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ABSTRACT 

Jennifer L. Ivie, Ph.D. 
Department of Psychology 

University of Kansas 
 

The purpose of this study was to examine the validity of the claim made by test 

review companies that spending more time and attention on the first five or ten items 

on a computer adaptive test will improve an examinee’s final ability estimate. Study 1 

examined the effects of different amounts of information about how the test works 

and/or how to improve your score. In this study, it was found that having information 

on how to perform better on an exam does result in higher scores. Study 2 was a 

series of simulation studies that examined the stability of a computer adaptive test and 

the actual theta estimate when certain test parameters were varied: item bank 

parameters (item pool size, discrimination parameters, and guessing parameters); 

examinee parameters (whether or not the examinee has an artificially boosted ability 

level); and testing algorithm parameters, in particular how the first items are selected. 

Overall, evidence was found to support this test taking strategy taught to improve test 

scores. Finally, these results were compared to current average GRE scores for 

graduate schools across the United States. It was found that this artificial boost can 

result in admittance when the true theta might have resulted in non-admittance. 
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1. Introduction 

High stakes testing is a large area of research and debate in today’s society, 

especially in the United States. With most institutions of higher education requiring 

the reporting of test scores, such as the GRE, SAT, ACT, LSAT, MCAT, etc., 

students spend a lot of time worrying about and studying for these tests prior to 

application into institutions of higher education. Many of these students will do 

anything necessary or suggested to improve their scores on these exams, often paying 

hundreds of dollars to tutors and/or test review companies for classes or books that 

are supposed to help students prepare for these tests. Many of these tests have more 

recently become computer adaptive (CAT), a format that is administered on a 

computer and adapts itself to the apparent ability level of the examinee. 

The purpose of this study is to examine a particular test taking strategy taught 

by such test review companies that claim the strategy will improve the overall score 

for the individual on such a computer adaptive test. This strategy involves paying 

more attention to the items at the beginning of the test. This includes spending more 

time on these items, sacrificing the items near the end of the test. The claim is made 

that the adaptive nature of the test is such that larger changes or adaptations are made 

earlier in the test as the program is attempting to narrow in on an examinee’s ability 

level. Thus, it is easier for an examinee to improve his/her score at this point in the 

test. Later in the test, it is claimed that these jumps are smaller and thus will result in 

less change in the ability estimate. This claim was tested through two studies looking 

at the problem from two different perspectives. 
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The goal of the first study was to examine the possibility that examinees who 

have learned this test taking strategy will score higher on an adaptive test than their 

counterparts who have not been taught the strategy. To reach this goal, college-aged 

participants were administered a computer adaptive abstract reasoning test. Some of 

the participants were taught the strategy while others were not.  

This first study aimed to find differences due to knowledge of a strategy to 

“beat” the test. It could be hypothesized that just knowledge on that a person can beat 

a test will improve his/her score because it will lower test anxiety and increase test 

motivation. Research has also shown that test anxiety and test performance have an 

indirect relationship (Shermis & Lombard, 1998). Research has shown a direct 

relationship between test motivation and test performance (Kim & McLean, 1995; 

Cohen, 1998). found that increased test motivation improved test scores.  Finally, 

research has shown that strategy training has a direct relationship with test 

performance (Embretson, 1992).   

The goal of the second study was to examine the stability of a computer 

adaptive test at different places throughout the test to examine the claim that larger 

jumps are made earlier in the test, with smaller jumps later in the test. Also, in the 

second study, differences in final ability estimates between subjects with some sort of 

artificial boost (in terms of this series of studies, the artificial boost refers to 

knowledge on how to beat the test) and those without this boost in ability level was 

examined under varying testing algorithm conditions. This goal was reached using a 

CAT simulator that simulated examinee responses to items that were selected and 
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“administered” through adaptive procedures. The adaptive algorithm was varied on 

starting rule (i.e., how the first item(s) was selected), item discrimination and 

guessing parameter levels, and item pool size. Simulated participants’ true ability 

levels ranged from -3.25 to 3.25.  

Research has been conducted on the role of the starting rule used in a CAT 

algorithm. Much of this research has focused on issues of test security rather than the 

affect on test stability. Arguments have been made for randomly selecting the first 

item from a particular number of items or particular item difficulty range (Hulin, 

Drasgow, & Parsons, 1983; Embretson & Reise, 2000). Others have argued for an 

extension of the previous suggestion—that is, to randomly select the first 5 or 10 

items from a given number of items (McBride, Wetzel & Hetter, 2001). Finally, 

others have argued for fixed testlets that could be used at the beginning of a CAT 

(Wainer & Kiely, 1987). 

Many researchers have examined the affects of differing discrimination and 

guessing parameters on the accuracy of ability estimates in a computer adaptive 

framework (e.g., Vale & Weiss, 1975; Urry, 1974, 1975; Jensema, 1974; Chang, 

1999; and Hau & Chang, 2001). Most research has shown that higher discrimination 

parameters and lower guessing parameters are ideal. Finally, research has shown that 

larger item pools are better in terms of ensuring more accurate ability estimates 

(Embretson & Reise, 2000). 

As stated above, the purpose of this set of studies is to examine the efficacy of 

a commonly taught test taking strategy for high-stakes computer adaptive tests. In 
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Chapter 2 previous research on issues related to the purpose of this study are outlined 

including: the history of adaptive testing, previous research on the development and 

administration of computer adaptive tests, the item response theory concepts utilized 

by CAT algorithms, and information on the abstract reasoning test used in Study 1. In 

Chapter 3 and 4 the methods, results and discussion of Study 1 and Study 2 

(respectively) are described. And, finally, the overall conclusions are discussed in 

Chapter 5.  
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2. Literature Review 

 Written proficiency testing became widespread throughout the United States 

and Western Europe in the mid-nineteenth century. In the early 1900s, testing began 

the shift from individualized testing to mass testing. This allowed for more efficient 

testing and more homogenous testing environments. In a paper-and-pencil group 

testing situation, the entire group receives the same items. As a result, enough items 

of all proficiency levels must be present on the exam to ensure close estimation of 

person parameters for all people taking the test. However, most paper-and-pencil 

(P&P) exams have a majority of items near average proficiency levels because most 

of the population falls within two standard deviations of the average proficiency 

level. In addition, ensuring valid and reliable P&P tests requires test developers to 

include a large number of items on the test (Wainer, 2000).  

 Creating more accurate and reliable P&P tests typically includes adding more 

items to the test at different ability levels. For this reason, as well as others which I 

will expand upon later, research on adaptive testing formats began as early as the 

1950’s. The first sign of adaptive testing was in the late 1950s, 1960s and early 1970s 

when several kinds of branching tests were designed. These were tests for which trees 

of items were developed that branched from one item to the next based on the 

examinee’s answer to the previous item, that is whether or not the examinee answered 

the item correctly (Krathwol & Huyser, 1956; Hansen, 1969; and Hulin, Drasgow & 

Parsons, 1983). While many of today’s adaptive tests are computer-based, many early 
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inventive formats were developed to implement adaptive procedures without the use 

of computers. 

 In the early 1970’s researchers began developing and examining testing 

systems that allowed a examinee to take a shorter test with better measurement 

precision by giving examinees items based on their estimated proficiency level. Four 

examples of these sorts of tests include the flexilevel test (Lord, 1971a), the two-stage 

test (Lord, 1971b), the pyramidal test (Larkin & Weiss, 1974, as cited in McBride, 

2001b), and a stratadaptive test (Weiss, 1974, as cited in McBride, 2001b). Each of 

these tests, as well as other predecessors of the computer adaptive test, will be 

discussed now. 

 Lord (1971a) designed a P&P test called the self-scoring flexilevel test which 

required the examinee to adjust their progress based on the accuracy of their answers. 

This test requires complex instructions because the adjusted scoring is the job of the 

examinee. On the other hand, this test allows for adaptive testing without the use of 

computationally complex scoring algorithms (Thissen & Mislevy, 2000). In the 

flexilevel test, each examinee responds to half of the items on the complete test. The 

selected half of the items depends on the examinee’s proficiency level; difficult items 

are answered by more proficient examinees while easier items are answered by the 

less proficient.  

An example of a flexilevel test is as follows. Items are ordered by difficulty 

level on a two-column sheet of paper with the item of middle difficulty centered at 

the top of the page, the more difficult items listed in the right-hand column increasing 
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in difficulty, and the easier items listed in the left-hand column decreasing in 

difficulty. The examinee begins with the middle difficulty question at the top of the 

page. The examinee marks the sheet, if they answer correctly, the answer turns a 

particular color signifying he/she to proceed to the first item in the more difficult 

column. If the examinee answers incorrectly, the color shown signifies to proceed to 

the first item in the easier column. The examinee then proceeds to the next available 

item in the column signified by the color shown with each answer. All examinees 

answer the same number of questions, and their final score is based on the difficulty 

of the last item answered (Lord, 1971a). Simply put, each time an examinee answers 

a question, he or she is routed to an easier or harder item based on the correctness of 

his/her previous answer (Schoonman, 1989).  

 Olivier (1974) conducted a study comparing the flexilevel test to conventional 

P&P tests. He found that the flexilevel test had lower reliability and validity than the 

conventional test. He also found about 15 percent of the examinees who took the 

flexilevel test had to be removed from the study due to errors made in the self-scoring 

mechanism (as cited in McBride, 2001b). Betz and Weiss (1975) also compared the 

flexilevel test to a conventional test. However, unlike the previous study, the tests 

were administered on the computer to remove self-scoring errors. In this study, they 

found that both tests demonstrated the same degree of test-retest reliability (as cited in 

McBride, 2001b). 

 The two-stage adaptive testing system, another predecessor proposed by Lord 

(1971b), involves giving examinees two sets of items. The examinee’s performance 
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on the first set of items decides whether he/she will receive the harder or easier 

second set of items. Betz and Weiss (1973) compared a computer-based, conventional 

40-item test, to a computer-based, two-stage test with two 20-item sets. They found 

similar test-retest reliability between these two types of tests. Possibly degrading 

these results, they also found that the first set of items in the two-stage test were too 

easy for the sample of examinees used in this study (as cited in McBride, 2001b).  

 Another testing system that utilizes this adaptive concept is that of a fixed 

branching system. This system is known as pyramidal or staircase adaptive testing 

(Larkin & Weiss, 1974). In a test of this type, one item is always the starting point. 

This item branches into two other items: one harder and one easier. These items 

branch into two more items each—one harder and one easier per item—continuing on 

to result in a lattice-like branching system. This continues on for as many levels as the 

number of items the test developer would like the examinee to answer. This differs 

from the systems of interest in this study because the branching order is pre-specified 

and everyone with the same response pattern receives the same items.  

There are some important disadvantages to the pyramidal testing system. One 

major disadvantage is the enormous number of items required. If an administrator 

wants the examinees to answer n items, the number of items necessary for the 

branching system is equal to (2n – 1). Thus, an 8 item test would require 255 items. 

Another disadvantage is that the first few items in the test would have much higher 

exposure rates than the items at the end of the test, leading to decreased security on 

these items, which could also lead to inflated final scores. Also, if an examinee makes 
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simple errors on the first few items by answering the first couple of items incorrectly, 

he/she cannot increase his/her score beyond this lower set of items. This is a major 

drawback of any fixed-item selection adaptive testing system (Schoonman, 1989). 

Larkin and Weiss (1974) compared this test to the two-stage test discussed 

previously. They found both tests to have comparable test-retest reliability, but they 

found that the two-stage test resulted in higher proportion correct scores due to the 

tailoring properties of the test (as cited in McBride, 2001b). 

 Similar to the pyramidal test, with a prespecified branching system, the 

stratadaptive (or stratified adaptive) method branches from one set of items to 

another, rather than from one item to another. In this method, proposed by Weiss 

(1974), the item pool must first be sorted into strata, or mutually exclusive groups, 

based on item difficulty. Rather than branching from one item to the next depending 

on correctness of answer, the test branches (in the same manner as the pyramidal test) 

from one strata to the next. The examinee is given only one item from each strata. In 

the original design, Weiss (1974) proposed this test as a variable length, variable 

entry test. Waters (1974) conducted a study comparing three forms of the 

stratadaptive test to a conventional computer based test. He found the reliability and 

external validity to be higher for the stratadaptive tests than for the conventional test. 

He also found these tests to be 36 to 60 percent shorter on average than the 50-item 

conventional test.  

Vale and Weiss (1975) also conducted an empirical study comparing the 

stratadaptive test to the conventional test. They found the stratadaptive test to be 34% 
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shorter than the conventional test. Also, they found the stratadaptive test to have 

higher internal consistency (.94 versus .91), and similar test-retest reliability. They 

followed this empirical study with a simulation study in which they systematically 

varied item discriminations, test length, and the availability and quality of prior 

examinee ability information. They conducted separate studies of fixed and variable 

length tests. In the fixed length test simulation study, they found the fidelity 

coefficient for the peaked conventional test to be superior to that of the stratadaptive 

test for items with low discriminating power (α = .50). However, at the higher levels 

(α = 1.0 and 2.0), the stratadaptive test had higher fidelity than the conventional test. 

In the variable length studies, they found similar results. At the lower discriminating 

items (α = .50 and 1.0), they found that the stratadaptive test had lower fidelity 

coefficients than the conventional, even with more than 40 items. Yet, at the high 

discrimination parameters (α = 2.0), they found much higher fidelity coefficients for 

the stratadaptive tests even though the tests were much shorter (28 items) than the 40-

item conventional test (as cited in McBride, 2001b). 

 Another early adaptive testing system is the Implied Orders Tailored Testing, 

originally developed by Cliff (1975). While this method is more valid than the fixed 

item selection methods discussed above, it lacks the psychometric model of the 

outcome when a person of a certain proficiency level meets an item with certain 

characteristics; this method as well as the others mentioned above does not utilize the 

IRT methods used by current CAT systems to explain the interactions between 

persons and items (Cudeck, McCormick, & Cliff, 1980; Schoonman, 1989). Thus, 
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further research was conducted in attempts to utilize these IRT methods to better 

adjust item administration to the proficiency level of the examinee. 

 Based on the principles of this new testing system, in the early 1980s military 

researchers began creating computer-based tests that would choose items at the 

appropriate proficiency level for the examinees. The tests would administer items 

based on the accuracy of the previously answered items and adapt themselves to the 

examinee’s performance. Thus, they have been named Computer Adaptive Tests or 

CATs (Wainer, 2000). Unlike these previous tests, these new systems would utilize 

IRT methods for scoring tests and choosing items. They found that utilizing CAT 

methodology in their recruitment testing procedure would improve the person-job 

match due to increased validity of the test. This 12-year military research project 

which began in 1979 on CAT (Martin & Hoshaw, 2001) will be expanded upon in 

later sections. While this was the first large scale CAT research program, other 

smaller CAT research programs will also be discussed in future sections. 

 Due to this wealth of research, CATs are beginning to replace traditional P&P 

tests in many fields of measurement. In education, research on converting the GRE to 

CAT form began in the late 1980’s (Schaeffer et al., 1995). As well, tests like the 

Graduate Management Admissions Test (GMAT) is currently in CAT form. In 

psychology, cognitive measures (e.g., the ART developed by Embretson, 2005) as 

well as personality measures have been transferred to computer format. In the 

medical field, some questionnaires have been developed in CAT form (e.g., the HIT 
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developed by Bjorner, Kosinski & Ware, 2003). As mentioned above, in the military, 

the largest high stakes CAT program has been developed (CAT-ASVAB).  

 Computer adaptive tests have many advantages over the traditional P&P tests: 

shorter tests, enhanced measurement precision, testing on demand, and immediate test 

scoring and reporting, to name a few (Meijer & Nering, 1999). In terms of test 

construction, computer-administration of tests allows for easy pilot testing of new 

items and immediate removal of faulty items. Another advantage to a CAT is that, 

because it is administered on the computer, graphics, sounds, running video, and text 

can be combined to present tasks that resemble real-life tasks (Green, 1983). It is 

important to note that the first advantage, shorter tests, might seem contradictory to 

the fundamental principle of test development which states that longer tests provide 

more reliable estimates of trait level. But, because of the IRT procedure that is 

followed in a CAT, the proficiency level is more accurately estimated with fewer 

items (Straetmans & Eggen, 1998). I will outline this procedure in the next section. 

 Considering the advantages of CAT over traditional P&P tests, there are still 

some practical aspects that can be seen as disadvantages to examinees who are used 

to P&P tests. First, while computers are becoming more and more available in today’s 

society, many examinees are still unfamiliar with the use of computers which could 

give them a disadvantage over those who are familiar with the computer. A second 

possible disadvantage of CAT when compared with P&P tests is that examinees are 

no longer given all items at one time allowing them to return to items they might have 

skipped or to change their answers on items they have already attempted. Rather, they 
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are given one item at a time, and must choose a final answer before continuing on to 

the next item. Another possible disadvantage to taking the test in the CAT format is 

one of motivation and anxiety—if the examinees understand the process the computer 

goes through to pick subsequent items, and they are given an item that they consider 

to be easy, they could assume they got the previous question incorrect. This could 

affect their future performance on the test.  

 Part of this knowledge about the inner workings of CATs comes from training 

courses and books like those put out by Princeton Review and Kaplan. One piece of 

advice that is given by these companies, especially for taking high stakes tests like the 

GRE, is that “one of the most important things to know is that the first few questions 

are the most important on the test (Kaplan, 1997, pp. 174).” They continue on to 

explain how paying extra attention to the first “five or so” problems, leaving the later 

questions to guessing if necessary, will improve your score. This is based on the 

assumption that earlier in the test bigger adjustments are made to the estimated 

proficiency level and increasing your score at the beginning makes it more difficult to 

get a lower score than starting off with a lower score and returning to a higher score 

in the end. Or as Princeton Review (Still, 2003) states it: 

“The computer weighs your performance on earlier questions more heavily 

than it does later ones. Early in the test, your score will move up and down 

(hopefully, up!) in large increments, but as you near the end, your score will 

change only by small amounts…This means you’ll need to concentrate 

hardest on answering the early questions correctly, even if this means 



 14
 

spending more time on them than you’d like. You can make this time up by 

moving more quickly on later questions, when you’ll affect your score less 

dramatically (p. 10-11).” 

 This test-taking strategy leads to multiple questions. Will an examinee get a 

better overall score if they only get the first items correct versus a steadier pattern of 

correctness throughout the test? Or in a more real-world sense, will an examinee get a 

better overall score if they pay much closer attention to the first items on the test 

giving them a sort of boost in their proficiency level earlier on the test? This question 

is important to the testing community because of the impact it will have on test taking 

strategies as more and more tests become computer adaptive. These questions were 

the focus of this set of studies. 

 I have briefly outlined the advantages and disadvantages to using a CAT 

system for testing, as well as some of the history of adaptive testing. The rest of this 

chapter will focus first on the psychometric theory behind a working CAT, including 

the Item Response Theory (IRT) methodology underlying this system. Secondly, it 

will look at the actual procedure that the testing algorithm follows when 

administering a CAT, as well as some of the issues in test design that affect this 

process. The third section will be dedicated to studies that have been conducted on 

CATs: for example, human factors and computer adaptive testing and simulation 

studies on particular testing algorithms. Finally, there will be a short section that 

focuses on the Abstract Reasoning Test that is currently in CAT form. 
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2.1 Item Response Theory 

 In a traditional P&P test, in line with Classical Testing Theory (CTT), a 

person’s proficiency score is usually number correct or some linear transformation of 

number correct. With a CAT, examinees receive different items, and in some CATs 

even a different number of items. Some examinees receive harder items while others 

receive easier items. Thus, it would be inequitable if examinees receive scores based 

solely on number of correct responses. To deal with this problem, Item Response 

Theory (IRT) is used to calculate scores. Item Response Theory “presents a 

mathematical characterization of what happens when an individual meets an item 

(Wainer, 2000, pp. 12)”; IRT is a mathematical modeling methodology that allows 

researchers to compare a person’s proficiency with the item’s difficulty in order to 

predict the probability of a correct response on the item (Wainer, 2000). 

 One major advantage to IRT methods over CTT methods is parameter 

invariance. In CTT, the proportion correct or easiness parameter of an item is based 

solely on the subpopulation that took the test. The methods used to estimate item and 

person parameters in IRT remedy this dependence. The property of parameter 

invariance refers to the independence of the ability distribution of the examinees from 

the item parameters, that is the true value estimation of the person’s proficiency level 

is not dependent on the particular set of test items administered and an item’s true 

value parameters are not the result of the subpopulation of examinees used to estimate 

these parameters (Hambleton, Swaminathan & Rogers, 1991). 
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 In summary, IRT is a model-based methodology that can be used to estimate 

the parameters of each item in an item pool, a person’s proficiency level, the 

reliability and precision of a test, as well as the validity of the item selection 

algorithm (Wainer, 2000). IRT also allows us to deal with three challenges in 

adaptive testing. The first is to find a useful way to characterize the variation among 

items in the item pool. The second challenge is to determine efficient rules for item 

selection during test administration. The third challenge is arriving at proficiency 

scores on a common scale regardless of the subset of items the examinees received 

(Wainer & Mislevy, 2000). 

2.1.1 IRT Assumptions 

 Before getting into the particulars of the methodology, I will discuss the 

assumptions that must be met when using IRT: item fungibility, test 

unidimensionality, local item independence, known item parameters, and no 

differential item functioning (DIF). The first assumption, item fungibility, relates to 

the order of the items. This assumption states that regardless of the order in which 

you present the items, the person’s proficiency estimate should not be affected 

(Wainer & Mislevy, 2000). 

 Unidimensionality refers to the assumption that all items in the test (or 

subtest) measure only one ability or trait. This assumption is never strictly met due to 

outside cognitive, personality, and test-taking factors that can affect test performance. 

(If there are other significant factors playing a role in the measure, they can be 

modeled using Multidimensional Item Response Theory (MIRT).) For purposes of 
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modeling the data, what is required is that all items have a dominant factor or 

component that influences performance on the items. This dominant factor is what 

test developers can then claim the test measures. While, most IRT models require that 

this assumption is met, more recently, multidimensional IRT models have been 

developed (Hambleton, Swaminathan & Rogers, 1991). This chapter will discuss 

unidimensional models.  

 Local independence refers to the assumption that when the abilities 

influencing performance on the test remain constant, an examinee’s responses to any 

pair of items are statistically independent of each other. In other words, performance 

on one item is not influenced by performance on another item. Mathematically 

speaking, local independence holds true if the following equation holds true: 
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where i = item number = 1, 2, …, n, 

 ui = response to item i, and 

 θs = ability level of person s. 

That is, the probability of a particular response pattern for an examinee with a given 

ability level is equal to the product of the probabilities of each individual response to 

each item, regardless of item order (Hambleton, Swaminathan & Rogers, 1991). 

Another definition is that local independence is obtained when the relationship 

between items in a test is fully characterized by the IRT model (Embretson & Reise, 

2000). 
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 The local independence assumption can also be called conditional 

independence. This name refers to the fact that the independence of item responses is 

only considered independent after you take into consideration the person’s ability 

level. In other words, after you statistically partial out the ability level, the examinee’s 

responses should be independent; an examinee’s responses are independent after 

conditioning on ability (Hambleton, Swaminathan & Rogers, 1991).  

 There are three IRT models that will be focused on in this paper: the one-, 

two- and three-parameter logistic models. The next assumption requires that the item 

parameters required for each model are known, and that these item parameters are the 

only item parameters that influence examinee performance on that item (Hambleton, 

Swaminathan & Rogers, 1991). This assumption can also be described in terms of the 

item characteristic curve (ICC). The ICC is a non-linear probability distribution that 

demonstrates the relationship between ability level and probability of a correct 

response on the item. This assumption states that the ICC has a specified form, 

determined by the item parameter(s) in the model (Embretson & Reise, 2000). 

 The final assumption that should be met for each item is that items must 

display no differential item functioning (DIF). That is, an item must perform the same 

for each person regardless of the subgroup of the population they belong to. Stated 

another way, “an item shows DIF if individuals having the same ability, but from 

different groups, do not have the same probability of getting the item right 

(Hambleton, Swaminathan & Rogers, 1991, pp. 110).” 
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2.1.2 Item calibration 

 As stated above, IRT is a model-based methodology. The first challenge to 

developing a successful CAT, finding a useful way to characterize the variation 

among items in the item pool, is met through the use of mathematical models that 

allow us to estimate the item’s difficulty, discrimination and guessing parameter. A 

mathematical model is one that specifies the scale for the observations (dependent 

variables), specifies the design variables (independent variables), and specifies the 

numeric combination of how the dependent variables are predicted by the 

independent variables. These mathematical models are graphically displayed by an S-

shaped logistic or normal ogive curve (the ICC) whose properties are defined by the 

item parameters (Embretson & Reise, 2000).  

 The first item parameter of mention is the location or difficulty of the item. 

Item difficulty is the point of inflection on the ICC, or the point where the probability 

of answering the item correct is equal to the probability of answering incorrectly. The 

slope of the line is defined by the second parameter—item discrimination. The greater 

the slope, the more the probability of getting the item correct is affected by the exact 

ability level of the examinee. The third parameter is the guessing parameter. This 

parameter defines a lower asymptote of the ICC. The better the probability of 

answering the item correctly by chance alone, the farther from zero this asymptote 

will become (Embretson & Reise, 2000). 

 Each item can be defined in terms of one of three IRT models that utilize 

some or all of these item parameters. The first of these three models is the simplest—
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the one-parameter logistic (1PL) or Rasch model. This model defines the probability 

of success on an item by the item’s difficulty level. Equation 2.2 shows this 

relationship: 
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where βi = difficulty level of item i, 

 θs = ability level of person s, and 

 P(Uis = 1) = the probability that person s responds correctly to item i. 

This equation is derived from the log odds ratio of the probability of getting an item 

correct to that of getting the item incorrect as a function of the relationship between 

the person’s ability level and the item’s difficulty level. This equation can be seen in 

Equation 2.3, where Pis is the probability of success on the item i for person s: 
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When the difference between trait and difficulty levels is equal to zero, the odds of 

success versus failure is 1.0 or 50/50. When the difference is positive, the numerator 

of the ratio is larger than the denominator, implying that there is a greater chance of 

success if a person’s trait level exceeds the item’s difficulty level. The opposite is true 

if the difference is negative (Embretson & Reise, 2000).  

 The next model incorporates item discrimination as well as item difficulty. 

Thus, it is aptly called the two-parameter logistic (2PL) model. The 2PL model can be 

seen in Equation 2.4: 
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where αi = discrimination of item i. 

The item discrimination is a multiplier of the difference between trait level and item 

difficulty. The impact of this difference depends on the discriminating power of the 

item; with highly discriminating items this difference has greater impact on the 

probability of success (Embretson & Reise, 2000). 

 The final model includes a third item parameter—a guessing parameter (γi). 

This parameter allows for a lower asymptote for the ICC due to the chance of 

guessing the correct answer on a multiple choice item. Yet, estimates of this 

parameter typically come out smaller than the value that would result from random 

guessing on an item. For this reason, this parameter is sometimes called the pseudo-

chance-level parameter. The addition of this new parameter into the 2PL model can 

be seen in Equation 2.5 for the 3PL model (Embretson & Reise, 2000). 
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where γi = guessing parameter for item i. 

 The relationship between these three models can be seen by the fixing of one 

or two of the parameters. The 1PL model is the same as the 2 and 3PL models with αi 

fixed at 1.0 and γi fixed at 0.0. Example ICCs for each of these models can be seen in 

Figure 2.1. Items 1 and 2 were estimated with the 1PL model (β1 = 0.0, β2 = 1.0). 

Items 3 and 4 were both estimated using the 2PL model (β3 = -2.0, α3 = 0.4, and β4 = 

0.0, α4 = 0.5). Item 5 used the 3PL model (β5 = -2.0, α5 = 1.0, γ5 = 0.2). While looking 
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at this example, it should be noted that, in general, item difficulties tend to range 

between -3 and 3, with item discriminations usually between 0.2 and 2.0. Guessing 

parameters are rarely greater than 0.3. 

_____________________________________________________________________ 
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Figure 2.1. Example ICCs for five items. 

_____________________________________________________________________ 

 To estimate these parameters, items must be administered to many examinees 

with known ability estimates (θs). Then, a log-likelihood function (Equation 2.6) can 

be obtained from the responses to the item by the N examinees. This likelihood 

function is the product of the probabilities of a correct/incorrect response by each 

examinee as a function of their ability level and the item’s parameters (Embretson & 

Reise, 2000).  
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where us = the response to item s (1=correct, 0=incorrect), and  

 Ps = the probability of a correct answer to item s. 

 Maximum likelihood estimation (MLE) is then used to estimate the most 

likely values for the parameters. When estimating the 3PL model for an item, the 

most likely value for all three parameters must be estimated simultaneously. Thus, 

MLE is an iterative procedure that attempts to locate the maximum value of a surface 

(represented by the likelihood function) in three dimensions (Hambleton, 

Swaminathan & Rogers, 1991). This estimation procedure will be discussed further in 

the next section. 

 A successful CAT should have available to it an extensive and calibrated item 

pool. Item calibration should be done prior to item use, with each item being tested on 

a large number of examinees—Wainer and Mislevy (2000) suggest upwards of 1,000 

examinees with a proficiency distribution similar to the difficulty distribution of the 

items being calibrated. After the item parameters have been estimated, we can then 

use this information to calculate proficiency scores for examinees. 

2.1.3 Person calibration 

 We denote a person’s proficiency level with the Greek capital letter, θ. As 

with item difficulties, person trait levels tend to range between -3 and 3, with the 

majority of the population falling between -2 and 2. As well, trait levels are estimated 
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from a similar likelihood function (see Equation 2.7) based on the same probability 

functions as item parameters (Embretson & Reise, 2000). 
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 We can estimate θ using a maximum likelihood method or using a Bayes 

Modal estimation procedure. The maximum likelihood procedure is essentially a 

Bayes Modal estimator with a uniform prior. The maximum likelihood estimate of θ 

is the mode or the maximum value of the likelihood function (Wainer & Mislevy, 

2000). The Bayes Modal estimator is also known as the Maximum A Posteriori 

(MAP) (Embretson & Reise, 2000). 

 When finding the maximum value of the log-likelihood function above, it 

would be intuitive to find the first derivative of the function and set that to zero and 

solve for θs. This, however, results in an unsolvable equation. Thus, maximum 

likelihood estimation is a procedure that utilizes the Newton-Raphson scoring 

algorithm. The first step in this procedure is to specify a start value for θs (e.g., θs = 

0.0). The next step is to calculate the first and second derivatives of the log-likelihood 

function at this value of θs. The ratio of the first derivative to the second derivative , 

which we denote as ε, is calculated. This new value is then subtracted from the 

original estimate of θs. This value is then used as the new start value for θs. This 

iterative procedure is repeated until ε is less than some small value (e.g., ε < 0.001) 

(Embretson & Reise, 2000). 
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 Maximum likelihood estimates have well-known asymptotic properties. That 

is, as test length increases, the MLE of θs (θ̂ ) becomes distributed normally with a 

mean equal to the true value of θs and a standard error that is a function of the test 

information, I(θs) (see Equation 2.12 for I(θs)) (Hambleton, Swaminathan & Rogers, 

1991): 
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θ =                                            (Eq. 2.8) 

 When a person answers all items correctly or all items incorrectly, the MLE 

procedure will be unable to calculate an accurate estimate, and rather will estimate the 

trait level as equal to positive or negative infinity. Other aberrant response patterns 

can result in this same estimation problem when using the 3PL model. This problem 

can be overcome using the Bayes Modal estimation method. This method 

incorporates prior information about the ability parameters into the likelihood 

function. It is important to note that when a uniform prior distribution is used for all 

examinees, the estimate computed will be numerically identical to the MLE found 

(Hambleton, Swaminathan & Rogers, 1991). 

 For this method, prior information is expressed in terms of a density function 

denoted as f(θ). The posterior density function found using this method is seen in 

Equation 2.9: 

( ) ( ) ( )θθθ fuLuf || ∝  ,                (Eq. 2.9) 

where u = the vector of responses to all items on the test. 
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The mode of this new function is the most probable value for θ, and is then used as an 

estimate for θ (Hambleton, Swaminathan & Rogers, 1991).  

 The mean can also be calculated for this distribution by approximating the 

posterior distribution of θ by forming a frequency distribution with k values of θ. The 

frequency at any given value of θ is given by the posterior density function. The mean 

can then be calculated as follows (Bock & Mislevy, 1982): 
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This estimate is called the Expected A Posteriori (EAP) estimate. Wainer and Thissen 

(1987) found that the EAP estimate of ability had the smallest mean squared errors 

when compared to the other methods. 

 The accuracy of the proficiency estimate is a measurement of the width of the 

posterior likelihood distribution. If the distribution is very narrow, then the 

proficiency estimate is considered more accurate than if the distribution is very broad. 

Adaptive testing tends to decrease the width of this distribution by judiciously 

selecting each item on the test. When comparing the two methods of proficiency 

estimation, the maximum likelihood estimator to the Bayes Modal estimator, it is seen 

that the Bayes Modal estimate is typically more precise than MLE (Wainer & 

Mislevy, 2000).  
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2.1.4 Joint Person and Item Calibration 

 When ability estimates are known, the item parameters can be estimated. 

When item parameters are known, the ability estimates can be estimated. When 

neither are known, they must be estimated jointly. In this situation, the data for all 

items and all examinees must be considered at the same time. This is done using the 

following joint likelihood function (Hambleton, Swaminathan & Rogers, 1991): 
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where u = the vector of responses for each person, 

 θ = the vector of ability estimates, 

 β = the vector of item difficulty estimates, 

 α = the vector of item discrimination estimates, and 

 γ = the vector of item guessing parameter estimates. 

 Estimation for these parameters begins with a major issue: item difficulty and 

item discrimination are both arbitrary scaling constants, which means that there is no 

unique maximum for the likelihood function. This issue of indeterminacy can be dealt 

with by first choosing an arbitrary scale for either the ability estimates or for the item 

difficulty. Typically, the mean and standard deviation for the N ability estimates are 

set to 0 and 1, respectively. Then, the procedure joint maximum likelihood estimation 

(JMLE) can be used to estimate the unknown parameters.  

 JMLE is completed in two cyclical stages. The first stage is to choose initial 

values for the ability parameters. This is calculated as the standardized logarithm of 
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the ratio of the number correct to the number wrong for each examinee. Then, treating 

the ability parameters as known, the item parameters are estimated. In the second 

stage, these known item parameters are used to estimate the ability parameters. This 

cycle is repeated using the estimated ability parameters to estimate item parameters, 

and so forth, until there is no change in the estimates. 

 As with MLE, JMLE cannot estimate parameters for people with perfect or 

zero scores or for items that everyone got correct or everyone got incorrect. Another 

disadvantage is that JMLE does not yield consistent person or item parameter 

estimates when using the 2- or 3PL model. For the 3PL, this procedure may fail 

entirely if some restrictions are not placed on the ability or item parameters.  

 This first disadvantage, that of perfect or zero scores, can be overcome with 

Bayesian methods as with MLE. The problem of inconsistent estimates can be 

overcome using a method called marginal maximum likelihood estimation (MMLE). 

This procedure requires specifying a distribution for the ability parameters and 

integrating them out of the likelihood function before estimating the item parameters. 

This requires a large pool of examinees from which to estimate this ability 

distribution. Once the item parameters have been estimated, they can be used to then 

estimate the ability parameters. MMLE can fail when it is necessary to estimate the 

guessing parameter. This issue can be dealt with through placing priors on the 

guessing parameter (Embretson & Reise, 2000). Bayesian methods, however, do not 

encounter this problem (Hambleton, Swaminathan & Rogers, 1991). 
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2.1.5 The role of IRT in CAT 

2.1.5.1 Ability level estimation. This summary of IRT demonstrates some of 

the psychometric properties used in developing and implementing a CAT. The 

combination of the availability of computers and the usefulness of IRT allows test 

developers to create tests that will find more precise estimates of a person’s 

proficiency level with fewer items. As well, computer adaptive testing uses the IRT 

invariance property to create an algorithm by which examinees can take a test that 

appropriately measures their ability level. These use of IRT methods versus CTT 

methods also provide more useful information for distinguishing between examinees 

within a certain range of a trait. Examinees are given items that are more appropriate 

and, thus, more defining at their proficiency level (Embretson & Reise, 2000). In 

other words, IRT provides a basis for tailoring the difficulty of the test to the ability 

level of the examinee, locating items and examinees on the same scale, and 

expressing all scores on the same scale even when examinees have taken tests 

consisting of different items. These advantages of IRT result in much more efficient 

adaptive tests than those based on CTT methods (McBride, 2001a). 

Further, IRT plays three important roles in the process an adaptive test 

follows. These include (1) estimating the examinee’s ability level, (2) selecting items 

sequentially, and (3) deciding when to stop testing. Within the IRT-based adaptive 

testing system framework, there have been two ability estimation methods used 

extensively: maximum likelihood estimation (MLE) (Lord, 1980), and Bayesian 



 30
 
sequential estimation (Owen, 1969, 1975; Urry, 1983). Both of which were discussed 

above and will be touched on further in later sections. 

2.1.5.2 Item bank development. Another issue that should be touched upon in 

this discussion of the role of IRT in CAT deals with developing the item bank. The 

important question here is which of the three aforementioned models to use when 

characterizing your items (1-, 2-, or 3-PL models). If enough item response data is 

available to estimate an item’s parameters, it is advisable to use the 3PL model when 

your test items are in multiple-choice format (McBride, 2001a). Lord (1970) 

demonstrated that the 3PL model is more efficient than using the 1PL model to 

estimate a person’s proficiency score on a multiple choice test, because the 1PL 

model sacrifices measurement precision, making the results less reliable. Urry (1974) 

also demonstrated this increase in reliability when comparing the 3PL to the 1PL 

model. He found this to be especially true when all items in the adaptive item bank 

had discrimination parameters equal to or above .80. 

In summary, when developing a CAT testing program, as previously alluded 

to, there are some important components that must be taken into consideration. The 

first is developing a firm psychometric foundation—that is, a valid, defensible 

theoretical basis for administering different questions to different people, yet 

expressing all results on a single scale. The second consideration is that of the item 

bank. A large set of items, which measure the domain of interest and has 

psychometric characteristics that will make them useful for adaptive testing, must be 

developed or available. A third important component is that of choosing a strategy or 
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set of procedures for sequentially choosing which item to administer at each stage of 

the test. A fourth component in developing a successful CAT is providing a body of 

research that justifies the usefulness and validity of adaptive testing as an alternative 

to the conventional version (McBride, 2001a). While the first two components have 

been discussed in this section, these third and fourth components will be expanded 

upon in the next section. 

 The next section will explain the procedure a CAT follows when 

administering a test. Many of the properties of IRT that were discussed here will be 

helpful for understanding this explanation. 

2.2 Computerized Adaptive Testing 

2.2.1 Introduction 

 With a conventional paper-and-pencil test, one major assumption is that all 

examinees receive the same or parallel items. As a result, many of the items that an 

examinee receives are not very informative at their proficiency or trait level. For 

example, if they are more proficient, items at the lower end of the difficulty scale do 

not tell the administrator much about their proficiency. Using the IRT principles 

described in the previous section, CAT addresses these inefficiencies by attempting to 

administer each examinee items for which their chance of answering correctly is 

approximately 0.50 (Embretson & Reise, 2000).  

 Before discussing the actual procedure a CAT algorithm can follow to 

administer items, I will discuss some of the issues that must be dealt with prior to 

developing a successful CAT program. One such issue is item pool development and 
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testing. As with P&P testing, it is very important that items are carefully written, that 

item content does not discriminate against particular subsets of the population and 

does not function differently for different subsets of the population, a problem known 

as differential item functioning. It is also important these items are not flawed in 

some way, because individual items impact a person’s proficiency score much more 

in a CAT than in a P&P test due to the fact that people receive less items and each 

item helps direct the test toward a particular score (Wainer, 2000). 

 Another issue to consider is the extensiveness of the item pool. Ideally, an 

item pool should include enough highly discriminating items with difficulty 

parameters over the entire trait range. This is necessary to ensure that the entire trait 

range is measured well (Weiss, 1982). Ree (1977) suggested a ratio of 5 to 10 

calibrated items in the item bank to every 1 item an examinee will have to encounter. 

Embretson and Reise (2000) suggest a rough estimate of around 100 highly 

discriminating items, with difficulty parameters spread widely across the trait range, 

for dichotomously scored items. Urry (1971) suggested that an ideal item bank should 

consist of items with a wide and uniform distribution of difficulty parameters, with 

high discrimination (none less than .80), and low guessing parameters (none greater 

than .33). Jensema (1974) demonstrated that the fidelity coefficient varied directly 

with the magnitude of the discrimination parameter, inversely with the size of the 

guessing parameter, and directly with the test length.  

 A third issue surrounding the item pool is one of item calibration. It is 

important to consider how the item parameters were estimated for the items in the 
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item pool. Research has shown that item parameters estimated using results from a 

P&P test are not directly translatable to computer administered tests (e.g., Green et 

al., 1984; Mead & Drasgow, 1993; Neuman & Baydoun, 1998; Spray, Ackerman, 

Reckase & Carlson, 1989). Part of this issue could be due to possible order effects. 

With P&P tests, all examinees receive the same items in the same order. With CATs, 

the order is variable for all examinees. Thus, when using a CAT, researchers must 

make the assumption that presentation-order does not affect item parameter estimates 

(Embretson & Reise, 2000).  

 Another issue that must be dealt with in a CAT system is that of item 

exposure control. One of the first methods for dealing with this issue was proposed by 

McBride and Martin (1983). In this method, the program chooses the first item of a 

test at random from the five most appropriate possibilities, the second item is chosen 

from the four remaining best possibilities, the third from the three best, and the fourth 

from the two best. Then, beginning with the fifth item, the best possible item is 

chosen for the remainder of the test. This allows for 5 x 4 x 3 x 2 x 1 = 120 possible 

item response patterns for any likelihood of response at any given ability level. 

 A more complex method involves the calculation of an exposure control 

parameter, ki, for each item (Sympson & Hetter, 1985, as cited in Thissen & Mislevy, 

2000). Each item in the pool is assigned an intended maximum probability of 

exposure value, r. This value is the maximum proportion of the examinee population 

that should receive this item. The smaller the value of ki, the less likely it is that item i 

is administered. Thus, when any item is chosen as the most informative at the current 
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estimate of θ , a random number between 0 and 1 is also chosen; if that number is 

larger than ki, then the item is administered; if it is smaller, then the item is not 

administered and the next most informative item is chosen. This value of ki is 

empirically derived through simulation studies to ensure that the use of the item by a 

randomly selected examinee is approximately equal to r.  

 Content balancing is another important issue to be considered when designing 

a CAT. A parameter for the content of the item must be included in tests of ability 

that covers a range of aspects. In a fixed-length test, this can be done by separating 

the item pool into bundles of items based on content and then setting the testing 

algorithm to choose the most informative item from the content bundles for pre-

specified locations on the test. This also ensures that all examinees receive items of 

particular content in the same order, ridding the outcome measure of any ordering 

effects. For a variable-length test, the testing algorithm can be set to rotate through 

the bundles to help ensure equal content balancing throughout the test (Thissen & 

Mislevy, 2000).  

Because the first high-stakes testing program to take CAT form was the 

Armed Services Vocational Aptitude Battery (ASVAB) much of that research will be 

discussed throughout the following sections. It is important to note that this 

development program that began in 1979 included a number of “firsts” in CAT 

research. The CAT-ASVAB research and development (R&D) program was the first 

to develop a complete multiple-aptitude battery of adaptive tests. They were the first 

to develop a micro-computer based adaptive testing system, which was capable of 
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displaying graphical test items. They were the first to deliver adaptive tests on a 

network of personal computers. In terms of evaluating adaptive tests, they were also 

the first to demonstrate the construct equivalence of conventional and adaptive 

multitest batteries, establish the predictive validity of a battery of adaptive tests, 

develop technical standards for evaluating adaptive tests, and develop and apply 

technology for equating conventional and adaptive tests (McBride, 2001a). 

I will now discuss this procedure through which a CAT administers 

appropriate items to examinees to better estimate their proficiency or trait level. 

2.2.2 The procedure 

 In short, the administration of a computer adaptive test is a cyclical process 

that follows a basic three-step procedure. In the first step, the computer administers 

an item at the difficulty level matched to the current estimate of the examinee’s trait 

level. After the examinee attempts the item, the trait level is re-estimated based on 

this new information (e.g., whether or not the response was correct on an achievement 

battery). Then the program administers an item at this newly estimated trait level. 

These steps are repeated until a prespecified stopping criterion is met (Wise & 

Kingsbury, 2000). The general logic behind an adaptive test can be seen in Figure 2.2.  

 I will now expand upon this process. When developing a CAT, one must 

choose the testing algorithm that consists of three major parts: starting rules, 

continuing rules, and stopping rules (Wainer, 2000). Each step will be discussed in 

more detail.  
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_____________________________________________________________________ 

 

Figure 2.2. Flowchart representing an adaptive test (adapted from Thissen & Mislevy, 

2000). 

_____________________________________________________________________ 
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2.2.2.1 Step 1 – The starting rule. There are multiple rules to choose from 

when deciding on the first item to be administered. Given that the program uses 

information about the examinee to choose an item, the first starting rule could be to 

use some prior information on the examinee and find an item that has a difficulty 

level close to the trait level previously identified for the examinee (Straetmans & 

Eggen, 1998). This method can be utilized through the use of scores on tests similar 

to the current test being administered. This can be done by exploiting the 

relationships between the tests in question—that is, using the examinee’s score on the 

previous exam and converting that score to the scale of the current exam and using 

this score as a starting point for choosing the first item(s) for the test (Thissen & 

Mislevy, 2000). 

 Another version of this rule is to use prior information from the tested 

population when there is no prior information for the examinee. An item with 

difficulty located at the mean proficiency level for the group of examinees who have 

already completed the exam is an option for a starting point. This could also be done 

by first specifying group memberships of the examinee through demographic 

information gathered on all examinees. The examinee could then receive an item 

located at the mean proficiency level for the identified group. 

 If this last method is utilized throughout the testing algorithm, it provides 

higher expected precision over the population of examinees but it also invokes issues 

of fairness. While smaller error variances result, there are expected tendencies toward 

certain types of biases when starting examinees with different proficiency estimates. 
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One type of bias is underprediction of higher-scoring individuals who belong to 

lower-average proficiency groups due to the combination of individual responses with 

the initial use of group membership information—a sort of regression towards the 

mean of the group the examinee belongs to. These issues of fairness disappear if this 

method is only used for selecting a first item for an examinee, though this will result 

in higher mean squared error rates (Thissen & Mislevy, 2000).  

If no prior information is available for the examinee or the population the 

examinee is from, other starting rules should be considered. One such rule is to use an 

item of average difficulty level (b = 0.0). If this rule is used, the item pool must 

contain enough items at this average difficulty level to ensure that examinees do not 

receive the same first items. If the same items are given to all examinees, the items 

could easily be made public resulting in inflated success rates and decreased validity 

of the item(s) in question. Hulin, Drasgow, and Parsons (1983) suggested randomly 

selecting from a set of 30 or more items at or near this average ability. Another way 

to remedy this problem, Embretson and Reise (2000) suggested choosing an item 

from within the initial difficulty range of -0.5 to 0.5 if the examinee population can be 

assumed to be normally distributed over the trait continuum. Other methods for item 

exposure control could also be considered (Thissen & Mislevy, 2000).  

  Another rule is not based on psychometric properties but is rather based on 

old habit by test developers: give easy items initially to the examinees to help reduce 

test anxiety (Straetmans & Eggen, 1998). Many P&P tests begin with the easiest 
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items and get harder as the examinee proceeds through the test. This particular 

starting rule would conform to this sort of test format. 

 There are many issues to consider when choosing a starting rule. One such 

issue is whether different proficiency estimates and different items adversely affect 

final estimates. As we will see in later discussions, the method of initial item selection 

does not adversely affect final score estimates when using a likelihood based 

estimator, but could affect the estimates when using a Bayesian method (Thissen & 

Mislevy, 2000). It has been shown that the longer the test, however, the less the initial 

item will affect the final estimate of proficiency level (Lord, 1980).  

As discussed previously, another consideration in choosing an algorithm 

starting or continuation rule is that of test security. If the same item is used to start all 

examinees (i.e., the item at the average ability level), then the succeeding item should 

also be the same for those who answer the first item correctly, as well for those who 

answer incorrectly. This pattern could continue, resulting in identical item 

administration patterns due to identical response patterns. This, in turn, could become 

a security issue (and item exposure rate issue) if this information is shared among 

examinees. One way to combat this issue is through a fixed-set size or shrinking set 

size selection procedure (mentioned in the previous section). McBride, Wetzel and 

Hetter (2001) summarized these two methods. In the fixed-set size procedure, rather 

than choosing the one item that provides the maximum information for the examinee, 

the item would be randomly chosen from k items that would come close to 

maximizing this information function. This could be continued for the first 5 or so 
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items. One important thing to remember is while that the larger value of k, the more 

random the sequence of items administered, but also the larger the loss of precision. 

Another version of this method is to use a shrinking set size. For this method, the first 

item would be randomly chosen from k items that come close to maximizing the 

information function at that ability level. For the succeeding items, k would be 

reduced by some increment until each item administered was the best item at that 

ability level. 

 2.2.2.2 Step 2 – The continuation rule. After the examinee responds to the first 

item, the adaptive algorithm usually begins. Using the parameters of the IRT model, 

the computer now administers items based on the examinee’s previous pattern of 

correct/incorrect responses. There are two decisions that must be made: how to score 

the responses and how the next item is chosen for administration (Embretson & 

Reise, 2000). Thus, after the first item is presented, there are also multiple methods 

for choosing the succeeding items. Before detailing these methods, some important 

issues should be discussed. 

 All of the methods described in this section choose the single “best” item at 

each stage for administration. However, while there are multiple psychometric 

methods for item selection, there are other item selection constraints that should be 

considered. The first, most obvious constraint that must be applied to the testing 

algorithm is that no item, though it may be the best item, should be given to the same 

examinee twice. Another issue that can be dealt with through item exposure 

constraints is that the methods listed below tend to choose items with high 
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discrimination values. This results in overexposure of those items in comparison to 

items with lower discrimination values. The third constraint that should be 

considered, which is especially important in the achievement/aptitude testing fields, is 

placed upon item content. It is very important in these fields that a certain number of 

topics are covered on the test to ensure a broad enough measure of a person’s 

proficiency in that domain (Thissen & Mislevy, 2000). Many studies have been 

conducted that look at item exposure constraints (see, Stocking and Swanson, 1993; 

Kingsbury & Zara, 1991; Theunissen, 1986). 

The choices available for how to score responses on items include Maximum 

Likelihood Estimation (MLE), Maximum A Posteriori (MAP), and Expected A 

Posteriori (EAP). As mentioned in the previous section, MLE is not ideal when all 

items have been answered correctly or all have been answered incorrectly, thus MLE 

cannot be used for scoring responses until an examinee has gotten at least one item 

correct and one incorrect. Bock and Mislevy (1982) found that EAP can be used to 

avoid this problem when scoring examinees, because this algorithm allows the 

estimation of examinees’ trait levels based on just one response by using prior 

information distributions. Some researchers disagree with the use of prior information 

due to the possible effect the prior information might have on outcome scores, like 

regression toward the mean when a limited number of items are administered 

(Embretson & Reise, 2000).  

 Dodd (1990) discussed another method for overcoming this problem. In this 

step-wise method, the responses on the initial items are not scored. Rather, a 
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particular step-size, or change in difficulty level, is chosen (e.g., increments 0.25). If 

an examinee gets the item incorrect they are given an item chosen randomly from the 

item pool with a difficulty level 0.25 less than the current item. If they answer 

correctly, they receive an item with a difficulty level that is increased by 0.25, thus, 

starting the test with a more pyramidal-type testing system. After enough have been 

administered, the MLE method can then be used to begin estimating an examinee’s 

score after each item. 

 One of the earliest versions of a maximum likelihood approach to adaptive 

testing was proposed by Urry (1977). In this method, at each stage of the test, the next 

item to be selected was chosen by matching the item ability level to the item 

difficulty level. Another early version of a maximum likelihood approach was 

proposed by Lord (1977). The Broad Range Tailored Test (BRTT) utilized MLE to 

estimate the examinee’s ability level after each item. The closest discrete ability level 

to this estimate is located, and the first unused item in the sorted list that corresponds 

to this ability level is administered. These MLE approaches do not always yield the 

maximum information at θ̂  (Weiss, 1982). Thus, the maximum information approach 

was proposed for this process. 

 The maximum information approach corresponds to the MLE approach for 

estimating examinee score by choosing the item that provides the most information at 

the current estimate of ability. When unconstrained, this approach selects an item i 

that maximizes the item information (see Equation 2.12) evaluated at the provisional 

proficiency estimate for examinee s after n preceding items. 



 43
 

( ) ( )[ ]
( ) ( )[ ]{ }sisi

si
si PP

PI
θθ

θ
θ ˆ1ˆ

ˆˆ
2'

−
=  ,                       (Eq. 2.12) 

where sθ̂ = the provisional proficiency estimate for examinee s, 

 ( )siP θ̂  = the probability of a correct response to item i, and 

 ( )siP θ̂'  = the first derivate of ( )θiP  with respect to θ  evaluated at θ̂ . 

Thus, the next item is chosen that will maximize this equation. As with MLE, this 

approach fails when no finite value of θ  exists (usually due to perfect or zero scores). 

This procedure is computationally burdensome, but very efficient (Thissen & 

Mislevy, 2000). 

 A less efficient, but also less computationally burdensome approach uses an 

Info Table, which lists all items and their information at a number of proficiency 

levels scanning the continuum of proficiency scores. This approach chooses the item 

that maximizes information for proficiency levels at or around the particular scores 

listed in the table. Equation 2.12 is used to calculate the information for each item at 

each of the predetermined values of θ , and these values are then listed in the Info 

Table (Lord, 1980).  

 Another approach, the Bayesian or maximum expected precision attempts to 

minimize the standard error of the examinee’s expected posterior. This approach is 

most often accredited to Owen (1975). Through this method, the posterior distribution 

of θ  after n preceding items is calculated after each stage of the test. The selection of 
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the next item to be administered is based on maximizing the expected a posterior 

precision: 
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where u = the response to item i, 

 sn = the information available for the person on all preceding items, 

 un = the vector of responses to items 1 through n, and 

 p(θ |un) = the posterior distribution of θ . 

 In a group of simulation studies, Vale (1975) compared several adaptive 

testing strategies as well as two conventional test designs. In his study, in terms of 

test information throughout the normal range of ability, he found the fixed-length 

Bayesian strategy superior to all other testing strategies (as cited in McBride, 2001b). 

 Jensema (1974) conducted a simulation study comparing the fixed- and 

variable-length Bayesian adaptive format. He found that, in the fixed-length tests, the 

magnitude of fidelity coefficient was a function of the discriminating power of the 

items, while in the variable-length tests, this coefficient was determined by the target 

posterior variance. McBride and Weiss (1976) examined the role that the relationship 

of difficulty and discrimination parameters played in variable-length Bayesian 

adaptive testing. They found that when these two parameters were positively 

correlated, the test length decreased as ability level increased. For negatively related 

difficulty and discrimination parameters, they found the opposite: test length 

increased as ability level decreased (as cited in McBride, 2001b). 
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 The maximum information approach and the maximum expected precision 

approach do not always yield the same results (Embretson & Reise, 2000). Many 

CAT systems are hybrids of these methods. Many of the currently used CAT systems 

use Owen’s EAP method for estimating θ  after each item and use maximum 

information for item selection (Thissen & Mislevy, 2000). 

 After a starting and continuation rule has been decided upon, a stopping rule 

must also be chosen. I will now outline some possible stopping rules. 

 2.2.2.3 Step 3 – The stopping rule. The final decision that has to be made 

when designing a CAT algorithm is what criteria to use to end the test. The stopping 

criterion is usually a predetermined number of items, a predetermined time limit, a 

desired level of measurement precision, or a combination of any of these (Wise & 

Kingsbury, 2000). At the most basic level, a mixture of measurement precision and 

limited number of items must be used, otherwise, a examinee could exhaust the entire 

item pool without reaching the desired precision level (Thissen & Mislevy, 2000). 

 Using the fixed test length method, that is a predetermined number of items, 

has some advantages over the other methods. First, it is easy to implement. Second, 

item usage rates can be more easily predicted. However, this comes at the price of 

measurement precision. Using this method allows for varying degrees of 

measurement precision, and this variability should increase the farther from average a 

person’s proficiency score is. Simulation studies can look at this effect of test length 

on measurement precision for any given set of items (Thissen & Mislevy, 2000). 
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 When the chosen stopping rule is a particular level of measurement precision, 

the test administrator can choose any level of precision. This results in a variable 

number of items each examinee might encounter, but a constant measurement 

precision across all ability levels (McBride, 2001a). In the maximum information 

framework, this precision would be reached when a target response pattern 

information is reached. In the EAP or MAP framework, this target is reached based 

on the target posterior precision. Simulation studies can be conducted to determine 

the expected length of a test necessary to reach this precision for examinees at various 

proficiency levels.  

This stopping method has one major advantage—by measuring all examinees 

to the same level of precision, the data then conforms to the traditional test theory 

assumption of equal measurement error variance (Thissen & Mislevy, 2000). As well, 

Bock and Mislevy (1982) found that when using the EAP-based stopping rule, the 

reliability of the estimates is the same for all examinees, as long as enough items have 

been administered. 

 The third method, a fixed time limit, seems only to be appropriate for speeded 

tests. For power tests, choosing this method alone can defeat the purpose of the test 

(Thissen & Mislevy, 2000). Yet, this method is used in most standardized CATs. 

Typically, the predetermined amount of time allowed is based on previous studies 

that allow for the majority of examinees to finish the exam. As well, with most CATs 

used for achievement or aptitude testing, all examinees have the potential to receive 
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the same number of items, but are limited in the amount of time in which they have to 

complete the test.  

 It should be noted that the method used to estimate the final proficiency score 

need not be the same method that is used throughout the test to estimate current 

proficiency level in order to select the next item. Though there are some definite 

advantages (better stability in estimates and better use of available information during 

testing) to using the Bayesian estimators, rarely do the final estimates from an MLE 

method and a Bayesian method differ significantly. This is found to be especially true 

after at least 20 items have been administered (Thissen & Mislevy, 2000).  

2.2.3 Previous Research on CAT 

 Since its inception, CAT has been the focus of much research in the field of 

testing and measurement. Its advantages over other testing methods make it a prime 

target for researchers. Here I will outline some of this recent research on this testing 

method including research comparing CAT to other computer based testing designs, 

research comparing IRT models within CAT, research on other testing algorithms, 

and research on practical issues within computer adaptive testing. As well, probably 

some of the most large scale research that has been conducted on CAT that has been 

by the military in developing a CAT-ASVAB (Armed Services Vocational Aptitude 

Battery) will be discussed (Sellman & Arabian, 2001). 

 2.2.3.1 Technical issues within CAT. Earlier in this chapter, methods for large 

scale testing were outlined and discussed. As well, technical issues dealing with the 

role of IRT in CAT and the algorithms used in CAT were discussed. A few studies 
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have been conducted directly comparing CAT with other methods for computer-based 

testing. As well, some studies have been conducted comparing IRT models and 

various testing algorithms within the CAT framework. Here I will discuss some of 

these studies. 

 Jodoin (2005) compared the linear fixed (LFT), multi-stage (MST, Luecht & 

Nungester, 1998), and adaptive (CAT) computer-based testing methods under varying 

levels of item pool quality, test length, and exposure control expected. He conducted 

a simulation study looking at multiple indices of unconditional measurement 

precision. The LFT design is a computer-based version of a P&P test. Items are 

delivered in the same order, one at a time, and can be skipped and returned to later in 

the testing session. The MST design is similar to the two-stage branching design 

discussed earlier. Blocks or modules of items are administered to the examinee, then, 

based on their performance on that block of items, the examinee is directed to another 

module of easier items, harder items, or items of the same difficulty level. Thus, 

unlike CATs, the test is adapted after a collection of items is administered. Similar to 

CATs, where item exposure rates are partially dealt with through creating items that 

are matched on content and statistical specification, MSTs deal with item exposure 

rates through matching modules on content and statistical specification. MSTs 

provide a balance between LFTs and CATs in that they allow a examinee to return to 

items within a module before moving on to the next module (Jodoin, 2005).  

In his comparison of these three designs, Jodoin (2005) found that test 

reliability was uniformly high (.91 to .98) across all conditions; test reliability was 
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highest for CAT, second highest for MST, and lowest for LFT. Within test designs, 

more stringent exposure control resulted in lower reliability. He also found in the 

simulations that to gain comparable reliability as a CAT, the LFT design needed to be 

over twice as long.  

 Lu and colleagues (2003) conducted a simulation study comparing the 1-, 2- 

and 3-PL IRT models between CAT and P&P testing formats, with or without set 

trimming (that is, removing items from the CAT item sets that exhibited poor model-

data fit and those that differed from other items within the set in difficulty). They 

reported a reliability of 0.85 for the P&P test. When compared to the CAT with and 

without trimming the reliability for the three IRT models increased from the 1-PL 

model (0.78 for both CATs) to the 2-PL model (0.84 with trimming vs. 0.83 without 

trimming), and then leveled out at the 3-PL model (0.85 with trimming vs. 0.84 

without trimming). These findings suggest that the 2-PL model is the most 

parsimonious model; the 2-PL model is much more reliable than the 1-PL model, and 

the increase in reliability with the 3-PL model is not large enough to justify adding a 

third parameter to the model. Other findings from this study include a great reduction 

in bias through set trimming, consistent exposure rate frequencies across the three 

IRT models, very little difference in exposure rate frequencies between trimmed and 

non-trimmed sets, slightly better measurement precision through set trimming, and 

fewer violations of content constraints through non-trimming. 

 Deng and Ansley (2003) conducted a simulation study that compared the item 

usage and test efficiency of four item selection algorithms used in CATs. The four 
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methods they examined included: the maximum Fisher information procedure (F), the 

a-stratified multistage CAT (STR), a refined stratification procedure that allows more 

items from the high a strata and fewer items from the low a strata (USTR), and a 

completely random item selection procedure (RAN). They compared these methods 

over multiple conditions that varied the level of exposure constraints, the test lengths, 

and the target maximum exposure rates. They found that RAN yielded the best item 

usage, yet had the lowest test efficiency, over most conditions. Under no item 

constraints, F proved to be more efficient that STR and USTR, but had poor item 

usage. USTR resulted in lower error variances over STR with little compromise in 

item usage. USTR also improved item usage with comparable efficiency when 

compared to F under certain circumstances: the exposure control only condition, long 

tests, or a stringent security criterion. 

 Many adaptive tests use a method of content balancing within the item 

selection algorithm to account for topics to be covered within the test. Davey (2005) 

presented an alternative to this method—bin-structured item selection. This process 

requires first constructing equivalence classes, or item bins. These bins contain items 

that meet the same criteria for content constraints and thus can be interchanged with 

other items in the bin to meet requirements of content coverage without over 

exposure. Then, the test is designed by selecting one item from each bin. The number 

of bins necessary is equal to the number of each type of item that fulfills each desired 

item type.  
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Davey (2005) outlined five advantages to the bin-structured design over 

typical CAT designs. (1) Bin-structured pools are simple and straightforward. (2) Test 

sequencing can be constant across examinees. (3) Bins do not interact with one 

another; thus, item enemies can be put in the same bin and then do not become a 

problem in test administration. (4) Exposure rates can be made analytically rather 

than empirically. (5) Finally, bin-structured pools allow for simplified item pool 

development, as a result of more predictable test outcomes due to the above-

mentioned advantages. If built correctly, the bin-structured design allows for a more 

appropriate and balanced sampling of the domain. Thus, with this sort of design, 

items are chosen from within previously decided upon bins, but are still adapted to 

the ability level of the examinee. 

 2.2.3.2 Practical issues within CAT. The previous section outlines some 

studies that have been completed examining various technical issues with computer 

adaptive testing. Now, I will outline some studies that have been done on the more 

practical side of computer adaptive testing, such as scale stability over time, racial 

bias within testing, and the effects of guessing on test scores. 

 One of the issues in any large scale testing program is that of scale stability 

over time. Guo and Wang (2003) conducted a study using both real data and 

simulated data to detect scale drift that might result from errors in item calibration 

and parameter scaling procedures over time in CAT. If the scale does drift over time, 

the original interpretation of scores may become invalid. In the real data portion of 

their study, Guo and Wang found little drift from the first administration to the 
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second when looking at the ICCs, implying little change in item performance between 

the two time points. When looking at the items’ RMSDs, they found very little 

change in performance over a 20-month period. At the test level, they did, however, 

find the test to be slightly harder at the second time point, though this difference was 

not significant. Guo and Wang had similar findings from the simulation portion of 

their study. Their simulated sample of examinees scored slightly lower at the second 

time point suggesting the first test was harder. They found slight negative bias from 

time point 1 to time point 2.  

 In 2003, Freedle argued that the SAT’s known bias toward white males could 

be overcome by scoring only the harder questions on the test. His theory followed the 

controversial idea that while, African Americans and other minorities tend to score 

lower overall on high-stakes tests, such as the SAT, they tend to score equal to, if not 

better than, their White counterparts on the more difficult questions on these tests. 

Bridgeman and Burton (2005) challenged this claim through a real data study of the 

SAT. They identified a sample of students who took the CAT SAT in May of their 

junior year of high school and then again in November of their senior year. When 

looking at the students who scored in the 200-400 range (out of 800) on the verbal 

section, and then only scoring the hard items on the test (which they called the SAT 

Hard Test), they found a test-retest reliability of only .07, suggesting that low scoring 

examinees ability on harder items is a product of random guessing. They also looked 

at the rate of minority students who scored above a 600 on the regular test and those 
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who scored above a 600 on the Hard Test. The number of students scoring above 600 

only increased by less than 1% when scoring the Hard Test only. 

 Bridgeman and Cline (2004) conducted a study that examined the impact of 

guessing on the final items of a CAT due to time constraints. In their study, they 

inspected the results from examinees who took the Graduate Record Examination 

Analytical section (GRE-A). They found that not only did examinees whose tests 

ended with a string of guesses result in lower test scores for those examinees, but that 

examinees with higher ability levels tended to receive items which required more 

time to complete. This forced these examinees to guess on their final questions, 

resulting in lower scores. Thus, examinees who received more time-consuming items, 

earned lower scores than examinees with equal ability levels who received less time-

consuming items. They found that taking the examinees estimated ability level after 

29 items was more accurate than accounting for all 35 items that were administered 

on the test, thus reducing the effect of guessing on the final items due to time 

constraints. They found that 3.4 to 34% of examinees had over a 0.5 drop in their 

theta level due to guessing on the last 6 questions. This suggests that these additional 

items “add more noise than signal (p. 144)” to the estimate of theta for examinees. 

 2.2.3.3 Research and development of the CAT-ASVAB. Some of the most 

notable research done in the field of computerized adaptive testing was conducted by 

the United States military beginning in the late 1970’s. A series of studies, both 

empirical and simulated will be discussed now. 
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 In the early 1980’s, the first adaptive tests were administered to military 

recruits. McBride and Martin (1983) conducted an empirical study to test the 

feasibility of CAT-ASVAB in the recruit population, and to substantiate the 

theoretical advantages of adaptive testing. In their study, recruits were given either a 

50-item conventional ASVAB test, or a 30-item adaptive test, which used a Bayesian 

sequential adaptive testing procedure to select subsequent items. After receiving their 

respective tests, recruits were also administered a criterion measure. McBride and 

Martin found that the adaptive tests had considerably higher alternate forms reliability 

when the only looking at the first 5 to 20 items administered. At the longer test 

lengths, the difference in reliability was reduced dramatically, but the adaptive tests 

still had slightly higher reliability. 

 Moreno and colleagues (1983) conducted a study comparing a battery of 

adaptive tests to their conventional ASVAB counterparts. In this empirical study of 

over 300 Marine Corps recruits, a factor analysis of the data demonstrated that all 

three tests in the CAT battery behaved the same as those in their conventional 

ASVAB counterparts. The loadings on the CAT tests were almost identical to the 

loadings on the factors derived from the P&P conventional version (as cited in 

McBride, 2001c). 

 McBride, Wetzel and Hetter (2001) summarized a series of simulation studies 

that looked at the role of the size and characteristics of the item banks as well as the 

distribution of ability for choosing the best item selection strategy. In the first study, 

they evaluated whether the mathematical strategies maintained their superiority in 
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conditions characterized by realistic errors in item parameter estimates. In this study, 

data for a conventional peaked test, Bayesian sequential algorithm, a hybrid Bayesian 

algorithm and the stratadaptive procedure were compared on the test information 

provided at each level of ability. The Bayesian hybrid algorithm utilized the Bayesian 

estimation procedure to estimate an ability score after each item, but the next item 

was chosen by selecting an item that best matched this ability level from an 

Information Table of items (a method discussed in an earlier section). Each simulated 

test was 15 items long. The difference between the two Bayesian methods was 

minimal at all levels of ability. At the lower and higher ability levels, the TIF was 

much greater for every adaptive strategy when compared with the conventional 

peaked test. 

 The second study in this series compared refinements to enhance test security. 

As mentioned previously, test security could be breached if examinees learned the 

appropriate responses to items resulting in the same patterns of item administration, 

thus inflating test scores. Avoiding this predictability of item sequence, especially in 

the earlier items, might help to remedy this situation. Because of the results of the 

first study, the testing algorithm chosen for this study was the Bayesian hybrid 

algorithm. For this study, five fixed-set size item selection procedures (1, 5, 10, 20, 

and 40 items), and two shrinking set size procedures (“5-4-3-2-1” and “10-8-6-4-2”) 

were compared. Again, the TIFs for each test type were compared. Though the TIF 

patterns across the entire range of ability levels were similar; the 40-item, fixed-set 

size resulted in the lowest TIF, followed by the 20-item, fixed-set size, and then the 
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10-item, fixed-set size. The shrinking set sizes and 5-item and 1-item, fixed set sizes, 

resulted in almost identical TIFs.  

 The third study summarized by McBride, Wetzel and Hetter (2001) examined 

the differences between fixed- and variable length tests. In this study, they compared 

the final test lengths of two variable-length tests stopped with a stopping criterion of a 

Bayes posterior variance equal to .0638 and .0526 to a fixed-length test with 15 items 

over a simulated ability level range between -2.25 and +2.25. They found that the 

more rigorous stopping rule (.0526) resulted in an average test length between 10 and 

30. This stopping rule resulted in an average test length of less than 15 for ability 

levels from -2.25 to +1.75, with a steep increase in test length for higher ability 

levels. The less rigorous stopping criterion (.0638) had an average test length between 

10 and 30 as well. However, for ability levels below +0.25, the average test length 

was around 18; for ability levels between +0.25 and +1.75, the average test length 

dropped below that of the 15-item fixed-length test; and for ability levels above 

+1.75, the test length increased dramatically as ability level increased. 

 Overall the studies conducted by the CAT-ASVAB R&D program reached the 

following general conclusions. First, mathematically complex strategies are more 

reliable and efficient than simpler, mechanical strategies. Second, the Bayesian 

sequential and maximum likelihood procedures are equally efficient, but each comes 

with its own technical problems. Third, these technical problems can be overcome 

using a hybrid technique combining the best properties of both. Fourth, this hybrid 

technique has its own issues when dealing with test security. Thus, the shrinking-set 
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size procedure should be used in conjunction with this hybrid strategy. Finally, the 

variable-length test yields the same efficiency as a fixed-length test overall, and is not 

overly advantageous. Thus, a fixed-length test can be used (McBride, Wetzel, & 

Hetter, 2001). 

 Another test that has been converted into a CAT format is the Abstract 

Reasoning Test (ART, Embretson, 1995, 1998). The next section will discuss this test 

in further detail. 

2.3 Abstract Reasoning Test 

 The Abstract Reasoning Test (ART, Embretson, 1995, 1998) was developed 

as a non-verbal measure of reasoning ability. The test is similar in form to the 

Raven’s Advanced Progressive Matrices (RAPM, Raven, 1962, 1976) test, which is 

considered one of the best measures of general intelligence (Prabhakaran et al., 1997; 

Carpenter, Just, & Shell, 1990; Burke, 1958). Before getting into the details of the 

ART, I will define intelligence and introduce other similar matrices tests. 

2.3.1 What is intelligence? 

 Since the early 1900’s, measuring the construct known as intelligence has 

become a major focus for some researchers. Even as far back as the philosophers of 

ancient Greece, people have asked the questions: What is intelligence? How can a 

person become more intelligent? And, finally, how can we measure the level of a 

person’s intelligence? Without a strong definition of the construct, we can hardly 

begin attempting to develop measurements of intelligence. Thus, we must first look at 

the definitions of this construct. 
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 Some researchers have defined intelligence unidimensionally. Thorndike and 

colleagues (1927) defined intelligence as the ability to give responses that are true or 

factual. Colvin (1921), Pintner (1927), and Thurstone (1938) all defined intelligence 

in terms of an ability to adapt to new information or new experiences in a productive 

manner. Henmon (1921), Woodrow (1921), and Dearborne (1921) defined 

intelligence as the ability to acquire information or the capacity to which a person 

could acquire information. Terman (1916) defined intelligence in terms of the ability 

to carry on abstract thinking. Finally, Raven defined intelligence as the ability to 

reason by analogy from awareness of relations between experienced characters 

(Burke, 1958). 

 Other definitions of intelligence have taken a more factorial approach. 

Spearman’s (1927) factorial model of intelligence gave way to a hierarchy of factors. 

At the top stratum, Stratum I, is general intelligence, with the following specific 

factors at Stratum II: fluid intelligence, crystallized intelligence, general memory and 

learning, broad visual perception, broad auditory perception, broad retrieval ability, 

broad cognitive speededness, and processing speed. Each of these factors in Stratum 

II is divided into even more specific abilities. Thurstone (1938) divided intelligence 

into seven “primary mental abilities”: verbal comprehension, verbal fluency, 

numerical reasoning, spatial visualization, memory, reasoning, and perceptual speed. 

Guilford (1982) proposed that there are 150 possible factors to human intelligence—

each composed of some degree of each of three categories: operation, content, and 

product.   
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 In 1936, Raven set out to design a test to measure such a construct. His 

purpose was to develop a test that was easy to administer and interpret and was not 

dependent upon language development. The result, the Raven’s Progressive Matrices 

(RPM) scale was developed to measure eductive ability, which is one of the two main 

components of general cognitive ability, according to Spearman (1927). Eductive 

ability is the ability to make meaning out of confusion, to generate high-level 

schemata making it easy to handle complexity. This ability is at the center of 

Guttman’s radex of intelligence and has been found to mediate between verbal, 

numerical, and spatial abilities (Raven, 2000). Other tests similar to the RPM and 

Raven’s Advanced Progressive Matrices (RAPM) have been designed to measure this 

non-verbal reasoning ability (e.g., Naglieri & Das, 1997; ART, Embretson, 1995, 

1998). 

2.3.2 Measures of Intelligence 

2.3.2.1 Raven’s Progressive Matrices. Most researchers agree, RPM is 

considered to be one of the best measures of general cognitive ability (g). It can be 

administered to large numbers of people and used for guidance purposes, clinical 

practice, and many research settings (Ward & Fitzpatrick, 1973). Due to its nonverbal 

attribute, it is also considered to be one of the only measures of g with a low level of 

culture-loading (Arthur et al., 1999). The RPM scale correlates between .4 and .7 with 

other measures of intelligence, and occurs as an independent variable or covariate in 

multiple experimental studies of cognitive ability (Hunt, 1974). 
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Hornke and Habon (1986) attempted to identify rules that could be used to 

solve items from the RPM. They devised the following rules: identity, addition, 

subtraction, intersection, unique addition, seriation, variation of closed Gestalts, 

variation of open Gestalts, separated components, integrated components and 

embedded components. They used the rules to build a pool of items similar to the 

RPM item pool.  

Carpenter and colleagues (1990) simplified Hornke and Habon’s rules into 

five that could be used, together or separately, to solve most RPM items. Those rules 

include: identity, progression, figure addition or subtraction, distribution of 3 and 

distribution of 2. The first rule, identity, is defined by having a constant object or 

attribute across a row and/or a column (see Figure 2.3a). The second rule, 

progression, occurs when there is an attributal increment or decrement (change in 

size, number, shading, position, etc.) occurring between adjacent entries across a row 

or down a column (see Figure 2.3b). Figure addition or subtraction occurs when a 

figure from the first entry is either added to or subtracted from an adjacent figure to 

make the third figure in the row or column (see Figure 2.3c). Distribution of 3 exists 

when three values from a categorical attribute (figure type, fill color, etc.) are 

distributed throughout every row and column (see Figure 2.3d). The final rule, 

distribution of 2, occurs when one value from a categorical attribute is found twice in 

a row and the third value is null (see Figure 2.3e).  
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_____________________________________________________________________ 

 

Figure 2.3. Examples of each of the five rules for solving RPM test items. 
 
_____________________________________________________________________
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In a study of performance on items of this type, Carpenter and colleagues 

(1990) found that processing of these items was an incremental task. They also found 

that error rates for individuals were affected by the number of rules necessary to solve 

an item. But, their results were unable to explain the wide variety of individual 

differences in performance on this test. In this same study, they found a relationship 

of r(43) = .77, p < .01, between error rates on the RPM and error rates on the Tower 

of Hanoi puzzle. The errors on both were related to the load on working memory to 

solve the particular item or puzzle. A larger number of errors were made on items 

involving multiple rules or multiple occurrences of the same rule on the RPM. 

Additionally, a larger number of errors were made when there were more moves 

involved in solving the puzzle. This research suggests that not only is the RPM a 

measure of general intelligence or cognitive ability, but it is also a measure of the 

ability to generate and maintain goals in working memory. Based on their findings, 

they proposed two possible sources of individual differences: working memory and 

abstraction complexity. 

While Carpenter and colleagues were unable to find a definitive source of the 

individual differences exhibited in their study, Verguts and De Boeck (2002) 

proposed two factors of individual differences in problem solving ability on the RPM. 

The first factor was the number of rules the examinee has cognitively available at any 

point in the test. The second factor was the working memory load, or number of sub-

routines the examinee can store simultaneously. Rules used early in the test were 

usually found easily by the examinee and were then available for the rest of the test. 
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The test is commonly setup to become progressively more difficult, with the harder 

rules, more of the rules per item, and more abstract use of the rules, as the examinee 

nears the end of the test. Verguts and De Boeck found that learning effects played a 

role in solving problems of this type, that is, the more a person encounters a particular 

rule the easier problems with those rules become.  

2.3.2.2 Abstract Reasoning Test. Rather than applying these rules to already 

designed tests, Embretson (1998) was able to generate a bank of matrix items (she 

called Abstract Reasoning items) through cognitive design system theories using 

Carpenter and colleagues’ research on these tests. The cognitive design system 

approach uses both conceptual and procedural information as a framework for 

interfacing item design principles with test validity. She utilized this method to design 

items similar to those found on the RPM using the five rules defined by Carpenter 

and colleagues. Embretson found evidence to support the proposed sources of 

individual differences, working memory load and abstraction complexity. Embretson 

designed her item pool to maximize the use of rules individually as well as in 

combination with other rules. As a result, she found that working memory load was a 

function of the number of rules necessary to complete the item. She also found that 

the abstraction complexity load stems from relationships involving null values 

(distribution of 2 rule), relationships based on attributes rather than objects, and the 

distortion of corresponding objects. 
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2.4 Conclusion 

 In this review of the literature, it is apparent that computerized adaptive 

testing has been a major emphasis in testing and measurement research, especially 

since the late 1970’s. While multiple research projects examining issues in CAT were 

summarized in this paper, the most notable research was conducted through the 

United States military that produced the largest working CAT in use today. As well, 

many ground-breaking findings were brought about through this research. These 

findings should be put to use when developing a computerized adaptive testing 

program in any field (be it educational, psychological, or medical). This body of 

research also lends itself to many more questions that need to be answered in future 

CAT research endeavors. 

The purpose of this study was to look at the affects of test taking strategies on 

outcome scores in computer adaptive tests. To examine this issue, two studies were 

conducted. The first was an empirical study looking at real world differences that 

might occur due to instructional differences. The second study was a series of 

simulation studies that looked at the stability of testing algorithms at different ability 

levels over different test lengths. 
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3. Study 1 

 In Study 1, differences in trait estimates due to varying levels of test 

information given prior to an examinee was examined by administering a computer 

adaptive test with three different sets of instructions. It could be hypothesized that the 

amount of information an examinee has on how a test is scored and administered 

should improve their performance on the test. Also, it could be hypothesized that an 

increased amount of information on how an examinee could improve his/her score 

should result in a higher score.  

Schaeffer and colleagues (1998) conducted a study that demonstrated that the 

test taking strategy described in Chapter 2 (spending more time on and attention on 

the first items) worked on the earlier scoring methods used by the CAT-GRE. Under 

what was called the 80% scoring method, scores were based only on the first 80% of 

the test so examinees were not punished for not finishing the test. This resulted in 

inflated estimates for examinees who spent more time on the beginning items. As a 

result, the CAT-GRE was changed to use the proportional scoring method which 

allows for not finishing the test to factor into an examinee’s final estimate. 

 Other research has shown that an examinee’s score on a test is a result of not 

only the ability level of that examinee on the content of the test, but also motivation 

and anxiety levels. Powers (2001) compared test anxiety and confidence differences 

between the GRE-CAT and the traditional P&P GRE. He found no significant 

difference between the two testing methods on multiple anxiety and confidence 

measures. Vispoel (1998) found that feedback on a test results in better scores for 
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examinees with higher levels of test anxiety. Shermis and Lombard (1998) found that 

test anxiety significantly lowered performance on a computer-based math and reading 

placement test. Kim and McLean (1995) found that test motivation reduced test 

anxiety and improved estimate ability.  

In this study, the impact of instructions about the testing procedure and about 

how to improve scores was examined, using an experimental procedure.  Examinees 

were randomly assigned to a control condition (i.e., standard instructions), a condition 

with additional testing-procedure information, or a condition with additional test-

taking strategy information. Differences in final theta estimates were compared 

between the three groups, taking into account possible confounding effects of prior 

CAT experience, to test the two hypotheses outlined above. Due to the nature of a 

computer adaptive test, another hypothesis that was tested was that there would be no 

significant difference in proportion of items answered correctly between the 

conditions. Finally, it was hypothesized that the more information an examinee is 

given prior to the test, the longer it will take them to read the instructions. 

3.1 Methods 

3.1.1 Participants 

 Participants were college students participating for credit in an introduction to 

psychology course at a large Midwestern university. Because the population of 

interest is college age adults who would be likely to take a high-stakes tests (for 

admission to college, or graduate school, or other post graduate programs), the 

participant pool was expanded to include students from junior level classes (statistics 
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in psychology, upper-level English and linguistics classes). Students from these 

classes participated for extra credit in their respective courses. The participants were 

randomly assigned to each of three conditions (n1 = 71, n2 = 64, n3 = 71).  

3.1.2 Materials and Apparatus 

 3.1.2.1 Item Pool. A pool of Abstract Reasoning Test (Section 1.3) items was 

used for this study. The item pool consisted of 150 items, 30 sets of 5 items each. 

Each set of items was generated following a design template that designated which 

and how many of each rule would be used to create the item set. As discussed in the 

previous chapter, these rules include Identity, Addition/Subtraction, Progression, 

Distribution of 3, and Distribution of 2. The items were randomly generated based on 

these designated templates. This resulted in items with difficulties ranging from -3.39 

to +3.54. Each item was a 3 x 3 matrix, with 1 correct answer and 7 distractors, 

similar to the example in Figure 3.1.
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Figure 3.1.  Example Abstract Reasoning Test item similar to those created for Study 

1. The correct answer is 3. 

 

 3.1.2.2 Testing Program. A computer adaptive test version of ART was 

developed using a trial version of FastTEST Professional version 1.6 (Assessment 

Systems Corporation, 2002). This program allowed for many testing algorithm 

choices. Based on these choices, the design of the test used is described next.  

 For this study, Maximum Likelihood Estimation (discussed in the previous 

chapter) was used with a 1-PL model. Each examinee received 25 items and had a 35-

minute time limit to complete the test. Only one participant did not complete the test 

in the allotted time. Through pilot testing, it was found that assuming an average 
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initial theta value resulted in the administration of the same first item for all 

examinees. Though test security issues were not of interest for this study, they are 

very important in the field of testing. Thus, the program was set to randomly choose 

an initial theta value between -1.00 and 1.00. The fixed set size starting rule discussed 

in the previous chapter was used to help deal with over item exposure rates for test 

security purposes. For the first 10 items of the test, the item administered was selected 

randomly from the 10 items that gave the most information at the current estimate of 

theta. 

 Items were displayed individually on the screen. Participants were not allowed 

to return to items they had already answered, and they were forced to choose an 

answer before moving on to the next item. The mouse was used to select their answer 

and to move on to the next item (as discussed in more detail later). Instructions and 

other pertinent test information were presented prior to the items, and a thank you 

screen was presented when the test was completed. The amount of time left on the 

test was visible on the computer monitor, however the item number was not. The 

exact procedure and instructions are discussed next. 

3.1.2.3 Instructions. Every participant received the same adaptive test (though 

the items administered varied based on ability level and response pattern). The only 

difference between the three conditions was the instructions the examinee received. 

The entire set of instructions, including example problems and the rules are available 

in Appendix A. Each of the instructions particular to a specific condition are outlined 

next. 
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Participants in Condition 1 were told only that they were taking a computer 

adaptive abstract reasoning test:  “This is a computer adaptive test that measures your 

ability to reason on a nonverbal matrix completion task… You will not be allowed to 

skip any items or return to any items you have already answered.” 

 Participants in Condition 2 were told that they were taking a CAT-ART, and 

were briefly told how a CAT procedure adapts to the test takers performance. These 

instructions were as follows: 

“This is a computer adaptive test that measures your ability to reason on a 

nonverbal matrix completion task… A computer adaptive test "adapts" itself 

to test takers by selecting the next item to be presented on the basis of 

performance on preceding items.  This means that each item you receive on 

the test is chosen from a large number of items and the choice is made based 

on whether you answered previous questions correctly or incorrectly.  This 

also means that the items you receive may not be the same items or they may 

not be given to you in the same order as others taking this test.  Because of the 

nature of this test, you will not be allowed to skip any items or return to any 

items you have already answered.” 

Participants in Condition 3 received the longest set of instructions. These 

instructions included the same explanation about how a CAT works (the paragraph 

above), but in addition the test taking strategy as taught by Kaplan for “beating” the 

computer adaptive GRE was explained as follows: 
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“One test taking strategy that you should keep in mind when taking this test is 

as follows... Because of the nature of a computer adaptive test, you will want 

to spend time and concentration on the first ten questions of the test.  The 

reason for this is that a computer adaptive test relies heavily on the first ten 

questions in determining your score.  This is because the computer knows 

nothing about your ability before you start the test.  Because of the short 

length of this test, the needs to use pretty big jumps in judgment in the first 

ten questions and then use the remaining questions to "fine-tune" your score.” 

 As stated above, the three conditions only differ in the extent to which a CAT 

is explained. What is shown here is only the parts that differ, the rest of the 

instructions can be seen in Appendix A. 

3.1.3 Procedure 

 The ART-CAT was installed on the computers in a free-use computer lab. All 

three conditions were run during each time slot and participants were randomly 

assigned to each condition. This was done by rotating which computers had which 

conditions and allowing the subjects to select the computer they took the test on. 

Because the log in screen looked alike for all conditions, the participants were 

unaware that there were multiple conditions to select from. 

 When the participants arrived, they were asked to have a seat at any computer, 

to read and sign a consent form, and to log in to the program on the computer. They 

were then given a brief description of the study, including a statement that the 

computer would present the test instructions.  They were also told that they could 
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summon the researcher if they had any questions before starting the test and that they 

should also summon the researcher when the test was complete.   

 Then, the participants logged in to the computer (with their name and ID 

number), the computer displayed the instructions page corresponding to their test 

condition. At the bottom of the instructions page, they had to use the mouse to click 

on the button stating that “by clicking this button you have given their consent to 

participate in this study.” Then, the participant needed to hit “Next” to move to the 

next screen. The next two screens presented the following two yes/no questions: 

 (1) Have you ever taken a computer adaptive test before? 

 (2) Have you ever taken a class (e.g., Kaplan, Princeton Review, etc.) to help  

prepare for a computer adaptive test? 

This provided information as to whether the participants had already been exposed to 

these test taking strategies. This information is especially important for the 

participants in Conditions 1 and 2 who did not receive instructions that included these 

test taking strategies.  

 Once the participants answered those questions, they were shown an example 

ART item. Next, they received a demonstration of each of the five rules and then they 

were shown the original example and asked to attempt to solve it. After attempting to 

solve the example item, they were shown the correct answer and how to apply the 

rules to that particular item. The reason for teaching the rules prior to the test was 

done to equalize the participants on the familiarity of knowledge necessary to succeed 

on the test. This is consistent with the high-stakes tests of interest, which measure 
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knowledge that the test takers should either possess or at least be familiar with 

through previous coursework or studying. These slides are presented in Appendix A. 

 Once they finished the instruction slides, the test was started. The clock on the 

screen was set for 35 minutes, and began counting down when the first item was on 

screen. They received 25 items. Each item appeared individually on the screen. The 

examinees used the left mouse button to select the alternative they believed to be 

correct, and then they used the left mouse button to select the “Next” button to move 

on to the next item.  

 Once they reached the end of the test, a thank you screen appeared. After 

which, they received their respective class credit (participation credit for introductory 

psychology courses, and extra credit for the other courses).  

3.2 Results 

 Analyses were conducted to determine if there were differences between the 

three conditions in overall performance on the CAT. Multiple versions of this 

outcome measure (MLE theta estimate, CTT percent correct, etc.) were investigated. 

To examine whether the instructions were read and/or followed, the amount of time 

spent on the instructions, the scored items, and the entire test were considered as 

outcome measures in these analyses. Unfortunately, due to the nature of the trial 

version of the testing program used, individual response time data per item were not 

available. The independent variable for these analyses was condition. Possible 

covariates examined were whether or not participants had attended a class that 
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covered how a CAT works and whether participants had taken a CAT. Due to the 

small sample size in this study, a more lenient alpha level (α = .10) was used. 

3.2.1 Descriptive Statistics 

 Prior to testing the hypotheses, descriptive statistics were run for the entire 

group of participants, and within each condition. These statistics can be seen in Table 

3.1. No variables were found to be significantly skewed or kurtotic. However, under 

the dependent variable, MLE theta, one outlier in each condition was found and 

deleted from the samples. Sample size slightly varied between groups, due to the 

randomization procedure. 

 As can be seen in Table 3.1, the three conditions differed little in proportion 

correct scores. This was to be expected with a CAT due to the nature of the 

procedure. It should also be noted that there was no noticeable difference in standard 

errors of the theta estimate. This suggests that the length of the test was appropriate to 

ensure stable measurement precision across conditions. These standard errors are 

similar to the resulting root mean squared error found at the end of the thirty-five item 

test simulated in Study 2. 

 As expected by the design of the study, it can be seen in Table 3.1 that the 

average amount of time spent on the instructions for the study differed little between 

Condition 1 and Condition 2. However, participants in Condition 3, on average, spent 

more time reading the instructions. This is consistent with the differences in length of 

the instructions between the conditions. This same pattern was seen when looking at 
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the amount of time spent answering scored items (that is, taking the actual computer 

adaptive ART). Tests for significant differences are discussed in the next section. 

A chi-square test of independence was conducted to examine the presence of 

participants within each condition who might have had prior exposure to computer 

adaptive testing. The breakdown within each question by condition is displayed in 

Table 3.2. As can be seen in this table, very few people had previous exposure to a 

CAT. The proportions of participants in each group are virtually equal across 

conditions. Also, neither of these variables was found to be significant covariates for 

the outcome variables of interest with p-values ranging between .427 and .975. As a 

result, they were left out of further analyses. However, it should be noted that given 

the small sample sizes, the true impact of these possible covariates may not have been 

uncovered. 
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Table 3.1 

Descriptive statistics for Study 1 (after removing outliers) 

  Condition 
DV Statistic 1 (N = 70) 2 (N = 63) 3 (N = 70) 
Proportion correct    
 Mean 

(SD) 
   .547 

   (.138) 
   .529 

   (.129) 
   .562 

   (.144) 
 Median    .560    .560    .560 
 Minimum    .200    .200    .300 
 Maximum    .800    .800    .800 
MLE theta    
 Mean 

(SD) 
   .983 

   (.958) 
   .863 

   (.904) 
  1.204 
   (.838) 

 Median   1.081   1.096   1.257 
 Minimum    -.919 -1.556   -.462 
 Maximum   2.932   2.445   3.268 
MLE theta standard error    
 Mean 

(SD) 
   .263 

   (.017) 
   .263 

   (.018) 
   .270 

   (.027) 
 Median    .256    .259    .261 
 Minimum    .244    .242    .247 
 Maximum    .314    .344    .392 
Total test time    
(in minutes) Mean 

(SD) 
20.204 

  (7.871) 
19.138 

  (6.683) 
22.722 

  (7.909) 
 Median 19.850 18.071 22.522 
 Minimum 10.138   7.075 10.454 
 Maximum 39.290 41.429 42.490 
Time for scored items    
(in minutes) Mean 

(SD) 
16.454 

  (7.483) 
15.368 

  (6.097) 
18.416 

  (7.686) 
 Median 15.736 13.663 18.061 
 Minimum   6.463   4.982   6.635 
 Maximum 35.461 35.390 35.471 
Time for instructions    
(in minutes) Mean 

(SD) 
  3.750 

  (1.245) 
3.770 

(1.072) 
  4.306 

  (1.100) 
 Median   3.525   3.794   4.253 
 Minimum   1.890 1.587   2.505 
 Maximum   8.839 6.039   9.095 
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Table 3.2 

Crosstabs analysis of the proportion of each sample (and number of participants from 

each sample) who answered yes/no to the questions regarding prior exposure to a 

CAT 

 
   Condition  
Question Answer 1 (N = 70) 2 (N = 63) 3 (N = 70) 
Have you ever taken a computer adaptive test before? 
 Yes .057 

(4) 
.079 
(5) 

.071 
(5) 

 No .943 
(66) 

.921 
(58) 

.929 
(65) 

Have you ever taken a class (e.g., Kaplan, Princeton Review, etc.) to help prepare for 
a computer adaptive test? 
 Yes .186 

(13) 
.222 
(14) 

.186 
(13) 

 No .814 
(57) 

.778 
(49) 

.814 
(57) 

 

3.2.2 Inferential Statistics 

 Two hypotheses were outlined above: 1) the amount of information an 

examinee has on how a test is scored and administered should improve their 

performance on the test; and 2) an increased amount of information on how an 

examinee could improve his/her score should result in a higher score when compared 

to examinee’s who only know how the test works. These hypotheses were examined 

for all dependent measures, proportion correct, MLE theta estimate, standard error of 

the estimate, time spent on the instructions and time spent on the scored items, 

through planned comparisons. The first compared Condition 1 (the control condition) 
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to Condition 2 and 3 combined, and the second compared Condition 2 (the how-a-

test-works condition) to Condition 3 (the how-to-beat-the-test condition).   

In examining the overall F-tests for each dependent variable, there were no 

significant differences between conditions in the percentage of items scored (F(2, 

200) = 1.027, p = .360). There was a significant difference found for each of the other 

dependent variables: time spent reading the instructions (F(2, 200) = 5.240, p = .006, 

partial-η2 = .050); MLE theta (F(2, 200) = 2.472, p = .087, partial-η2 = .024); and 

time spent on scored items (F(2, 200) = 3.128, p = .046, partial-η2 = .030). The results 

from the planned comparisons are discussed next.   

Two comparisons were made: 1) Condition 1 to Condition 2 and 3 combined; 

and 2) Condition 2 to Condition 3. For each of the differences reported as significant, 

Cohen’s d was calculated to give an estimate of effect size. Also, a 90% confidence 

interval was calculated and reported around this effect size. A summary of these 

findings can be seen in Table 3.3. 

For Comparison 1, the only significant difference was found on time spent 

reading instructions. Examinees spent significantly more time reading the instructions 

in Conditions 2 and 3 than those in Condition 1. This is consistent with the length of 

the instructions. For Comparison 2, Condition 2 was found to result in significantly 

higher values than Condition 3 on all dependent variables except for proportion 

scored as correct. As discussed in the previous section, no differences are expected 

for proportion correct on a computer adaptive test. Also, as expected given the design 

of the test, examinees in Condition 3 spent more time reading the instructions than 
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those in Condition 2. The findings for this dependent variable suggest that the 

participants were reading the instructions. Also, participants who received 

information on how to “beat” the test spent more time on test items than those who 

were only told how the test works.  Information on how to “beat” the test also 

resulted in higher estimates of theta and standard errors of theta than those who only 

received information on how the test works. This supports the claim that this test 

taking strategy does result in higher final estimates of ability.  

Table 3.3 

Planned comparison significance tests and effect sizes for each dependent variable. 

DV Comp. MD SEMD T df p d dUB dLB 
Proportion Scored Correctly       
 1 -0.002 0.040 -0.061 200 0.952    
 2 0.034 0.023 1.433 200 0.153    
MLE Theta         
 1 0.101 0.266 0.378 200 0.706    
 2 0.341 0.156 2.178 200 0.031 0.366 0.192 0.539
Theta SE         
 1 0.006 0.006 1.034 200 0.302    
 2 0.008 0.004 2.111 200 0.036 0.052 -0.122 0.225
Time on scored items        
 1 0.876 2.115 0.414 200 0.679    
 2 3.049 1.243 2.453 200 0.015 1.158 0.984 1.331
Time on instructions        
 1 0.576 0.338 1.705 200 0.090 0.281 0.133 0.428
 2 0.536 0.199 2.698 200 0.008 0.514 0.340 0.688

 

3.3 Discussion 

 In this study, real-world implications of different levels of information about 

the testing procedure were examined. The goal of this study was to add to the 

literature on how the amount of knowledge an examinee has about the testing 
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procedure impacts the testing outcome.  Examinees differed only in the information 

about the testing procedures, not the domain the test was measuring. Briefly, 

significant differences were found in the outcome measure of interest, especially 

between those who were told only how a computer adaptive test works, and those 

who were also given a strategy to improve their scores on a computer adaptive test. 

These findings are discussed below.   

 As expected, no significant difference was found between conditions in the 

proportion of items answered correctly. While this might seem contradictory to 

individuals who are unfamiliar with CAT principles, if there is a significant 

difference between any conditions on the theta estimate, proportion correct scores are 

still expected to be equal.  An adaptive test tends to bounce back-and-forth between 

items a person can and cannot answer correctly to attempt to narrow in on the items 

of a difficulty level that a person would have a 50/50 chance of answering correctly. 

Thus, it is not surprising that, on average, the participants answered correctly slightly 

more than 50 percent of the items they were administered regardless of their 

condition. 

 In agreement with the design of the study, it was also found that the longer the 

instructions were the more time participants spent reading the instructions. These 

results also were expected due to the difference in length between the instructions for 

the conditions. Condition 2 was longer than Condition 1 by one paragraph and 

Condition 3 was longer than Condition 2 by one paragraph. These results suggest that 

the participants were reading the instructions prior to taking the test. 
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 Significant differences were found in the final theta estimates between 

Condition 2, the testing procedure knowledge condition, and Condition 3, the test-

taking strategy knowledge condition. As can be seen in Table 3.1, theta estimates for 

Condition 3 were higher than those for Condition 2. This suggests that extra 

knowledge about the test procedure somehow improves performance on a test. There 

are at least two plausible explanations for this effect.  First, the differences could be 

due to motivational or anxiety issues, consistent with general findings on test anxiety 

(e.g., Powers, 2001; Vispoel, 1998; Shermis & Lombard, 1998; Cohen, 1998; Kim & 

McLean, 1995; etc.). That is, examinees may perform better on the exam because 

they feel more comfortable knowing a trick to “beat” the exam rather than assuming 

they will not do well. However, a second explanation is that the instructions changed 

the test-taking strategy, which then impacted CAT estimation. This is supported by 

the significantly greater amount of time spent on the test for the examinees in the test-

taking strategy condition. That is, the particular CAT algorithm used in the study 

might lend itself to inflated theta estimates if performance is better on the first set of 

items than if performance was consistent across items.  

 Something to note from these findings is that Condition 1, the control 

condition, mean estimated theta fell in between Condition 2, the testing-procedure 

knowledge condition, and Condition 3, the test-taking strategy knowledge condition. 

This suggests that having knowledge about the testing program’s procedure may, in 

fact, be detrimental to performance on the exam. Examinees in the first condition 

were told only that they were taking a computer adaptive test. Without any prior 
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knowledge, this could mean nothing to an examinee, and the information would be 

treated the same as if it were just part of the title of the exam. This suggests that there 

might be a motivational or emotional reaction affecting performance on this exam. 

Perhaps receiving information about how the procedure works, without receiving 

information about how to approach the procedure, increases anxiety, or decreases 

motivation. Elliot and Dweck (1988) found that children who received feedback 

about mistakes reacted in a learned helplessness manner. They believed that the 

mistake they had made implied a lack of ability. This is consistent with the findings 

of Study 1, in that students who are informed about how an adaptive test functions 

know that if they get an item wrong, they will get an easier item. In other words, if an 

examinee receives an easier item (especially early in the test were bigger jumps are 

made) he/she can assume that his/her answer on the previous item was incorrect. 

Thus, receiving an easier item could be interpreted by the examinee as proof of a lack 

of ability, resulting in less motivation for the remainder of the exam.  

Overall, these findings are consistent with current literature on test anxiety 

and motivation. As discussed earlier in this chapter, Kim and McLean (1995) found 

that increased test motivation improved test scores.  Shermis and Lombard (1998) 

found that lower anxiety scores were associated with better performance on both math 

and reading tests. Cohen (1998) found motivation to be associated with learning test 

taking strategies. Embretson (1992) found that strategy training improved 

performance on the spatial learning ability test (SLAT).  



 83
 
 The pattern of response time differences between the conditions further 

supports this explanation.  Small significant differences were found between 

Condition 2 and 3 in amount of time spent on scored items. No significant differences 

were found between these two conditions and the control condition. The amount of 

time spent on items in the control condition was one minute more than the testing 

procedure knowledge condition and two minutes less than the test-taking strategy 

knowledge condition. These differences could become more apparent with future 

studies involving more than 25 items. This also supports the motivation theory 

mentioned above that those with a particular strategy are actually more motivated to 

do the test than others. The examinees who were given instructions on how to beat the 

test, spent more time on the test as a whole than those who were just told how the test 

works. Those who were given no special instructions or information spent more time 

than those who were told how the test works, but less time than those who were told 

how to “beat” the test.  

Vispoel (1998) conducted a study in which students were given answer 

correctness feedback after each item. He found that higher test anxiety resulted in 

lower final theta estimates. He also found that when participants were given answer 

feedback, they took significantly less time on the test than when they were not given 

answer feedback. This is consistent with the findings of this study. Those who were in 

the testing procedure knowledge condition knew that if they answered incorrectly 

they would receive an easier item, and vice-versa. Those participants took less time 

overall on the test than those who had no information to this effect. While the 
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participants in the third condition received this same information, they were also told 

to spend more time on the items, which should counteract the answer feedback effect 

found by Vispoel (1998). 

Again, power was relatively low for this study (ranging from .17 to .48). 

Future studies should use larger sample sizes to see if these findings are 

representative of the testing taking population as a whole.  Also, future studies should 

add a fourth condition where participants are given the strategies for beating the test 

without being told the procedure of an adaptive test to distinguish any interactions 

between these two pieces of information. Also, future studies should use longer tests 

to see if those time differences become larger. 

 How instructions impact examinee behavior and performance on a test were 

examined here in Study 1. In Study 2, the testing algorithm and the claim made by 

these study guides as to how the tests work were examined. The results from the set 

of simulation studies will help to determine which testing algorithm might be more 

susceptible to these strategies. If certain testing algorithms are found to be more 

stable earlier during the course of the exam, these algorithms might be more 

preferable to developers of high stakes tests. These studies might also add to the 

literature on the length of a test necessary to ensure accurate estimation of a person’s 

ability level. 
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4. Study 2 

 In the first study, differences were found between examinees who received 

information on a test-taking strategy that should increase a person’s ability estimate. 

These differences help support the claim of the efficacy of this test-taking strategy. 

However, the first study was limited to only one testing procedure and the 1-PL 

model. Also, it was limited by the fact that true ability estimates were unknown, thus 

making a true causal inference was impossible. A simulation study was conducted 

next to overcome these limitations. 

In this second study, the impact of an artificial boost on ability estimates, such 

as those obtained from adaptive test-taking strategies, was examined using simulation 

methods. Trait estimates were compared at different stages of the test from a selected 

set of adaptive testing algorithms. It was hypothesized that less stable testing 

algorithms would result in inaccurate estimates of ability level. If the test is less stable 

earlier on, then it should be easier to increase your score earlier in the test (i.e., there 

is more movement up or down in the theta estimate). Kaplan and other test review 

companies inform examinees that less stable estimates earlier in the test provide an 

opportunity to increase scores at this point if extra effort is allocated.  As the test 

continues and stability in the estimate increases, it will be harder for the estimate to 

decrease. Thus, if this test-taking strategy works, the final estimate of an ability level 

should be inflated. If evidence is found to support this hypothesis, administrators 

making decisions for admissions, licensure and/or scholarships based on test scores 

may have to re-examine their criteria. To test this hypothesis, a series of simulation 
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studies were conducted varying the starting rules to examine the stability of the theta 

estimate at different test lengths.  

4.1 Methods 

For this portion of the study, multiple conditions were tested using a program 

written to simulate a computer adaptive test. There were multiple components in this 

study. The first component was the ability boost for the first ten items that varied in 

the population of examinees. The second component was the composition of the item 

bank, with varied size and item difficulty parameters. The 3-PL model was used with 

specified discrimination and guessing parameters. Finally, the third component of the 

study consisted of varying starting rules. Each of these components will be discussed 

further in later sections.  

The outcome measure of interest is the stability and accuracy with which the 

particular testing algorithm estimates true theta at each point in the test. To examine 

this, each condition was replicated over 1000 examinees with true theta values at each 

of 29 intervals of theta values from -3.5 to +3.5 (interval size = .25) and random boost 

levels (discussed later in Section 4.1.5.2). This resulted in N = 29,000 examinees 

under each of the 288 conditions discussed later. These conditions will be referred to 

as “boost” conditions. To examine whether this stability is significantly different from 

conditions with no artificial boost, these 288 conditions were replicated over 10 

examinees with true theta values at each of the same 29 intervals (N = 290). These 

conditions will be referred to as “null” conditions. Fewer replications were used for 
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the null conditions because there was less variability in response patterns when all 

simulated examinees at a particular theta level had equal boosts of zero. 

4.1.1 Materials and Apparatus 

As stated above, a computer program was adapted from a program written by 

Xiangdong Yang that would simulate a computer adaptive test. This program was 

written in C++ to interactively compute trait level (using MLE) and its standard error 

and then select an item from the bank that provides maximum information at the 

current estimated trait level. This is done by calculating an index for all items. This 

index is the difference between an item’s difficulty level and the target difficulty level 

(see Equation 4.1). The target difficulty level is a function of the current theta 

estimate and the item’s guessing and discrimination parameters (see Equation 4.2). 

The item with the smallest index value (called Minimum Index) is administered. 

These equations were as follows: 
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where bi = difficulty parameter, 

θcurrent = current estimate of theta,  

 ci = guessing parameter, and 

 ai = discrimination parameter.   
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A bank of items was generated through the program by first designating the 

size of the bank and whether the items were randomly generated or set to constant 

values. The item bank size could be designated in this program (see Section 4.1.5.1). 

The parameters could be randomly generated or set constant for all items. For this 

study, the difficulty parameter was randomly generated by the program while the 

other two parameters were set constant depending on the condition (see Section 

4.1.5.1). The starting rule (see Section 4.1.2) and stopping rule (see Section 4.1.4) 

could also be designated in this program. The program was written to output the theta 

estimate and standard error for each item administered. The item pool parameters 

were also outputted. 

4.1.2 Starting rules 

 As discussed in Chapter 2, the first step in developing a CAT is to decide how 

to start the test. There are many options for this starting rule. For this study, many of 

these possibilities were examined to see which starting rule would provide more 

stable estimates throughout the test. For this study, it was assumed that there was no 

prior information about the examinee. 

 The first starting rule with no prior information discussed in Chapter 2 was to 

begin with an item of average difficulty level, or an item selected randomly from a 

range of difficulty levels. The first three conditions fell into this category, which will 

be referred to as “Random” for this study. The first condition, “Random, b=0,” 

involved choosing the first item as one with a difficulty level close to or equal to 0. 

The second condition, “Random, -.5<b<.5,” involved randomly choosing the first 
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item from all items with difficulty levels between -0.5 and +0.5 (as suggested by 

Embretson and Reise, 2000). The third condition, “Random, -1<b<1,” in this set 

involved randomly selecting the first item from all items with difficulty levels ranging 

from -1.0 to +1.0. For these three conditions, the second item will be selected as the 

“best” item based on the MLE estimation procedure used. 

 The second set of starting rules involved choosing items randomly from a 

certain number of items that are considered best estimates, and continuing this 

process for the first so many items of the test. This type of starting rule is used to help 

ensure test security by reducing the exposure of the first items used. For this set of 

conditions, both the fixed-set size (“Fixed”) and shrinking-set size (“Shrinking”) 

procedures were looked at, as summarized by McBride, Wetzel, and Hetter (2001). 

For the fixed-set size procedure, three fixed-set sizes (10, 20, or 30 items) were 

examined over the first five items (“Fixed, 10,” “Fixed, 20,” and “Fixed, 30,” 

respectively). In other words, the best fitting item was selected randomly from a 

certain number of items that all provide close to maximum information at the current 

estimate of theta for the first five items on the test.  

The second version of this starting rule used was the shrinking-set size 

procedure. In this procedure, the first item was selected randomly from a designated 

number of items at the current estimate of theta. The second item was selected 

randomly from a smaller designated number of items at the current estimate of theta. 

The third item was selected randomly from an even smaller number of items at the 

current theta estimate, and so on. For this set of conditions, two different shrinking-
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set sizes were examined: the first item is selected from 20 items, then reducing the set 

size by 4 for each consecutive item (“Shrinking, 20 to 4”); and the first item is 

selected from 10 items, then reducing the set size by 2 for each consecutive item 

(“Shrinking, 10 to 2”). Once the set size is reduced to one item, the continuation rule 

selects the best item at the current theta estimate. The shrinking set size condition has 

one advantage over the fixed set size, as discussed in Chapter 2. When an item is 

selected from a set of items that provide close to maximum information, rather than 

choosing the item that provides the most information, there is a loss of precision in 

the estimate. By using a shrinking set size, more and more precision is gained with 

each succeeding item. 

 A third set of starting rules examined was to give a constant, miniature linear 

fixed test at the beginning and then use an estimate based on all items in the initial 

fixed item test (“Linear”). This condition is similar to the starting rule described by 

Straetmans and Eggen (1998). There were three conditions under this starting rule. 

These conditions were based on the difficulty level (easy, easy-to-medium, or 

medium) of the items.  Each of these linear fixed tests was 5 items long.  For ease of 

programming, these conditions were created by picking a first item number and 

adding an increment of 5 to the item number each time to pick the next item. Because 

the item pool was ordered by item difficulty, the earlier items provided for easier 

linear tests.  

For the 1000-item pool, the easy set consisted of item numbers 100, 105, 110, 

115, and 120 (“Linear, easy”); the easy-to-medium set consisted of item numbers 
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250, 255, 260, 265, and 270 (“Linear, easy-to-medium”); and the medium level set 

consisted of item numbers 500, 505, 510, 515, and 520 (“Linear, medium”).  For the 

500-item pool, the easy set consisted of item numbers 25, 30, 35, 40, and 45; the 

easy-to-medium set consisted of item numbers 100, 105, 110, 115, and 120; and the 

medium set consisted of item numbers 200, 205, 210, 215, and 220.  Because of the 

limited number of items in the 100-item pool, only an easy set and medium set were 

used.  The easy set consisted of item numbers 5, 10, 15, 20, and 25, and the medium 

set consisted of item numbers 20, 25, 30, 35, and 40.  

 Considering that the test taking strategy under investigation involves the role 

of the first set of items, the majority of variation in this test was in the starting rule. 

There were 11 possible starting rules considered in this study.   

4.1.3 Continuation rule 

 The continuation rule refers to the theta estimation algorithm used throughout 

the test. For this study, the Maximum Likelihood Estimation procedure was used.  As 

mentioned in the earlier chapters, this procedure utilizes information from the 

previously answered items to estimate a theta level at any particular point in the 

exam. This MLE procedure was selected to stay consistent with Study 1. 

4.1.4 Stopping rule 

 Because the outcome measure of this particular set of simulation studies is the 

precision of an estimate at different points in the test, the stopping rule was not 

varied. Rather, the stability and accuracy of the theta estimate was examined at every 
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fifth item up to 35 items. In other words, each condition was examined on each of 

three outcome measures (discussed below) at the 5th, 10th, 15th,…, and 35th item. 

4.1.5 Data Generation 

 4.1.5.1 Item parameter generation. Consistent with computer adaptive tests, 

the item parameters were treated as known. The CAT program used simulated item 

data with difficulty levels varying from -4 to +4.  The discrimination and guessing 

parameters were treated as constant across all items but were varied as an 

independent variable across conditions to see if these parameters would influence the 

stability of the test.  Three levels of discrimination (a = 1.0, 1.5, and 2.0) and three 

levels of guessing (c = 0, .1, and .2) were used.  This resulted in 9 item parameter 

conditions (3 a values x 3 c values).  Finally, 3 item pools were generated differing in 

the size of the item pool (100, 500, and 1000 items).  Ultimately, these variations 

resulted in 27 possible conditions times the 11 variations of starting rules.  Thus, there 

were 291 minus the three easy-to-medium linear test conditions not simulated for the 

small item pool, resulting in 288 conditions overall. 

4.1.5.2 Examinee parameter generation. To create the artificial boost in the 

examinees ability level for the first 10 items, a second theta level was randomly 

generated for each replication from a log-normal distribution (M = 1, SD = .8). A log-

normal distribution was used because of its non-negative property. This theta level 

was then divided by two times the item number (for items 1 through 10) and added to 

the actual ability level estimated at each item to create a diminishing artificial boost in 

ability level. A diminishing boost was created to attempt to mimic what would 
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happen in the real world. It is unlikely that an examinee who was taught this strategy 

would focus more attention consistently for the first ten items. Rather, they would 

focus more attention to the first item, and a little less to the second and so forth. This 

would be especially true if the examinee was unaware of which item he/she was on. 

The average boost for each theta level can be found in Appendix B. 

There were no significant differences in this boost between each true theta 

value group (F (28, 28971) = .982, p = .492).  Also, there was no significant 

difference over the ten items between the theta value groups in the amount of boost 

they received (F (252, 260739) = .982, p = .571). Average boost levels at each item (1 

through 10) can be seen in Table 4.1.   Also, these mean boosts can be seen for each 

theta level in Figure 4.1.  (For means and standard deviations at each theta level, see 

Appendix B.) 

Table 4.1  

Descriptive statistics for ability level boosts for items 1 through 10 

 Minimum Maximum Mean SD 
Boost0 .04 32.34 1.364 1.293 
Boost1 .02 16.17 .682 .646 
Boost2 .01 8.09 .341 .323 
Boost3 .01 5.39 .227 .215 
Boost4 .01 4.04 .171 .162 
Boost5 .00 3.23 .136 .129 
Boost6 .00 2.70 .114 .108 
Boost7 .00 2.31 .098 .092 
Boost8 .00 2.02 .085 .081 
Boost9 .00 1.80 .076 .072 
Boost10 .00 1.62 .068 .065 
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__________________________________________________________________________________________________________ 

 

 

Figure 4.1.  Spaghetti plot of mean ability level boost for each theta level for Items 1 

through 10. 

 

 4.1.5.3 Adaptive test generation. Responses were generated interactively 

depending on the parameters of the item that was selected and the simulee’s trait level 

given that item difficulty levels were known for every item in the pool. Each item was 

“administered” to the “examinee” based on the conditions outlined above. To review, 

for each item, there is an item characteristic curve that is the function of the known 

item parameters. Depending on the theta level of the examinee, the probability of 

answering the item correctly is equal to the y-axis coordinate for the particular theta 

value. To generate item response patterns, a random probability was drawn, from 0 to 

1. If that random probability is equal to or less than the known probability of correctly 

answering the item, then the program will treat that as a correct answer and adapt 
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accordingly. If the random probability is greater than the known probability, the 

program will consider the examinee to have answered incorrectly, and adapt 

accordingly. For example, if an examinee has an ability level of 1.5, and he/she has a 

0.85 chance of answering an item correctly, by choosing a random probability, 85% 

of these drawings should result in a correct answer.  

 This process was repeated for each item over 35 items for all replications 

resulting in a distribution of pattern responses and final theta estimates. These final 

theta estimates were then be compared to the known theta estimates for each 

examinee. This gave outcome measures that were used to evaluate the stability of 

CAT algorithms at the different test lengths.  

4.1.6 Outcome Measures 

 The dependent variable for this study was the amount of variability between 

the true theta level and the estimated theta level at each fifth item interval of the test. 

This dependent variable was measured in three ways: total variability as measured by 

the average root mean squared error over the replications; systematic variability as 

measured by the average bias over the replications; and random variability as 

measured by the average standard deviation over the replications. Each of these is 

discussed in more detail next. 

 The first measure of discrepancy between the known theta values and the final 

theta estimates used was the root mean square error (RMSE). The RMSE is a measure 

of total variability; this measure of the recovery of the examinee’s true ability level is 

the total of random variability and systematic variability as follows: 
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where the RMSE is the measure of total variation of ability estimates over R 

replications. This total variability (RMSE2) is equal to the sum of the systematic 

variability (BIAS2) and the random variability (SD2). 

Computationally, the RMSE within each theta interval is equal to the square 

root of the average squared error of estimation over R replications: 
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The average RMSE over N examinees yields an overall measure of error: 
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 The second measure of estimate recovery used was that of bias. Bias gives a 

measure of the systematic variability. Bias gives a direct average of error in the 

estimation of θi, including the direction and magnitude of this error. An overall 

measure of this systematic variability over R replications within each theta value was 

found as follows: 
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An overall average bias for all true theta values was calculated as follows: 
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 The third outcome measure was the standard deviation, which measures the 

random variability of the theta estimates. The SD of θi is equal to the standard 

deviation of estimates over R replications: 
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Then, to test for differences between conditions, an overall measure of standard 

deviation was calculated over all N examinees: 
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 The analyses involved looking at the value of these measures of error at Item 

5, 10,…, 35 for each condition. Repeated-measures factorial ANOVAs were 

conducted to test for significant differences between conditions in each of the 

outcome measures. Also, a series of repeated-measures factorial ANOVAs was 

conducted to test for significant differences in the amount of variability from all 

sources discussed about between the null and boost conditions. 

Also of interest in this study was whether the final estimate of theta was 

inflated due to this artificial boost. A repeated-measures factorial ANOVA was 

conducted to test for significant differences in theta estimation between the boost and 

null conditions. 
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4.2 Results 

 There were three measures of the stability of ability estimates in this study: 1) 

root mean square error, 2) bias, and 3) standard deviation. As mentioned in the 

previous section, each of these is a measure of the differences between estimated 

theta and true theta. These three outcome measures were used to test for significant 

differences between null versus boost conditions at each true theta level. Also, the 

three outcome measures were used to test for significant differences between null 

versus boost conditions, starting rule condition types, item pool sizes, discrimination 

levels, guessing parameters, and any possible interactions between the null versus 

boost condition variable and the other 4 condition variants. Each of these measures 

was examined at each interval of 5 items throughout the test to demonstrate the 

course of a computer adaptive test. To test for these differences between conditions 

over the course of the test, a repeated-measures factorial ANOVA was run for each of 

the outcome measures. Also, the theta estimate at each of seven points throughout the 

test was examined. The null and boost conditions were compared using a repeated-

measures factorial ANOVA to see if there was significant inflation in the theta 

estimate over the course of the test in the boost conditions. These results are 

explained in the following sections. Due to the large number of simulated examinees, 

an alpha level of .01 was used.  

4.2.1 Descriptive Statistics for Final Theta Estimation 

 First, to demonstrate the affect of this boost, descriptive statistics were run 

from the average theta estimate for each of the 288 boost conditions. Appendix C 
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summarizes these findings. Also, Appendix D shows the mean and 95% confidence 

intervals for the estimated theta at each true theta interval. 

As can be seen in Appendix C and Figure 4.2a, there is an apparent regression 

toward the mean for the estimate at Item 5. Negative true theta values have higher 

estimates, and positive true theta values have lower estimates of theta. By Item 10, 

the average theta estimate boost is positive (as in Figure 4.2a). This boost does slowly 

reduce by the end of the test, but there seems to be an asymptote for boost around 

0.03 with a mean of 0.046 (SD = .008). Also, at Item 5, Figure 4.2b shows that the 

standard deviation of the average theta estimate ranges from around 0.18 to as high as 

1.7. After Item 10, this variability drops below .1 (M = .019, SD = .005). 
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Figure 4.2a. Average theta estimate for boost condition at each theta interval at each 

item interval of the test. 
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Figure 4.2b. Standard deviation of the theta estimate for boost conditions at each 

theta interval at each item interval of the test. 
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4.2.2 Overall Differences in Dependent Variables 

4.2.2.1 Root mean squared error. A repeated-measures ANOVA was 

conducted. A large significant reduction in root mean squared error over time was 

found for all conditions (F(6, 3324) = 7059.848, p = .000, partial-η2 = .927). As stated 

above, root mean squared error is a measure of total variability in the estimate of 

theta. As expected with a CAT, there was significantly more variability earlier in the 

test when there was greater error in the estimate. The following sections outline the 

differences found due to the independent variables of interest in this study. 

 4.2.2.2 Bias. The second outcome measure of interest was bias. As the 

difference between estimated theta and true theta, bias is the directional measure of 

systematic variability. As expected with a CAT, a small significant reduction in bias 

over time was found (F(6, 3318) = 44.115, p = .000, partial-η2 = .074). The following 

sections outline the differences found due to the independent variables of interest in 

this study. 

 4.2.2.3 Standard deviation. As stated above, standard deviation is a measure 

of random variability in the estimate of theta. As expected with a CAT, a very large, 

significant reduction in the standard deviation over time was found for all conditions 

(F(6, 3324) = 11484.961, p = .000, partial-η2 = .954). As the test continued, the 

amount of error between the individual’s theta estimate and the group’s theta estimate 

became smaller. The following sections outline the differences found due to the 

independent variables of interest in this study. 
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4.2.3 Null versus Boost Conditions 

The first test conducted for this study was whether there was a significant 

difference between the simulated examinees with no boost and those with an artificial 

boost. 

 4.2.3.1 Root mean squared error. A repeated-measures factorial ANOVA was 

conducted to answer this question. The boost condition was found to have 

significantly higher RMSE than the null condition (F (1, 554) = 373.741, p = .000, 

partial-η2 = .403), indicating that the estimates were further from the true theta in the 

boost condition. There was also a small significant interaction in terms of the 

difference in this change over time between the null and the boost conditions (F(6, 

3324) = 81.819, p = .000, partial-η2 = .129). This difference can be seen in Figure 4.3. 

_____________________________________________________________________ 

 

Figure 4.3. Estimated marginal means for RMSE for the null versus boost conditions 

over the 35 item test. 
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 4.2.3.2 Bias. The first test conducted for this study was whether there was a 

significant difference between the simulated examinees with no boost and those with 

an artificial boost. A repeated-measures factorial ANOVA was conducted. A 

significant difference was found between the null and boost conditions in bias (F(1, 

553) = 530.016, p = .000, partial-η2 = .489). There was a significant interaction of 

time with the null and boost conditions (F(6, 3318) = 65.121, p = .000, partial-η2 = 

.105). As can be seen in Figure 4.4, the null conditions started out with negative bias 

compared to a large amount of positive bias for the boost conditions. By the tenth 

item, both the null and boost conditions had positive bias, however, the boost 

conditions consistently had significantly more positive bias than the null conditions. 

This is important to note, because it suggests that examinees with a boost will have a 

consistent positive error in their score estimates in comparison to those without the 

boost. 
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_____________________________________________________________________ 

 

Figure 4.4. Estimated marginal means for the bias between the null and boost 

conditions. 

 

4.2.3.3 Standard deviation. The first test conducted for each independent 

variable was whether there was a significant difference between the simulated 

examinees with no boost and those with an artificial boost. A repeated-measures 

factorial ANOVA was conducted. A large, significant difference was found between 

these two groups in SD (F(1, 554) = 1970.239, p = .000, partial-η2 = .781). There was 

also a significant interaction between reduction in SD over time and the null versus 

boost condition variable (F(6, 3324) = 145.560, p = .000, partial-η2 = .208). As can be 

seen in Figure 4.5, a large portion of the RMSE found earlier is apparent in the SD. 

As well, the boost conditions consistently had a higher standard deviation than the 

null conditions. 
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_____________________________________________________________________ 

 

Figure 4.5. Estimated marginal means for differences in standard deviation between 

null and boost conditions. 

 

4.2.4 Condition Type 

The first independent variable of interest was type of starting rule used for the 

computerized adaptive test. As stated above, there were four types of starting rules 

varied: 1) RANDOM, i.e., the first item selected randomly  with difficulty level close 

or equal to zero (b = 0, -.5 to .5, or -1.0 to 1.0); 2) FIXED, i.e., a fixed set size for the 

first five items (set size = 10, 20, or 30); 3) SHRINKING, i.e., a shrinking set size for 

the first five items (set size = 10 to 2 or 20 to 4); and 4) LINEAR, i.e., a linear fixed 

five-item test (difficulty level = easy, easy-to-medium, or medium). 

 4.2.4.1 Root mean squared error. A significant difference was found in 

overall RMSE due to condition type for the conditions (F(3, 554) = 264.464, p = .000, 
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partial-η2 = .589). There was a very small significant interaction between condition 

type and null versus boost (NULLBOOST) conditions (F(3, 554) = 8.331, p = .000, 

partial-η2 = .043). Also, a significant interaction in terms of the change over time of 

RMSE due to condition type was found for the conditions (F(18, 3324) = 132.861, p 

= .000, partial-η2 = .418). This significant effect was also found to interact 

significantly with the null and boost conditions (F(18, 3324) = 4.661, p = .000, 

partial-η2 = .025).  

 Through post hoc comparisons it was found that the linear fixed test resulted 

in significantly more RMSE than all three other condition types. Figure 4.6a and 4.6b 

show that RMSE was greater for the linear fixed test until the twenty-fifth item at 

which point the amount of RMSE was virtually the same for all condition types. Also, 

comparing Figure 4.6a to 4.6b elucidates the sources of the interaction: it can be seen 

that the LINEAR test type resulted in more RMSE than the other test types, and the 

boost conditions resulted in more RMSE at the earlier items than did the null 

conditions.    
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_____________________________________________________________________ 

 

Figure 4.6a.  Estimated marginal means for the root mean squared error for each null 

condition type for items over the test. 

 

Figure 4.6b.  Estimated total root mean squared error for each boost condition type 

for items over the test. 
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 In closer examination of the different versions of the condition types, no 

significant differences were found between the first three condition types for the 

conditions. However, a large significant difference was found between the linear 

fixed test condition types (F(2, 132) = 436.831, p = .000, partial-η2 = .869). This 

difference did not interact with the NULLBOOST variable. That is, the null and boost 

conditions showed the same pattern of differences between the LINEAR starting 

rules. Through post hoc comparisons, it was found that all three LINEAR starting 

rules were significantly different from each other. The easy test resulted in 

significantly more RMSE than the medium test (MD = .079, SED = .005, p = .000), 

and the medium test resulted in significantly more RMSE than the hard test (MD = 

.056, SED = .005, p = .000). These differences can be seen in Figures 4.7a and 4.7b. 

 

 

Figure 4.7a. Estimated marginal means for the RMSE at each item interval for the 

linear test null conditions. 
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_____________________________________________________________________ 

 

Figure 4.7b. Estimated marginal means for the RMSE at each item interval for the 

linear test boost conditions. 

_____________________________________________________________________ 

4.2.4.2 Bias. A significant difference in bias was found due to starting rule 

condition type (F(3, 553) = 336.168, p = .000, partial-η2 = .646).  A small significant 

difference between null and boost conditions in bias due condition type was found 

(F(3, 553) = 10.903, p = .000, partial-η2 = .056). A significant difference in change of 

bias over time was found due to condition type (F(18, 3318) = 312.918, p = .000, 

partial-η2 = .629). A very small, significant interaction between change of bias over 

time due to condition type was also found between the null and boost conditions 

(F(18, 3318) = 3.203, p = .000, partial-η2 = .017). Overall, the amount of bias was 

more dramatic for the boost conditions than the null conditions, especially for Items 5 

and 10.    
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 Through post hoc comparisons it was found that the linear fixed test condition 

resulted in significantly less bias than all other condition types. This can be seen in 

Figures 4.8a and 4.8b. However, the amount of bias becomes almost equal to zero for 

all condition types after Item 5. 

 

 

Figure 4.8a. Estimated marginal means for bias between condition types for the null 

conditions. 
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_____________________________________________________________________ 

 

Figure 4.8b. Estimated marginal means for bias between condition types for the boost 

conditions. 

 

 In examining possible differences due to the versions of each of the condition 

types, no significant differences were found between the versions of the first three 

starting rule condition types. However, significant differences were found between 

the linear fixed test conditions (F(2, 132) = 404.317, p = .000, partial-η2 = .860). 

Through post hoc comparisons it was found that all three linear fixed tests conditions 

were significantly different from each other. The easy test resulted in significantly 

more negative bias than the easy-to-medium test (MD = -.075, SED = .009, p = .000) 

and the medium test (MD = -.215, SED = .008, p = .000). The easy-to-medium test 

resulted in significantly more negative bias than the medium test (MD = -.139, SED = 

.009, p = .000). As can be seen in Figures 4.9a and 4.9b, this difference only exists  
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_____________________________________________________________________ 

 

Figure 4.9a. Estimated marginal means for bias between linear fixed test conditions 

for null conditions. 

 

Figure 4.9b. Estimated marginal means for bias between linear fixed test conditions 

for boost conditions. 

_____________________________________________________________________
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at Item 5—linear fixed test with average difficulty level items (medium linear test 

condition) resulted in less bias than the other two types. The easy test resulted in the 

most bias. Bias begins to converge between these condition types within the null and 

boost conditions around Item 10. However, at Item 10, the boost conditions had 

slightly higher positive bias than the null conditions. Both the null and boost 

conditions had virtually zero bias after Item 10. 

 4.2.4.3 Standard deviation. A significant difference was found between the 

four types of conditions for starting rules (F(3, 554) = 113.692, p = .000, partial-η2 = 

.381). A small, significant interaction was found between the condition types and the 

null versus boost condition variable (F(3, 554) = 11.147, p = .000, partial-η2 = .057). 

A large, significant interaction was also found between the change of SD over time 

and the type of condition (F(18, 3324) = 736.995, p = .000, partial-η2 = .800). Finally, 

a significant interaction between change over time and condition type and the null 

versus boost condition variable was found (F(18, 1608) = 6.307, p = .000, partial-η2 = 

.033). Overall, the amount of standard deviation is greater for the boost conditions 

than the null conditions.  

Through post hoc comparisons it was found that over the entire test, the linear 

fixed test starting condition resulted in significantly lower SD than the other condition 

types. However, in looking at Figures 4.10a and 4.10b, it can be seen that this result is 

misleading.  At the fifth item, the linear fixed test has significantly lower SD.  At the 

tenth item, the linear fixed test has significantly higher SD.  Beginning around the 
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twenty-fifth item, the SD of the linear fixed test begins to converge with the other 

starting conditions. This is true for both the null and boost conditions. 

_____________________________________________________________________ 

 

Figure 4.10a. Estimated marginal means for standard deviation between condition 

types for null conditions. 

_____________________________________________________________________ 
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_____________________________________________________________________ 

 

Figure 4.10b. Estimated marginal means for standard deviation between condition 

types for boost conditions. 

 

 The repeated-measures, factorial ANOVA was conducted within each starting 

condition type to look for differences between each version of the starting rule 

condition. No significant differences were found between the versions of the starting 

rules including administering a first item with difficulty level equal or close to zero 

(RANDOM), a fixed set size (FIXED), or a shrinking set size (SHRINKING). 

However, a significant difference was found between the three types of linear fixed 

tests for the null conditions (F(2, 132) = 41.999, p = .000,  partial-η2 = .389).  

Through a post hoc comparison of these linear test types for the null 

conditions it was found that all three test levels were significantly different from each 

other. Figure 4.11a shows that at Item 5, the medium level test has significantly more 
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SD than the other two. However, at Item 10, the easy test resulted in more SD with 

the easy-to-medium and medium tests having similar amounts of SD. At Items 15 and 

20, the easy test still has slightly more SD and then converges with the other two 

around Item 25. As can be seen in Figure 4.11b, the SD is higher for the medium 

difficulty test at Item 5, then lower at Item 10. Finally, the SD becomes very similar 

for all tests beginning at the fifteenth item.  However, there is slightly more SD in the 

medium difficulty test after the twenty-fifth item. 

_____________________________________________________________________ 

 

Figure 4.11a. Estimated marginal means for standard deviation between linear test 

types for null conditions. 

_____________________________________________________________________ 
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_____________________________________________________________________ 

 

Figure 4.11b. Estimated marginal means for standard deviation between linear test 

types for boost conditions. 

 

4.2.5 Item Pool Size 

As discussed previously, three item pool sizes (ni = 100, 500, and 1000) were 

examined for possible differences in RMSE, bias and standard deviation of the theta 

estimate at different points in the test. 

4.2.5.1 Root mean squared deviation. There was a very small significant main 

effect of pool size (F( 2, 554) = 11.200, p = .000, partial-η2 = .039). There was a 

marginally significant interaction between the null versus boost conditions variable 

and item pool size (F(2, 554) = 3.464, p = .032, partial-η2 = .012). The RMSE was 

higher at Items 5 and 10 for the boost conditions than for the null conditions. 
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Through post hoc comparisons it was found that the largest item pool (ni = 

1000) resulted in significantly less RMSE than the medium item pool (ni = 500) (MD 

= -.012, SED = .004, p = .002) and the small item pool (ni = 100) (MD = -.019, SED = 

.004, p = .000). Also, there was a significant interaction between change over time 

and the item pool sizes (F(12, 3324) = 23.186, p = .000, partial-η2 = .077). This 

difference is apparent in Figures 4.12a and 4.12b which show that after the 15th item, 

the 100-item pool results in significantly more RMSE than the other two pool sizes. 

Also, it should be noted that for the null conditions, there is less RMSE earlier in the 

test than for the boost conditions. After the 15th item, this difference is no longer 

noticeable. 

 

 

Figure 4.12a. Estimated marginal means for RMSE for the item pool size for the null 

conditions. 

_____________________________________________________________________ 
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_____________________________________________________________________ 

 

Figure 4.12b. Estimated marginal means for RMSE for the item pool size for the 

boost conditions. 

 

4.2.5.2 Bias. Item pool size was varied to examine possible differences in 

error of theta estimation due to having enough items. As outlined in above, three 

variants of item pool size were examined: 100, 500, and 1000 items. No significant 

differences were found due to pool size.  

4.2.5.3 Standard deviation. Item pool size was varied to examine possible 

differences in error of theta estimation due to having enough items. Three variants of 

item pool size were examined: 100, 500, and 1000 items. A significant difference 

between item pool sizes was found (F(2, 554) = 156.856, p = .000, partial-η2 = .362). 

This difference was also found to significantly interact with the null and boost 
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conditions variable (F(2, 554) = 25.892, p = .000, partial-η2 = .085). As with the 

overall differences in SD found, the null conditions resulted in less SD than the boost 

conditions. Also, a small, significant interaction between reduction of SD over time 

and item pool size was found (F(12, 3324) = 26.010, p = .000, partial-η2 = .086). This 

change over time in SD was found to slightly interact with the null and boost 

conditions variable (F(12, 3324) = 4.055, p = .000, partial-η2 = .014). Overall, the 

amount of standard deviation was greater for the boost conditions. 

Through post hoc comparisons it was found that all three pool sizes resulted in 

significantly different levels of SD for the null conditions. It can be seen in Figure 

4.13a that for the null conditions the medium sized item pool resulted in more SD for 

the first 15 items, and the smallest item pool resulted in more SD for the remainder of 

the test. This same pattern can be seen in Figure 4.13b for the boost conditions, 

however, the amount of SD earlier in the test is larger for these conditions in 

comparison to the null conditions. 
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_____________________________________________________________________ 

 

Figure 4.13a. Estimated marginal means for standard deviation between item pool 

sizes for null conditions. 

 

Figure 4.13b. Estimated marginal means for standard deviation between item pool 

sizes for boost conditions. 
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4.2.6 Discrimination Parameter Levels 

To examine differences in the error of the estimation of theta value due to the 

discriminating power of an item, three variants for the a-parameter were used: 1.0, 

1.5, and 2.0. 

4.2.6.1 Root mean squared error. The discriminating power of the item was 

examined for its effect on the amount of RMSE in the theta estimate throughout the 

test. A significant difference in RMSE was found due to the discrimination parameter 

(F(2, 554) = 804.373, p = .000, partial-η2 = .744). There was no significant 

differences interaction between the null versus boost condition variable and the 

discrimination parameters. However, a small significant interaction was found 

between change over time of the RMSE differing and the discrimination parameter 

levels (F(12, 3324) = 9.131, p = .000, partial-η2 = .032). The differences found 

between discrimination parameter levels is greater during the middle part of the test 

than at the beginning and end of the test. 

Through post hoc comparisons it was found that all three parameter levels were 

significantly different from each other. As seen in Figures 4.14a and 4.14b, 

significantly less RMSE resulted from larger discrimination parameters. Also, in 

comparing these two figures, it can be seen that the null conditions had less RMSE 

overall when compared to the boost conditions regardless of the level of 

discrimination.
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_____________________________________________________________________ 

 

Figure 4.14a. Estimated marginal means for RMSE between discriminating 

parameters for the null conditions. 

 

 

Figure 4.14b. Estimated marginal means for RMSE between discriminating 

parameters for the boost conditions. 
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 4.2.6.2 Bias. A very small, significant difference was found between levels of 

the discrimination parameters (F(2, 553) = 15.243, p = .000, partial-η2 = .052). Also, 

there was a very small significant interaction between the amount of reduction over 

time in bias and the discriminating power of the items (F(12, 3318) = 10.119, p = 

.000, partial-η2 = .035). The differences due to discriminating power were much 

greater at Item 5 than the rest of the items. 

Post hoc comparisons were conducted to find where these differences existed. 

All three levels of discrimination were significantly different from each other. As can 

be seen in Figures 4.15a and 4.15b, larger discrimination parameters resulted in 

significantly lower bias. For the null conditions, estimates at Item 5 were much lower 

than the true estimate for discrimination levels of 1.5 and 2.0. At Item 10, all three 

levels resulted in average estimates slightly higher than the true theta estimate. After 

Item 15, the differences between the estimates and the true thetas were virtually equal 

to zero. For the boost conditions, average bias was never negative. Lower 

discrimination parameters resulted in higher biases. At Item 10, these biases 

converged. They continued to decrease over the length of the test, reaching an 

apparent asymptote around a positive bias of .05. 
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_____________________________________________________________________ 

 

Figure 4.15a. Estimated marginal means for bias between discrimination parameter 

levels for null conditions. 

 

Figure 4.15b. Estimated marginal means for bias between discrimination parameter 

levels for boost conditions. 
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4.2.6.3 Standard deviation. A large, significant difference in SD due to 

discriminating ability of the items was found (F(2, 554) = 7695.878, p = .000, partial-

η2 = .965). A very small, significant interaction between the SD due to discrimination 

level and the null and boost conditions variable was found (F(2, 554) = 6.915, p = 

.001, partial-η2 = .024). Also, a significant interaction between change in SD over 

time and discriminating ability of the items was found (F(12, 3324) = 149.059, p = 

.000, partial-η2 = .350). This change was also found to significantly interact with the 

null and boost conditions variable (F(12, 3324) = 3.437, p = .000, partial-η2 = .012). 

Overall, the amount of standard deviation was greater for the boost conditions than 

for the null conditions. 

Through post hoc comparisons it was found that all three discrimination levels 

were significantly different from each other. As can be seen in Figures 4.16a and 

4.16b, the less discriminating an item, the more SD there is associated with the 

resulting theta estimate at any point in the test. As with the other independent 

variables, the amount of SD was greater for the boost conditions than for the null 

conditions. This is consistent with the design of the boost conditions. 
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_____________________________________________________________________ 

 

Figure 4.16a. Estimated marginal means for standard deviation between 

discrimination parameter levels for null conditions. 

 

Figure 4.16b. Estimated marginal means for standard deviation between 

discrimination parameter levels for boost conditions. 
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4.2.7 Guessing Parameter Levels 

Analyses were conducted to examine differences in RMSE due to three 

different levels of the guessing parameter (c = 0.0, 0.1, and 0.2). 

4.2.7.1 Root mean squared error. Different guessing parameters resulted in 

significantly different amounts of RMSE (F(2, 554) = 306.434, p = .000, partial-η2 = 

.525). These differences were found to be consistent for both the null and boost 

conditions; there was no interaction between the null versus boost condition variable 

and the guessing parameter variable. However, a small but significant interaction was 

found between change in RMSE over time and guessing parameter levels (F(12, 

3324) = 30.291, p = .000, partial-η2 = .099). Differences in RMSE due to guessing 

parameter levels were greater during the first half of the test. Those differences grew 

smaller later in the test. 

Through post hoc comparisons it was found that all three values of the 

guessing parameter were significantly different from each other. Figures 4.17a and 

4.17b show that the larger guessing parameters resulted in significantly more RMSE. 

Also, in comparing these two figures, it can be seen that the null conditions had less 

RMSE overall when compared to the boost conditions regardless of the level of the 

guessing parameter.
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Figure 4.17a. Estimated marginal means for the RMSE between guessing parameters 

for the null conditions. 

 

 

Figure 4.17b. Estimated marginal means for the RMSE between guessing parameters 

for the boost conditions. 
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4.2.7.2 Bias. A very small, significant difference was found in bias due to 

magnitude of the guessing parameter (F(2, 553) = 12.276, p = .000, partial-η2 = .043). 

A very small, significant interaction between change over time and guessing 

parameter level was also found (F(12, 3318) = 3.102, p = .000, partial-η2 = .011). 

Differences in bias due to guessing level were greater at Items 5 and 10 than the rest 

of the test. 

Post hoc comparisons were conducted to see where these differences existed. 

The largest discrimination parameter (c = .20) resulted in significantly higher bias 

levels than the middle level (c = .10, MD = .016, SED = .006, p = .005) and the lowest 

level (c = .00, MD = .028, SED = .006, p = .000). As can be seen in Figures 4.18a and 

4.18b, similar differences existed for the guessing parameters as those found for the 

discrimination parameter. For the null conditions (Figure 4.18a), all three levels of the 

guessing parameter resulted in negative bias (that is, lower estimates of theta when 

compared to the true theta value) at Item 5. At Item 10, these biases became slightly 

positive. After Item 15, these biases leveled out around zero. For the boost conditions 

(Figure 4.18b), the bias was very positive for the first ten items. Bias began to drop 

over the subsequent items and began to level out around .05 during the last 10 items 

or so.
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Figure 4.18a. Estimated marginal means for bias between guessing parameter levels 

for null conditions. 

 

 

Figure 4.18b. Estimated marginal means for bias between guessing parameter levels 

for boost conditions. 
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4.2.7.3 Standard deviation. A significant difference in SD due to the guessing 

parameter was found (F(2, 554) = 1983.091, p = .000, partial-η2 = .877). This 

difference was consistent between the null and boost conditions, that is, there was no 

significant interaction between guessing parameter and the NULLBOOST variable. 

However, a significant interaction between the change in SD over time and the size of 

the guessing parameter was found (F(12, 3324) = 88.191, p = .000, partial-η2 = .241). 

This difference was found to slightly interact with the null and boost conditions 

variable (F(12, 3324) = 4.230, p = .000, partial-η2 = .015). Overall, the amount of 

standard deviation was slightly greater for the boost conditions than the null 

conditions. 

Through post hoc comparisons it was found that all parameter levels were 

significantly different from each other. As can be seen in Figures 4.19a and 4.19b, the 

higher guessing parameters resulted in a higher level of SD. For both the null and 

boost conditions, the SD levels out around .20. However, for the first half of the test, 

consistent with the design of the study, the SD is higher for the boost conditions than 

for the null conditions. 
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Figure 4.19a. Estimated marginal means for standard deviation between guessing 

parameter levels for null conditions. 

 

 

Figure 4.19b. Estimated marginal means for standard deviation between guessing 

parameter levels for boost conditions. 
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4.2.8 Differences between True Theta Levels 

Differences in the outcome measures over the course of the test between true 

theta levels were also examined using a repeated-measures factorial ANOVA. As 

discussed above, there were 29 intervals of theta ranging from -3.25 to 3.25 (interval 

size = .25). 

4.2.8.1 Root mean squared error. A very small, but significant difference was 

found between true theta levels in root mean squared error (F(28, 16675) = 20.311, p 

= .000, partial-η2 = .033). This difference was found to significantly interact with the 

null versus boost conditions variable (F(28, 16675) = 5.154, p = .000, partial-η2 = 

.009). The effect sizes suggest that the significant differences found were due to 

sample size. It can be seen in Figures 4.20a and 4.20b that after Item 10, the pattern 

of RMSE between true theta levels is virtually equal. However, earlier in the test, the 

more extreme theta levels resulted in more root mean squared error. Also, it should be 

noted that the boost conditions resulted in smoother lines due to more replications. 
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_____________________________________________________________________ 

 

Figure 4.20a. Estimated marginal means for root mean squared error for each true 

theta level across the test for the null conditions. 

 

 

Figure 4.20b. Estimated marginal means for root mean squared error for each true 

theta level across the test for the boost conditions. 
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 4.2.8.2 Bias. Differences in bias over the course of the test between true theta 

levels were also examined using a repeated-measures factorial ANOVA. A small, 

significant difference was found between true theta levels in amount of bias (F(28, 

16675) = 120.319, p = .000, partial-η2 = .169). A slightly significant interaction was 

also found between true theta levels and the null versus boost conditions variable 

(F(28, 16675) = 6.959, p = .000, partial-η2 = .012). The effect sizes suggest that the 

differences found were due to sample size rather than the main effects. It can be seen 

in Figures 4.21a and 4.21b that at Item 5, for both the null and boost conditions, there 

was regression to the mean in terms of bias. That is, lower theta levels were biased in 

a positive direction, and higher theta levels were biased in a negative direction. By 

Item 10, all bias was in the positive direction. By Item 35, there were no noticeable 

differences in amount of bias between the theta levels. It should also be noted that the 

amount of bias for the boost conditions is consistently greater than that of the null 

conditions. Also, it should be noted that the boost conditions resulted in smoother 

lines due to more replications.



 138
 
 

 

 

Figure 4.21a. Estimated marginal means for bias throughout the test for each true 

theta level for the null conditions.  

 

Figure 4.21b. Estimated marginal means for bias throughout the test for each true 

theta level for the boost conditions.   
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4.2.8.3 Standard deviation. A very small, but significant difference was found 

between true theta levels in squared deviation (F(28, 16675) = 24.562, p = .000, 

partial-η2 = .040). This difference was found to significantly interact with the null 

versus boost conditions variable (F(28, 16675) = 6.294, p = .000, partial-η2 = .011). 

Overall, the standard deviation across theta levels is greater for the boost conditions 

than it is for the null conditions. The effect sizes suggest that the significant 

differences found were due to sample size. It can be seen in Figures 4.22a and 4.22b 

that for both the null and boost conditions, there is less standard deviation for the 

greater theta levels early in the test. At the tenth item, standard deviation becomes 

virtually equal across theta levels. Also, it should be noted that the boost conditions 

resulted in smoother lines due to more replications. 

These results are discussed in more detail in the next section.
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Figure 4.22a. Estimated marginal means for squared deviation throughout the test for 

each true theta level for the null conditions. 

 

Figure 4.22b. Estimated marginal means for squared deviation throughout the test for 

each true theta level for the boost conditions. 

_____________________________________________________________________ 
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4.3 Discussion 

 In this study, possible differences in stability of latent trait estimate due to 

varying testing parameters were examined to determine the impact of an artificial 

theta boost for the first 10 items of an exam. Four testing parameters were varied: the 

starting rule, the size of the item pool, the discriminating power of the items, and the 

guessing parameter of the items. The patterns of differences within most of these 

testing parameters were found to be slightly different between the null and the boost 

conditions. Prior to discussing these testing parameters, the differences between the 

null and boost conditions are discussed. 

 As described in Section 4.2.1, on average, the final theta estimates for the 

boost conditions was about .05 points above the true theta value. As discussed later, it 

can be seen that this difference reflects the systematic variability (bias) between the 

boost and null conditions. These results imply that by the end of a CAT, the estimated 

theta is slightly increased by the artificial boost at the beginning of the test. The boost 

also impacted the stability of the latent trait estimates. Also, the general pattern of this 

instability was regression toward an average theta level. That is, examinees with 

negative theta levels were given much higher estimates for their ability level, while 

those with very positive theta levels were estimated as much lower. The closer to an 

average theta level (around zero), the less difference there was between the estimated 

values and the true values. After the tenth item, the boost in estimated theta level was 

pretty stable, but small. This suggests that this difference might not be worth 

worrying about in practice. However, the actual effect of this boost might need to be 
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taken into account depending on the scale of the actual test used. Inferential tests are 

now discussed in terms of the three outcome measures. 

One important finding to discuss is that the boost conditions resulted in 

significantly greater total variability (RMSE) than did the null conditions. This effect 

arose from both systematic variability (bias) and random variability (SD). However, 

the larger impact on the RMSE found was due to the random variability. Because the 

boost was randomly varied across replications, it logically follows that this set of 

conditions would have more random variability than the null set with no variation in 

boost (i.e., all boosts were equal to zero). Bias is an average measure of the difference 

between the estimated theta and the true theta. The difference in this measure of bias 

suggests that boost and null conditions differed in the average disparity between the 

estimated theta and the true theta by the amount suggested by the descriptive 

statistics. Also, the pattern of differences due to starting conditions differed only 

slightly between both the null and boost sets of conditions. The effect size was small 

enough to suggest that the significant differences found were a function of the large 

sample sizes.  

 For all measures of variability, the only starting rule condition that resulted in 

significantly more variability were the linear fixed test conditions. Within these linear 

test condition types, all three were significantly different from each other. The 

medium level difficulty test always resulted from the least amount of variability. This 

evidence of possible differences in test outcomes when using small fixed tests (also 

known as testlets) has been addressed before (Wainer & Kiely, 1987). For all other 
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conditions, the stability of the test over time was the same. This suggests that the 

starting rule does not affect the outcome of a computer adaptive test. By the twentieth 

item of the test, the variability measure converged on the same value across all 

conditions. Also, it should be noted that bias was close to zero after the fifteenth item; 

most of the RMSE was due to random variability (SD) after the fifteenth item. These 

results suggest that choosing a linear fixed test that would be too easy for the majority 

of the population could result in less stable estimates earlier in the test. The main 

instability is due to systematic variability after the first five items. Overall, these 

findings suggest that any of the starting rules tested in this study will result in the 

same outcome measure of theta after about the twentieth item.  

 The second independent variable in this study was the size of the item pool. 

The findings of this study suggest that early on, a smaller item pool resulted in more 

stable estimates, but as that pool gets smaller due to items being removed, the theta 

estimates become less stable. This is probably due to a lack of items that give 

maximum information at an estimated theta level after many of the items have been 

removed. There was no evidence to suggest any stability differences between larger 

item pool sizes. These findings give support for the argument for large item pools 

when developing a computerized adaptive test (e.g., Embretson & Reise, 2000). 

These differences were only apparent for the RMSE and SD measures. There were no 

differences in bias (systematic variability) due to item pool sizes. It should also be 

mentioned that these patterns were the same for both null and boost conditions. Thus, 
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estimates that might be affected by an artificial boost will not differ from those 

without a boost due to item pool sizes. 

 The third independent variable of interest was the discrimination parameter of 

the items. Three variants were tested (a = 1.0, 1.5, or 2.0). As would be expected, the 

more discriminating items resulted in more stable estimates of theta. The 

discrimination parameter gives the ability of an item to differentiate examinees with 

close estimates of ability. It would logically follow that estimates based on more 

discriminating items would result in more accurate estimates. Early adaptive testing 

research found evidence to suggest that more discriminating items result in more 

reliable theta estimates for adaptive tests (Vale & Weiss, 1975). Urry (1974, 1975) 

found the 3-PL model to be more reliable than the 1-PL model for estimating theta as 

long as the discrimination parameters were at least greater than .80. Jensema (1974) 

also found that reliability of a test increased with larger discrimination parameters. 

These findings are similar to those by other researchers who suggest using low 

discriminating items earlier in the test when there is more room for error and highly 

discriminating items later in the test when the CAT is fine-tuning a score. This helps 

deal with the issue of item exposure rates (Chang, 1999; Hau & Chang, 2001). The 

only differences found between the null and boost conditions were in the SD (random 

variability) and were very slight. These results suggest that the affect that the 

discrimination parameter has on the stability of the CAT is the same for both null and 

boost conditions. 



 145
 
 Finally, the fourth independent variable of interest was the guessing parameter 

of the item. This study showed that larger guessing parameters resulted in less stable 

estimates. Similar to the logic of the discrimination parameter, this makes intuitive 

sense. If there is a better chance of guessing the correct answer without the true 

ability to answer correctly, then this should affect the estimate of the ability level. In 

this study, strong evidence was found to support the idea that creating items with less 

chance for guessing the item correctly will result in more stable estimates of theta. 

Jensema (1974) found that the reliability of an adaptive test increased as the size of 

the guessing parameter decreased.  

This inverse relationship between the reliability or stability of an estimate and 

the guessing parameter is also consistent with the findings of Bridgeman and Cline 

(2004) that guessing later in the test can decrease an examinee’s score. In this study, 

it was found that higher guessing parameters decreased the stability of a test at all 

points in the test, which supports their findings that guessing would have a potential 

to dramatically affect an examinee’s final theta estimate. These results in combination 

with the findings for the discrimination parameter variable suggest that creating items 

with more discriminating power and less guessing possibility is optimal for stable 

theta estimates. These findings were consistent for both the null and boost conditions. 

 Analyses were conducted to look at possible differences in these outcome 

measures at different levels of true latent trait level. Although the analyses found 

significant differences on all accounts, effect sizes found suggest that the significance 

found was due to the number of degrees of freedom (which are a function of the 
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number of conditions examined) used to determine the significance level. 

Considering that the simulated item pool was created from a normal distribution of 

difficulty parameters, this might seem counterintuitive. It could be assumed that since 

there are fewer items at the more extreme levels of ability, the estimates of trait at 

these later points in the test would be less stable than those at a more average ability 

level. However, results from this study found evidence to suggest that this is not the 

case. 

 Overall, evidence was found to suggest that given enough items (at least 20 to 

25) the maximum likelihood estimation procedure results in stable estimates of theta 

no matter the starting rule selected. This is consistent with Jensema’s (1974) findings 

that the reliability of an adaptive test is directly related to the length of the test. Also, 

when developing an item pool for a computerized adaptive test, care should be given 

to create enough items with good discriminating power and low possibilities for 

guessing. If the evidence for stability of the estimates leveling out after twenty items 

is coupled with the findings of Bridgeman and Cline (2004), this would suggest that 

tests with 35 items could be unnecessarily long. There is also evidence that an 

artificial boost to an examinee’s ability level can affect the outcome estimate of 

ability level, but whether this difference is large enough is discussed next. 

 The important question arising from the simulation study is whether or not 

this boost has a meaningful impact on scores. To examine this, GRE subtest score and 

selection ratio information was collected from The Princeton Review Complete Book 

of Graduate Programs (Princeton Review, 2005). Of the 1482 graduate programs 
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outlined in this book, GRE-Quantitative, GRE-Verbal and percent accepted data were 

only reported for 340 programs. The average GRE score for each subtest and other 

descriptive data can be found in Table 4.2. In this table, it can be seen for the GRE-V 

(M = 467, SD = 118) and GRE-Q (M = 591, SD = 148) that more selective schools 

have higher average scores on both subtests.  

Figures 4.23 and 4.24 superimpose the results of bias from a boost on various 

cutlines for selection. The mean ability estimate obtained for each true theta level 

from the null and boost conditions is plotted, along with the 67% confidence interval. 

These means are then compared to the average GRE-V (Figure 4.23) and GRE-Q 

(Figure 4.24) for schools at certain selection ratio levels. The whiskers for the null 

conditions are noticeably longer than those for the boost conditions. Considering that 

there were fewer replications for the null conditions, this should be expected.  

For the GRE-V, it can be seen that at a 20% selection rate, the average GRE 

score falls between the null conditions and the boost conditions. Also, at the 50-90% 

selection rates, examinees in the null conditions are scoring lower than the average 

score, and the examinees in the boost conditions are scoring above the average score. 

Given the frequency data in Table 4.2, this would affect decisions for around 200 

schools. For the GRE-Q, it can be seen that this same pattern is occurring for the 30, 

50 and 100% selection rate programs. At these three selection rates, there are almost 

100 schools affected by this boost difference. 

While these data are based on average information, they indicate that this 

boost can impact selection into graduate programs. Thus, although the boost created 
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only a small inflation in final score estimates, this slight increase could very well be 

enough to enhance an applicant’s chances of acceptance at a more selective school. 

Given the high priority placed on test scores in our society for admissions, licensure 

and scholarship purposes, future research is necessary to support this study. 

Table 4.2 

Descriptive statistics for average GRE-Q and GRE-V scores for 340 graduate 

programs broken down by selection ratio 

 
Selection 

Ratio N Mean SD Min. Max. 
0.10 3 609.3 35.92 579 649 
0.20 17 588.3 48.92 528 730 
0.30 29 564.4 43.82 465 621 
0.40 40 542.8 43.31 475 650 
0.50 35 500.9 45.09 377 598 
0.60 53 499.8 54.98 300 601 
0.70 57 495.7 57.61 300 659 
0.80 41 488.1 56.81 323 632 
0.90 33 486.8 47.40 402 581 

GRE-V 

1.00 28 472.4 60.97 344 600 
0.10 3 649.0 78.89 600 740 
0.20 17 676.3 64.08 550 773 
0.30 29 636.4 73.58 451 760 
0.40 40 611.2 57.76 500 750 
0.50 35 596.3 80.80 392 757 
0.60 53 577.3 73.56 350 770 
0.70 57 585.6 79.16 380 760 
0.80 41 577.0 88.14 400 728 
0.90 33 531.7 57.29 450 638 

GRE-Q 

1.00 28 528.9 61.57 376 614 
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Figure 4.23. GRE-V scores for all true theta values compared to average GRE-V 

scores corresponding to each college selection ratio. 

_____________________________________________________________________ 
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Figure 4.24. GRE-Q scores for all true theta values compared to average GRE-Q 

scores corresponding to each college selection ratio. 

_____________________________________________________________________ 
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5. Conclusion 

In this set of studies, the impact of a test taking strategy on computerized 

adaptive testing outcomes was examined. The test taking strategy of interest was one 

that is taught by companies like Kaplan and Princeton Review to help “beat the test.” 

Briefly, the strategy is to spend more time ensuring a correct answer on the first five 

or ten items to help improve the final estimation of your ability level. 

Two studies were conducted to test possible effects of this test taking strategy. 

The first study looked at real world effects of knowledge of test taking strategies by 

comparing three groups of examinees who differed only in the amount of instructions 

they received prior to taking the same computer adaptive test. The second study 

looked at the effects of an artificial boost in ability on computer adaptive test 

outcomes under varying test procedure conditions. 

In Study 1, differences were found in final trait estimates between conditions 

that. Those examinees who were taught the test taking strategy performed better than 

those without this knowledge. The examinees who performed the worst were those 

who knew how the test works but were given no information on how to “beat” the 

test. As discussed in Chapter 3, these differences could be due to outside examinee 

factors like motivation and/or anxiety levels that might result from the knowledge, or 

lack there of, of this test taking strategy. This is consistent with current literature on 

test anxiety and motivation. 

In Study 2, it was found that test stability patterns only differed slightly 

between the two types of examinees. There was a significant difference in random 
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variability of theta estimates between the two groups of examinees, and there were 

slightly significant differences in systematic variability or bias between the two 

groups. This suggests that the biggest amount of differences found were due to the 

variability in the initial theta boost. It was found that examinees with an artificial 

boost in their ability at the beginning of the test did, on average, have an inflated final 

theta estimate when compared to examinees without an artificial boost. While this 

difference was significant, it was small. However, when applying these differences to 

average GRE scores of graduate programs in the U.S., for schools with selection 

rations especially around 50-100% this difference could result in the acceptance of 

some students whose scores are not true reflections of their quantitative or verbal 

reasoning ability levels. 

It was also found in Study 2 that larger item pools resulted in more stable 

estimates of theta. Items with higher discrimination parameters and lower guessing 

parameters resulted in more stable estimates. These results are consistent with the 

literature on computer adaptive testing. Also, if a test developer is interested in using 

a fixed linear test to begin an adaptive test, it was found in this study that a test with 

items at a more average difficulty level will result in more stable estimates of theta. 

Finally, as long as tests are at least 20 items in length, the stability of the theta 

estimates is virtually equal no matter the starting rule used or the presence of an 

artificial boost in ability level early in the test. 

Separately, these two studies lend to some interesting results. But, combining 

the findings in Study 1 with those in Study 2 begins to suggest this test taking strategy 
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on average does result in inflated final ability estimates. It was found in Study 1 that 

those who knew the test taking strategy had significantly better ability estimates than 

those who only knew how the test works; in Study 2 that an artificial boost resulted in 

significantly higher theta estimates. These results support the claim by the test review 

companies that spending more time at the beginning of the test will increase your 

score on the test. However, there were limitations in this set of studies that require 

further attention. These limitations are discussed next. 

The first of these limitations is apparent in Study 1. This study lacked the 

capability to detect if the participants in the third group really followed the test taking 

strategy explained to them at the beginning of the test. That is, there was no data to 

see if those examinees spent more time on the first items in the test than the other 

participants did. So, while there were differences found, there is no way in this study 

to know for sure that these differences were due to following the test taking strategy 

taught prior to the test or if they were the effects of lowered anxiety and/or higher 

motivation levels.  

 Secondly, this study was limited to the maximum likelihood estimation 

procedure. This estimation procedure is limited to examinees who answer at least one 

item correctly and at least one item incorrectly. Also, this is not the only estimation 

procedure in use by CAT developers and administrators. Future simulation studies 

should look at other estimation procedures (e.g., EAP).  

Finally, only one test taking strategy was examined in this study. In the 

simulation study, this test-taking strategy was mimicked in only one way. Future 
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simulation studies should vary how this boost is applied to the true trait level. Future 

studies should also attempt to isolate other human factors that could affect ability 

estimates for high-stakes tests. This last point is of greatest importance given the large 

role high-stakes testing plays in our society today. 
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Appendix A 
 

Instructions for Conditions 
 
Introduction – Condition 1 – Screen 1 
 
Thank you for agreeing to participate in this study on abstract reasoning 
ability.  This is a computer adaptive test that measures your ability to 
reason on a nonverbal matrix completion task.  
 
The test you are about to take has 25 matrix completion items.  Before 
beginning the test, you will be given examples of the rules necessary to 
complete all items in the test.  You will also be given an example item to 
practice these rules before beginning the test.   
 
You will not be allowed to skip any items or return to any items you have 
already answered. 
 
Please click on the button below to acknowledge that you have signed 
and received a copy of the informed consent form with information on 
how to contact the researchers in this study at any point after completion 
of this study.  Then, click "Next" in the upper, right-hand corner of the 
screen to move on. 
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Introduction – Condition 2 – Screen 1 
 
Thank you for agreeing to participate in this study on abstract reasoning 
ability.  This is a computer adaptive test that measures your ability to 
reason on a nonverbal matrix completion task.  
 
The test you are about to take is computer adaptive and has 25 matrix 
completion items.  Before beginning the test, you will be given examples 
of the rules necessary to complete all items in the test.  You will also be 
given an example item to practice these rules before beginning the test. 
 
A computer adaptive test "adapts" itself to test takers by selecting the 
next item to be presented on the basis of performance on preceding items.  
This means that each item you receive on the test is chosen from a large 
number of items and the choice is made based on whether you answered 
previous questions correctly or incorrectly.  This also means that the 
items you receive may not be the same items or they may not be given to 
you in the same order as others taking this test.  Because of the nature of 
this test, you will not be allowed to skip any items or return to any items 
you have already answered. 
 
Please click on the button below to acknowledge that you have signed 
and received a copy of the informed consent form with information on 
how to contact the researchers in this study at any point after completion 
of this study.  Then, click "Next" in the upper, right-hand corner of the 
screen to move on. 
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Introduction – Condition 3 – Screen 1 
 
Thank you for agreeing to participate in this study on abstract reasoning 
ability.  This is a computer adaptive test that measures your ability to 
reason on a nonverbal matrix completion task.  
 
The test you are about to take is computer adaptive and has 25 matrix 
completion items.  Before beginning the test, you will be given examples 
of the rules necessary to complete all items in the test.  You will also be 
given an example item to practice these rules before beginning the test. 
 
A computer adaptive test "adapts" itself to test takers by selecting the 
next item to be presented on the basis of performance on preceding items.  
This means that each item you receive on the test is chosen from a large 
number of items and the choice is made based on whether you answered 
previous questions correctly or incorrectly.  This also means that the 
items you receive may not be the same items or they may not be given to 
you in the same order as others taking this test.  Because of the nature of 
this test, you will not be allowed to skip any items or return to any items 
you have already answered. 
 
One test taking strategy that you should keep in mind when taking this 
test is as follows... Because of the nature of a computer adaptive test, you 
will want to spend time and concentration on the first ten questions of the 
test.  The reason for this is that a computer adaptive test relies heavily on 
the first ten questions in determining your score.  This is because the 
computer knows nothing about your ability before you start the test.  
Because of the short length of this test, the needs to use pretty big jumps 
in judgment in the first ten questions and then use the remaining 
questions to "fine-tune" your score. 
 
Please click on the button below to acknowledge that you have signed 
and received a copy of the informed consent form with information on 
how to contact the researchers in this study at any point after completion 
of this study.  Then, click "Next" in the upper, right-hand corner of the 
screen to move on. 
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Instructions – Screen 2 
 
The matrix completion items you will be given 
throughout this test are similar the one below.  There are 
three rows and three columns of pictures that follow 
particular patterns.  You must first figure out the pattern 
then choose the correct answer (numbered 1 through 8) 
that fulfills this pattern to fill in the ninth spot 
(represented by the "?"). 
 

 
 
Please click "Next" to learn the rules necessary to 
complete these items. 
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Instructions – Screen 3 
 
The first rule is known as Identity.  This rule states that 
the same element is found across the rows and/or down 
the columns.  As in the picture below, there is a square in 
every element of the first row, a triangle in every 
element of the second row and a circle in every element 
of the third row.  This rule can be applied down the 
columns as well if there were a same attribute down 
every element of a column. 
 

 
 
Please click "Next" to move on to the next rule. 
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Instructions – Screen 4 
 
The second rule for these items is Progression.  As can 
be seen in the example below, this rule implies a change 
in the attribute from the first to the third element in that 
row or column.  For this example, the shapes get bigger 
as you move from left to right.  This rule could consist of 
changes in number of shapes (e.g., one square to three 
squares) or shade of the shape (e.g., white to grey to 
black). 
 

 
 
Please click "Next" to move on to the next rule. 
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Instructions – Screen 5 
 
The third rule for these items is Addition/Subtraction. As 
can be seen in the first example below, this rule results in 
adding the attributes in each of the first elements of each 
row AND column to create the third element (e.g., the 
horizontal line added to the vertical line creates the plus 
sign at the end of the first row).  Or, in the second 
example, looking at the first column, if you take the 
asterisk looking element, and remove from it the 
diagonal lines (the second element in the column), the 
resulting element is the plus sign. 

 
 
 
 
 
 
 
 
 

 
Please click "Next" to move on to the next rule. 
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Instructions – Screen 6 
 
The fourth rule for these items is Distribution of 3.  As 
can be seen in the example below, each row and column 
contains one of three attributes that are evenly distributed 
over every row and column.  Each row and column 
contains one square, one circle and one triangle. 
 

 
 
Please click "Next" to move on to the final rule. 



 179
 
Instructions – Screen 7 
 
The final rule for these items is Distribution of 2.  As can 
be seen in the example below, each row and column has 
two elements with identical attributes and the third 
element consists of some contrasting attribute.  For 
example, the first row consists of two elements with 
triangles and the third element contains a circle. 
 

 
 
Please click "Next" to move on to an example item. 
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Instructions – Screen 8 
 
Given what you know about the rules, attempt to solve 
the item below.  Once you have decided on an answer, 
use your mouse to click on the numbered button below 
the item. 
 

 

 
 



 181
 
Instructions – Screen 9 
 
If you answered 2, you are correct.  Remembering the 
rules from earlier, we can see that the identity rule is 
used (a square in every row and column).  As well, there 
are two Distribution of 3 rules in play.  Each row and 
column has one element that's grey, one that's white and 
one that's black.  As well, each row and column has one 
element containing a circle, one containing a square and 
one containing a triangle.  
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Instructions – Survey Question 1 – Screen 10 
 
Have you ever taken a course to improve your score on a 
major test (i.e., the GRE, SAT, ASVAB, etc.) in which 
they discussed test taking strategies for computer 
adaptive tests? 
 
Please use your mouse to choose "Yes" or "No" below, 
then click "Next". 
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Instructions – Survey Question 1 – Screen 11 
 
Have you ever taken a computer adaptive test before 
(e.g., the GRE, ASVAB, etc.)? 
 
Please use your mouse to choose "Yes" or "No" below, 
then click "Next". 
 

         



 184
 

Appendix B 
 

Means (and standard deviations) for theta boosts for each level of theta 
 

Theta Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 
-3.50 .687 .343 .229 .172 .137 .114 .098 .086 .076 .069 

 (.650) (.325) (.217) (.163) (.130) (.108) (.093) (.081) (.072) (.065) 
-3.25 .675 .337 .225 .169 .135 .112 .096 .084 .075 .068 

 (.618) (.309) (.206) (.154) (.124) (.103) (.088) (.077) (.069) (.062) 
-3.00 .670 .335 .223 .167 .134 .112 .096 .084 .074 .067 

 (.577) (.289) (.192) (.144) (.115) (.096) (.082) (.072) (.064) (.058) 
-2.75 .690 .345 .230 .173 .138 .115 .099 .086 .077 .069 

 (.653) (.326) (.218) (.163) (.131) (.109) (.093) (.082) (.073) (.065) 
-2.50 .653 .327 .218 .163 .131 .109 .093 .082 .073 .065 

 (.708) (.354) (.236) (.177) (.142) (.118) (.101) (.089) (.079) (.071) 
-2.25 .682 .341 .227 .170 .136 .114 .097 .085 .076 .068 

 (.614) (.307) (.205) (.154) (.123) (.102) (.088) (.077) (.068) (.061) 
-2.00 .667 .334 .222 .167 .134 .111 .095 .083 .074 .067 

 (.676) (.338) (.225) (.169) (.135) (.113) (.097) (.085) (.075) (.068) 
-1.75 .675 .338 .225 .169 .135 .113 .096 .084 .075 .068 

 (.627) (.313) (.209) (.157) (.125) (.104) (.090) (.078) (.070) (.063) 
-1.50 .697 .349 .232 .174 .139 .116 .100 .087 .078 .070 

 (.602) (.301) (.201) (.150) (.120) (.100) (.086) (.075) (.067) (.060) 
-1.25 .667 .334 .222 .167 .133 .111 .095 .083 .074 .067 

 (.580) (.290) (.193) (.145) (.116) (.097) (.083) (.072) (.064) (.058) 
-1.00 .662 .331 .221 .165 .132 .110 .095 .083 .074 .066 

 (.633) (.317) (.211) (.158) (.127) (.106) (.090) (.079) (.070) (.063) 
-.75 .693 .347 .231 .173 .139 .116 .099 .087 .077 .069 

 (.703) (.352) (.234) (.176) (.141) (.117) (.100) (.088) (.078) (.070) 
-.50 .705 .352 .235 .176 .141 .118 .101 .088 .078 .071 

 (.716) (.358) (.239) (.179) (.143) (.119) (.102) (.089) (.080) (.072) 
-.25 .668 .334 .223 .167 .134 .111 .096 .084 .074 .067 

 (.629) (.314) (.210) (.157) (.126) (.105) (.090) (.079) (.070) (.063) 
.00 .691 .345 .230 .173 .138 .115 .099 .086 .077 .069 

 (.622) (.311) (.207) (.156) (.124) (.104) (.089) (.078) (.069) (.062) 
.25 .720 .360 .240 .180 .144 .120 .103 .090 .080 .072 

 (.665) (.332) (.222) (.166) (.133) (.111) (.095) (.083) (.074) (.066) 
.50 .675 .338 .225 .169 .135 .113 .096 .084 .075 .068 

 (.584) (.292) (.195) (.146) (.117) (.097) (.083) (.073) (.065) (.058) 
.75 .729 .364 .243 .182 .146 .121 .104 .091 .081 .073 

 (.699) (.350) (.233) (.175) (.140) (.117) (.100) (.087) (.078) (.070) 
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Appendix B (continued) 
 

Means (and standard deviations) for theta boosts for each level of theta 
 
 

Theta Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 
1.00 .670 .335 .223 .168 .134 .112 .096 .084 .075 .067 

 (.611) (.305) (.204) (.153) (.122) (.102) (.087) (.076) (.068) (.061) 
1.25 .689 .344 .230 .172 .138 .115 .098 .086 .077 .069 

 (.667) (.333) (.222) (.167) (.133) (.111) (.095) (.083) (.074) (.067) 
1.50 .701 .351 .234 .175 .140 .117 .100 .088 .078 .070 

 (.702) (.351) (.234) (.176) (.140) (.117) (.100) (.088) (.078) (.070) 
1.75 .636 .318 .212 .159 .127 .106 .091 .080 .071 .064 

 (.574) (.287) (.191) (.144) (.115) (.096) (.082) (.072) (.064) (.057) 
2.00 .661 .331 .220 .165 .132 .110 .095 .083 .074 .066 

 (.635) (.317) (.212) (.159) (.127) (.106) (.091) (.079) (.071) (.063) 
2.25 .708 .354 .236 .177 .142 .118 .101 .089 .079 .071 

 (.671) (.336) (.224) (.168) (.134) (.112) (.096) (.084) (.075) (.067) 
2.50 .663 .332 .221 .166 .133 .111 .095 .083 .074 .066 

 (.635) (.317) (.212) (.159) (.127) (.106) (.091) (.079) (.071) (.063) 
2.75 .696 .348 .232 .174 .139 .116 .100 .087 .077 .070 

 (.670) (.335) (.223) (.168) (.134) (.112) (.096) (.084) (.074) (.067) 
3.00 .694 .347 .231 .173 .139 .116 .099 .087 .077 .069 

 (.624) (.312) (.208) (.156) (.125) (.104) (.089) (.078) (.069) (.062) 
3.25 .690 .345 .230 .172 .138 .115 .099 .086 .077 .069 

 (.745) (.372) (.248) (.186) (.149) (.124) (.106) (.093) (.083) (.074) 
3.50 .671 .336 .224 .168 .134 .112 .096 .084 .075 .067 

 (.610) (.305) (.203) (.152) (.122) (.102) (.087) (.076) (.068) (.061) 
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Appendix C 
 
Means (and standard deviations) for the theta estimate at seven points throughout the 

test within each true theta level 

Theta Item5 Item10 Item15 Item20 Item25 Item30 Item35 
-3.50 -2.678 -3.222 -3.379 -3.417 -3.431 -3.437 -3.444 

 (.354) (.075) (.020) (.020) (.023) (.025) (.028) 
-3.25 -2.515 -3.003 -3.134 -3.172 -3.189 -3.197 -3.202 

 (.292) (.054) (.016) (.016) (.018) (.021) (.022) 
-3.00 -2.307 -2.746 -2.881 -2.921 -2.938 -2.946 -2.953 

 (.251) (.049) (.0167) (.014) (.015) (.016) (.019) 
-2.75 -2.075 -2.498 -2.631 -2.668 -2.681 -2.691 -2.698 

 (.221) (.048) (.017) (.013) (.012) (.013) (.014) 
-2.50 -1.888 -2.264 -2.387 -2.419 -2.435 -2.443 -2.449 

 (.201) (.045) (.019) (.016) (.014) (.014) (.015) 
-2.25 -1.665 -1.990 -2.117 -2.160 -2.176 -2.188 -2.194 

 (.172) (.042) (.023) (.019) (.017) (.017) (.019) 
-2.00 -1.463 -1.763 -1.884 -1.924 -1.939 -1.949 -1.954 

 (.171) (.039) (.022) (.016) (.013) (.014) (.015) 
-1.75 -1.245 -1.512 -1.627 -1.666 -1.685 -1.694 -1.699 

 (.184) (.041) (.024) (.019) (.017) (.018) (.019) 
-1.50 -.980 -1.244 -1.374 -1.411 -1.429 -1.439 -1.446 

 (.227) (.042) (.020) (.020) (.021) (.022) (.023) 
-1.25 -.761 -.993 -1.119 -1.158 -1.177 -1.187 -1.193 

 (.261) (.046) (.029) (.028) (.026) (.026) (.027) 
-1.00 -.561 -.753 -.865 -.908 -.928 -.938 -.943 

 (.299) (.045) (.031) (.025) (.023) (.024) (.025) 
-.75 -.320 -.500 -.621 -.659 -.677 -.687 -.693 

 (.363) (.054) (.032) (.028) (.025) (.024) (.024) 
-.50 -.100 -.267 -.386 -.420 -.437 -.445 -.451 

 (.423) (.047) (.036) (.029) (.025) (.025) (.025) 
-.25 .114 -.003 -.128 -.166 -.182 -.190 -.197 

 (.489) (.051) (.028) (.023) (.021) (.020) (.020) 
.00 .341 .256 .123 .082 .065 .055 .049 

 (.562) (.053) (.036) (.031) (.028) (.027) (.026) 
.25 .570 .508 .383 .345 .327 .315 .308 

 (.648) (.052) (.031) (.025) (.023) (.022) (.023) 
.50 .755 .744 .620 .582 .566 .555 .549 

 (.720) (.047) (.032) (.025) (.023) (.021) (.021) 
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Appendix C (continued) 

Means (and standard deviations) for the theta estimate at seven points throughout the 

test within each true theta level 

Theta Item5 Item10 Item15 Item20 Item25 Item30 Item35 
.75 .977 1.002 .867 .830 .813 .805 .798 

 (.811) (.056) (.030) (.023) (.021) (.019) (.017) 
1.00 1.139 1.222 1.103 1.070 1.053 1.046 1.041 

 (.881) (.058) (.034) (.025) (.021) (.019) (.018) 
1.25 1.334 1.482 1.354 1.317 1.300 1.293 1.288 

 (.962) (.053) (.031) (.022) (.018) (.016) (.015) 
1.50 1.534 1.722 1.602 1.565 1.551 1.542 1.538 

 (1.049) (.056) (.023) (.019) (.015) (.015) (.013) 
1.75 1.713 1.957 1.849 1.816 1.801 1.792 1.787 

 (1.133) (.059) (.027) (.021) (.017) (.014) (.013) 
2.00 1.908 2.219 2.106 2.071 2.055 2.046 2.040 

 (1.226) (.070) (.023) (.017) (.013) (.011) (.010) 
2.25 2.114 2.447 2.343 2.313 2.298 2.288 2.284 

 (1.327) (.063) (.032) (.026) (.019) (.017) (.015) 
2.50 2.248 2.663 2.584 2.557 2.543 2.535 2.530 

 (1.395) (.071) (.023) (.015) (.014) (.011) (.010) 
2.75 2.421 2.906 2.844 2.814 2.797 2.789 2.784 

 (1.490) (.105) (.028) (.020) (.016) (.015) (.015) 
3.00 2.517 3.140 3.090 3.066 3.051 3.042 3.036 

 (1.550) (.121) (.032) (.022) (.018) (.016) (.015) 
3.25 2.638 3.360 3.338 3.315 3.299 3.292 3.286 

 (1.618) (.122) (.033) (.022) (.019) (.017) (.018) 
3.50 2.760 3.555 3.582 3.566 3.555 3.547 3.541 

 (1.688) (.172) (.035) (.026) (.022) (.020) (.020) 
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Appendix D 
 
Estimated theta value mean and 95% confidence interval for each true theta for boost 

conditions 

True theta =  -3.25 

-3.21

-3.11

-3.01

-2.91

-2.81

-2.71

-2.61

-2.51

Mean
Lower Bound
Upper Bound

Mean -2.5154 -3.0029 -3.1337 -3.1717 -3.1885 -3.1967 -3.2019

Lower Bound -2.5492 -3.0092 -3.1356 -3.1736 -3.1905 -3.1991 -3.2045

Upper Bound -2.4815 -2.9966 -3.1318 -3.1699 -3.1864 -3.1943 -3.1992

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = -3.00 

-2.97

-2.87

-2.77

-2.67

-2.57

-2.47

-2.37

-2.27

Mean
Lower Bound
Upper Bound

Mean -2.3067 -2.7459 -2.8811 -2.9205 -2.9384 -2.9464 -2.9526

Lower Bound -2.3358 -2.7516 -2.8831 -2.9221 -2.9401 -2.9483 -2.9548

Upper Bound -2.2776 -2.7403 -2.8792 -2.9189 -2.9367 -2.9445 -2.9504

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = -2.75 

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

-2.1

Mean
Lower Bound
Upper Bound

Mean -2.0748 -2.4981 -2.6307 -2.6675 -2.681 -2.6907 -2.6979

Lower Bound -2.1005 -2.5036 -2.6327 -2.6691 -2.6824 -2.6922 -2.6995

Upper Bound -2.0492 -2.4925 -2.6287 -2.6659 -2.6796 -2.6893 -2.6962

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = -2.50 

-2.47

-2.37

-2.27

-2.17

-2.07

-1.97

-1.87

Mean
Lower Bound
Upper Bound

Mean -1.8882 -2.2644 -2.387 -2.4188 -2.4346 -2.4427 -2.4492

Lower Bound -1.9114 -2.2696 -2.3893 -2.4206 -2.4362 -2.4443 -2.4509

Upper Bound -1.8649 -2.2592 -2.3848 -2.417 -2.4329 -2.441 -2.4475

item5 item10 item15 item20 item25 item30 item35
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True theta = -2.25 

-2.21

-2.11

-2.01

-1.91

-1.81

-1.71

Mean
Lower Bound
Upper Bound

Mean -1.6649 -1.9902 -2.1173 -2.1595 -2.1763 -2.1877 -2.1939

Lower Bound -1.6849 -1.9951 -2.1199 -2.1616 -2.1783 -2.1897 -2.1961

Upper Bound -1.6449 -1.9854 -2.1146 -2.1573 -2.1744 -2.1857 -2.1918

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 



 193
 

True theta = -2.00 

-1.97

-1.87

-1.77

-1.67

-1.57

-1.47

Mean
Lower Bound
Upper Bound

Mean -1.4633 -1.7631 -1.8837 -1.9235 -1.9394 -1.949 -1.9544

Lower Bound -1.4831 -1.7676 -1.8862 -1.9253 -1.9409 -1.9506 -1.9562

Upper Bound -1.4435 -1.7585 -1.8811 -1.9217 -1.938 -1.9474 -1.9527

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = -1.75 

-1.71

-1.66

-1.61

-1.56

-1.51

-1.46

-1.41

-1.36

-1.31

-1.26

-1.21

Mean
Lower Bound
Upper Bound

Mean -1.2453 -1.5117 -1.627 -1.6657 -1.6852 -1.6939 -1.6992

Lower Bound -1.2666 -1.5164 -1.6298 -1.6679 -1.6872 -1.696 -1.7014

Upper Bound -1.224 -1.507 -1.6243 -1.6634 -1.6832 -1.6918 -1.697

item5 item10 item15 item20 item25 item30 item35

 

Th
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True theta = -1.50 

-1.455

-1.355

-1.255

-1.155

-1.055

-0.955

Mean
Lower Bound
Upper Bound

Mean -0.9803 -1.2435 -1.3737 -1.411 -1.429 -1.4385 -1.4462

Lower Bound -1.0066 -1.2484 -1.3761 -1.4134 -1.4315 -1.441 -1.4489

Upper Bound -0.954 -1.2386 -1.3714 -1.4087 -1.4265 -1.436 -1.4435

item5 item10 item15 item20 item25 item30 item35
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True theta = -1.25 

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

Mean
Lower Bound
Upper Bound

Mean -0.7606 -0.9928 -1.1186 -1.1584 -1.1766 -1.1866 -1.1932

Lower Bound -0.7908 -0.9982 -1.122 -1.1617 -1.1796 -1.1897 -1.1964

Upper Bound -0.7304 -0.9874 -1.1152 -1.1552 -1.1735 -1.1836 -1.19

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = -1.00 

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

Mean
Lower Bound
Upper Bound

Mean -0.561 -0.7533 -0.8651 -0.9082 -0.928 -0.9375 -0.9432

Lower Bound -0.5956 -0.7585 -0.8687 -0.9111 -0.9307 -0.9404 -0.9461

Upper Bound -0.5263 -0.748 -0.8614 -0.9052 -0.9253 -0.9347 -0.9402

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = -0.75 

-0.71

-0.66

-0.61

-0.56

-0.51

-0.46

-0.41

-0.36

-0.31

Mean
Lower Bound
Upper Bound

Mean -0.3196 -0.5004 -0.6208 -0.6593 -0.6767 -0.6865 -0.6932

Lower Bound -0.3617 -0.5066 -0.6245 -0.6626 -0.6795 -0.6892 -0.696

Upper Bound -0.2775 -0.4942 -0.6171 -0.656 -0.6738 -0.6838 -0.6904

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = -0.50 

-0.46

-0.41

-0.36

-0.31

-0.26

-0.21

-0.16

-0.11

-0.06

Mean
Lower Bound
Upper Bound

Mean -0.0998 -0.2669 -0.3857 -0.4202 -0.4365 -0.445 -0.4509

Lower Bound -0.1489 -0.2724 -0.3899 -0.4236 -0.4394 -0.4479 -0.4538

Upper Bound -0.0508 -0.2614 -0.3815 -0.4168 -0.4336 -0.442 -0.4479

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = -0.25 

-0.205

-0.155

-0.105

-0.055

-0.005

0.045

0.095

0.145

Mean
Lower Bound
Upper Bound

Mean 0.1141 -0.0028 -0.1282 -0.1662 -0.1816 -0.1901 -0.1966

Lower Bound 0.0574 -0.0088 -0.1315 -0.1689 -0.184 -0.1924 -0.1989

Upper Bound 0.1708 0.0031 -0.125 -0.1635 -0.1792 -0.1878 -0.1943

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = 0.00 

0.04

0.09

0.14

0.19

0.24

0.29

0.34

0.39

Mean
Lower Bound
Upper Bound

Mean 0.3407 0.2559 0.1233 0.0817 0.0646 0.0552 0.0486

Lower Bound 0.2756 0.2498 0.1191 0.0782 0.0613 0.0521 0.0456

Upper Bound 0.4059 0.262 0.1275 0.0853 0.0678 0.0583 0.0516

item5 item10 item15 item20 item25 item30 item35
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a 
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True theta = 0.25 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Mean
Lower Bound
Upper Bound

Mean 0.5704 0.5083 0.383 0.345 0.3265 0.315 0.3081

Lower Bound 0.4952 0.5023 0.3793 0.3421 0.3239 0.3124 0.3055

Upper Bound 0.6456 0.5143 0.3866 0.348 0.3291 0.3176 0.3107

item5 item10 item15 item20 item25 item30 item35

 

Th
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True theta = 0.50 

0.54

0.59

0.64

0.69

0.74

0.79

0.84

Mean
Lower Bound
Upper Bound

Mean 0.7553 0.7435 0.62 0.5822 0.5664 0.5548 0.5485

Lower Bound 0.6719 0.7381 0.6163 0.5793 0.5638 0.5524 0.546

Upper Bound 0.8388 0.749 0.6238 0.5851 0.5691 0.5573 0.5509

item5 item10 item15 item20 item25 item30 item35

 

 

Th
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a 



 204
 

True theta = 0.75 

0.79

0.84

0.89

0.94

0.99

1.04

Mean
Lower Bound
Upper Bound

Mean 0.9766 1.0015 0.8674 0.8298 0.8134 0.8048 0.7983

Lower Bound 0.8826 0.995 0.8638 0.8271 0.811 0.8026 0.7963

Upper Bound 1.0706 1.008 0.8709 0.8325 0.8158 0.807 0.8003

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = 1.00 

1.03

1.08

1.13

1.18

1.23

Mean
Lower Bound
Upper Bound

Mean 1.1392 1.2223 1.103 1.0704 1.0533 1.0455 1.0405

Lower Bound 1.037 1.2156 1.0991 1.0676 1.0509 1.0433 1.0384

Upper Bound 1.2414 1.229 1.1069 1.0733 1.0558 1.0477 1.0426

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = 1.25 

1.22

1.27

1.32

1.37

1.42

1.47

Mean
Lower Bound
Upper Bound

Mean 1.3339 1.4818 1.3535 1.3165 1.3002 1.2931 1.2877

Lower Bound 1.2223 1.4756 1.35 1.3139 1.2981 1.2913 1.286

Upper Bound 1.4454 1.4879 1.3571 1.3191 1.3023 1.295 1.2894

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = 1.50 

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Mean
Lower Bound
Upper Bound

Mean 1.5335 1.7219 1.6016 1.5645 1.5508 1.5415 1.5382

Lower Bound 1.4118 1.7154 1.5989 1.5623 1.5491 1.5398 1.5366

Upper Bound 1.6552 1.7284 1.6043 1.5668 1.5524 1.5432 1.5397

item5 item10 item15 item20 item25 item30 item35

 

Th
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a 
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True theta = 1.75 

1.575

1.625

1.675

1.725

1.775

1.825

1.875

1.925

Mean
Lower Bound
Upper Bound

Mean 1.7132 1.9567 1.8491 1.8162 1.8011 1.7921 1.7868

Lower Bound 1.5818 1.9499 1.846 1.8138 1.7992 1.7905 1.7853

Upper Bound 1.8447 1.9635 1.8523 1.8186 1.8031 1.7937 1.7883

item5 item10 item15 item20 item25 item30 item35

 

Th
et

a 
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True theta = 2.00 

1.76

1.81

1.86

1.91

1.96

2.01

2.06

2.11

2.16

2.21

Mean
Lower Bound
Upper Bound

Mean 1.9076 2.2193 2.1055 2.0707 2.0554 2.046 2.0396

Lower Bound 1.7655 2.2111 2.1029 2.0687 2.0538 2.0447 2.0384

Upper Bound 2.0498 2.2274 2.1082 2.0727 2.0569 2.0472 2.0408

item5 item10 item15 item20 item25 item30 item35
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True theta = 2.25 

1.955

2.005

2.055

2.105

2.155

2.205

2.255

2.305

2.355

2.405

2.455

Mean
Lower Bound
Upper Bound

Mean 2.1138 2.4472 2.3432 2.3131 2.2981 2.2884 2.2838

Lower Bound 1.9598 2.4399 2.3395 2.3101 2.2959 2.2865 2.2821

Upper Bound 2.2678 2.4545 2.3469 2.3161 2.3002 2.2903 2.2856

item5 item10 item15 item20 item25 item30 item35

 

Th
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True theta = 2.50 

2.08

2.18

2.28

2.38

2.48

2.58

2.68

Mean
Lower Bound
Upper Bound

Mean 2.2483 2.6626 2.584 2.5566 2.5428 2.5348 2.5298

Lower Bound 2.0865 2.6544 2.5813 2.5549 2.5412 2.5335 2.5286

Upper Bound 2.4101 2.6708 2.5867 2.5584 2.5444 2.5361 2.531

item5 item10 item15 item20 item25 item30 item35
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True theta = 2.75 

2.245

2.345

2.445

2.545

2.645

2.745

2.845

Mean
Lower Bound
Upper Bound

Mean 2.4213 2.9064 2.8439 2.8135 2.7972 2.7892 2.7839

Lower Bound 2.2485 2.8942 2.8407 2.8112 2.7953 2.7874 2.7822

Upper Bound 2.5942 2.9187 2.8472 2.8159 2.7991 2.791 2.7856

item5 item10 item15 item20 item25 item30 item35
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a 
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True theta = 3.00 

2.335

2.435

2.535

2.635

2.735

2.835

2.935

3.035

3.135

Mean
Lower Bound
Upper Bound

Mean 2.5172 3.14 3.0895 3.0656 3.0506 3.0419 3.0364

Lower Bound 2.3374 3.126 3.0858 3.063 3.0485 3.04 3.0346

Upper Bound 2.6969 3.154 3.0932 3.0682 3.0527 3.0437 3.0382

item5 item10 item15 item20 item25 item30 item35

 

Th
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True theta = 3.25 

2.45

2.55

2.65

2.75

2.85

2.95

3.05

3.15

3.25

3.35

Mean
Lower Bound
Upper Bound

Mean 2.6381 3.3598 3.338 3.3145 3.299 3.2917 3.2863

Lower Bound 2.4504 3.3456 3.3342 3.312 3.2968 3.2897 3.2842

Upper Bound 2.8258 3.3739 3.3418 3.3171 3.3011 3.2937 3.2884

item5 item10 item15 item20 item25 item30 item35
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