Importance of Soil O₂

Aerobic vs. Anaerobic

Burgin et al. 2007 *Frontiers in Ecology and the Env.*

<table>
<thead>
<tr>
<th>GHG</th>
<th>Aerobic</th>
<th>Variable</th>
<th>Anaerobic</th>
<th>Processes</th>
</tr>
</thead>
</table>
| CH₄ | + | +/−,? | − | CO₂ + 4 H₂ \(\rightarrow\) CH₄ + 2H₂O
CH₄ + O₂ \(\rightarrow\) CO₂ + H₂O |
| CO₂ | − | +,? | + | C₆H₁₂O₆ + O₂ \(\rightarrow\) CO₂ + H₂O
C₆H₁₂O₆ + aTEAs \(\rightarrow\) CO₂ + H₂O |
| N₂O | −+/+ | −,? | + | NO₃ → NO₂ \(→\) NO \(\rightarrow\) N₂O \(\rightarrow\) N₂
NH₄ + O₂ \(\rightarrow\) N₂O \(\rightarrow\) NO₂ \(\rightarrow\) NO \(\rightarrow\) NO₃ |
Soil O_2 - rise faster than fall

Burgin and Groffman 2012 JGRB
O_2 across Aquatic-Terrestrial Interfaces

Riparian Areas

- Perennially
- Regularly
- Periodically
- Infrequently

Frequency

- Low soil O_2
- High soil O_2

Figure from Bettez and Groffman 2012 – ES&T
Wetland Restoration

1880’s

2011

2012
Soil Sensor Network

- 24 Apogee soil O$_2$ sensors at 10 cm depth
- 28 soil moisture, temperature, and conductivity at 10, 30, 50, and 80 cm
- 12 Water table height
- Weather station: wind, temperature, PAR

- Taking weekly GHG flux since 2010
Typical soil O2 time series

Raw
Typical soil O2 time series

Raw

Noise Corrected
Typical soil O2 time series

- Raw
- Noise Corrected
- Drift Corrected
Diversity of soil O_2 conditions

Most Anoxic

Most Oxic
3-repeatable patterns only observed w/ near-continuous monitoring
1. Diurnal fluctuation – daily pulse
2. Lag in O₂ depletion
3. Rapid reaeration – “big gulp”
1. Diurnal variation in soil O_2
1. Diurnal variation in soil O_2
1. Diurnal variation in soil O_2

Daily max O_2 lags behind daily min air temp by 2 hours and 1.5 hours behind daily min soil temp.
- Temperature response not temperature artifact.
- PAR also important, max PAR lags max O_2 by 6.5 hours.
3-repeatable patterns only observed w/ near-continuous monitoring

1. Diurnal fluctuation – daily pulse
2. Lag in O₂ depletion
3. Rapid reaeration – “big gulp”
2. Temperature control on soil O_2 depletion in saturated soils

$R^2 = 0.43 \quad p<0.0001$

$y = -3.47 + 0.057x \degree C$

$Q_{10} = 1.77$
3-repeatable patterns only observed w/ near-continuous monitoring
1. Diurnal fluctuation
2. Lag in O_2 depletion
3. Rapid reaeration – “big gulp”
3. Big gulps occur during soil drainage

Saturated soil

Macropore Drainage
Big gulps consistently occur within narrow threshold of soil drainage

75% of variation among sensors
25% of variation within sensors
n=1813 events
Common diffusion soil O_2 models fail to predict hysteresis between soil moisture and soil O_2.

[Diagram showing scatter plot with arrows indicating hysteresis and a diffusion model line.]
Do big gulps correspond to big burbs?

Jarecke, Loecke, & Burgin SBB 2016
Smyth et al. SBB 2019
O_2 sensor best for CH_4 flux

Smyth et al. SBB 2019
O$_2$ sensor not best for N$_2$O flux

Smyth et al. SBB 2019
In-situ soil O_2 monitoring

- Monitoring reveals surprising dynamics not predicted in common BGC models (e.g., DNDC and DAMM)
- Repeatable patterns are related to duration of soil saturation, soil temperature, and soil drainage
- Big Gulps = Big Burbs?
 - General indicator of soil-atmosphere exchange
- Plan for sensor drift
Acknowledgements

• Field and Lab Assistance
 – Emma Overstreet, Craig Adams, Astrea Taylor, Joanna Taylor, Dave Moscicki, Matt Konkler, Mike Enright
• Funding
 – USDA/NASA-C cycling
 – NSF DEB-Ecosystems
 – Five Rivers Metro Parks – Dayton, OH
Soil O2 data - Filtering

• Sensor or Calibration Drift
 – Compare expected to observed
 – Drift correction

• Electrical Noise
 – Insure not related environment
 – Replace as missing
Remove sensor from soil and place in calibration condition
Allow stabilization
Subtract final stable from 20.9%
Apply drift correction
NEAR SURFACE SOIL OXYGEN DYNAMICS: PATTERNS FROM SIX YEARS OF HIGH FREQUENCY MONITORING

LOECKE, Terry D., Kansas Biological Survey & Environmental Studies Program, University of Kansas, 2101 Constant Ave, Lawrence, KS 66047, FRANZ, Trenton, School of Natural Resources, University of Nebraska, 3310 Holdrege St, Lincoln, NE 68583 and BURGIN, Amy J., Kansas Biological Survey & Environmental Studies Program, University of Kansas, 2101 Constant Ave., Lawrence, KS 66047

Soil oxygen (O$_2$) is a fundamental control on terrestrial biogeochemical cycles including processes producing and consuming greenhouse gases (GHG), yet it is rarely measured. Instead, soil O$_2$ is assumed to be proportional to soil moisture and physical soil properties. For example, soil O$_2$ is often inferred from a 25-year old steady-state diffusion model; however, few data exist to test this model in stochastic systems. The variability of soil O$_2$ may be particularly important to GHG emissions from aquatic-terrestrial interface zones because of the convergence of variable hydrology and rapid biogeochemical processing. Our objective is to gain a better understanding of soil O$_2$ variation and its role in controlling GHG emissions across aquatic-terrestrial interface zones. Specifically, we hypothesize that in aquatic-terrestrial interface ecosystems, soil moisture predicts O$_2$ concentration under stable conditions, but under dynamic conditions (e.g., water table fluctuations or precipitation) heterogeneous distributions of water-filled soil pore space complicate this prediction. Furthermore, we hypothesize that GHG emissions will correspond to variation in soil O$_2$.

Twenty-four near-continuous (30-minute frequency) soil O$_2$ and moisture sensors were monitored for more than six years. The sensors were installed at 10 cm of depth across an aquatic-terrestrial interface of a constructed wetland in April 2012 and removed in July 2018. Diurnal, precipitation and drainage events, seasonal, and longer-term patterns were in soil O$_2$ observed. Drought conditions (2012) resulted in minimal soil O$_2$ variation; however, a diurnal pattern of lower soil O$_2$ during the day was observed. When precipitation increases within and among sensor soil O$_2$ variation increases. The relationship between soil moisture and soil O$_2$ was non-linear during periods of soil drainage and precipitation. Commonly, a rapid (change of 10% over <24 hours) increase in soil O$_2$ occurred during soil drainage near a common threshold. As soil moisture increased due to precipitation, soil O$_2$ decreased slower than predicted by simple diffusion models. Soil O$_2$ was an important predictor of weekly methane and nitrous oxide emissions correspond to variation in soil O$_2$. These soil O$_2$ data will be useful for understanding multiple soil biogeochemical functions.
Abstract ID#: 327343
Password: 612217
Meeting: Joint 53rd South-Central/53rd North-Central/71st Rocky Mtn Section Meeting - 2019
Session Type: Theme Sessions
Primary Selection: T16. Microbiomes in the Geosphere
Final Session Number:
Abstract Title: NEAR SURFACE SOIL OXYGEN DYNAMICS: PATTERNS FROM SIX YEARS OF HIGH FREQUENCY MONITORING
Preferred Presentation Format: Oral
Discipline Categories: Soils

Presenting Author
Terry D. Loecke
Email: loeckete@ku.edu
Alternate Email: loeckete@gmail.com

University of Kansas
Kansas Biological Survey & Environmental Studies Program
2101 Constant Ave
Lawrence KS 66047
USA
If necessary, you can make changes to your abstract submission until Tuesday, 4 December 2018.

- To access your submission in the future, use the direct link to your abstract submission from one of the automatic confirmation emails that were sent to you during the submission.
- Or point your browser to /gsa/reminder.cgi to have that URL mailed to you again. Your username/password are 327343/612217.
Any changes that you make will be reflected instantly in what is seen by the reviewers. You DO NOT need to go through all of the submission steps in order to change one thing. If you want to change the title, for example, just click "Title" in the abstract control panel and submit the new title.

When you have completed your submission, you may close this browser window.

Tell us what you think of the abstract submission process

Home Page