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Abstract

Women experience a higher incidence of oral diseases including periodontal diseases and 

temporomandibular joint disease (TMD) implicating the role of estrogen signaling in disease 

pathology. Fluctuating levels of estrogen during childbearing age potentiates facial pain, high 

estrogen levels during pregnancy promote gingivitis, and low levels of estrogen during menopause 

predisposes the TMJ to degeneration and increases alveolar bone loss. In this review, an overview 

of estrogen signaling pathways in vitro and in vivo that regulate pregnancy-related gingivitis, TMJ 

homeostasis, and alveolar bone remodeling is provided. Deciphering the specific estrogen 

signaling pathways for individual oral diseases is crucial for potential new drug therapies to 

promote and maintain healthy tissue.
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Introduction

Oral diseases are a major health burden worldwide and exhibit a large socio-economic 

impact [1]. Focused analyses on women’s health have revealed sex dimorphisms in many 

oral health diseases. Temporomandibular joint disease (TMD), pregnancy-related gingivitis 

and age-related alveolar bone loss are all examples of diseases that are more common in 

women than in men [2, 3]. While this is a complex problem with many confounding factors, 
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one possible mechanism for the increased prevalence of the diseases in women is due to 

differences in estrogen levels and corresponding signaling mechanisms.

Estrogen is crucial for development and homeostasis for both sexes even though relative 

levels vary. Physiological estrogen is found in three forms: estradiol, estrone, and estriol. 

Estradiol is the most potent and abundant form during the reproductive years, and most often 

used for in vitro and in vivo studies. In general, standardizing estrogen levels is difficult due 

to daily fluctuations in concentration and anatomical differences in the source. In men, low, 

constant levels of estrogen are present after puberty through the age of 60. The mean 

bioavailable estradiol (E2) is 13 pg/ml in men ages 20–30, 12 pg/ml in men 40–59 years of 

age and 8 pg/ml in men over the age of 60 [4]. In contrast, estradiol levels fluctuate from 5 

pg/ml at the early follicular phase to a peak of 200–500 pg/ml just before ovulation in 

women of childbearing age. After menopause, the level of estradiol precipitously drops and 

remains constant around 3 pg/ml in women over the age of 60 [5]. As such, it is plausible 

that fluctuations in estrogen and corresponding changes in other sex hormones including 

progesterone and relaxin play a significant role on the pathogenesis and propagation of 

many oral health diseases. Sex differences in estradiol concentration in people 16–45 years 

of age have been implicated in gingivitis and TMD. Further, menopausal women are more 

likely than age-matched men to develop TMJ degeneration disease (TMJ-DD) and age-

related alveolar bone loss. This review will provide a thorough evaluation of estrogen 

signaling at the cell and tissue level, sex dimorphism of TMD, gingivitis, and periodontal 

diseases, and provide target areas for future research.

Estrogen and TMD

Chronic TMD, including TMJ degenerative disease, is defined as pain in the TMJ area for at 

least 6 months [6]. Women are roughly three times more likely than men to develop chronic 

TMD [7–10]. The Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) 

study, a large prospective clinical trial that investigated the natural history of acute and 

chronic TMD diseases, illustrated that only the chronic form of TMD predominantly 

afflicted women, whereas the acute form had equal prevalence between the sexes [11]. 

Likely, the increased prevalence of TMD found in women in a number of cross-sectional 

studies is due to the increased duration of TMD symptoms in women such that at any given 

time point, more women than men have TMJ symptoms [12].

Data on the effects of estrogen on TMD, however, are contradictory. Older studies 

demonstrated that TMD predominantly afflicted women of childbearing age, suggesting that 

higher estrogen levels potentiated the disease [8, 13]. However, recent studies in Europe and 

the US with larger patient samples sizes have shown that the prevalence for TMD peaks 

between 45 and 64 years of age and then gradually decreases [14, 15]. In the US study, 

TMD prevalence peaked at around 6% in 35–64 year olds and then decreased to 4% in 65–

84 year olds; while in the European study, TMD prevalence peaked at 9% in 40–49 year old 

and then gradually decreased to 4% in 70–90 year old. Since the menopause transition and 

subsequent drop in estrogen levels occurs at age 45–55, these results suggest that low levels 

of estrogen may potentiate certain types of TMD. TMD comprises over 12 different 

diseases, making it difficult to differentiate the mechanistic role of estrogen in mediating one 
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of the many disease forms [16]. For example, in a recent study characterizing myalgia, disc 

disorders, and TMJ degeneration, it was determined that TMJ degeneration increased in 

women over the age of 50; whereas, disc disorders decreased in the same age group and 

peaked in women of childbearing age [17]. Another confounding variable is the reduction in 

bone quality due to osteoporosis, which is associated with bone loss in the oral region 

including the TMJ. However, the role of osteoporosis and TMJ bone changes is controversial 

with conflicting results on correlation between systemic bone loss and subchondral bone 

changes [18–20]. Taken together, the studies suggest that estrogen may have a biphasic 

effect on TMD with high and/or fluctuating levels promoting certain types of TMD and with 

low levels potentiating other types of TMD.

One way to examine the role of estrogen in mediating TMD is to examine its prevalence in 

post-menopausal women on hormone replacement therapy (HRT). Currently, four studies 

have investigated the effects of HRT on all TMD diseases. In the first study, a significant 

increase in TMD prevalence in post-menopausal women on HRT was observed [9]. 

However, at the time when the study was done, a large percentage of the post-menopausal 

women on HRT had undergone a hysterectomy [21]. This procedure can also result in 

increased TMD prevalence because of intubation [22], potentially biasing the results. In 

contrast, three recent studies found no significant difference in the prevalence of TMD in 

post-menopausal women on HRT compared to no treatment [23–25]. Taken together, the 

aforementioned studies suggest that hormone replacement may have no significant effect on 

the prevalence of TMD diseases overall.

Other recent studies have shown that TMD pain is reduced when estrogen levels are high. 

During pregnancy, there is a dramatic increase in estrogen levels. In one study, prevalence of 

TMD was 2–3 lower in pregnant versus nonpregnant age-matched females [26]. Further, in 

two longitudinal studies it was shown that reported orofacial pain diminished significantly 

during the third trimester of pregnancy [27] and increased post-partum [28], suggesting that 

TMD-related pain is reduced at high estrogen levels. One possible explanation for discordant 

results between pregnancy and hormone replacement is an altered sensitivity of tissue to 

fluctuating estrogen levels, rather than low or high concentrations [29].

The role of estrogen on TMJ structures

In humans, the temporomandibular joint is a bilateral diarthrodial joint, subjected to both 

hinge (inferior joint space) and sliding (both joint spaces) forces [30]. The complex 

mechanical functions of the TMJ are achieved by a biconcave fibrocartilaginous disc and 

articular fibrocartilage that cover the mandibular condyle and the articular surfaces of the 

temporal bone. During joint movement, the disc glides along the glenoid fossa and articular 

eminence [31]. The disc is divided into the anterior band, posterior band, and intermediate 

zone [32]. The intermediate zone is further subdivided into the lateral, central, and medial 

regions each of which exhibit different properties. Collagen fibers (mainly type I with trace 

amounts of type II) compose approximately 90% of the dry weight [33, 34], form a ring-like 

alignment around the periphery of the disc and are aligned in the anteroposterior direction 

[35, 36]. The disc matrix is comprised of approximately 5% proteoglycans. Chondroitin 

sulfate and dermatan sulfate make up the majority of the glycosaminoglycans (GAG) chains 
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on the proteoglycan proteins [33, 37–39]. Cell populations in the disc are heterogeneous 

with 70% fibroblast-like fibrochondrocytes throughout the tissue and 30% chondrocyte-like 

fibrochondrocytes localized in the intermediate zone [40, 41]. Biomechanical analysis of 

aged human TMJ discs illustrated an increase in overall stiffness and a reduction in 

relaxation after strain in female compared to male tissue [42]. Further, fixed charge density, 

the contribution of charged GAGs to the disc’s ability to support load via osmotic pressure, 

was determined to be lower in aged female human discs compared to males [43]. This 

human data points to sex differences in extracellular matrix ultrastructure and contributing 

changes in mechanical properties, likely regulated by sex hormone signaling.

Similar to the disc, the mandibular condylar fibrocartilage is comprised of both collagen 

type 1 and 2. However, these tissues differ in the organization and composition of this matrix 

and the cells that interact and remodel the tissue. There are four zones of the articular 

fibrocartilage. The superficial zone contains cells that express lubricin. The second zone is 

the polymorphic zone that contains mesenchymal progenitors that are actively proliferating 

is response to stimuli. The third zone is the flattened zone and contains cells that express 

collagen type 2 (Col2). The fourth zone is the hypertrophic zone where mandibular condylar 

fibrocartilage cells undergo terminal maturation [44] and/or directly transform into 

osteocytes [45]. There are a finite number of progenitor cells in the superficial and 

polymorphic zones of the mandibular condylar fibrocartilage. Once these cells are depleted, 

growth ceases and the TMJ undergoes degenerative changes. Unlike long bone growth plate 

cartilages, the TMJ undergoes age-related changes. In humans at 15–30 years of age and in 

mice at 3–6 months of age, there is a decrease in TMJ growth, a progressive chondrogenesis 

of the superficial and polymorphic zone and disappearance of the hypertrophic zone [46, 

47]. After these ages, there is cessation of growth, followed by a progressive decrease in 

mandibular condylar fibrocartilage cellularity and a gradual increase in degeneration that 

plateaus at 50–60 years of age in humans [46] and at 18 months of age in mice [47, 48].

Effects of estrogen on the TMJ disc

In vitro studies isolating the effects of estrogen treatment on single cell populations is one 

method to determine mechanisms of action during estradiol treatment. Table 1 includes a 

compilation of estrogen effects on TMJ disc and articular fibrocartilage. In baboon disc 

fibrochondrocytes, 10 nM estradiol treatment reduced the promoter activity and gene 

expression of proteoglycan 4 (Prg4), an important macro-molecule required for lubrication 

of the joint [49]. Further, estrogen in conjunction with relaxin increased both collagenase-1 

and stromelysin-1 in rabbit in fibrochondrocyte cultures [50] and organ cultures [51]. 

Interestingly, estradiol had no significant effect on collagenase and stromelysin expression 

and activity on TMJ synoviocytes [50]. Although there are only a small number of studies 

investigating the effect of estrogen on the TMJ disc fibrochondrocytes in vitro, the data 

suggest that high levels of estradiol increase protease activity and decrease the production of 

ECM components that promote a healthy disc.

Gonadectomy, including ovariectomy for females and orchiectomy for males, is the standard 

animal model to determine estrogen effects on tissue. The TMJ disc from female rats 

ovariectomized and then treated with estradiol, relaxin, or progesterone were characterized 
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for total GAG and collagen content. Overall, estradiol and relaxin, alone and synergistically, 

reduced overall GAG and collagen content. However, when progesterone was administered 

on its own or in concert with estradiol and/or relaxin, GAG and collagen levels were not 

significantly different compared to the ovariectomized and sham controls [52]. While both in 

vitro and in vivo studies suggest estradiol reduces the production of ECM macromolecules, a 

larger set of experiments is required to validate these results.

Effects of estrogen on the mandibular condylar fibrocartilage

The health and function of the articular condylar fibrocartilage are necessary to withstand 

and redistribute the load on the subchondral bone. As such, damage to this fibrocartilage can 

lead to TMJ degeneration. In an organ culture model, estradiol decreased the articular 

fibrocartilage thickness and cell proliferation while increasing collagen type 10 in the 

hypertrophic chondrocyte zone [53]. Further, 10 nM estradiol decreased fibrochondrocytes’ 

proliferation harvested from rat mandibular condyles. In rabbit mandibular condylar 

fibrochondrocytes, estradiol treatment increased cell proliferation and proteoglycan 

synthesis through 10−8 M after which estradiol reduced proliferation and proteogly can 

synthesis [54].

In vivo studies have shown that estradiol treatment increased the articular fibrocartilage 

thickness and subchondral bone volume after a week of treatment post ovariectomy in 

female Wistar rats [55]. On the other hand, in ovariectomized C57 female mice, estradiol 

decreased progenitor cell proliferation and fibrocartilage thickness compared to placebo 

treatment [56, 57]. These results were validated in 3-month old female rats in which 

estradiol treatment after ovariectomy (OVX), respectively, decreased progenitor cell 

proliferation and fibrocartilage thickness, specifically the hypertrophic layer [58]. Further, 

estradiol treatment increased interleukin 6 (IL6) concentration in female, OVX tissue 

compared to the vehicle control. While important to conduct in vitro studies to determine the 

specific cells responsible for the estrogen-induced effects, it is difficult to compare results 

with in vivo as the fibrochondrocytes are cultured in 2D on rigid, polystyrene culture dishes 

and passaged in these conditions, greatly affecting their phenotype [59, 60].

Estrogen signaling via nuclear estrogen receptors in TMJ

There are two distinct types of estrogen signaling mechanisms, genomic and non-genomic. 

In the genomic pathway, estrogen binds to estrogen receptor alpha (ERα) or beta (ERβ), 

inducing a conformational change in the receptors that cause dissociation from chaperones, 

dimerization, translocation into the nucleus, and activation of the receptor transcriptional 

domain [61]. In addition to the nuclear ERs, plasma membrane-associated ERs mediate the 

non-genomic signaling pathway that can lead both to cytoplasmic alterations and to 

regulation of gene expression [62]. Further, ERs, either dependently or independently of 

ligand binding, interact with other transcriptional pathways through protein–protein 

interactions likely involving phosphorylation modifications [63, 64]. Foundational studies in 

1987 illustrated the sexual dimorphism in expression estrogen receptors (ER) in the TMJ 

using a baboon model [65]. Since then, a couple of studies have investigated the relative 

expression of ERα and ERβ in female rodents compared to males with mixed reviews. One 

study found higher expression of both receptors in fibrochondrocytes isolated from female 
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mouse TMJ; however, these cells were cultured for 4–6 passages likely altering their 

phenotype and gene expression [66]. Another study found that male rat TMJ tissue 

contained higher amounts of both receptors [67].

Overall, there are limited data detailing the role of ERα and ERβ in the TMJ. In the disc, 

studies have shown that increasing estradiol concentrations elevated MMP-9 and MMP-13 

levels in TMJ disc fibrochondrocytes harvested from 12-week old female [68]. In both loss-

of-function and gain-of-function studies, the increased MMP levels with estradiol were 

modulated via ERα signaling, with ERβ having an insignificant role. The effect of estrogen 

via ERα on mandibular condylar fibrocartilage morphology, matrix production, and protease 

activity was assessed in 7 and 17-week old mice. In the young mice, estrogen via ERα 
promoted mandibular condylar fibrocartilage chondrogenesis partly by inhibiting the 

canonical Wnt signaling pathway through upregulation of sclerostin (Sost). In the mature 

mice, protease activity was partly inhibited with estrogen treatment via the upregulation and 

activity of protease inhibitor 15 (Pi15) and alpha-2-macroglobulin (A2m) [57]. In male 

mice, estradiol via ERα mediates mandibular condylar fibrocartilage growth and maturation 

in young male mice using global ERαKO models [69]. In the same study, there was no 

significant evidence to suggest that ERα played a major role in age-related TMJ growth 

and/or degeneration in older mice. Further in mandibular condylar bone, estrogen effects of 

mandibular bone density were dependent on ERα nuclear signaling and did not require ERβ 
signaling [70]. Figure 1 provides a summary of the general effects of estrogen on the disc 

and condylar fibrocartilage.

While ERα mediates the majority of estrogen’s transcriptional activity, ERβ plays a role in 

the sex differences observed in response to estrogen signaling. In young female mice, ERβ 
inhibits proliferation and ERα expression but does not play a role in estrogen-induced 

increase in anabolic gene expression including sclerostin (Sost) and collagen type 2 (Col2) 

[56], effects observed to be controlled via ERα [57]. Further, ERβ inhibits mandibular 

condyle growth by promoting fibrocartilage turnover [71]. On the other hand, ERβ does not 

play a significant role on the young male mandibular condylar fibrocartilage [72]. Based on 

these data, future studies focused on the targeted role of ER agonists and/or antagonists to 

control cell proliferation and matrix production are warranted.

Role of estrogen in animal models of TMJ degenerative disease (TMJ‑DD)

Many TMJ-DD models have been employed to assess estradiol’s effect in the diseased 

condition. There are three main classes of experimental TMJ-DD models: mechanical, 

chemical, and genetic. Unilateral anterior crossbite (UAC) is an acceptable mechanical 

model that results in degenerative changes to the mandibular condylar fibrocartilage and 

subchondral bone including decreased fibrocartilage thickness, reduced extracellular matrix, 

increased apoptosis and pro-inflammatory markers, decreased bone mineral density, and 

increased osteoblast activity. Introducing high doses of estradiol into this TMJ-DD model to 

mimic high-physiological levels resulted in enhanced degeneration of the articular 

fibrocartilage but reduced UAC-induced bone resorption [73].

Chemically-induced TMJ-DD typically constitutes either injection of complete Freund’s 

adjuvant (CFA), formalin, or monosodium iodoacetate (MIA). In formalin-induced TMJ-
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DD, cytokine expression in male and female rats was decreased by gonadectomy and 

increased by hormone administration [74]. Interleukin (IL)-6 expression increased in 

females during diestrus, proestrus, and estradiol or progesterone administration in 

ovariectomized female rats. Tumor necrosis factor alpha (TNF-α), IL-1β, and 

cytokineinduced neutrophil chemoattractant (CINC-1) expression increased with 

testosterone treatment after orchiectomy. In a MIA-induced model in rats, E2 enhanced the 

OA response in a dose-dependent manner by increasing pro-apoptotic genes and histologic 

characterization of fibrocartilage degradation and bone erosion [75]. In this study, a 

supraphysiological dose of 80 μg of estrogen replacement potentiated MIA-induced TMJ-

DJD compared to the ovariectomy with placebo control group. When CFA and MIA were 

combined for a model of TMJ-DD in male and female rats, the female rats showed 

aggravated OA features compared to the males [76]. Further, female fibroblast-like 

synoviocytes (FLS) isolated from the TMJ synovial membrane were more sensitive to TNF-

α treatment compared to males. Estrogen’s effect in this process was confirmed by 

ovariectomy and estrogen receptor agonists. However, the studies were performed in young 

growing mice and it is established that estrogen inhibits TMJ growth in the young [77]. 

Therefore, the effects of estrogen in potentiating TMJ-DD in the young may result from 

inhibiting TMJ growth as opposed to modifying the progression of TMJ-DD.

Biphasic role of estrogen levels in mediating the sex dimorphism of TMD

At this time, we have no definitive answers to how estrogen signaling promotes TMD in 

females. However, there are four theories to explain the observed effects. First, fluctuations 

in estrogen levels promote TMD pain. Similar to TMD, the prevalence of migraines without 

aura is greater in females than in males but not at all ages. Before puberty, the prevalence of 

migraines is similar between the sexes. However, after puberty, migraines are 2–4 times 

more likely to occur in females than age-matched males with the peak prevalence occurring 

in women between the ages of 35–45. The estrogen withdrawal hypothesis posits that 

fluctuating estrogen levels pre and post-menstrual cycles and during peri-menopause 

predisposes women to migraines [78, 79]. Therefore, a similar mechanism may occur in 

TMD, whereby TMJ pathology maybe similar in the sexes but fluctuating levels of estrogen 

make women more likely to experience longer lasting pain. Second, estrogen protects the 

TMJ from degeneration and conversely low levels of estrogen predisposes post-menopausal 

women to TMJ-DD. The vast majority of studies have shown that women over the age of 50 

are more likely than age-matched men to suffer from TMJ-DD [80–82]. One way that 

estrogen may protect the joint is by regulating the expression of protease inhibitors, such as 

A2M. Estradiol treatment increased A2m gene expression and mandibular condylar 

fibrocartilage immunostaining in wild-type (WT), skeletally mature mice. Interestingly, this 

same effect was not seen in ERα knockout mice [57]. Also, A2m and protease inhibitor 15 

(Pi15) dosing studies in an organ culture model resulted in decreases in matrix proteases 

including MMP-9. However, other studies in bone have shown A2m upregulation via 

estradiol independent of either ERα or ERβ suggesting this is not the sole mechanism [83]. 

A2m has been shown previously to be a potential inhibitor of posttraumatic osteoarthritis in 

the knee [84] highlighting the potential for similar treatment to reduce TMJ degeneration 

utilizing A2m. Third, sex differences in estrogen signaling are contributing to TMD 

symptoms. ERβ signaling inhibits TMJ growth in female but not in male mice [71]. Also, a 
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negative hypothalamus ERα signaling pathway in female but not male mice has been 

discussed. Conditional deletion of ERα in hypothalamus Kiss1-expressing cells caused a 

two–fivefold increase in bone density, solely in females [85]. RNA sequencing data from the 

bone marrow from these mice revealed that many of the same genes were upregulated 

(A2M, Pi15, Col8a1) compared to ovariectomized, wild-type mice treated with estradiol in 

the mandibular condylar fibrocartilage, suggesting the potential for a hypothalamus Erα-

negative signaling pathway in the TMJ in female but not in male mice. Taken together, ERβ 
and/or a hypothalamus ERα negative signaling pathway may cause inhibition of TMJ repair 

making women more prone to TMD. Lastly, differences in TMJ anatomy and structure may 

result in altered biomechanics that predispose the female joint to more mechanical fatigue. 

The male condyle is larger than the female, on average, and exhibits a longer condylar 

lingual length with long elliptical condyles compared to the smaller, round condyles of a 

female TMJ [86]. These anatomical differences result in sex differences in joint loading. 

Static and dynamic mechanical analyses of aged male and female articular fibrocartilage-

subchondral bone units resulted in significant differences in energy dissipation and load to 

the tissues. In males, the subchondral bone with stands the majority of load whereas in 

females, the articular fibrocartilage bears a significant proportion of the load [87]. Dynamic 

stereometry assessment using Magnetic resonance (MR) and cone-beam computed 

tomography (CBCT) data were used to illustrate an increased energy density in the TMJ of 

female subjects suggesting an increase in biomechanical fatigue compared to males [88].

Periodontal disease and estrogen

Periodontal disease is a condition of infectious, inflammatory or combined origin that affects 

tissues surrounding and supporting teeth [89]. Both non-modifiable and modifiable factors 

are involved in its occurrence. Gingivitis and periodontitis are collectively known as 

periodontal diseases. The first one referrers to reversible gingival inflammation, while the 

other one describes a condition when the loss of alveolar bone and connective tissue 

accompanies gingival inflammation [90]. The role of estrogen in mediating periodontal 

diseases is biphasic with high levels promoting gingivitis, and low levels potentiating 

alveolar bone loss.

Estrogen and gingivitis

Two recent meta-analyses have concluded that conditions which raise estrogen levels (i.e., 

pregnancy and oral contraceptive use) are associated with an increase in the prevalence of 

gingivitis [91, 92]. However, the mechanism remains unclear. One way in which estrogen 

may potentiate gingivitis is by changing the composition of the oral microbiome. A 

traditional view of periodontal research focuses upon identification of select 

periodontopathic bacteria such as the “red complex” (Porphyromonas gingivalis, Treponema 
denticola, and Tannerella forsythia) [93]. However, development of molecular-based 

approaches has allowed us to consider new models of pathogenesis in which periodontal 

disease is initiated by broadly-based dysbiotic and synergistic microbiota [94], including 

both cultivated and uncultivated microbes. Older studies found no definitive associations 

between elevated states of ovarian hormones and preferential enrichment of the subgingival 

microbiome for selected species [95, 96]. However, recent studies using next-generation 
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sequencing have found that despite stability of oral microbiome diversity, there was 

enrichment of certain bacteria taxa in African American [97] and Chinese pregnant women 

[98].

It now appears that pregnancy modulates the mother’s immune system, but it does not 

necessarily suppress it. This may result in pregnant women responding differently to 

different types of microorganisms, which is also regulated by the different stages of 

pregnancy [99]. Estrogen-mediated effects are apparent in all major innate and adaptive 

immune cells, including neutrophils, macrophages, T cells and B cells [100]. However, 

estrogen by itself does not seem to affect gingival crevicular fluid cytokines levels. For 

example, it was shown that rising estrogen levels during pregnancy did not affect IL-beta or 

TNF alpha levels [101]. Furthermore in another study they found that there was no 

difference in IL-1 alpha, IL-1 beta, IL-8, TNFalpha, and SLPI mRNA levels in the GCF 

between samples from the 12th week of pregnancy and 4–6 weeks post-partum [102].

Estrogen deficiency and periodontitis

Menopause is associated with increased alveolar bone loss without changes in probing 

depths or in clinical attachment loss [103]. In addition menopausal women are more prone to 

osteoporosis, which has been associated with increased alveolar bone loss [104]. Finally, 

alveolar bone loss was found to be less severe in post-menopausal women with a history of 

HRT use [105]. Recent research has delineated the distinct roles of aging and estrogen 

deficiency on skeletal bone mass. New evidence illustrates that estrogen deficiency 

independently promotes the survival and increased activity of osteoclasts, resulting in 

increased bone resorption [106]. On the other hand, aging independently causes a decrease 

in osteoblasteogenesis [106] and an increase in cellular senescence [107]. Most cross-

sectional studies have found a radiographic relationship between alveolar bone loss and 

osteoporosis [104], although it is unclear what the exact contributions of estrogen deficiency 

and aging are on alveolar bone loss.

Periodontitis is triggered by pathogenic microbes or microbial dysbiosis in a susceptible 

host, which results in the host inflammatory response causing soft tissue destruction and 

bone loss [108].

The complex host immune response involves cells of both the innate and adaptive immune 

response (Fig. 2). Bacteria and their products including lipopolysaccharides (LPS) trigger 

the initial production of cytokines such as TNFα, IL-1, IL-6, macrophage inflammatory 

protein-1 (MIP-1/CCL3) and macrophage chemoattractant protein (MCP-1) from 

neutrophils, monocyte/macrophages, fibroblasts and dendritic cells. Macrophages also 

secrete proteases such as matrix metalloproteinases (MMPs) that degrade extracellular 

matrix directly. TNFα and IL-1β stimulate the adaptive immune response with T cells and B 

cells, which have been shown to play a critical role in alveolar bone loss in periodontitis 

primarily through expression of receptor activator of NFκb ligand (RANKL) [109, 110]. 

RANKL binds to the RANK receptor on osteoclast precursors, inducing osteoclast 

differentiation and activation to resorb bone. Osteoblasts also produce osteoprotegerin 

(OPG), a member of the family of TNF receptors, which functions as a decoy receptor for 

RANKL. Binding of OPG to RANKL inhibits osteoclast differentiation and bone resorption 
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by mature osteoclasts. The OPG/RANK/RANKL system is the dominant, final mediator of 

osteoclastogenesis, and bone resorption is determined by the relative amounts of RANKL 

and OPG produced [111]. Gingival tissue from patients with periodontal infection, expresses 

higher levels of RANKL and lower levels of OPG [112]. In another study, confocal 

microscopy revealed that 50% of T cells and 90% of B cells expressed RANKL in diseased 

gingival tissue, whereas less than 20% of B cells and T cells expressed RANKL in healthy 

gingival tissue [113]. RANKL expression is highest in activated B cells, followed by T cells 

and monocytes [113]. Taken together these studies suggest that activated T and B cells play 

an important role in alveolar bone loss through enhanced RANKL production. Estrogen 

downregulates the production of cytokines by T cells (TNFα, RANKL), monocytes (IL-1, 

TNFα), and bone marrow stromal cells (IL-6, RANKL, GM-CSF, and M-CSF) and 

increases production of TGFβ by osteoblasts, resulting in decreased osteoclast number and 

activity [114–116]. Estrogen deficiency after menopause enhances the production of TNFα 
and RANKL by T cells [116], increases production of osteoclast precursors [116, 117] and 

has both a pro-apoptotic effect on osteoblasts and an anti-apoptotic effect on osteoclasts 

(Fig. 2). Therefore, it is likely that periodontal disease and alveolar bone loss would both 

accelerate after the menopausal transition, and be prevented by estrogen replacement. The 

Osteoperio study determined that history of HRT in postmenopausal women was associated 

with lower alveolar crestal height (ACH), suggestive of less alveolar bone loss, although, 

serum estradiol (E2) levels did not correlate with ACH [105]. Based on the National Health 

and Nutrition Examination Survey (NHANES III) database, there was also an association 

between HRT use and decreased clinical attachment loss [118]. However, a recent meta-

analysis concluded that HRT in post-menopausal women did affect radiographic bone loss or 

clinical attachment loss [119]. A possible reason for these discordant results, comes from a 

recent paper that analyzed the NHANES database and found that HRT and clinical 

periodontal measures were strongest among women with high vitamin D levels [120].

Conclusions

Estrogen signaling plays a significant role in the sex dimorphism of periodontal diseases and 

temporomandibular joint disorders. Estrogen signaling is complex and the varying levels of 

estrogen during a woman’s lifetime may play a unique role on oral diseases. For example, 

fluctuating levels of estrogen during childbearing ages and peri-menopause may predispose 

women to facial pain, increased estrogen levels during pregnancy may cause changes in the 

oral microbiome leading to gingivitis and low levels of estrogen post-menopause may 

potentiate temporomandibular joint degeneration and alveolar bone loss. Furthermore, there 

is sex-specific estrogen receptor signaling, that also contributes to the sex dimorphism of 

oral disease.

Currently, HRT appears to have only modest impact on the progression of 

temporomandibular joint disease and periodontal clinical attachment loss. However, 

different estrogen signaling pathways may be involved in promoting anabolic actions in 

mandibular condylar fibrocartilage or mediating facial pain, and may differ between specific 

TMJ diseases. Additional developments in selective estrogen receptor modulators may hold 

further promise for future pharmaceutical therapies. For example, ERα agonist therapy may 

prevent TMJ degeneration progression in post-menopausal women but may have little effect 
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on post-menopausal women suffering from temporomandibular myalgia or TMJ disc 

disorders. Knowledge of sex and age-specific estrogen signaling effects is vital for the 

development of strategies for oral tissue remodeling and homeostasis.
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Fig. 1. 
Role of estrogen signaling via estrogen receptors alpha (ERα) and beta (ERβ) on cells from 

the temporomandibular joint disc and condylar fibrocartilage
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Fig. 2. 
Working model of potential role of estrogen in mediating periodontal disease-induced 

alveolar bone loss
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