S rRNA gene sequencing was performed on

189 tissue samples (pancreatic duct, duodenum, pancreas), 57 swabs (bile duct, jejunum, stomach),

and 12 stool samples.

Results: Pancreatic tissue samples from both sources (RIH and National Disease Research

Interchange) had diverse bacterial DNA, including taxa typically identified in the oral cavity. Bac-

terial DNA across different sites in the pancreas and duodenum were highly subject specific in

both cancer and noncancer subjects. Presence of genus Lactobacillus was significantly higher in

noncancer subjects compared with cancer subjects and the relative abundance of Fusobacterium

spp., previously associated with colorectal cancer, was higher in cancer subjects compared with

noncancer subjects.

Conclusions: Bacterial DNA profiles in the pancreas were similar to those in the duodenum

tissue of the same subjects, regardless of disease state, suggesting that bacteria may be migrating

from the gut into the pancreas. Whether bacteria play a causal role in human pancreatic cancer

needs to be further examined.

2.3 Introduction

In 2018, an estimated 55,440 individuals will be diagnosed with pancreatic cancer in the US, and

only 8% of these individuals are expected to survive the next five years (ACS, 2018). Given this

high fatality rate, and the silent progression of early disease, identifying risk factors for the preven-

tion and early detection of pancreatic cancer is critical to reducing its mortality. To date, known

risk factors for pancreatic cancer, including smoking, obesity, diabetes, heavy alcohol consump-

tion, family history and markers of genetic susceptibility, cannot, even collectively, be used for

early detection and risk stratification of pancreatic cancer in the general population (Klein et al.,
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2013).

Studies have suggested a link between bacteria and pancreatic cancer risk (Michaud, 2013),

highlighting the need to more critically explore the underlying factors that affect the microbiome

of the oral cavity and upper digestive tract in both cancer patients and cancer-free individuals. The

current research on oral bacteria and pancreatic cancer risk stems from a number of observational

studies that reported a higher risk of pancreatic cancer among individuals with periodontitis, when

compared to those without periodontitis (Michaud, 2013; Michaud et al., 2017). Periodontitis,

an inflammatory disease of the gums, is largely driven by keystone pathogens and pathobionts

(Hajishengallis, 2014). Two large prospective cohort studies have reported positive associations

between periodontal disease pathogens and subsequent pancreatic cancer risk (Michaud et al.,

2012a; Fan et al., 2016); in these two studies, detection of elevated antibodies to Porphyromonas

gingivalis, measured in blood collected prior to cancer diagnosis, was associated with a two-fold

higher risk of pancreatic cancer (Michaud et al., 2012a), and presence (vs absence) of P. gingivalis

in saliva collected prior to cancer diagnosis was associated with a 60% increase in risk of pancreatic

cancer (Fan et al., 2016). Aggregatibacter actinomycetemcomitans, another periodontal pathogen,

was also associated with pancreatic cancer risk in the prospective study using saliva (Fan et al.,

2016).

Few investigations to date have attempted to detect bacteria in pancreatic tissue. Earlier studies

reported the presence of bacteria in pancreatic ducts of subjects with chronic pancreatitis or bile

duct obstruction (Swidsinski, 2005; Schneider et al., 2015; Scheithauer et al., 2009). Other studies

have investigated the presence of specific bacterial DNA in the pancreatic tissue of pancreatic

cancer subjects, namely species of Helicobacter (Nilsson, 2006) and Fusobacterium (Mitsuhashi

et al., 2015). The most comprehensive molecular microbiome studies to date reported the presence

of a diverse bacterial populations in fluids collected from the bile duct, pancreas and jejunum of

subjects undergoing pancreaticoduodenectomy (Rogers et al., 2017), and in pancreatic cyst fluid

removed endoscopically from pancreatic cysts (Li et al., 2017). In mice, bacteria have been shown

to translocate from the mouth to the pancreas, and germ-free mice have reduced progression of
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pancreatic ductal adenocarcinoma (Pushalkar et al., 2018).

Metagenomics studies on DNA isolated from tissue samples from cancer subjects have been

conducted for lung (Yu et al., 2016), colorectal (Bullman et al., 2017), esophageal (Elliott et al.,

2017), stomach (Wang et al., 2016), and breast cancer (Hieken et al., 2016) These studies demon-

strate that 16S rRNA gene sequencing can be effectively conducted on fresh tissue samples where

the ratio of bacterial to human DNA is much lower than at other human sites (e.g., stool or oral

cavity)(Segata et al., 2012). Moreover, these studies have shown that bacterial profiles at differ-

ent organ sites are often unique (Yu et al., 2016) and that changes may be associated with cancer

(Elliott et al., 2017; Wang et al., 2016). In two recent studies, bacterial DNA was measured in

tumor tissue samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC) using

16S rRNA gene sequencing (Pushalkar et al., 2018; Geller et al., 2017); however, comparison of

microbiota in pancreas and different gastrointestinal tissue was not conducted in these patients.

To date, no study to our knowledge has characterized the overall microbiome in pancreatic and

normal surrounding tissue samples, a critical step to understand whether and how bacteria may

play a role in carcinogenesis. In an effort to address the specific question of whether the pancreas

has its own microbiome, we recruited subjects from the Rhode Island Hospital (Providence, RI)

with planned foregut surgery to obtain tissue samples for 16S rRNA gene microbiome analysis. In

addition, for comparison to controls, we obtained pancreatic and duodenum tissue from National

Disease Research Interchange (NDRI) from non-cancer subjects.

2.4 Materials and Methods

2.4.1 Study population and sample collection

Seventy-seven subjects, enrolled between January 2014 and March 2016, were included in this

study. Subjects were eligible if identified as candidates for surgery of the foregut by Dr. Charp-

entier (the lead surgeon at the RIH) and included those with pancreatic cancer, pancreatic cystic

neoplasms, pancreatitis, bile duct or small bowel diseases. All recruited subjects were between

31-86 years old (Table 2.1). Participants were asked to complete a self-administered questionnaire
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to provide data on demographic and behavioral factors, and included a question on past use of an-

tibiotics; this variable was included in the statistical analysis to control for changes that may have

occurred due to antibiotic use in recent past. Questions on family history of cancer, use of other

over-the-counter medications were also included on the questionnaire. Stool collection kits with

ethanol as a fixative (95% (wt/wt) ethanol) were provided prior to surgery (Franzosa et al., 2014);

participants were asked to return the samples using a pre-paid box.

A protocol was established for processing tissue samples collected during surgery to reduce

contamination. A technician from the Pathology Department was informed in advance of the

surgery date and time, and was paged as soon as the specimens had been obtained. Surgical tissue

samples were frozen within one hour of the surgery time, as well as tissues swab samples from

the stomach, jejunum, and bile duct that were collected using DNA-free forensic sterile swabs

whenever possible. During surgery, the surgeon also recorded (on a surgery form for the study)

if the patient had received prior pre-OP endoscopic ultrasound (EUS), had previously had their

gallbladder removed, or had received prior placement of a stent (for treatment of symptoms); all

subjects received a single dose of perioperative antibiotics immediately prior skin incision at the

time of the operation. Tissue samples (pancreatic tumor tissue, pancreatic cysts, normal pancreatic

tissue, pancreatic ducts and duodenums) were prepared by a Rhode Island Hospital pathologist;

cancerous and non-cancerous tissues were identified, separated and labeled. All samples were

de-identified and stored at -80◦C until processing.

Upon review of pathology records, ICD10 codes were assigned to each subject; 39 subjects had

pancreatic cancer (ICD10 codes C25.0-C25.9; the majority of cases were adenocarcinomas, only 2

subjects had neuroendocrine tumors of the pancreas), 12 subjects had periampullary cancer (ICD10

codes C24.0-C24.1), 18 subjects had other pancreatic conditions (ICD10 codes K86.0-K86.3),

and the remaining 8 had other gastrointestinal conditions. The study was approved by Lifespan’s

Research Protection Office for recruitment at RIH, as well as the Institutional Review Boards for

Human Subjects Research at Brown University, Tufts University and the Forsyth Institute.

In addition, we obtained pancreatic specimens without known conditions of pancreatic dis-
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Table 2.1: Distribution of demographic, lifestyle, and health conditions variables among patients
with diseases of the foregut, primarily pancreatic diseases, and deceased controls

RIH subjects (n = 77) NDRI subjects (n = 34)
Characteristic Mean (SD) Characteristic Mean (SD)

Age 63 ± 13 Age 68 ± 15
Body mass index 27 ± 6 Body mass index 29 ± 6.5

N (%) N (%)
Sex Sex

Male 38 (49) Male 21 (62)
Female 39 (51) Female 13 (38)

Race Race
Caucasian 72 (93.5) Caucasian 30 (88)
Black 2 (2.6) Black 2 (6)
Other 2 (2.6) Other 2 (6)

Smoking status Smoking status
Ever smoker 44 (58) Ever smoker 23 (68)

Chemotherapy Cause of death
Never 52 (76.5) Heart failure 17 (50)
Prior to past 6 months 7 (10.3) Cardiopulmonary arrest 5 (15)
In past 6 months 9 (13.2) Cerebrovascular accident 1 (3)

Respiratory arrest 2 (6)
Antibiotic use Abdominal aortic aneurysm 1 (3)

Never 13 (18.1) Intracerebral hemorrhage 1 (3)
Prior to past 6 months 32 (44.2) Liver cirrhosis 1 (3)
In past 6 months 21 (29.2) Overdose 1 (3)
Missing 6 (8.3) Parkinson’s disease 1 (3)

Pneumonia 1 (3)
Stent prior to surgery (yes) 19 Pulmonary embolism 1 (3)
Pre-OP EUS 20 Pulmonary fibrosis 1 (3)
Surgery for:

Pancreatic cancer 51 (66.2)
Chronic pancreatitis or pancreatic cysts 18 (23.4)
Other 8 (10.4)
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eases from the National Disease Research Interchange (NDRI) to serve as control samples in the

absence of available healthy pancreatic tissue in non-cancer subjects. Snap-frozen ‘control’ whole-

pancreas and duodenum (∼ 5cm) human specimens from 34 deceased donors were obtained from

NDRI with an average post-mortem recovery time of 13 hours. Control pancreas (head and tail),

pancreatic ducts and duodenums were dissected under sterile conditions, and stored at -80◦C until

processing. To remove additional contamination, we removed a thin tissue layer around each sam-

ple prior to extracting DNA. Details for DNA extraction and sequencing procedures are provided

in the Supplementary Methods.

2.4.2 16S rRNA amplicon Illumina sequencing

The 16S rRNA gene dataset consists of Illumina MiSeq sequences targeting the V3-V4 hyper-

variable regions. The DNA target sequencing was performed by the Forsyth Institute Sequencing

Core. To evaluate effect of running samples on MiSeq runs at different times, we included bac-

terial mock community samples on each run and then compared their relative abundances across

the MiSeq runs; the results for the mock communities were consistent across run, demonstrating

minor fluctuations (Supplementary Figure A.1).

The MiSeq reporter analysis was used to discard low quality sequences and to generate FASTQ

files containing only filtered quality sequences, subsequently the overlapping paired-end reads

were stitched together and further processed using used a multi-stage BLASTN-base search taxon-

omy read assignment pipeline that maximizes species level classification (Al-Hebshi et al., 2015).

2.4.3 Taxonomic assignment pipeline of 16S rRNA amplicon sequencing data

Sequences were BLASTN-searched against a combined set of 16S rRNA reference sequences that

consist of the HOMD (version 14.5)(Dewhirst et al., 2010), Greengenes Gold (McDonald et al.,

2011), and the NCBI 16S rRNA reference sequence set. All assigned reads were subject to several

down-stream bioinformatics analyses, including alpha and beta diversity assessments, provided in

the QIIME (Quantitative Insights Into Microbial Ecology (Caporaso et al., 2010)) software package
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version 1.9.1.

2.4.4 Statistical analysis

Samples with < 500 total read counts were excluded from all analysis. In addition, only OTUs with

a minimal read count of 100 sequences (across all samples) were included in the analyses. For

QIIME analyses, we normalized the number of sequences in the different MiSeq runs by rarefying

each library to 500 reads to account for differences in sequencing depth across runs (increasing

rarefaction cutpoint to higher read number did not result in changes in alpha-diversity results or

OTU numbers in samples; 500 reads was used as the cutpoint to reduce number of samples lost

from the analysis). Range of sequencing counts for the different sample types are provided in

Supplementary Figure A.2.Across samples, OTU relative abundance was computed as the ratio of

an OTU’s absolute abundance to the total number of reads for that sample.

To create relative abundance plots, we restricted bacterial taxa (at genus-level) present at >2%

relative abundance and with >35% prevalence in both NDRI and RIH samples (this was done to

simplify comparison between the RIH and NDRI samples). Jaccard Index was used for paired com-

parison of proportion of shared microbiota taxa present at >2% relative abundance in tissue/swab

samples within subjects.

To examine the variation in the microbial profile across the different habitats/sites (Supplemen-

tal Table A.1) among the NDRI and RIH subjects, we calculated the distance/dissimilarity between

samples using the Bray-Curtis and Sorensen indices (Bray & Curtis, 1957). Computed distances

were subsequently used to generate principal coordinate analysis (PCoA) plots to visualize the ar-

rangement of the samples in the ordination space. PERMANOVA (available in QIIME) was used

to test whether the distances are more similar within a group of samples than that from other groups

of samples.

To identify demographic and clinical correlates of pancreatic microbial composition, we fit

a series of zero-inflated beta regression models to examine associations between genus-level rel-

ative abundances and demographic (i.e., age, gender, race, BMI) and clinical (i.e., health sta-
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tus, chemotherapy, antibiotics use prior to surgery, anxiety medications, presence of stent prior

to surgery, whether pre-operative endoscopic ultrasound [pre-OP EUS] was conducted prior to

surgery, tumor surgery classification by International Code of Disease [ICD10 code]). In the re-

sults, we refer to relative mean abundance among non-zero observations (µ) merely as relative

mean abundance. More details are provided in the Supplemental Methods.

We explored which factors obtained in the questionnaires and medical files in RIH subjects

were associated with bacterial communities in the pancreatic tissue samples. The most influential

factors were sequencing run, presence of stent, and chemotherapy prior to surgery (only 5 patients

with available tissue/swab samples had chemotherapy in the past 6 months); each of these factors

was significantly associated with a large number of genera tested in marginal models. Given that

the mock bacterial communities were similar across runs (see Supplemental Materials), it is pos-

sible that “run” was associated with certain genera due to differences in number of samples per

sequencing run. To adjust for potential confounding, we considered this covariate in the final mod-

els comparing cancer to non-cancer subjects and the different ICD-codes among the RIH subjects.

Similarly, age, BMI and sex were adjusted for as these features were shared between the studies

and were found to explain variation in the relative abundance of some of the genera. Smoking was

not found to explain variation in relative abundance in our data.

2.5 Results

The present analysis included a total of 246 pancreatic tissue and swab samples collected from

82 subjects (50 subjects from RIH providing 133 samples [57 swabs, 76 tissue] and 34 subjects

from NDRI providing 113 tissue samples; Supplemental Table A.1). In addition, 12 RIH subjects

provided stool samples. There were no significant differences in the distribution of age, gender,

BMI, race, and smoking status between RIH and NDRI subjects (Table 2.1). The Illumina-based

sequencing of V3-V4 hypervariable regions of the bacterial 16S rRNA gene resulted in a total of

19,498,743 high quality sequences (with a median sequence length of 427 nucleotides).
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2.5.1 Taxonomy

Over 99% of the reads from RIH pancreatic samples were attributed to 5 bacterial phyla (45.9%

Proteobacteria, 35.6% Firmicutes, 9.5% Bacteroidetes, 4.3% Fusobacteria, and 3.9% Actinobac-

teria). The remaining low abundance phylotypes (0.6% of the total) belonged to six bacterial

phyla (Synergistetes, TM7, Deinococcus-Thermus, Verrucomicrobia, Spirochaetes, and Teneri-

cutes). 99.6% of the reads observed among the NDRI pancreatic samples belonged to the same

five bacterial phyla as observed in RIH subjects. The phylum Tenericutes (Bacteria) was present

only in RIH samples, and the phylum Euryarchaeota (Archaea) was present only in NDRI samples,

but both of these phyla were uncommon.

While the microbial communities in the pancreatic tissues were dominated by the phyla Fir-

micutes and Proteobacteria, substantial inter-individual variability was observed. In RIH samples,

Proteobacteria relative abundance ranged from 2 to 99%, and similarly, Firmicutes relative abun-

dance ranged from 0.6 to 84%. Large inter-individual variability was also observed in the NDRI

samples.

2.5.2 Within and between sample diversity analysis

Mean relative abundance for bacterial taxa (mostly at the genus-level) in the pancreatic tissue sam-

ples (duct, head, tail, normal and tumor), duodenum tissue samples, and jejunum, bile duct and

stomach swabs are presented for each subject with more than one available sample in the RIH

in Figure 2.1 and NDRI in Figure 2.2 (males and females are presented separately for ease of

comparison - no major differences were observed by sex). Three striking patterns emerge: 1)

bacterial profiles in the pancreas are subject-specific rather than site-specific, 2) bacterial profiles

in duodenum tissue are remarkably similar to those in pancreatic tissue in the same subjects, 3)

concordance of paired comparisons of bacterial profiles in cancer subjects (RIH) are slightly lower

across tissue type or site than those for non-cancer subjects (NDRI) (Figure 2.3). Subjects from

RIH with only one sample available (n=5) demonstrate similar bacterial profiles as those with mul-

tiple samples. Bacterial taxa commonly recognized as oral bacteria, including Fusobacterium spp.,
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Prevotella spp., Dialister spp., Veillonella spp., and Haemophilus spp. were identified in many of

the tissue samples, both cancer and non-cancer subjects (Figure 2.1). Other oral bacterial taxa,

including Parvimonas micra, Selenomonas noxia, Capnocytophaga spp., Peptostreptococcus spp.

and Solobacterium moorei were also identified in tissue samples but were less common (present in

20%-35% of all samples).

With the exception of the stool and the jejunum, all the bacterial communities were charac-

terized as habitats with low bacterial richness including the pancreatic sites, duodenums and the

bile ducts (Figure 2.4 A). Among RIH subjects, the microbial communities of the stool samples

were represented by higher richness than the microbial communities in the tumors of the pancreas

(p = 0.007), duodenums (p = 0.013) and bile duct swabs (p = 0.017). Likewise, the stool bac-

terial communities had higher richness than the NDRI pancreatic heads (p = 0.012), pancreatic

ducts (p = 0.020) and duodenums (p = 0.005). The microbial communities in the jejunum swabs

showed more richness than the communities in the RIH pancreatic head (p = 0.014) and duo-

denums (p = 0.028). In general, the bacterial communities in the pancreas of RIH subjects had

slightly higher richness when compared to those from the pancreas of the NDRI matching sample

types. Similar results were observed using additional alpha diversity measures of the bacterial com-

munities (Figure 2.4 B-D). As expected, the stool samples were the most diverse with a Shannon

index ≥ 4 (Figure 2.4 B).As the number of phyla represented in high abundance in these samples

was relatively low (∼ 5), we observed relatively low levels of phylogenetic distances across all

samples (Figure 2.4 D).

The ordination beta-diversity analysis revealed that the majority of samples belonged to a sin-

gle cluster, without any visually apparent groupings by the nature of the sample, health status or

anatomical site (Figure 2.5 A-C). However, the PERMANOVA tests revealed statistically signifi-

cant differences between NDRI and RIH samples (p < 0.001), and for the swab samples obtained

from the bile duct, jejunum and stomach (compared to pancreas tissue samples). Differences be-

tween sites within the pancreas (i.e., head, tail, duct), and compared to the duodenum (for NDRI

and RIH, separately), were not statistically significant (after accounting for multiple comparisons).
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Figure 2.1: (A) RIH Males with ICD code (C25, C24 or K86); (B) RIH Females with ICD code
(C25, C24, or K86). Distribution of bacteria relative abundance by genus level in all the stud-
ied body habitats based on read taxa attribution using V3-V4 hypervariable region of 16S rRNA
genes. All names are at genera level except for those with c_ which denotes class for multi-
genera taxa (within that class). Colored bars next to legend reflect taxa at class level: TM7 (lime);
Gammaproteobacteria (purple); Epsilonproteobacteria (light grey); Betaproteobacteria (dark grey);
Fusobacteriia (pink); Clostridia (green); Bacilli (blue); Bacteroides (Gold); Coriobacteriia (red);
Actinobacteria (marron).
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Figure 2.2: (A) NDRI Males; (B) NDRI Females. Distribution of bacteria relative abundance by
genus level in all the studied body habitats based on read taxa attribution using V3-V4 hypervari-
able region of 16S rRNA genes. All names are at genera level except for those with c_ which
denotes class for multigenera taxa (within that class). Colored bars next to legend reflect taxa at
class level: TM7 (lime); Gammaproteobacteria (purple); Epsilonproteobacteria (light grey); Be-
taproteobacteria (dark grey); Fusobacteriia (pink); Clostridia (green); Bacilli (blue); Bacteroides
(Gold); Coriobacteriia (red); Actinobacteria (marron).
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Figure 2.3: Jaccard Index (proportion of shared genera) for paired comparison of tissue samples in
NDRI and RIH subjects.
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Figure 2.4: Comparative alpha diversity analyses of bacterial communities in anatomical sites
(based on a simulated data set subsampled from the input OTU table). Alpha diversity metrics:
(A) Richness, (B) Shannon diversity index, (C) Simpson index, and (D) Phylogenetic diversity.

The principal component analyses of both Bray-Curtis and Sorensen distances between all samples

(tissues and swabs)showed that both RIH and NDRI samples clustered mostly by subject.

2.5.3 Associations of host factors with microbial communities

Using multiple regression analyses, we examined presence or absence, and relative mean abun-

dance of bacterial taxa (at the genus and species level) among present (non-zero) observations using

all tissue and swab samples comparing RIH subjects to NDRI subjects. Table 2.2 presents the bac-

terial taxa (at the genus level) that were present in at least 20% of all tissue and swab samples; each

model includes both a zero-inflated component (testing for differences in presence/absence of bac-

terial taxa) and a relative mean abundance comparison. Lactobacillus taxa were present in almost

all non-cancer tissue samples (estimated proportion of presence [P1] = 0.98), but were much less
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Figure 2.5: PCoA plots showing the relatedness of microbial communities among samples from
RIH subjects and NDRI donors using the Bray-Curtis dissimilarity index. Individual datasets are
colored according to their (A) RIH and NDRI sample type, (B) RIH anatomical site, and (C) NDRI
anatomical site.
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likely to be present in cancer tissue samples (P1 = 0.58, p < 0.0001), and mean relative abundance

was higher in non-cancer subjects (µ = 0.06 vs µ = 0.02 in RIH subjects, p < 0.0001; Table 2.2).

In contrast, a number of bacterial taxa, including Porphyromonas, were present in higher mean

relative abundance in cancer subjects than non-cancer subjects (Table 2.2, and species level data

presented in Supplemental Table A.2). Oral bacteria Fusobacterium spp. and Prevotella spp. had

higher mean relative abundance in cancer subjects than non-cancer subjects (p-values < 0.0001

according to Wald tests for µ). Although these two bacteria do not appear in Table 2.2 because

they were not significant according to the joint permutation (based test for prevalence and mean

relative abundance at the genus-level), a number of Fusobacterium species, e.g., Fusobacterium

nucleatum _subsp._vincentii, were much more prevalent in RIH samples and are significant in the

species-level models (Supplemental Table A.2).

Table 2.3 presents the bacterial taxa (at genus level) for which statistically significant asso-

ciations remained after multiple comparison correction (at p < 0.10) when comparing bacterial

taxa in tumor tissue (RIH) by ICD code to those identified in normal pancreatic head tissue from

NDRI subjects (labeled as “controls” in Table 2.3; given that the bacterial profiles were highly

similar by subject, we included only pancreatic head tissue for this analysis). In the marginal mod-

els (prior to adjusting for other covariates), a total of 16 bacterial genera were identified as being

significantly associated with disease status prior to correction for multiple comparisons (Supple-

mental Table A.3); a number of these taxa have representative strains in the Human Oral Micro-

biome Database (http://www.homd.org) (e.g., Fusobacterium, Capnocytophaga, Prevotella, Por-

phyromonas, Parvimonas, Selenomonas, and Haemophilus). Mean relative abundances for some

of these taxa (namely, Capnocytophaga, Prevotella, Selenomonas) were higher in samples com-

ing from subjects diagnosed with pancreatic cancer (ICD C25) compared to NDRI samples. The

model with Porphyromonas had the strongest association overall (p = 4.5× 10−7); the relative

mean abundance for periampullary cancer tissue samples was substantially higher than that of

NDRI samples (p = 5.8× 10−19), as were the IPMNs (K86.2) samples (p = 3.6× 10−7). The

associations with Porphyromonas remained elevated in multiple regression models (Table 2.3).
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Table 2.2: Results from multivariable zero-inflated β regression models comparing bacteria pres-
ence/absence and relative abundance in tissue and swab samples from NDRI and RIH subjectsa

Estimated mean relative Estimated proportion of Global perm testa

abundance (µ)b presence (P1)
Genus Total read Nonzero RIH NDRI Wald RIH NDRI Wald p-value AIC P-adjustedc

counts samples P-value P-value difference
Lactobacillus 1,075,844 154 0.0209 0.0640 <0.0001 0.5270 0.9846 <0.0001 <0.002 35.22 <0.02
Pseudomonas 137,618 90 0.0077 0.0026 <0.0001 0.5523 0.2480 0.0001 <0.002 13.55 <0.02
Parvimonas 45,705 73 0.0091 0.0048 0.0157 0.5251 0.1813 <0.0001 <0.002 10.41 <0.02
Acinetobacter 13915 152 0.0083 0.0040 <0.0001 0.7606 0.5069 0.0008 <0.002 10.12 <0.02
Ralstonia 532 61 0.0001 0.0002 <0.0001 0.1687 0.4098 0.0010 <0.002 8.24 <0.02
Kluyvera 36,883 54 0.0097 0.0045 0.0353 0.2536 0.0361 <0.0001 <0.002 6.94 <0.02
Bilophila 102,226 60 0.0070 0.0013 <0.0001 0.2000 0.0197 0.0001 <0.002 2.95 <0.02
Gemella 76,895 133 0.0193 0.0064 <0.0001 0.7648 0.6134 0.0249 0.004 5.21 0.03
Slackia 34,060 82 0.0084 0.0266 <0.0001 0.2400 0.3958 0.0223 0.008 4.72 0.05
Lachnoanaerobaculum 19,696 92 0.0037 0.0029 0.2536 0.6163 0.2944 0.0008 0.012 0.80 0.07
Solobacterium 16,204 67 0.0069 0.0019 <0.0001 0.5132 0.2351 0.0041 0.014 0.02 0.07
Blautia 156,957 92 0.0030 0.0027 0.4899 0.3081 0.4915 0.0193 0.020 1.62 0.09
Porphyromonas 20,741 86 0.0046 0.0028 0.0192 0.3639 0.5223 0.0465 0.022 0.86 0.10
Anaerococcus 49,115 63 0.0053 0.0069 0.2285 0.1708 0.3281 0.0164 0.026 0.56 0.11
Selenomonas 2,407 73 0.0002 0.0002 0.1128 0.4335 0.2425 0.0205 0.038 0.86 0.15
Staphylococcus 303,413 196 0.0105 0.0175 0.0001 0.8357 0.9146 0.1077 0.042 5.99 0.15
Megasphaera 21,221 69 0.0028 0.0017 0.0266 0.4267 0.2150 0.0134 0.046 -1.45 0.15
Actinomyces 34,042 153 0.0064 0.0034 <0.0001 0.8013 0.7065 0.1642 0.052 -1.62 0.15
Prevotella 222,237 179 0.0240 0.0125 <0.0001 0.8790 0.9046 0.5502 0.052 -1.70 0.15
Bifidobacterium 12,181 88 0.0021 0.0016 0.1358 0.3098 0.1140 0.0073 0.052 -2.33 0.15
Abiotrophia 1,086 43 0.0008 0.0001 <0.0001 0.1502 0.0666 0.0421 0.054 -1.42 0.15
Rothia 227,122 173 0.0274 0.0166 0.0022 0.9458 0.8861 0.0537 0.080 -0.24 0.22

NOTE: Taxonic classification:
k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae_[XIII];g__Parvimonas
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter
k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Kluyvera
k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila
k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Gemellaceae;g__Gemella
k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Eggerthellales;f__Eggerthellaceae;g__Slackia
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Lachnoanaerobaculum
k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Solobacterium
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia
k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae_[XIII];g__Anaerococcus
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Selenomonas
k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus
k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__Abiotrophia
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Megasphaera
k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Actinomycetaceae;g__Actinomyces
k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Prevotellaceae;g__Prevotella
k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium
k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia

a All models are adjusted for age, sex, BMI, and log library size. Only bacteria (at genus-level) associated with source of samples at P ≤ 0.10 before correcting for multiple comparisons are
shown. Permutation testing accounts for within subject correlation via random intercept.

b Among nonzero samples.
c Adjusted for multiple testing.
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Table 2.3: Results from multivariable zero-inflated β regression models comparing bacteria pres-
ence/absence and relative abundance in tissue and swab samples from NDRI and RIH subjectsa

Estimated mean relative abundance (µ)b Estimated Proportion of Presence (P1)
Genus Total Nonzero Control C24 C25 K86.2 Control C24 C25 K86.2 p-value AIC P-

read samples (N=29) (N=7) (N=16) (N=6) (N=29) (N=7) (N=16) (N=6) diffe- adjus-
count rence tedc

Simonsiella 231 15 0.0001 0.0001 0.0018 0.0112 0.1640 0.5559 0.5140 0.1574 <0.0001 35.41 <0.0001
Helicobacter 1,475 7 0.4670 <0.0001 0.0001 0.0001 0.0079 0.6287 0.0005 0.0039 <0.0001 35.38 <0.0001
Porphyromonas 7,008 15 0.0005 0.0512 0.0022 0.0087 0.3886 0.1261 0.0351 0.3175 <0.0001 29.01 <0.0001
Capnocytophaga 316 12 <0.0001 <0.0001 0.0001 0.0017 0.1375 0.2673 0.0865 0.3766 <0.0001 28.87 <0.0001
Ralstonia 153 15 0.0008 0.0061 0.0452 0.0010 0.2955 0.0008 0.6080 0.6144 <0.0001 17.80 0.0026
Bilophila 10,685 13 0.0002 0.0663 0.0139 0.0002 0.0696 0.0547 0.0099 0.1653 <0.0001 17.76 0.0027
Pseudomonas 64,128 31 0.0131 0.0231 0.0469 0.5237 0.2139 0.8512 0.6192 0.6193 0.0001 15.35 0.0076
Acinetobacter 7,916 43 0.0192 0.0615 0.1637 0.1208 0.4407 1.0000 0.7870 0.7825 0.0002 13.81 0.0147
Gemella 7,769 24 0.0028 0.0113 0.0113 0.0071 0.2778 0.5284 0.8466 1.0000 0.0006 11.83 0.0343
Enterococcus 28,254 29 0.0230 0.0176 0.0067 0.0173 0.4277 1.0000 <0.0001 0.4857 0.0007 11.35 0.0419
Propionibacterium 19 10 <0.0001 <0.0001 0.0001 <0.0001 0.1589 0.1454 0.0105 0.0597 0.0011 10.29 0.0655
Peptoclostridium 4,137 14 0.0031 0.0191 0.1199 0.0088 0.2598 0.0003 0.2297 0.5380 0.0017 9.19 0.1034
Solobacterium 1,402 10 0.0001 0.0002 0.0006 0.0003 0.2789 0.8483 0.1583 0.1326 0.0038 7.20 0.2340
Salmonella 37 7 0.0003 0.6282 0.0001 0.0015 0.0336 0.0159 0.0080 0.1074 0.0089 5.09 0.5455
Lactobacillus 251,585 40 0.1343 0.0717 0.1408 0.0891 0.9565 0.6933 0.4354 1.0000 0.0146 3.85 0.8897
Enterobacter 64,118 30 0.0374 0.0323 0.0303 0.0140 0.4467 0.6746 <0.0001 0.2106 0.0177 3.35 1.00
Lactococcus 3,592 17 0.0018 0.0818 0.8557 0.0009 0.2025 0.0684 0.0855 0.2273 0.0194 3.12 1.00
Clostridium 100,517 29 0.0643 0.0459 0.0416 0.0697 0.4600 0.7216 0.0470 0.5243 0.0267 2.27 1.00
Bacteroides 153,955 34 0.0186 0.0171 0.0818 0.0470 0.3719 0.8799 0.7322 0.7174 0.0381 1.33 1.00
Raoultella 31,688 9 0.0593 0.1574 0.0041 0.0081 0.0010 0.0040 <0.0001 <0.0001 0.0523 0.47 1.00

NOTE: Taxonic classification:
k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Simonsiella
k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter
k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas
k__Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae;g__Capnocytophaga
k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia
k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter
k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Gemellaceae;g__Gemella
k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus
k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__Propionibacterium
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__Peptoclostridium
k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Solobacterium
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella
k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Enterobacter
k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Lactococcus
k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium
k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Raoultella

a All models are adjusted for age, sex, BMI, and sequencing run. Only bacteria (at genus-level) associated with ICD code (overall) at P ≤ 0.05 prior to correcting for multiple comparisons
are shown. Because of missing BMI on two individuals, numbers for the fully adjusted models were based on 58 tissue samples. Marginal models with all samples are shown in
Supplementary Table A.3.

b Among nonzero samples.
c Adjusted for multiple testing.
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The multivariable regression models for the pancreatic tissue samples identified bacterial taxa

(at the genus-level) that had not been significant in the marginal regression models, including

Simonsiella, Helicobacter, and Bilophia (Table 2.3 vs Supplemental Table A.3). Helicobacter was

commonly identified in periampullary pancreatic tumors (C24) but at very low levels; in contrast,

Helicobacter was infrequently identified in the NDRI samples, but was a dominant genus when

present (relative mean abundance 47%; Table 2.3).

We further examined the RIH pancreatic tumor tissue samples without the NDRI samples given

the difference in source of tissue and to account for clinical factors such as prior chemotherapy.

Porphyromonas were also strongly associated with ICD code in both marginal (Supplemental Table

A.4) and multiple regression models suggesting clinical covariates were not confounding the main

findings for these bacteria.

To test whether the associations would be similar using pancreatic duct tissue samples (vs

tumor tissue), we repeated the analysis using RIH and NDRI samples obtained from the pancreatic

ducts. The associations for Porphyromonas remained detectable and statistically significant in

these analyses (p = 1.53×10−11).

Using tissue samples obtained from the duodenum, we compared relative abundance of bac-

terial taxa in NDRI and RIH subjects to examine whether any bacteria from the pancreatic tissue

analyses were also noticeably different in the duodenum samples. Of the significant associations

noted in the pancreatic tissues, Selenomonas was also elevated in the duodenum tissue of pancre-

atic cancer subjects compared to duodenum tissue from NDRI subjects (p = 3.9×10−12). A weak

association was also observed for Gemella for the duodenum samples, consistent with an overall

elevated mean relative abundance in the RIH samples compared to the NDRI samples (Table 2.2);

other associations were either not significant or not consistent in direction of differences.

We only had one pancreatic duct stent to examine microbial community; the bacterial taxa from

this stent were characterized as the members of the genera Klebsiella and Enterobacter.
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2.6 Discussion

Using pancreatic and duodenum tissue samples from subjects with pancreatic cysts or pancreatic

cancer, and comparing them to pancreatic tissue samples obtained from donors who died of non-

cancer causes, we were able to demonstrate that pancreatic tissue contains a number of different

bacterial taxa, including taxa that are known to inhabit the oral cavity. Our findings provide evi-

dence that the pancreas is not a sterile organ and that there is substantial between-person variability

in relative abundance of bacterial taxa at the genera level in the pancreas, but we also observed

marked within-person stability across site (Figures 2.1 and 2.2); bacterial composition at different

sites in the pancreas (i.e., duct, head and tail) as well as the duodenum were highly similar in the

same individuals. Finally, we noted lower presence and relative abundance of Lactobacillus in

cancer subjects compared to non-cancer subjects, and a significant increase in the mean relative

abundance of periodontal-related pathogens in the tissue of pancreatic subjects when compared to

non-cancer subjects.

Dissemination of oral bacteria to different parts of the body has been well-reported, and oral

bacteria have been linked to a number of chronic diseases, including cardiovascular diseases (La-

Monte et al., 2017; Gibson et al., 2006). Fusobacterium nucleatum has been associated with colon

cancer in a number of cross-sectional studies (Kostic et al., 2011; Castellarin et al., 2011). Mouse

models of colorectal cancer provide some support for a causal link (Bullman et al., 2017; Kostic

et al., 2013), demonstrating how this bacterium has the ability to initiate recruitment of tumor-

infiltrating immune cells. Moreover, a recent study demonstrated similar microbiome profiles in

primary colon cancer tumors and liver metastases from the same individuals (resected at a later

time point), especially for Fusobacterium positive tumors (Bullman et al., 2017), suggesting sta-

bility in the microbiome as the tumor progresses and metastasizes. Given the findings from this

study, where multiple tissue specimens were examined in the same subjects, it may also be plau-

sible that each individual has a unique microbiome profile that exists in different gastrointestinal

tissue and that certain profiles increase cancer susceptibility by impacting the immune environment

to allow for tumor promotion and growth. Bacterial taxa found in this study were highly consistent
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with those reported in a microbiome study on colon cancer; enriched bacterial taxa associated with

Fusobacterium nucleatum positive tumors were similar to those we identified in this study (e.g.

Bacteroides, Prevotella, Selenomonas, and Leptotrichia) (Bullman et al., 2017).

Presence of Lactobacillus spp. was significantly reduced in both periampullary and PDAC

cancers compared to non-cancer patients (including those with pancreatic cysts). Certain strains

of this bacterium have been identified as playing a key role in mediating anti-inflammatory path-

ways in calorie-restricted mice (Pan et al., 2018). Further research on the role of these bacteria in

pancreatic cancer should be conducted.

Previous studies have reported associations between periodontal disease pathogens and pan-

creatic cancer risk, especially Porphyromonas gingivalis (Michaud et al., 2012a; Fan et al., 2016).

Periodontal disease is an inflammatory disease of the gums that can, in advanced conditions of pe-

riodontitis, result in systemic inflammation. In this study, we observed significantly higher mean

relative abundance levels (at the genus-level) for two bacterial taxa previously associated with pe-

riodontitis in pancreatic tissue, including Porphyromonas and Selenomonas (Faveri et al., 2009;

Stingu et al., 2012; Liu et al., 2012; Gonçalves et al., 2012); however, only Porphyromonas re-

mained statistically significant after adjusting for age, sex, BMI and library size. Porphyromonas

was also elevated in the pancreatic duct tissue of periampullary pancreatic cancers, but no statisti-

cally significant associations were noted for the other oral bacterial taxa. Whether Porphyromonas

play a role in pancreatic carcinogenesis will need to be further examined in other studies and

confirmed in animal models. Proposed mechanisms for carcinogenesis include the ability of cer-

tain bacteria to induce a pro-inflammatory response in the tumor microenvironment (Kostic et al.,

2013); inhibit the immune response targeted at eliminating tumor cells (Gur et al., 2015); and

modulate key cellular pathways associated with cell division (Rubinstein et al., 2013).

A similar study using swab specimens from the pancreas, bile and jejunum, was conducted

on subjects with pancreatic cancer undergoing pancreaticoduodenectomy (Rogers et al., 2017).

In that study, many bacterial taxa were present in fluids obtained from the pancreatic ducts and

the common bile duct, including Prevotella, Haemophilus, Aggregatibacter, and Fusobacterium
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(Rogers et al., 2017). Consistent with our findings, microbial communities in the pancreas, bile

and jejunum fluids were similar within individuals (Rogers et al., 2017). Mean relative abundance

for the bacterial genus Klebsiella was high in the samples from pancreatic cancer subjects in that

study (Rogers et al., 2017); in our study, we found Klebsiella to be one of two taxa on a swab taken

from the stent itself. Placement of stent prior to surgery may impact the type of bacteria present in

the pancreas, as observed in our study. In a separate study, metagenomics was conducted on freshly

frozen duodenum samples from 5 normal and 5 obese individuals; Streptococcus (30−32%) and

Actinomyces (12− 17%) were the most common bacterial taxa identified in those samples, and

relatively higher counts of Gemella were also identified in all 10 subjects (Angelakis et al., 2015).

Porphyromonas were not identified in the duodenal samples (Angelakis et al., 2015).

In a recent study examining tumor resistance to the drug gemcitabine, bacteria were found in

tumor tissues of 65 PDAC patients (out of 113), and 51.7% of bacterial taxa belonged to the class

Gammaproteobacteria (Geller et al., 2017), which is highly consistent with our findings (Figure

2.1). Similar to our study, there was large inter-individual variability in relative abundance of

bacteria in each tumor, but in contrast to our study, only 3 out of 20 organ donors were found to be

positive for bacteria, and no normal tissue samples were included from the same patients (Geller

et al., 2017). In addition, a high number of reads for Porphyromonas was found in one (out of 65)

pancreatic cancer tissue specimens (mean relative abundance of 0.123; Supplementary Material

(Geller et al., 2017)). In our study, read counts for Porphyromonas spp. were also extremely high in

two RIH subject. In a separate study, 408 genera of bacteria were identified in pancreatic cyst fluids

obtained from patients through endoscopy (Li et al., 2017); many of the taxa found in pancreatic

cysts were similar to those in tissue from our study, including the presence of Fusobacterium.

Furthermore, Porphyromonas was present in 33% of fluid samples and relative abundances for

those taxa were similar to those in our study (non-zero cysts mean relative abundance: 0.00178,

range 0.0001-0.004) (Li et al., 2017).

In a recent study, Bifidobacterium spp. was found to increase in abundance in the feces of mice

with Kras mutations (genetically modified to increase pancreatic cancer) as disease progressed,
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compared to wildtype mice (Pushalkar et al., 2018). Furthermore, gut repopulation of the germ-free

(Kras) mouse with Bifidobacterium pseudolongum increased T-cell infiltration and tumor growth

(Pushalkar et al., 2018). Similarly, we also noted a higher prevalence for the genus Bifidobacterium

in cancer subjects compared to non-cancer subjects (Table 2.2).

Several studies have looked at the involvement of bacteria in biliary and pancreatic diseases and

have observed a high number of bacterial taxa present in the calcified pancreatic duct epithelium

and in pancreatic abscess (Swidsinski, 2005; Schmid et al., 1999; Brook & Frazier, 1996; Hill

et al., 1983; chiang Tsui et al., 2009). Anaerobic bacterial taxa have been found at a variable rate

in pancreatitis; the results depend on the process for bacterial identification (Swidsinski, 2005;

Schmid et al., 1999; Brook & Frazier, 1996). Previous studies have also reported the presence

of bacteria in bile (Wu et al., 2013; Ye et al., 2016). In a study of 6 subjects with gallstones,

16S rRNA gene sequencing identified high relative abundances of Escherichia, Klebsiella and

Pyramidobacter in the bile, and the bacterial profile of the bile was very similar to the duodenum

in the same subjects (Ye et al., 2016). Pyramidobacter species was originally isolated from the oral

cavity (Downes et al., 2009) and was also found in our study samples, but at low levels (< 20% of

all samples).

Several bacterial taxa we observed with elevated relative mean abundance in RIH samples have

been previously identified in immunocompromised patients and are largely believed to be oppor-

tunistic pathogens, including Acinetobacter (Bergogne-Berezin & Towner, 1996) and Kluyvera

(Sarria et al., 2001). The genus Gemella, which was found at higher relative abundance in pan-

creatic cancer subjects when compared to NDRI samples, has been previously associated with

a number of infections, including endocarditis, soft-tissue abscesses, empyema, bloodstream in-

fection, and bone infections (Mosquera et al., 2000; Scola & Raoult, 1998; García-Lechuz et al.,

2002; Fangous et al., 2016). Because our analysis was based on a cross-sectional study design,

we expected to identify bacteria that were present as a result of opportunistic nosocomial infec-

tions given that the majority of RIH subjects were likely immunocompromised from their cancer.

However, our results show that even normal pancreatic tissue harbors a microbial community.
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The strength of this study was the collection of specimens specifically for the purpose of micro-

biome analysis, with precautions made to reduce contamination during collection and processing

of samples. Moreover, multiple types of samples were collected on each patient at RIH, including

obtaining tissue or swabs from multiple sites, to allow for inter vs. intra-individual differences at

different sites. Finally, the multivariable regression analyses was conducted to adjust for potential

confounding by known pancreatic cancer risk factors, including BMI and smoking, as well as other

factors that may cause bias, including pre-OP EUS and prior chemotherapy.

The major limitation of this analysis was the small number of subjects with pancreatic cysts

and pancreatic cancer; despite recruiting 77 subjects, not all subjects had tissue resections during

surgery (as more advanced pancreatic cancer patients are often not operable). We did not have suf-

ficient power to examine in great detail the differences in bacterial composition between different

pancreatic cancer subtypes, including IPMNs; however, we were the first to include ICD 24 tumors

and to explore differences with ICD 25 tumors. Moreover, cancer versus non-cancer comparisons

of bacterial presence/absence and relative abundances were based on subjects spread across two

different data sources (i.e., RIH and NDRI). Differences in microbiota between these two sources

may have been due to differences in collection methods and collection times; DNA was extracted

from frozen tissue using the same protocol and methods, but tissue samples were either collected

during surgery (RIH) or from organs that were rapidly frozen after death (NDRI samples had a

mean time of 13 hours to processing of samples). Consequently, it is possible that the identified

genera (and overall differences in bacterial taxonomy) merely reflect study-specific differences,

rather than real cancer-specific differences.

In this culture-independent study, we detected many bacterial taxa in pancreatic tissue from

cancer subjects as well as non-cancer subjects. Furthermore, the bacterial profiles in the pancreas

were more similar within individuals across different sites of the pancreas (i.e., head, tail, ducts)

and duodenum than between individuals at each site. Bacterial taxa known to inhabit the oral cavity

were common in the pancreas microbiome and several periodontal pathogens were also identified

in pancreatic tissue samples. Further research is needed to address if and how bacteria may be
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related to pancreatic carcinogenesis or disease progression.
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Chapter 3

A Bayesian framework for identifying consistent patterns of microbial

abundance between body sites

This chapter has previously been published as an open access article and is reprinted here with
minor adaptations. Meier, R., Thompson, J.A., Chung, M., Zhao, N., Kelsey, K.T., Michaud,
D.S., Koestler D.C. (2019). A Bayesian framework for identifying consistent patterns of micro-
bial abundance between body sites. Stat. Appl. Genet. Mol. Biol. 18(6). Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 License https://creativecommons.org/licenses/by-
nc-nd/4.0/.

3.1 Statement of Contributions

In this project, I, Richard Meier, developed the methodology, conducted the simulation studies and

statistical analyses, and wrote the manuscript. Contributions of other authors are listed below.

DSM managed the acquisition and processing of the reference data sets. JAT provided advice

and guidance on the statistical methodology and edited the manuscript. MC, NZ and KTK assisted

in the writing of the manuscript and interpretation of the study findings. DSM is the principal

investigator of the pancreatic microbiome study and assisted in the interpretation and drafting of

the manuscript. DCK helped conception of the methodology, supervised the implementation, and

edited the manuscript. All authors read and approved the final version of the manuscript.

3.2 Abstract

Recent studies have found that the microbiome in both gut and mouth are associated with diseases

of the gut, including cancer. If resident microbes could be found to exhibit consistent patterns

between the mouth and gut, disease status could potentially be assessed non-invasively through

profiling of oral samples. Currently, there exists no generally applicable method to test for such as-

sociations. Here we present a Bayesian framework to identify microbes that exhibit consistent pat-

terns between body sites, with respect to a phenotypic variable. For a given operational taxonomic
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unit (OTU), a Bayesian regression model is used to obtain Markov-Chain Monte Carlo estimates

of abundance among strata, calculate a correlation statistic, and conduct a formal test based on its

posterior distribution. Extensive simulation studies demonstrate overall viability of the approach,

and provide information on what factors affect its performance. Applying our method to a dataset

containing oral and gut microbiome samples from 77 pancreatic cancer patients revealed several

OTUs exhibiting consistent patterns between gut and mouth with respect to disease subtype. Our

method is well powered for modest sample sizes and moderate strength of association and can

be flexibly extended to other research settings using any currently established Bayesian analysis

programs.

3.3 Introduction

Microbial communities inhabit virtually every part of the human body and can differ across indi-

viduals. Even within the same individual, microbial communities often change with anatomical

location (Faith et al., 2013). In this context, it is not surprising that the human microbiome plays

an important role in a wide range of diseases, including even life threatening conditions such as

cancers. In their review, Goodman & Gardner (2018) summarize several compelling examples,

such as increased Fusobacterium species associating with tumors in colon and Helicobacter pylori

inducing lymphoma and gastric cancer. More recently, bacteria have been identified in pancreatic

tissue in cancer patients (del Castillo et al., 2019) and have been shown to play a role in carcino-

genesis in the pancreas (Pushalkar et al., 2018). Additional studies have also reported evidence

that certain oral bacteria and periodontal disease associate with an increased risk in pancreatic

cancer (Michaud et al., 2012b; Fan et al., 2016). Finally, it has been shown that Fusobacterium

nucleatum, a common oral bacterium, produces a protein that allows itself and other bacteria to

travel through the endothelium in the mouth and into the blood stream, allowing them to migrate

to other body sites (Fardini et al., 2011). Despite the empirical evidence, little is understood about

how these associations originate and no confirmatory study has conclusively established their bi-

ological mechanism. This motivates the question of whether microbes exist for which changes in
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abundance (mean relative abundance or rate of presence) with respect to disease status in the oral

cavity correspond to changes in abundance in gut samples. In other words, are there microbes

for which fluctuations in their abundance are preserved across disease status between mouth and

gut? Identification of such species, exhibiting pairwise stratified association (PASTA) between

two body sites, may allow further insight into mechanisms and the biology behind a disease. Fur-

thermore, it may also provide new opportunities for treatment or detection and even potentially

enable a researcher or medical professional to learn about the disease in the gut by monitoring oral

samples. Considering that gut samples can only be acquired through invasive surgical procedures,

PASTA microbes could constitute invaluable clinical markers.

Data arising from 16S rRNA sequencing for assessing the microbiome takes the form of com-

positional count tables. The term operational taxonomic unit (OTU) can be understood as a group

of closely related microbes on a given taxonomic level, for example: phylum, genus, or species.

For a given experiment, in which abundance of microbes is quantified in a series of biological sam-

ples, each cell in row i and column j of such a table represents how often a species or OTU i was

observed in sample j (Table 3.1) Unfortunately, these data are intricate with total column counts

(sequencing depth and microbial yield) differing between samples, high frequency of zero values

(i.e. sparsity), and the constant sum constraint problem that can create spurious associations when

few rows dominate the majority of counts (Tsilimigras & Fodor, 2016; Gloor et al., 2017).

Due to its complexity, many different modeling strategies have been proposed for the analysis

of microbial 16S rRNA abundance data. When investigating an individual microbe (or a specific

group of microbes), current strategies predominantly aim to understand the relationship between

abundance and selected phenotypes. Three major parametric approaches are employed by most

researchers: discrete data models such as Zero-inflated Poisson or Zero-inflated Negative Binomial

regression (Xia et al., 2018; Zhang et al., 2017); log-ratio Aitchison models that explicitly address

the constant sum constraint by treating the ratio of abundance counts between two taxonomic

units as the response (Shi et al., 2016; Tsilimigras & Fodor, 2016; Gloor et al., 2017); and lastly,

relative abundance models that transform counts into sample proportions and fit semi-continuous
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models to the data such as Zero-inflated Beta regression (ZIBR) (Xia et al., 2018; Peng et al.,

2016; Chen & Li, 2016). Each approach can present specific advantages and limitations, where

the most suitable model will depend on the circumstances of the research study. While log-ratio

Aitchison models are mandatory in datasets either measuring high phylogenetic levels with few

taxonomic units or exhibiting low community diversity (Tsilimigras & Fodor, 2016), discrete data

and relative abundance models are convenient to address sparsity in high diversity settings. To

date, neither of these modeling strategies has been utilized to test for PASTA relationships and there

presently exists no general testing approach that is applicable regardless of the parametric modeling

strategy. Alternatively, non-parametric inter-rater strategies can be employed to test for agreement

or association between body-sites. These strategies assume that there are individual raters that

are presented with two different scenarios or cases, each of which they have to assign to either a

category or numeric value. The methods then ask the question whether individual raters tend to

make assignments that agree or associate between the two scenarios. Popular examples are Cohen’s

kappa (Cohen, 1960; Fleiss, 1971) for categorical responses and Pearson or Spearman correlation

for numeric responses (Schober et al., 2018). These methods do not necessarily require knowledge

about the distribution of the response and are applicable even if there is strong disagreement or

variability between individual raters. However, they do not allow accounting for confounders or

other sources of variation, and they require paired samples.

Table 3.1: Hypothetical example of a microbial abundance data table. Rows represent genera,
which are groups of closely related microbes and an example of a type of operational taxonomic
unit (OTU). For a given sample and OTU, each cell in the table counts how often said OTU was ob-
served in said sample through the 16S rRNA sequencing technique. All counts in this type of table
are expected to increase with the total number of observed OTUs in the respective sample. These
column totals can be understood as the sample signal intensity and change based on experimental
parameters for each sample.

Genus Sample 1 Sample 2 Sample 3 Sample 4 . . .
Count Count Count Count . . .

Actynomices 0 0 3 5 . . .
Atopobium 0 27 10 6 . . .
Fusobacterium 0 14 0 0 . . .
. . . . . . . . . . . . . . . . . .
SAMPLE TOTAL 671 2390 1502 1883 . . .
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Here, we present an approach to test for PASTA that is applicable regardless of the data model

and regardless whether all, some, or none of the samples are paired. The question of PASTA

relationships with respect to body site is translated into a question of association of population

parameters (such as mean relative abundance) between the two body sites. A test is then proposed

based on applying a correlation statistic to parameter estimates. Testing and adjusting for paired

samples is made convenient by utilizing a Bayesian modeling framework. For the purpose of

illustration, this paper will focus on modeling relative abundance via a ZIBR model, though as

stated before, the approach is not limited to any particular data model. After establishing the data

model and introducing the approach, viability and performance are evaluated via simulation studies

and through the analysis of a biological dataset involving microbiome data collected from the gut

and specific oral sites in patients with pancreatic cancer and other diseases of the foregut. Finally,

strengths, limitations and opportunities for future methodological development are discussed.

3.4 Methods

3.4.1 Experimental Design

A study suitable to answer the previously described research question can be broken down into the

following steps. First, an appropriate subject population exhibiting the disease or target phenotype

is identified and biological samples from the two body sites of interest are collected. Multiple sam-

ples from the same patient within and across body sites are possible, but not necessarily required.

Next, sample preparation and 16S rRNA sequencing are performed. This sequencing technique

aims to identify and count hypervariable DNA patterns that are specific to microbial species and

OTUs, but that do not exist in human DNA; the rationale being that the DNA content of a group

of microbes is approximately proportional to their abundance in the sample. So, by counting how

often signatures belonging to a specific OTU are observed, we can obtain an estimate of its abun-

dance relative to how many microbes were observed, in total. After OTUs have been counted, our

proposed statistical test is performed individually for each OTU, testing the null hypothesis that

there is no PASTA relationship for each specific set of considered microbes. This test is performed
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by fitting a statistical regression model to the row vector of abundance values corresponding to

a target OTU, followed by the calculation of a test statistic Tθ based on the parameter estimates

(for example, rate of absence or mean abundance) obtained from said model. This statistic will

be small when H0 is true and large when H0 is false. An overview of the experimental design for

testing the hypothesis of PASTA can be found in (Figure 3.1).

3.4.2 Data Model

In what follows we consider abundance on two taxonomic levels: the genus and the Amplicon

Sequence Variant (ASV) level, the latter representing unique biological sequences that were iden-

tified from 16S genes (Callahan et al., 2017). In order to make abundance values comparable across

samples and bring them to the same scale, raw counts are first transformed into relative abundance

values. For a given sample, relative abundance of an OTU refers to the number of times that OTU

was observed, scaled by the total number of observed OTUs for that sample. It represents the

proportion of times an OTU was observed in a given sample.

Let Yk denote the relative abundance of a specific OTU for sample k. This response can be

modeled as a Zero-inflated Beta distribution with probability density fYk(y|pk,ωk,φk). This model

assumes that the case Yk = 0 occurs with probability pk and that given Yk > 0, the response Yk

follows a Beta distribution with mean ωk and dispersion φk. For a given OTU and sample, the

probability of absence p defines how likely it is to observe no microbe comprising that OTU within

said sample. The mean non-zero relative abundance ω represents the mean relative abundance

given that microbes comprising the OTU are actually observed. The mean of Yk, the overall mean

relative abundance, is then E[Yk] = µk = ωk(1− pk). The probability density function of this

distribution can be expressed as follows:

fYk(y) =


pk if y = 0

(1− pk) · Γ(φk)
Γ(ωk·φk)Γ((1−ωk)·φk)

yωk·φk−1(1− y)(1−ωk)·φk−1 if y > 0
(3.1)
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Figure 3.1: Overview of the experimental setup to test for pairwise stratified association (PASTA).
Oral and gut samples are obtained from cancer patients and 16S rRNA sequencing is performed on
each sample. The resulting microbial abundance data is used to fit a statistical regression model to
each observed OTU across all samples. Finally, abundance estimates across strata are used to test
whether abundance patterns in disease status are preserved between mouth and gut.
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Before the statistical PASTA test can be performed, a Bayesian ZIBR model is fit to the data Yk

utilizing the likelihood fYk and assuming a common dispersion parameter φk = φ for all samples.

The estimated posterior distributions of ω and p resulting from this model are then subsequently

used to conduct the test.

Let ω denote the vector of mean relative abundances for all samples, p denote the vector of

probabilities of absence for all samples, β ,δ denote coefficient vectors, b,d denote random effect

vectors and Q,R,W,X represent design matrices. The design matrices code how covariates impact

the model parameters via the following link functions:

logit(ω) = βX+bR and logit(p) = δW+dQ (3.2)

For our application, the matrices W and X are used to model the strata of body site and disease

status, but can additionally be used to adjust for other, fixed covariates (e.g., subject age, gender,

smoking status, and/or other potential confounders or sources of variation). On the other hand, the

optional inclusion of Q and R permits one to account for correlation structures, such as within-

subject correlation when multiple samples are collected from the same patient. If, for example, the

probability of absence of a given OTU in sample k from subject jk is assumed to be impacted by

disease status g jk , body site sk, age A jk and within-subject correlation, we would formulate W, Q

and our model for the probability of absence as follows:

logit(pk) = δ1,g jk ,sk +δ2A jk +d1, jk (3.3)

Here, δ1,g jk ,sk captures the effect of disease status g jk and body site sk on the probability of

absence, δ2 represents the effect of age on the probability of absence, and d1, jk is a subject specific

random intercept. Analogously, if mean relative abundance is believed to be impacted by the same

covariates in the same way, except that age was believed to have no effect, we would formulate X,
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R and our model for non-zero relative abundance such that:

logit(ωk) = β1,gk,sk +b1,k (3.4)

Here, β1,g jk ,sk captures the effect of disease status g jk and body site sk on the mean non-zero

relative abundance and b1, jk is a subject specific random intercept. The specific models used in our

analysis of the pancreatic cancer dataset are presented in the Results Section are further discussed

in Section 3.4.7.

Let t, i∈N denote placeholder indices for any potential coefficient specified in the above ZIBR

model. Then all posterior distributions were estimated, utilizing the following independent prior

distributions:

π(βt),π(δt)∼ N(0,100); π(bt,i)∼ N(0,ζt); π(dt,i)∼ N(0,ξt); (3.5)

π(
√

φ)∼Uni f (1,100); π(ζ−1
t ),π(ξ−1

t )∼ Gam(0.01,0.01) (3.6)

Priors were chosen to be weakly informative, with the exception of
√

φ being restricted to

values larger than or equal to 1 in an attempt to stabilize estimation of means. Under these priors

and for some integer vectors T,I1,I2 the posterior distribution of parameters will then satisfy the

following:

π(β ,δ ,b,d,ζ ,ξ |Y) ∝

T1

∏
t1

π(βt1) ·
T2

∏
t2

π(δt2) ·
T3

∏
t3

π(ζt3)

I1,t3

∏
it3

π(bt3,it3
|ζt3)

 ·
T4

∏
t4

π(ξt4)

I2,t4

∏
it4

π(dt4,it4
|ξt4)

 · f (Y|β ,δ ,b,d,ζ ,ξ ) (3.7)

There are generally no analytical solutions for the posterior distributions of the coefficients

when random effects are present. Regardless, whether the model structure is a special case that

allows for analytical calculation of posterior distributions or whether we employ a more complex

model where this is not possible, posterior distributions can be estimated via Markov chain Monte
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Carlo (MCMC) methods. Briefly, MCMC procedures allow one to draw arbitrarily large samples

from a posterior distribution that will numerically approximate the said distribution, as the number

of draws increases. Models were fit via this method in the software OpenBUGS (version 3.2.3 rev

1012) via the R (version 3.4.0) package “R2OpenBUGS” (version 3.2.3.2).

3.4.3 Formal Definition of Pairwise Stratified Association (PASTA)

In order to understand how the Bayesian regression model can be used to conduct the desired

hypothesis test, we will first provide a formal definition of PASTA. Let s denote a grouping variable

for which two groups are to be compared. For our purposes, this grouping variable represents body

sites: s= 1 denotes gut and s= 2 denotes mouth. Let g denote another grouping variable with three

or more distinct categories. This grouping variable will represent different types of disease status,

more specifically cancer-subtype. Let θsg be a population parameter of the response for a given

body site s and disease status g. The population parameter represents fundamental properties of

the distribution of the response. For the here considered ZIBR model, p, ω and µ are relevant

candidates for θ . If PASTA holds for a given OTU, then either p, ω or µ will associate between

the two body sites, because they all relate to the magnitude of abundance.

We thus define: The parameter θ exhibits PASTA with respect to s and g if there exists an in-

creasing function h(x) such that θ1g = h(θ2g) holds for all g∈ {1,2, . . . ,G}, where G≥ 3. Concep-

tually, this definition says that as we move from one disease status group to another, if θ increases

in oral samples, it will also increase in gut samples. Analogously, if θ decreases from one disease

status group to another in the mouth, it will also decrease in the gut. A visualization is provided in

Figure 3.2.

3.4.4 Testing for PASTA

Let T (x,y)∈ [−1,1] denote a correlation statistic between two numerical vectors x,y; for example,

the Pearson or Spearman correlation statistic. Under this definition, Tθ = T (θ 1,θ 2) denotes the

correlation statistic calculated for the two parameter vectors corresponding to s = 1 (e.g. parame-
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Figure 3.2: Visualization of pairwise stratified association (PASTA). Let θ represent a population
parameter of interest, for example the mean relative abundance of a particular OTU. Each column
of sub-figures below the table are examples of a PASTA relationship, i.e. of h being an increasing
function. The first row plots parameter values of mouth and gut side-by-side and demonstrates that
a variety of different scenarios are covered by this definition. In the second row, plotting parameter
values of gut against parameter values of mouth reveals their association through a trend. T denotes
Pearson correlation values between gut and mouth.

ters for disease status groups in the mouth) and s = 2 (e.g. parameters for disease status groups in

the gut). Generally, if a PASTA relationship holds between θ 1 and θ 2, this statistic should assume

a larger value compared to cases where such a relationship does not hold. This means that we are

able to formulate our desired test by rejecting H0 if Tθ is larger than a specific threshold and fail to

reject H0 if it is less than said threshold.

In summary, assume that θ1g = h(θ2g) implies Tθ > tc for some −1 < tc < 1. The constant tc

represents a meaningful degree of association. For example, a value of tc = 0 would mean that any

tangible degree of association is meaningful, where a value of tc = 0.5 would mean that a moderate

degree of association is meaningful. This definition is useful because Tθ can score the degree of

association without explicitly having to specify the shape of h. Considering the complexity of
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the biology underlying the samples, specifying h in advance may not only be hard to justify, but

strong deviations of a chosen h from the true h could also result in missing promising associations.

Instead, our regression model will allow each stratum (s,g) to have an independent effect on the

response, leading to a unique, agnostic posterior distribution of each θsg. These unique posteriors

are then in turn used to calculate the posterior distribution of Tθ and conduct the hypothesis test.

Based on this scoring definition of PASTA, we formulate our hypotheses in the following way:

H0 : Tθ ≤ tc , i.e. θ 1 and θ 2 do NOT exhibit PASTA

H1 : Tθ > tc , i.e. θ 1 and θ 2 DO exhibit PASTA

While deriving analytical solutions of the distribution of Tθ |Y = T (θ 1|Y,θ 2|Y) will depend

on the data model and may be difficult or even impossible to obtain depending on the modeling

scenario, a general testing procedure can still be derived. As described earlier, MCMC methods

allow one to conveniently obtain a large sample of posterior draws of each θsg, even when obtaining

analytical solutions of posterior distributions is not possible. Furthermore, plugging the posterior

draws of each MCMC iteration into T allows one to obtain posterior draws from Tθ itself. Let α

denote the target credibility threshold, H0 is then rejected if the lower bound tQα of the one-sided

credible interval of Tθ |Y exceeds tc. This is equivalent to rejecting H0 if the estimated probability

of no association exceeds α , i.e. Pr(Tθ |Y≤ tc)< α . In detail, the step by step process for testing

H0 is as follows:

1. Specify a likelihood for the response data Y and prior distributions for the parameters θ

2. Utilize a MCMC sampling scheme to draw a large number of samples from the posterior

distributions of the parameters θ |Y. One draw from the Markov Chain contains a unique

draw for each θsg.

3. Calculate T ∗v = T (θ ∗v1 ,θ ∗v2 ) where θ
∗v denotes the vth MCMC draw. Then T∗ is a large

sample of the posterior distribution Tθ |Y.

4. Calculate the α ·100% sample quantile tQα of T∗. If the Markov Chain is sufficiently long,
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the sample quantiles of T∗ will closely approximate the quantiles of the true posterior dis-

tribution. The value tQα is thus the lower bound of the (1−α) · 100% one-sided credible

interval of Tθ |Y.

5. Reject H0 if the lower bound tQα is larger than tc.

This process is generally applicable regardless of the data model or the parameter being tested,

as long as each θsg can be estimated without constraining them to a parameter space that implies

PASTA.

3.4.5 Pancreatic Cancer Patient Dataset

In order to evaluate validity of the approach in the context of microbiome data, analyses were per-

formed based on a biological 16S rRNA sequencing dataset first published in del Castillo et al.

(2019). This dataset contained samples of various gut and oral sites from 77 patients with pancre-

atic cancer with age range 31 to 86 years. Sequencing was performed utilizing the Illumina MiSeq

System and alignments were performed using BLASTN against a reference library combining

sequences from HOMD (version 14.5), Greengenes Gold and the NCBI 16S rRNA reference se-

quence set. OTU counts were obtained utilizing the QIIME (Quantitative Insights Into Microbial

Ecology 22) software package version 1.9.1, while the unique Amplicon Sequence Variant (ASV)

counts were calculated using the QIIME2 software package release 2018.4. The former was used

to obtain taxonomic genus level counts, whereas the latter was used to obtain rarefied ASV level

information, calculated based on sequencing data rarefied at a sampling depth of 1200. Both genus

level and ASV level counts were considered for analysis. Before fitting statistical models to the

data, relative abundance values of less than 0.01 were treated as noise and set to 0. To ensure

inference was based on sufficient signal, OTUs and ASVs were only tested if more than 5% of all

samples exhibited non-zero values.

The dataset was used to both guide simulation studies (described in the next section) and to

deploy models to identify potential microbes that may exhibit a PASTA pattern.
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3.4.6 Simulation Studies

Before simulations were performed, an empirical approach was pursued in order to obtain sampling

distributions of the parameters p,ω,φ that would be representative of biological microbiome data.

First, a marginal, unstratified ZIBR model was fit to the pancreatic cancer dataset that assumed all

samples of relative abundance for a given OTU originated from the same distribution. These model

fits yielded a single estimate of p,ω and φ for each OTU. These estimates were then assumed to be

representative of or approximate the true distribution of parameters in biological data. In the next

step, the estimates were used to obtain smooth probability distributions that parameters could be

sampled from during the simulation studies. For both p and ω , individual Beta distribution models

were fit to the marginal estimates in order to obtain their smooth sampling distributions. On the

other hand, logφ was sampled via a Normal distribution through an observed linear relationship

between logφ and logω that was present on the ASV level and the genus level. More specifi-

cally, since our models assumed fixed dispersion among all groups, dispersion was sampled from

(logφ |minsg{logωsg})∼ N(aminsg{logωsg}+b,σ2), where a,b,σ2 differed between genus and

ASV level.

After the smooth sampling distributions were obtained, the performance of PASTA tests was

evaluated via simulations. Let t denote a target, fixed degree of association, n denote the number

of observations in each stratum (s,g) and tc = 0 denote the tested degree of association. A single

simulation run was carried out by first randomly drawing all θsg parameters from the representative

sampling distributions, until |Tθ − t|< 0.001 was satisfied. This process yields parameters that are

both representative and that also exhibit a target degree of association (within a small error margin).

Next, the drawn parameters satisfying this condition were plugged into the likelihood of the ZIBR

data model, which was in turn used to draw a random sample of relative abundance values. This

simulated pseudo-data was then used to fit the Bayesian ZIBR model and conduct our hypothesis

test. Each considered scenario was simulated 1000 times and statistical power for given t, n and

tc was then estimated as the proportion of times H0 (i.e. Tθ ≤ 0) was rejected. We specifically

considered Pearson correlation as choice for T (x,y) in this simulation.
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An additional restriction was put in place for sampling pseudo-data in order to prevent rare

cases of sparse datasets with insufficient signal to perform the analysis. If a generated pseudo-

dataset contained more than three sub-strata (s,g) in which all observations exhibit a response

value of either all 0 or all 1, then it was rejected and a new pseudo-dataset was sampled.

3.4.7 Model fitting

Let jk denote the unique identifier index for the subject and sk denote the body site that sample k

originated from. Also, let and g jk denote the disease status for subject jk, let Xk be the log of total

sample abundance for sample k and let b jk denote the random intercept for subject jk. The three

different models that were utilized in this study are shown below:

Model A: logit(ωk) = βsk,g jk
& logit(pk) = βsk,g jk

Model B: logit(ωk) = βsk,g jk
+b jk & logit(pk) = βsk,g jk

+b jk

Model C: logit(ωk) = βsk,g jk
+b jk & logit(pk) = β1,sk,g jk

+Xkβ2 +b jk

Model A was utilized in the simulation studies. Model B was utilized for fitting ASV level

data, while Model C was utilized for fitting genus level data. This choice was made because

scaling OTU counts to relative abundance will only make non-zero relative abundance comparable

between samples, but not the rate of absence. This is due to the fact that, even if the true probability

of absence p for a specific OTU is very high, if more microbes are overall observed in sample 1

than in sample 2, then the probability of observing none of the microbes belonging to the target

OTU in sample 1 is much lower than in sample 2. For example, if a total of 1,000,000 microbes

live in a body site and 100 of them belong to the genus Prevotella, then if we randomly extract

1,000 microbes from this body site with our sample, we would expect to only rarely find one of

these 100 microbes in our sample. However, if our sample randomly extracts 100,000 microbes

from the body site, it would be rare to find none of the 100 microbes in it that belong to the genus

Prevotella. So since the genus level data was not rarefied, the total sample abundance differed

between samples and an adjustment was necessary, whereas the ASV level data was rarefied and
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did not require adjustment for total sample abundance.

In order to achieve potentially better convergence behaviour and to simplify and speed up the

model fitting, the logistic regression component of the model was fit independently of the Beta

regression component, in all cases. The resulting posterior chains of p and ω were then used to

calculate the posterior chain of ω . This approach is justified under the assumption that p and ω

are independent after adjusting for covariates, but may be inadequate when there are confounders

affecting both parameters not accounted for in the model.

3.5 Results

3.5.1 Simulation Studies

Performance of our proposed approach was first evaluated using series of simulation studies. In an

attempt to obtain sampling distributions of parameters that would approximate biological distribu-

tions, unstratified ZIBR models were fit to each OTU in the pancreatic cancer dataset (see Methods

for details of this dataset). Unstratified parameter estimates were then used to obtain smooth sam-

pling distributions of ω, p,φ . Finally, these sampling distributions were used to generate many

pseudo-datasets satisfying H1 and performance was evaluated when applying the previously de-

scribed testing approach to the simulated dataset.

Sampling distributions for parameters were similar for both genus and ASV level. However, for

ω , the mean non-zero relative abundance, distributions tended to be slightly further concentrated

toward 0.0 on the ASV level as compared to the genus level. Further, distributions of p tended

to be slightly more concentrated toward 1.0 on the ASV level as compared to the genus level. In

both cases a linear relationship was observed between logω and logφ which was ultimately used

to sample φ conditionally on ω (Figure 3.3).

In summary, the following sampling distributions were obtained:

Genus: p∼ Beta(1.67,0.4) ; ω ∼ Beta(0.63,53.27) ;

logφ |minsg{logωsg})∼ N(−1.02minsg{logωsg}−1.41,0.32)

ASV: p∼ Beta(7.35,0.49) ; ω ∼ Beta(1.46,121.12) ;
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Figure 3.3: Observed relationships between marginal distributions of ω and φ estimated from
the pancreatic cancer dataset. For both the genus and the ASV level, parameters were estimated
marginally for each OTU across all observations without any stratification. When plotting marginal
parameter estimates of ω and φ a linear relationship can be observed on the log scale. This rela-
tionship was utilized to sample φ conditionally on ω in the simulation studies.
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logφ |minsg{logωsg})∼ N(−1.10minsg{logωsg}−0.89,0.312)

As expected, simulations of biological data revealed that analyses on the genus level were

overall more powerful than on the ASV level, regardless of which population parameter was in-

vestigated (Figure 3.4). Assuming tc = 0, four disease status groups, 95% credible intervals and

utilizing Pearson correlation, the highest power was achieved when testing PASTA of ω . Under a

moderate degree of association of Tθ = 0.537 a target power of 0.8 was reached for 5 samples per

stratum on the genus level and 15 samples per stratum on the ASV level. Type 1 error rates ap-

peared adequately calibrated to the 5% significance level ranging from 0.03 to 0.056 on the genus

level and from 0.032 to 0.06 on the ASV level. Despite the relatively modest within group sam-

ple size needed to detect a moderate degree of association for ω with adequate statistical power,

there appeared to be considerably less power for tests of p. Under a high degree of association of

Tθ = 0.834 a target power of 0.8 was reached for 40 samples per stratum on the genus level. On

the ASV level, utilizing as many as 80 samples per stratum resulted in a power of only 0.59 for the

same Tθ . Type 1 error rates also appeared mostly calibrated in this scenario, but showed deflation

for smaller sample sizes, assuming a value of 0.027 on the genus level and 0.009 on the ASV level.

Testing PASTA of the overall mean µ = ω(1− p) was also investigated. While improving

with increasing size of effect and sample size, the power for this parameter was lower than when

considering ω, p individually. Even when considering the large degree of association Tθ = 0.834

and using 100 samples per stratum, the genus level scenario achieved a power of only 0.546.

Notably, type 1 error rates were consistently deflated, ranging from 0.005 to 0.018 on the genus

level and 0.002 to 0.008 on the ASV level. Type 1 error rates were deflated across all simulated

scenarios, reaching values of less than or equal 0.018 or less.

Discrepancies in performance were found to be directly related to precision of parameter esti-

mates. When plotting the posterior means of Tθ against their true simulated values across various

simulation runs, the variation around the identity line consistently increased from ω to p, as well

as from genus to ASV level (Figure 3.5). Analogously, posterior distributions of Tθ were found to
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Figure 3.4: Results of the simulation studies. Power plots are displayed for testing PASTA of
various population parameters with tc = 0 at both ASV and genus level. The term “n per group”
refers to the number of samples available in each of the eight sub-group combinations resulting
from two body sites and four different levels of disease status. H0 was rejected if Pr(Tθ |Y≤ 0)<
0.05. Type 1 error rates are displayed in white colored boxes with black fonts. Power values less
than 0.8 are colored blue, values larger than 0.9 are colored red and values between 0.8 and 0.9 are
colored orange. Genus level pseudo data generally has higher statistical power than the ASV level.
High performance is achieved by the non-zero mean ω , while an increased sample size is required
for the probability of absence p. Tests of the overall mean µ result in low performance, when only
mildly constraining sparsity.
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on average become more diffuse and more biased towards 0, when moving from ω to p or from

genus to ASV level. When performing simulation runs of a scenario with low relative precision, in

which p was sampled from a Uniform(0.85,0.95) distribution, the posterior distribution of Tθ was

on average almost perfectly centered at zero and highly diffuse.

Figure 3.5: Effects of the relative precision of parameter estimates on the posterior distribution of
Tθ . The first row shows the average point estimate of posterior quantiles of Tθ across simulation
runs for various simulation scenarios. The second row shows the associated plots of the param-
eters’ posterior means versus their true values across simulation runs. As the relative precision
of parameter estimates decreases, the posterior distribution of Tθ becomes more diffuse and more
biased towards 0.

Poor power when testing µ was also found to be related to two additional factors. Detailed

results of simulations accounting for these factors are displayed in Additional File 1. The deflated

type 1 error rates when utilizing 95% credible intervals, lead to overly conservative tests that neg-

atively affected power. Calibrating type 1 errors to 5% by adjusting lower bounds of the credible

intervals of Tθ for each considered sample size, lead to a consistent improvement in power, reach-

ing a value of 0.73 for Tθ = 0.922 and 80 samples per stratum on the genus level. The second

factor that affected performance was the employed liberal three sub-strata rule, which allowed up
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to three strata to exhibit exclusively zeroes. Since high rates of absence were simulated, this case

often naturally occurred leading to the three respective posterior estimates being imputed with the

vague prior distribution, which is very imprecise. A follow-up simulation restricting all strata to

have at least one non-zero observation, lead to a consistent increase in power, reaching a value

of 0.82 for Tθ = 0.922 and 80 samples per stratum on the genus level. In both settings, overall

performance for testing µ was consistently lower than for testing p regardless of taxonomic levels.

When both calibrating type 1 error and restricting non-zero observations at the same time, power

increased further but was not consistently better than for testing p.

Additionally, three sets of simplified supplementary simulations were also performed to show-

case how the PASTA testing approach can be analogously utilized in other data models. A simple

Poisson regression model and a log ratio Aitchison model both achieved performance metrics

slightly less performant but overall comparable to testing PASTA of the mean non-zero relative

abundance via Beta regression. In particular, the Beta regression model appeared to achieve higher

power for small sample sizes than the other two approaches and the log-ratio Aitchison model

appeared to perform slightly worse than the Poisson regression model. On the other hand, testing

PASTA of the overall mean in a zero-inflated Poisson model, utilizing the same smooth sampling

distribution of zero-inflation rate p as for ZIBR model on the genus level, achieved performance

metrics comparable to testing PASTA of the overall mean in the ZIBR model. Even though minor

differences with respect to calibration of type 1 error and statistical power were observed across

the different models, the testing approach was overall viable regardless of the scenario. A detailed

summary of these simulations is provided in Additional File 2.

3.5.2 Applying the Approach to Biological Data

The 10th revision of the International Statistical Classification of Diseases and Related Health

Problems (ICD-10), is a systematic classification of medical conditions provided by the World

Health organization. Disease status information in this dataset was available via ICD-10 codes

for each subject. The clinical pancreatic cancer dataset contained four predominant cancer-types:
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C24.x, C25.x, K86.2 and other, where “.x” denotes a further sub-type that could differ by subject

and “other” refers to pancreatic cancer in various other categories or other diseases of the foregut.

OTUs exhibiting significant PASTA with respect to disease status were successfully identified for

both genus and ASV level in this dataset. For analysis we considered coding cancer sub-type in

two ways: four group coding as described above and three group coding, which collapsed “K86.2”

and “other” into one group. On the genus level, when coding disease status into four groups three

genera exhibiting PASTA between mouth and gut were identified: Fusobacterium, Haemophilus

and Veillonella (Table 3.2). After substratifying oral sites into saliva, tongue, buccal and gum,

these association were found to be preserved for some of the site pairs: Fusobacterium also ex-

hibited PASTA between gut an saliva sites; Haemophilus also exhibited PASTA between gut and

gum, as well as gut and tongue; Veillonella also exhibited PASTA between gut and gum. Several

genera also exhibited PASTA between individual mouth sites (Table 3.3). Two genera exhibited

PASTA between four pairs of mouth sites: Fusobacterium and Actinomyces. Three genera ex-

hibited PASTA between two pairs of mouth sites: Atopobium, Haemophilus and Prevotella. Six

genera exhibited PASTA in only one pair of mouth sites.

Table 3.2: Genus level OTUs showing evidence of PASTA between gut and mouth sites when
dividing ICD10 code into four groups. For a given genus, a parameter is included in this table if it
was marginally significant, or when significance is achieved when T is either Pearson or Spearman
correlation. For a given population parameter θ , marginal significance (Pr(T |Y ≤ 0) < 0.1) is
denoted by θ .. and significance (Pr(T |Y ≤ 0) < 0.05) is denoted by θ ∗. Three parameters were
investigated: µ,ω, p. Due to low power in this exploratory setting multiple testing was not adjusted
for.

genus gut & gut & gut & gut & gut &
mouth (all) buccal gum saliva tongue

Fusobacterium µ .., p.. - - µ .. -
Haemophilus p∗ - µ∗, p∗ - p..

TM7-G1 - - - - p..

Veillonella p.. - p.. - -

On the ASV level, two ASVs exhibited PASTA with respect to p between mouth and gut when

disease status was coded into four groups. When coding disease status into three groups, the same

two ASVs as before and three additional ASVs exhibited PASTA with respect to p between mouth
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and gut. Notably, among these additional ASVs was a candidate belonging to the Fusobacterium

genus. Further details of the ASV level analysis are discussed in Chung et al. (2019).

Table 3.3: Genus level OTUs showing evidence of PASTA between mouth sites when dividing
ICD10 code into four groups. For a given genus, a parameter is included in this table if it was
marginally significant, or when significance is achieved when T is either Pearson or Spearman
correlation. For a given population parameter θ , marginal significance (Pr(T |Y ≤ 0) < 0.1) is
denoted by θ .. and significance (Pr(T |Y ≤ 0) < 0.05) is denoted by θ ∗. Three parameters were
investigated: µ,ω, p. Due to low power in this exploratory setting multiple testing was not adjusted
for. Six OTUs showing association for only one pair of mouth sites are not shown in this table.

genus buccal & buccal & buccal & gum & gum & saliva &
gum saliva tongue saliva tongue tongue

Actinomyces - ω .. ω∗ µ .., p∗ - µ∗

Atopobium - - - - p∗ p..

Fusobacterium p∗ ω .., p.. µ .. p∗ - -
Haemophilus - ω .. - - - µ ..,ω ..

Prevotella - µ ..,ω .. - - - µ ..

3.6 Discussion

The methodology presented in this publication successfully establishes a general framework to

test for pairwise stratified association (PASTA) in microbial abundance or relative abundance. The

approach first estimates posterior distributions of population parameters θ |Y within the strata of

body site and disease status and subsequently calculates a correlation statistic Tθ between body

sites, which scores their degree of association. This allows researchers to identify individual mi-

crobes or groups of microbial species that show consistent abundance patterns between different

body sites with respect to the disease status of patients or any other relevant categorical grouping

variable.

While this work focuses on identifying preserved patterns between body sites, anti-correlated

relationships, where an increase in one body site corresponds to a decrease in another body site,

may also be also of biological interest. Such associations are represented by a decreasing functional

relationship between the two body sites. Our approach can also be used to identify these relation-

ships by flipping the inequalities in H0 and H1 and rejecting the null when Pr(Tθ |Y ≥ tc) < α . If
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either correlated or anti-correlated relationships are to be identified a two-sided test can be analo-

gously formularized testing H0 :−tc ≤ Tθ ≤ tc.

It has to be noted that while many possible T may be adequate to detect a wide variety of in-

creasing relationships h, the choice of T can favour certain shapes of h. If the Pearson correlation

is employed, linear relationships will achieve higher scores than rapid, exponential growth rela-

tionships, since it measures the degree of linear association. In this case, overly large values of tc

(for example tc = 0.8) should be avoided as they may lead to falsely rejecting non-linear, increas-

ing relationships. While rank-correlation measures such as the Spearman correlation may be more

generally applicable, they may also be less powerful, especially when few groups are considered

(g < 5). In cases with a small number of groups, the discrete nature of the rank-correlation statistic

is more pronounced. When utilizing Spearman correlation it is helpful to keep in mind that Tθ can

only assume 4 discrete values when g = 3, 11 discrete values when g = 4 and 21 possible values

when g = 5.

Care should also be exercised when interpreting significant associations. The test for PASTA

is concerned with trend, agreement or association between s = 1 and s = 2 after stratification

according to g, but does not at all provide information on whether the effect of site s or disease

status g is biologically or clinically significant. To the contrary, it assumes that both grouping

variables are inherently meaningful objects of the research hypothesis. For example, if there is no

significant effect of body site (i.e. abundance is the same between mouth and gut), but abundance

differs by disease status, the test statistic will likely score a high degree of association, because

what is going on in one site is still associated with what is going on in the other site and this is

an inherently meaningful relationship to us. However, the contrary where effect of body site is

significant (i.e. abundance is different between mouth and gut) but effect of disease status is not,

will not necessarily lead to a significant score of association. Scenarios are possible in which there

are small effects of body site and disease status, where none are strong enough to reach statistical

significance, yet the test for association may still be overall significant, as long as the trend across

strata is pronounced enough. To understand the specific nature of an identified PASTA relationship,
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it can be useful to plot credible intervals of parameter estimates θsg side-by-side (Additional File

3) or to perform statistical follow-up tests investigating the effects of s and g. In order to reduce the

burden of multiple testing and to increase the likelihood of screening for impactful associations,

a researcher may also choose to first perform marginal tests confirming whether each microbe

exhibits significant (or marginally significant) differences with the phenotype of interest within the

gut. The restricted set of microbes exhibiting such significant differences could then be used to test

for PASTA.

It should be noted that in cases where more information about h is known in advance, more

powerful tests of association could be designed that leverage this information. If, for example, h

was known to be linear, then the following model could be fit: θ2g = α +θ1g ·β , which drastically

reduces the number of parameters. In this setting, a PASTA test would be reduced to significance

of the parameters α,β . Whilst being more powerful, such a model would also allow one to learn

the relationship between mouth and gut, which could be leveraged for predicting gut samples via

mouth samples of newly observed subjects. Knowledge about the correlation structure among

strata and between OTUs could also potentially be incorporated by utilizing Bayesian hierarchical

prediction models with shared hyperpriors. Such sophisticated models may further provide the

opportunity to increase power and more adequately reflect knowledge about the data. However,

the benefit of our current approach is its general applicability and lack of assumptions about h or

correlation structure in the data. Little is currently known about the form of relationships between

microbes in different organs or tissues. It is therefore more important to be able to identify cases

in which a relationship is present as opposed to fully characterizing the relationship. Without prior

knowledge the choice of h is arbitrary and researchers run the risk of potentially missing associ-

ations that do not conform with this choice. A researcher can first use our approach to identify

microbes exhibiting promising associations, then look at point estimates and credible intervals of

parameters across strata to learn about the shape of h. This may then motivate building a predic-

tion that is grounded in empirical evidence. Another benefit of an adequately chosen multivariate

Bayesian hierarchical model is that it allows one to test whether OTU A in mouth associates with
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OTU B in gut. While such a model has the potential to provide a more powerful test, the here

proposed approach does allow one to identify this type of association by including the response

values from OTU A in oral samples and the response values of OTU B in gut samples into the

model and conducting the test analogously. However, if such a strategy was employed, φ may

have to be estimated individually per body site, as the assumption of constant dispersion is likely

to not hold between different OTUs.

Results of the simulation studies reveal that the testing procedure is able to successfully identify

PASTA patterns. The decreased performance on the ASV level can be attributed to decreased signal

intensities and the overall increase in sparsity of non-zero observations. The substantial drop in

performance when investigating PASTA of p was demonstrated to be a result of overall lower

precision in estimation, compared to ω . Since probabilities of absence are generally high and

concentrated towards 1.0 across OTUs and strata, the differences between them are often small. In

this scenario, to be able to reliably quantify differences and assess trends with adequate precision,

larger sample sizes are required. This problem is thus a limitation of the zero-inflated data and not

the testing approach itself.

Investigating the overall mean µ , may not always be viable when utilizing the ZIBR model.

Since its estimation is based on estimates of both p and ω , its estimates are subject to more sources

of variation, resulting in poorer precision and lower power. Our simulation suggests that if the

properties of the population that is to be analyzed are well known, adjusting the quantile tQα to

calibrate type 1 error rates is a viable strategy to improve performance. If this was not the case

and a researcher was convinced that inference based on µ was more biologically meaningful than

considering the individual components p and ω , alternative models may be considered. For relative

abundance data an adequate choice may be the marginalized ZIBR model as proposed by Chai et al.

(2018) which directly estimates µ as a function of covariates. These estimates could then be used

analogously to test for PASTA relationships using the here proposed approach.

The supplementary simulations provided in Additional File 2 should also be interpreted with

caution. While their results do provide information about general viability of our testing approach
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in the respective scenario, they may not be suitable to infer superiority of either modeling ap-

proach. Direct comparison of the models based on the simulation scenarios could be biased, since

in each scenario pseudo-data was generated differently and the number of estimated parameters

also differed between models.

The fact that in the pancreatic cancer patient dataset OTUs can be identified that show as-

sociations between mouth and gut, as well as between individual oral sites suggests that they

may be promising candidates for potential biomarkers. Among these were Fusobacterium and

Haemophilus, both oral bacteria recently found to distinguish pancreatic head carcinoma patients

from healthy subjects (Lu et al., 2019). Also, species belonging to the genera Fusobacterium and

Prevotella (even though the latter was only found to show association between mouth and gut)

have been shown to associate with periodontal disease (Chiranjeevi et al., 2014; Chen et al., 2018).

These results lend further credence to the disease related connection between microbial abundance

in mouth and gut and suggests that our method leads to conclusions consistent with the literature.

More future research will be needed to validate these findings.

The simulation studies also confirmed that tests of PASTA applied to the pancreatic cancer

patient dataset are likely underpowered due to the limited sample size. It should be noted that

many OTUs could not be tested due to too high zero-inflation and thus insufficient signal. These

two factors likely explain why relatively few candidates were identified when conducting the tests.

Future studies may consider larger sample sizes or aim to improve the yield of observed counts

in each sample to alleviate this issue. Our results suggest that differences in the extent of zero-

inflation between groups may be generally hard to detect for small to medium sized studies when

more granular phylogenetic levels are targeted.

3.7 Conclusions

In conclusion, the performed simulation studies demonstrate the viability of the approach in the

context of ZIBR models and suggest that for tests of association of mean non-zero relative abun-

dance modest sample sizes can achieve adequate power for moderate degree of association. The
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simulations also highlight potential lack of power for low-level phylogeny data (e.g., species, ASV)

or when more complex functions of population parameters are considered. When analyzing a bi-

ological dataset consisting of pancreatic cancer patients the approach is able to identify microbes

that exhibit PASTA patterns and are consistent with independent findings of current research stud-

ies. The generality of this approach allows it to be extended to other data models and research

settings, ensuring that it can be useful for researchers interested in stratified associations in the

microbiome world and beyond.

57



Chapter 4

Leveraging Spatial Correlation to Improve Analysis of Cell Type Specific

Methylation from Whole Blood

4.1 Statement of Contributions

In this project, I, Richard Meier, developed the methodology, conducted the simulation studies and

statistical analyses, and wrote the manuscript.

4.2 Abstract

Methylation of Cytosine-Guanine dinucleotides (CpGs) in mammals plays an important role in the

regulation of cellular processes and change in methylation has been linked to many human dis-

eases. Cell type specific analysis of methylation levels in biological samples has shown promise

to improve insight into the interplay of cellular processes and disease. Recent statistical mod-

elling strategies of Zheng et al. (2018) and Rahmani et al. (2019) now allow for these analyses to

be performed based on bulk methylation data, without the necessity of isolating cells. Unfortu-

nately, none of these approaches incorporate the knowledge that CpGs tend to spatially correlate

with base-pair distance. Here, we present a Bayesian hierarchical modelling strategy that lever-

ages spatial correlation in order to improve model fit and statistical power when testing for cell

type specific differential methylation. Whole blood methylation data of isolated cell types is first

empirically evaluated to motivate the approach and subsequently utilized in extensive simulation

studies comparing benefits of candidate models Our approach consistently improved prediction

accuracy and statistical power compared to non-spatial models, being particularly beneficial when

data was noisy or lowly abundant cell types were present. Our results suggest that, future stud-

ies of cell-type specific methylation based on bulk samples that utilize our approach will be more

efficient and require smaller sample sizes than previous approaches.
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4.3 Introduction

DNA methylation (DNAm) patterns play a key role in how other molecules interact with the DNA

molecule and are involved in fundamental biological processes such as gene silencing, tissue dif-

ferentiation and cellular development (Moarii et al., 2015). Changes in DNAm affect cellular phe-

notypes (Zheng et al., 2018) and have been linked to many types of cancer, autoimmune diseases,

metabolic disorders, neurological disorders and aging (Jin & Liu, 2018). In humans, one of the

most important types of methylation is targeting so called CpGs (i.e. CpG dinucleotides), referring

to genomic locations in which a cytosine base is immediately followed by a guanine base, in partic-

ular when moving in the direction from the 5’ end to the 3’ end of the DNA molecule. Methylation

of CpGs refers to the attachment of a methyl group to the cytosine via specific enzymes. A major

challenge in the analysis of DNAm data is the fact that methylation is often profiled in heteroge-

neous biospecimens comprised of ensembles of different cell types (e.g. peripheral whole-blood,

tumor tissue, etc.), each assuming unique functions and exhibiting distinct, epigenetic patterns

(Christensen et al., 2009; Koestler et al., 2012; Reinius et al., 2012). This implies that cell type

specific analyses of differential methylation have a greater potential for identifying cellular mech-

anisms of disease (Rahmani et al., 2019). Two key challenges in the analysis of DNAm in bulk

tissue are the potential for confounding by cell heterogeneity (Teschendorff & Zheng, 2017) and

that bulk analyses of heterogeneous samples may conceal true differences restricted to a specific

cell type (Zheng et al., 2018; Rahmani et al., 2019). With respect to the latter, this is especially

true if cell types constitute a small proportion of the cellular landscape underlying the profiled

biospecimen.

Cell specific methylation signatures can be obtained by either cell sorting techniques followed

by methylation profiling in specific cell populations or single cell sequencing; both approaches

are currently “drastically restricted in their sample sizes owing to high costs and technical limita-

tions” (Rahmani et al., 2019, p. 2). As Rahmani et al. (2019) aptly point out, regardless of future

advances in these areas, the current availability of both large-scale bulk methylation datasets and

large quantities of bulk samples in general, further motivate the need for statistical methods able to
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identify cell-specific effects of methylation based on bulk data.

Recently, two novel statistical methodologies have emerged that are able to perform cell type

specific analyses based on heterogeneous bulk samples (Zheng et al., 2018; Rahmani et al., 2019).

Both approaches effectively utilize linear models with interaction terms between effects of covari-

ates and proportions of cell type abundance in order to estimate cell-type specific methylation. This

type of approach is especially promising, since cell type proportions can be estimated from bulk

data with high precision via publicly available reference methylation signatures (Salas et al., 2018;

Koestler et al., 2016; Houseman et al., 2012). Unfortunately, neither approach accounts for the

spatial correlation present in the methylation signature of proximal genomic CpG loci (Liu et al.,

2014; Affinito et al., 2020), which may lead to overestimation of uncertainty and underpowered

statistical tests. Furthermore, leveraging spatial correlation has already been successfully utilized

in methods that identify differentially methylated regions (containing multiple CpGs) that associate

with phenotypes of interest in bulk samples (Jaffe et al., 2012; Catoni et al., 2018). Thus, incor-

porating this spatial correlation structure into the data model could potentially improve estimation

and may lead to more powerful statistical tests of cell-specific differential methylation.

Building on the likelihood modelling structure of Rahmani et al. (2019), we propose a Bayesian

hierarchical regression model that leverages the spatial correlation in methylation of nearby CpGs

by shrinking estimates of mean methylation towards each other within clusters of nearby CpG

loci. The sample correlation structure of a biological dataset containing DNAm signatures profiled

in whole blood samples collected from healthy donors is explored, and based on these results an

algorithm for grouping CpGs into clusters is formulated. Utilizing this algorithm, a variety of

different hierarchical candidate models are proposed and fit to each cluster. Extensive simulation

studies are utilized to compare candidate models and to explore benefits of the approach in terms

of model fit, prediction, and statistical power. In this work, we focus on analyzing blood derived

DNAm data to detect cell-specific and CpG specific differential methylation with respect to some

phenotype or exposure of interest.
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4.4 Methods

4.4.1 CpG Methylation and Cell Type Deconvolution

Methylation levels can be assessed through assaying techniques that measure how often methy-

lated and unmethylated copies of a target CpG are observed in a given sample. For the Illumina

HumanMethylation BeadArrays, this information is commonly summarized for each CpG in each

sample as the so called “beta value” which is the ratio between methylated signal intensities, and

the sum of methylated and unmethylated signal intensities. This means that the data of interest

collected in epigenome-wide association studies (EWAS) will usually be a matrix containing one

row for each sample and one column for each CpG. The total CpGs may vary according to the

assay used for assessment of DNAm, but is generally large, reaching a value of 850,000 in the

Illumina Infinium MethylationEPIC array, the most commonly used technology for the assessment

of methylation in large-scale epidemiological studies in humans.

The fundamental involvement od DNAm in processes on the cellular level results in the emer-

gence of stable, cell type specific methylation patterns (Christensen et al., 2009; Koestler et al.,

2012; Reinius et al., 2012). This means that by isolating cell types from a specific tissue or

biospecimen (e.g. whole blood), it is possible to construct a reference matrix R of stable beta

values for a specific subset of CpGs (rows of the matrix) and for each cell type (columns of the

matrix), such that patterns in the matrix can distinguish cell types with high precision (Houseman

et al., 2012). Assume such a reference matrix contains all major cell types occurring in a specific

biospecimen and is also representative of said biospecimen. Further, let the vector Wi denote the

cell proportions of a given sample i. Every element Whi in this vector contains the proportion of

the biological landscape found in sample i that belongs to cell type h. Wi can then be estimated

from the observed bulk methylation beta values Xi of CpGs via the following linear relationship:

E[Xi] = RWi (Houseman et al., 2012; Titus et al., 2017; Salas et al., 2018). Such deconvolution

methods allow for the estimation of cell proportions, required for cell type specific analyses, even

if no explicit cell counting technique was employed.
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4.4.2 Biological Dataset

Exploratory evaluation of spatial correlation and simulation studies, both make use of a biological

dataset first published by Salas et al. (2018), containing methylation beta values from samples of

six blood cell types isolated from anonymous, healthy donors. The following blood cell types were

isolated via fluorescence activated cell sorting (FACS): neutrophils, monocytes, B-lymphocytes,

natural killer cells, CD4+ T-cells and CD8+ T-cells. Methylation levels in this dataset were ob-

tained using the Illumina HumanMethylationEPIC array, as well as the “minfi” (Aryee et al., 2014;

Fortin et al., 2016) and “EnMIX” (Xu et al., 2015) R packages for preprocessing and data quality

control. Further details about the sample preparation and collection protocols are provided in Salas

et al. (2018).

4.4.3 Overview of the Approach

The approach proposed in this study aims to improve statistical model performance by utilizing

the knowledge that methylation values tend to spatially correlate among CpGs in close proximity.

Introducing this information into the model provides the opportunity for methylation estimates of

proximal CpGs to borrow information from each other, potentially resulting in smaller credibil-

ity intervals and more accurate estimates. We hypothesize that this spatial correlation does not

stem from a genome-wide or chromosome-wide correlation function shared among CpGs which

decreases as distance between CpGs increases. Rather, we hypothesize that spatial relationships

can be adequately captured and approximated by considering clusters of nearby CpGs. Our model

assumes that on any given chromosome there are likely many different clusters of nearby CpGs,

varying in total CpG number and spanned distance, such that within each cluster there is a different

degree of positive methylation level correlation among CpGs. Further, we assume that there are

also likely hierarchies in which clusters can correlate with each other, provided they are not spaced

too far apart.

Inspired by the multi-level hierarchical model proposed by Berry & Berry (2004), spatial re-

lationships are thus translated into a hierarchy in which CpGs form clusters and multiple clusters
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form so called super clusters. The model then assumes that CpGs within a cluster correlate most

closely and CpGs in different clusters but within the same super cluster correlate less strongly. This

is achieved by shrinking estimates of mean methylation within the same cluster towards a common,

overall cluster mean and then in turn shrinking cluster methylation means towards a common super

cluster mean. A conceptual figure of the modeling structure is provided in Figure 4.1.

Our approach was applied as follows: First, autocorrelation of DNAm as a function of base-

pair distance was empirically evaluated in the biological whole blood methylation dataset. Based

on these results, distance thresholds were devised that were utilized in an algorithm that grouped

proximal CpGs into clusters and in turn proximal clusters into super clusters. Bayesian hierarchical

regression models were then separately fit to each super cluster.

Evaluation of this modelling strategy was achieved via a variety of extensive simulation studies

based on the biological dataset in which performance of candidate models was compared.

Figure 4.1: Conceptual overview of the spatial model structure. Displayed is a snapshot of a
hypothetical chromosome, represented by a horizontal axis line. Mean methylation levels of CpGs
are denoted as vertical tic marks along the axis line. Mean methylation values within the same
cluster k are shrunk towards the overall cluster mean µC

k and cluster means are in turn shrunk
towards the overall super cluster mean µS.
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4.4.4 Emprical Analysis of DNAm Autocorrelation

For each individual cell type, Pearson correlation of sample beta values was evaluated as a function

of base-pair distance in a sliding window strategy. This strategy was employed instead of calcu-

lating the complete correlation matrix of all CpGs on a chromosome, because the sheer number

loci would make this calculation intractable and also because correlation between highly distant

loci was expected to be low and not of primary interest. After choosing a target chromosome and a

random CpG starting index, correlations were calculated for the 50 neighboring CpGs downstream

of the starting index. The off-diagonal upper triangle of the correlation matrix was then stored and

the same calculation was performed for the next 50 downstream CpGs. This was repeated until

a total of 1800 CpGs were processed. All extracted correlation values were then plotted against

base-pair distance as two-dimensional heatmaps and a LOESS smoothed trend was overlaid via

the “ggplot2” (Wickham, 2016) R-package.

4.4.5 Definition of Models

All models considered in this study utilize the same basic likelihood function but differ in their

structure and assignment of prior distributions. This likelihood was adopted from the Tensor Com-

position Analysis (TCA) model by Rahmani et al. (2019), which achieved the current best reported

performance for cell-type specific analyses based on bulk methylation data. In contrast to the TCA

approach, our approach considers this likelihood for only a specific set of clusters of CpGs, i.e. a

target super cluster, at a time and does not consider the entire methylation matrix of a particular

chromosome at once. Let Zih j denote the cell type specific methylation beta value of cell type

h = 1,2 . . . ,H, where H is the number of cell types, and CpG j = 1,2, . . . ,J, where J is the number

of CpGs, in sample i. Furthermore, let Xi, j denote the bulk methylation beta value for CpG j in

64



sample i. The two-part likelihood of the data is then defined as follows:

Zih j = ci
T

δh j + εih j where εih j
iid∼ N(0,ψ−1

h j )

Xi, j =
H

∑
h=1

whiZih j +κi j where κi j
iid∼ N(0,τ−1)

In this framework, the vector ci contains all cell type specific covariates for sample i (e.g. inter-

cept, age, gender . . . etc.) and the parameter vector δh j captures effects of covariates on cell-type

specific methylation. Lastly, whi denotes the proportion of cells of type h in sample i, satisfying

0≤ whi ≤ 1 and ∑
H
h=1 whi = 1.

While the type of model proposed in this paper is in principle applicable to any type of mul-

tiple regression scenario with several covariates, we consider two simple experimental designs in

particular:

1. The marginal design: Zih j = δ0h j + εih j, in which all observations are assumed to originate

from cell types with the same group means

2. The two arm design: Zih j = δ0h j+δ1h j · I[i∈ T RT ]+εih j, in which observations are assumed

to originate from two distinct treatment arms and in which I[i ∈ T RT ] denotes an indicator

function that equals 1.0 when observation i is in the treatment arm and equals 0.0 if it is in

the control arm instead.

Regardless of the study design, several classes of models were employed to estimate δ . First,

we consider a class of models that do not incorporate spatial correlation and are most similar to the

TCA approach among the chosen candidate models. Let t denote any given covariate utilized in

the model, and let this class of models be denoted as “TM”. This class is then defined by the above

likelihood while treating all δ as fixed effects and utilizing weakly informative priors for them:

π(δth j)∼ N(0,100)

The first class of introduced spatial candidate models, which we will denote as “SCM1”, intro-
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duces a separate hierarchical structure for each individual covariate t, when estimating its effects

on mean methylation. To define this structure, let L( j) = k represent the cluster index that a CpG

j belongs to. On the lowest level of the hierarchy, effect estimates of CpGs γt,h, j are shrunk to-

wards the mean effect γ
[O]
t,h,L( j) of all CpGs within the same cluster. Next, each mean cluster effect

γ
[O]
t,h,k is shrunk towards the mean super cluster effect γ

[OO]
t,h . Finally, super cluster effects are shrunk

towards the overall mean covariate effect on methylation status across all cell types γ
[OOO]
t . This

multi-step process allows estimates of covariate effects to borrow information from neighboring

CpGs according to their degree of spatial correlation. The full model can be expressed as follows:

δt,h, j = γt,h, j · (1− I[L( j)])+ γ
[O]
t,h,L( j) · I[L( j)]

π(γth j)∼ N
(

γ
[O]
t,h,L( j),ξ

[O]
t

)
; π

(
γ
[O]
t,h,k

)
∼ N

(
γ
[OO]
t,h ,ξ

[OO]
t

)
π

(
γ
[OO]
t,h

)
∼ N

(
γ
[OOO]
t ,ξ

[OOO]
t

)
; π

(
γ
[OOO]
t

)
∼ N(0,100)

π

(
ξ
[O]
t

)
,π
(

ξ
[OO]
t

)
,π
(

ξ
[OOO]
t

)
∼ Gamma(0.1,0.1)

Here the indicator function I[k] returns a value of 1 if a cluster k is degenerate, i.e. it only con-

tains a single CpG, and returns a value of 0 otherwise. The purpose of the above reparameterization

of δt,h, j is to alleviate parameter redundancy in the presence of degenerate clusters. We define a

cluster to be degenerate when it only contains one single CpG. Without the reparameterization

γt,h, j and γ
[O]
t,h,L( j) would otherwise coincide.

The second class of spatial correlation models, denoted as “SCM2”, follows the same motiva-

tion as the “SCM1” model but does not assume any relationship of covariate effects between cell

types. It is defined as follows:

δt,h, j = γt,h, j · (1− I[L( j)])+ γ
[O]
t,h,L( j) · I[L( j)]

π(γth j)∼ N
(

γ
[O]
t,h,L( j),ξ

[O]
t

)
; π

(
γ
[O]
t,h,k

)
∼ N

(
γ
[OO]
t,h ,ξ

[OO]
t

)
π

(
γ
[OO]
t,h

)
∼ N (0,100) ; π

(
ξ
[O]
t

)
,π
(

ξ
[OO]
t

)
∼ Gamma(0.1,0.1)
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Lastly, the class denoted as “SCM3” dismisses the multi-level hierarchy of “SCM2” and simply

directly shrinks each covariate effect towards the overall mean covariate effect of the super cluster.

This model can be interpreted as treating each super cluster simply as a large cluster in which all

CpGs are equally correlated, without any nuance about closer proximity. It is defined as follows:

δt,h, j = γ
[OO]
t,h

π(γth j)∼ N
(

γ
[OO]
t,h ,ξ

[OO]
t

)
π

(
γ
[OO]
t,h

)
∼ N (0,100) ; π

(
ξ
[OO]
t

)
∼ Gamma(0.1,0.1)

Each of the four sets of models was considered in three different settings, utilizing three types

of prior distributions for the variance parameters of beta values:

• weakly informative: π(τ),π(ψh j)∼ Gamma(0.01,0.01)

• informative type 1: π(τ),π(ψh j)∼ Gamma(1.36,0.01)

• informative type 2: π(τ),π(ψh j)∼ Gamma(0.844,0.001)

The key difference between the weakly informative and the informative priors is that the for-

mer is agnostic about the restriction of the parameter space of the variance when response values

are bounded between 0 and 1, whereas the latter favors posterior densities of precision parameters

that concentrate at values larger than 4. This is desirable, since the variance of any random vari-

able bounded by the (0,1) interval can never exceed 0.25, which is equivalent to stating that the

precision parameter for such a variable cannot be smaller than 4. More specifically, parameters of

both informative Gamma priors were chosen such that the probability to draw a precision value

smaller than 4 would be approximately 1%. The key difference between the two distributions is

the anticipated range into which values of variances will most likely fall. Type 1 informative priors

exhibit a 99% probability to draw precision values smaller than 538.7, which translates to favoring

variances that are larger than 0.002. On the other hand, type 2 informative priors are more open to
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considering smaller variances, exhibiting a 99% probability to draw precision values smaller than

4237.8, which translates to favoring variances that are larger than 0.0002.

4.4.6 Estimation and Model Fit Characteristics

Posterior distributions of parameters were estimated using the OpenBUGS (version 3.2.3 rev 1012)

software interfacing with the R (version 3.4.0) package “R2OpenBUGS” (version 3.2.3.2), which

employed a Markov-Chain Monte Carlo sampling technique to draw 15000 posterior samples of

parameters after discarding 1000 burn-in iterations. Model fit was evaluated based on two primary

characteristics: model complexity and mean posterior prediction error.

Model complexity was evaluated via the estimated effective number of parameters pD, as pro-

vided by OpenBUGs. Briefly, for a hypothetical response vector Y with likelihood f (y|θ) this

commonly employed diagnostic is defined as: pD = 2log f (y|E[θ |Y])−2E[log f (Y|(θ |Y))].

Prediction error was evaluated by utilizing two separate datasets: a training dataset, which was

used to estimate posterior distributions of parameters, and a testing dataset that was withheld during

estimation. Let X denote the response values of the training data, let Q denote the response values

of the testing data and let Q̂(θ |X) denote the random vector following the posterior predictive

distribution of Q given the posterior distribution of the parameters θ based on the training data.

The root mean square prediction error (RMSPE) of Q can then be defined as: RMSPE(Q|X) =√
1

NJ ∑
N
i=1 ∑

J
j=1(Q̂i j(θ |X)−Qi j)2. Since this quantity is itself a random variable, it is summarized

by its mean R̂MSPEQ = E[RMSPE(Q|X)], which we will refer to as posterior mean RMSPE.

Generally, this quantity will be larger for candidates with worse overall model fit and smaller for

candidates with better overall model fit. Since its calculation is based on independent testing data,

this characteristic is robust to overfitting.
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4.4.7 Simulation Studies

4.4.7.1 Outline

Three major types of simulation studies were performed, each with a different aim. The first set

of simulations, which we will denote as type A, aims to identify the most suitable candidate in

terms of model fit characteristics across the previously described set of candidate models. After

the target model is chosen based on pD and R̂MSPEQ, simulations of type B aim to further explore

model performance in terms of conducting hypothesis tests that try to identify mean differences in

methylation of individual CpGs between two hypothetical treatment arms. Lastly, simulations of

type C explore benefits of the proposed modeling approach for cell types occurring with different

proportions of abundance. This is of interest since if a cell type exhibits consistently smaller cell

proportions than other cell types in the same biospecimen, then effects of covariates on DNAm for

this cell type are expected to be estimated with lower precision and tests of these effects are ex-

pected to exhibit lower statistical power. Due to time constraints and computing limitations, simu-

lations of type A and B were manually terminated after running for two weeks without interruption

while simulation C was manually terminated after running for one week without interruption.

4.4.7.2 Data Generating Process for Simulation A

First, the biological dataset is subset to all CpGs originating from a target chromosome and all

CpGs are grouped into clusters, which in turn are grouped into super clusters. The cluster generat-

ing algorithm employed to achieve this task is further described in section 4.4.8.

Let M = M(s) be a shorthand, denoting the number of CpGs a super cluster s contains and let

α = (2,2,2,2,2,2) denote the parameter vector of a utilized Dirichlet distribution. Then for each

super cluster s the following steps are performed:

1. Consider a hypothetical treatment and control arm between which mean beta values are to

be compared for each CpG and cell type. Let f[T] denote a vector of signs of the group mean

difference between the two arms, which contains a separate value for each of the six cell
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types and is assigned to to be a random permutation of the set (−1,−1,−1,1,1,1).

2. For each subject, draw six cell fractions from a Dirichlet (α) distribution yielding the W[Z]

matrix, containing six columns for each cell type and one row for each subject in the training

dataset.

3. For each subject, draw six additional cell fractions from a Dirichlet (α) distribution analo-

gously, yielding the W[Q] matrix, containing six columns for each cell type and one row for

each subject in the testing dataset.

4. For each cell type h, draw a random sample from the pool of biological, cell sorted samples

that originate from cell type h and then extract its beta values for each CpG q in super cluster

s, yielding the vector of cell type specific intercept terms (µh)Mx1.

5. For each subject i, draw cell type specific beta values Zihq from a normal distribution with

the following parameters: Zihq ∼ N
(

µhq , (σ
[B])2

)
6. For each subject i, draw bulk beta values from a normal distribution with the following

parameters: Xiq ∼ N
(

ZiW
[Z]
i , (σ [B])2

)
, where Zi denotes the matrix of cell type specific

beta values with six rows for each cell type and M columns for each CpG and W[Z]
i denotes

the vector of six cell fractions for subject i.

7. Analogously to step 5. and 6., draw another independent bulk methylation dataset Q using

W[Q], for the purpose of calculating the posterior mean RMSPE.

4.4.7.3 Data Generating Process for Simulation B & C

Let L( j) denote the cluster index as defined in section 4.4.5, let M = M(s) be defined as previously

and let ∆ denote the overall effect size of differential methylation between two treatment arms. The

key difference between simulation B and C is the choice of the parameter vector α . In simulation

B, α = (2,2,2,2,2,2) is assigned the same way as in simulation A, representing cell proportions

varying at random. In simulation C, α = (6.4,3.2,1.6,0.8,0.4,0.2) is assigned in order to create
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cell proportions that consistently decrease from cell type to cell type, but that also maintain a

similar degree of overall variability. The latter is ensured by both parameter vectors achieving

similar total sums, i.e. 12 and 12.6 respectively. For these two types of simulations (B and C), the

data generating process is performed identically to type A up to step 3. and then proceeds in the

following way:

4. Let Ω(s) denote the correlation matrix between effect sizes within cell type and across the M

CpGs. Considering any given pair of two CpGs q and r in the same super cluster, this matrix

is then constructed as follows. . .

Ω
(s)
qr =


1 if q = r

ρ [C] if q 6= r ∩ L(q) = L(r)

ρ [C]/2 otherwise

5. For each cell type h, draw M effect sizes from a MV N
(

rep(∆,M) , (σ [C])2 ·ΩMxM
)

distribu-

tion, yielding the cell type specific effect size vector (δ (s)
h )Mx1.

6. For each cell type h, draw a random sample from the pool of biological, cell sorted samples

that originate from cell type h and then extract its beta values for each CpG q in super cluster

s, yielding the vector of cell type specific, empirical intercept terms (µh)Mx1.

7. For each subject i, draw cell type specific beta values Zihq from a normal distribution with the

following parameters: Zihq ∼ N
(

µhq + I[i ∈ T RT ] ·δ [s]
hq · f [T ]h , (σ [B])2

)
, where I[i ∈ T RT ]

denotes an indicator function that equals 1.0 when subject i is in the treatment arm and

equals 0.0 otherwise.

8. For each subject i, draw bulk beta values from a normal distribution with the following

parameters: Xiq ∼ N
(

ZiW
[Z]
i , (σ [B])2

)
, where Zi denotes the matrix of cell type specific

beta values with six rows for each cell type and M columns for each CpG and W[Z]
i denotes

the vector of six cell fractions for subject i.
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9. Analogously to step 7. and 8., draw another independent bulk methylation dataset Q using

W[Q], for the purpose of evaluating the prediction error on a new, previously unobserved

dataset.

4.4.7.4 Power Analysis

For a given cell type h and CpG j the following were the hypotheses of interest:

H0 : δh j = 0, i.e. there is NO difference in mean methylation between the two treatment arms

H1 : δh j 6= 0, i.e. there IS a difference in mean methylation between the two treatment arms

Simulation B and C primarily explored the ability of models to detect differentially methylated

CpGs within cell types in the two-arm design setting. Since each model jointly estimated parame-

ters for multiple cell types and multiple CpGs, testing differential methylation was considered on

two levels: The overall performance level across all cell types and across all CpGs and the cell

type specific performance level, which considered performance individually within each cell type

but across all CpGs.

The overall power and type 1 error were estimated as follows: In each iteration, for a given

model and a given rejection rule calculate the proportion of CpGs for which H0 was rejected across

all cell types and all CpG loci in the current super cluster. This proportion can be understood as a

preliminary rejection rate estimate based on a single model fit. If, for example, a model considers

a total of H · J = 6 ·4 = 24 cell type specific CpGs out of which 11 are rejected, then the prelimi-

nary estimate for this iteration will be 11/24 = 0.458. After these preliminary rejection rates are

calculated for every simulation iteration, they are averaged in order to yield the final estimate of

the overall rejection rate. This rate represents the type 1 error rate when data is simulated under

H0 and the statistical power when data is simulated under H1.

The cell type specific power and type 1 error were estimated as follows: In each iteration, for a

given model, a given rejection rule and a given cell type calculate the proportion of CpGs for which

H0 is rejected. This will yield one preliminary rejection rate estimate for each of the 6 individual
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cell types for each simulation iteration. For each individual cell type, average the corresponding

preliminary rejection rates across all iterations, yielding the final estimate of cell type specific

rejection rate.

4.4.8 Cluster Generating Algorithm

In the following paragraphs a step-by-step description of the cluster generating algorithm is pro-

vided. The algorithm utilizes several parameters (ζ1,ζ2,ϒ1,ϒ2) that control the size and span of

clusters and super clusters. ϒ1 directly controls the maximum number CpGs that are allowed

within any given cluster, while ϒ2 directly controls the maximum number of clusters that are al-

lowed within any given super cluster. These artificial size limits are imposed in order to prevent

the formation of large clusters or super clusters that contain a large total number of CpGs. Such

large clusters are primarily problematic, because the required run time and computer memory of

Bayesian MCMC model fits that are applied to super clusters will increase rapidly as the total

number of CpGs increases. By assigning ϒ1 = 10 and ϒ2 = 8, the total number of CpGs per super

cluster is limited to ϒ1 ·ϒ2 = 80, which could still be processed by the computers employed in

the simulation study. ϒ2 was assigned to be slightly lower than ϒ1 to put an emphasis on effects

of local structures, since closely proximal CpGs are expected to be more highly correlated than

more distal CpGs. The rationale for choosing ζ1 and ζ2 is based on preliminary analyses that are

provided in the Results Section.

To start, the cluster generating algorithm receives a sorted list of CpG base-positions from a

given chromosome (i.e. chromosomal coordinates of CpGs) as input and outputs groups of clusters

of CpGs, which we will refer to as super clusters. To achieve this goal, the algorithm starts with

the smallest base-position and moves across the chromosome in ascending order of base-positions

one CpG at a time. If a given CpG is less than ζ1 = 3000 base positions apart from its direct

downstream neighbor, both CpGs will be assigned to the same cluster. If, on the other hand, the

distance between these two neighbors exceeds the target threshold they will be assigned to separate

clusters.
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After all CpGs are assigned to clusters, a splitting step is performed in order to control the

total number of CpGs per cluster. Each cluster containing more than ϒ1 = 10 CpGs is split into

two smaller, mutually exclusive clusters. This is achieved by calculating the base-pair distances

between all direct neighbors in a cluster and putting them in descending order. Starting with the

largest distance, the algorithm then checks whether splitting the cluster between the two respective

neighboring CpGs will lead to at least one of the two new resulting clusters to contain less than

or equal to 70% of CpGs from the original cluster. If this is the case, the cluster is split in two.

If this is not the case, the algorithm keeps moving on to the next largest distance until the 70%

stopping rule is satisfied and the splitting is performed. If any new cluster resulting from a split

still contains more than ϒ1 CpGs, it and its descendants are repeatedly split in two, following the

same steps outlined above, until all clusters contain sufficiently few CpGs.

The process that in-turn groups clusters into super clusters is directly analogous to how CpGs

were grouped into clusters. First, clusters are put into ascending order according to the location of

the genomic region that is spanned by their members. Next, the algorithm starts with the smallest

location coordinate and moves across the chromosome one cluster at a time. If a given cluster re-

gion is less than ζ2 = 30000 base positions apart from the region of its direct downstream neighbor,

both clusters will be assigned to the same super cluster. Neighboring clusters exceeding the target

distance threshold are assigned to separate super clusters.

Finally, super clusters and its descendants containing more than ϒ2 clusters are repeatedly split

into smaller super clusters, until all resulting super clusters contain ϒ2 = 8 clusters or less. For

each super cluster, base-pair distances between genomic cluster regions of direct neighbors are

calculated and put into descending order. Starting with the two neighbors that are furthest apart,

the algorithm will keep moving on to the next largest cluster separation distance until the two new

resulting super clusters contain less than or equal to 70% of clusters from the original super cluster.

It is possible that in sparse genomic regions that contain very few CpGs this algorithm pro-

duces degenerate super clusters which each contain only a single cluster which itself contains only

a single CpG. Whenever these cases occurred in this study, they were discarded, since the hier-
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archical model would be overspecified and unsuitable for analysis. However, if our modelling

approach was applied to a real study these special cases could still be separately analyzed utilizing

the “TM” class of models, which do not require a structural hierarchy but are unable to leverage

spatial correlation. For the practical purpose of faster processing speed of our simulations, another

size restriction was also put into place. Even though we confirmed that 80 CpGs per super cluster

were possible to process, super clusters that contained more than 44 CpGs were discarded without

further analysis. This was deemed appropriate since the set of large super clusters containing 45

or more CpGs was relatively small (as reported in the Results Section).

4.5 Results

4.5.1 Preliminary Analyses

Plots of the autocorrelation of DNAm as a function of base-pair distance between CpGs revealed

similar trends regardless of cell type and genomic location (Figure 4.2). While there was a differ-

ence between autosomes and chromosome X, the latter exhibiting higher frequencies of strongly

correlated or anti-correlated CpGs, the general correlation trend with base pair distance was similar

between autosomes and chromosome X (Figure C.1). Correlation values were overall very noisy,

spanning the entire spectrum from -1 to 1, but tended to slightly concentrate towards positive val-

ues for distances of less than 50000 base pairs. Notably, a pronounced concentration towards 1.0

was observed among base-pair distances of less than 3000. In this range of close proximity, cor-

relations tended to increase as base-pair distance decreased. Interpolating base-pair distance to 1,

smoothed estimates of correlations yielded values in the range of 0.4 and 0.55. These properties

motivated the utilized cluster grouping thresholds of ζ1 = 3000, aiming to capture close proximity

correlation, and ζ2 = 30000, aiming to capture residual correlation in moderate proximity.

The threshold ζ2 = 30000 was also further motivated by another factor. Semi-degenerate super

clusters that contain a very small number of total CpGs, are expected to struggle in adequately

leveraging spatial correlation, since there is less information that can be borrowed from neigh-

boring CpGs. As mentioned earlier, in the most extreme case of degenerate super clusters, which
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Figure 4.2: Pearson correlations of sample beta values for blood cell types as a function of base-pair
distance. Orange lines in each plot represent loess smoothed correlation values via the “ggplot2”
R-package. Similar patterns emerge regardless of cell type or genomic location. Correlation values
exhibit higher concentration towards positive values. In the range of a base-pair distance of less
than 3000, concentration towards higher correlation values appears to be more pronounced, a trend
which diminishes as distance increases.

contain only a single CpG, fitting our hierarchical models is not even possible. Thus, ζ2 was chosen

such that the number CpGs that were assigned to degenerate and semi-degenerate super clusters

was small. When choosing ζ2 = 10000, 2.4% of CpGs in the genome originated from degenerate

super clusters, which was deemed too high. When choosing ζ2 = 20000, less than 1% of CpGs

originated from degenerate super clusters, however, 1.6% of CpGs originated from super clusters

containing only two or less CpGs. Choosing ζ2 = 30000 was appealing, since only 0.8% of CpGs

originated from super clusters containing only two or less CpGs.

Lastly, the decision to focus on super clusters containing less than 45 CpGs in our simulation

was based on the fact that most of the generated super clusters exhibited moderate sizes where
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96% contained 44 CpGs or less and the largest observed super cluster exhibited a size of 66 CpGs.

4.5.2 Evaluating Marginal Model Fit

In simulation A, models were primarily compared based on their posterior mean RMSPE on a

testing set, which was not utilized during the prediction of posterior distributions. Conducted

simulation scenarios utilized datasets with a sample size of N = 20 and considered chromosome 1

and chromosome 13, as well as high, medium and low noise settings (σ [B] assuming 0.1, 0.05 and

0.01 respectively) for sampled beta values. After the runtime of two weeks expired, all simulation

scenarios had processed 644 or more clusters, achieving a median number of 940 iterations.

As expected, prediction errors increased substantially with increasing standard deviation of the

simulated beta values (Table 4.1). Across all simulated scenarios the choice of priors for variance

parameters of beta values had a stronger effect on prediction error than the choice of model class:

type 2 informative priors achieved the smallest, type 1 informative priors achieved the second

smallest and weakly informative priors achieved the largest prediction errors. However, within

each type of variance prior, spatial models consistently achieved smaller posterior mean RMSPE

than non-spatial models. Prediction error differences between the three classes of spatial models

when fixing the type of variance prior were small relative to each other, most scenarios differing

by a value of less than 0.008. No substantial difference was observed between simulations based

on chromosome 1 and those based on chromosome 13.

Since the value of pD is only meaningful when comparing different models relative to each

other for the same dataset, but not across different datasets, its values were first transformed. For

each simulated dataset pD values were divided by the pD value of the TM model with weakly

informative variance priors, yielding the complexity rates rpD. In essence, these rates quantify by

what factor a target model is more complex than the weakly informative version of the TM model.

Similar to the prediction errors, average model complexity was more strongly affected by choice

of prior distributions than the choice of model class and no substantial difference was observed

between chromosome 1 and 13 (Table 4.2). Within each type of variance prior, average model
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Table 4.1: Average posterior mean RMSPE of the testing data for a variety of different models
in simulation type A. Each row in the table corresponds to a separate candidate model, while
each column represents a different simulation scenario. Here, σ [B] denotes the standard deviation
employed when drawing beta values. Row name suffixes denote the employed types of prior
distribution: “wip” for weakly informative priors, “ip1” for informative priors of type 1 and “ip2”
for informative priors of type 2. The type of employed prior distribution had a stronger effect on
prediction error than the effect of model structure. Within each type of prior distribution, spatial
models consistently achieve smaller average prediction errors than non-spatial models. Informative
priors of type 2 consistently achieve the smallest prediction errors.

σ [B]=0.01 σ [B]=0.01 σ [B]=0.05 σ [B]=0.05 σ [B]=0.1 σ [B]=0.1
chr1 chr13 chr1 chr13 chr1 chr13

SCM1.ip2 0.026 0.028 0.092 0.092 0.176 0.175
SCM2.ip2 0.027 0.028 0.092 0.092 0.176 0.176
SCM3.ip2 0.026 0.028 0.092 0.092 0.175 0.175
TM.ip2 0.028 0.028 0.096 0.096 0.189 0.190
SCM1.ip1 0.052 0.055 0.098 0.099 0.177 0.176
SCM2.ip1 0.052 0.055 0.098 0.100 0.177 0.178
SCM3.ip1 0.052 0.055 0.098 0.099 0.176 0.177
TM.ip1 0.054 0.057 0.103 0.104 0.191 0.191
SCM1.wip 0.082 0.086 0.127 0.129 0.207 0.208
SCM2.wip 0.082 0.086 0.127 0.130 0.208 0.210
SCM3.wip 0.082 0.086 0.127 0.130 0.208 0.210
TM.wip 0.087 0.092 0.139 0.142 0.234 0.236
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Table 4.2: Average model complexity rates for a variety of different models in simulation type A.
Each row in the table corresponds to a separate model, while each column represents a different
simulation scenario. σ [B] denotes the standard deviation employed when drawing beta values.
Row name suffixes denote the employed types of prior distribution: “wip” for weakly informative
priors, “ip1” for informative priors of type 1 and “ip2” for informative priors of type 2. Values
of complexity rates denote by what factor on average a target model is more complex than the
“TM.wip” model. Within each type of prior distribution, spatial models consistently achieved
lower average complexity than non-spatial models.

σ [B]=0.01 σ [B]=0.01 σ [B]=0.05 σ [B]=0.05 σ [B]=0.1 σ [B]=0.1
chr1 chr13 chr1 chr13 chr1 chr13

SCM1.ip2 0.95 0.94 0.56 0.59 0.34 0.35
SCM2.ip2 0.95 0.94 0.56 0.59 0.34 0.36
SCM3.ip2 0.95 0.94 0.57 0.59 0.35 0.36
TM.ip2 0.96 0.94 0.59 0.62 0.41 0.42
SCM1.ip1 0.93 0.91 0.84 0.82 0.51 0.52
SCM2.ip1 0.93 0.91 0.84 0.82 0.51 0.53
SCM3.ip1 0.93 0.91 0.84 0.82 0.51 0.52
TM.ip1 0.94 0.92 0.86 0.84 0.56 0.57
SCM1.wip 0.99 0.98 0.98 0.98 0.98 0.97
SCM2.wip 0.99 0.98 0.98 0.98 0.98 0.97
SCM3.wip 0.99 0.98 0.99 0.98 0.98 0.97
TM.wip 1 1 1 1 1 1

complexity in spatial models was consistently lower than the TM model. In low-noise settings, all

complexity rates assumed values between 0.91 and 1.0, suggesting only small differences in model

complexity, with informative type 1 priors achieving lowest complexity among priors, followed by

informative type 2 priors. In settings with larger noise, informative type 2 priors achieved the

smallest and informative priors of type 1 achieved the second smallest complexity rates. Average

model complexity rates decreased with increasing noise levels, achieving a lowest value of 0.56

for σ [B] = 0.05 and a lowest value of 0.34 for σ [B] = 0.1.

Considering that all spatial model types achieved comparable performance measures, model

type SCM2 was chosen for further evaluation. The rationale behind picking this candidate was

that, in contrast to SCM1, it did not make assumptions about relationships between cell types and,

in contrast to SCM3, it structurally honored the way CpGs were incorporated into super clusters.
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4.5.3 Performance in the Two-Arm Design When Cell Proportions Are Balanced

Simulation B utilized datasets with a sample size of N = 40 where 20 samples each belonged to the

two treatment arms, was restricted to chromosome 1 and considered the same high, medium and

low noise settings for σ [B] as in simulation A. Different levels of effect size variation were captured

by considering effect size standard deviations (σ [C]) of 0.01, 0.05 and 0.1, as well as effect size

correlations (ρ [C]) of 0.5 and 0.2. After the runtime of two weeks expired, all simulation scenarios

had processed 407 or more clusters, achieving a median number of 419 iterations.

In the alternative space (∆ = 0.2), average posterior mean RMSPEs behaved analogously to

simulation A, being most strongly affected by an increasing trend with noise level (σ [B]) while

also decreasing from weakly informative to informative type 1 priors and further from informative

type 1 to informative type 2 priors (Table 4.3). Within any given prior category the spatial SCM2

model consistently achieved lower prediction errors than the non-spatial TM model. Within each

simulation scenario, the smallest overall value of average mean RMSPE was consistently observed

for the SCM model with informative priors of type 2.

Again, analogously to simulation A, average model complexity in the alternative space was

more strongly affected by choice of prior distributions than the choice of candidate model (Table

4.4) and within each type of variance prior, average complexity rates were consistently lower in

SCM2 compared to TM. Complexity rates also generally decreased with increasing noise levels

reaching their lowest values when σ [B] = 0.1. SCM2 models achieved the smallest overall model

complexity in high and medium noise settings, as well as second smallest overall model complexity

in the low noise setting.

Since SCM2 with informative type 2 priors was both among models exhibiting the best fit

characteristics in simulation A and also the best candidate model in simulation B, statistical power

was compared between SCM2 and TM models, using informative priors of type 2.

Testing for a difference in mean methylation between two study arms was first evaluated via a

classical, fixed posterior quantile decision rule: Reject H0, i.e. there being no difference in mean

methylation for a specific CpG, if the 95% credible interval of the posterior mean difference for said
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Table 4.3: Average posterior mean RMSPE of the testing data for the TM and SCM2 candidate
models in simulation type B when ∆ = 0.2. Errors were all based on the evaluation of chromosome
1. Each row in the table corresponds to a separate candidate model, while each column represents
a different simulation scenario. σ [B] denotes the standard deviation employed when drawing beta
values and σ [C] denotes the effect size standard deviation. Since there was no pronounced dif-
ference between effect size correlations (ρ [C]) of 0.5 and 0.2 in any of the considered scenarios,
only results for ρ [C] = 0.5 are shown. Row name suffixes denote the employed types of prior dis-
tribution: “wip” for weakly informative priors, “ip1” for informative priors of type 1 and “ip2”
for informative priors of type 2. The type of employed prior distribution had a stronger effect on
prediction error than the effect of model structure. Within each type of prior distribution, spatial
SCM2 models consistently achieved smaller average prediction errors than non-spatial models.
Informative priors of type 2 consistently achieve the smallest prediction errors.

σ [B]= . . . 0.01 0.01 0.01 0.05 0.05 0.05 0.1 0.1 0.1
σ [C]= . . . 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
SCM2.ip2 0.022 0.022 0.023 0.089 0.089 0.090 0.172 0.172 0.173
TM.ip2 0.024 0.024 0.024 0.097 0.097 0.097 0.191 0.191 0.191
SCM2.ip1 0.040 0.040 0.041 0.092 0.092 0.093 0.173 0.173 0.174
TM.ip1 0.044 0.044 0.044 0.100 0.100 0.100 0.192 0.192 0.192
SCM2.wip 0.049 0.049 0.050 0.102 0.102 0.103 0.185 0.185 0.186
TM.wip 0.056 0.056 0.056 0.115 0.115 0.115 0.211 0.211 0.211

Table 4.4: Average model complexity rates for a variety of TM and SCM2 candidate models
in simulation type B when ∆ = 0.2. Rates were all based on the evaluation of chromosome 1.
Each row in the table corresponds to a separate model, while each column represents a different
simulation scenario. σ [B] denotes the standard deviation employed when drawing beta values and
σ [C] denotes the effect size standard deviation. Since there was no pronounced difference between
effect size correlations (ρ [C]) of 0.5 and 0.2 in any of the considered scenarios, only results for
ρ [C] = 0.5 are shown. Row name suffixes denote the employed types of prior distribution: “wip”
for weakly informative priors, “ip1” for informative priors of type 1 and “ip2” for informative
priors of type 2. Values of complexity rates denote by what factor on average a target model is
more complex than the “TM.wip” model. Within each type of prior distribution, spatial SCM2
models consistently achieve lower average complexity than non-spatial models.

σ [B]= . . . 0.01 0.01 0.01 0.05 0.05 0.05 0.1 0.1 0.1
σ [C]= . . . 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
SCM2.ip2 0.96 0.97 0.97 0.50 0.50 0.50 0.29 0.29 0.29
TM.ip2 0.97 0.97 0.97 0.56 0.56 0.56 0.40 0.40 0.40
SCM2.ip1 0.95 0.95 0.95 0.85 0.85 0.84 0.48 0.48 0.47
TM.ip1 0.97 0.97 0.97 0.87 0.87 0.87 0.55 0.55 0.55
SCM2.wip 0.98 0.98 0.99 0.98 0.98 0.98 0.97 0.97 0.97
TM.wip 1 1 1 1 1 1 1 1 1
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CpG does not include 0. Employing this decision rule led to type 1 error rates varying drastically

based on the simulation scenario (Table 4.5). For a fixed value of σ [C] and a given model, type 1

error rates consistently increased with beta value noise levels σ [B]. Similarly, for a fixed value of

σ [B] and a given model, type 1 error rates consistently increased with σ [C]. For a fixed σ [B], a fixed

σ [C] and a given model, type 1 error differences between ρ [B] = 0.5 and ρ [B] = 0.2 were small,

never exceeding 0.03. Generally, the ρ [B] = 0.5 setting appeared to achieve slightly smaller error

rates than the ρ [B] = 0.2 setting for TM models and slightly larger error rates for SCM2 models,

though this trend was not consistent. Lowest type 1 error rates, 0.01 for the TM model and 0.04

for the SCM2 model , were achieved when both beta value noise level and effect size standard

deviation were low, i.e. σ [B] = σ [C] = 0.01. On the other hand, the highest type 1 error rates, 0.36

for the TM model and 0.39 for the SCM2 model, were achieved when beta value noise levels were

low σ [B] = 0.01 and effect size standard deviation was large σ [C] = 0.1. In all other scenarios, type

1 errors were more consistent, ranging from 0.07 to 0.13 in the TM model and ranging from 0.15

to 0.26 in the SCM2 model. Generally, type 1 errors were inflated in SCM2 models, on average

being 2.5 times higher than rates obtained from TM models.

In the alternative hypothesis space, beta value noise exhibited the strongest effect, overall sta-

tistical power decreasing with σ [B]. For TM models, power was ranging from 0.82 to 0.97 when

σ [B] = 0.01, from 0.23 to 0.26 when σ [B] = 0.05 and from 0.14 to 0.15 when σ [B] = 0.01. For

SCM2 models, power was ranging from 0.89 to 1.0 when σ [B] = 0.01, from 0.53 to 0.57 when

σ [B] = 0.05 and from 0.37 to 0.38 when σ [B] = 0.01. Even though SCM2 power for the fixed

quantile decision rule was substantially larger than TM power in all cases, a direct comparison of

the two models is confounded by the inflation of type 1 error rates in SCM models. To account

for this, a modified rejection rule was considered next, which calibrated type 1 error rates in each

simulation scenario.

For each simulation scenario, the calibrated rejection rule was formulated as follows: Among

all credible intervals, collected during the simulation, first pick the q1% credible interval of the

SCM2 model, such that its corresponding type 1 error rate e1 is the largest but also satisfies e1 <
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Table 4.5: Overall power analysis comparing spatial SCM2 and non-spatial TM models when
testing for differential methylation of individual CpGs in simulation B for the following rejection
rule: Reject H0 if the 95% credible interval of the mean difference between the two arms excludes
0. “iterations” refers to the number simulations used to estimate operating characteristics. “t1e”
denotes type 1 error rate and “pow” denotes statistical power. σ [B] denotes the standard deviation
employed when drawing beta values and σ [C] denotes the effect size standard deviation.

σ [B] σ [C] ρ [C] iterations t1e.TM t1e.SCM2 t1e.SCM2
t1e.T M pow.TM pow.SCM2

0.01 0.01 0.5 413 0.01 0.04 2.98 0.97 >0.99
0.01 0.01 0.2 414 0.01 0.03 3.01 0.97 >0.99
0.01 0.05 0.5 422 0.13 0.17 1.37 0.93 0.98
0.01 0.05 0.2 414 0.13 0.15 1.15 0.93 0.99
0.01 0.1 0.5 422 0.36 0.39 1.09 0.82 0.89
0.01 0.1 0.2 416 0.36 0.37 1.01 0.82 0.89
0.05 0.01 0.5 420 0.07 0.20 2.90 0.23 0.57
0.05 0.01 0.2 411 0.07 0.20 2.88 0.24 0.57
0.05 0.05 0.5 414 0.08 0.21 2.74 0.24 0.56
0.05 0.05 0.2 410 0.08 0.20 2.58 0.25 0.56
0.05 0.1 0.5 415 0.11 0.24 2.24 0.26 0.54
0.05 0.1 0.2 411 0.11 0.21 1.93 0.26 0.53
0.1 0.01 0.5 413 0.09 0.25 2.70 0.14 0.38
0.1 0.01 0.2 410 0.09 0.25 2.65 0.14 0.38
0.1 0.05 0.5 413 0.10 0.25 2.58 0.14 0.38
0.1 0.05 0.2 410 0.10 0.25 2.55 0.14 0.38
0.1 0.1 0.5 420 0.11 0.26 2.48 0.15 0.38
0.1 0.1 0.2 407 0.11 0.25 2.35 0.15 0.37
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0.1. If none of the collected intervals leads to an error rate of less than 0.1, then q1 is instead chosen

to minimize type 1 error. After q1 is chosen, identify the q2% credible interval of the TM model

such that its corresponding type 1 error rate e2 is the smallest but also satisfies e2 > e1. In summary,

this rejection rule simultaneously accomplishes two goals. Firstly, it consistently calibrates type 1

error, in both TM and SCM2, to either 10% or, if not possible, to the smallest observed error rate

among collected quantiles. Secondly, it always leads to TM models having slightly higher type

1 error rates than in SCM2 models. This second goal provides a small advantage to TM models

when comparing statistical power, since statistical power generally increases as a function of type

1 error.

Calibration of e1 ≈ e2 ≈ 0.1 was approximately achieved in all simulation scenarios, except for

two cases (Table 4.6). More specifically, when σ [B] = 0.01 and σ [C] = 0.1 type 1 errors were cali-

brated to approximately 0.17 for ρC = 0.5 and to approximately 0.14 for ρC = 0.2. After calibra-

tion, a similar, strong, decreasing effect of σ [B] on statistical power was observed. For TM models,

power was ranging from 0.62 to 1.0 when σ [B] = 0.01, from 0.24 to 0.29 when σ [B] = 0.05 and

from 0.14 to 0.15 when σ [B] = 0.01. For SCM2 models, power was ranging from 0.74 to 1.0 when

σ [B] = 0.01, from 0.32 to 0.39 when σ [B] = 0.05 and from 0.16 to 0.17 when σ [B] = 0.01. After

calibration the SCM2 model still yielded consistently more powerful tests than the TM model. The

improvement in power was particularly striking in the moderate noise level scenarios (σ [B] = 0.05)

in which an approximate 10% increase in power was observed. The consistent improvement in

power of SCM2 over TM was also observed when calibrating simulation scenarios to lower type 1

error rates, such as 5%, though the magnitude of the difference was smaller. However, since with

the currently collected credible intervals (the widest credible interval covering 99.9% of the pos-

terior distribution) less than half of the considered scenarios could be calibrated to these smaller

error rates, these results were not included into this section.

Statistical power was also evaluated as a function of cluster size. Neither the number of clusters

within a super cluster nor the total base-pair distance spanned by a super cluster appeared to have

an effect on type 1 error or power. However, the total number of CpGs contained within a super
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Table 4.6: Overall power analysis comparing spatial SCM2 and non-spatial TM models when test-
ing for differential methylation of individual CpGs in simulation B when type 1 error is calibrated:
In each scenario, the rejection rule employs the q% credible interval, where q is chosen such that
the type 1 error is controlled at a 10% level. In cases where the widest considered credible interval
leads to a larger type 1 error rate in spatial models, both model classes are calibrated to this error
rate instead. “iterations” refers to the number simulations used to estimate operating characteris-
tics. “t1e” denotes type 1 error rate and “pow” denotes statistical power. σ [B] denotes the standard
deviation employed when drawing beta values and σ [C] denotes the effect size standard deviation.

σ [B] σ [C] ρ [C] iterations t1e.TM t1e.SCM2 t1e.SCM2
t1e.T M pow.TM pow.SCM2

0.01 0.01 0.5 413 0.10 0.10 1.00 >0.99 >0.99
0.01 0.01 0.2 414 0.10 0.10 1.00 >0.99 >0.99
0.01 0.05 0.5 422 0.10 0.10 0.99 0.91 0.96
0.01 0.05 0.2 414 0.10 0.10 0.98 0.91 0.98
0.01 0.1 0.5 422 0.17 0.17 0.96 0.66 0.75
0.01 0.1 0.2 416 0.14 0.14 0.95 0.62 0.74
0.05 0.01 0.5 420 0.10 0.10 0.99 0.29 0.39
0.05 0.01 0.2 411 0.10 0.10 1.00 0.29 0.39
0.05 0.05 0.5 414 0.10 0.10 0.99 0.28 0.37
0.05 0.05 0.2 410 0.10 0.10 1.00 0.28 0.38
0.05 0.1 0.5 415 0.10 0.09 0.98 0.24 0.32
0.05 0.1 0.2 411 0.10 0.10 1.00 0.25 0.35
0.1 0.01 0.5 413 0.10 0.10 0.99 0.15 0.17
0.1 0.01 0.2 410 0.10 0.10 0.99 0.14 0.17
0.1 0.05 0.5 413 0.10 0.10 0.99 0.14 0.17
0.1 0.05 0.2 410 0.10 0.10 1.00 0.14 0.17
0.1 0.1 0.5 420 0.11 0.10 0.99 0.15 0.17
0.1 0.1 0.2 407 0.10 0.10 0.99 0.14 0.16
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cluster did appear to affect the type 1 error inflation of SCM2 models. When utilizing the decision

rule based on 95% credible intervals of mean difference in methylation, the average of type 1

error inflation factors of SCM2 (i.e. the factor by which type 1 error of SCM2 is larger than

type 1 error of TM) across all simulated scenarios decreased as the total number of CpGs per

super cluster (or short TNCPS) decreased. Inflation factors (as previously mentioned) averaged

2.5 when considering all super clusters, 2.1 when TNCPS were less than 30, 1.6 when TNCPS

were less than 20, 1.3 when TNCPS were less than 15, and 1.2 when TNCPS were less than 10.

Smaller super cluster sizes were not evaluated since too few simulations of such super clusters

were generated (only 43 clusters exhibited TNCPS of less than 10). This change was caused by

type 1 error rates decreasing for SCM2 models while type 1 error rates for TM models remained

stable, only showing small random deviations when varying maximum TNCPS.

4.5.4 Performance in the Two-Arm Design When Cell Proportions Are Unbalanced

Simulation C considered the same settings in term of sample sizes in each treatment arm and target

chromosome, but only considered high and low levels, i.e. values of 0.1 and 0.01 respectively,

for both σ [B] and σ [C], and fixed ρ [C] to a value of 0.5. After the runtime of one week expired,

all simulation scenarios had processed 232 or more clusters, achieving a median number of 236

iterations.

For the overall differential methylation analysis across all cell-types, employing the 95% cred-

ible interval decision rule led to similar type 1 error rates compared to simulation B, deviating by

less than 0.04 in all cases for both spatial and non-spatial models. (Table 4.7). General trends ob-

served in simulation B also applied in simulation C: for fixed σ [C] type 1 error increased with σ [B]

and power decreased with σ [B]; for fixed σ [B] type 1 error decreased with σ [C] and power tended to

decrease with σ [C]. A notable difference was a decrease in type 1 error inflation of spatial models

compared to non-spatial models in high noise level scenarios (σ [B] = 0.1). This was caused by

a 0.03 increase of type 1 error compared to simulation B for TM models while type 1 error for

SCM2 models slightly decreased compared to simulation B. Overall power for this decision rule
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Table 4.7: Overall power analysis comparing spatial SCM2 and non-spatial TM models when test-
ing for differential methylation of individual CpGs in simulation C. The “rule” column specifies
the employed rejection rule. Rule “F” rejects H0 if the 95% credible interval of the mean difference
between the two arms excludes 0. In rule “C” type 1 error is calibrated such that in each scenario
the rejection rule employs the q% credible interval, where q is chosen such that the type 1 error is
controlled at a 10% level. In cases where the widest considered credible interval leads to a larger
type 1 error rate in spatial models, both model classes are calibrated to this error rate instead. “iter-
ations” refers to the number simulations used to estimate operating characteristics. “t1e” denotes
type 1 error rate and “pow” denotes statistical power. σ [B] denotes the standard deviation employed
when drawing beta values and σ [C] denotes the effect size standard deviation.

rule σ [B] σ [C] iterations t1e.TM t1e.SCM2 t1e.SCM2
t1e.T M pow.TM pow.SCM2

F 0.01 0.01 232 0.02 0.06 2.97 0.72 0.89
F 0.01 0.1 236 0.32 0.38 1.16 0.66 0.80
F 0.1 0.01 236 0.13 0.23 1.84 0.19 0.38
F 0.1 0.1 236 0.14 0.25 1.79 0.21 0.38
C 0.01 0.01 232 0.10 0.10 1.00 0.83 0.92
C 0.01 0.1 236 0.20 0.20 1.00 0.53 0.63
C 0.1 0.01 236 0.10 0.10 1.00 0.15 0.20
C 0.1 0.1 236 0.10 0.09 0.98 0.15 0.18

was decreased in low noise level scenarios (σ [B] = 0.01) compared to simulation B, decreasing by

0.09 or more in all cases for both spatial and non-spatial models. On the other hand, in high level

noise scenarios for both types of models overall power of the 95% credible interval decision rule

increased compared to simulation B, though to a smaller degree.

Employing rejection rules that calibrated type 1 error to 10% in the overall analysis, led to

a decreasing in statistical power compared to simulation B in low noise level scenarios for both

spatial and non-spatial models. On the other hand, statistical power for testing difference in mean

methylation in high noise level scenarios was very similar to simulation B for TM models, yet

slightly increased compared to simulation B in SCM2 models. Statistical power also remained

consistently higher in SCM2, achieving improvements over TM in the range of 0.04 to 0.09.

In the cell type specific analysis of difference in mean methylation between the two study arms

type 1 error rates of cell types when employing the 95% credible interval decision rule tended to

scatter around similar scenario averages within each model type, i.e. within TM or SCM2 (Figure

4.3). Type 1 errors were generally highest when both σ [B] = 0.01 and σ [C] = 0.1, and generally
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Figure 4.3: Cell type specific analysis comparing type 1 error for spatial SCM2 and non-spatial
TM models when testing for differential methylation of individual CpGs in simulation C using the
fixed, 95% credible interval decision rule. Here, “alpha” refers to the cell type specific parameter
that was used to draw cell proportions via a Dirichlet distribution; a higher value corresponds
to consistently drawing higher cell proportions. “scenario” refers to the following configurations:
1→ (σ [B],σ [C]) = (0.01,0.01); 2→ (σ [B],σ [C]) = (0.01,0.1); 3→ (σ [B],σ [C]) = (0.1,0.01); 4→
(σ [B],σ [C]) = (0.1,0.1). For each model type scenarios tend to on average produce similar error
rates. No clear trend with cell proportion is observed.

lowest when both σ [B] = 0.01 and σ [C] = 0.01. However, within each simulation scenario the

degree to which type 1 errors of an individual cell type deviated from a common average of other

cell types did not appear to follow any clear trend. A specifically strong deviation from other cell

types was observed for both TM and SCM2 models in the σ [B] = 0.01,σ [C] = 0.1 scenario, in

which Neutrophils exhibited a type 1 error rate that was 1.5 times higher than the error rate for any

other cell type. While type 1 errors remained consistently inflated in SCM2 models compared to

TM models, the degree of inflation also varied unsystematically across cell types and simulation

scenarios. Overall, no clear trend of type 1 error with magnitude of cell proportion was observed.

After type 1 errors were calibrated to 10%, cell type specific, statistical power followed a

similar trend for each cell type, independent of the target candidate model: decreasing substantially

when increasing σ [B] from 0.01 to 0.1, but also decreasing slightly when increasing σ [C] from 0.01
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to 0.1 for any fixed value of σ [B] (Figure 4.4). Neutrophils, which were consistently sampled with

the largest cell proportions, exhibited the largest statistical power, clearly separating from all other

cell types for both spatial and non-spatial models. However, across the remaining other five cell

types statistical power did not appear to follow any clear trend with magnitude of cell proportion,

though there was a tendency for Bcell and NK cells to perform consistently worse than other cell

types. Analogously to results from the overall analysis of mean methylation, statistical power in

any cell type was consistently larger for spatial SCM2 models compared to non-spatial TM models.

Excluding the low noise scenario in which both models achieved a power of approximately 1.0, the

increase in statistical power gained by utilizing spatial models ranged from 0.01 to 0.15, achieving

a median value of 0.06. The SCM2 model appeared to provide the largest increase in power

primarily in those scenarios, in which power of the TM model was in the range between 0.2 and

0.8; a condition which did not appear to be associated with any specific cell type. A detailed

summary of cell type specific power when calibrating type 1 error is provided in Table C.1.

4.6 Discussion

The empirical correlation plots of CpG methylation observed in this study exhibit a smoothed trend

very similar to one previously observed by Liu et al. (2014), who investigated whole-blood samples

from 247 healthy individuals. In their study, correlation of CpGs for a base-pair distance of 1 also

interpolated to values close to 0.4 and correlation also decreased with base-pair distance in an

exponential decay shape tending either towards 0 or a small positive value. Notably, most of the

observed decay in correlation was also already completed at a base-pair distance of 3000, with very

little change beyond larger distances. Even though the researchers evaluated methylation from bulk

samples, this observation is likely consistent with our findings that all isolated cell types exhibited

a similar pattern. To elaborate this point, consider a simplified example in which methylation of

different cell types is independent and methylation within the same cell type follows the same

spatial correlation structure, regardless of cell-type. We assume that for any given sample i, for

any two CpGs u,v and for any two isolated cell types h,k correlation in methylation levels can be
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Figure 4.4: Cell type specific analysis comparing statistical power for spatial SCM2 and non-
spatial TM models when testing for differential methylation of individual CpGs in simulation C
when type 1 error is calibrated: In each scenario, the rejection rule employs the q% credible inter-
val, where q is chosen such that the type 1 error is controlled at a 10% level. In cases where the
widest considered credible interval leads to a larger type 1 error rate in spatial models, both model
classes are calibrated to this error rate instead. Here, “alpha” refers to the cell type specific parame-
ter that was used to draw cell proportions via a Dirichlet distribution; a higher value corresponds to
consistently drawing higher cell proportions. “scenario” refers to the following configurations:
1 → (σ [B],σ [C]) = (0.01,0.01); 2 → (σ [B],σ [C]) = (0.01,0.1); 3 → (σ [B],σ [C]) = (0.1,0.01);
4→ (σ [B],σ [C]) = (0.1,0.1). Statistical power follows a similar trend across scenarios for each
model type and for each cell type. No clear trend with cell proportion is observed. For each cell
type, spatial models achieve consistently higher power than non-spatial models.
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expressed as: Corr(Zihu,Zikv) = I[h = k] · ρ(u,v) where ρ(u,v) denotes the correlation function

between u,v and I[h = k] is an indicator function returning 1 if h = k and 0 otherwise. Further let

Var(Zihu) = ψ2
hu, let Xhu = ∑

H
h=1 wihZihu and assume that the cell proportions wih are known, fixed

quantities. We can then deduce the following:

Cov(Xiu,Xiv) =Cov

(
H

∑
h=1

wihZihu ,
H

∑
h=1

wihZihv

)
=

H

∑
h=1

H

∑
g=1

Cov(wihZihu , wigZigv) (4.1)

=
H

∑
h=1

H

∑
g=1

wihwig ·Cov(Zihu , Zigv) (4.2)

=
H

∑
h=1

H

∑
g=1

wihwig ·ψhuψgv ·Corr (Zihu , Zigv) (4.3)

=
H

∑
h=1

H

∑
g=1

wihwig ·ψhuψgv · I[h = g]ρ(u,v) (4.4)

= ρ(u,v) ·
H

∑
h=1

∑
g:g=h

I[h = g] ·wihwig ·ψhuψgv (4.5)

+ρ(u,v) ·
H

∑
h=1

∑
g:g6=h

I[h = g] ·wihwig ·ψhuψgv (4.6)

= ρ(u,v) ·
H

∑
h=1

I[h = h] ·wihwih ·ψhuψhv +0 (4.7)

= ρ(u,v) ·
H

∑
h=1

w2
ih ·ψhuψhv (4.8)

⇒Var(Xiu) =Cov(Xiu,Xiu) = ρ(u,u) ·
H

∑
h=1

w2
ih ·ψhuψhu =

H

∑
h=1

w2
ih ·ψ2

hu (4.9)

⇒Corr(Xiu,Xiv) = ρ(u,v) · ∑
H
h=1 w2

ihψhuψhv√
∑

H
m=1 w2

imψ2
mu

√
∑

H
o=1 w2

ioψ2
ov

(4.10)

This means that as long as within each cell type variability of methylation is relatively stable

among proximal CpGs, i.e. ψ2
hu ≈ψ2

hv holds roughly for all h, then Corr(Xiu,Xiv)≈ ρ(u,v) and the

correlation function of bulk methylation X will follow a similar shape as the correlation function

of cell type specific methylation Z.

This insight suggests that cell specific variances may be either the same or at least themselves
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correlated among proximal CpGs and also that the findings in this study could be potentially more

generally applicable to whole blood methylation samples of healthy individuals. However, care

should be taken when considering other sample populations or extensions of the model. The types

of cells, their function and composition will vary drastically from tissue to tissue. It thus remains

questionable whether decay in correlation with base-pair distance will be as similar between other

cell types in other tissues. Even when solely considering samples from whole blood, substituting

ψh j = ψh in the likelihood is not necessarily guaranteed to improve performance of the models and

may even depend on the size of a given CpG cluster. Evaluations of more datasets and different

tissues will be necessary to explore these relationships in the future.

High noise levels in the empirical correlation plots provide justification for the cluster forming

and hierarchical shrinking approach employed in this study. At first glance, the smooth loess fit

of correlation values may tempt the observer to employ distance-based correlation structures such

as autoregressive or Markov structures when fitting the model. However, the high noise levels

suggest that these approaches may not be appropriate. Indeed, preliminary tests when fitting these

types of models to the data resulted in inferior model fit and poor convergence behavior, though no

definitive systematic comparison was conducted to follow-up on this observation. However, if we

assume that instead proximal CpGs correlate within clusters and that proximal clusters themselves

correlate within a super cluster, then it would be reasonable to expect that the average effect of these

hierarchies would result in correlation decreasing with base-pair distance. At the same time, it also

makes sense that individual pairs of CpGs would be able to highly deviate from this average trend.

Lastly, fitting separate models to each super-cluster allows the degree to which CpGs correlate

within clusters and to which clusters correlate with each other to change based on their genomic

location.

It should be noted that in biological reality relationships are likely more complex than the sim-

ple hierarchy proposed in this study. Indeed, different or more complex structures may be discov-

ered in the future that lead to more powerful tests and more robust estimation. Currently clusters

of biologically related CpGs are identified solely based on base-pair distance between CpGs, but
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many CpGs are already known to either be co-methylated with other CpGs or to belong to the

same functional group as other CpGs. Public databases already provide annotations which, for ex-

ample, group CpGs into so called “island”, “shores” and “shelfs”, which are often associated with

specific genes. Forming clusters and their hierarchies based on these annotations could potentially

do a better job of grouping closely related CpGs and improve performance. Even if we assume

the current cluster forming strategy is superior to annotation-based approaches, there are more op-

portunities for improvement. There is no guarantee that the employed cluster grouping parameters

ζ1,ζ2,ϒ1,ϒ2 will form the best or most biologically sound structural hierarchies. However, the

current configuration appears to at least be reasonable, based on the observed improvements in

performance over the non-spatial models.

The fact that in simulation A there is no pronounced difference in performance between SCM1,

SCM2 and SCM3, could potentially suggest that simpler hierarchies may be sufficient to model

spatial correlation. If shrinking different cluster means towards the overall super cluster mean

is indeed as efficient as directly shrinking all CpGs in a super cluster towards the overall super

cluster mean, then it might be more beneficial to simply form larger clusters without hierarchies

and fit a separate model to each cluster. However, it is not necessarily obvious whether such a

simplified approach would lead to better statistical power, since the super cluster structure may also

be beneficial for stabilizing estimates of variance components and since different configurations of

prior distributions and cluster grouping parameters may or may not lead to a more pronounced

difference between candidate models. In the future, a systematic evaluation of how the interplay

between cluster forming strategies, candidate models and prior configurations affects estimation

and statistical inference is needed.

The observation that in simulation B and C type 1 error rates of SCM2 models were consis-

tently inflated compared to TM models when utilizing fixed posterior credible intervals is note-

worthy. The fact that in simulation B the rate of inflation decreased as the total number of CpGs

per super cluster decreased, could potentially suggest that either effects of spatial correlation are

diluted in large clusters or that as the number of CpGs increases models tend to become overly
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confident about estimates of mean methylation. Both of these problems could potentially be ad-

dressed by refining the cluster generating algorithm and/or modifying the hierarchical structure

and priors of the data model. Further research needs to be done to identify the root causes of this

behavior. However, this problem is alleviated by the fact that, as shown in this study, type 1 errors

of differential methylation tests can likely be adequately calibrated as long as the standard devia-

tion of beta values (i.e. noise level) is identified. This information may even be obtained from the

model fits themselves, since standard deviations of Z and X are already estimated via the model.

Cell specific results from simulation C suggest that statistical power for testing differences in

mean methylation could be higher for the most abundant cell type compared to cell types with

smaller cell proportions. With the exception of this finding, no clear trend of power as a function

of cell proportion was observed after calibrating type 1 error. Furthermore, type 1 error rates for

fixed credible interval decision rules appeared to vary but did not form a trend with cell proportion

either. These two observations could potentially suggest that there are unaccounted properties of

the cell types themselves that may affect rejection rules independently of their cell fractions. This

could potentially mean that in order to achieve adequate calibration of type 1 errors further con-

siderations and incorporating more information into the analysis is necessary. However, this issue

was observed in both spatial and non-spatial models and is therefore not unique to our proposed

modelling approach. Further research is needed investigating different means of cell proportions,

different variances of cell proportions and different assignments of cell proportions to cell types in

order to validate the relationships between blood cell type, cell proportion and testing performance.

Even though the prior distributions chosen in this study appear to represent a reasonable option,

more work needs to be done in order to determine an optimal configuration, as alluded to earlier.

The fact that performance in our simulations was highly sensitive to prior configurations supports

this notion. So far informative restrictions were only imposed on variances of beta values, based

on the knowledge that for response values bounded between 0 and 1 variances cannot exceed 0.25.

However, following a similar thought process, informative priors could be chosen for mean methy-

lation values and effect sizes that better acknowledge the restriction to the (0,1) interval. Different
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priors for the shrinkage parameters ξ [O],ξ [OO],ξ [OOO] may also lead to further improvement. Even

our selected informative type 2 priors are by no means guaranteed to be the most optimal choice

and other prior shapes or prior families may be more suitable for variance parameters. The fact

that honoring the restriction to the (0,1) interval appeared to improve performance does also sug-

gest that employing a Beta distributed likelihood of the response instead of a Normal distributed

likelihood may substantially improve performance and should be evaluated in future research.

In summary, our study shows that models leveraging spatial DNAm correlation between CpGs

can improve model fit and statistical tests of cell-specific differential methylation. Our proposed hi-

erarchical Bayesian approach to spatial modelling led to consistently lower prediction error, model

complexity and higher statistical power after calibrating type 1 error rates than non-spatial variants

of the same model. Our results suggest that the TCA approach by Rahmani et al. (2019), currently

the most powerful approach for testing cell-specific differences in mean methylation based on het-

erogeneous bulk samples, could likely be improved by leveraging spatial correlation. Lastly, there

is still a need to further refine our modelling strategy and to validate our findings in biological

datasets where presence and absence of differential methylation are known.
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Chapter 5

Summary and Future Directions

Analysis of compositional data, in which multiple individual components sum to a fixed sum, is

complicated by negative correlation bias and emergence of spurious associations. Experiments that

do not account for the presence of compositional effects are prone to identify non-reproducible,

false-positive associations and may even miss true relationships between collected variables. Un-

fortunately, compositions naturally arise when relative information, such as proportions of a whole,

are collected and compositional data is prevalent in various fields of research. Characteristics of

biological samples are frequently constrained by compositionality, since they contain a multitude

of complex structural and biochemical components that are limited in their number and in any

signal they may emit by the total collected biomass. The development and application of statisti-

cal methods that acknowledge compositionality in the biomedical field has therefore remained an

important objective in modern research.

Microbiome studies constitute a prominent example of this notion, since they inherently try to

answer questions about how phenotypes associate with the overall microbial composition or with

the abundance of individual microbes. In this dissertation, a variety of different methods were suc-

cessfully applied to characterize the overall microbiome of pancreatic tissue from both pancreatic

cancer and non-cancer subjects. Novel findings that samples in both groups were highly subject

specific yet showed clear similarities between pancreatic and duodenum tissue help to inform fu-

ture research aiming to understand connections and interactions between microbial communities

of the gut. Curiously, pancreatic and duodenum tissues were also found to contain microbes com-

monly identified in the oral cavity. The successful identification of microbes for which abundance

significantly differed either between cancer and non-cancer subjects and between the individual

disease subtypes sheds light on how microbes may associate with disease. Key limitations of this

study were the small number of tissue samples from cancer subjects, the small number of subjects

for which multiple tissue samples were available, and the fact that samples of non-cancer subjects
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were completely confounded with data source. Future studies collecting a larger number of sam-

ples originating from both healthy individuals, as well as subjects with different cancer subtypes,

are necessary to validate our findings. If possible, the confounding issue encountered in our study

should be resolved by balancing cancer and non-cancer subjects across multiple different clinical

sites that perform analyses individually.

The initial study of the pancreatic microbiome also motivated the question of whether microbes

of the oral cavity could potentially consistently associate with microbes of the gut with respect to

some phenotype of interest. Such microbes may allow information about microbial composition

in the gut to be inferred based on the evaluation of oral samples; an exciting prospect, considering

samples of the gut can only be collected through invasive, surgical techniques. In the third chapter

of this dissertation, we presented a novel Bayesian framework able to test for these types of as-

sociations while simultaneously encompassing a variety of different data models that are able to

address the challenges associated with microbial abundance data. Simulation studies utilizing dif-

ferent data models and different degrees of association show that the approach is able to correctly

identify patterns of interest and suggest that certain data models can achieve adequate power for a

moderate degree of association and modest sample sizes. Since the approach involves estimating

the posterior distribution of a given correlation statistic that was applied to posterior estimates of

microbial abundance, future research should evaluate the impact that different choices of correla-

tion statistics, in combination with different data models, could have on statistical inference. A

limitation of the current approach is its potential lack of power when complex functions of pop-

ulation parameters are tested for association or low-level phylogeny data is considered. Future

developments should aim to improve statistical power in these scenarios. Applying our method to

samples from pancreatic cancer subjects led to the successful identification of microbes that ex-

hibit consistent patterns with respect to cancer subtype between mouth and gut, two of which had

previously been shown to be associated with pancreatic cancer in a different context. While these

results are promising, more research is needed to validate our findings. Lastly, considering the gen-

erality of the proposed approach, we aim to potentially apply our testing framework to different
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data models and different research settings in which similar types of associations are of interest.

In the fourth chapter of this work, we presented an extension of statistical approaches that

estimate cell type specific CpG methylation based on bulk samples that contain compositions of

multiple cell types. In contrast to previous approaches, our method leverages the well-known

spatial correlation between CpGs by utilizing Bayesian hierarchical models. Specifically, after

forming clusters of proximal CpGs, our method shrinks estimates of mean methylation towards an

overall mean for each cluster, while also shrinking mean methylation estimates of proximal clusters

towards each other. The overall approach, as well as tuning parameters employed during the cluster

forming algorithm are closely informed by evaluating whole blood methylation data of isolated

cell types. Extensive simulation studies show consistent improvements with regards to prediction

accuracy and statistical power of our spatial models compared to non-spatial approaches, but also

highlight potential issues with regards to inflation and calibration of type 1 errors. While the

presented results show promise, our approach is almost certainly not fully optimized due to the

complexity of both the biological data and the modelling strategy itself. Future developments

should focus on assessing performance for different cluster forming strategies, such as approaches

that are driven by annotation of known biological functions of CpGs, and for different hierarchical

model structures. Additional simulations should also aim to extend to chromosomes other than 1

and 13, and to assess performance as a function of different sampling strategies of cell proportions

in combination with their assignment to different cell types. Finally, validation by applying spatial

and non-spatial models to other biological datasets for which both bulk methylation levels and

cell type specific methylation levels are available, will be necessary. Such analyses could help

to confirm whether the conducted simulations are representative and also whether the appproach

could potentially be extended to settings involving different tissues with different cell types.
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Supplementary Methods

DNA extraction for tissue samples

All the tissue samples were homogenized using a Fast Prep instrument with lysing matrix Y (MP

Biomedicals, CA, USA) after addition of 180µl of ATL buffer (QIAGEN, CA, USA). Bead-beating

was performed for one minute at 6.0 m sec-1. The supernatant was then recovered and 200µl of

lysozyme (20mg/ml) buffer was added. The samples were then incubated at 37◦C for 30 min.

Subsequently, 20-µl of proteinase K (20 mg/ml) was added and samples were further incubated at

56◦C for 30 min. Afterwards, 200-µl lysis buffer AL (QIAGEN) was added and samples were in-

cubated at 56◦C for 30 min. Subsequently, 900-µl of 4M guanidine thiocyanate buffer was added,

samples were mixed by inversion. Subsequently, 700-µl cold ethanol was added and the DNA was

purified using the DNeasy Blood and Tissue kit (69506, QIAGEN) as per the manufacturer’s tissue

protocol (DNeasy Blood & Tissue Handbook, version 07/2006). DNA concentration was fluoro-

metrically measured using the QuantiT PicoGreen dsDNA High-Sensitivity Assay (Q-33120, Life

Technologies) with a BioTek fluorescence plate reader instrument (Ex.λ /Em.λ of 485/548 nm)

using the BioTek Gen5 software package.

Bacterial amplification

Bacterial amplification of all the DNA extracted from samples was validated using primers tar-

geting the V3-V4 hypervariable region of the 16S ribosomal RNA gene with identical sequences

designed for Illumina sequencing (Primers: 341F 5’-CCTACGGGAGGCAGCAG-3’ and 806R

5’GGACTACHVGGGTWTCTAAT-3’) without the addition of Illumina adapters and sample bar-

code sequencing.

Bacterial mock community

Genomic DNA from ten bacterial strains were used to build a bacterial mock community that was

sequenced as a positive control in every MiSeq run performed throughout this research. The ten
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bacterial strains that comprised this bacterial mock community were as follows: Cryptobacterium

curtum Oral Taxon 579, Bacteroidales [G-2] sp. Oral Taxon 274, Capnocytophaga sp. Oral Taxon

338, Streptococcus anginosus Oral Taxon 543, Peptoniphilus sp. Oral Taxon 386, Selenomonas

noxia Oral Taxon 130, Fusobacterium nucleatum ss polymorphum Oral Taxon 202, Aggregatibac-

ter aphrophilus Oral Taxon 545, and Pyramidobacter piscolens Oral Taxon 357. Results for relative

abundance of these control samples were consistent, and as expected, across each MiSeq run.

PCR

PCR mixtures of 50-µl contained 10-µl of diluted DNA template, 20-µl of HotMasterMix, 1-µl of

each primer (10µM). The cycling conditions consisted of an initial template denaturation of 94◦C

for 3 min, followed by 30-cycles of denaturation at 94◦C for 45 sec, annealing at 50◦C for 60 sec,

extension at 72◦C for 1.5 min, and a final extension at 72◦C for 10 min. Five-microliters of each

PCR product loaded with gel loading dye were run on a 1% agarose gel in 1X Tris-acetate-EDTA

(TAE) buffer stained with Sybr Safe DNA and visualized using an Alpha-Innotech instrument

equipped with the FluorChem Q imaging software (Ex. λ /Em. λ of 475/537nm).

16S rRNA gene Amplicon Illumina Sequencing

10-50 ng of each metagenomic DNA template was first amplified using the sequencing primers

designed to incorporate Illumina adapters and a sample barcode sequence, allowing directional

sequencing covering the hypervariable region V3-V4. Primers used were as follows: 341F (AAT-

GATACGGCGACCACCGAGATCTACACTATGGTAATTGTCCTACGGGAGGCAGCAG) and

806R (CAAGCAGAAGACGGCATACGAGATN NNNNNNNNNNNAGTCAGTCAGCCGGAC-

TACHVGGGTWTCTAAT) (sequences of the primers are in italics, and N sequences correspond-

ing to the barcodes). PCR mixtures contained 10-µl of diluted DNA template, 10-µl of HotMaster

Taq DNA Polymerase Mix (5 Prime), and 1µl of each primer mix (10 µM). The cycling condi-

tions consisted of an initial denaturation of 94◦C for 3 min, followed by 30 cycles of denaturation at

94◦C for 45 sec, annealing at 50 ◦C for 60 sec, extension at 72◦C for 1.5 min, and a final extension
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at 72◦C for 10 min.

PCR products were then purified using a magnetic bead capture kit Agencourt Ampure XP pu-

rification beads (Beckman Coulter, Brea, CA, USA). Amplicons from each library were quantified

and pooled in equimolar concentrations. Pooled libraries were electrophoresed in a 2% agarose

gel with gel loading dye and Sybr Safe DNA gel stain. Bands were visualized under under UV

transillumination, the band at 590 bp was excised and DNA was purified using the Minelute Gel

Extraction kit (Qiagen). The purified DNA libraries pool was quantitated on an Agilent bioana-

lyzer DNA 1000 chips (Agilent, Santa Clara, CA, USA) using a Bioanalyzer to verify the DNA

size fragment. The final concentration of the library was determined using a SYBR green quantita-

tive PCR (qPCR) assay with primers specific to the Illumina adapters (Kapa Biosystems, Woburn,

MA, USA) using a LightCycler 96 Real-Time PCR System Roche Diagnostics GmbH, Mannheim,

Germany). The final amplicon pool was denatured at 4 nM before diluting to a final concentration

of 12 pM. The libraries pool was then mixed with >5% PhiX Illumina control and were sequenced

by 2 x 250 bp paired-end sequencing on the Miseq platform using MiSeq V2 reagent kit (Illumina,

CA, USA), according to the manufacturer’s specifications and generating paired-end reads of 250b

in length in each direction.

Statistical analysis

In addition, PERMANOVA tests were conducted to compare beta-diversity measures (i.e., Bray-

Curtis) between sites (i.e., pancreatic duct, pancreatic tail, pancreatic head, etc.), and sample

groups (i.e., disease versus non-diseased, etc.). Briefly, PERMANOVA is an extension of the tra-

ditional analysis of variance (ANOVA) to a square matrix of pairwise distances with significance

testing performed by permutation (Anderson, 2001).

Zero-inflated beta regression models represent a general class of mixture models where the

response variable is assumed to have mixed continuous-discrete distribution with probability mass

at zero. For our application, a logistic regression component to model OTU presence/absence

(p0) and a beta regression component was used to model non-zero microbial abundance (µ). The
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rationale for selecting this model stems from two distinct characteristics of microbiome data: the

preponderance of zero OTU counts across samples (Chen & Li, 2016), commonly referred to as

zero-inflation, and the fact that OTU relative abundance measurements are continuous and bounded

between 0 and 1, and as a result, are reasonably well approximated with a beta distribution. Zero-

inflated beta regression models were fit using the function “BEINF0”, as implemented in the R

package “gamlss”.

Due to sample size limitations, associations between genus-level relative abundances and de-

mographic/clinical variables were identified marginally by fitting zero-inflated beta regression

models regressing on a single predictor. Models were fit only to genera with less than 90% of

the counts being 0. As such, the total number of genera that were tested thus varied across the con-

sidered model. Models failing to converge due to data sparseness were considered not significant

and were not carried forward for subsequent analyses. Associations were identified by conducting

likelihood-ratio tests (LRT) and considered potentially meaningful when either the LRT p-value

was less than 0.05 or the Akaike Information Criterion (AIC) of the alternative model was smaller

when compared to the null model.

We conducted statistical analyses focused on identifying genera for which relative abundance

differed significantly between RIH cancer patients and NDRI non-cancer patients across the set of

pancreatic sites. Models were fit to the OTU data from the following tissue samples: pancreatic

duct, pancreatic head, pancreatic tail, pancreatic tumor, pancreatic normal and duodenum. In order

to account for within-subject correlation, a random intercept term for subject IDs was incorporated

into the zero-inflated beta regression models. The utilized models also adjusted for age, sex, and

log library size as fixed effects. Other multi-level categorical predictors such as sequencing run or

body site were not included into the models in order to reduce sparseness and improve convergence

behavior. Unfortunately, testing fixed effects in generalized linear mixed models via simple LRTs

is known to be inefficient and unreliable for small to moderate sample sizes (Bolker et al., 2009).

To address this issue, permutation based tests were utilized. First, the observed likelihood ratio

statistic (LRS) comparing the full against the null model, excluding study ID as covariate, was
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calculated. The null distribution of the LRS was then estimated by permuting study ID labels

across patients. P-values were derived from 500 permutations per genus and adjusting for multiple

testing was achieved via the false discovery rate method.

We also considered zero-inflated beta regression to compare relative abundance of bacteria by

ICD code to evaluate whether profiles differed across the different types of RIH patients. For

the purpose of this analysis, ICD10 codes were grouped into three categories: pancreatic cancer

(ICD10 codes C25.0-C25.9), periampullary cancer (ICD10 codes C24.0-C24.1), and other pan-

creatic conditions (ICD10 codes K86.0-K86.3) (Table 2.1). We hereafter refer to these categories

as C25, C24, and K86, respectively. Two strategies were considered: First, 30 NDRI pancreatic-

head samples were compared with 30 RIH tumor-samples and adjusted for age, BMI, sex and

sequencing run. The same strategy was also applied to compare the effects of ICD codes in RIH

samples from NDRI samples using data from duodenum and pancreatic duct tissue. In the second

approach, we restricted the analysis to RIH patients to account for other clinical variables (e.g.

prior chemotherapy or use of antibiotics in prior 6 months); covariates that were adjusted for were

selected empirically by identifying variables that exhibited an association with at least 30% of the

OTUs that were formally tested. Bonferroni corrections were made to adjust for multiple compar-

isons when interpreting relative mean abundances of genera across the ICD codes; p-values from

the Wald-tests for the mean value comparisons for the ICD codes were considered meaningful if

they were less than 0.00057 (0.05/88; given that a maximum of 88 genera were tested).
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Supplemental Figures

Figure A.1: Bacterial taxonomy (genera level) for the control samples of bacterial mock commu-
nities included in each of the MiSeq runs for this project.
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Figure A.2: Range of sequence counts in all the samples (after rarefaction at 500 counts).
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Supplemental Tables

Table A.1: Number of samples per anatomical site from the Rhode Island Hospital [RIH] and the
National Disease Research Interchange [NDRI].
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Table A.2: Results (at the species level) from multivariable zero-inflated beta regression models
comparing bacteria presence/absence and relative abundance in tissue and swab samples from
NDRI and RIH subjects*
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Full OTU

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__NA;g__Gemella;s__multispecies_spp670_3

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__gasseri

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__salivarius

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__intermedius

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__multispecies_spp573_2

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae_[XIV];g__Lachnoanaerobaculum;s__saburreum

k__Bacteria;p__Firmicutes;c__Tissierellia;o__Tissierellales;f__Peptoniphilaceae;g__Anaerococcus;s__vaginalis

k__Bacteria;p__Firmicutes;c__Tissierellia;o__Tissierellales;f__Peptoniphilaceae;g__Parvimonas;s__micra

k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium;s__nucleatum_subsp._vincentii

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila;s__wadsworthia

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter;s__junii

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;g__Atopobium;s__rimae

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__NA;g__Gemella;s__multispecies_spp669_2

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__gordonii

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__lactarius

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium;s__disporicum

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Dialister;s__pneumosintes

k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium;s__multispecies_spp923_6

k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium;s__multispecies_spp930_3

k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium;s__multispecies_spp933_3

k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium;s__multispecies_spp935_4

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Kluyvera;s__ascorbata_nov_87.30%

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__NA;g__Gemella;s__parahaemolysans

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__fermentum

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__multispecies_spp386_18

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__multispecies_spp597_2

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__gnavus

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter;s__variabilis

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__multispecies_spp767_2
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Table A.3: Results from zero-inflated beta regression models comparing bacteria presence/absence
and relative abundance across subject disease ICD codes*

Full OTU

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__Peptoclostridium

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Kluyvera

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Aggregatibacter

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia

k__Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae;g__Capnocytophaga

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Gemellaceae;g__Gemella

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Prevotellaceae;g__Prevotella

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Raoultella

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Eggerthellales;f__Eggerthellaceae;g__Slackia

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Selenomonas

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Atopobiaceae;g__Atopobium

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Neisseria

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus

k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Leptotrichiaceae;g__Leptotrichia
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Table A.4: Results from multivariable zero-inflated beta regression models comparing bacteria
presence/absence and relative abundance across subject disease ICD codes for RIH samples (ex-
cluding NDRI samples)*

Full OTU

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Atopobiaceae;g__Atopobium

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Dialister

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Stomatobaculum

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Neisseria

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Aggregatibacter

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae_[XI];g__Mogibacterium

k__Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae;g__Capnocytophaga

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__Propionibacterium

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae;g__Granulicatella

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Megasphaera

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Selenomonas

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Eggerthellales;f__Eggerthellaceae;g__Slackia

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Enterobacter
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Additional File 1

Figure B.1: Additional results of the simulation study for µ . A) depicts the case when calibrating
the lower bound of the credible interval of Tθ for a type 1 error rate of 0.05; B) depicts the case
when allowing none of the strata to contain exclusively zero valued relative abundances; C) depicts
the case when both conditions from A and B are met simultaneously. In part A, H0 was rejected if
Pr(Tθ |Y≤ 0)< 0.05. In part B and C, H0 was rejected if Pr(Tθ |Y≤ 0)< q, where q was adjusted
for calibration. Power plots are displayed for testing PASTA of µ with tc = 0 at both ASV and
genus level. The term “n per group” refers to the number of samples available in each of the eight
sub-group combinations resulting from two body sites and four different levels of disease status.
Type 1 error rates are displayed in white colored boxes with black fonts. Power values less than
0.8 are colored blue, values larger than 0.9 are colored red and values between 0.8 and 0.9 are
colored orange. While calibration does improve the power compared to the original simulations,
restricting sparseness in strata leads to an even stronger improvement in performance.
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Additional File 2

Supplementary Simulation Studies

Three additional types of simulations were performed evaluating the PASTA test with respect to

the Pearson correlation statistic and the mean response (referred to as θ for convenience) in other

modeling settings which we will denote as Scenario A,B and C.

In Scenario A, 8 mean parameters (four θsg in each site s) were drawn from a chisquared distri-

bution with 10 degrees of freedom (DGOF) in one and with 200 DGOF in another sub-scenario.

These numbers were chosen to represen small and large counts (in reference to the rarefying total

of 1200 in the ASV data). In each run, means were drawn until |Tθ − t| < 0.001 was satisfied.

Means satisfying the condition were subsequently used to draw random samples from Poisson dis-

tributions to generate the pseudo response data Yk ∼ Poisson(θsk,gk).

In Scenario B, which aimed to mimic fitting a log-ratio Aitchison model to microbial abundance

data, 8 pairs of values (a,b) were drawn. Each value was drawn from a chisquared distribution

with 10 DGOF and 200 DGOF respectively in the two considered sub-scenarios. Each pair was

used to calculate a mean parameter in the following way: θsg = logasg− logbsg. In each run, pairs

were redrawn until |Tθ − t|< 0.001 was satisfied. Pseudo response data for each observation k was

then generated as follows: Yk = log 1+Ak
1+Bk

, where Ak was drawn from a Poisson(ask,gk) distribution

and Bk was drawn from a Poisson(bsk,gk) distribution.

In Scenario C, which aimed to evaluate a Zero-inflated Poisson (ZIP) model, 8 probabilities of ex-

cess absence (psg) were first drawn from a Beta(1.67,0.4) distribution (the sampling distribution of

ZIBR probabilities of absence on the genus level). Next, 8 Poisson means (µs,g) were drawn from a

chisquared distribution with 10 degrees of freedom (DGOF) in one and with 200 DGOF in another

sub-scenario. These values were used to calculate an overall mean parameter in the following way:

θsg = (1− psg) · µsg. In each run, overall means were drawn until |Tθ − t| < 0.001 was satisfied.

Pseudo response data for each observation k was then generated as follows: Yk = Xk ·Zk, where

was Xk was drawn from a Bernoulli(psk,gk) distribution and Zk was drawn from a Poisson(µsk,gk)
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distribution. In order to avoid model convergence issues, new parameters and pseudo datasets in a

single run were generated until in each stratum (s,g) there was at least one non-zero observation.

In each scenario, a different Bayesian regression model was fit and the PASTA test with respect to

θsg was performed. The fitted models are summarized below:

• Scenario A (Poisson Regression):

– Likelihood: Yk ∼ Poisson(θk) where log(θk) = βsk,gk

– Priors: π(βs,g)∼ N(0,100)

• Scenario B (Normal Regression, Log Count Ratios):

– Likelihood: Yk ∼ N(θk,1/τ) where θk = βsk,gk

– Priors: π(βs,g)∼ N(0,100) and π(τ)∼ Gamma(0.01,0.01)

• Scenario C (Zero-inflated Poisson Regression):

– Likelihood: Yk ∼ f (yk) =
(

I(yk = 0) · pk+ I(yk > 0) ·(1− pk)
)
·θ yk

k e−θk/(yk!) where

log(θk) = βsk,gk

– Priors: π(βs,g)∼ N(0,100)

Results of these additional simulation studies are summarized in Supplementary Figure 2. As ex-

pected, larger DGOF, i.e. testing based on large counts, consistently led to an increase in statistical

power compared to smaller DGOF in all simulation scenarios. Both Scenario A and B were very

performant, reaching approximately 0.8 power for the moderate effect of true Tθ = 0.66 and only

fitting 10 samples per group. Type 1 error rates appeared to also be adequately calibrated in both

cases. Performance metrics were overall very similar between the two scenarios though the simple

Poisson regression scenario performed slightly better, likely due having to fit less parameters in its

likelihood.

Scenario C performed substantially worse than the two scenarios. Type 1 error rates appeared
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mostly calibtrated, though were slightly deflated compared to A and B. In both sub-scenarios ade-

quate power of 0.8 was only achieved when utilizing 60 samples per group and a true Tθ = 0.83.

The performance metrics were similar to the calibrated and sparsity restricted simulation evaluating

the PASTA test for the overall mean on the genus level in the ZIBR model (row C) in Supplemen-

tary Figure 1). This makes sense, considering both models use the same sampling distribution

for the mixture parameter (p) and both simulations are approximately type 1 error calibrated and

subject to the same sparsity restriction.
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Figure B.2: Results of the supplementary simulation studies. Each row represents one simulation
scenario. Scenario A represents a Poisson regression model, Scenario B represents a log count
ratio Aitchison model and Scenario C represents a Zero-inflated Poisson regression model. DGOF
refers to the degrees of freedom of the chisquared distribution used to sample means of Poisson
distributions, that were in turn used to generate count data, used to form pseudo response values.
Large DGOF mimic testing highly abundant microbes and small DGOF mimic testing microbes
with low abundance. In each scenario, statistical power and type 1 error was evaluated when
performing a PASTA test for the mean of the response. The term “n per group” refers to the
number of samples available in each of the eight sub-group combinations resulting from two body
sites and four different levels of disease status. Type 1 error rates are displayed in white colored
boxes with black fonts. Power values less than 0.8 are colored blue, values larger than 0.9 are
colored red and values between 0.8 and 0.9 are colored orange.

134



Additional File 3

Figure B.3: Plots of parameter estimates within strata when testing for PASTA between gut and
mouth on the genus level. Only OTUs with at least marginal significance are displayed. Each
row displays the results of an OTU for the three main population parameters of interest. PASTA
test results are summarized above each plot. “TP” is Tθ when utilizing Pearson correlation and
“TS” is Tθ when utilizing Spearman correlation. Within each plot, circles and squares represent
the posterior mean, while vertical lines represent 95% credible intervals. Body site is color coded
in red and blue. For µ and ω , relative abundance values are plotted next to the credible intervals.
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Appendix C

Declarations and Supplementary Material for Chapter 3
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Table C.1: Cell type specific power analysis comparing spatial SCM2 and non-spatial TM models
when testing for differential methylation of individual CpGs in simulation C. The rejection rule
employs the q% credible interval, where q is chosen such that the type 1 error is controlled at a
10% level. In cases where the widest considered credible interval leads to a larger type 1 error rate
in spatial models, both model classes are calibrated to this error rate instead. Here, “alpha” refers to
the cell type specific parameter that was used to draw cell proportions via a Dirichlet distribution;
a higher value corresponds to consistently drawing higher cell proportions. “t1e” denotes type 1
error rate and “pow” denotes statistical power. The column “pow.diff” containes differences in
power obtained when subtracting TM values from SCM2 values.

alpha/cell type σ [B] σ [C] t1e.TM t1e.SCM2 pow.TM pow.SCM2 pow.diff
6.4/Neutrophil 0.01 0.01 0.10 0.10 >0.99 >0.99 <0.01
6.4/Neutrophil 0.01 0.1 0.42 0.41 0.88 0.90 0.02
6.4/Neutrophil 0.1 0.01 0.10 0.10 0.25 0.37 0.12
6.4/Neutrophil 0.1 0.1 0.10 0.10 0.23 0.30 0.07
3.2/NK 0.01 0.01 0.10 0.10 0.95 0.99 0.04
3.2/NK 0.01 0.1 0.15 0.14 0.56 0.67 0.11
3.2/NK 0.1 0.01 0.10 0.10 0.14 0.18 0.04
3.2/NK 0.1 0.1 0.10 0.10 0.14 0.17 0.03
1.6/Bcell 0.01 0.01 0.10 0.10 0.73 0.86 0.13
1.6/Bcell 0.01 0.1 0.09 0.09 0.38 0.52 0.14
1.6/Bcell 0.1 0.01 0.11 0.11 0.13 0.14 0.01
1.6/Bcell 0.1 0.1 0.11 0.11 0.13 0.14 0.01
0.8/CD4T 0.01 0.01 0.10 0.10 0.67 0.82 0.15
0.8/CD4T 0.01 0.1 0.12 0.12 0.34 0.48 0.14
0.8/CD4T 0.1 0.01 0.10 0.10 0.13 0.16 0.03
0.8/CD4T 0.1 0.1 0.11 0.10 0.13 0.16 0.03
0.4/CD8T 0.01 0.01 0.10 0.10 0.77 0.87 0.10
0.4/CD8T 0.01 0.1 0.22 0.21 0.52 0.59 0.07
0.4/CD8T 0.1 0.01 0.10 0.09 0.14 0.21 0.07
0.4/CD8T 0.1 0.1 0.09 0.09 0.14 0.20 0.06
0.2/Monocyte 0.01 0.01 0.10 0.10 0.86 0.93 0.07
0.2/Monocyte 0.01 0.1 0.23 0.22 0.58 0.65 0.07
0.2/Monocyte 0.1 0.01 0.09 0.09 0.16 0.19 0.03
0.2/Monocyte 0.1 0.1 0.10 0.10 0.16 0.19 0.03
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Figure C.1: Pearson correlations of sample beta values for blood cell types as a function of base-
pair distance in chromosome X. Orange lines in each plot represent loess smoothed correlation
values via the “ggplot2” R-package. While the genomic location was picked at random, the cell
types were selected to showcase the variety of trends observed in the data. Overall, smooth trends
are similar to those observed in autosomes.
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