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Abstract 
Cancer immunotherapy involves stimulation of the body’s own immune system to fight cancer. Tumors 

possess myriad suppressive mechanisms that facilitate evasion of the immune system. Immunotherapy 

aims to stimulate immune cells to recognize and attack tumor tissue. While immunostimulatory agents 

have achieved some success in treating cancer, systemic toxicity remains a major concern. In particular, 

systemic exposure to immunostimulants can activate immune cells outside of target tissues, which can 

potentially induce side effects or autoimmune reactions. In the treatment of solid tumors, intratumoral 

(IT) therapy offers unique benefits as an anti-cancer strategy, especially in the ability to bypass obstacles 

of trafficking, tumor penetration, and severe adverse events associated with systemic delivery. IT 

administration of immunostimulants, for example, can work synergistically with checkpoint inhibitors 

making a nonresponsive ‘cold’ tumor ‘hot’ by recruiting and activating tumor infiltrating lymphocytes. 

Unfortunately IT administration does not necessarily preclude the manifestation of systemic adverse 

events; therapy transport out of the tumor and back into systemic circulation can lead to similar adverse 

events as seen with systemic exposure. While many researchers have worked to optimize the efficacy of 

immunostimulants, few have approached delivery design with the consideration of drug retention after IT 

administration. This dissertation sought to explore delivery strategies for two negatively charged 

immunostimulants, polyI:C and CpG, which are potent toll-like receptor 3 (TLR3) and TLR9 agonists, 

respectively. Both compounds exhibit strong induction of interferons, leading to a proinflammatory 

environment after binding to TLRs, thus generating memory and tumor-specific T cells. Both TLR3 and 

TLR9 are located intracellularly; thus negatively-charged polyI:C and CpG macromolecules must be 

internalized by immune cells in order to be efficacious. To achieve both goals of increased retention and 

intracellular delivery, polycations were selected as a delivery tool. Polycations have historically been 

employed for intracellular delivery of nucleic acid material. This dissertation suggests that electrostatics 

can aid in injection site retention through interactions with highly negatively charged extracellular matrix. 

In chapter 2, polylysine, at a range of molecular weights, was evaluated for its ability to complex with 
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immunostimulants and subsequently activate TLR(s). Chapter 3 presented a novel idea utilizing 

Glatiramer Acetate (GA), better known as Copaxone® as a delivery tool for immunostimulants. GA is a 

highly positively-charged polypeptide and is currently an FDA-approved therapy for multiple sclerosis. In 

this work, we generated small nanoparticles known as polyplexes, which form when mixing positively-

charged GA and negatively-charged immunostimulant(s) (polyI:C or CpG). Together from chapters 2 and 

3, we found that the relationship between complexation and TLR activation depends on the strength of the 

interaction in the polyplex. In a tumor model of head and neck squamous cell carcinoma, GA polyplexes 

were able to decrease tumor burden as compared to the vehicle controls. Therefore, this dissertation 

demonstrates that using polycations to complex with immunostimulant(s) is a promising approach to 

effectively deliver therapies and stimulate a local immune response. 
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1. Introduction

Recent clinical successes of intratumoral (IT) therapy have stimulated a wave of new clinical trials 

investigating IT therapies both alone, and in tandem with other immuno-oncology agents. IT therapy offers 

unique benefits as an anti-cancer strategy, especially in the ability to bypass obstacles of trafficking and 

tumor penetration.1 Severe adverse events associated with systemic delivery of cancer immunotherapies2-3 

can be avoided by delivering small doses IT.4 IT administration of immunostimulants, for example, can 

work synergistically with checkpoint inhibitors making a nonresponsive ‘cold’ tumor ‘hot’ or by recruiting 

and activating tumor infiltrating lymphocytes.4-6 Intuitively, the design of IT therapies is significantly 

different than that of systemic cancer medications, as these localized interventions aim for retention at the 

administration site or draining lymph nodes with limited systemic exposure. In this review, we highlight 

transport mechanisms involved in IT delivery and recent clinical trials while elucidating relationships 

between biophysical characteristics of the formulation with efficacy.  

1.1 A Brief History of IT Therapy 

Merck’s acquisition of Immune Design sparked a new wave of activity around the already building 

tide of IT therapy. Leading up to its acquisition, Immune Design had disclosed two IT immunotherapies, 

G100 and ZVEC-IL12.7-8 G100 is a stable oil-in-water emulsion containing glucopyranosyl lipid A (GLA), 

a potent toll-like receptor 4 (TLR4) agonist that induces activation of local dendritic cells (DCs) to elicit 

broad, patient-specific anti-tumor immune responses.8 Notably and importantly for the broad consideration 

of IT immunotherapies, G100 exhibited abscopal effects - the shrinkage of even non-injected tumors.9 This 

highly promising therapy received orphan drug designation by the U.S. Food and Drug Administration 

(FDA) and European Medicines Agency (EMA) for follicular non-Hodgkin’s lymphoma, further 

highlighting IT interventions as a compelling therapeutic approach.10 Moving forward, G100’s efficacy was 

even more pronounced when applied in combination with Merck’s anti-PD1 checkpoint inhibitor, 

Keytruda, alongside radiation therapy.8  
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The first successful IT cancer therapy was performed over 100 years ago by Dr. William Coley on 

patients with inoperable solid tumors. Coley noticed a patient with an inoperable egg-sized sarcoma on the 

face was completely cured after suffering a severe infection from a failed skin graft. He proposed that by 

introducing a bacterial infection at the site of the patient’s tumor, an immune response against the tumor 

might be generated. This intervention proved an unprecedented success, and Coley went on to treat many 

more patients with bacterial-derived heat-killed toxins. Coley’s Toxins became one of the first examples of 

cancer immunotherapy.11-12 With the introduction of radiation and chemotherapy, Coley’s toxins largely 

faded into the background and are no longer in use. Since Coley’s seminal work, very few IT cancer 

therapies have been approved in humans, but many have been investigated in clinical trials.  

Among the few IT therapies available today, the Bacillus Calmette-Guerin (BCG) instilled 

transurethral for patients with bladder cancer can be considered an IT therapy of sorts, which applies the 

very same concepts first laid out by Coley. First used nearly 40 years ago, no other treatment for bladder 

cancer has surpassed the success of BCG treatment.13 Imiquimod, a TLR7 agonist, is the only other FDA-

approved IT therapy for cancer. Imiquimod is topically applied to genital warts or basal cell carcinomas14. 

Today, there are many more agents being investigated for IT delivery that exploit the immune system, 

including pathogen associated molecular patterns (PAMPs), monoclonal antibodies (mAbs), cytokines, 

small molecules, viral and gene therapies, and autologous cells.15 

Despite scientific advances in the field of oncology, generally, cancer mortality rates have 

decreased only marginally over the past three decades.16 The major persisting barriers for effectiveness and 

toxicity in cancer immunotherapies stem from delivery and transport constraints, as well as off-target 

adverse events. Systemically delivered therapeutics encounter countless obstacles on their journeys to 

tumor tissue that lead to a very small fraction of the compound reaching the tumor while much of it remains 

in circulation throughout healthy tissues.17 Reaching the tumor alone is not a sufficient criterion for dictating 

efficacy with a therapeutic agent. The drug must penetrate the tumor where it will ultimately encounter the 

TME, which often differs drastically from healthy tissue. While IT administration of therapeutic agents can 
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overcome some of the concerns of systemic delivery, we must consider the TME and its potential retention, 

clearance, and modification mechanisms.  

1.2 Tumor Microenvironment 

The TME is heterogeneous between patients, tumor types, and often even within individual tumors, 

making generalities about transport difficult to ascertain. Overall, tumor tissue is physically distinct from 

normal tissue in that it has poorly organized vasculature with inconsistent vessel diameters and more 

prevalent branching.18 Further, tumor cell distance from blood vessels results in restriction of oxygen supply 

and hypoxia in portions of the tumor.19 This roughly organized vasculature and hypoxic setting creates a 

microenvironment with increased fluid leakage and elevated interstitial fluid pressure (IFP). These 

conditions support decreased uptake of therapeutic molecules, which is correlated with poor prognosis in 

some cases.20 The lack of proper vasculature for gas exchange and delivering nutrients leads to areas of 

hypoxia within a tumor.21-22  

When delivering a drug systemically, distribution to all cells in a tumor is dependent on the distance 

between vascular beds. The compound may have to penetrate a tumor up to 200 µm to reach all of its 

targeted cells.23 Moreover and compared to the extravascular space in healthy tissue, tumors tend to have 

higher extracellular matrix density lacking functional lymphatic vessels. This dense network causes 

increased interstitial fluid pressure which further limits interstitial diffusion and the drainage of fluid from 

the tissue.20, 24 Together, dense but leaky vasculature and limited lymphatic drainage may contribute to 

enhanced permeability and retention of tumor tissue, however, this phenomena has not been fully supported 

in human tumors.25-26 These conditions can decrease uptake of circulating therapeutic molecules, which is 

correlated with poor prognoses in some cases.20 

While intracellular pH in tumors and normal tissue is similar, extracellular pH can be more acidic 

in tumors.27 Increased extracellular acidity and anerobic glycolysis alters the pH gradients found in the 

TME versus healthy tissue.27-28 Evidence suggests that higher acidity may increase tumor cell invasion and 
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metastatic potential while also aiding evasion of immune surveillance.29-30 For drugs that rely on ionization-

dependent diffusion, the extracellular pH may cause the drug to become charged, preventing diffusion 

across membranes.25, 27  

Tumor tissue contains myriad immune-suppressive signals and mechanisms that allow malignant 

cells to proliferate undetected by the immune system. T-regulatory cells are attracted to the tumor by 

chemokines and aid in suppressing antigen presenting cells (APCs) that may otherwise stimulate a response 

against tumor antigens.31 Additionally, tumor cells can secrete anti-inflammatory and regulatory cytokines 

that facilitate cancer growth and directly prevent dendritic cell (DC) activation.  Tumor cells can also limit 

the expression of co-stimulatory molecules (MHC II, CD80, CD86), potentially inducing anergy or 

senescence in infiltrating T cells.31-32 At the other extreme, overstimulation can cause T cell exhaustion 

from chronic exposure to tumor antigen.33 Finally, tumor cells can also downregulate the expression of 

tumor antigen over time, evading recognition by cytotoxic T-lymphocytes (CTLs). Cytotoxic T lymphocyte 

antigen 4 (CTLA-4) and programmed death ligand 1 (PD-L1) pathways are both exploited by tumors. While 

engaging different mechanisms, both induce immunosuppressive signals through cytokines that reduce 

proliferation or cause apoptosis of T-cells.  
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Figure 1. Concept of intratumoral (IT) immunotherapy with an abscopal effect. Injection with 
immunotherapy can activate an innate immune response leading to systemic effects due to circulating 
immune cells.   

1.3 Overcoming the TME (Immune mechanism of immunostimulants)  

Traditional cancer treatments like chemotherapy and radiation aim to directly kill tumor cells and 

the mechanism of action is not directly limited by the TME.  On the other hand, clinical studies indicate the 

suppressive environment within the tumor can be overcome by immunostimulants. Immune cells can be 

activated by immunostimulants in the presence of tumor antigen, traffic to lymph nodes, and then create 

tumor antigen specific T cells via cross presentation (Figure 1). These antigen-specific T cells can then 

circulate back to the tumor or to distal tumors and instigate tumor cell killing. The activation of the innate 

immune response creates a pro-inflammatory environment and can result in recruitment additional immune 
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cells to the tumor. Some of the actives used in cancer therapy that will be reviewed in this article are listed 

in Table 1.  

Table 1. Strategies to treat cancer. 

Category Mechanism Cells Types 
Involved Refs

Pathogen-
Associated 
Molecular 
Patterns (PAMPs)

• Binding toll-like receptors (TLRs), RIG-I-like receptors
(RLRs), NOD-like receptors (NLRs), and cell
membrane components

• Downstream signaling leading to innate immune
response

Immune cells, 
cancer cells

34

Cytokines • Binding to specific cell-surface glycoproteins
• Downstream signaling leading to innate immune

response 
• Direct anti-proliferative activity

Immune cells, 
cancer cells 35

Viruses and 
Plasmids

• Interaction of viral surface proteins with cell surface
proteins

• Target cancer cells by exploiting pathways, receptors,
and mechanisms that promote tumor growth

• Viruses can be used to infect cancer cells or as
vehicles for gene delivery

• Cell death and downstream signaling leading to
innate immune response

Immune cells, 
cancer cells

36

Monoclonal 
antibodies (mAbs)

• Binding to specific protein on surface of tumor or
immune cell

• Checkpoint blockades inhibit immune suppression
• Other mAbs can mark cells for death or aid in

immune activation

Immune cells, 
cancer cells

37

Small Molecules • Extra and Intracellular targets, must diffuse or
transport through cell membrane

• Cytotoxins → Cause damage to various cell functions
• Targeted drugs → disruption of specific pathways

critical for tumor cell progression

Cancer cells, 
rapidly 
dividing cells

38-39

1.4 Intratumoral Transport 

Identifying and targeting dysregulated immune mechanisms within the TME is key, but an 

understanding of transport in the TME is also crucial for the design of IT cancer therapies. With IT injection, 
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transport considerations can be simplified to the major themes of molecular transport within the TME, 

exfiltration from the TME, cellular uptake, and binding to intra- and extra- cellular proteins (Figure 2). IT 

transport mechanisms are influenced by various factors that affect the retention or transport out of the tumor 

of the anti-cancer therapy (Table 2).  

Transport of molecules through normal extracellular matrix is based on both diffusion along a 

concentration gradient as well as advective convection (or bulk transport of mass) along a pressure 

gradient.18 Conversely in the TME, transport of anti-cancer agents after intratumoral administration are 

governed by diffusion, as elevated IFP makes the bulk IT pressure gradient negligible.40-41 Close to blood 

vessels, however, where IFP can exceed that of the vascular fluid, a gradient is created and intravasation of 

the therapeutic agent out of the tumor can occur by diffusion and advective transport.  

Though the blood vessels represent an escape route for the therapeutic agent, the abnormal and 

poorly organized vascular architecture characteristic of the TME increases retention at the tumor cells that 

are distant from the vessels, as compared to normal tissue.42 The absence of lymphatics in the TME 

increases IFP and reduces the elimination or drainage of the agent before its anti-cancer action, improving 

IT retention.43-44 Despite the relatively ineffective lymphatic drainage in the TME, it still represents the 

major route for metastasis and a route of escape for the IT therapeutic.45 Therefore, angiogenesis, which 

seeks to normalize tumor vasculature leading to increased blood flow and reduced IFP, can result in a 

decrease in retention time when enhanced within the tumor.46-48 Vascular permeability could have a 

negative effect on tumor retention time if encumbered, but this characteristic is insignificant in most tumors 

because blood vessel fenestrations are present and confound its effects.49-50  

Densely packed collagen fibers are characteristic of the TME, and they pose transport resistance, 

which results in an increase in intratumoral retention.18, 51 Fibrillar collagen and high IFP, among other 

TME characteristics, contribute to a high mechanical solid stress in the tumor.52 This stress results in an 

effect on retention similar to that of IFP.  Cellular packing density is also a relevant factor; loosely packed 

tumor cells enable fast, thorough penetration by the therapeutic agent, increasing retention at tumor.53 

However, the inverse can be the case where densely packed cells decrease drug retention as well. Finally, 
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cellular uptake or binding of the therapy can occur by passive diffusion, active transport, or other 

mechanisms depending on molecular properties.  

Drug features such as molecular size, charge, and other properties (Table 2) influence intratumoral 

residence time. Water soluble molecules diffuse more easily in the TME resulting in a lower retention in 

the tumor,54 but increases in hydrodynamic radius can reverse these effects. It is critical to balance size such 

that a therapeutic or its carrier is small enough to diffuse through the TME while avoiding clearance through 

lymphatic drainage.55 Drug diffusion and retention deep inside the tumor mass is largely affected not only 

by the molecular size but also binding kinetics and affinity.54 Molecular charge may also be exploited such 

that the acidic extracellular pH in the tumor has a positive impact on the retention. The plethora of factors 

that influence TME transport offer unique opportunities for the targeted delivery and retention of drugs in 

the IT space such that the exploitation of these abnormalities can be harnessed to maximize therapeutic 

effect.  

 
Table 2. Factors affecting transport of therapy out of the tumor after intratumoral injection. 

 
 

Microvascular permeability Decreases retention at tumor, but insignificant where blood vessel fenestration is present
Abnormal vascular architecture Increases retention at the tumor
Absence of lymphatics Increases retention at the tumor
Interstitial fluid pressure (IFP) Increased IFP increases retention time at the tumor but decreases it close to vessels
Solid stress elevation Increases retention within the tumor, but decreases the retention close to vessels
Angiogenesis Decreases retention at the tumor

Concentration gradient Increases diffusion out of tumor, decreasing retention
Water solubility Water soluble agents diffuse easily in the TME, decreasing retention in tumor 
Extracellular pH Effect on retention at tumor depends on the carcinogenic agent's molecular properties (pI, pKa)
Fibrillar collagen Increases retention at tumor
Cellular packing density Low packing density increases retention at tumor

Physicochemical factors Phenomena

Tumor tissue factors Phenomena
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Figure 2. Representative transport and kinetic processes in intratumoral injection therapies. The 
therapeutic agent can diffuse through the TME, enter the cell, be bound by extracellular or 
intracellular proteins, unbind them, or leave the tumor into blood vessels, lymphatics, peripheral 
blood or adjacent tissue by diffusion and advective convection. Diffusional transport the agent 
back into the tumor is expected to be minimal.  

2. Current Cancer Therapies 

2.1 Radiation 

Radiation therapy employs highly focused energy to kill or damage tumor cells.56-58 It works by 

damaging the DNA of tumor cells to prevent their proliferation and cause cells to die. The goal of radiation 

therapy is to direct waves to cancer cells while limiting exposure to normal cells. Radiation therapy can be 

used to treat tumors alone, but it is also employed in combination with other cancer treatments, such as 

chemotherapy, immunotherapy, and surgery.57-59 For instance, radiation can be used to shrink the tumor 

before surgery or to eliminate residual tumor cells post-surgery. Radiation therapy can be local, externally 
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or internally, where the radiation source is from an external machine or from a radioactive source placed at 

or near the tumor. Contrastingly, systemic radiation therapy involves taking a radioactive drug taken orally 

or IV, allowing the drug to be distributed throughout the body and target towards tumor cells. The type of 

radiation therapy given to patients may depend on a variety of factors, including the type of cancer, the size 

of the tumor, and the proximity of the tumor to radiation sensitive normal tissues. Despite efforts to 

minimize radiation damage to non-cancerous normal tissues, damage to normal tissues is inevitable, leading 

to side effects such as fatigue, hair loss, and skin irritation.  

2.2 Chemotherapy 

Cancer therapy was dominated by surgery and radiation until the 1960s when a plateau in survival 

rates for advanced cancers was finally overcome with the addition of chemotherapeutical drugs with these 

treatments. Chemotherapies are cytotoxic anti-cancer agents that target quickly proliferating cells non-

selectively; both normal and cancer cells are subject to their mechanism of action.60 These agents can be 

classified according to their many varied cytotoxic mechanism as alkylating agents, platinum compounds, 

antimetabolites, anthracyclines, topoisomerase inhibitors, tubulin-binding drugs, and tyrosine kinase 

inhibitors. 

The administration routes for chemotherapy include intravenous, intramuscular and oral. The most 

common route of administration is intravenous, given the fact that most chemotherapeutic drugs exhibit 

poor oral bioavailability. Chemotherapy drugs undergo metabolism in the liver followed by excretion via 

the kidney or bile, but the metabolism differs among patients, mostly due to genetics. Patients with faster 

metabolisms may process and excrete the agents too rapidly to benefit from therapeutic effects, while those 

with slow metabolism have an excessive amount of drug reach their bloodstream, which makes them suffer 

the side effects more.61 All chemotherapy patients, however, will suffer from some degree of consequences 

from systemically administered, non-selective cytotoxic action. 
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2.3 Immunotherapy 

Cancer immunotherapy stems from Coley’s seminal work and harnesses the body’s own immune 

mechanisms to fight cancer.  Though the first immunotherapies can be traced back over a century ago, it is 

only in the last decade that scientists have made significant progress in creating immunogenic cancer 

therapeutics as alternatives to traditional treatments like chemotherapy and radiation. Today, several 

therapies have been approved to treat broad types of cancer.62 The major classes of immunotherapies 

include checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines and adjuvants.63-64 

Immune checkpoint inhibitors block the checkpoint receptors to prevent tumor cells from escaping immune 

system attacks, resulting in enhanced anti-tumor responses. Ipilimumab (Yervoy®), an antibody against 

cytotoxic T-lymphocyte antigen-4 (CTLA-4), is the first approved and most notable immune checkpoint 

inhibitor that significantly increased the survival of metastatic melanoma patients.65-66 Other major 

inhibitors include the antibodies of programmed cell death protein-1 (PD-1) (e.g. Keytruda) or its ligand 

(PD-L1) (e.g. Imfiazi).66 However, the use of these inhibitors are commonly associated with immune-

related adverse events (irAEs) and toxicities as a consequence of over activation of T-lymphocytes.67 

Oncolytic viruses (OVs) fight cancer by both infecting the cancer cells and stimulating anti-tumor immune 

responses, and can be engineered with optimized tumor selectivity. The oncolytic herpesvirus talimogene 

laherparepvec (T-Vec) is the first approved OV for the treatment of advanced melanoma, but its toxic side 

effects caused by genetic manipulation still remain a safety concern.68 Cytokines, often combined with the 

use of adjuvants to boost the efficacy, are immunomodulators that enhance the host anti-tumor immune 

responses. Interferon-α and interleukin-2 are two types of cytokines that have been approved for the 

treatment of several types of leukemia and melanoma.69 Anther branch of immunotherapy includes 

adjuvants, which are substances that mimic the natural microbial ligands and are added to vaccines to 

improve immunogenicity. Cervarix, an approved vaccine for human papillomavirus (HPV) contains an 

adjuvant called AS04 that includes a TLR4 agonist-based system.70  
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Cellular immunotherapies, including adoptive cell transfer, enhance the tumor antigen presentation 

to the immune cells and improves the efficiency to target or kill tumor cells. One form of this rapidly 

emerging immunotherapy called chimeric antigen receptor T (CAR-T) therapy involves autologous T cells 

engineered to be specific for antigens expressed on the tumor. Typically, this therapy also requires a pre-

conditioning treatment of lymphodepletion prior to infusion of the cells for increased T cell expansion. The 

first CAR-T cell therapy, Kymriah was approved by the FDA less than two years ago, in 2017 for the 

treatment of B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in the second or later 

relapse. Kymriah, or tisagenleceucel, is a CD19 directed autologous T cell containing co-stimulation zone 

4-1BB (CD137). The second and only other approved CAR-T cell therapy, Yescarta (axicabtagene 

ciloleucel) was approved by the FDA only a few months after Kymriah. Yescarta is also a CD19 directed 

CAR-T cell but differs structurally from Kymriah. Yescarta is approved for use in adults with relapsed or 

refractory diffuse large B-cell lymphoma (DLBCL). While CAR-T cell therapy dominates the adoptive 

transfer cancer immunotherapy another therapy called Provenge or sipuleucel-T was the first cancer vaccine 

to be FDA approved. Provenge is comprised of autologous T cells selective for prostate acid phosphatase 

(PAP) that is expressed in 95% of prostate cancers.71-72 The most common adverse reactions to Provenge 

include fever, and fatigue. Provenge, interestingly, does not seem to cause CRS as CAR-T cell therapies 

do. For all these T–cell-based therapies, insufficient cell trafficking, tumor microenvironment, inhibitory 

cytokines, and regulatory T-cells are still obstacles for the efficacy of the therapies.73  

Together, the explosion of immunotherapeutic breakthroughs illustrates the immense promise of 

using the immune system to fight cancer, but each of the examples carry substantial risks as a consequence 

of systemic exposure. Adjuvants and TLR agonists can trigger intense immune anaphylaxis that resembles 

that of sepsis. CAR-T technologies have been extensively reported to leave patients susceptible to off-target 

toxicities. These unmitigated dangers highlight the importance of new strategies for treating cancer that can 

act in safer, more specific fashion. Leveraging the TME through IT administration is one such compelling 

approach to this problem, and in this review we will assess the state of these developing technologies. 
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3.  IT Therapies in Clinical Trials 

Traditional cancer research has focused on the development of cytotoxic drugs that target cancerous 

cells with higher degrees of specificity. Today, many approaches are seeking to harness the power of the 

immune system to stimulate anti-tumor responses. Particularly with IT immunotherapy, the aim is to 

employ the tumor as its own vaccine.4 A major benefit of IT immunotherapy is the potential to achieve an 

abscopal response due to generation of circulating anti-tumor immune cells figure 1.  While many types of 

IT therapies are in progress for clinical trials, we will mainly discuss trials with posted or published data 

and we will only briefly consider the clinical therapies yet to produce results. Highlights of recent and 

upcoming clinical trials of IT therapies are reflected in table 3.  

3.1 Pathogen-Associated Molecular Patterns 

Pathogen-Associated Molecular Patterns (PAMPs) are non-self molecules that inherently activate 

innate immune responses. PAMPs are recognized by pattern recognition receptors (PRRs) including toll-

like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors, RIG-I-like 

receptors (RLR), stimulator of interferon genes (STING) receptors, and C-type lectin receptors (CLR).74 

For example, motifs from bacterial infection can be detected and swiftly acted against when unmethylated 

CpG DNA binds to TLR9 on the endosomal membrane of cells to induce immune activation.75-76 Multiple 

CpG structures have been developed to ligate this pathway, and many elicit different (albeit robust) immune 

responses.  Some approaches have multimerized CpG or even modified it as closed loops in favor of 

increased stability and efficacy.5, 77-78 Derivatives of lipopolysaccharide (LPS) sourced from gram negative 

bacteria are another class of PAMP that stimulates an immunity through binding TLR4 on the outer cell 

membrane.8 Several other agonizing pathways are under investigation in cancer immunotherapy including 

mimics of pathogen infection, RNA or DNA, which bind to TLR3, TLR7/8, RIG-I receptors, or STING 

receptors.4, 74 Finally, attenuated bacteria itself has been explored in IT immunotherapy; intravesicalar BCG 

for bladder cancer is one of the few “intratumoral” immunotherapies that is currently FDA approved.79 
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PAMP immunotherapies are some of the first developed for IT administration. However, since these motifs 

are formulated to mimic components of bacterial and viral pathogens (which the human body is primed to 

elicit efficient and robust immunity against), many of these candidates pose a high probability for 

significant adverse events (AEs) when these PAMPs are able to leak into systemic circulation. For example, 

several trials investigating SD-101, a CpG oligodeoxynucleotide, in combination with other anti-cancer 

modalities have resulted in a 100% AE rate that includes detriments seen in authentic pathogen infections 

such as sepsis. It seems that PAMPs alone act as a major driver of AEs (as opposed to combination therapy 

implements); one trial studying G100, a synthetic TLR4 agonist, led to an AE incidence greater than 80%.  

3.1.1 Tumor Retention Mechanism of PAMPs 

The mechanism of PAMPs is dependent on receptor binding which triggers downstream signaling 

cascades to promote innate immune responses. Receptors for PAMPs are located on both extra- and 

intracellular membranes of immune cells (depending on the mechanism). An ideal IT therapy incorporating 

PAMPs should both be formulated to target these receptors and retain at the injection site. While IT 

administration can reduce the side effects associated with systemic administration, immunostimulatory 

molecules can still leak out of the tumor and cause AEs as if they were injected systemically.  

Unmethylated CpG oligonucleotides are PAMPs that mimic bacterial DNA and trigger an innate 

immune response upon binding to TLR9. PF-3512676 is a class B, linear CpG formulated as a sodium salt 

with a molar mass of 8204 g/mol.80 The formulation of PF-3512676 is proprietary, however, we presume it 

is un-modifed, water-soluble, negatively charged, and does not form higher order structures.81 Clinical trial 

results are promising with IT administration in B-cell lymphoma and mycosis fungoides but interestingly a 

higher percentage of AEs were experienced in mycosis fungoides patients receiving the same dose.82 The 

differences between the AEs could be a result of therapy retention diversity due to the extreme heterogeneity 

in vasculature of tumors across different types and locations. In a phase 2 study with lymphoma patients, 

an increased dose resulted in similar efficacy but more than doubled the percentage of AEs, likely a result 

of increased systemic exposure.83 Another presumably unmodified and soluble CpG therapy, SD-101, is a 
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class C CpG. While the structural and formulation information is proprietary, CpG class C is known to form 

dimers. In IT trials, SD-101 exhibited promising abscopal effects, however, there were 100% grade 1-2 

AEs, and a high incidence of AEs at grade 3 or above including some severe AEs (SAEs).  

Many approaches have utilized structurally modified CpG ODNs to increase immunogenicity and 

stability. IMO-2125 exploits an interesting design in its two strands of class C CpG linked at the 3’ end 

consisting of an 11-mer of CpG on each flanking end to allow formation of intermolecular structure that 

deters intramolecular interaction.78, 84 Favorable potency may be retained by the exposed 5’ ends which are 

pertinent for CpG’s binding mechanism.76, 84 This variant is formulated as a sodium salt with a molecular 

weight of 7712 g/mol and likely forms dimers.76, 85 IMO-2125 has been granted fast track designation and 

orphan drug designation by the FDA and has shown promising results in early trials with fewer AEs than 

other most other IT TLR agonists. Additionally, this modified CpG therapy reaps increased TLR9 activation 

over unmodified CpG likely due to increased metabolic stability from the chemical linkage of the 3’ ends.84  

Another consideration for CpG based therapies is the type of backbone. In nature, CpG has a 

phosphorodiester (PO) backbone, however, synthetic CpG is often made with a phosphorothioate (PT) 

backbone to increase its stability in vivo to enhance potency.86 The creators of MGN1703 purport that the 

PT backbone is to blame for toxic side effects seen when injecting this variant of CpG, however.87 They 

developed a covalently-closed loop of CpG with its native PO backbone in attempts to avoid PT-associated 

toxicity and enhance the stability that hinders the use of native PO. Similarly, CMP-001 is a CpG class A 

with the native PO backbone that is modified to assemble into quarduplexes.5, 76 Clinical results for both of 

these compounds are pending, and they may provide an interesting precedent for future trials employing 

modified and native backbones of CpG.  

One method to boost potency by increasing intracellular PAMP delivery is formulation with a 

polycationic carrier. PAMPs whose receptors are intracellular (like TLR9, TLR3, and RIG-I) may benefit 

from a cationic carrier or particulate formulation for attraction to cell surfaces and increased APC uptake, 

respectively. Two such TLR3 agonist candidates, Hiltonol and BO-112, include polyI:C formulated with 

polycations for improved intracellular delivery potential. This strategy may also increase retention at the 
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injection site and minimize systemic exposure due to increased size and electrostatic interactions at the site 

of injection. In the most recent update of an IT BO-112 clinical trial, patients exhibited only mediocre 

overall response rate (ORR) and high percentage of AEs, however, patients saw increase in immune 

circulating cells and no BO-112 was detected in the blood post injection indicating injection site retention.88 

According to a patent describing its formulation, BO-112 is an aqueous composition at pH 2.7-3.4 with 

glucose or mannitol in an optimal particle size range of 45-85 nm and zeta potential between 40-45 mV.89 

Optimal size of particles for APC uptake and processing is estimated to be ~100 nm, similar to that of 

authentic viruses.90 The N/P ratio for the polyI:C/PEI complex is between 2.5-4.5 and the PEI MW is 

between 17.5-22.6 kDa.89 IT Hiltonol (polyI:C:LC) showed preliminary success in a single patient on both 

local and distal tumor sites however systemic side effects or AEs were not reported.91 Hiltonol is formulated 

with carboxymethylcellulose (CMC), a hydrophilic, negatively charged material, in an aqueous saline 

solution. The molar ratio of PO4 groups to the ε amino group of the lysine in polyIC:LC is 1:1 which 

corresponds to an excess of ε amino groups which may contribute to further complexing with CMC.92 The 

polylysine used ranges from 13-35 kDa.92 As intracellular delivery is critical for agonists with 

intracellularly located TLRs, formulation with a polycation addresses the attraction to cell surfaces and aids 

in tumor retention.  

RIG-I agonist candidate, MK-4621 is a synthetic RNA oligonucleotide that alone caused 100% 

grade 1-2 AEs and 48% grade 3-4 AEs in a (terminated) IT clinical trial in solid tumors.93 Upcoming trials 

plan to use a complex of MK-4621 with a PEI variant (JetPEI).94 It will be interesting to learn whether the 

complexation of negatively charged RNA with positively charged JetPEI will increase retention and 

intracellular delivery while decreasing systemic toxicity or AEs in comparison to uncomplexed MK-4621. 

Another strategy for improving efficacy and retention is formulation into an emulsion. An 

optimized TLR4 agonist, G100 is a glucopyranosyl Lipid A (GLA) derivative with a single phosphate group 

and six C14 acyl chains formulated in a squalene emulsion.95 The emulsion contains the excipients squalene, 

egg phosphatidyl choline (PC), DL-α-tocopherol, and Poloxamer 188.96 The particle/droplet size has been 

reported to be 82.7- 111 nm95-98 and zeta potential measurements -17 mV.90 Because TLR4 is located on 
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the surface of the cell, intracellular uptake is not necessary for the mechanism of a TLR4 agonist. Rather, 

formulation efforts should focus on accessibility of the agonist as well as drug release, and local retention. 

For lipid emulsions, retention in tumor tissue is optimal for cationic materials, and in a size range of 120-

250 nm.99-100 Research has indicated that the formulation of GLA has critical effects on TLR activation and 

that in vitro data does not translate well to in vivo results.98 GLA-SE (G100) resulted in greater immune 

activation than GLA formulated as an aqueous nanosuspension in various mouse models as well a human 

skin explant model.98 Efficacy of GLA itself could be highly dependent on GLA density within a particle 

or droplet which is dictated by formulation and would need to be optimized in humans. 

A more rudimentary approach to immunotherapy is the use of live attenuated bacteria. IT 

Clostridium novyi-NT trials are in progress but too early on to draw comparisons.101 IT BCG resulted in no 

better than stable disease and all patients experienced AEs or SAEs. BCG is a gram positive, rod shaped 

bacterium. In the case of the TICE BCG vaccine, the average length of the bacterium is 2.36 µm and a 

width of 0.474 µm but there is evidence of micro-aggregates approximately 30-50 nm in diameter.102 BCG 

are negatively charged but can be positively charged at lower pH’s as the pI depends on the method of 

preparation.102 BCG is recognized by TLR4 and TLR2 through its mycobacterial components like cell wall 

skeleton and peptidoglycan but also TLR9 through its bacterial DNA.103 More research is needed to evaluate 

transport of bacterial candidates after IT injection.  

Overall, it is apparent that unmodified TLR agonists lead to a greater AE incidence than those 

structurally modified or formulated with a cationic carrier. For example, research by Lynn et. al. studied 

TLR 7/8 agonists attached to polymer scaffolds in a variety of structures and concluded that particle 

formation was critical for improved local retention and innate activation.104 TLR agonists comprised of 

DNA or RNA motifs are naturally negatively charged. Since extracellular space and cell membranes are 

also negatively charged, IT administration of these compounds is not conducive to retention. While the 

rationale for formulating with a cationic carrier has historically been to aid in cell penetration for 

intracellular TLR delivery, it is likely that net positively charged formulations could further benefit from 

retention through electrostatic interactions at the injection site. Such interactions could feasibly limit 
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systemic exposure and mitigate the AEs commonly associated with PAMP immunotherapies. Further 

exploration of the optimal physiochemical properties for retention and efficacy would be vital for the 

research of future IT therapies incorporating PAMPs. 

3.2 Cytokines 

Cytokines play an important role in cell signaling and are major regulators of immunity. Therefore, 

these immunological signals have drawn interest for their immunostimulatory function to potentially 

activate immune system and encourage the destruction of cancer cells.105-106 Several types of cytokines have 

been investigated as immunotherapies (table 3). Granulocyte-Macrophage Colony Stimulating Factor 

(GM-CSF) is a growth factor that stimulates hematopoietic stem cells to differentiate into dendritic cells, 

granulocytes, and monocytes – cells capable of potentiating robust immune responses through antigen 

processing and presentation.107 GM-CSF is a prominent stimulatory agent being used to promote the 

activation, maturation, and migration of immune cells to collectively elicit anti-tumor action. Where results 

are posted, trials administering GM-CSF exhibited AEs lower than 15% with tumor size reduction rates 

exceeding 85%. 

IL-2 is a cytokine with an alternate immunostimulatory mechanism that has also been widely 

explored in cancer. IL-2 activates cytotoxic effector cells and causes them to proliferate.108 The T cell 

expansion that ensues in the presence of IL-2 has the potential to promote an anti-tumor response that 

overcomes the senescent microenvironment typically established by tumors.109 IL-2 does not seem to be as 

safe as GM-CSF; trials commonly report systemic AEs in greater than 50% of patients. However, one Phase 

2 trial exploring Proleukin (intratumoral IL-2) exhibited an 85% complete remission (CR) rate in tumor 

metastases, suggesting high potential for the efficacy of this T cell-stimulating signal when directed to the 

tumor microenvironment. 

Intratumoral cytokine immunotherapies extend far beyond GM-CSF and IL-2 regimens alone. 

Recombinant alpha-interferon has been administered intralesionally in patients with prostate cancer to 
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achieve a 30% CR rate.110 Tumor Necrosis Factor-α (TNFα) has been intratumorally injected while co-

administering subcutaneous IFN-a2b for advanced prostate cancer as well. Notably, TNFα leakage into the 

systemic circulation was observed after just 2 hours of injections, and this leakage may have contributed to 

AEs. Systemic exposure with IT cytokines is intuitively common, as these proteins are largely soluble and 

small (<70 kDa).111 Recombinant human interleukin‐12 (rhIL‐12) in six head and neck squamous cell 

carcinoma (HNSCC) was detected in the plasma 30 minutes after the IT injection with a half-life of 7.2 

h.112 Such systemic exposure is troubling, as a phase 2 study that used a similar treatment regimen on 10 

patients HNSCC resulted in high toxicities.113 

Cytokines elicit signaling cascades by acting in step with other directive signals, so cocktail 

approaches and combination therapies have also been attempted, but with limited success. One study 

investigated a multikine solution (combination of natural interleukins) that was injected IT or peritumorally 

in patients with HNSCC in combination with intravenous cyclophosphamide, intraoral indomethacin, and 

oral zinc.114 Components of the multikine solution included IL-2, IL-1α, IL-1β, GM-CSF, IFNα, TNFα, 

TNFβ, IL-3, IL-4, IL-6, IL-8, IL-10, and macrophage inflammatory protein 1α. Tumors accumulated an 

elevated number of CD4+ T cells and natural killer cells, and the treatment resulted in a 16.7% CR rate. 

Notably, however, this high-powered cocktail led to 8.3% of patients developing sepsis and Wegener 

granulomatosis, suggesting systemic exposure. 

3.2.1 Tumor Retention Mechanisms of Cytokines 

Generally, cytokines in cancer immunotherapy work by stimulating effector cells at the tumor site 

and rely on the host to initiate an immune response against the tumor.106 Ideally, the cytokines should 

localize at the tumor to avoid systemic toxicity, and therefore, it is important to consider the dosage 

concentration, dosage schedule, and route of administration. IT administration typically lacks the severe 

side effects associated with systemic therapies; however, AEs may occur if there is leakage of the IT 

treatment to the systemic circulation.  
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Recombinant human GM-CSF is a 14-35 kDa glycoprotein with 127 amino acids.115 It is composed 

of four bundles of α-helices and is non-spherical with dimensions of 20 Å by 30 Å by 40 Å.116 Since GM-

CSF is a white-blood cell growth factor that promotes the recruitment and activation of dendritic cells and 

monocytes, this cytokine has been studied for use in cancer immunotherapy as an immunostimulatory 

adjuvant to induce anti-tumor immunity.117 Of note, although the GM-CSF have been investigated as an 

immunostimulant for its anti-tumor properties, there is emerging evidence that GM-CSF can potentially 

stimulate tumor growth and metastasis in certain cancers.107 Nevertheless, it is important to limit systemic 

toxicity associated with cytokine therapies. The severe AEs observed in malignant mesothelioma patients 

given intralesional infusion of 2.5-10 mg/kg/day GM-CSF may be a result of systemic exposure.118 

Conversely, lower dosage, daily injections of 15-50 μg or 400 µg GM-CSF given to melanoma patients 

produced milder side effects, likely due to lower systemic exposure.119-120 The lower AEs seen in these 

studies may have resulted from a combination of the lower dosage concentration, or a difference in the 

location and morphology of tumors associated with the cancer type (i.e. mesothelioma vs melanoma). 

Human IL-2 has a molecular weight of 15.5 kDa and is comprised of 133 amino acids.108 IL-2 has 

a hydrodynamic radius of ~3 nm.121 Interestingly, IL-2 can be immuno- stimulatory or suppressive by 

activating cytotoxic effector cells or regulatory T (Treg) cells, respectively.108 These contrasting effects are 

due to differences IL-2 receptor expression patterns; where CD8 + T and natural killer cells express high 

levels of IL-2Rβ (CD122) and IL-2Rγ (γc), while Treg cells express high levels of IL-2Rα (CD25) and only 

intermediate levels of CD122 and γc.108 Typically, high doses of IL-2 is immunostimulatory and generates 

an anti-tumor immune response, while low doses of IL-2 are used for immunosuppression. Similar to the 

effects seen with IT GM-CSF injections, patients with melanoma122-123 responded better to IT IL-2 treatment 

compared to patients with HNSCC124, which may be reflective of differences in tumor morphology between 

melanoma and HNSCC. Moreover, the modification of the IL-2 protein to be conjugated to 6-7 kDa poly-

ethylene glycol (PEG) chains increases the drug’s solubility, improves its half-life, and reduces off-target 

immunogenicity, which translated into better patient responses.125-126 Additional studies have interestingly 

demonstrated that the PEGylation lowered the drug’s affinity for the receptors on Treg cells to a greater 
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extent than the receptors on CD8+ T cells, which resulted in a more favorable CD8+ T cell activation over 

Tregs.127  

One method to limit the systemic exposure of cytokines is to include a tumor-targeting domain onto 

the therapy. For instance, IL-4(38-37)-PE38KDEL is a chimeric protein composed of modified IL-4 and a 

truncated form of Pseudomonas exotoxin (PE), which can target and bind to IL-4 receptor-positive 

glioblastoma cells.128 Likewise, IL13-PE38QQR (IL13PE) is a chimeric protein of IL-13 conjugated to 

truncated PE and binds to IL-13 receptors on malignant glioma cells.129 The IL-2-based immunokine 

(darleukin) and the TNFα-based immunokine (fibromun) further incorporate a diabody derived from the 

L19 antibody to introduce fibronectin binding functionality which capitalizes on overexpression in 

tumors.130 With the absence of the Fc region on the diabody fragment of the antibody, the molecule does 

not interact with FcRn and has a more limited half-life as such. Nonetheless, its smaller size allows for 

better penetration and distribution in the tumor. The combination therapy of darleukin and fibromun (called 

daromun) resulted in AEs that were limited to local injection site reactions.131 This was likely due to the 

antibody-cytokine fusion format of the treatment, which improves the cytokine residence time on the 

injected tumor and allows for the build-up of local cytokine concentration, thereby minimizing systemic 

AEs.  

In summary, cytokines offer the promise of stimulating immunity in the presence of tumors to 

indirectly promote an anticancer response. Cytokines are by nature small and water-soluble, which 

potentially confounds their retention within the TME. Several clinical approaches have sought to address 

these detriments, but the continued development of strategies for the IT administration of cytokines within 

the TME will undoubtedly optimize efficacy while minimizing AEs. These strategies should continue to 

seek modification strategies that do not impede receptor binding or penetration within the tumor.  
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3.3 Viruses and plasmids 

 Oncolytic viruses selectively replicate in tumor cells, causing tumor cell destruction while 

sparing normal healthy cells.132 Oncolytic viruses have been investigated in clinical studies for their ability 

to preferentially infect and kill cancer cells. A variety of virus types have been designed to be oncolytic and 

have been investigated for intratumoral therapy, including adenovirus, enterovirus, herpes simplex virus, 

parvovirus, measles (Rubeola) virus, reoviruses, and vaccinia virus classes.133-143   

Viruses both replicative  (oncolytic) or non-replicative (non-oncoyltic), can be used as vectors to 

carry and deliver foreign DNA into cells with high gene transfer efficiency.144 For instance, talimogene 

laherparepvec (T-VEC/Imlygic®) was approved by the Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) in 2015 for the treatment of melanoma lesions. This modified 

oncolytic herpes simplex virus-1 can selectively replicate in cells and will destroy infected tumor cells.145  

Viruses have been used to express pro-inflammatory cytokines to reap the same benefits as 

exogenous formulations. Several IT viral-based therapies have been designed to express factors such as 

GM-CSF146-147, interferon (IFN)-γ 148-149, tumor necrosis factor-α (TNFα) 150-152, or IL-12.153 Suicide genes 

have also been delivered, such as the bacterial gene called E. coli purine nucleoside phosphorylase (PNP), 

which can convert fludarabine into the anti-cancer agent fluoroadenine.154 Further, the herpes simplex 

kinase thymidine kinase (HSV-TK) has been used to incorporate ganciclovir into a toxic phosphorylated 

compound.155-157 

Although less commonly investigated, another tool for gene delivery includes the use of plasmids. 

Plasmids are sometimes administered alone but are likewise used in tandem with a variety of techniques 

that can enhance gene transfer efficiency such as electroporation or in complex with cationic carriers. For 

instance, a phase 1 clinical study investigated the IT injection of 50 µg of IL-12 plasmid cDNA in patients 

with cutaneous or subcutaneous metastases.158 Plasmids may be delivered with the assistance of 

electroporation to make the cell membrane permeable to the plasmid DNA. For example, electroporation 
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was used to help deliver tavokinogene telseplasmid (tavo), a 6215 bp plasmid that encodes for the p35 and 

p40 subunits of the human IL-12 protein, in metastatic melanoma patients.159-160 

Cationic lipids or cationic polymers are also known to improve gene delivery into tumors by 

inserting through cell membranes.161 Examples of this approach is evident in the use of DC-Chol liposomes 

to form DNA-lipid complexes called lipoplexes162 or the use of polyethylenimine polymers to form DNA-

polymer complexes called polyplexes.71, 163-165 

3.3.1 Tumor Retention Mechanisms of Viruses and Plasmids 

Generally, viruses can be found between 20 and 500 nm in diameter.166 Oncolytic viruses direct the 

killing of tumor cells through cell lysis by infecting tumor cells. Subsequent viral replication, as well as the 

induction of an immunogenic response triggered by the release of tumor cell fragments upon cell lysis 

further compound their effects.132 Oncolytic viruses can be modified to improve their affinity for tumor 

cells while limiting infection in healthy cells by deleting viral genes that will not affect the ability of the 

virus to replicate in cancer cells, but will inhibit viral replication in normal cells.132 For instance, when an 

adenovirus infects a normal cell, the cell expresses the tumor suppressor proteins and the cell undergoes 

cell-cycle arrest or apoptosis, preventing the virus from replicating.  The E1B 55-kDa gene in wild-type 

adenoviruses encodes for a protein that inhibits the tumor suppressor protein p53 and allows viral 

replication to occur. Therefore, adenoviruses that have the E1B 55-kDa gene deleted (such as OsNYX-015) 

would have inhibited viral replication in cells with normal p53 function. However, many tumor cells lack 

functional p53, which allows the E1B 55-kDa gene-deficient viruses to replicate within the tumor and lyse 

the cells. A similar mechanism is used with adenoviruses with the E1A gene deletion (such as DNX-2401). 

E1A binds and inhibits the cellular tumor suppressor protein pRB that is expressed functionally in normal 

cells but is mutated and non-functional tumor cells. Therefore, these E1A gene-deleted viruses can 

selectively replicate and destroy tumor cells, while avoiding replication in normal cells. Similarly, HSV-

1716 is a herpes simplex virus (HSV) type 1 (155 – 240 nm in diameter) with a RL1 gene deletion.139, 167 

This gene encodes for the ICP34.5 protein, which inhibits the double-stranded RNA-activated protein 
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kinase (PKR) protein, a protein that is involved in inhibiting RNA translation and thereby preventing the 

synthesis of viral protein.168 The deletion of the RL1 gene allow for selective replication in tumors with the 

defective anti-viral PKR pathway. The vaccina virus vvDD-CDSR has been mutated to have the viral genes 

encoding vaccinia growth factor (VGF) and thymidine kinase (TK) deleted143. These proteins are essential 

to viral replication, so their deletion prevents the virus from replicating in normal cells. However, viral 

replication in tumor cells is possible due to their upregulation of growth factors and nucleotides.  

Viruses can also be designed to specifically target tumor cells by exploiting alterations in cell 

surface receptors compared to normal healthy cells. For instance, in addition to the E1A gene deletion, 

DNX-2401 also has an RGD-motif engineered into the fiber H-loop.135 This motif enhances tumor 

infectivity/cell entry by allowing the virus to utilize the αvβ3 and αvβ5 integrins enriched on tumor cells. The 

coxsackievirus a21 (CVA21) (~31 nm in diameter) can bind to intracellular adhesion molecule 1 (ICAM-

1) and decay acceleration factor (DAF) proteins that are highly expressed on certain tumor cells.169 The 

live-attenuated measles virus Edmonston-Zagreb vaccine strain (120-250 nm in diameter)170 can bind to 

CD46 that are expressed by some cancer cell lines, making these cells a preferred target.141  

The use of these oncolytic viruses as a monotherapy was generally well-tolerated with mild AEs 

such as injection site pain, fever, fatigue, chills, and flu-like symptoms. However, they have shown varying 

success, where a few treatments led to some clinical responses and others to no clinical responses with 

limited evidence of abscopal effects. A common lack of abscopal effects by oncolytic viruses may suggest 

poor immune activation outside of the primary tumor destruction that occurs as a function of the virus itself.  

 Better clinical responses were observed with the incorporation of transgenes into oncolytic viruses 

for cancer gene therapy. An effective cancer gene therapy requires the delivery therapeutic genes into 

tumors and regulation of gene expression within the tumor microenvironment. A common mode of gene 

transfer is by using a viral vector. As such, the incorporation of transgenes in replicative or non-replicative 

viruses have been designed and used in clinical studies. For instance, FDA approved T-Vec is an attenuated 

herpes simplex virus, type 1 (HSV-1) (155-240 nm) that was engineered to express human GM-CSF. T-

Vec is ICP34.5-deficient (similar to HSV-1716), allowing selective replication in tumor cells.171 Of note, a 
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comparison between intratumoral T-vec and subcutaneous GM-CSF in patients with unresectable stage 

IIIB/C/IV melanoma in a phase 3 trial showed a higher efficacy for T-vec compared to GM-CSF alone.172 

Specifically, the T-vec-treated compared to the GM-CSF alone treated patients had a higher median overall 

survival (OS, 23.3 months vs 18.9 months), durable response rate (DRR) (19.3% vs 1.4%) ORR (31.5% vs 

6.4%), CR (16.9% vs 0.7%), and partial response (PR, 14.6% vs 5.7%), and disease control rate (DCR) 

(76.3% vs 56.7%). Common AEs with T-vec treatment include fatigue, chills, pyrexia, nausea, and flu-like 

illness. However, T-Vec-treated patients had higher instances of grade 3 or 4 AEs compared to GM-CSF-

treated patients (11.3% vs 4.7%), which include fatigue, flu-like illness, injection site pain, vomiting, 

cellulitis, dehydration, deep vein thrombosis, and tumor pain. 

TNFerade uses an interesting technique for the localized delivery of TNFα. TNFerade is a 

replication-deficient adenovirus type 5 that carries a transgene encoding human TNFα. However, a 

radiation-inducble Egr-1 promoter gene was placed upstream to the TNFα cDNA, allowing for control the 

time and location of TNFα delivery through the use of radiation therapy. Ad-RTS-hIL-12 is an adenoviral 

vector that was engineered for the controlled expression of IL-12. This involves the use of the RheoSwitch 

Therapeutic System®, which requires the oral activator veledimex to induce IL-12 expression.153 These 

inducible systems allow the regulation of gene expression, allow for control of when to activate the 

production of the gene product. 

 The popularity of using adenoviruses as a method of gene transfer may be a result of the ability to 

achieve high viral titers, low instances of severe AEs observed in vaccinations with unmodified 

adenoviruses, and higher packaging capacity of genetic information compared with other viruses such as 

the retrovirus.173 However, limitations include the development of immunogenicity against adenoviruses 

that may make repeated treatments ineffective and the limited insert capacity for the length of the coding 

sequence. 

Aside from using viral vectors, genes have been introduced into cells through plasmids, which can 

overcome the limitations associated with viral vectors. For instance, the EGFR antisense DNA is a plasmid 

of pNGVL1-U6-EGFRAS was prepared in phosphate-buffered saline.162 We estimate this plasmid to be 
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about 9600 base pairs; the pNGVL vector (also called pUMVC) is 9287 bp, human U6 promoter is 241 bp, 

and EGFRAS is 39 bp.162, 174-175 The IL-12 plasmid cDNA (pNGVL3-mIL12 ) which was given at 50 µg, 

was also prepared in saline (0.76 mL).158 Since the efficacy of these therapies require their entry into cells, 

the negatively charged nature of plasmid DNA would likely make it difficult for DNA to pass through the 

negatively charged cell membranes.   

One method to facilitate the entry of plasmids into cells would be to use electroporation. The 

application of short electric pulses creates temporary pores or holes in the membrane, increasing cell 

permeability.176 In addition, the applied electric field drives the negatively charged DNA that are on the 

anode end to migrate towards the cell on the cathode end, where the DNA accumulates and interacts with 

the plasma membrane. The DNA enters the cells as endosome-like vesicles. After the application of the 

electric pulses, the cell membrane naturally reseals. For instance, electroporation was used to help deliver 

tavo, a 6215 bp IL-12 plasmid. Clinical responses were fairly similar between treatment the naked IL-12 

plasmid cDNA and tavo with electroporation; however, a direct comparison cannot be made due to their 

difference in plasmid design, study design, and dosage regime. 

Another method to facilitate plasmid DNA entry into cells is by formulating the plasmids with 

cationic polymers to create polyplexes similar to those employed for PAMP immunotherapies. The 

polyplex system masks the negatively charged DNA to feasibly allow the positively-charged polyplexes to 

bind the negatively-charged cell surface of the host mammalian cell and enter through endocytosis.161 For 

example, mixing BC-819 (a plasmid DNA that encodes for the A fragment of diphtheria toxin under the 

control of a H19 gene promoter), with PEI formed polyplexes 80-90 nm in size.177 Also, CYL-02 (a plasmid 

that encodes for the DCK-UMK fusion protein, which phosphorylates and activates the pro-drug 

gemcitabine) was prepared in 5% w/v glucose with a PEI nitrogen to DNA phosphate (N/P) ratio of 8 to 

10. No particle size information was provided for CYL-02; however, we estimate that the polyplexes may 

be around 45 nm based on another reported polyplex with N/P of 8-10 that was made with JetPEI, which 

appears to be the same JetPEI used to make CYL-02.178  

27



Together, we surmise that the use of electroporation or cationic polymers will continue to allow for 

better potency compared to the injection of naked plasmid DNA alone. Furthermore, the use of these non-

viral gene therapies eliminates the drawbacks of using viral gene therapies, such as the immunological 

inactivation of adenoviruses and limited insert capacity. However, the non-viral vectors may have non-

specific targets (does not distinguish transfection between tumor and normal cells) and lower transfection 

efficiencies compared to viral vectors. 

3.4 Monoclonal antibodies 

Monoclonal antibodies (mAbs) have shown promising therapeutic efficacy as cancer treatment 

(table 3). Immunostimulatory mAbs can target antigens expressed on the surface of tumor cells and induce 

cytotoxic T lymphocyte (CTL) responses to result in tumor cell death.165 A major class of therapeutic 

antibodies are immune checkpoint inhibitors (ICIs), which target the receptors of inhibitory signaling 

pathways to reverse immune suppression and reactivate immune-mediated antitumor responses.179  

Antibodies targeting CTLA-4 and PD-1/PD-L1 have demonstrated broad activation of tumor-

specific T cells by blocking negative-feedback mechanisms of the immune system. The most common 

administration route of these mAbs is systemic180, however, systemic delivery of mAbs is known to 

potentially induce many immune-related adverse events (irAE), and only 20-30% of patients respond to 

this treatment. IT administration of mAbs has been suggested in attempts to retain mAbs in the tumor 

microenvironment and reduce systemic exposure and associated inflammatory side effects.181 

Ipilimumab (Ipi), a human IgG1 that targets CTLA-4, was the first approved immune checkpoint 

inhibitor for advanced melanoma, and has significantly improved the overall survival rate associated 

with this disease.182 Systemic Ipi administration is commonly associated with a low response rate and 

life threatening toxicities, which has prompted the exploration of IT delivery. A phase 1 ongoing clinical 

trial is testing a combinatorial immunotherapy using IT injection of autologous CD1c (BDCA-1) myeloid 

dendritic cells, ipilimumab, and the PD-L1 blocking mAb, avelumab. Another phase 1 study of IT 

28



ipilimumab combined with IL-2 for advanced melanoma found that it was well-tolerated and generated 

responses in both injected and non-injected lesions in a majority of patients.183 T-cells were activated within 

the tumor and in the draining lymph nodes, indicating IT administration enhanced the local anti-tumoral 

responses and also induced distal effects.  

CD40 is a member of the TNF receptor family expressed on the surfaces of APCs and B cells. The 

CD40 ligand, CD154, is mainly expressed by activated T cells and B cells. CD40 ligands assist T cell 

activation and differentiation, which results in increased tumor-specific antigen presentation and the 

production of CTLs. Despite its potential synergy with other forms of anticancer therapy, the use of CD40 

agonists has been associated with toxicities including cytokine release syndrome, thromboembolic events, 

and tumor angiogenesis. Collectively, these detriments substantiate CD40 ligands as candidates for IT 

immunotherapy to refine their delivery profiles. ADC-1013 is a human IgG1 agonistic CD40 antibody that 

has been investigated in human via both IT and IV administration in advanced solid malignancies. Although 

the main delivery method of ADC-1013 has been IV, a phase I trial for IT administered ADC-1013 in 

patients with advanced solid tumors has shown safety and B cell expansion after treatment, which could be 

related to the antitumor efficacy.184-185  

3.4.1 Tumor Retention Mechanisms of Monoclonal Antibodies 

The administration of immune checkpoint inhibitors including CTLA-4, PD-1 and PD-L1 

downregulates the suppression of T cells and improves their activation. Binding of co-stimulatory receptors 

such as CD40 and OX40 is important for turning non-immunogenic (“cold”) tumors “hot”. These co-

stimulatory receptors are mainly expressed on APCs, and when activated, the presentation of tumor antigens 

is increased and cytokines are released to improve the activation of anti-tumor T cells. Immunostimulatory 

mAbs are commonly administered as IV infusions, but so far only a small fraction of cancer types are 

successfully treated by mAbs. Severe irAEs have been prevalent with these therapies. irAEs are mostly 

attributed to be induced by the inhibition of immune checkpoints that are naturally in-place to prevent 

autoimmunity. Therefore, when checkpoints are inhibited outside of the TME, autoimmune responses can 
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ensue. The small size of mAbs (~10 nm) is a likely contributor to rapid clearance and dispersion out of an 

injection site and into systemic circulation.186  

Local administration of immunotherapeutic mAbs can restrain immune responses to the tumor site 

and minimize unwanted systemic activation of the immune system by reducing leakage from the tumor. So 

far there are a limited number of slow-release systems for injected antibodies that largely use emulsions or 

micro/nano-formulations. Anti-CD40 has been conjugated to immunostimulatory poly(γ-glutamic acid) 

nanoparticles to successfully improve localization of the mAb as the nanoparticle minimized systemic 

cytokine release.187 However, the coupling of anti-CD40 to polylactide nanoparticles did not show an 

improvement of anti-tumor activity.188 Other anti-CD40 formulations based on mineral oil or dextran-based 

microparticles have shown the capacity to activate tumor-specific T cell responses and significantly 

decrease the AEs compared to systemic infusion, but the microparticles caused overly severe local 

inflammation.189  

AEs including local inflammation and pain at the injection site are most commonly observed for 

the IT clinical trials investigating mAbs. One of the critical concerns of IT administration is the dispersion 

of the antibody following injection. Local administration of antibodies has shown increased accumulation 

in the tumor-draining lymph nodes, which may assist in generating anticancer immunity.190 ADC-1013 has 

been optimized through the use of Fragment Induced Diversity (FIND) technology to improve binding 

affinity.191 This optimization makes it possible to achieve high efficacy with very low doses. To further 

facilitate TME retention, mAbs can be engineered to accumulate in the tumor site. Antibodies with a high 

isoelectric point can be better retained in the TME as it is more acidic than normal tissues. Also, antibodies 

with increased binding affinities at lower pH are known to increase the activation of antitumor responses.192   

Together, IT antibody delivery offers the potential for increased potency with mitigated risk. As 

antibodies are produced as highly specific, high-affinity proteins, colocalization with the TME where 

cognate receptors abound should facilitate IT retention. Alternate approaches formulating these biologics 

with particles and emulsions may also favor retention, however more work should be done to strike a 

tolerable balance between anti-tumor immunostimulation and uncontrollable local inflammation. 
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3.5 Small Molecules  

Small molecule drugs have provided the most storied historical benefit for immuno-oncology 

therapies over many decades. Compared to large molecules that often have long half-life and poor tissue 

penetration, small molecules have the advantage of an <24hr half-life and can more readily cross cellular 

membranes. Together, these properties aid with intermittent dosing that can reduce toxicity and side effects. 

Small-molecule oncology drugs invoke various mechanisms like checkpoint inhibition, 

immunomodulation, and cytotoxic chemotherapy.  

One of the most extensively studied and widely utilized chemotherapy drug is cisplatin. Cisplatin 

[cis-diammineplatinum dichloride] has been used to treat lung, bladder, and head and neck cancers. 

Significant systemic toxicity has been a limiting factor for further use, and thus IT formulations have been 

investigated. Currently there are several cisplatin-based IT delivery systems in clinical trials. INT230-6 is 

a supermolecular complex of cisplatin, vinblastine, and an amphiphilic penetration enhancer that assists 

dispersion in tumors and diffusion into tumor cells. Intratumoral injections of INT230-6 for solid tumors 

resulted in an 80% CR rate.193  

3.5.1 Tumor Retention Mechanisms of Small Molecules 

Small molecule drugs are versatile for therapeutic design because of the ease of modification, 

intervention and formulation, and the flexibility for better management of AEs that is conferred by a 

relatively short half-life. In contrast to large-molecule therapies like mAbs, which primarily target 

extracellular ligands and receptors, small molecules have enhanced vascular permeability that can target 

intracellular components with potentially faster penetration and homogenous distribution into solid tumors 

that can achieve greater response rates. Chemotherapeutics were designed to rapidly interrupt cancer cell 

proliferation through multiple mechanisms. Alkylating agents like cisplatin bind DNA through covalent 

bonds and prevent DNA replication. Anti-metabolites like gemcitabine resemble nucleobases by their 

structure, and once incorporated into DNA, inhibit the enzymes involved in DNA synthesis.194 
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One of the most critical challenges in the development of small molecule antitumoral drugs is the 

rapid plasma and tumor clearance due to their small size and molecular weight. Therefore, therapeutic 

molecules have been widely applied as IV infusion in free, unmodified forms. However, as IT injection 

these compounds are commonly modified into a prodrug or formulated with large molecules and carriers 

to improve retention. Several delivery systems are under clinical trials including polymer-drug conjugates, 

liposomal carriers, and polymeric micelles.195 The performance of these formulations can be affected by 

multiple physicochemical characteristics including particle size, composition, stability, and surface 

properties. The particle size and surface charge have shown large influence on the cellular uptake and tumor 

distribution. It has been observed that particles with size <200nm are able to penetrate and distribute into 

tumors after IT injections.196 Many polymeric formulations of cisplatin are sized 60 to 450 nm.197-199 The 

composition of the delivery system includes non-toxic, non-immunogenic, biodegradable, and 

biocompatible polymers like PEG and PLGA, to support a controlled-release system while minimizing the 

dispersion into systemic circulation. The formulation developed by Chen et al. has shown an extended 

release and higher maximum-tolerated dose (MTD) than the free cisplatin, as well as significantly tumor 

suppression effect for HNSCC.200 In the trials of Celecoxib, hydrophobic vitamin D was used as a carrier 

to potentially solve the low solubility issue of the drug and increase the depot effect at the tumor site. 

However, extensive hydrophobicity might increase non-specific serum protein binding, which can be 

avoided by PEGylation to provide a hydrophilic surface that can prevent access of proteins.  

Small molecule drugs enter tumors mainly through non-selective diffusion and passive targeting, 

so an ideal form of these molecules is likely nonionized to fully enable conductive diffusion. The acidic 

microenvironment of tumor tissue causes chemoresistance against weak-base drugs, which become 

protonated and positively charged upon entering the tumor and are less membrane permeable. Alkylation 

drugs including Cisplatin (pH 3.5-5.5) and Gemcitabine (pH 2.7-3.3) remain nonionized and have higher 

cytotoxicities at lower pH. The effect of surface charge on nanoparticles has been investigated on many 

nano-sized formulations as well. It was observed that positively charged particles retain in the tumor at 

higher concentrations compared to the surrounding tissue201 and diffuse out at a slower rate in comparison 
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to anionic particles.202 Together this observation is attributed to the electrostatic interactions with negatively 

charged proteoglycans of the tumor neovasculature. For highly charged particles like gemcitabine 

hydrochloride and PV-10, a disodium salt, the electrostatic interactions might be a significant limitation to 

their mobility within the tumor, which could affect the efficacy of IT injections. 

As small molecules are largely unhindered by the transport phenomena that dictate the distribution 

of other classes we have discussed in this review, chemical modifications can serve to selectively impede 

egress from the TME. Non-specific binding of small molecules to tumor cells or the extracellular matrix 

components can enhance the retention within the tumor. Ligand-receptor binding also delays clearance. 

Polymerization and complexation of small molecules enables their retention and depot-release within the 

TME. Tuning the charge properties of small molecules has also shown to aid intracellular penetration of 

these compounds as well as retention in the tumor. IT delivery of small molecules is appealing because the 

lower specificity of these candidates’ mechanism can be overcome by the physical retention of their 

presence at the TME. However, in cancers where multiple tumor sites are present, it may not always be 

feasible to elect this strategy as an abscopal effect is unlikely when the immune system is not invoked. 

4. Conclusion 

This review set out to emphasize the impact of therapy biophysical characteristics on safety and 

efficacy by associating IT cancer therapies currently in clinical trials with their respective characteristics 

or formulations. While depending on the mechanism of action and target, it may be said that therapies 

with modifications to the active or those formulated to be more than aqueous demonstrated increased 

safety profiles. For intratumoral delivery, one theory could be that formulation or design of therapy that is 

larger, or particulate in nature may be connected to increased safety due to increased injection site 

retention. Overall, this review was intended to help future researchers realize the importance of design 

when considering an IT cancer therapy. Current cancer therapy strategies are vast in type and mechanism 
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therefore the target and function have to be the primary consideration in the design, however, the 

physiological and immunological properties of the TME can be harnessed when designing an IT therapy. 

 

34



C
at

eg
or

y 
A

ge
nt

 
C

om
bi

na
tio

n 
T

um
or

 
H

is
to

ty
pe

 
T

ri
al

 ID
st

at
us

 
Ph

as
e 

A
va

ila
bl

e 
R

es
ul

ts
 

R
ep

or
te

d 
A

dv
er

se
 E

ve
nt

s 
R

ef
s 

PA
M

Ps
 

Ti
lso

to
lim

od
/IM

O
-2

12
5 

Ip
ili

m
um

ab
 

M
el

an
om

a 
N

C
T0

26
44

96
7A

 
Ph

as
e 

1/
2 

 
38

%
 O

R
R

, 7
1%

 D
CR

, 1
0%

 C
R

, 
28

%
 P

R
, 3

3%
 S

D
 

*m
aj

or
 e

xp
an

di
ng

 T
-c

el
l c

lo
ne

s 
fo

un
d 

to
 b

e 
sh

ar
ed

 in
 re

sp
on

di
ng

 
lo

ca
l a

nd
 d

ist
an

t l
es

io
ns

. 

25
%

 ir
A

Es
+ , h

ep
at

iti
s, 

ga
st

rit
is,

 
gu

ill
ai

n-
ba

rre
 sy

nd
ro

m
e,

 c
lo

lit
is

, 
ne

ut
ro

pe
ni

a.
 

20
3 

SD
-1

01
Ip

ili
m

um
ab

, 
ra

di
at

io
n 

Lo
w

-g
ra

de
 

ly
m

ph
om

as
 

N
C

T0
22

54
77

2C 
Ph

as
e 

1/
2 

14
%

 P
R

, 1
4%

 S
D

, 8
6%

 P
D

, 
10

0%
 A

Es
, 1

1%
 S

A
Es

 
(n

eu
tro

pe
ni

a/
se

ps
is

) 
20

4 

SD
-1

01
 

Pe
m

br
ol

iz
um

ab
  

H
ea

d 
an

d 
ne

ck
 

sq
ua

m
ou

s c
el

l 
ca

rc
in

om
a 

N
C

T0
25

21
87

0A
 

Ph
as

e 
1/

2 
22

%
 O

R
R

, 2
6%

 S
D

, 3
0%

 P
D

, 
22

%
 n

on
-e

va
lu

ab
le

, 4
8%

 D
C

R 
7%

 A
Es

+ , 3
2%

 S
A

Es
, >

20
%

 
 

62
 

SD
-1

01
R

ad
ia

tio
n 

Lo
w

-g
ra

de
 B

-c
el

l 
ly

m
ph

om
as

 
N

C
T0

22
66

14
7C 

Ph
as

e 
1/

2 
24

%
 P

R
, 3

%
 C

R
, 8

3%
 R

ed
uc

tio
n 

of
 d

is
ta

l t
um

or
s 

+   
m

os
tly

 fl
u 

lik
e 

sy
m

pt
om

s 
20

5 

PF
-

35
12

67
6/

A
ga

to
lim

od
/C

pG
 

79
09

 

Lo
ca

l R
ad

ia
tio

n 
Lo

w
-g

ra
de

 
ly

m
ph

om
as

 a
nd

 
m

yc
os

is
 fu

ng
oi

de
s 

(M
F)

 

N
C

T0
01

85
96

5C 
Ph

as
e 

1/
2 

In
 ly

m
ph

om
a 

pa
tie

nt
s: 

A
t t

re
at

ed
 

si
te

: 4
7%

 C
R,

 4
0%

 P
R

, 1
3%

 S
D

 
Ex

cl
ud

in
g 

tre
at

ed
 si

te
(d

is
ta

l 
on

ly
): 

26
.7

%
 O

R
R

, 2
0%

 P
R,

 5
3%

 S
D

 
In

 M
F 

pa
tie

nt
s: 

35
.7

%
 O

R
R 

In
 ly

m
ph

om
a 

pa
tie

nt
s: 

33
%

 
-li

ke
 sy

m
pt

om
s 

in
je

ct
io

n 
sit

e 
re

ac
tio

ns
, c

hi
lls

, 
fe

ve
r, 

m
ya

lg
ia

, a
rth

ra
lg

ia
 

82
 

PF
-

35
12

67
6/

A
ga

to
lim

od
/C

pG
 

79
09

 

Lo
ca

l R
ad

ia
tio

n 
Lo

w
-g

ra
de

 
ly

m
ph

om
as

 
N

C
T0

08
80

58
1C 

Ph
as

e 
2 

23
%

 P
R

, 6
3%

 S
D

, 1
3%

 P
D

 
73

%
 A

Es
 

83
 

H
ilt

on
ol

/ p
ol

yI
C

:L
C

 
em

br
yo

na
l 

rh
ab

do
m

yo
sa

rc
om

a 
N

C
T0

19
84

89
2T 

Ph
as

e 
2 

1 
pa

tie
nt

 o
nl

y 
bu

t s
aw

 re
du

ct
io

n 
of

 tu
m

or
 

91
 

B
0-

11
2/

 
po

ly
I:C

+p
ol

ya
lk

yl
en

ei
m

in
e 

Pe
m

br
ol

iz
um

ab
 

(w
ith

 o
r w

ith
ou

t) 
So

lid
 tu

m
or

s 
N

C
T0

28
28

09
8A

 
Ph

as
e 

1 
(A

t 1
0 

w
ee

ks
) C

om
bi

na
tio

n 
th

er
ap

y:
 5

8%
 D

CR
, 1

7%
 O

RR
 

M
on

ot
he

ra
py

: 8
8%

 in
cr

ea
se

 in
 

ci
rc

ul
at

in
g 

im
m

un
e 

ce
lls

, 4
6%

 
in

cr
ea

se
 in

 im
m

un
e 

ge
ne

 
ex

pr
es

si
on

 
*N

o 
B

O
-1

12
 w

as
 fo

un
d 

in
 th

e 
bl

oo
d.

  
88

 

G
10

0/
G

LA
-S

E 
M

er
ke

l C
el

l 
C

ar
ci

no
m

a 
N

C
T0

20
35

65
7C 

Ph
as

e 
1 

40
%

 P
R

, 1
0%

 C
R,

 5
0%

 P
D

 
*r

es
po

nd
er

s h
ad

 in
cr

ea
se

d 
in

fla
m

m
at

io
n 

an
d 

in
fil

tra
tio

n 
of

 
C

D
8+

 a
nd

 C
D

4+
 T

 c
el

ls 
as

 w
el

l 
as

 e
vi

de
nc

e 
of

 g
lo

ba
l i

m
m

un
e 

ac
tiv

at
io

n.
 

 
20

6 

G
10

0/
G

LA
-S

E
R

ad
ia

tio
n

So
ft 

Ti
ss

ue
 

sa
rc

om
a 

 
N

C
T0

21
80

69
8A

 
Ph

as
e 

1 
In

du
ce

d 
lo

ca
l a

nd
 sy

st
em

ic
 

im
m

un
e 

ch
an

ge
s 

N
ot

hi
ng

 h
ig

he
r t

ha
n 

gr
ad

e 
2 

20
7 

G
10

0/
G

LA
-S

E 
Pe

m
br

ol
iz

um
ab

, 
rit

ux
im

ab
, (

w
ith

 o
r 

w
ith

ou
t) 

Fo
lli

cu
la

r N
on

-
ho

dg
ki

ns
 

ly
m

ph
om

as
 

N
C

T0
25

01
47

3R 
Ph

as
e 

1/
2 

R
ep

or
te

d 
be

st
 re

sp
on

se
: 4

5%
 P

R
, 

33
%

 S
D

, 2
2%

 p
en

di
ng

, P
R

s a
lso

 
sa

w
 u

p 
to

 5
6%

 sh
rin

ka
ge

 o
f d

is
ta

l 
tu

m
or

s. 
 

*C
D

4+
 a

nd
 C

D
8+

 T
 c

el
l t

um
or

 
in

fil
tra

tio
n 

20
8 

35



 
M

K
46

21
/R

G
T1

00
 

 
So

lid
 T

um
or

s  
N

C
T0

30
65

02
3T 

Ph
as

e 
1/

2 
A

t d
at

a 
cu

to
ff 

be
st

 re
sp

on
se

 w
as

 
27

%
 S

D
  

*P
K

 sh
ow

s m
in

im
al

 sy
st

em
ic

 
ex

po
su

re
 

he
ad

ac
he

, n
au

se
a)

, 4
8%

 A
Es

+ , 
53

%
 ir

A
Es

 

93
 

 
B

C
G

 
Ip

ili
m

um
ab

 a
nd

 
is

on
ia

zi
d 

M
et

as
ta

tic
 

m
el

an
om

a 
N

C
T0

18
38

20
0T 

Ph
as

e 
1 

Lo
w

 d
os

e 
gr

ou
p:

 3
3%

 P
D

, 6
6%

 
SD

 
H

ig
h 

do
se

 g
ro

up
: 1

00
%

 P
D

 

10
0%

 A
Es

, 6
7%

 S
A

E 
in

 lo
w

 
do

se
 g

ro
up

, 5
0%

 S
A

E 
in

 h
ig

h 
do

se
 g

ro
up

, D
LT

 m
et

 a
t h

ig
he

r 
do

se
 g

ro
up

 

20
9 

 
C

lo
st

rid
iu

m
 n

ov
yi

- N
T 

 
 

N
C

T0
19

24
68

9C 
Ph

as
e 

1 
1 

pa
tie

nt
 o

nl
y.

 S
aw

 re
du

ct
io

n 
in

 
tu

m
or

 si
ze

/d
es

tru
ct

io
n 

of
 tu

m
or

 
Pa

in
  

21
0 

C
yt

ok
in

e 
G

M
-C

SF
 

 
m

al
ig

na
nt

 
m

es
ot

he
lio

m
a 

 
 

2.
5-

10
 

g/
kg

/d
ay

 fo
r 8

 w
ee

ks
 

 7.
1%

 h
ad

 lo
ca

l t
um

or
 n

ec
ro

si
s, 

7.
1%

 h
ad

 re
sp

on
se

 a
t a

 d
is

ta
l 

tu
m

or
, 5

7.
1%

 h
ad

 tu
m

or
 

pr
og

re
ss

io
n 

du
rin

g 
tre

at
m

en
t, 

an
d 

71
.4

%
 h

ad
 tu

m
or

 p
ro

gr
es

si
on

 
af

te
r 2

 m
on

th
s. 

 

A
E+ : 1

4.
3%

 p
ai

n,
 1

4.
3%

 
m

al
ai

se
, 7

.1
%

 d
ys

pn
ea

 
N

ot
 g

ra
de

d 
A

E:
  7

.1
%

 
ne

ur
ol

og
ic

, 7
.1

%
 a

ng
in

a,
 7

.1
%

 
pe

rip
he

ra
l e

de
m

a,
 7

.1
%

 ra
sh

, 
50

%
 in

cr
ea

se
d 

al
ka

lin
e 

ph
os

ph
at

as
e 

 Tr
ea

tm
en

t p
ro

m
ot

ed
 n

eu
tro

ph
il 

ag
gl

ut
in

at
io

n,
 w

hi
ch

 c
an

 c
au

se
 

va
sc

ul
ar

 p
lu

gg
in

g 

11
8 

 
G

M
-C

SF
 

 
M

el
an

om
a 

 
Ph

as
e 

1 
15

–
 

 61
.5

%
 S

D
, 3

0.
8%

 P
D

, 7
.7

%
 P

R 
23

.1
%

 P
R

 in
 n

on
-in

je
ct

ed
 le

si
on

s 
 R

es
po

nd
in

g 
pa

te
nt

s h
ad

 in
cr

ea
se

d 
nu

m
be

rs
 o

f C
D

4+
 T

 c
el

ls 
an

d 
La

ng
er

ha
ns

’ c
el

ls,
 a

nd
 in

cr
ea

se
d 

IL
-2

R
 e

xp
re

ss
io

n 
on

 T
 c

el
ls 

 
11

9 

 
G

M
-C

SF
 

 
cu

ta
ne

ou
s 

m
el

an
om

a 
m

et
as

ta
se

s 

 
 

40
0 

g/
da

y 
fo

r 5
 d

ay
s, 

an
d 

re
pe

at
ed

 a
fte

r 2
1 

da
ys

 
 85

.7
%

 o
f p

at
ie

nt
s h

ad
 re

du
ce

d 
tu

m
or

 si
ze

, 
71

.4
%

 o
f p

at
ie

nt
s h

ad
 re

du
ce

d 
nu

m
be

r o
f c

ut
an

eo
us

 m
et

as
ta

se
s 

 in
je

ct
ed

 a
nd

 n
on

-in
je

ct
ed

 tu
m

or
s 

ha
d 

in
cr

ea
se

d 
in

fil
tra

tio
n 

of
 

m
on

oc
yt

es
/m

ac
ro

ph
ag

e,
 a

nd
 

C
D

4+
 a

nd
 C

D
8+

 T
-c

el
ls 

M
ild

 d
ro

w
si

ne
ss

 a
nd

 lo
ca

l 
er

yt
he

m
a 

at
 th

e 
in

je
ct

io
n 

sit
es

 
12

0 

 
G

M
-C

SF
 

in
te

rle
uk

in
 (I

L)
-1

2 
m

et
as

ta
tic

 
m

el
an

om
a 

 
Ph

as
e 

1/
2 

15
0 

ng
 G

M
-C

SF
 o

n 
da

y 
1 

fo
llo

w
ed

 b
y 

su
bc

ut
an

eo
us

 
ad

m
in

is
tra

tio
n 

of
 3

 0
00

 0
00

 IU
 o

f 
IL

-2
 o

n 
da

ys
 3

-7
 (5

 d
ay

s)
 a

t e
ve

ry
 

3 
w

ee
ks

 
 

A
E0 : 1

8.
8%

 fe
ve

r, 
12

.5
%

 
ar

th
ra

lg
ia

 
 A

E+ : 6
.3

%
 fe

ve
r 

21
1 

36



25
%

 P
R

, 2
5%

 m
in

im
al

 re
sp

on
se

, 
56

%
 S

D
 fo

r 3
-6

 m
on

th
s, 

an
d 

18
.8

%
 P

D
 

 
In

te
rle

uk
in

-2
 (I

L-
2)

 
 

he
ad

 a
nd

 n
ec

k 
sq

ua
m

ou
s c

el
l 

ca
rc

in
om

a 

 
Ph

as
e 

1 
20

0 
U

 - 
4 

× 
10

6  U
/d

ay
 

 5.
6%

 P
R

, 5
8.

3%
 S

D
, 2

7.
8%

 P
D

, 
8.

3%
 u

ne
va

lu
ab

le
 

  

M
TD

: 2
 ×

 1
06  U

/d
ay

 
 A

E0 : 6
9.

4%
 fe

ve
r, 

13
.9

%
 

an
em

ia
, 8

.3
%

 n
au

se
a,

 3
0.

6%
 

he
pa

tic
 to

xi
ci

ty
, 8

.3
%

 c
ar

di
ac

 
to

xi
ci

ty
, 8

.3
%

 p
ul

m
on

ar
y 

to
xi

ci
ty

, 1
3.

9%
 n

eu
ro

lo
gi

c 
to

xi
ci

ty
 

 A
E+ : 2

.8
%

 fe
ve

r, 
8.

3%
 h

ep
at

ic
 

to
xi

ci
ty

, 8
.3

%
 c

ar
di

ac
 to

xi
ci

ty
, 

an
d 

2.
8%

 m
et

ab
ol

ic
 to

xi
ci

ty
 

12
4 

 
IL

-2
 (P

ro
le

uk
in

) 
 

ad
va

nc
ed

 
m

el
an

om
a 

N
C

T0
02

04
58

1C  
Ph

as
e 

2 
6-

12
 M

IE
/d

 3
 ti

m
es

 a
 w

ee
k 

 78
.7

%
 C

R,
 0

.7
%

 P
R

, 1
6.

3%
 S

D
, 

an
d 

4.
3%

 P
D

 
 N

o 
re

sp
on

se
s i

n 
di

st
an

t u
nt

re
at

ed
 

m
et

as
ta

se
s 

A
E0 : ~

98
%

 in
fla

m
m

at
or

y 
in

je
ct

io
n 

sit
e 

re
ac

tio
n,

 ~
79

%
 

in
je

ct
io

n 
sit

e 
pa

in
, 

58
%

 fe
ve

r, 
36

%
 fa

tig
ue

, a
nd

 
34

%
 n

au
se

a 
 

12
2 

 
IL

-2
 (P

ro
le

uk
in

) 
 

so
ft-

tis
su

e 
m

el
an

om
a 

m
et

as
ta

se
s 

 
Ph

as
e 

2 
In

tra
le

si
on

al
  

 85
%

 C
R 

in
 m

et
as

ta
se

s, 
6%

 P
R,

 
3%

 P
D

, a
nd

 3
%

 o
f t

he
 m

et
as

ta
se

s 
w

er
e 

no
t a

ss
es

sa
bl

e 
 N

o 
re

sp
on

se
s o

bs
er

ve
d 

fo
r 

un
tre

at
ed

 m
et

as
ta

se
s 

A
E0 : 1

00
%

 lo
ca

l e
ry

th
em

a 
an

d 
sli

gh
t w

el
lin

g,
 5

5%
 fe

ve
r, 

58
%

 
flu

-li
ke

 sy
m

pt
om

s, 
67

%
 p

ai
n,

 
46

%
 fa

tig
ue

, 4
1%

 
na

us
ea

/v
om

iti
ng

, 1
7%

 st
om

ac
h 

pa
in

, 8
%

 h
ea

da
ch

e 
 A

E+ : 4
%

 h
ea

da
ch

e 

12
3 

A
nt

ib
od

y 
+ cy

to
ki

ne
 

Ip
ili

m
um

ab
 a

nd
 In

te
rle

uk
in

-
2 

 
M

el
an

om
a 

N
C

T0
16

72
45

0C 
Ph

as
e 

1 
67

%
 p

at
ie

nt
s h

ad
 lo

ca
l r

es
po

ns
e,

 
89

%
 p

at
ie

nt
s h

ad
 a

bs
co

pa
l 

re
sp

on
se

 
 40

%
 O

R
R

: 3
0%

 ir
PR

, 1
0%

 ir
SD

, 
60

%
 ir

PD
 

 So
m

e 
of

 th
e 

re
sp

on
de

rs
 h

ad
 

in
cr

ea
se

d 
fre

qu
en

cy
 o

f C
D

8+
 T

 

gr
an

zy
m

e-
B

 a
nd

/o
r p

er
fo

rin
, 

w
hi

ch
 m

ay
 b

e 
ev

id
en

ce
 o

f a
 

sy
st

em
ic

 im
m

un
e 

re
sp

on
se

 

41
.7

%
 fl

u-
lik

e 
sy

m
pt

om
s, 

58
.3

%
 

pa
in

 a
t i

nj
ec

tio
n 

sit
e 

 A
E+ : 8

.3
%

 h
yp

on
at

re
m

ia
, 4

1.
7%

 
ul

ce
ra

tio
n 

at
 in

je
ct

io
n 

sit
e 

  

18
2 

C
yt

ok
in

e 
PE

G
-I

L-
2 

 
he

ad
 a

nd
 n

ec
k 

sq
ua

m
ou

s c
el

l 
ca

rc
in

om
a 

 
 

20
0,

00
0 

U
 o

f P
EG

-IL
-2

 3
 ti

m
es

 a
 

w
ee

k 
fo

r 4
 w

ee
ks

 
 6%

 C
R

, 3
5%

 S
D

, a
nd

 4
7%

 P
D

 

Sw
el

lin
g 

an
d 

re
dn

es
s n

ea
r t

he
 

in
je

ct
io

n 
sit

e 
w

ith
 n

o 
sy

st
em

ic
 

to
xi

ci
ty

 

12
6 

 
PE

G
-I

L-
2 

 
ba

sa
l c

el
l 

ca
rc

in
om

a 
 

 
Pe

ril
es

io
na

l 3
00

0 
– 

1,
20

0,
00

0 
IU

 
PE

G
-I

L-
2 

 

Lo
ca

l p
ai

n,
 sw

el
lin

g,
 a

nd
 

er
yt

he
m

a 
12

5 

37



66
%

 C
R,

 2
5%

 P
R,

 a
nd

 8
.4

%
 S

D
 

C
yt

ok
in

e 
 

 
Pr

os
ta

te
 c

an
ce

r 
 

Ph
as

e 
1 

30
%

 C
R 

M
ild

 sy
st

em
ic

 e
ffe

ct
s o

f c
hi

lls
, 

fe
ve

r, 
an

d 
m

al
ai

se
 

11
0 

C
yt

ok
in

e 
Tu

m
or

 N
ec

ro
si

s F
ac

to
r-

 
IF

N
-a

2b
 

A
dv

an
ce

d 
pr

os
ta

te
 

ca
nc

er
 

 
Ph

as
e 

1 
Q

ua
d-

w
ee

kl
y 

in
tra

tu
m

or
al

 1
60

 
m

g/
m

2  T
um

or
 N

ec
ro

si
s F

ac
to

r-
an

d 
su

bc
ut

an
eo

us
 5

 ×
 1

06  IU
 IF

N
-

a2
b 

 44
.4

%
 S

D
, a

nd
 5

5.
6%

 P
D

 
 ci

rc
ul

at
io

n 
w

as
 o

bs
er

ve
d 

af
te

r 2
 

hr
s a

fte
r i

nj
ec

tio
n 

he
ad

ac
he

s, 
30

%
 n

au
se

a,
 2

0%
 

he
pa

to
to

xi
ci

ty
, 1

0%
 h

ai
r l

os
s 

21
2 

C
yt

ok
in

e 
re

co
m

bi
na

nt
 h

um
an

 
 

 
he

ad
 a

nd
 n

ec
k 

sq
ua

m
ou

s c
el

l 
ca

rc
in

om
a 

 
Ph

as
e 

1 
W

ee
kl

y 
in

je
ct

io
n 

of
 1

00
 o

r 3
00

 n
g 

 
 40

%
 tu

m
or

 si
ze

 re
du

ct
io

n 
in

 o
ne

 
pa

tie
nt

, b
ut

 n
o 

PR
 o

r C
R

 
re

sp
on

se
s 

 IL
-1

2 
w

as
 d

et
ec

te
d 

in
 th

e 
pl

as
m

a 
30

 m
in

s a
fte

r i
nj

ec
tio

n 
w

ith
 a

 
ha

lf-
lif

e 
of

 7
.2

 h
. T

he
 tr

ea
tm

en
t -1

0 
le

ve
ls.

 

si
te

 o
f i

nj
ec

tio
n 

 A
ll 

pa
tie

nt
s h

ad
 ly

m
ph

op
en

ia
 

be
fo

re
 tr

ea
tm

en
t. 

A
fte

r t
he

 fi
rs

t 
in

je
ct

io
n,

 6
0%

 h
ad

 A
E+  o

f 
ly

m
ph

op
en

ia
 

11
2 

C
yt

ok
in

e 
re

co
m

bi
na

nt
 h

um
an

 
 

 
he

ad
 a

nd
 n

ec
k 

sq
ua

m
ou

s c
el

l 
ca

rc
in

om
a 

 
Ph

as
e 

2 
W

ee
kl

y 
in

je
ci

to
n 

of
 1

00
 o

r 3
00

 n
g 

 
 D

LT
: 3

00
 n

g/
kg

 
N

o 
m

ea
su

ra
bl

e 
ch

an
ge

s i
n 

tu
m

or
 

du
e 

to
 sh

or
t t

re
at

m
en

t p
er

io
d 

 D
os

e-
IL

-1
0 

in
cr

em
en

ts
 w

er
e 

de
te

ct
ed

 

50
%

 ly
m

ph
op

en
ia

 
A

E+ : 2
0%

 e
le

va
tio

n 
of

 th
e 

ra
tio

 
of

 a
m

in
o 

al
an

in
e 

tra
ns

fe
ra

te
/a

sp
ar

ta
te

 a
m

in
o 

tra
ns

fe
ra

se
, 1

0%
 fa

tig
ue

, 1
0%

 
m

et
ab

ol
ic

 a
ci

do
sis

, 4
0%

 
ly

m
ph

op
en

ia
 

11
3 

C
yt

ok
in

e 
m

ul
tik

in
e 

so
lu

tio
n 

(c
om

bi
na

tio
n 

of
 n

at
ur

al
 

in
te

rle
uk

in
s: 

IL
-2

, I
L-

IL
-

-
-3

, I
L-

4,
 

IL
-6

, I
L-

8,
 IL

-1
0,

 a
nd

 
m

ac
ro

ph
ag

e 
in

fla
m

m
at

or
y 

 

IV
 

cy
cl

op
ho

sp
ha

m
id

e,
 

in
tra

or
al

 
in

do
m

et
ha

ci
n,

 a
nd

 
or

al
 z

in
c 

he
ad

 a
nd

 n
ec

k 
sq

ua
m

ou
s c

el
l 

ca
rc

in
om

a 

 
 

16
.7

%
 C

R 
an

d 
25

%
 P

R 
 Tu

m
or

s h
ad

 e
le

va
te

d 
nu

m
be

r o
f 

C
D

4+
 T

-c
el

ls 
an

d 
na

tu
ra

l k
ill

er
 

ce
lls

 

16
.7

%
 h

ad
 m

in
or

 A
E 

of
 

he
ad

ac
he

s a
nd

 p
al

pi
ta

tio
ns

. 
8.

3%
 d

ev
el

op
ed

 se
ps

is
 a

nd
 

W
eg

en
er

 g
ra

nu
lo

m
at

os
is 

11
4 

C
yt

ok
in

e 
IL

-4
(3

8-
37

)-P
E3

8K
D

EL
 

(IL
-4

-to
xi

n)
 

 
re

cu
rre

nt
 

m
al

ig
na

nt
 h

ig
h-

gr
ad

e 
gl

io
m

as
 

 
 

4-
8 

da
y 

in
fu

sio
n 

pe
rio

d 
(0

.3
-0

.6
 

m
L/

h)
 o

f 0
.2

 –
 

 
an

om
ia

, 1
1.

1%
 d

ys
ph

as
ia

, 
G

ra
de

 2
/3

: 2
2.

2%
 w

ea
kn

es
s, 

11
.1

%
 n

au
se

a,
 2

2.
2%

 se
iz

ur
es

  

21
3 

C
yt

ok
in

e 
IL

13
-P

E3
8Q

Q
R

 (I
L1

3P
E)

 
 

pa
tie

nt
s 

un
de

rg
oi

ng
 tu

m
or

 
re

se
ct

io
n 

fo
r 

 
Ph

as
e 

1/
2 

N
o 

cl
in

ic
al

 re
sp

on
se

 re
po

rte
d,

 
D

ru
g 

re
m

ai
ne

d 
di

st
rib

ut
ed

 in
 

tu
m

or
 

31
%

 h
ea

da
ch

e,
 1

6%
 

he
m

ip
ar

es
is

, 1
1%

 fa
tig

ue
 

12
9 

38



re
cu

rre
nt

 
m

al
ig

na
nt

 g
lio

m
a 

A
nt

ib
od

y
/ C

yt
ok

in
e 

fu
sio

n 

L1
9I

L2
 +

 L
19

TN
F 

 
M

al
ig

na
nt

 
M

el
an

om
a,

 S
ki

n 
N

C
T0

20
76

63
3C  

Ph
as

e 
2 

28
.3

%
 C

R 
in

 le
si

on
s a

nd
 6

8.
1%

 
no

n-
CR

 (v
al

ue
s i

nc
lu

de
 b

ot
h 

ta
rg

et
ed

 a
nd

 n
on

-ta
rg

et
 le

si
on

s)
 

A
E0 : ~

63
%

 in
je

ct
io

n 
sit

e 
re

ac
tio

n,
 5

9%
 fe

ve
r, 

50
%

 
he

ad
ac

he
, 3

6.
4%

 e
de

m
a,

 3
6.

4%
 

er
yt

he
m

a,
 2

7.
3%

 c
hi

lls
, 2

2.
7%

 
ra

sh
, 2

2.
7%

 n
au

se
a/

vo
m

iti
ng

, 
18

.2
%

 v
er

tig
o.

 
A

E+ : ~
10

%
 in

je
ct

io
n 

sit
e 

re
ac

tio
n 

13
1 

V
ir

al
 

(o
nc

ol
yt

ic
) 

O
ny

x-
01

5 
 

re
cu

rre
nt

 h
ea

d 
an

d 
ne

ck
 c

an
ce

r 
 

Ph
as

e 
1 

no
 O

RR
 o

bs
er

ve
d 

 Ev
id

en
ce

 o
f t

um
or

 n
ec

ro
si

s i
n 

in
je

ct
ed

 tu
m

or
s 

A
E0 : 2

1%
 fe

ve
r, 

9%
 n

au
se

a,
 6

%
 

ch
ill

s, 
6%

 fl
u 

sy
nd

ro
m

e,
 6

%
 

di
ar

rh
ea

, 6
%

 tu
m

or
 p

ai
n 

13
3 

V
ir

al
 

(o
nc

ol
yt

ic
) 

O
ny

x-
01

5 
ci

sp
la

tin
 a

nd
 5

-
flu

or
ou

ra
ci

l 
re

cu
rre

nt
 

sq
ua

m
ou

s c
el

l 
ca

nc
er

 o
f t

he
 h

ea
d 

an
d 

ne
ck

 

 
Ph

as
e 

2 
53

%
 O

R
R

 w
ith

 2
7%

 C
R 

an
d 

36
%

 
PR

 
m

em
br

an
e 

di
so

rd
er

, a
nd

 fl
u-

lik
e 

sy
m

pt
om

s 
A

E+ : 1
6%

 in
je

ct
io

n 
sit

e 
pa

in
, 8

%
 

m
uc

ou
s m

em
br

an
e 

di
so

rd
er

, 5
%

 
sy

nc
op

e,
 5

%
 k

id
ne

y 
fa

ilu
re

, 5
%

 
fa

ci
al

 e
nd

em
a,

 3
%

 a
no

re
xi

a 

13
4 

V
ir

al
 

(o
nc

ol
yt

ic
) 

D
N

X
-2

40
1 

(F
or

m
er

ly
 

K
no

w
n 

as
 D

el
ta

-2
4-

R
G

D
-

4C
) 

 
R

ec
ur

re
nt

 
M

al
ig

na
nt

 G
lio

m
a 

N
C

T0
08

05
37

6C  
Ph

as
e 

1 
Tu

m
or

 re
du

ct
io

ns
 in

 7
2%

 o
f 

pa
tie

nt
s 

 Tu
m

or
 a

na
ly

si
s s

ho
w

ed
 si

gn
s o

f 
in

fla
m

m
at

io
n,

 tu
m

or
 in

fil
tra

tio
n 

by
 C

D
8+

 a
nd

 T
-b

et
+ 

ce
lls

, a
nd

 
tra

ns
m

em
br

an
e 

im
m

un
og

lo
bu

lin
 

m
uc

in
-3

 d
ow

nr
eg

ul
at

io
n,

 a
nd

 
tu

m
or

 c
el

l d
ea

th
 

 
 4

1%
 n

au
se

a,
 2

2%
 sp

ee
ch

 
di

so
rd

er
, 2

1%
 h

em
ip

ar
es

is
, 3

2%
 

in
so

m
ni

a,
 3

0%
 c

on
fu

si
on

al
 st

at
e,

 
30

%
 p

er
ip

he
ra

l e
de

m
a 

 A
ll 

A
E+ : 5

%
 h

ea
da

ch
e,

 1
9%

 
sp

ee
ch

 d
is

or
de

r, 
11

%
 

he
m

ip
ar

es
is

, 3
%

 c
on

vu
lsi

on
, 5

%
 

m
us

cu
la

r w
ea

kn
es

s, 
3%

 v
is

ua
l 

fie
ld

 d
ef

ec
t. 

D
ru

g-
3%

 n
au

se
a,

 3
%

 c
on

fu
sio

na
l 

st
at

e,
 3

%
 v

om
iti

ng
, a

nd
 3

%
 

py
re

xi
a 

13
5 

V
ir

al
 

(o
nc

ol
yt

ic
) 

C
ox

sa
ck

ie
vi

ru
s A

21
 

(C
V

A
21

, C
A

V
A

TA
K

) 
 

M
al

ig
na

nt
 

M
el

an
om

a 
N

C
T0

12
27

55
1C  

Ph
as

e 
2 

O
R

R
 w

as
 2

8.
1%

 w
ith

 a
 1

-y
ea

r 
su

rv
iv

al
 ra

te
 o

f 1
9.

3%
. 

in
je

ct
io

n 
sit

e 
re

ac
tio

ns
, a

nd
 fe

ve
r 

13
6 

V
ir

al
 

(o
nc

ol
yt

ic
) 

H
F1

0 
 

Pa
nc

re
at

ic
 c

an
ce

r 
 

Ph
as

e 
1 

1 
× 

10
6
p.

f.u
. f

or
 3

 d
ay

s 
 66

.7
%

 S
D

 o
r P

R,
 a

nd
 3

3.
3%

 P
D

 
 B

lo
od

 le
ve

ls 
of

 N
K

 c
el

ls 
in

cr
ea

se
d,

 a
nd

 h
ist

ol
og

ic
al

 
st

ai
ni

ng
 sh

ow
ed

 C
D

4+
 c

el
ls,

 
C

D
8+

 c
el

ls,
 a

nd
 m

ac
ro

ph
ag

es
 

in
fil

tra
tio

n 
in

 th
e 

tu
m

or
 

N
o 

A
Es

 
13

7 

V
ir

al
 

(o
nc

ol
yt

ic
) 

H
F1

0 
Er

lo
tin

ib
 a

nd
 

ge
m

ci
ta

bi
ne

 
Pa

nc
re

at
ic

 c
an

ce
r 

 
Ph

as
e 

1 
6  p

fu
 - 

7  p
fu

 o
f H

F1
0 

in
 c

om
bi

na
tio

n 
w

ith
 d

ai
ly

 1
00

 m
g 

N
o 

A
Es

 
13

7 

39



or
al

 e
rlo

tin
ib

 a
nd

 w
ee

kl
y 

10
00

 
m

g/
m

2  g
em

ci
ta

bi
ne

 a
dm

in
ist

ra
tio

n 
 33

.3
%

 P
R

, 4
4.

4%
 S

D
, a

nd
 2

2%
 

PD
 

 C
D

4+
 a

nd
 C

D
8+

 c
el

ls 
in

fil
tra

tio
n 

w
er

e 
ob

se
rv

ed
 a

ro
un

d 
th

e 
ca

nc
er

 
tis

su
e 

V
ir

al
 

(o
nc

ol
yt

ic
) 

H
SV

17
16

 
 

re
cu

rre
nt

 
m

al
ig

na
nt

 g
lio

m
a 

 
Ph

as
e 

1 
N

o 
m

ar
ke

d 
im

pr
ov

em
en

ts
. M

os
t 

pa
tie

nt
s h

ad
 in

iti
al

 tu
m

or
 st

ab
ili

ty
 

fo
llo

w
ed

 b
y 

tu
m

or
 p

ro
gr

es
si

on
 

N
o 

A
Es

 
13

9 

V
ir

al
 

(o
nc

ol
yt

ic
) 

Pa
rv

ov
iru

s H
-1

 (P
ar

vO
ry

x;
 

H
-1

PV
) 

 
G

lio
bl

as
to

m
a 

M
ul

tif
or

m
e 

N
C

T0
13

01
43

0C  
Ph

as
e 

1/
2 

Pr
og

re
ss

io
n-

fre
e 

su
rv

iv
al

 o
f 2

7%
 

at
 6

 m
on

th
s a

nd
 a

n 
ov

er
al

l 
su

rv
iv

al
 (O

S)
 o

f 7
2%

 
 Tr

ea
tm

en
t i

nd
uc

ed
 a

nt
ib

od
y 

fo
rm

at
io

n 
an

d 
tri

gg
er

ed
 T

 c
el

l 
re

sp
on

se
s. 

Tu
m

or
 a

na
ly

si
s 

sh
ow

ed
 m

ar
ke

rs
 o

f v
iru

s 
re

pl
ic

at
io

n,
 m

ic
ro

gl
ia

/m
ac

ro
ph

ag
e 

ac
tiv

at
io

n,
 a

nd
 c

yt
ot

ox
ic

 T
 c

el
l 

in
fil

tra
tio

n 

R
ed

uc
ed

 c
on

sc
io

us
ne

ss
, 

co
m

pl
ic

at
io

ns
 c

au
se

d 
by

 
hy

dr
oc

ep
ha

lu
s, 

an
d 

oc
cl

us
io

n 
of

 
ve

nt
ric

ul
ar

 c
at

he
te

rs
 d

ue
 to

 h
ig

h 
pr

ot
ei

n 
le

ve
ls 

in
 th

e 
ce

re
br

os
pi

na
l f

lu
id

 

14
0 

V
ir

al
 

(o
nc

ol
yt

ic
) 

m
ea

sle
s v

iru
s E

dm
on

st
on

-
Za

gr
eb

 v
ac

ci
ne

 st
ra

in
 

 
C

ut
an

eo
us

 T
 c

el
l 

ly
m

ph
om

a 
 

Ph
as

e 
1 

83
.3

%
 o

f t
he

 tr
ea

te
d 

tu
m

or
s 

re
gr

es
se

d 
an

d 
di

sta
nt

 n
on

-in
je

ct
ed

 
le

si
on

s i
m

pr
ov

ed
 in

 4
0%

 o
f 

pa
tie

nt
s. 

Pa
tie

nt
s h

ad
 h

ig
he

r 
le

ve
ls 

of
 a

nt
i-m

ea
sle

s a
nt

ib
od

y 
tit

er
s. 

 Lo
ca

l v
ira

l a
ct

iv
ity

 w
ith

 p
os

iti
ve

 
st

ai
ni

ng
 fo

r M
V

 n
uc

le
op

ro
te

in
 

(N
P)

, a
n 

in
cr

ea
se

 o
f t

he
 in

te
rfe

ro
n 

-
-

m
R

N
A

 ra
tio

s a
nd

 a
 re

du
ce

d 
C

D
4/

C
D

8 
ra

tio
 

A
E:

 e
ry

th
em

a 
an

d 
itc

hi
ng

 a
t t

he
 

in
je

ct
io

n 
sit

e 
14

1 

V
ir

al
 

(o
nc

ol
yt

ic
) 

pe
la

re
or

ep
 (R

EO
LY

SI
N

®
) 

ge
m

ci
ta

bi
ne

 
ad

va
nc

ed
 

pa
nc

re
at

ic
 

ad
en

oc
ar

ci
no

m
a 

 
Ph

as
e 

2 
9%

 P
R

, 6
7.

6%
 S

D
, a

nd
 1

4.
7%

 P
D

 
ne

ut
ro

pe
ni

a,
 9

%
 

th
ro

m
bo

cy
to

pe
ni

a,
 2

4%
 

di
ar

rh
ea

, 2
9%

 n
au

se
a,

 2
4%

 
vo

m
iti

ng
, 6

2%
 fa

tig
ue

, 5
1%

 
ch

ill
s/

flu
-li

ke
 sy

m
pt

om
s, 

33
%

 
ed

em
a,

 5
6%

 fe
ve

r, 
6%

 A
ST

 
in

cr
ea

se
, 3

3%
 a

no
re

xi
a/

w
ei

gh
t 

lo
ss

, a
nd

 4
4%

 d
ys

pn
ea

 
 A

E+ : 2
7%

 a
ne

m
ia

, 2
7%

 
ne

ut
ro

pe
ni

a,
 6

%
 

th
ro

m
bo

cy
to

pe
ni

a,
 9

%
 fa

tig
ue

, 

14
2 

40



6%
 A

ST
 in

cr
ea

se
, a

nd
 6

%
 

dy
sp

en
a 

V
ir

al
 

(o
nc

ol
yt

ic
 

+ 
ve

ct
or

; 
ch

em
os

en
si

tiz
in

g)
 

va
cc

in
ia

 v
iru

s v
vD

D
-C

D
SR

 
(a

lso
 c

al
le

d 
JX

-9
29

 o
r 

vv
D

D
) 

 
br

ea
st

, p
an

cr
ea

s, 
co

lo
n,

 o
r 

m
el

an
om

a 
ca

nc
er

 

 
Ph

as
e 

1 
N

o 
cl

in
ic

al
 re

sp
on

se
 o

bs
er

ve
d 

 vv
D

D
 g

en
om

e 
w

as
 o

bs
er

ve
d 

in
 

bl
oo

d 
15

 m
in

ut
es

 a
fte

r i
nj

ec
tio

n 
an

d 
w

as
 d

os
e-

de
pe

nd
en

t, 
 

Tr
ea

tm
en

t i
nd

uc
ed

 th
e 

pr
od

uc
tio

n 
of

 n
eu

tra
liz

in
g 

an
tib

od
ie

s a
ga

in
st

 
th

e 
vi

ru
s, 

O
bs

er
ve

d 
vv

D
D

 
re

pl
ic

at
io

n 
an

d 
sp

re
ad

 to
 n

on
-

in
je

ct
ed

 tu
m

or
s. 

 

de
ve

lo
pe

d 
de

la
ye

d 
sy

m
pt

om
s o

f 
fe

ve
r, 

m
al

ai
se

 a
nd

/o
r p

ai
n 

 A
E+ : p

ai
n 

14
3 

V
ir

al
 

(o
nc

ol
yt

ic
 

+ 
ve

ct
or

) 
 

Ta
lim

og
en

e 
la

he
rp

ar
ep

ve
c 

 
un

re
se

ct
ab

le
 st

ag
e 

III
-I

V
 m

el
an

om
a 

N
C

T0
07

69
70

4C  
Ph

as
e 

3 
T-

ve
c-

tre
at

ed
 c

om
pa

re
d 

to
 th

e 
G

M
-C

SF
 tr

ea
te

d 
pa

tie
nt

s h
ad

 a
 

hi
gh

er
 m

ed
ia

n 
O

S 
(2

3.
3 

m
on

th
s 

vs
 1

8.
9 

m
on

th
s)

, D
D

R
 (1

9.
3%

 v
s 

1.
4%

) O
R

R
 (3

1.
5%

 v
s 6

.4
%

), 
C

R
 

(1
6.

9%
 v

s 0
.7

%
), 

an
d 

PR
 (1

4.
6%

 
vs

 5
.7

%
), 

an
d 

D
CR

 (7
6.

3%
 v

s 
56

.7
%

) 

43
.2

%
 p

yr
ex

ia
, 3

6.
3%

 n
au

se
a,

 
30

.1
%

 fl
u-

lik
e 

ill
ne

ss
, 2

7.
4%

 
in

je
ct

io
n 

sit
e 

pa
in

, 2
0.

2%
 

vo
m

iti
ng

, 3
.7

%
 c

el
lu

lit
is

, 2
.4

%
 

de
hy

dr
at

io
n,

 0
.4

%
 d

ee
p 

ve
in

 
th

ro
m

bo
sis

, 6
.2

%
 tu

m
or

 p
ai

n,
 

A
E+ : 1

.7
%

 fa
tig

ue
, 0

.7
%

 fl
u-

lik
e 

ill
ne

ss
, 1

%
 in

je
ct

io
n 

sit
e 

pa
in

, 
1.

7%
 v

om
iti

ng
, 2

.1
%

 c
el

lu
lit

is,
 

1.
7%

 d
eh

yd
ra

tio
n,

 1
.7

%
 d

ee
p 

ve
in

 th
ro

m
bo

si
s, 

1.
7%

 tu
m

or
 

pa
in

 

17
2 

V
ir

al
 

(o
nc

ol
yt

ic
 

+ 
ve

ct
or

) 

O
N

C
O

S-
10

2 
(p

re
vi

ou
sl

y 
ca

lle
d 

C
G

TG
-1

02
 a

nd
 

A
d5

/3
-D

24
-G

M
C

SF
) 

cy
cl

op
ho

sp
ha

m
id

e 
M

al
ig

na
nt

 S
ol

id
 

Tu
m

ou
r 

N
C

T0
15

98
12

9C 
Ph

as
e 

1 
Sh

or
t-t

er
m

 in
cr

ea
se

 in
 se

ru
m

 p
ro

-
in

fla
m

m
at

or
y 

cy
to

ki
ne

s I
L-

6 
an

d 
IL

-8
 

 R
EC

IS
T 

1.
1 

cr
ite

ria
: 4

0%
 S

D
 a

nd
 

60
%

 P
D

 a
t 3

 m
on

th
s; 

10
0%

 P
D

 a
t 

6 
m

on
th

s 
PE

T 
re

sp
on

se
 c

rit
er

ia
: 1

0%
 st

ab
le

 
m

et
ab

ol
ic

 d
is

ea
se

 a
nd

 4
0%

 
pr

og
re

ss
iv

e 
m

et
ab

ol
ic

 d
is

ea
se

 
 V

ira
l g

en
om

e 
in

 se
ru

m
 d

et
ec

te
d 

by
 q

ua
nt

ita
tiv

e 
re

al
-ti

m
e 

PC
R

 a
t 6

 
an

d 
24

 h
ou

rs
 p

os
t-t

re
at

m
en

t 
 Tr

ea
tm

en
t i

nc
re

as
ed

 C
D

8+
 T

 c
el

l 
in

fil
tra

tio
n 

in
 9

1.
7%

 o
f p

at
ie

nt
s 

an
d 

pr
om

ot
ed

 th
e 

up
-re

gu
la

tio
n 

of
 

PD
-L

1 
in

 th
e 

tu
m

or
 in

 1
8.

2%
 

-li
ke

 
sy

m
pt

om
s, 

py
re

xi
a,

 a
nd

 fe
ve

r 
 50

%
 p

at
ie

nt
s w

ith
 A

E+ : p
yr

ex
ia

, 
in

cr
ea

se
d 

al
ka

lin
e 

ph
os

ph
at

as
e 

(A
LP

), 
in

cr
ea

se
d 

as
pa

rta
te

 
am

in
ot

ra
ns

fe
ra

se
 (A

ST
), 

pr
ot

ei
nu

ria
, h

yp
on

at
re

m
ia

, 
an

ae
m

ia
, f

at
ig

ue
, o

ed
em

a 
pe

rip
he

ra
l, 

an
d 

dy
sp

no
ea

  

14
6 

V
ir

al
 

(o
nc

ol
yt

ic
 

+ 
ve

ct
or

) 

Pe
xa

-V
ec

 
 

 
N

C
T0

13
87

55
5C  

 
1x

10
8  –

 1
x1

09  p
fu

 
 M

od
ifi

ed
 C

ho
i r

es
po

ns
e 

ra
te

: 6
2%

 
O

R
R

, 
m

R
EC

IS
T 

re
sp

on
se

s: 
3.

6%
 C

R
, 

10
.7

%
 P

R
, 3

5.
7%

 S
D

 

vo
m

iti
ng

 1
2-

24
 h

ou
rs

 p
os

t-
tre

at
m

en
t 

A
E+ : 6

%
 (1

/1
6 

pa
tie

nt
s g

iv
en

 
1x

10
9 
pf

u)
 ly

m
ph

op
en

ia
 

14
7 

41



 Pe
xa

-v
ec

 g
en

om
e 

fo
un

d 
in

 th
e 

bl
oo

d 
 hG

M
-C

SF
 p

ro
te

in
 w

as
 

qu
an

tif
ia

bl
e 

in
 th

e 
pl

as
m

a 
on

 d
ay

 
5,

 
H

um
or

al
 im

m
un

e 
re

sp
on

se
 

re
su

lti
ng

 in
 a

nt
ib

od
y-

m
ed

ia
te

d 
co

m
pl

em
en

t-d
ep

en
de

nt
 

cy
to

to
xi

ci
ty

 w
as

 o
bs

er
ve

d 
in

 6
7%

 
of

 p
at

ie
nt

s 
V

ir
al

 
(n

on
-

on
co

ly
tic

 
+ 

ve
ct

or
) 

TG
10

42
 (A

de
no

vi
ru

s-
in

te
rfe

ro
n-

 
 

cu
ta

ne
ou

s 
ly

m
ph

om
as

 
 

Ph
as

e 
2 

Lo
ca

l t
um

or
 re

gr
es

si
on

 in
 5

3%
 

pa
tie

nt
s a

nd
 a

 re
gr

es
si

on
 in

 n
on

-
in

je
ct

ed
, d

is
ta

nt
 le

si
on

s i
n 

27
%

 
pa

tie
nt

s, 
 El

ev
at

ed
 se

ru
m

 le
ve

ls 
fo

r I
L-

6,
 

IL
-1

0,
 IF

N
-

 

si
te

 p
ai

n,
 5

5%
 ly

m
ph

op
en

ia
, a

nd
 

45
%

 fe
ve

r. 
A

E+ : 4
6.

7%
 ly

m
ph

op
en

ia
, 

13
.3

%
 c

hi
lls

, 6
.7

%
 h

ig
h 

fe
ve

r, 
6.

7%
 in

je
ct

io
n 

sit
e 

pa
in

, a
nd

 
6.

7%
 p

ru
rit

us
 a

t t
he

 in
je

ct
io

n 
sit

e 

21
4 

V
ir

al
 

(n
on

-
on

co
ly

tic
 

+ 
ve

ct
or

) 

TG
10

42
 (A

de
no

vi
ru

s-
in

te
rfe

ro
n-

 
 

Pr
im

ar
y 

C
ut

an
eo

us
 B

-c
el

l 
Ly

m
ph

om
a 

N
C

T0
03

94
69

3C  
Ph

as
e 

2 
5×

10
10

 v
ira

l p
ar

tic
le

s (
vp

) p
er

 
le

si
on

 in
to

 u
p 

to
 si

x 
le

si
on

s 
tre

at
ed

 si
m

ul
ta

ne
ou

sl
y 

on
 d

ay
s 1

, 
8 

an
d 

15
; n

o 
tre

at
m

en
t o

n 
fo

ur
th

 
w

ee
k 

 85
%

 O
R

R
: 5

4%
 C

R
, 3

1%
 P

R 
 C

D
8+

 T
 ly

m
ph

oc
yt

es
 a

nd
 o

f T
IA

-
1+

 c
yt

ot
ox

ic
 T

-c
el

ls 
in

 le
si

on
s 

in
je

ct
ed

 w
ith

 T
G

10
42

 

py
re

xi
a,

 in
je

ct
io

n 
sit

e 
irr

ita
tio

n,
 

ch
ill

s, 
flu

-li
ke

 il
ln

es
s, 

in
je

ct
io

n 
si

te
 e

ry
th

em
a,

 a
nd

 in
je

ct
io

n 
si

te
 

pa
in

, 
7.

7%
 A

E+ : 7
.7

%
 in

cr
ea

se
d 

lip
as

e 
 

14
9 

V
ir

al
 

(n
on

-
on

co
ly

tic
, 

ve
ct

or
) 

TN
Fe

ra
de

 
5-

FU
, C

isp
la

tin
 a

nd
 

ra
di

at
io

n 
Es

op
ha

ge
al

 
C

an
ce

r 
N

C
T0

00
51

48
0C 

Ph
as

e 
2 

4 
× 

10
8  - 

4 
× 

10
11

 P
U

 o
f T

N
Fe

ra
de

 
in

 c
om

bi
na

tio
n 

w
ith

 d
ai

ly
 IV

 
10

00
 m

g/
m

2  5
-fl

uo
ro

ur
ac

il 
an

d 
75

 
m

g/
m

2 
ci

sp
la

tin
 

 29
%

 p
at

ho
lo

gi
c 

co
m

pl
et

e 
re

sp
on

se
 (p

CR
) 

  

A
E:

 8
3%

 n
au

se
a 

83
%

, 7
5%

 
fa

tig
ue

 7
5%

, 6
3%

 v
om

iti
ng

, 
58

%
 m

uc
os

al
 in

fla
m

m
at

io
n,

 
54

%
 d

ia
rrh

ea
, 5

0%
 fe

ve
r, 

46
%

 
de

hy
dr

at
io

n,
 4

2%
 a

no
re

xi
a,

 a
nd

 
42

%
 d

ys
ph

ag
ia

, 
A

E 
re

la
te

d 
to

 T
N

Fe
ra

de
 

bi
ol

og
ic

: 5
4%

 fa
tig

ue
, 3

8%
 

fe
ve

r, 
29

%
 n

au
se

a,
 2

1%
 

es
op

ha
gi

tis
, 2

1%
 v

om
iti

ng
, 2

1%
 

ch
ill

s 

15
2 

V
ir

al
 

(n
on

-
on

co
ly

tic
, 

ve
ct

or
) 

TN
Fe

ra
de

 
R

ad
ia

tio
n 

th
er

ap
y 

so
ft 

tis
su

e 
sa

rc
om

a 
 

Ph
as

e 
1 

4 
× 

10
9  

11
 p

ar
tic

le
 u

ni
ts

 
(P

U
)  

 15
.4

%
 C

R,
 6

9.
2%

 P
R,

 a
nd

 7
.7

%
 

SD
 

 Pa
tie

nt
s h

ad
 lo

w
 le

ve
ls 

(<
15

 
 

36
%

 fa
tig

ue
, 2

1%
 fl

u-
lik

e 
sy

m
pt

om
s. 

15
1 

42



V
ir

al
 

(n
on

-
on

co
ly

tic
, 

ve
ct

or
) 

TN
Fe

ra
de

 
5-

flu
or

ou
ra

ci
l a

nd
 

ra
di

at
io

n 
th

er
ap

y 
ad

va
nc

ed
 

pa
nc

re
at

ic
 c

an
ce

r 
 

Ph
as

e 
1/

2 
4 

× 
10

9  to
 1

 ×
 1

012
 p

ar
tic

le
 u

ni
ts 

(P
U

) e
ve

ry
 w

ee
k 

fo
r 5

 w
ee

ks
, 

al
on

g 
w

ith
 5

0.
4 

G
y 

ra
di

at
io

n 
an

d 
5-

flu
or

ou
ra

ci
l (

5-
FU

) 2
00

 m
g/

m
2  

da
ily

 o
ve

r 5
.5

 w
ee

ks
 

 2%
 C

R
, 6

%
 P

R
, 8

%
 m

in
or

 
re

sp
on

se
, 2

4%
 S

D
, 3

8%
 P

D
, a

nd
 

16
%

 n
on

-e
va

lu
ab

le
 

M
TD

 o
f 4

 ×
 1

011
 PU

  
 A

E+ : 1
8%

 a
bd

om
in

al
 p

ai
n,

 1
6%

 
bi

lia
ry

 o
bs

tru
ct

io
n,

 1
2%

 G
I 

bl
ee

di
ng

, 1
2%

 d
ee

p 
ve

in
 

th
ro

m
bo

sis
, 1

2%
 c

ho
la

ng
iti

s, 
4%

 
pu

lm
on

ar
y 

em
bo

li,
 4

%
 

pa
nc

re
at

iti
s, 

an
d 

2%
 c

ho
la

ng
iti

s 

15
0 

V
ir

al
 

(v
ec

to
r)

 
IN

X
N

-2
00

1 
(A

d-
R

TS
-h

IL
-

12
) 

IN
X

N
-1

00
1 

(V
el

ed
im

ex
) 

M
el

an
om

a 
N

C
T0

13
97

70
8C  

Ph
as

e 
1/

2 
In

cr
ea

se
 in

 se
ru

m
 IL

-
w

as
 o

bs
er

ve
d,

  
In

cr
ea

se
 in

 C
D

3+
 a

nd
 C

D
8+

 T
 

ce
lls

 w
er

e 
de

te
ct

ed
 in

 a
na

ly
se

s o
f 

PB
M

C
s 

R
el

at
ed

 A
Es

: 7
8.

6%
 c

hi
lls

, 
78

.6
%

 p
yr

ex
ia

, 7
1.

4%
 fa

tig
ue

, 
71

.4
%

 n
au

se
a 

15
3 

V
ir

al
 

(n
on

-
on

co
ly

tic
 

+ 
ve

ct
or

; 
ch

em
os

en
si

tiz
in

g)
 

A
d/

PN
P 

flu
da

ra
bi

ne
 

m
on

op
ho

sp
ha

te
 

H
ea

d 
an

d 
N

ec
k 

C
an

ce
r 

N
C

T0
13

10
17

9C  
Ph

as
e 

1 
75

 m
g/

m
2  fl

ud
ar

ab
in

e:
 8

3.
3%

 P
R 

an
d 

16
.7

%
 S

D
 

 15
 o

r 4
5 

m
g/

m
2  fl

ud
ar

ab
in

e:
 6

7%
 

SD
 a

nd
 3

3%
 P

D
  

si
te

 sy
m

pt
om

s, 
66

%
 fa

tig
ue

, 
66

%
 n

on
-in

je
ct

io
n 

sit
e 

pa
in

, 
50

%
 n

au
se

a/
vo

m
iti

ng
/d

ia
rrh

ea
, 

42
%

 fl
u-

lik
e 

sy
m

pt
om

s/c
hi

lls
, 

42
%

 fa
ci

al
 e

de
m

a/
pi

tti
ng

 e
de

m
a,

 
42

%
 d

iz
zi

ne
ss

, 4
2%

 d
ys

pn
ea

, 
42

%
 a

ny
 A

E+ : 8
%

 d
eh

yd
ra

tio
n,

 
8%

 p
er

ic
ar

di
al

 e
ffu

si
on

, 8
%

 
ca

rd
ia

c 
ta

m
po

na
de

, 8
%

 p
ai

n,
 8

%
 

na
us

ea
/v

om
iti

ng
, 8

%
 

ba
ct

er
em

ia
, 8

%
 p

ar
tia

l s
ei

zu
re

, 
8%

 lo
w

er
 e

xt
. w

ea
kn

es
s, 

8%
 

ch
ro

ni
c 

w
ou

nd
 in

fe
ct

io
n 

 Tr
ea

tm
en

t-
in

je
ct

io
n 

sit
e 

pa
in

, 5
0%

 in
je

ct
io

n 
si

te
 d

ra
in

ag
e/

itc
hi

ng
/b

ur
ni

ng
, 

50
%

 fa
tig

ue
, 4

2%
 fl

u-
lik

e 
sy

m
pt

om
s, 

Tr
ea

tm
en

t-r
el

at
ed

 A
E+ : 1

6.
7%

 
in

cl
ud

in
g 

8.
3%

 d
ec

re
as

ed
 

ly
m

ph
oc

yt
e 

co
un

t, 
8.

3%
 p

ai
n 

at
 

th
e 

in
je

ct
io

n 
sit

e 

15
4 

V
ir

al
 

(n
on

-
on

co
ly

tic
 

+ 
ve

ct
or

) 

TK
99

U
N

 
 ad

en
ov

ira
l v

ec
to

r e
nc

od
in

g 
he

rp
es

 si
m

pl
ex

 v
iru

s 
th

ym
id

in
e 

ki
na

se
 (H
SV
-T
K

) 
ge

ne
 (A

d.
TK

) 

in
tra

ve
no

us
 

ga
nc

ic
lo

vi
r o

r o
ra

l 
va

lg
an

ci
cl

ov
ir 

H
ep

at
oc

el
lu

la
r 

C
ar

ci
no

m
a 

N
C

T0
08

44
62

3C  
Ph

as
e 

1 
60

%
 S

D
 a

nd
 4

0%
 P

D
 

 Th
ym

id
in

e 
ki

na
se

 (T
K

) 
ex

pr
es

si
on

 in
 th

e 
tu

m
or

 d
et

ec
te

d 
in

 a
ll 

pa
tie

nt
s t

ha
t r

ec
ei

ve
d 

a 
do

se
 

of
  >

 1
012

 v
ira

l p
ar

tic
le

s (
vp

) a
nd

 
w

as
 a

bs
en

t a
fte

r 9
 d

ay
s 

D
ef

in
ite

 tr
ea

tm
en

t-r
el

at
ed

 A
Es

: 
62

%
 fe

ve
r, 

62
%

 fl
u-

lik
e 

sy
m

pt
om

s, 
44

%
 ly

m
ph

op
en

ia
, 

an
d 

12
%

 in
je

ct
io

n 
sit

e 
pa

in
 

 Pr
ob

ab
le

 tr
ea

tm
en

t-r
el

at
ed

 A
Es

: 
38

%
 a

bd
om

in
al

 p
ai

n,
 3

8%
 

le
uk

op
en

ia
, 1

9%
 

th
ro

m
bo

cy
to

pe
ni

a,
 1

9%
 a

ne
m

ia
, 

12
%

 v
om

iti
ng

 
 

15
5 

43



Po
ss

ib
le

 tr
ea

tm
en

t-r
el

at
ed

 A
Es

: 
31

%
 e

nc
ep

ha
lo

pa
th

y,
 3

1%
 

ed
em

a,
 1

2%
 d

ia
rrh

ea
, 1

2%
 

as
ci

te
s, 

6%
 h

yp
er

bi
lir

ub
in

em
a,

 
6%

 h
yp

er
tra

ns
am

in
as

em
ia

, 6
%

 
itc

hi
ng

 
V

ir
al

 
(n

on
-

on
co

ly
tic

 
+ 

ve
ct

or
) 

ad
en

ov
ira

l v
ec

to
r 

(A
dv

.R
SV

-tk
) e

xp
re

ss
in

g 
th

e 
he

rp
es

 th
ym

id
in

e 
ki

na
se

 
ge

ne
 

G
an

ci
cl

ov
ir 

(G
C

V
) 

m
et

as
ta

tic
 

co
lo

re
ct

al
 

ad
en

oc
ar

ci
no

m
a 

in
 

th
e 

liv
er

 

 
Ph

as
e 

1 
68

.8
%

 S
D

 a
nd

 3
1.

3%
 P

D
 

he
pa

tic
 to

xi
ci

ty
 

(e
le

va
tio

ns
 o

f s
er

um
 a

la
ni

ne
 

am
in

ot
ra

ns
fe

ra
se

 (A
LT

) a
nd

/o
r 

as
pa

rta
te

 a
m

in
ot

ra
ns

fe
ra

se
 

(A
ST

))
, 1

8.
8%

 le
uc

op
en

ia
 

 A
E+ : 6

.3
%

 th
ro

m
bo

cy
to

pe
ni

a,
 

31
.3

%
 g

ra
de

 2
-3

 fe
ve

rs
 

15
6 

V
ir

al
 

(n
on

-
on

co
ly

tic
 

+ 
ve

ct
or

) 

ad
en

ov
ira

l v
ec

to
r 

(A
dv

.R
SV

-tk
) e

xp
re

ss
in

g 
th

e 
he

rp
es

 th
ym

id
in

e 
ki

na
se

 
ge

ne
 

G
an

ci
cl

ov
ir 

R
ec

ur
re

nt
 

M
al

ig
na

nt
 B

ra
in

 
Tu

m
or

s 

 
Ph

as
e 

1 
 

To
xi

ci
ty

 a
t 2

 ×
 1

012
 V

P 
 76

.9
%

 A
Es

: s
ei

zu
re

s, 
IT

 
he

m
or

rh
ag

e,
 ra

sh
, h

em
ip

ar
es

is
, 

th
ro

m
bo

cy
to

pe
ni

a,
 le

th
ar

gy
, 

co
nf

us
io

n,
 h

yp
on

at
re

m
ia

, f
ev

er
, 

le
uk

oc
yt

os
is

, i
nc

re
as

ed
 C

SF
 

pr
ot

ei
n 

an
d 

liv
er

 e
nz

ym
es

 

15
7 

Pl
as

m
id

  
Pl

as
m

id
 IL

-1
2 

 
C

ut
an

eo
us

 o
r 

su
bc

ut
an

eo
us

 
m

et
as

ta
se

s 

 
Ph

as
e 

1 
A

m
on

g 
an

al
yz

ed
 p

at
ie

nt
s: 

45
.5

%
 

SD
 a

nd
 5

4.
5%

 P
D

, 
41

.7
%

 P
R

 in
 tr

ea
te

d 
tu

m
or

, n
o 

re
du

ct
io

n 
in

 n
on

-tr
ea

te
d 

le
si

on
s 

N
o 

IL
-1

2 
or

 IF
N

w
as

 d
et

ec
te

d 
in

 
pa

tie
nt

 se
ru

m
 

 

sw
ea

ts
, 8

.3
%

 n
as

al
 c

on
ge

sti
on

, 
8.

3%
 d

ia
rrh

ea
, 8

.3
%

 d
ys

pe
ps

ia
, 

16
.7

%
 fa

tig
ue

, a
nd

 8
.3

%
 

ta
ch

yc
ar

di
a 

 8.
3%

 sy
st

em
ic

 A
E+ : 8

.3
%

 
pu

lm
on

ar
y 

em
bo

lis
m

 

15
8 

Pl
as

m
id

 
 

IL
-1

2p
 D

N
A

 (w
hi

ch
 is

 a
lso

 
Ta

vo
ki

no
ge

ne
 T

el
se

pl
as

m
id

 
(ta

vo
)) 

In
tra

tu
m

or
al

 
El

ec
tro

po
ra

tio
n 

M
al

ig
na

nt
 

M
el

an
om

a 
N

C
T0

03
23

20
6C 

Ph
as

e 
1 

In
cr

ea
se

d 
lo

ca
l e

xp
re

ss
io

n 
of

 IL
-

le
ve

ls 
in

 th
e 

se
ru

m
 

 76
%

 o
f t

he
 a

na
ly

ze
d 

in
je

ct
ed

 
le

si
on

s h
ad

 o
ve

r 2
0%

 n
ec

ro
si

s. 
29

%
 o

f t
he

 p
at

ie
nt

s h
ad

 in
cr

ea
se

d 
ly

m
ph

oc
yt

e 
in

fil
tra

tio
n 

in
 th

e 
tu

m
or

s 
 53

%
 S

D
 o

r o
bj

ec
tiv

e 
re

gr
es

si
on

 in
 

di
sta

nt
 tu

m
or

s 

du
rin

g 
el

ec
tro

po
ra

tio
n,

 1
00

%
 

he
m

or
rh

ag
e 

ar
ou

nd
 tr

ea
tm

en
t 

si
te

  

16
0 

Pl
as

m
id

 
EG

FR
 a

nt
is

en
se

 D
N

A
 w

ith
 

D
C

-C
ho

l L
ip

os
om

es
 

 
H

ea
d 

an
d 

N
ec

k 
C

an
ce

r 
N

C
T0

00
09

84
1C  

Ph
as

e 
1 

29
%

 O
R

R
, w

hi
ch

 in
cl

ud
e 

11
.8

%
 

C
R

 a
nd

 1
7.

6%
 P

R 
 R

es
po

nd
in

g 
pa

tie
nt

s h
ad

 
in

cr
ea

se
d 

EG
FR

 a
nd

 lo
w

er
 

ST
A

T3
 e

xp
re

ss
io

n 
in

 th
e 

tu
m

or
s 

co
m

pa
re

d 
to

 th
e 

pa
tie

nt
s w

ith
 P

D
 

si
te

 p
ai

n/
sw

el
lin

g 
an

d 
5.

9%
 

lo
ca

liz
ed

 e
de

m
a 

16
2 

44



Pl
as

m
id

 
D

TA
-H

19
 

 
Pa

nc
re

at
ic

 
N

eo
pl

as
m

s 
N

C
T0

07
11

99
7C  

Ph
as

e 
1/

2 
 

 
 

Pl
as

m
id

 
D

TA
-H

19
 

 
In

te
rm

ed
ia

te
 ri

sk
 

no
nm

us
cl

e 
in

va
siv

e 
bl

ad
de

r 
ca

nc
er

 

 
Ph

as
e 

2 
64

%
 re

cu
rre

nc
e-

fre
e 

at
 3

 m
on

th
s. 

 
 45

%
 a

nd
 4

0%
 re

cu
rre

nc
e-

fre
e 

ra
te

 
at

 1
 a

nd
 2

 y
ea

rs
, r

es
pe

ct
iv

el
y.

 
 33

%
 c

om
pl

et
e 

ab
la

tio
n 

of
 tu

m
or

 
w

ith
 n

o 
ne

w
 le

si
on

s a
t 3

 m
on

th
s, 

20
%

 le
si

on
 st

ill
 p

re
se

nt
 a

nd
 n

ew
 

tu
m

or
s f

or
m

ed
. 

74
.5

%
 A

E:
 2

9.
8%

 d
ys

ur
ia

, 
he

m
at

ur
ia

, a
nd

 u
rin

ar
y 

ur
ge

nc
y;

 
17

%
 g

as
tro

in
te

st
in

al
 d

is
or

de
rs

, 
14

.9
%

 in
fe

ct
io

n 
di

so
rd

er
s, 

12
.8

%
 m

us
cu

lo
sk

el
et

al
 

di
so

rd
er

s, 
23

%
 g

en
er

al
 d

is
or

de
rs

 
(a

st
he

ni
a,

 fa
tig

ue
, c

hi
lls

, e
tc

.) 
 4.

3%
 A

E+ : 2
.1

%
 m

yo
ca

rd
ia

l 
in

fa
rc

tio
n,

 a
nd

 2
.1

%
 

hy
pe

rk
al

em
ia

 
 23

.4
%

 p
os

sib
ly

 d
ru

g-
re

la
te

d 
A

E 

16
3 

Pl
as

m
id

 
C

Y
L-

02
  

G
em

ci
ta

bi
ne

 
Pa

nc
re

at
ic

 
A

de
no

ca
rc

in
om

a 
N

C
T0

12
74

45
5C  

Ph
as

e 
1 

C
Y

L-
02

 w
as

 d
et

ec
te

d 
in

 th
e 

bl
oo

d 
w

ith
 n

o 
ac

tiv
e 

ex
cr

et
io

n 
by

 th
e 

ki
dn

ey
s i

nt
o 

th
e 

ur
in

e 
 C

Y
L-

02
 D

N
A

 a
nd

 th
e 

ex
pr

es
si

on
 

of
 th

er
ap

eu
tic

 m
R

N
A

 w
as

 
de

te
ct

ed
 in

 th
e 

tu
m

or
 a

fte
r 1

 
m

on
th

 o
f t

re
at

m
en

t 
 95

%
 in

hi
bi

tio
n 

of
 tu

m
or

 
pr

og
re

ss
io

n 
2 

m
on

th
s a

fte
r 

tre
at

m
en

t, 
91

%
 o

f t
he

 m
et

as
ta

sis
-

fre
e 

pa
tie

nt
s h

ad
 n

o 
ne

w
 tu

m
or

 
de

ve
lo

pm
en

t, 
71

%
 p

ro
gr

es
si

on
 o

f d
ist

an
t t

um
or

s 

an
em

ia
, 2

5.
0%

 
th

ro
m

bo
cy

to
pe

ni
a,

 4
5%

 fe
ve

r, 
65

%
 a

no
re

xi
a/

na
us

ea
, 2

0%
 

ab
do

m
in

al
 p

ai
n,

 5
%

 a
cu

te
 

pa
nc

re
at

iti
s, 

15
%

 p
ru

rit
us

, 5
%

 
fo

ot
 a

nd
 h

an
d 

sy
nd

ro
m

e,
 1

0%
 

hy
pe

rli
pa

se
m

ia
, 3

0%
 in

cr
ea

se
d 

A
SA

T,
 a

nd
 3

5%
 in

cr
ea

se
d 

A
LA

T 
 10

%
 A

E+ : f
ev

er
  

16
4 

 
Ip

ili
m

um
ab

 
IL

-2
 (I

T)
  

ad
va

nc
ed

 
m

el
an

om
a 

N
C

T0
16

72
45

0C  
Ph

as
e 

1 
G

en
er

at
ed

 re
sp

on
se

s i
n 

bo
th

 
in

je
ct

ed
 a

nd
 n

on
-in

je
ct

ed
 le

si
on

s 
in

 th
e 

m
aj

or
ity

 o
f p

at
ie

nt
s. 

A
ct

iv
at

ed
 T

-c
el

ls 
fo

un
d 

in
 th

e 
tu

m
or

 a
nd

 d
ra

in
in

g 
ly

m
ph

 n
od

es
. 

W
el

l-t
ol

er
at

ed
 

18
2 

 
A

D
C

-1
01

3 
 

A
dv

an
ce

d 
so

lid
 

tu
m

or
s 

N
C

T0
23

79
74

1C  
 

PK
 d

et
ec

ta
bl

e 
fo

r 7
5 

g/
kg

 d
ee

p 
tu

m
or

s I
T 

in
je

ct
io

ns
. 

A
dm

in
ist

ra
tio

n 
of

 a
 C

D
40

 
ag

on
is

tic
 a

nt
ib

od
y 

in
to

 li
ve

r 
m

et
as

ta
se

s i
s n

ot
 o

pt
im

al
 fr

om
 a

 
sa

fe
ty

 p
er

sp
ec

tiv
e;

 th
er

ap
eu

tic
 

ra
tio

 is
 m

or
e 

fa
vo

ra
bl

e 
fo

r 
in

je
ct

io
ns

 in
to

 su
pe

rfi
ci

al
 th

an
 

in
to

 d
ee

p 
(i.

e.
 li

ve
r) 

m
et

as
ta

se
s 

~2
0%

 G
ra

de
 2

 a
nd

 3
 T

EA
Es

 
 

*M
ai

nl
y-

 p
yr

ex
ia

, n
au

se
a,

 
vo

m
iti

ng
, f

at
ig

ue
, f

lu
-li

ke
 

sy
m

pt
om

s, 
ch

ill
s, 

m
al

ai
se

 
22

%
 T

EA
Es

+ 

33
%

 S
A

Es
 

D
LT

 re
ac

he
d 

at
 4

00
 

g/
m

L,
 1

 
pa

tie
nt

 (5
%

) h
as

 c
yt

ok
in

e 
re

le
as

e 
sy

nd
ro

m
e 

18
4 

 
TT

I-6
21

 
M

on
ot

he
ra

py
; P

D
-

1/
PD

-L
1 

In
hi

bi
to

r; 
PE

G
 IN

F-
a2

a;
 T

-
V

ec
, r

ad
ia

tio
n 

R
el

ap
se

d 
an

d 
R

ef
ra

ct
or

y 
So

lid
 

Tu
m

or
s a

nd
 

M
yc

os
is

 
Fu

ng
oi

de
s 

N
C

T0
28

90
36

8R  
Ph

as
e 

1 
91

%
 (2

1/
22

) l
oc

al
 le

si
on

 
re

du
ct

io
n 

an
d 

sy
st

em
ic

 e
ffe

ct
s 

W
el

l t
ol

er
at

ed
, w

ith
 a

ll 
TE

A
Es

 
be

in
g 

gr
ad

e 
1 

or
 2

 
21

5 

45



Sm
al

l 
m

ol
ec

ul
es

 
IN

T2
30

-6
 (s

up
er

m
ol

ec
ul

ar
 

co
m

pl
ex

 c
on

ta
in

in
g 

C
isp

la
tin

) 

an
ti-

PD
1 

su
rfa

ce
 o

f t
he

 sk
in

 
(m

el
an

om
a,

 h
ea

d 
an

d 
ne

ck
, 

ly
m

ph
om

a,
 b

re
as

t) 
an

d 
tu

m
or

s w
ith

in
 

th
e 

bo
dy

 

N
C

T0
30

58
28

9R  
Ph

as
e 

1-
2 

U
p 

to
 8

0%
 C

R
 w

ith
 g

en
er

at
io

n 
of

 
an

tig
en

-s
pe

ci
fic

 C
D

8 
T-

ce
lls

 
G

ra
de

 1
 o

r 2
 p

ai
n 

at
 th

e 
in

je
ct

io
n 

si
te

s w
er

e 
re

po
rte

d 
 

 
C

isp
la

tin
/E

pi
ne

ph
rin

e 
in

je
ct

ab
le

 g
el

 
Pa

cl
ita

xe
l a

nd
 

C
ar

bo
pl

at
in

 
R

ec
ur

re
nt

 o
r 

R
ef

ra
ct

or
y 

H
ea

d 
an

d 
N

ec
k 

Ca
nc

er
 

N
C

T0
00

02
65

9A

N
C

T0
00

22
21

7N
 

 

Ph
as

e 
3 

Ph
as

e 
2 

35
%

 re
sp

on
se

 ra
te

 fo
r p

at
ie

nt
s, 

19
%

 C
R

s a
nd

 1
0%

 P
R

s f
or

 ta
rg

et
 

tu
m

or
 re

sp
on

se
s 

 
21

6 

 
Pa

ra
-to

lu
en

es
ul

fo
na

m
id

e 
(P

TS
) 

 
N

on
-s

m
al

l c
el

l 
lu

ng
 c

ar
ci

no
m

a 
(N

SC
LC

), 
se

ve
re

 
m

al
ig

na
nt

 a
irw

ay
 

ob
st

ru
ct

io
n 

(S
M

A
O

) 

N
C

T0
34

48
14

6C  
Ph

as
e 

3 
 

O
R

R
 3

0 
da

ys
 p

os
t-t

re
at

m
en

t w
as

 
10

0%
 (3

3.
3%

 C
R

 a
nd

 6
6.

7%
 P

R
), 

50
%

 O
SR

 a
t 5

 y
ea

rs
 p

os
t-

tre
at

m
en

t  

 
21

7-
21

8 

 
G

em
ci

ta
bi

ne
 

 
Lo

ca
lly

 a
dv

an
ce

d 
Pa

nc
re

at
ic

 
A

de
no

ca
rc

in
om

a 

N
C

T0
18

34
17

0C  
Ph

as
e 

1 
N

o 
pa

tie
nt

s e
xp

er
ie

nc
ed

 
do

w
ns

ta
gi

ng
 o

f t
um

or
. 

Su
rv

iv
al

 ra
te

 a
t 6

 m
on

th
s w

as
 

92
%

 v
s. 

48
%

 a
nd

 a
t 1

 y
ea

r 4
2%

 
vs

 2
1%

 fo
r I

T 
ge

m
ci

ta
bi

ne
 v

s 
co

nt
ro

l. 
Th

er
e 

w
as

 a
 tr

en
d 

fo
r h

ig
he

r 
m

ed
ia

n 
O

S 
in

 th
e 

IT
 g

em
ci

ta
bi

ne
 

gr
ou

p 
(2

74
 v

s. 
17

7 
da

ys
; P

: 0
.1

 o
n 

lo
g 

ra
nk

 a
na

ly
si

s)
. 

N
o 

A
Es

 
 

21
9 

 
PV

-1
0 

(R
os

e 
B

en
ga

l 
di

so
di

um
) 

 
m

et
as

ta
tic

 
m

el
an

om
a 

N
C

T0
26

93
06

7 

R
 

Ph
as

e 
1 

Ph
as

e 
2 

51
%

 O
R

R
 a

m
on

g 
in

je
ct

ed
 le

si
on

s, 
26

%
 C

R 
C

he
m

oa
bl

at
io

n 
ob

se
rv

ed
 a

t d
is

ta
l 

le
si

on
s 

Sa
w

 in
cr

ea
se

 in
 c

yt
ot

ox
ic

 T
 c

el
l 

re
sp

on
se

s 

W
el

l t
ol

er
at

ed
 

22
0-

22
2 

 
PV

-1
0 

pe
m

br
ol

iz
um

ab
 

m
et

as
ta

tic
 

ne
ur

oe
nd

oc
rin

e 
tu

m
or

s 

N
C

T0
25

57
32

1R  
Ph

as
e 

2 
19

%
 O

R
R

 (v
s 3

.7
%

 O
RR

 fo
r 

K
ey

tru
da

) 
 

22
3 

 
PV

-1
0 

 
m

el
an

om
a 

m
et

as
ta

se
s 

 
Ph

as
e 

2 
Pe

r t
re

at
m

en
t e

pi
so

de
 a

na
ly

si
s: 

78
.1

%
 O

R
R

 (3
0.

5%
 C

R,
 P

R 
47

.6
%

)  
87

.9
%

 C
lin

ic
al

 b
en

ef
it 

(C
R

+P
R

+S
D

). 

tre
at

m
en

ts
: 4

2%
 C

RR
, 8

7%
 O

RR
  

on
 a

n 
in

te
nt

io
n 

to
 tr

ea
t a

na
ly

si
s. 

 

w
as

 2
2 

m
on

th
s a

nd
 th

e 
m

ed
ia

n 
ov

er
al

l s
ur

vi
va

l w
as

 2
5 

m
on

th
s 

 

 
*M

ai
nl

y-
 in

je
ct

io
n 

sit
e 

pa
in

, 
oe

de
m

a,
 b

lis
te

rin
g,

 e
ry

th
em

a 
3.

6%
 A

E+  *
tre

at
m

en
t s

ite
 

ul
ce

ra
tio

n,
 c

el
lu

lit
is

, a
nd

 
ph

ot
os

en
sit

iv
ity

  

22
4 

 

46



C
at

eg
or

y 
T

he
ra

py
/A

lte
rn

at
iv

e 
N

am
es

 
D

es
cr

ip
tio

n 
of

 A
ct

iv
e 

C
ha

ra
ct

er
is

tic
s a

nd
 F

or
m

ul
at

io
n 

in
fo

rm
at

io
n 

M
ec

ha
ni

sm
 E

ng
ag

ed
 

N
C

T
s 

R
ef

s 

PA
M

Ps
 

Ti
so

to
lim

od
/IM

O
-2

12
5 

C
pG

 c
la

ss
 C

 
de

riv
at

iv
e,

 
TL

R
9 

ag
on

is
t  

• 
Tw

o 
st

ra
nd

s o
f C

pG
 li

nk
ed

 a
t t

he
 3

’ e
nd

s 
• 

Li
ke

ly
 fo

rm
s d

im
er

s 
• 

M
W

 7
71

2 
D

a 
• 

Fo
rm

ul
at

ed
 a

s a
 so

di
um

 sa
lt 

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
• 

Ex
po

se
d 

5’
 e

nd
s i

nc
re

as
es

 
po

te
nc

y 

N
C

T0
30

52
20

5 
N

C
T0

26
44

96
7 

N
C

T0
34

45
53

3 

85
 

 
SD

-1
01

 
C

pG
 c

la
ss

 
C

, T
LR

9 
ag

on
is

t 

• 
Pr

op
rie

ta
ry

 in
ve

st
ig

at
io

na
l 

• 
C

pG
 c

la
ss

 C
 h

as
 o

ne
 o

r m
or

e 
TC

G
 e

le
m

en
ts

 c
lo

se
 

to
 o

r a
t t

he
 5

’ e
nd

 o
f t

he
 O

D
N

 a
nd

 a
 p

al
in

dr
om

ic
 

se
qu

en
ce

 c
on

ta
in

in
g 

m
ul

tip
le

 C
pG

 m
ot

ifs
 

• 
C

pG
 a

lo
ne

 is
 n

eg
at

iv
el

y 
ch

ar
ge

d 

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
 

N
C

T0
22

54
77

2 
N

C
T0

30
07

73
2 

N
C

T0
38

31
29

5 
N

C
T0

25
21

87
0 

N
C

T0
34

10
90

1 
N

C
T0

29
27

96
4 

N
C

T0
22

66
14

7 
N

C
T0

33
22

38
4 

22
5  

 
PF

-3
51

26
76

/ 
A

ga
to

lim
od

/C
pG

 7
90

9 
C

pG
 c

la
ss

 
B

, T
LR

9 
ag

on
is

t 

• 
M

W
 7

69
8.

21
2 

D
a 

• 
C

la
ss

 B
 C

pG
 is

 u
su

al
ly

 li
ne

ar
 a

nd
 d

oe
s n

ot
 fo

rm
 

hi
gh

er
 o

rd
er

 st
ru

ct
ur

es
 a

lo
ne

 
• 

C
pG

 a
lo

ne
 is

 n
eg

at
iv

el
y 

ch
ar

ge
d 

• 
A

FM
 m

ea
su

re
m

en
ts

 o
f C

pG
 c

la
ss

 B
: 1

.2
 x

 8
.7

 n
m

  

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
 

N
C

T0
01

85
96

5 
81

 

 
C

M
P-

00
1 

C
pG

 c
la

ss
 A

 
de

riv
at

iv
e 

w
ith

 n
at

iv
e 

D
N

A
 

ba
ck

bo
ne

 
(P

O
) 

• 
M

W
 9

69
1.

2 
D

a 
 

• 
A

ss
em

bl
es

 in
to

 h
ig

he
r o

rd
er

 st
ru

ct
ur

es
 

• 
A

FM
 m

ea
su

re
m

en
ts

: 1
.1

 x
 1

0-
17

 x
 2

5-
90

 n
m

  

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
 

N
C

T0
35

07
69

9 
N

C
T0

30
84

64
0 

N
C

T0
39

83
66

8 
N

C
T0

26
80

18
4 

N
C

T0
36

18
64

1 

81
, 2

25
 

 
M

G
N

17
03

/L
ef

ito
lim

od
 

C
pG

 
de

riv
at

iv
e,

 
na

tiv
e 

D
N

A
 

ba
ck

bo
ne

 
(P

O
) 

• 
D

um
bb

el
l s

ha
pe

d 
 

• 
28

 b
as

e 
pa

ir 
do

ub
le

-s
tra

nd
ed

 m
id

dl
e 

se
ct

io
n 

fla
nk

ed
 b

y 
tw

o 
si

ng
le

-s
tra

nd
ed

 lo
op

s c
on

ta
in

in
g 

30
 n

uc
le

ot
id

es
 

• 
A

pp
ro

xi
m

at
e 

M
W

 3
2 

kD
a 

 

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
 

N
C

T0
26

68
77

0 
77

, 8
7,

 

22
6  

 
H

ilt
on

ol
/p

ol
yI

:C
-L

C
 

TL
R

3 
ag

on
is

t  
• 

C
om

pl
ex

ed
 w

ith
 p

ol
yl

ys
in

e 
(P

LL
) 

• 
O

pt
im

al
 P

LL
 M

W
 2

8 
kD

a 
bu

t r
an

ge
s 1

3-
35

 k
D

a 
• 

Fo
rm

ul
at

ed
 w

ith
 c

ar
bo

xy
m

et
hy

lc
el

lu
lo

se
 (C

M
C

) 
• 

In
 a

n 
aq

ue
ou

s s
al

in
e 

so
lu

tio
n 

• 
N

et
 p

os
iti

ve
ly

 c
ha

rg
ed

 

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
 

N
C

T0
24

23
86

3 
N

C
T0

19
76

58
5 

N
C

T0
32

62
10

3 
N

C
T0

19
84

89
2 

92
 

 
B

O
-1

12
/ 

po
ly

I:C
+p

ol
ya

lk
yl

en
ei

m
in

e 
TL

R
3 

ag
on

is
t  

• 
C

om
pl

ex
ed

 w
ith

 P
EI

  
• 

PE
I M

W
 b

et
w

ee
n 

17
.5

-2
2.

6 
kD

a 
• 

Ze
ta

 p
ot

en
tia

l 3
8 

m
V

 a
t p

H
 3

.1
  

• 
45

-8
5 

nm
 p

ar
tic

le
s  

• 
po

ly
I:C

/P
EI

 ra
tio

 b
et

w
ee

n 
2.

5-
4.

5 
• 

A
qu

eo
us

 fo
rm

ul
at

io
n 

w
ith

 g
lu

co
se

 o
r m

an
ni

to
l 

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
 

N
C

T0
28

28
09

8 
89

, 2
27

 
 

47



 
G

10
0/

G
LA

-S
E 

G
LA

 
de

riv
at

iv
e,

 
TL

R
4 

ag
on

is
t 

• 
Si

ng
le

 p
ho

sp
ha

te
 g

ro
up

s a
nd

 si
x 

C
14

 a
cy

l c
ha

in
s 

• 
Fo

rm
ul

at
ed

 in
 a

 sq
ua

le
ne

 in
 w

at
er

 e
m

ul
si

on
 

• 
C

on
ta

in
s e

gg
 p

ho
sp

ha
tid

yl
 c

ho
lin

e 
(P

C
), 

D
L-

α-
to

co
ph

er
ol

, a
nd

 P
ol

ox
am

er
 1

88
 

• 
Pa

rti
cl

e 
si

ze
 8

2.
7-

11
1 

nm
 

• 
Ze

ta
 p

ot
en

tia
l -

17
 m

V
 

• 
Ex

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
N

C
T0

20
35

65
7 

N
C

T0
21

80
69

8 
N

C
T0

37
42

80
4 

N
C

T0
25

01
47

3 
N

C
T0

39
15

67
8 

N
C

T0
24

06
78

1 
N

C
T0

39
82

12
1 

N
C

T0
23

87
12

5 

90
, 9

5-

98
, 2

28
 

 
C

V
81

02
 

TL
R

7/
8 

an
d 

R
LR

 a
go

ni
st

  
• 

ss
R

N
A

- 5
47

 n
uc

le
ot

id
es

 
• 

C
om

pl
ex

ed
 w

ith
 c

at
io

ni
c 

pe
pt

id
e 

(C
ys

-A
rg

12
-

C
ys

) t
ha

t i
s d

isu
lfi

de
-c

ro
ss

lin
ke

d 

• 
In

tra
ce

llu
la

r T
LR

 a
nd

 R
LR

 
bi

nd
in

g 
N

C
T0

32
91

00
2 

22
9-

23
0  

 

 
M

K
46

21
/R

G
T1

00
 

(u
pc

om
in

g 
tri

al
s f

or
m

ul
at

e 
w

ith
 Je

tP
EI

) 

R
IG

-I
 

ag
on

is
t 

• 
C

yc
lic

 d
in

uc
le

ot
id

e 
• 

N
o 

st
ru

ct
ur

al
 in

fo
rm

at
io

n 
pr

ov
id

ed
 

• 
N

ew
er

 fo
rm

ul
at

io
n 

ar
e 

co
m

pl
ex

in
g 

w
ith

 Je
tP

EI
 

w
hi

ch
 is

 a
 li

ne
ar

 P
EI

 w
ith

 1
-3

 p
os

iti
ve

 c
ha

rg
es

 o
n 

th
e 

ni
tro

ge
n 

sp
ec

ie
s. 

 

• 
In

tra
ce

llu
la

r T
LR

 b
in

di
ng

 
N

C
T0

37
39

13
8 

N
C

T0
30

65
02

3 
74

 

 
M

ot
ol

im
od

/V
TX

-2
33

7 
TL

R
8 

an
d 

N
O

D
 

ag
on

is
t 

• 
M

W
 4

58
.6

 g
/m

ol
 

• 
N

o 
ch

ar
ge

 
• 

In
tra

ce
llu

la
r T

LR
 b

in
di

ng
 

N
C

T0
39

06
52

6 
 

 
M

IW
81

5/
A

D
U

-S
10

0 
ST

IN
G

 
ag

on
is

t 
• 

Sy
nt

he
tic

 c
yc

lic
 d

in
uc

le
ot

id
e 

• 
Fo

rm
ul

at
io

n 
un

kn
ow

n 
• 

In
tra

ce
llu

la
r b

in
di

ng
 

N
C

T0
31

72
93

6 
N

C
T0

26
75

43
9 

N
C

T0
39

37
14

1 

 

 
M

K
-1

45
4 

ST
IN

G
 

ag
on

is
t 

• 
Sy

nt
he

tic
 c

yc
lic

 d
in

uc
le

ot
id

e 
• 

Fo
rm

ul
at

io
n 

un
kn

ow
n 

• 
In

tra
ce

llu
la

r b
in

di
ng

 
N

C
T0

30
10

17
6 

 

 
B

C
G

 
D

er
iv

at
iv

e 
of

 B
C

G
 

ba
ct

er
ia

 

• 
Li

ve
, a

tte
nu

at
ed

 B
C

G
 

• 
G

ra
m

 p
os

iti
ve

, r
od

 sh
ap

ed
 

• 
A

ve
ra

ge
 le

ng
th

 2
.3

6 
µm

, w
id

th
 0

.4
74

 µ
m

, v
ol

um
e 

0.
38

9 
µm

3  o
r 0

.9
06

 µ
m

 d
ia

m
et

er
 

• 
V

ac
ci

ne
 c

on
ta

in
s l

oo
se

ly
 a

gg
re

ga
te

d 
ce

lls
 o

fte
n 

bu
t n

ot
 a

lw
ay

s  
• 

TI
C

E 
su

bs
tra

in
 is

oe
le

ct
ric

 p
oi

nt
 is

 4
.4

 

• 
M

oc
k 

ba
ct

er
ia

l i
nf

ec
tio

n 
N

C
T0

39
28

27
5 

N
C

T0
18

38
20

0 
 

10
2,

 

23
1   

 
C

lo
st

rid
iu

m
 n

ov
yi

-N
T 

D
er

iv
at

iv
e 

of
 

cl
os

tri
di

um
 

ba
ct

er
ia

 

• 
G

ra
m

 p
os

iti
ve

, c
on

ta
in

 fl
ag

el
la

, s
po

re
 fo

rm
in

g 
• 

Le
ng

th
 o

f o
va

l s
ha

pe
- 1

 µ
m

 
• 

M
oc

k 
ba

ct
er

ia
l i

nf
ec

tio
n 

N
C

T0
19

24
68

9 
21

0,
 

23
2  

 
 

 
 

 
 

 
C

yt
ok

in
e 

G
ra

nu
lo

cy
te

-M
ac

ro
ph

ag
e 

C
ol

on
y 

St
im

ul
at

in
g 

Fa
ct

or
 

(G
M

-C
SF

) 

w
hi

te
 b

lo
od

 
ce

ll 
gr

ow
th

 
fa

ct
or

 

• 
14

-3
5 

kD
a 

gl
yc

op
ro

te
in

  
• 

12
7 

am
in

o 
ac

id
s 

• 
20

 Å
 b

y 
30

 Å
 b

y 
40

 Å
 

• 
Im

m
un

os
tim

ul
at

or
y 

cy
to

ki
ne

 
N

C
T0

06
00

00
2 

11
5-

11
6  

 

 
IL

-2
  

Im
m

un
e 

ce
ll 

si
gn

al
in

g 
m

ol
ec

ul
e 

• 
15

.5
 k

D
a 

an
d 

is
 c

om
pr

is
ed

 o
f 1

33
 a

m
in

o 
ac

id
s 

• 
18

 M
IU

 re
co

m
bi

na
nt

 h
um

an
 IL

-2
 (P

ro
le

uk
in

®
, 

C
hi

ro
n,

 R
at

in
ge

n,
 G

er
m

an
y)

 w
as

 d
is

so
lv

ed
 in

 6
 m

l 

• 
Im

m
un

os
tim

ul
at

or
y 

cy
to

ki
ne

 
N

C
T0

32
33

82
8 

N
C

T0
02

04
58

1 
N

C
T0

14
80

32
3 

N
C

T0
06

00
00

2 

10
8,

 

12
3    

48



gl
uc

os
e 

(5
%

) p
re

pa
re

d 
w

ith
 a

lb
um

in
 (0

.2
%

) 
so

lu
tio

n 
N

C
T0

16
72

45
0 

 

 
PE

G
-I

L-
2 

M
od

ifi
ed

 
im

m
un

e 
ce

ll 
si

gn
al

in
g 

m
ol

ec
ul

e 

• 
C

ov
al

en
t a

dd
iti

on
 o

f 6
–7

 k
D

a 
po

ly
-e

th
yl

en
e 

gl
yc

ol
 (P

EG
) 

• 
Im

m
un

os
tim

ul
at

or
y 

cy
to

ki
ne

 
 

12
5-

12
6  

 

A
nt

ib
od

y 
an

d 
cy

to
ki

ne
 

Ip
ili

m
um

ab
 a

nd
 IL

-2
 

Im
m

un
e 

ce
ll 

si
gn

al
in

g 
m

ol
ec

ul
e 

an
d 

ch
ec

kp
oi

nt
 

in
hi

bi
tin

g 
an

tib
od

y 

• 
Ip

ili
m

um
ab

: 1
48

63
4.

91
4 

g/
m

ol
 g

·m
ol

−1
 

• 
Th

e 
re

al
 si

ze
 o

f a
n 

an
tib

od
y 

m
ol

ec
ul

e 
is

 a
bo

ut
 1

0 
nm

 

• 
 

N
C

T0
14

80
32

3 
18

6  

C
yt

ok
in

e/
to

xi
n 

IL
-4

(3
8-

37
)-P

E3
8K

D
EL

 
 

Im
m

un
e 

ce
ll 

si
gn

al
in

g 
m

ol
ec

ul
e 

co
nj

ug
at

ed
 

to
 a

 to
xi

n 

• 
am

in
o 

ac
id

s 3
8–

12
9 

of
 IL

-4
, f

us
ed

 v
ia

 a
 p

ep
tid

e 
lin

ke
r t

o 
am

in
o 

ac
id

s 1
–3

7,
 w

hi
ch

 in
 tu

rn
 is

 fu
se

d 
to

 th
e 

PE
38

K
D

EL
 to

xi
n 

• 
PE

38
K

D
EL

 is
 c

om
po

se
d 

of
 a

m
in

o 
ac

id
s 2

53
–3

64
 

an
d 

38
1–

60
8 

of
 P

E,
 w

ith
 K

D
EL

 (a
n 

en
do

pl
as

m
ic

 
re

ta
in

in
g 

se
qu

en
ce

), 
at

 p
os

iti
on

s 6
09

–6
12

. 

• 
B

in
d 

to
 IL

-4
 re

ce
pt

or
s o

n 
tu

m
or

s 
• 

Ps
eu

do
m

on
as

 e
xo

to
xi

n 
(P

E)
 

is
 a

 c
yt

ot
ox

ic
 a

ge
nt

 

N
C

T0
07

97
94

0 
N

C
T0

00
14

67
7 

12
8   

C
yt

ok
in

e/
to

xi
n 

IL
13

-P
E3

8Q
Q

R
 (I

L1
3P

E)
 

Im
m

un
e 

ce
ll 

si
gn

al
in

g 
m

ol
ec

ul
e 

co
nj

ug
at

ed
 

to
 a

 to
xi

n 

• 
IL

-1
3 

co
nj

ug
at

ed
 to

 tr
un

ca
te

d 
PE

 
• 

B
in

d 
to

 IL
-1

3 
re

ce
pt

or
s o

n 
tu

m
or

s 
N

C
T0

00
64

77
9 

12
9  

C
yt

ok
in

e 
da

rle
uk

in
 (L

19
-I

L2
) a

nd
 

fib
ro

m
un

 (L
19

-T
N

Fα
) 

 L1
9 

(a
 h

um
an

 m
on

oc
lo

na
l 

an
tib

od
y 

fra
gm

en
t) 

fu
se

d 
to

 
an

 im
m

un
oc

yt
ok

in
e 

 

C
om

bi
na

tio
n 

of
 im

m
un

e 
ce

ll 
si

gn
al

in
g 

m
ol

ec
ul

es
 

• 
D

ar
le

uk
in

: i
nt

er
le

uk
in

-2
 (I

L-
2)

 is
 fu

se
d 

to
 a

 
hu

m
an

 si
ng

le
-c

ha
in

 v
ar

ia
bl

e 
fra

gm
en

t (
sc

Fv
) t

ha
t 

re
co

gn
iz

es
 L

19
. 

• 
Fi

br
om

un
: t

um
or

 n
ec

ro
si

s f
ac

to
r-

α 
(T

N
Fα

) f
us

ed
 

to
 sc

Fv
 th

at
 re

co
gn

iz
es

 L
19

 

• 
B

in
d 

to
 L

19
 o

n 
tu

m
or

s 
• 

im
m

un
os

tim
ul

at
or

y 
cy

to
ki

ne
 

D
ar

le
uk

in
: 

N
C

T0
12

53
09

6 
D

ar
om

un
 

(D
ar

le
uk

in
 a

nd
 

Fi
br

om
un

): 
N

C
T0

20
76

63
3 

N
C

T0
29

38
29

9 
N

C
T0

35
67

88
9 

23
3  

O
nc

ol
yt

ic
 

vi
ru

s 
O

N
Y

X
-0

15
 

A
de

no
vi

ru
s  

• 
E1

B
 5

5-
kD

a 
ge

ne
 d

el
et

ed
 

• 
90

 - 
10

0 
nm

 d
ia

m
et

er
 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
 

 
23

4  

O
nc

ol
yt

ic
 

vi
ru

s 
D

N
X

-2
40

1 
A

de
no

vi
ru

s 
• 

E1
A

 g
en

e 
de

le
tio

n 
• 

R
G

D
-m

ot
if 

en
gi

ne
er

ed
 in

to
 th

e 
fib

er
 H

-lo
op

 
• 

R
D

G
-m

ot
if 

al
lo

w
 in

te
ra

ct
io

n 
w

ith
 α

vβ
3 a

nd
 α

vβ
5 i

nt
eg

rin
s 

en
ric

he
d 

on
 tu

m
or

 c
el

ls
 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
 

N
C

T0
08

05
37

6 
N

C
T0

27
98

40
6 

N
C

T0
21

97
16

9 
N

C
T0

19
56

73
4 

13
5   

O
nc

ol
yt

ic
 

vi
ru

s 
C

ox
sa

ck
ie

vi
ru

s A
21

 
(C

V
A

21
) 

co
xs

ac
ki

ev
ir

us
 

• 
~3

1 
nm

 in
 d

ia
m

et
er

 
• 

B
in

d 
to

 in
tra

ce
llu

la
r 

ad
he

si
on

 m
ol

ec
ul

e 
1 

(I
C

A
M

-
1)

 a
nd

 d
ec

ay
 a

cc
el

er
at

io
n 

fa
ct

or
 (D

A
F)

 p
ro

te
in

s o
n 

tu
m

or
 c

el
ls

 

N
C

T0
12

27
55

1 
N

C
T0

04
38

00
9 

N
C

T0
02

35
48

2 
N

C
T0

08
32

55
9 

N
C

T0
23

07
14

9 

16
9  

49



O
nc

ol
yt

ic
 

vi
ru

s 
H

F1
0 

H
er

pe
s 

si
m

pl
ex

 
vi

ru
s-

1 
(H

SV
-1

) 

• 
Lo

ss
 o

f e
xp

re
ss

io
n 

of
 U

L4
3,

 U
L4

9.
5,

 U
L5

5,
 U

L5
6,

 
an

d 
LA

T 
• 

O
ve

re
xp

re
ss

io
n 

of
 U

L5
3 

an
d 

U
L5

4 
 

• 
15

5 
– 

24
0 

nm
 in

 d
ia

m
et

er
 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
 

N
C

T0
24

28
03

6 
N

C
T0

10
17

18
5 

N
C

T0
31

53
08

5 
N

C
T0

32
52

80
8 

N
C

T0
22

72
85

5 
N

C
T0

32
59

42
5 

16
7,

 

23
5   

O
nc

ol
yt

ic
 

vi
ru

s 
H

SV
-1

71
6 

H
er

pe
s 

si
m

pl
ex

 
vi

ru
s  

• 
R

L1
 g

en
e 

de
le

tio
n 

• 
15

5 
– 

24
0 

nm
 in

 d
ia

m
et

er
 

 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
 

N
C

T0
09

31
93

1 
N

C
T0

20
31

96
5 

 

O
nc

ol
yt

ic
 

vi
ru

s 
H

-1
 p

ar
vo

vi
ru

s (
H

-1
PV

, 
Pa

rv
O

ry
x)

 
pa

rv
ov

iru
s 

• 
18

0–
25

0 
Å

 in
 d

ia
m

et
er

 
• 

D
es

tro
y 

tu
m

or
 c

el
ls

 
N

C
T0

26
53

31
3 

N
C

T0
13

01
43

0 
13

9,
 

16
7,

 

23
6  

O
nc

ol
yt

ic
 

vi
ru

s 
m

ea
sl

es
 v

iru
s E

dm
on

st
on

-
Za

gr
eb

 v
ac

ci
ne

 st
ra

in
 

m
ea

sl
es

 
vi

ru
s  

• 
12

0 
– 

25
0 

nm
 in

 d
ia

m
et

er
 

• 
B

in
d 

to
 C

D
46

 th
at

 a
re

 
ex

pr
es

se
d 

by
 so

m
e 

ca
nc

er
 

ce
ll 

lin
es

 
• 

D
es

tro
y 

tu
m

or
 c

el
ls

 

 
14

1,
 

17
0  

O
nc

ol
yt

ic
 

vi
ru

s 
Pe

la
re

or
ep

 (R
EO

LY
SI

N
®

) 
re

ov
iru

s 
• 

U
nm

od
ifi

ed
 o

nc
ol

yt
ic

 re
ov

iru
s 

• 
Ty

pe
 3

 D
ea

rin
g 

st
ra

in
 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
 

• 
M

ec
ha

ni
sm

 u
nc

le
ar

, m
ay

 b
e 

re
la

te
d 

to
 R

as
 si

gn
al

in
g 

N
C

T0
05

28
68

4 
N

C
T0

27
23

83
8 

 

14
2,

 

23
7  

O
nc

ol
yt

ic
 

vi
ru

s 
vv

D
D

-C
D

SR
 

V
ac

ci
na

 
vi

ru
s 

• 
V

ac
ci

ni
a 

gr
ow

th
 fa

ct
or

 (V
G

F)
 a

nd
 th

ym
id

in
e 

ki
na

se
 (T

K
) d

el
et

ed
 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
 

N
C

T0
05

74
97

7 
14

3  

O
nc

ol
yt

ic
 

vi
ru

s +
 

ve
ct

or
 

Ta
lim

og
en

e 
la

he
rp

ar
ep

ve
c 

(T
-V

EC
); 

Im
ly

gi
c™

 
 

• 
IC

P3
4.

5-
de

fic
ie

nt
 

• 
IC

P4
7-

de
fic

ie
nt

 
• 

15
5 

- 2
40

 n
m

 in
 d

ia
m

et
er

 

• 
D

es
tro

y 
tu

m
or

 c
el

ls
  

• 
Ex

pr
es

se
s G

M
-C

SF
 fo

r 
im

m
un

os
tim

ul
at

io
n 

N
C

T0
02

89
01

6 
N

C
T0

20
14

44
1 

N
C

T0
07

69
70

4 
N

C
T0

37
47

74
4 

16
7  

O
nc

ol
yt

ic
 

vi
ru

s +
 

ve
ct

or
 

O
N

C
O

S-
10

2 
(p

re
vi

ou
sl

y 
ca

lle
d 

C
G

TG
-1

02
 a

nd
 

A
d5

/3
-D

24
-G

M
C

SF
) 

A
de

no
vi

ru
s 

• 
Se

ro
ty

pe
 5

 a
de

no
vi

ru
s  

• 
Pl

ac
in

g 
th

e 
A

d3
 fi

be
r k

no
b 

in
to

 th
e 

A
d5

 b
ac

kb
on

e 
re

su
lts

 in
 a

n 
A

d5
/3

 c
hi

m
er

a 
 

• 
24

 b
p 

de
le

tio
n 

in
 R

b 
bi

nd
in

g 
si

te
 o

f E
1A

 fo
r 

ca
nc

er
 c

el
l r

es
tri

ct
ed

 re
pl

ic
at

io
n 

• 
A

rm
ed

 w
ith

 g
ra

nu
lo

cy
te

-m
ac

ro
ph

ag
e 

co
lo

ny
-

st
im

ul
at

in
g 

fa
ct

or
 (G

M
-C

SF
) 

• 
Se

ro
ty

pe
 3

 fi
be

r k
no

b 
al

lo
w

 
en

ha
nc

ed
 g

en
e 

de
liv

er
y 

to
 

ca
nc

er
 c

el
ls

 
• 

D
es

tro
y 

tu
m

or
 c

el
ls

 
• 

Ex
pr

es
se

s G
M

-C
SF

 fo
r 

im
m

un
os

tim
ul

at
io

n 

N
C

T0
15

98
12

9 
N

C
T0

35
14

83
6 

N
C

T0
30

03
67

6 
 

14
6,

 

23
8   

O
nc

ol
yt

ic
 

vi
ru

s +
 

ve
ct

or
 

Pe
xa

-V
ec

 (J
X

-5
94

) 
V

ac
ci

na
 

vi
ru

s 
• 

W
ye

th
 st

ra
in

 v
ac

ci
ni

a 
m

od
ifi

ed
 b

y 
in

se
rti

on
 o

f t
he

 
hu

m
an

 G
M

-C
SF

 a
nd

 L
ac

-Z
 g

en
es

 in
to

 th
e 

va
cc

in
ia

 T
K

 g
en

e 
re

gi
on

 u
nd

er
 c

on
tro

l o
f t

he
 

sy
nt

he
tic

 e
ar

ly
-la

te
 p

ro
m

ot
er

 a
nd

 p
7·

5 
pr

om
ot

er
, 

re
sp

ec
tiv

el
y.

 
• 

V
iri

on
 m

or
ph

ol
og

y 
an

d 
si

ze
: E

nv
el

op
ed

, 
bi

co
nc

av
ec

or
e 

w
ith

 tw
o 

la
te

ra
l b

od
ie

s, 
br

ic
k-

sh
ap

ed
 to

 p
le

o-
m

or
ph

ic
 v

iri
on

s,~
36

0x
27

0x
25

0 
nm

 
in

 si
ze

 
• 

D
ilu

te
d 

in
 b

ic
ar

bo
na

te
-b

uf
fe

re
d 

sa
lin

e 

• 
R

ep
lic

at
io

n 
an

d 
hG

M
-C

SF
 

tra
ns

ge
ne

 
• 

D
es

tro
y 

tu
m

or
 c

el
ls

 
 

N
C

T0
13

29
80

9 
N

C
T0

13
87

55
5 

N
C

T0
11

69
58

4 
N

C
T0

05
54

37
2 

N
C

T0
25

62
75

5 
N

C
T0

11
71

65
1 

N
C

T0
29

77
15

6 
N

C
T0

32
94

08
3 

N
C

T0
04

29
31

2 
N

C
T0

06
25

45
6 

14
7,

 

23
9-

24
0  

  

50



N
on

-
on

co
ly

tic
 

vi
ru

s +
 

ve
ct

or
 

TG
10

42
 (A

de
no

vi
ru

s-
in

te
rfe

ro
n-

γ)
 

A
de

no
vi

ru
s 

• 
N

on
re

pl
ic

at
in

g 
(E

1 
an

d 
E3

 re
gi

on
s d

el
et

ed
)  

• 
A

de
no

vi
ru

s t
yp

e 
5 

(g
ro

up
 C

) v
ec

to
r  

• 
C

on
ta

in
in

g 
a 

hu
m

an
 IF

N
-γ

 c
D

N
A

 in
se

rt 
un

de
r 

cy
to

m
eg

al
ov

iru
s p

ro
m

ot
er

 c
on

tro
l 

• 
Ex

pr
es

se
s I

FN
-γ

 
N

C
T0

03
94

69
3 

 
14

8  

N
on

-
on

co
ly

tic
 

vi
ru

s +
 

ve
ct

or
 

TN
Fe

ra
de

 B
io

lo
gi

c 
(A

dG
V

EG
R

.T
N

F.
11

D
) 

A
de

no
vi

ru
s 

• 
R

ep
lic

at
io

n-
de

fic
ie

nt
 a

de
no

vi
ra

l v
ec

to
r t

ha
t 

ex
pr

es
se

s t
um

or
 n

ec
ro

si
s f

ac
to

r-
α 

(T
N

Fα
) u

nd
er

 
th

e 
co

nt
ro

l o
f a

 ra
di

at
io

n-
in

du
ci

bl
e 

Eg
r-

1 
pr

om
ot

er
 

• 
Ex

pr
es

se
s T

N
Fα

 
N

C
T0

00
51

46
7 

N
C

T0
00

51
48

0 
 

15
0-

15
1  

 

V
ir

al
 

ve
ct

or
 

IN
X

N
-2

00
1 

(A
d-

R
TS

-h
IL

-
12

) w
ith

 o
ra

l a
ct

iv
at

or
 

IN
X

N
-1

00
1 

(V
el

ed
im

ex
) 

A
de

no
vi

ru
s 

• 
Ex

pr
es

se
s h

um
an

 IL
-1

2 
• 

Ex
pr

es
se

s h
um

an
 IL

-1
2 

N
C

T0
13

97
70

8 
N

C
T0

24
23

90
2 

N
C

T0
36

79
75

4 
N

C
T0

20
26

27
1 

N
C

T0
33

30
19

7 
N

C
T0

36
36

47
7 

N
C

T0
40

06
11

9 
 

 

N
on

-
on

co
ly

tic
 

vi
ru

s +
 

ve
ct

or
 

ad
en

ov
ira

l v
ec

to
r 

ex
pr

es
si

ng
 E

. c
ol

i P
N

P 
(A

d/
PN

P)
 a

nd
 IV

 
flu

da
ra

bi
ne

 th
er

ap
y 

A
de

no
vi

ru
s 

• 
Lo

ad
ed

 w
ith

 a
 b

ac
te

ria
l g

en
e 

ca
lle

d 
E.

 c
ol

i p
ur

in
e 

nu
cl

eo
sid

e 
ph

os
ph

or
yl

as
e 

(P
N

P)
 

 

• 
PN

P 
co

nv
er

ts
 fl

ud
ar

ab
in

e 
to

 
an

ti-
ca

nc
er

 a
ge

nt
 

flu
or

oa
de

ni
ne

 

N
C

T0
13

10
17

9 
 

15
4  

N
on

-
on

co
ly

tic
 

vi
ru

s +
 

ve
ct

or
 

ad
en

ov
ira

l v
ec

to
r 

(A
dv

.R
SV

-tk
) e

xp
re

ss
in

g 
th

e 
he

rp
es

 th
ym

id
in

e 
ki

na
se

 
ge

ne
 w

ith
 IV

  
G

an
ci

cl
ov

ir 
(G

C
V

) 
 

 
• 

A
de

no
vi

ra
l v

ec
to

r a
llo

w
 h

ig
h 

tra
ns

ge
ne

 
ex

pr
es

si
on

 a
nd

 h
ig

h 
tra

ns
du

ct
io

n 
ef

fic
ie

nc
y 

of
 

bo
th

 d
iv

id
in

g 
an

d 
no

n-
di

vi
di

ng
 c

el
ls

 
• 

Su
ic

id
e 

ge
ne

 tr
an

sf
er

 
• 

G
C

V
 is

 a
 sy

nt
he

tic
 n

uc
le

os
id

e 
an

al
og

ue
 th

at
 

co
m

pe
te

s w
ith

 d
eo

xy
gu

an
os

in
e 

tri
ph

os
ph

at
e 

as
 a

 
su

bs
tra

te
 fo

r D
N

A
 p

ol
ym

er
as

e 
in

 d
iv

id
in

g 
ce

lls
 

an
d 

pr
od

uc
es

 c
el

l d
ea

th
 

• 
Ex

pr
es

si
on

 o
f h

er
pe

s 
si

m
pl

ex
 v

iru
s t

hy
m

id
in

e 
ki

na
se

 (H
SV

-tk
) a

llo
w

 
ph

os
ph

or
yl

at
io

n 
of

 G
C

V
, 

fo
rm

in
g 

cy
to

to
xi

c 
G

C
V

-
tri

ph
os

ph
at

e 

N
C

T0
08

44
62

3 
 

15
6  

Pl
as

m
id

 
IL

-1
2 

pl
as

m
id

 c
D

N
A

 
(p

N
G

V
L3

-m
IL

12
) 

 
• 

Fo
rm

ul
at

ed
 in

 sa
lin

e 
• 

Ex
pr

es
si

on
 o

f I
L-

12
 

 
15

8  

Pl
as

m
id

 
Ta

vo
ki

no
ge

ne
 

Te
ls

ep
la

sm
id

 (t
av

o)
; 

pl
as

m
id

 IL
-1

2 

 
• 

62
15

 b
p 

 
• 

Ex
pr

es
si

on
 o

f I
L-

12
 

N
C

T0
03

23
20

6 
N

C
T0

15
79

31
8 

N
C

T0
14

40
81

6 
N

C
T0

23
45

33
0 

15
9  

Pl
as

m
id

 
EG

FR
 a

nt
is

en
se

 D
N

A
 

 
 

• 
Es

tim
at

ed
 ~

96
00

 b
as

e 
pa

irs
 

• 
pN

G
V

L 
ve

ct
or

 (a
ls

o 
ca

lle
d 

pU
M

V
C

) i
s 9

28
7 

bp
, 

hu
m

an
 U

6 
pr

om
ot

er
 is

 2
41

 b
p,

 a
nd

 E
G

FR
A

S 
is

 3
9 

bp
 

• 
In

 c
om

pl
ex

 w
ith

 D
C

-C
ho

l l
ip

os
om

es
 

• 
Ph

os
ph

as
e-

bu
ffe

re
d 

sa
lin

e 

• 
Su

pp
re

ss
es

 e
xp

re
ss

io
n 

of
 

EG
FR

 b
y 

tu
m

or
 c

el
ls

 
• 

In
hi

bi
ts

 tu
m

or
 

pr
ol

ife
ra

tio
n/

gr
ow

th
 

N
C

T0
00

09
84

1 
24

1  

Pl
as

m
id

 
B

C
-8

19
 (a

ls
o 

ca
lle

d 
D

TA
-

H
19

) 
 

• 
45

60
 b

p 
• 

D
T-

A
 e

xp
re

ss
ed

 in
 tu

m
or

 
ce

lls
 th

at
 c

an
 a

ct
iv

at
e 

H
19

 
pr

om
ot

er
 

N
C

T0
07

11
99

7 
17

7,
 

24
2-

24
3  

51



• 
G

en
e 

fo
r t

he
 d

ip
ht

he
ria

 to
xi

n-
A

 c
ha

in
 (D

T-
A

) 
un

de
r t

he
 re

gu
la

tio
n 

of
 th

e 
81

4-
bp

 5
′ f

la
nk

in
g 

re
gi

on
 o

f t
he

 H
19

 p
ro

m
ot

er
 se

qu
en

ce
 

• 
Tr

is
-E

D
TA

 b
uf

fe
r (

10
 m

M
 T

ris
, 1

 m
M

 E
D

TA
, p

H
 

8)
 

• 
Fo

rm
s 8

0-
90

 n
m

 p
ol

yp
le

xe
s w

ith
 P

EI
  

Pl
as

m
id

 
C

Y
L-

02
 

 
 

• 
C

om
pl

ex
 o

f p
la

sm
id

 D
N

A
 a

nd
 li

ne
ar

 p
ol

ym
er

s o
f 

po
ly

et
hy

le
ne

im
in

e 
(J

et
PE

I 2
2 

kD
a 

fro
m

 P
ol

yp
lu

s 
Tr

an
sf

ec
tio

n,
 Il

lk
irc

h,
 F

ra
nc

e)
 

• 
N

/P
 ra

tio
 o

f 8
 to

 1
0 

• 
Es

tim
at

ed
 ~

45
nm

 
• 

5%
 w

/v
 g

lu
co

se
 

• 
Ex

pr
es

si
on

 o
f D

C
K

-U
M

K
 

fu
si

on
 p

ro
te

in
, w

hi
ch

 
ac

tiv
at

es
 th

e 
cy

to
to

xi
c 

pr
o-

dr
ug

 g
em

ci
ta

bi
ne

 

N
C

T0
12

74
45

5 
N

C
T0

28
06

68
7 

16
4,

 

17
8   

 
 

 
 

 
 

 
Im

m
un

os
t-

im
ul

at
or

y 
m

A
bs

 

Ip
ili

m
um

ab
 

an
ti-

C
TL

A
-

4 
• 

H
um

an
 im

m
un

og
lo

bu
lin

 (I
gG

1k
) c

on
si

st
in

g 
of

 
fo

ur
 p

ep
tid

e 
ch

ai
ns

 
• 

C
65

72
H

10
12

6N
17

34
O

20
80

S 4
0, 

14
79

91
 D

al
to

ns
 

• 
5 

m
g/

m
L 

cl
ea

r c
ol

or
le

ss
 a

qu
eo

us
 so

lu
tio

n.
 p

H
 7

.0
 

• 
D

C
s p

re
se

nt
 a

n 
in

hi
bi

to
ry

 to
 

si
gn

al
 th

at
 b

in
ds

 to
 c

yt
ot

ox
ic

 
T 

ly
m

ph
oc

yt
e-

as
so

ci
at

ed
 

an
tig

en
 4

 (C
TL

A
-4

) t
o 

su
pp

re
ss

 c
yt

ot
ox

ic
 T

 
ly

m
ph

oc
yt

es
 (C

TL
s)

. 
Ip

ili
m

um
ab

 b
in

ds
 to

 C
TL

A
-

4 
to

 b
lo

ck
 th

e 
in

hi
bi

to
ry

 
si

gn
al

 a
nd

 re
le

as
e 

th
e 

cy
to

to
xi

c 
re

ac
tio

n 
of

 C
TL

s 
to

 a
tta

ch
 c

an
ce

r c
el

ls
. 

N
C

T0
16

72
45

0 
18

2  

 
L1

9I
L2

 
IL

-2
 

co
nj

ug
at

ed
 

to
 L

19
 m

A
b 

• 
R

ec
om

bi
na

nt
 fu

si
on

 p
ro

te
in

s, 
co

ns
is

tin
g 

of
 a

 
hu

m
an

 c
yt

ok
in

e 
lin

ke
d 

(a
t i

ts
 N

- o
r C

-te
rm

in
us

) t
o 

a 
m

on
oc

lo
na

l a
nt

ib
od

y 
or

 to
 a

n 
an

tib
od

y 
fra

gm
en

t 

• 
A

 p
ha

rm
ac

od
el

iv
er

y 
ve

hi
cl

e 
fo

r t
he

 se
le

ct
iv

e 
lo

ca
liz

at
io

n 
of

 th
e 

im
m

un
os

tim
ul

at
or

y 
pa

yl
oa

d 
at

 si
te

s o
f d

is
ea

se
 

N
C

T0
12

53
09

6 
24

4  

 
A

D
C

-1
01

3 
A

nt
i-C

D
40

 
m

A
bs

 
• 

A
 h

um
an

 m
on

os
pe

ci
fic

 Ig
G

1 
an

tib
od

y 
• 

St
im

ul
at

io
n 

of
 C

D
40

 o
n 

de
nd

rit
ic

 c
el

ls
 is

 in
te

nd
ed

 to
 

in
du

ce
 e

ffe
ct

or
 T

-c
el

ls
 th

at
 

at
ta

ck
 th

e 
tu

m
or

. 

N
C

T0
23

79
74

1 
24

5  

 
TT

I-
62

1 
M

od
ifi

ed
 

an
tib

od
y 

ta
rg

et
in

g 
C

D
47

 

• 
A

nt
i-C

D
47

 a
nt

ib
od

y 
bi

nd
in

g 
do

m
ai

ns
 c

on
ju

ga
te

d 
to

 h
um

an
 Ig

G
1 

Fc
 

• 
TT

I-
62

1 
(S

IR
Pα

Fc
) i

s a
n 

im
m

un
e 

ch
ec

kp
oi

nt
 in

hi
bi

to
r 

de
si

gn
ed

 to
 b

in
d 

hu
m

an
 

C
D

47
 a

nd
 b

lo
ck

 th
e 

“d
o 

no
t 

ea
t”

 si
gn

al
 th

at
 su

pp
re

ss
 

m
ac

ro
ph

ag
e 

ph
ag

oc
yt

os
is

, 
th

er
eb

y 
en

ha
nc

in
g 

ph
ag

oc
yt

os
is

, a
nd

 a
nt

itu
m

or
 

ac
tiv

ity
. 

N
C

T0
28

90
36

8 
21

5  

 
B

M
S 

98
61

78
 

an
ti-

O
X

40
 

m
A

b 
• 

A
 h

um
an

 Ig
G

1 
• 

A
nt

i-O
X

40
 m

A
bs

 se
le

ct
iv

el
y 

bi
nd

s t
o 

an
d 

ac
tiv

at
es

 O
X

40
 

N
C

T0
38

31
29

5 
24

6  

52



to
 in

du
ce

 p
ro

lif
er

at
io

n 
of

 T
 

ly
m

ph
oc

yt
es

 th
at

 a
tta

ck
 

tu
m

or
 a

ss
oc

ia
te

d 
an

tig
en

s. 
Sm

al
l 

M
ol

ec
ul

e 
IN

T2
30

-6
 

C
is

pl
at

in
 

• 
A

 fo
rm

ul
at

io
n 

co
ns

is
tin

g 
of

 a
n 

am
ph

ip
hi

lic
 c

el
l 

pe
ne

tra
tio

n 
en

ha
nc

er
 m

ol
ec

ul
e 

co
m

bi
ne

d 
w

ith
 

ci
sp

la
tin

 a
nd

 v
in

bl
as

tin
e.

  
• 

Th
e 

pe
ne

tra
tio

n 
en

ha
nc

er
 fa

ci
lit

at
es

 d
is

pe
rs

io
n 

of
 

th
e 

tw
o 

dr
ug

s t
hr

ou
gh

ou
t i

nj
ec

te
d 

tu
m

or
s a

nd
 

en
ab

le
s i

nc
re

as
ed

 d
iff

us
io

n 
in

to
 c

an
ce

r c
el

ls
. 

• 
IN

T2
30

-6
 th

or
ou

gh
ly

 
sa

tu
ra

te
s a

nd
 k

ill
s i

nj
ec

te
d 

tu
m

or
s. 

In
 a

dd
iti

on
, t

he
 d

ru
g 

in
du

ce
s a

n 
ad

ap
tiv

e 
(T

-c
el

l 
m

ed
ia

te
d)

 im
m

un
e 

re
sp

on
se

 
th

at
 a

tta
ck

s n
ot

 o
nl

y 
th

e 
in

je
ct

ed
 tu

m
or

, b
ut

 n
on

-
in

je
ct

ed
 tu

m
or

s a
nd

 u
ns

ee
n 

m
ic

ro
-m

et
as

ta
se

s. 
 

N
C

T0
30

58
28

9 
24

7  

 
C

is
pl

at
in

/E
pi

ne
ph

rin
e 

in
je

ct
ab

le
 g

el
 

C
is

pl
at

in
 

• 
C

on
ta

in
s 4

 m
g/

m
L 

ci
sp

la
tin

, 0
.1

 m
g/

m
L 

ep
in

ep
hr

in
e,

 a
nd

 b
ov

in
e 

co
lla

ge
n 

as
 a

 p
ro

te
in

 
ca

rr
ie

r m
at

rix
 

• 
In

tra
tu

m
or

al
 in

je
ct

io
n 

of
 

ci
sp

la
tin

/e
pi

ne
ph

rin
e 

in
je

ct
ab

le
 g

el
 a

ch
ie

ve
s h

ig
h 

co
nc

en
tra

tio
ns

 o
f c

is
pl

at
in

 in
 

th
e 

tu
m

or
 w

ith
 v

er
y 

lo
w

 
co

nc
en

tra
tio

ns
 in

 p
la

sm
a 

an
d 

ot
he

r t
is

su
es

. 

N
C

T0
00

02
65

9
N

C
T0

00
22

21
7 

24
8  

 
Pa

ra
-to

lu
en

es
ul

fo
na

m
id

e 
(P

TS
) 

 
• 

C
7H

9N
O

2S
, M

W
= 

17
1 

• 
Fo

rm
al

 c
ha

rg
e 

0 
• 

Si
gn

ifi
ca

nt
ly

 in
hi

bi
t t

um
or

 
gr

ow
th

 b
y 

el
ic

iti
ng

 tu
m

or
 

ne
cr

os
is

 
• 

In
du

ce
s l

ys
os

om
al

 in
st

ab
ili

ty
, 

m
ito

ch
on

dr
ia

l d
am

ag
e,

 a
nd

 
in

hi
bi

ts
 A

TP
 b

io
sy

nt
he

si
s 

N
C

T0
34

48
14

6 
24

9  

 
G

em
ci

ta
bi

ne
 

 
• 

A
 N

uc
le

os
id

e 
pr

od
ru

g,
 a

n 
an

al
og

 o
f 

de
ox

cy
cy

tid
in

e 
• 

W
at

er
-s

ol
ub

le
, l

ow
-m

ol
ec

ul
ar

 w
ei

gh
t (

29
9.

66
) 

• 
G

em
ci

ta
bi

ne
 c

au
se

s c
an

ce
r 

ce
ll 

de
at

h 
by

 a
tta

ch
in

g 
to

 th
e 

en
d 

of
 th

e 
el

on
ga

tin
g 

D
N

A
 

st
ra

nd
 a

nd
 in

hi
bi

tin
g 

D
N

A
 

sy
nt

he
si

s 

N
C

T0
27

23
83

8
N

C
T0

18
34

17
0 

25
0  

 
PV

-1
0 

R
os

e 
B

en
ga

l 
(R

B
) 

di
so

di
um

, a
n 

xa
nt

he
ne

 
dy

e 

• 
10

%
 R

B
 in

 sa
lin

e 
• 

Pr
om

ot
es

 e
xp

re
ss

io
n 

of
 

ha
llm

ar
ks

 re
la

te
d 

to
 

im
m

un
og

en
ic

 c
el

l d
ea

th
 in

 
co

lo
n 

ca
nc

er
 c

el
l l

in
es

 

N
C

T0
26

93
06

7
N

C
T0

25
57

32
1 

25
1  

 

53



References 
1. Marabelle, A.; Andtbacka, R.; Harrington, K.; Melero, I.; Leidner, R.; De Baere, T.; Robert, C.; Ascierto, P. A.; Baurain, 

J.-F.; Imperiale, M.; Rahimian, S.; Tersago, D.; Klumper, E.; Hendriks, M.; Kumar, R.; Stern, M.; Öhrling, K.; Massacesi, 
C.; Tchakov, I.; Tse, A.; Douillard, J.-Y.; Tabernero, J.; Haanen, J.; Brody, J., Starting the fight in the tumor: expert 
recommendations for the development of human intratumoral immunotherapy (HIT-IT). Annals of Oncology 2018, 29 (11), 
2163-2174. 

2. Milling, L.; Zhang, Y.; Irvine, D. J., Delivering safer immunotherapies for cancer. Advanced Drug Delivery Reviews 2017, 
114, 79-101. 

3. Marabelle, A.; Kohrt, H.; Caux, C.; Levy, R., Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clinical 
Cancer Research 2014, 20 (7), 1747-1756. 

4. Marabelle, A.; Tselikas, L.; De Baere, T.; Houot, R., Intratumoral immunotherapy: using the tumor as the remedy. Annals 
of Oncology 2017, 28 (suppl_12), xii33-xii43. 

5. Checkmate Pharmaceuticals. https://checkmatepharma.com/about.  
6. Jenkins, R. W.; Barbie, D. A.; Flaherty, K. T., Mechanisms of resistance to immune checkpoint inhibitors. British Journal 

Of Cancer 2018, 118, 9. 
7. Keown, A. Merck Acquires Immune Design for $300 Million in Cash 2019. https://www.biospace.com/article/merck-

acquires-immune-design-for-300-million-in-cash/. 
8. Design, I. Pipeline. http://www.immunedesign.com/pipeline/.  
9. Sagiv-Barfi, I.; Lu, H.; Hewitt, J.; Hsu, F. J.; Meulen, J. T.; Levy, R., Intratumoral Injection of TLR4 Agonist (G100) 

Leads to Tumor Regression of A20 Lymphoma and Induces Abscopal Responses. Blood 2015, 126 (23), 820-820. 
10. Inacio, P. Immune Design’s G100 Receives EMA’s Orphan Drug Designation for Follicular Non-Hodgkin’s Lymphoma 

2017. https://lymphomanewstoday.com/2017/10/24/g100-ema-orphan-drug-status-treatment-follicular-non-hodgkins-
lymphoma/. 

11. Coley, W. B., THE TREATMENT OF INOPERABLE SARCOMA WITH THE MIXED TOXINS OF ERYSIPELAS 
AND BACILLUS PRODIGIOSUS.: IMMEDIATE AND FINAL RESULTS IN ONE HUNDRED AND FORTY CASES. 
Journal of the American Medical Association 1898, XXXI (8), 389-395. 

12. Coley, W. B., The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus 
erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine 1910, 3 (Surg Sect), 1-48. 

13. Fuge, O.; Vasdev, N.; Allchorne, P.; Green, J. S., Immunotherapy for bladder cancer. Research and reports in urology 
2015, 7, 65-79. 

14. Fda, Aldara (Imiquimod) Cream 5% Package Insert. 2004. 
15. Aznar, M. A.; Tinari, N.; Rullán, A. J.; Sánchez-Paulete, A. R.; Rodriguez-Ruiz, M. E.; Melero, I., Intratumoral Delivery 

of Immunotherapy—Act Locally, Think Globally. The Journal of Immunology 2017, 198 (1), 31-39. 
16. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2018. CA: A Cancer Journal for Clinicians 2018, 68 (1), 7-30. 
17. Bae, Y. H.; Park, K., Targeted drug delivery to tumors: myths, reality and possibility. Journal of controlled release : 

official journal of the Controlled Release Society 2011, 153 (3), 198-205. 
18. Zhan, W.; Alamer, M.; Xu, X. Y., Computational modelling of drug delivery to solid tumour: Understanding the interplay 

between chemotherapeutics and biological system for optimised delivery systems. Advanced Drug Delivery Reviews 2018, 
132, 81-103. 

19. Shamsi, M.; Saghafian, M.; Dejam, M.; Sanati-Nezhad, A., Mathematical Modeling of the Function of Warburg Effect in 
Tumor Microenvironment. Scientific Reports 2018, 8 (1), 8903. 

20. Heldin, C.-H.; Rubin, K.; Pietras, K.; Östman, A., High interstitial fluid pressure — an obstacle in cancer therapy. Nature 
Reviews Cancer 2004, 4, 806. 

21. Jain, R. K., Transport of Molecules in the Tumor Interstitium: A Review. Cancer Research 1987, 47 (12), 3039-3051. 
22. Jain, R. K., Transport of molecules across tumor vasculature. Cancer and Metastasis Reviews 1987, 6 (4), 559-593. 
23. Galmarini, C. M.; Tannock, I. F.; Patel, K.; Trédan, O., Drug Resistance and the Solid Tumor Microenvironment. JNCI: 

Journal of the National Cancer Institute 2007, 99 (19), 1441-1454. 
24. Junttila, M. R.; De Sauvage, F. J., Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 

2013, 501, 346. 
25. Sriraman, S. K.; Aryasomayajula, B.; Torchilin, V. P., Barriers to drug delivery in solid tumors. Tissue barriers 2014, 2, 

e29528-e29528. 
26. Matsumura, Y.; Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of 

Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research 1986, 46 (12 Part 1), 6387-
6392. 

27. Gerweck, L. E.; Kozin, S. V.; Stocks, S. J., The pH partition theory predicts the accumulation and toxicity of doxorubicin 
in normal and low-pH-adapted cells. British Journal Of Cancer 1999, 79, 838. 

28. Payen, V. L.; Porporato, P. E.; Baselet, B.; Sonveaux, P., Metabolic changes associated with tumor metastasis, part 1: 
tumor pH, glycolysis and the pentose phosphate pathway. Cellular and Molecular Life Sciences 2016, 73 (7), 1333-1348. 

54



29. Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H. H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; 
Rothberg, J. M.; Sloane, B. F.; Johnson, J.; Gatenby, R. A.; Gillies, R. J., Acidity Generated by the Tumor 
Microenvironment Drives Local Invasion. Cancer Research 2013, 73 (5), 1524-1535. 

30. Kareva, I.; Hahnfeldt, P., The Emerging “Hallmarks” of Metabolic Reprogramming and Immune Evasion: Distinct or 
Linked? Cancer Research 2013, 73 (9), 2737-2742. 

31. Vinay, D. S.; Ryan, E. P.; Pawelec, G.; Talib, W. H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W. K.; Whelan, R. L.; 
Kumara, H. M. C. S.; Signori, E.; Honoki, K.; Georgakilas, A. G.; Amin, A.; Helferich, W. G.; Boosani, C. S.; Guha, G.; 
Ciriolo, M. R.; Chen, S.; Mohammed, S. I.; Azmi, A. S.; Keith, W. N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; 
Aquilano, K.; Ashraf, S. S.; Nowsheen, S.; Yang, X.; Choi, B. K.; Kwon, B. S., Immune evasion in cancer: Mechanistic 
basis and therapeutic strategies. Seminars in Cancer Biology 2015, 35, S185-S198. 

32. Gabrilovich, D., Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews 
Immunology 2004, 4 (12), 941-952. 

33. Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; 
Ostrand-Rosenberg, S.; Hedrick, C. C.; Vonderheide, R. H.; Pittet, M. J.; Jain, R. K.; Zou, W.; Howcroft, T. K.; 
Woodhouse, E. C.; Weinberg, R. A.; Krummel, M. F., Understanding the tumor immune microenvironment (TIME) for 
effective therapy. Nature Medicine 2018, 24 (5), 541-550. 

34. Li, K.; Qu, S.; Chen, X.; Wu, Q.; Shi, M., Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-
Mediated Innate Immune Pathways. Int J Mol Sci 2017, 18 (2), 404. 

35. Berraondo, P.; Sanmamed, M. F.; Ochoa, M. C.; Etxeberria, I.; Aznar, M. A.; Pérez-Gracia, J. L.; Rodríguez-Ruiz, M. E.; 
Ponz-Sarvise, M.; Castañón, E.; Melero, I., Cytokines in clinical cancer immunotherapy. British Journal of Cancer 2019, 
120 (1), 6-15. 

36. Jhawar, S. R.; Thandoni, A.; Bommareddy, P. K.; Hassan, S.; Kohlhapp, F. J.; Goyal, S.; Schenkel, J. M.; Silk, A. W.; 
Zloza, A., Oncolytic Viruses-Natural and Genetically Engineered Cancer Immunotherapies. Front Oncol 2017, 7, 202-202. 

37. Coulson, A.; Levy, A.; Gossell-Williams, M., Monoclonal Antibodies in Cancer Therapy: Mechanisms, Successes and 
Limitations. West Indian Med J 2014, 63 (6), 650-654. 

38. Goldman, I. D., Membrane Transport of Chemotherapeutics and Drug Resistance. Beyond the ABC Family of Exporters to 
the Role of Carrier-mediated Processes 2002, 8 (1), 4-6. 

39. Yang, N. J.; Hinner, M. J., Getting across the cell membrane: an overview for small molecules, peptides, and proteins. 
Methods Mol Biol 2015, 1266, 29-53. 

40. Groh, C. M.; Hubbard, M. E.; Jones, P. F.; Loadman, P. M.; Periasamy, N.; Sleeman, B. D.; Smye, S. W.; Twelves, C. J.; 
Phillips, R. M., Mathematical and computational models of drug transport in tumours. Journal of The Royal Society 
Interface 2014, 11 (94), 20131173. 

41. Minchinton, A. I.; Tannock, I. F., Drug penetration in solid tumours. Nature Reviews Cancer 2006, 6 (8), 583-592. 
42. Liu, C.; Krishnan, J.; Stebbing, J.; Xu, X. Y., Use of mathematical models to understand anticancer drug delivery and its 

effect on solid tumors. Pharmacogenomics 2011, 12 (9), 1337-1348. 
43. Mellor, H. R.; Callaghan, R., Resistance to Chemotherapy in Cancer: A Complex and Integrated Cellular Response. 

Pharmacology 2008, 81 (4), 275-300. 
44. Danhof, M.; De Lange, E. C. M.; Della Pasqua, O. E.; Ploeger, B. A.; Voskuyl, R. A., Mechanism-based pharmacokinetic-

pharmacodynamic (PK-PD) modeling in translational drug research. Trends in Pharmacological Sciences 2008, 29 (4), 
186-191. 

45. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors 
involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews 2011, 63 (3), 136-151. 

46. Kuh, H.-J.; Jang, S. H.; Wientjes, M. G.; Au, J. L.-S., Computational Model of Intracellular Pharmacokinetics of 
Paclitaxel. Journal of Pharmacology and Experimental Therapeutics 2000, 293 (3), 761-770. 

47. Venkatasubramanian, R.; Henson, M. A.; Forbes, N. S., Integrating cell-cycle progression, drug penetration and energy 
metabolism to identify improved cancer therapeutic strategies. J Theor Biol 2008, 253 (1), 98-117. 

48. Bertuzzi, A.; Gandolfi, A., Cell Kinetics in a Tumour Cord. J Theor Biol 2000, 204 (4), 587-599. 
49. Eikenberry, S., A tumor cord model for doxorubicin delivery and dose optimization in solid tumors. Theor Biol Med Model 

2009, 6, 16-16. 
50. Piretto, E.; Delitala, M.; Ferraro, M., Combination therapies and intra-tumoral competition: Insights from mathematical 

modeling. J Theor Biol 2018, 446, 149-159. 
51. Arabameri, A.; Asemani, D.; Hadjati, J., A structural methodology for modeling immune-tumor interactions including pro- 

and anti-tumor factors for clinical applications. Mathematical Biosciences 2018, 304, 48-61. 
52. Sinek, J.; Frieboes, H.; Zheng, X.; Cristini, V., Two-dimensional chemotherapy simulations demonstrate fundamental 

transport and tumor response limitations involving nanoparticles. Biomedical microdevices 2004, 6 (4), 297-309. 
53. Tzafriri, A. R.; Lerner, E. I.; Flashner-Barak, M.; Hinchcliffe, M.; Ratner, E.; Parnas, H., Mathematical Modeling and 

Optimization of Drug Delivery from Intratumorally Injected Microspheres. Clinical Cancer Research 2005, 11 (2), 826-
834. 

54. Goodman, T. T.; Chen, J.; Matveev, K.; Pun, S. H., Spatio-temporal modeling of nanoparticle delivery to multicellular 
tumor spheroids. Biotechnology and Bioengineering 2008, 101 (2), 388-399. 

55. Huai, Y.; Hossen, M. N.; Wilhelm, S.; Bhattacharya, R.; Mukherjee, P., Nanoparticle Interactions with the Tumor 
Microenvironment. Bioconjugate Chemistry 2019, 30 (9), 2247-2263. 

55



56. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. 
International journal of medical sciences 2012, 9 (3), 193-199. 

57. Radiation Therapy to Treat Cancer. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed May 
2019). NIH National Cancer Institute. 

58. Society, A. C. Radiation Therapy Basics. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-
types/radiation/basics.html.  

59. Citrin, D. E., Recent Developments in Radiotherapy. New England Journal of Medicine 2017, 377 (11), 1065-1075. 
60. Devita, V. T.; Chu, E., A History of Cancer Chemotherapy. Cancer Research 2008, 68 (21), 8643-8653. 
61. Corrie, P. G., Cytotoxic chemotherapy: clinical aspects. Medicine 2011, 39 (12), 717-722. 
62. Cohen, E. E. W.; Nabell, L.; Wong, D. J. L.; Day, T. A.; Daniels, G. A.; Milhem, M. M.; Deva, S.; Jameson, M. B.; 

Guntinas-Lichius, O.; Almubarak, M.; Strother, R. M.; Whitman, E. D.; Chisamore, M. J.; Obiozor, C. C.; Bagulho, T.; 
Candia, A.; Gamelin, E.; Janssen, R.; Algazi, A. P., Phase 1b/2, open label, multicenter study of intratumoral SD-101 in 
combination with pembrolizumab in anti-PD-1 treatment naïve patients with recurrent or metastatic head and neck 
squamous cell carcinoma (HNSCC). Journal of Clinical Oncology 2019, 37 (15_suppl), 6039-6039. 

63. Mellman, I.; Coukos, G.; Dranoff, G., Cancer immunotherapy comes of age. Nature 2011, 480, 480. 
64. Lesterhuis, W. J.; Haanen, J. B. a. G.; Punt, C. J. A., Cancer immunotherapy – revisited. Nature Reviews Drug Discovery 

2011, 10, 591. 
65. Topalian, Suzanne l.; Drake, Charles g.; Pardoll, Drew m., Immune Checkpoint Blockade: A Common Denominator 

Approach to Cancer Therapy. Cancer Cell 2015, 27 (4), 450-461. 
66. Mahoney, K. M.; Freeman, G. J.; Mcdermott, D. F., The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in 

Melanoma. Clinical Therapeutics 2015, 37 (4), 764-782. 
67. Spain, L.; Diem, S.; Larkin, J., Management of toxicities of immune checkpoint inhibitors. Cancer Treatment Reviews 

2016, 44, 51-60. 
68. Lawler, S. E.; Speranza, M.-C.; Cho, C.-F.; Chiocca, E. A., Oncolytic Viruses in Cancer Treatment: A ReviewOncolytic 

Viruses in Cancer TreatmentOncolytic Viruses in Cancer Treatment. JAMA Oncology 2017, 3 (6), 841-849. 
69. Lee, S.; Margolin, K., Cytokines in cancer immunotherapy. Cancers 2011, 3 (4), 3856-3893. 
70. Monie, A.; Hung, C.-F.; Roden, R.; Wu, T. C., Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical 

cancer. Biologics : targets & therapy 2008, 2 (1), 97-105. 
71. Cheever, M. A.; Higano, C. S., PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic 

Cancer Vaccine. Clinical Cancer Research 2011, 17 (11), 3520-3526. 
72. Xu, H.; Wang, F.; Li, H.; Ji, J.; Cao, Z.; Lyu, J.; Shi, X.; Zhu, Y.; Zhang, C.; Guo, F.; Fang, Z.; Yang, B.; Sun, Y., Prostatic 

Acid Phosphatase (PAP) Predicts Prostate Cancer Progress in a Population-Based Study: The Renewal of PAP? Dis 
Markers 2019, 2019, 7090545-7090545. 

73. Sridhar, P.; Petrocca, F., Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy. Cancers 
2017, 9 (7), 92. 

74. Aleynick, M.; Svensson-Arvelund, J.; Flowers, C. R.; Marabelle, A.; Brody, J. D., Pathogen molecular pattern receptor 
agonists: treating cancer by mimicking infection. Clinical Cancer Research 2019, clincanres.1800.2019. 

75. Krieg, A. M., CpG Motifs in Bacterial DNA and Their Immune Effects. Annual Review of Immunology 2002, 20 (1), 709-
760. 

76. Klinman, D. M., Immunotherapeutic uses of CpG oligodeoxynucleotides. Nature Reviews Immunology 2004, 4 (4), 249-
259. 

77. Wittig, B.; Schmidt, M.; Scheithauer, W.; Schmoll, H.-J., MGN1703, an immunomodulator and toll-like receptor 9 (TLR-
9) agonist: From bench to bedside. Critical Reviews in Oncology/Hematology 2015, 94 (1), 31-44. 

78. Cornfeld, M. J., IMO-2125, an investigational intratumoral tolllike receptor 9 agonist, modulates the tumor 
microenvironment to enhance anti-tumor immunity. Pharmaceuticals, I., Ed. 2016. 

79. Merck, TICE BCG Package Insert. 2019. 
80. Pfizer, Agatolimod Sodium. STATEMENT ON A NONPROPRIETARY NAME ADOPTED BY THE USAN COUNCIL  
81. Klein, D. C. G.; Latz, E.; Espevik, T.; Stokke, B. T., Higher order structure of short immunostimulatory oligonucleotides 

studied by atomic force microscopy. Ultramicroscopy 2010, 110 (6), 689-693. 
82. Brody, J. D.; Ai, W. Z.; Czerwinski, D. K.; Torchia, J. A.; Levy, M.; Advani, R. H.; Kim, Y. H.; Hoppe, R. T.; Knox, S. J.; 

Shin, L. K.; Wapnir, I.; Tibshirani, R. J.; Levy, R., In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma 
Regression: A Phase I/II Study. Journal of Clinical Oncology 2010, 28 (28), 4324-4332. 

83. A Phase 2 Intratumoral Injection PF-3512676 Plus Local Radiation in Low-Grade B-Cell Lymphomas. 
https://ClinicalTrials.gov/show/NCT00880581. 

84. Agrawal, S., Creating a Beneficial Tumor Microenvironment for Effective Cancer Immunotherapy. Pharmaceuticals, I., 
Ed. 2017. 

85. Pharmaceuticals, I., Tilsotolimod. Statement on a nonproprietary name adopted by the USAN council: 2018. 
86. Engel, A. L.; Holt, G. E.; Lu, H., The pharmacokinetics of Toll-like receptor agonists and the impact on the immune 

system. Expert Review of Clinical Pharmacology 2011, 4 (2), 275-289. 
87. Schmidt, M.; Hagner, N.; Marco, A.; König-Merediz, S. A.; Schroff, M.; Wittig, B., Design and Structural Requirements 

of the Potent and Safe TLR-9 Agonistic Immunomodulator MGN1703. Nucleic Acid Ther 2015, 25 (3), 130-140. 

56



88. Rodas, I. M. In Intratumoral BO-112, a double-stranded RNA (dsRNA), alone and in combination with systemic anti-PD-1 
in solid tumors, ESMO 2018 Congress, 2018. 

89. Pozuelo Rubio, Q. O., Villanueva Garcia Novel pharmaceutical composition comprising particles comprising a complex of 
a double-stranded polyribonucleotide and a polyalkyleneimine. 2017. 

90. Anderson, R. C.; Fox, C. B.; Dutill, T. S.; Shaverdian, N.; Evers, T. L.; Poshusta, G. R.; Chesko, J.; Coler, R. N.; Friede, 
M.; Reed, S. G.; Vedvick, T. S., Physicochemical characterization and biological activity of synthetic TLR4 agonist 
formulations. Colloids and Surfaces B: Biointerfaces 2010, 75 (1), 123-132. 

91. Salazar, A. M.; Erlich, R. B.; Mark, A.; Bhardwaj, N.; Herberman, R. B., Therapeutic In Situ Autovaccination against 
Solid Cancers with Intratumoral Poly-ICLC: Case Report, Hypothesis, and Clinical Trial. Cancer Immunology Research 
2014, 2 (8), 720-724. 

92. Levy, H. B. Nuclease-Resistant Hydrophilic Complex of Polyinsosinic-Polyribocytidylic Acid. 1982. 
93. Middleton, M. R.; Wermke, M.; Calvo, E.; Chartash, E.; Zhou, H.; Zhao, X.; Niewel, M.; Dobrenkov, K.; Moreno, V., 

LBA16Phase I/II, multicenter, open-label study of intratumoral/intralesional administration of the retinoic acid–inducible 
gene I (RIG-I) activator MK-4621 in patients with advanced or recurrent tumors. Annals of Oncology 2018, 29 (suppl_8). 

94. Intratumoral/Intralesional Administration of MK-4621/JetPEI™ With or Without Pembrolizumab in Participants With 
Advanced/Metastatic or Recurrent Solid Tumors (MK-4621-002). https://ClinicalTrials.gov/show/NCT03739138. 

95. Coler, R. N.; Bertholet, S.; Moutaftsi, M.; Guderian, J. A.; Windish, H. P.; Baldwin, S. L.; Laughlin, E. M.; Duthie, M. S.; 
Fox, C. B.; Carter, D.; Friede, M.; Vedvick, T. S.; Reed, S. G., Development and Characterization of Synthetic 
Glucopyranosyl Lipid Adjuvant System as a Vaccine Adjuvant. PLOS ONE 2011, 6 (1), e16333. 

96. Sun, J.; Remmele, R. L.; Sanyal, G., Analytical Characterization of an Oil-in-Water Adjuvant Emulsion. AAPS 
PharmSciTech 2017, 18 (5), 1595-1604. 

97. Carter, D.; Fox, C. B.; Day, T. A.; Guderian, J. A.; Liang, H.; Rolf, T.; Vergara, J.; Sagawa, Z. K.; Ireton, G.; Orr, M. T.; 
Desbien, A.; Duthie, M. S.; Coler, R. N.; Reed, S. G., A structure-function approach to optimizing TLR4 ligands for 
human vaccines. Clin Transl Immunology 2016, 5 (11), e108-e108. 

98. Misquith, A.; Fung, H. W. M.; Dowling, Q. M.; Guderian, J. A.; Vedvick, T. S.; Fox, C. B., In vitro evaluation of TLR4 
agonist activity: Formulation effects. Colloids and Surfaces B: Biointerfaces 2014, 113, 312-319. 

99. Nomura, T.; Koreeda, N.; Yamashita, F.; Takakura, Y.; Hashida, M., Effect of Particle Size and Charge on the Disposition 
of Lipid Carriers After Intratumoral Injection into Tissue-isolated Tumors. Pharmaceutical Research 1998, 15 (1), 128-
132. 

100. Kawakami, S.; Yamashita, F.; Hashida, M., Disposition characteristics of emulsions and incorporated drugs after systemic 
or local injection. Advanced Drug Delivery Reviews 2000, 45 (1), 77-88. 

101. Theys, J.; Lambin, P., Clostridium to treat cancer: dream or reality? Annals of Translational Medicine 2015. 
102. Groves, M. J., Pharmaceutical Characterization of Mycobacterium bovis Bacillus Calmette-Guérin (BCG) Vaccine Used 

for the Treatment of Superficial Bladder Cancer. Journal of Pharmaceutical Sciences 1993, 82 (6), 555-562. 
103. Adams, S., Toll-like receptor agonists in cancer therapy. Immunotherapy 2009, 1 (6), 949-964. 
104. Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; 

Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; 
Kastenmüller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, 
L. W.; Seder, R. A., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that 
enhance vaccine immunogenicity. Nature Biotechnology 2015, 33 (11), 1201-1210. 

105. Waldmann, T., Cytokines in Cancer Immunotherapy. Cold Spring Harbor Perspectives in Biology 2017, 10, a028472. 
106. Conlon, K. C.; Miljkovic, M. D.; Waldmann, T. A., Cytokines in the Treatment of Cancer. Journal of Interferon & 

Cytokine Research 2019, 39 (1), 6-21. 
107. Hong, I.-S., Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. 

Experimental & molecular medicine 2016, 48 (7), e242. 
108. Arenas-Ramirez, N.; Woytschak, J.; Boyman, O., Interleukin-2: biology, design and application. Trends in Immunology 

2015, 36 (12), 763-777. 
109. Crespo, J.; Sun, H.; Welling, T. H.; Tian, Z.; Zou, W., T cell anergy, exhaustion, senescence, and stemness in the tumor 

microenvironment. Current Opinion in Immunology 2013, 25 (2), 214-221. 
110. Emerson, L.; Morales, A., Intralesional recombinant α‐interferon for localized prostate cancer: a pilot study with follow‐up 

of> 10 years. BJU international 2009, 104 (8), 1068-1070. 
111. Stenken, J. A.; Poschenrieder, A. J., Bioanalytical chemistry of cytokines--a review. Anal Chim Acta 2015, 853, 95-115. 
112. Van Herpen, C. M.; Huijbens, R.; Looman, M.; De Vries, J.; Marres, H.; Van De Ven, J.; Hermsen, R.; Adema, G. J.; De 

Mulder, P. H., Pharmacokinetics and immunological aspects of a phase Ib study with intratumoral administration of 
recombinant human interleukin-12 in patients with head and neck squamous cell carcinoma: a decrease of T-bet in 
peripheral blood mononuclear cells. Clinical cancer research 2003, 9 (8), 2950-2956. 

113. Van Herpen, C. M.; Looman, M.; Zonneveld, M.; Scharenborg, N.; De Wilde, P. C.; Van De Locht, L.; Merkx, M. A.; 
Adema, G. J.; De Mulder, P. H., Intratumoral administration of recombinant human interleukin 12 in head and neck 
squamous cell carcinoma patients elicits a T-helper 1 profile in the locoregional lymph nodes. Clinical Cancer Research 
2004, 10 (8), 2626-2635. 

57



114. Feinmesser, R.; Hardy, B.; Sadov, R.; Shwartz, A.; Chretien, P.; Feinmesser, M., Report of a clinical trial in 12 patients 
with head and neck cancer treated intratumorally and peritumorally with multikine. Archives of Otolaryngology–Head & 
Neck Surgery 2003, 129 (8), 874-881. 

115. Kurzrock, R., Granulocyte-macrophage colony-stimulating factor. In Holland-Frei Cancer Medicine, 6 ed.; Kufe, D. W.; 
Pollock, R. E.; Weichselbaum, R. R.; Robert C Bast, J.; Gansler, T. S.; Holland, J. F.; Emil Frei, I., Eds. BC Decker: 
Hamilton (ON), 2003. 

116. Diederichs, K.; Boone, T.; Karplus, P. A., Novel fold and putative receptor binding site of granulocyte-macrophage 
colony-stimulating factor. Science 1991, 254 (5039), 1779-1782. 

117. Yan, W.-L.; Shen, K.-Y.; Tien, C.-Y.; Chen, Y.-A.; Liu, S.-J., Recent progress in GM-CSF-based cancer immunotherapy. 
Immunotherapy 2017, 9 (4), 347-360. 

118. Davidson, J. A.; Musk, A. W.; Wood, B. R.; Morey, S.; Ilton, M.; Yu, L. L.; Drury, P.; Shilkin, K.; Robinson, B., 
Intralesional cytokine therapy in cancer: a pilot study of GM-CSF infusion in mesothelioma. Journal of immunotherapy 
(Hagerstown, Md.: 1997) 1998, 21 (5), 389-398. 

119. Si, Z.; Hersey, P.; Coates, A., Clinical responses and lymphoid infiltrates in metastatic melanoma following treatment with 
intralesional GM-CSF. Melanoma research 1996, 6 (3), 247-255. 

120. Hoeller, C.; Jansen, B.; Heere-Ress, E.; Pustelnik, T.; Mossbacher, U.; Schlagbauer-Wadl, H.; Wolff, K.; Pehamberger, H., 
Perilesional injection of r-GM-CSF in patients with cutaneous melanoma metastases. Journal of investigative dermatology 
2001, 117 (2), 371-374. 

121. Butz, M.; Devenish, S.; Com, Interleukin-2 stability in changing buffer and temperature conditions Application note. 2018. 
122. Weide, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T. K.; Radny, P.; Zelba, H.; Pföhler, C.; Pawelec, G.; Garbe, C., 

High response rate after intratumoral treatment with interleukin‐2: results from a phase 2 study in 51 patients with 
metastasized melanoma. Cancer 2010, 116 (17), 4139-4146. 

123. Radny, P.; Caroli, U.; Bauer, J.; Paul, T.; Schlegel, C.; Eigentler, T.; Weide, B.; Schwarz, M.; Garbe, C., Phase II trial of 
intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. British journal of cancer 2003, 89 (9), 1620. 

124. Vlock, D. R.; Snyderman, C. H.; Johnson, J. T.; Myers, E. N.; Eibling, D. E.; Rubin, J. S.; Kirkwood, J. M.; Dutcher, J. P.; 
Adams, G. L., Phase Ib trial of the effect of peritumoral and intranodal injections of interleukin-2 in patients with advanced 
squamous cell carcinoma of the head and neck: an Eastern Cooperative Oncology Group trial. Journal of immunotherapy 
with emphasis on tumor immunology: official journal of the Society for Biological Therapy 1994, 15 (2), 134-139. 

125. Kaplan, B.; Moy, R. L., Effect of perilesional injections of PEG‐interleukin‐2 on basal cell carcinoma. Dermatologic 
surgery 2000, 26 (11), 1037-1040. 

126. Mattijssen, V.; De Mulder, P.; De Graeff, A.; Hupperets, P.; Joosten, F.; Ruiter, D.; Bier, H.; Palmer, P.; Van Den Broek, 
P., Intratumoral PEG-interleukin-2 therapy in patients with locoregionally recurrent head and neck squamous-cell 
carcinoma. Annals of oncology 1994, 5 (10), 957-960. 

127. Charych, D.; Khalili, S.; Dixit, V.; Kirk, P.; Chang, T.; Langowski, J.; Rubas, W.; Doberstein, S. K.; Eldon, M.; Hoch, U., 
Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled 
interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PloS one 2017, 12 (7), e0179431. 

128. Joshi, B.; Leland, P.; Silber, J.; Kreitman, R.; Pastan, I.; Berger, M.; Puri, R., IL-4 receptors on human medulloblastoma 
tumours serve as a sensitive target for a circular permuted IL-4-Pseudomonas exotoxin fusion protein. British journal of 
cancer 2002, 86 (2), 285. 

129. Prados, M.; Kunwar, S.; Lang, F.; Ram, Z.; Westphal, M.; Barnett, G.; Sampson, J.; Croteau, D.; Puri, R., Final results of 
phase I/II studies of IL13-PE38QQR administered intratumorally (IT) and/or peritumorally (PT) via convection-enhanced 
delivery (CED) in patients undergoing tumor resection for recurrent malignant glioma. Journal of Clinical Oncology 2005, 
23 (16_suppl), 1506-1506. 

130. Tang, A.; Harding, F., The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. 
Cytokine: X 2018, 100001. 

131. Danielli, R.; Patuzzo, R.; Di Giacomo, A. M.; Gallino, G.; Maurichi, A.; Di Florio, A.; Cutaia, O.; Lazzeri, A.; Fazio, C.; 
Miracco, C.; Giovannoni, L.; Elia, G.; Neri, D.; Maio, M.; Santinami, M., Intralesional administration of L19-IL2/L19-
TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunology, Immunotherapy 
2015, 64 (8), 999-1009. 

132. Mullen, J. T.; Tanabe, K. K., Viral oncolysis. The oncologist 2002, 7 (2), 106-119. 
133. Ganly, I.; Kirn, D.; Eckhardt, S. G.; Rodriguez, G. I.; Soutar, D. S.; Otto, R.; Robertson, A. G.; Park, O.; Gulley, M. L.; 

Heise, C., A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with 
recurrent head and neck cancer. Clinical Cancer Research 2000, 6 (3), 798-806. 

134. Khuri, F. R.; Nemunaitis, J.; Ganly, I.; Arseneau, J.; Tannock, I. F.; Romel, L.; Gore, M.; Ironside, J.; Macdougall, R.; 
Heise, C., A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin 
and 5-fluorouracil in patients with recurrent head and neck cancer. Nature medicine 2000, 6 (8), 879. 

135. Lang, F. F.; Conrad, C.; Gomez-Manzano, C.; Yung, W. A.; Sawaya, R.; Weinberg, J. S.; Prabhu, S. S.; Rao, G.; Fuller, G. 
N.; Aldape, K. D., Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic 
effects in recurrent malignant glioma. Journal of Clinical Oncology 2018, 36 (14), 1419. 

136. Andtbacka, R. H. I.; Curti, B. D.; Kaufman, H.; Daniels, G. A.; Nemunaitis, J. J.; Spitler, L. E.; Hallmeyer, S.; Lutzky, J.; 
Schultz, S. M.; Whitman, E. D., Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus 
immunotherapy in patients with advanced melanoma. American Society of Clinical Oncology: 2015. 

58



137. Nakao, A.; Kasuya, H.; Sahin, T.; Nomura, N.; Kanzaki, A.; Misawa, M.; Shirota, T.; Yamada, S.; Fujii, T.; Sugimoto, H., 
A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-
resectable patients with advanced pancreatic cancer. Cancer gene therapy 2011, 18 (3), 167. 

138. Hirooka, Y.; Kasuya, H.; Ishikawa, T.; Kawashima, H.; Ohno, E.; Villalobos, I. B.; Naoe, Y.; Ichinose, T.; Koyama, N.; 
Tanaka, M., A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable 
locally advanced pancreatic cancer. BMC cancer 2018, 18 (1), 596. 

139. Rampling, R.; Cruickshank, G.; Papanastassiou, V.; Nicoll, J.; Hadley, D.; Brennan, D. A.; Petty, R.; Maclean, A.; 
Harland, J.; Mckie, E., Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in 
patients with recurrent malignant glioma. Gene therapy 2000, 7 (10), 859. 

140. Geletneky, K.; Hajda, J.; Angelova, A. L.; Leuchs, B.; Capper, D.; Bartsch, A. J.; Neumann, J.-O.; Schöning, T.; Hüsing, 
J.; Beelte, B., Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma 
trial. Molecular Therapy 2017, 25 (12), 2620-2634. 

141. Heinzerling, L.; Künzi, V.; Oberholzer, P. A.; Kündig, T.; Naim, H.; Dummer, R., Oncolytic measles virus in cutaneous T-
cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 2005, 106 
(7), 2287-2294. 

142. Mahalingam, D.; Goel, S.; Aparo, S.; Patel Arora, S.; Noronha, N.; Tran, H.; Chakrabarty, R.; Selvaggi, G.; Gutierrez, A.; 
Coffey, M., A phase II study of pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced 
pancreatic adenocarcinoma. Cancers 2018, 10 (6), 160. 

143. Zeh, H. J.; Downs-Canner, S.; Mccart, J. A.; Guo, Z. S.; Rao, U. N.; Ramalingam, L.; Thorne, S. H.; Jones, H. L.; Kalinski, 
P.; Wieckowski, E., First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and 
antitumor activity. Molecular Therapy 2015, 23 (1), 202-214. 

144. Hidai, C.; Kitano, H., Nonviral Gene Therapy for Cancer: A Review. Diseases 2018, 6 (3), 57. 
145. Rehman, H.; Silk, A. W.; Kane, M. P.; Kaufman, H. L., Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class 

intratumoral oncolytic viral therapy. Journal for immunotherapy of cancer 2016, 4, 53-53. 
146. Ranki, T.; Pesonen, S.; Hemminki, A.; Partanen, K.; Kairemo, K.; Alanko, T.; Lundin, J.; Linder, N.; Turkki, R.; 

Ristimäki, A.; Jäger, E.; Karbach, J.; Wahle, C.; Kankainen, M.; Backman, C.; Von Euler, M.; Haavisto, E.; Hakonen, T.; 
Heiskanen, R.; Jaderberg, M.; Juhila, J.; Priha, P.; Suoranta, L.; Vassilev, L.; Vuolanto, A.; Joensuu, T., Phase I study with 
ONCOS-102 for the treatment of solid tumors - an evaluation of clinical response and exploratory analyses of immune 
markers. Journal for immunotherapy of cancer 2016, 4, 17-17. 

147. Heo, J.; Reid, T.; Ruo, L.; Breitbach, C. J.; Rose, S.; Bloomston, M.; Cho, M.; Lim, H. Y.; Chung, H. C.; Kim, C. W.; 
Burke, J.; Lencioni, R.; Hickman, T.; Moon, A.; Lee, Y. S.; Kim, M. K.; Daneshmand, M.; Dubois, K.; Longpre, L.; Ngo, 
M.; Rooney, C.; Bell, J. C.; Rhee, B.-G.; Patt, R.; Hwang, T.-H.; Kirn, D. H., Randomized dose-finding clinical trial of 
oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Medicine 2013, 19, 329. 

148. Dummer, R.; Eichmüller, S.; Gellrich, S.; Assaf, C.; Dreno, B.; Schiller, M.; Dereure, O.; Baudard, M.; Bagot, M.; 
Khammari, A.; Bleuzen, P.; Bataille, V.; Derbij, A.; Wiedemann, N.; Waterboer, T.; Lusky, M.; Acres, B.; Urosevic-
Maiwald, M., Phase II Clinical Trial of Intratumoral Application of TG1042 (adenovirus-interferon-gamma) in Patients 
with Advanced Cutaneous T-cell Lymphomas and Multilesional Cutaneous B-cell Lymphomas. Mol Ther 2010, 18 (6), 
1244-1247. 

149. Dreno, B.; Urosevic-Maiwald, M.; Kim, Y.; Guitart, J.; Duvic, M.; Dereure, O.; Khammari, A.; Knol, A.-C.; Derbij, A.; 
Lusky, M.; Didillon, I.; Santoni, A.-M.; Acres, B.; Bataille, V.; Chenard, M.-P.; Bleuzen, P.; Limacher, J.-M.; Dummer, 
R., TG1042 (Adenovirus-interferon-γ) in Primary Cutaneous B-cell Lymphomas: A Phase II Clinical Trial. PLOS ONE 
2014, 9 (2), e83670. 

150. Hecht, J. R.; Farrell, J. J.; Senzer, N.; Nemunaitis, J.; Rosemurgy, A.; Chung, T.; Hanna, N.; Chang, K. J.; Javle, M.; 
Posner, M., EUS or percutaneously guided intratumoral TNFerade biologic with 5-fluorouracil and radiotherapy for first-
line treatment of locally advanced pancreatic cancer: a phase I/II study. Gastrointestinal endoscopy 2012, 75 (2), 332-338. 

151. Mundt, A. J.; Vijayakumar, S.; Nemunaitis, J.; Sandler, A.; Schwartz, H.; Hanna, N.; Peabody, T.; Senzer, N.; Chu, K.; 
Rasmussen, C. S., A Phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clinical 
cancer research 2004, 10 (17), 5747-5753. 

152. Chang, K. J.; Reid, T.; Senzer, N.; Swisher, S.; Pinto, H.; Hanna, N.; Chak, A.; Soetikno, R., Phase I evaluation of 
TNFerade biologic plus chemoradiotherapy before esophagectomy for locally advanced resectable esophageal cancer. 
Gastrointestinal endoscopy 2012, 75 (6), 1139-1146. e2. 

153. Linette, G. P.; Hamid, O.; Whitman, E. D.; Nemunaitis, J. J.; Chesney, J.; Agarwala, S. S.; Starodub, A.; Barrett, J. A.; 
Marsh, A.; Martell, L. A.; Cho, A.; Reed, T. D.; Youssoufian, H.; Vergara-Silva, A., A phase I open-label study of Ad-
RTS-hIL-12, an adenoviral vector engineered to express hIL-12 under the control of an oral activator ligand, in subjects 
with unresectable stage III/IV melanoma. Journal of Clinical Oncology 2013, 31 (15_suppl), 3022-3022. 

154. Rosenthal, E. L.; Chung, T. K.; Parker, W. B.; Allan, P. W.; Clemons, L.; Lowman, D.; Hong, J.; Hunt, F. R.; Richman, J.; 
Conry, R. M.; Mannion, K.; Carroll, W. R.; Nabell, L.; Sorscher, E. J., Phase I dose-escalating trial of Escherichia coli 
purine nucleoside phosphorylase and fludarabine gene therapy for advanced solid tumors†. Annals of Oncology 2015, 26 
(7), 1481-1487. 

155. Sangro, B.; Mazzolini, G.; Ruiz, M.; Ruiz, J.; Quiroga, J.; Herrero, I.; Qian, C.; Benito, A.; Larrache, J.; Olagüe, C., A 
phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer gene therapy 
2010, 17 (12), 837. 

59



156. Sung, M. W.; Yeh, H.-C.; Thung, S. N.; Schwartz, M. E.; Mandeli, J. P.; Chen, S.-H.; Woo, S. L., Intratumoral adenovirus-
mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. 
Molecular Therapy 2001, 4 (3), 182-191. 

157. Trask, T. W.; Trask, R. P.; Aguilar-Cordova, E.; Shine, H. D.; Wyde, P. R.; Goodman, J. C.; Hamilton, W. J.; Rojas-
Martinez, A.; Chen, S.-H.; Woo, S. L., Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir 
administration in patients with recurrent malignant brain tumors. Molecular therapy 2000, 1 (2), 195-203. 

158. Mahvi, D.; Henry, M.; Albertini, M.; Weber, S.; Meredith, K.; Schalch, H.; Rakhmilevich, A.; Hank, J.; Sondel, P., 
Intratumoral injection of IL-12 plasmid DNA–results of a phase I/IB clinical trial. Cancer gene therapy 2007, 14 (8), 717. 

159. Canton, D. A.; Shirley, S.; Wright, J.; Connolly, R.; Burkart, C.; Mukhopadhyay, A.; Twitty, C.; Qattan, K. E.; Campbell, 
J. S.; Le, M. H.; Pierce, R. H.; Gargosky, S.; Daud, A.; Algazi, A., Melanoma treatment with intratumoral electroporation 
of tavokinogene telseplasmid (pIL-12, tavokinogene telseplasmid). Immunotherapy 2017, 9 (16), 1309-1321. 

160. Daud, A. I.; Deconti, R. C.; Andrews, S.; Urbas, P.; Riker, A. I.; Sondak, V. K.; Munster, P. N.; Sullivan, D. M.; Ugen, K. 
E.; Messina, J. L., Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. Journal of 
clinical oncology 2008, 26 (36), 5896. 

161. Tros De Ilarduya, C.; Sun, Y.; Düzgüneş, N., Gene delivery by lipoplexes and polyplexes. European Journal of 
Pharmaceutical Sciences 2010, 40 (3), 159-170. 

162. Lai, S. Y.; Koppikar, P.; Thomas, S. M.; Childs, E. E.; Egloff, A. M.; Seethala, R. R.; Branstetter, B. F.; Gooding, W. E.; 
Muthukrishnan, A.; Mountz, J. M., Intratumoral epidermal growth factor receptor antisense DNA therapy in head and neck 
cancer: first human application and potential antitumor mechanisms. Journal of Clinical Oncology 2009, 27 (8), 1235. 

163. Gofrit, O. N.; Benjamin, S.; Halachmi, S.; Leibovitch, I.; Dotan, Z.; Lamm, D. L.; Ehrlich, N.; Yutkin, V.; Ben-Am, M.; 
Hochberg, A., DNA Based Therapy with Diphtheria Toxin-A BC-819: A Phase 2b Marker Lesion Trial in Patients with 
Intermediate Risk Nonmuscle Invasive Bladder Cancer. Journal of Urology 2014, 191 (6), 1697-1702. 

164. Buscail, L.; Bournet, B.; Vernejoul, F.; Cambois, G.; Lulka, H.; Hanoun, N.; Dufresne, M.; Meulle, A.; Vignolle-Vidoni, 
A.; Ligat, L.; Saint-Laurent, N.; Pont, F.; Dejean, S.; Gayral, M.; Martins, F.; Torrisani, J.; Barbey, O.; Gross, F.; 
Guimbaud, R.; Otal, P.; Lopez, F.; Tiraby, G.; Cordelier, P., First-in-man phase 1 clinical trial of gene therapy for 
advanced pancreatic cancer: safety, biodistribution, and preliminary clinical findings. Mol Ther 2015, 23 (4), 779-789. 

165. Weiner, L. M.; Murray, J. C.; Shuptrine, C. W., Antibody-based immunotherapy of cancer. Cell 2012, 148 (6), 1081-4. 
166. Singh, P. K.; Doley, J.; Kumar, G. R.; Sahoo, A. P.; Tiwari, A. K., Oncolytic viruses & their specific targeting to tumour 

cells. Indian J Med Res 2012, 136 (4), 571-584. 
167. Laine, R. F.; Albecka, A.; Van De Linde, S.; Rees, E. J.; Crump, C. M.; Kaminski, C. F., Structural analysis of herpes 

simplex virus by optical super-resolution imaging. Nature communications 2015, 6, 5980. 
168. Wong, H. H.; Lemoine, N.; Wang, Y., Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2010, 2 (1), 

78-106. 
169. Xiao, C.; Bator-Kelly, C. M.; Rieder, E.; Chipman, P. R.; Craig, A.; Kuhn, R. J.; Wimmer, E.; Rossmann, M. G., The 

crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 2005, 13 (7), 1019-1033. 
170. Bellini, W. J.; Rota, J. S.; Rota, P. A., Virology of measles virus. Journal of Infectious Diseases 1994, 170 

(Supplement_1), S15-S23. 
171. Liu, B.; Robinson, M.; Han, Z.; Branston, R.; English, C.; Reay, P.; Mcgrath, Y.; Thomas, S.; Thornton, M.; Bullock, P., 

ICP34. 5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene 
therapy 2003, 10 (4), 292. 

172. Andtbacka, R. H.; Collichio, F.; Harrington, K. J.; Middleton, M. R.; Downey, G.; Ӧhrling, K.; Kaufman, H. L., Final 
analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-
stimulating factor in unresectable stage III–IV melanoma. Journal for immunotherapy of cancer 2019, 7 (1), 145. 

173. Rochlitz, C., Gene therapy of cancer. Swiss medical weekly 2001, 131 (0102). 
174. Stewart, S. A.; Dykxhoorn, D. M.; Palliser, D.; Mizuno, H.; Yu, E. Y.; An, D. S.; Sabatini, D. M.; Chen, I. S.; Hahn, W. 

C.; Sharp, P. A., Lentivirus-delivered stable gene silencing by RNAi in primary cells. Rna 2003, 9 (4), 493-501. 
175. Kabadi, A. M.; Ousterout, D. G.; Hilton, I. B.; Gersbach, C. A., Multiplex CRISPR/Cas9-based genome engineering from a 

single lentiviral vector. Nucleic acids research 2014, 42 (19), e147-e147. 
176. Rols, M.-P., Mechanism by which electroporation mediates DNA migration and entry into cells and targeted tissues. In 

Electroporation Protocols, Springer: 2008; pp 19-33. 
177. Hochberg, A.; Gallula, J. Nucleic Acid-Cationic Polymer Compositions and Methods of Making and Using the Same. 

2018. 
178. Gossart, J.-B.; Kédinger, V.; Guérin-Peyrou, G.; Erbacher, P.; Bolcato-Bellemin, A.-L., Application Note: Bioimaging of 

Gene Delivery with In Vivo-jetPEI. PerkinElmer, Inc. : 2013. 
179. Darvin, P.; Toor, S. M.; Sasidharan Nair, V.; Elkord, E., Immune checkpoint inhibitors: recent progress and potential 

biomarkers. Exp Mol Med 2018, 50 (12), 165. 
180. Kohrt, H. E.; Tumeh, P. C.; Benson, D.; Bhardwaj, N.; Brody, J.; Formenti, S.; Fox, B. A.; Galon, J.; June, C. H.; Kalos, 

M.; Kirsch, I.; Kleen, T.; Kroemer, G.; Lanier, L.; Levy, R.; Lyerly, H. K.; Maecker, H.; Marabelle, A.; Melenhorst, J.; 
Miller, J.; Melero, I.; Odunsi, K.; Palucka, K.; Peoples, G.; Ribas, A.; Robins, H.; Robinson, W.; Serafini, T.; Sondel, P.; 
Vivier, E.; Weber, J.; Wolchok, J.; Zitvogel, L.; Disis, M. L.; Cheever, M. A.; Cancer Immunotherapy Trials, N., 
Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical 
trials. J Immunother Cancer 2016, 4, 15. 

60



181. Ellmark, P.; Mangsbo, S. M.; Furebring, C.; Norlen, P.; Totterman, T. H., Tumor-directed immunotherapy can generate 
tumor-specific T cell responses through localized co-stimulation. Cancer Immunol Immunother 2017, 66 (1), 1-7. 

182. Ray, A.; Williams, M. A.; Meek, S. M.; Bowen, R. C.; Grossmann, K. F.; Andtbacka, R. H.; Bowles, T. L.; Hyngstrom, J. 
R.; Leachman, S. A.; Grossman, D.; Bowen, G. M.; Holmen, S. L.; Vanbrocklin, M. W.; Suneja, G.; Khong, H. T., A phase 
I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma. Oncotarget 2016, 7 (39), 64390-
64399. 

183. A Study of Intratumoral Injection of Interleukin-2 and Ipilimumab in Patients With Unresectable Stages III-IV Melanoma. 
https://ClinicalTrials.gov/show/NCT01672450.  

184. Irenaeus, S. M. M.; Nielsen, D.; Ellmark, P.; Yachnin, J.; Deronic, A.; Nilsson, A.; Norlen, P.; Veitonmaki, N.; 
Wennersten, C. S.; Ullenhag, G. J., First-in-human study with intratumoral administration of a CD40 agonistic antibody, 
ADC-1013, in advanced solid malignancies. Int J Cancer 2019, 145 (5), 1189-1199. 

185. ADC-1013 First-in-Human Study. https://ClinicalTrials.gov/show/NCT02379741. 
186. Reth, M., Matching cellular dimensions with molecular sizes. Nature Immunology 2013, 14, 765. 
187. Broos, S.; Sandin, L. C.; Apel, J.; Totterman, T. H.; Akagi, T.; Akashi, M.; Borrebaeck, C. A.; Ellmark, P.; Lindstedt, M., 

Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(gamma-glutamic 
acid) nanoparticles. Biomaterials 2012, 33 (26), 6230-9. 

188. Dominguez, A. L.; Lustgarten, J., Targeting the tumor microenvironment with anti-neu/anti-CD40 conjugated 
nanoparticles for the induction of antitumor immune responses. Vaccine 2010, 28 (5), 1383-90. 

189. Fransen, M. F.; Cordfunke, R. A.; Sluijter, M.; Van Steenbergen, M. J.; Drijfhout, J. W.; Ossendorp, F.; Hennink, W. E.; 
Melief, C. J., Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer. Vaccine 2014, 
32 (15), 1654-60. 

190. Sandin, L. C.; Orlova, A.; Gustafsson, E.; Ellmark, P.; Tolmachev, V.; Totterman, T. H.; Mangsbo, S. M., Locally 
delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated 
bladder cancer. Cancer Immunol Res 2014, 2 (1), 80-90. 

191. Mangsbo, S. M.; Broos, S.; Fletcher, E.; Veitonmaki, N.; Furebring, C.; Dahlen, E.; Norlen, P.; Lindstedt, M.; Totterman, 
T. H.; Ellmark, P., The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell-
dependent tumor immunity. Clin Cancer Res 2015, 21 (5), 1115-26. 

192. Danielli, R.; Patuzzo, R.; Ruffini, P. A.; Maurichi, A.; Giovannoni, L.; Elia, G.; Neri, D.; Santinami, M., Armed antibodies 
for cancer treatment: a promising tool in a changing era. Cancer Immunol Immunother 2015, 64 (1), 113-21. 

193. A Phase 1/2 Safety Study of Intratumorally Dosed INT230-6. https://ClinicalTrials.gov/show/NCT03058289.  
194. Liu, D.; Auguste, D. T., Cancer targeted therapeutics: From molecules to drug delivery vehicles. Journal of Controlled 

Release 2015, 219, 632-643. 
195. Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K., Preparation and biological 

characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor 
permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005, 16 
(1), 122-30. 

196. Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S. D., Factors controlling the pharmacokinetics, biodistribution and 
intratumoral penetration of nanoparticles. J Control Release 2013, 172 (3), 782-94. 

197. Kim, J. H.; Kim, Y. S.; Park, K.; Lee, S.; Nam, H. Y.; Min, K. H.; Jo, H. G.; Park, J. H.; Choi, K.; Jeong, S. Y.; Park, R. 
W.; Kim, I. S.; Kim, K.; Kwon, I. C., Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing 
mice. J Control Release 2008, 127 (1), 41-9. 

198. Moreno, D.; Zalba, S.; Navarro, I.; Tros De Ilarduya, C.; Garrido, M. J., Pharmacodynamics of cisplatin-loaded PLGA 
nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm 2010, 74 (2), 265-74. 

199. Li, X.; Li, R.; Qian, X.; Ding, Y.; Tu, Y.; Guo, R.; Hu, Y.; Jiang, X.; Guo, W.; Liu, B., Superior antitumor efficiency of 
cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm 
2008, 70 (3), 726-34. 

200. Chen, F. A.; Kuriakose, M. A.; Zhou, M. X.; Delacure, M. D.; Dunn, R. L., Biodegradable polymer-mediated intratumoral 
delivery of cisplatin for treatment of human head and neck squamous cell carcinoma in a chimeric mouse model. Head 
Neck 2003, 25 (7), 554-60. 

201. Campbell, R. B.; Fukumura, D.; Brown, E. B.; Mazzola, L. M.; Izumi, Y.; Jain, R. K.; Torchilin, V. P.; Munn, L. L., 
Cationic Charge Determines the Distribution of Liposomes between the Vascular and Extravascular Compartments of 
Tumors. Cancer Research 2002, 62 (23), 6831-6836. 

202. Kim, B.; Han, G.; Toley, B. J.; Kim, C. K.; Rotello, V. M.; Forbes, N. S., Tuning payload delivery in tumour cylindroids 
using gold nanoparticles. Nat Nanotechnol 2010, 5 (6), 465-72. 

203. Diab, A.; Rahimian, S.; Haymaker, C. L.; Bernatchez, C.; Andtbacka, R. H. I.; James, M.; Johnson, D. B.; Markowitz, J.; 
Murthy, R.; Puzanov, I.; Shaheen, M. F.; Swann, S., A phase 2 study to evaluate the safety and efficacy of Intratumoral 
(IT) injection of the TLR9 agonist IMO-2125 (IMO) in combination with ipilimumab (ipi) in PD-1 inhibitor refractory 
melanoma. Journal of Clinical Oncology 2018, 36 (15_suppl), 9515-9515. 

204. A Phase I/II Study of Intratumoral Injection of SD-101. https://ClinicalTrials.gov/show/NCT02254772. 
205. Frank, M. J.; Reagan, P. M.; Bartlett, N. L.; Gordon, L. I.; Friedberg, J. W.; Czerwinski, D. K.; Long, S. R.; Hoppe, R. T.; 

Janssen, R.; Candia, A. F.; Coffman, R. L.; Levy, R., In Situ Vaccination with a TLR9 Agonist and Local Low-Dose 
Radiation Induces Systemic Responses in Untreated Indolent Lymphoma. Cancer Discovery 2018, 8 (10), 1258-1269. 

61



206. Bhatia, S.; Miller, N.; Lu, H.; Ibrani, D.; Shinohara, M.; Byrd, D. R.; Parvathaneni, U.; Vandeven, N.; Kulikauskas, R.; 
Meulen, J. T.; Hsu, F. J.; Koelle, D. M.; Ngheim, P., Pilot trial of intratumoral (IT) G100, a toll-like receptor-4 (TLR4) 
agonist, in patients (pts) with Merkel cell carcinoma (MCC): Final clinical results and immunologic effects on the tumor 
microenvironment (TME). Journal of Clinical Oncology 2016, 34 (15_suppl), 3021-3021. 

207. Pollack, S.; Kim, E. Y.; Conrad, E. U.; O'malley, R. B.; Cooper, S.; Donahue, B.; Cranmer, L. D.; Lu, H.; Loggers, E. T.; 
Hain, T.; Davidson, D. J.; Bonham, L.; Pillarisetty, V. G.; Kane, G.; Riddell, S. R.; Jones, R. L., Using G100 
(Glucopyranosyl Lipid A) to transform the sarcoma tumor immune microenvironment. Journal of Clinical Oncology 2016, 
34 (15_suppl), 11017-11017. 

208. Flowers, C.; Isufi, I.; Herrera, A. F.; Okada, C.; Cull, E. H.; Kis, B.; Chaves, J.; Bartlett, N. L.; Bryan, L. J.; Houot, R.; Ai, 
W. Z.; Chau, I.; Linton, K.; Briones, J.; Merino, L. D. L. C.; Panizo, C.; Keudell, G. R. V.; Lu, H.; Hsu, F. J.; Halwani, A. 
S., Intratumoral G100 to induce systemic immune responses and abscopal tumor regression in patients with follicular 
lymphoma. Journal of Clinical Oncology 2017, 35 (15_suppl), 7537-7537. 

209. Phase I Study of Intralesional Bacillus Calmette-Guerin (BCG) Followed by Ipilimumab in Advanced Metastatic 
Melanoma. https://ClinicalTrials.gov/show/NCT01838200. 

210. Roberts, N. J.; Zhang, L.; Janku, F.; Collins, A.; Bai, R.-Y.; Staedtke, V.; Rusk, A. W.; Tung, D.; Miller, M.; Roix, J.; 
Khanna, K. V.; Murthy, R.; Benjamin, R. S.; Helgason, T.; Szvalb, A. D.; Bird, J. E.; Roy-Chowdhuri, S.; Zhang, H. H.; 
Qiao, Y.; Karim, B.; Mcdaniel, J.; Elpiner, A.; Sahora, A.; Lachowicz, J.; Phillips, B.; Turner, A.; Klein, M. K.; Post, G.; 
Diaz, L. A.; Riggins, G. J.; Papadopoulos, N.; Kinzler, K. W.; Vogelstein, B.; Bettegowda, C.; Huso, D. L.; Varterasian, 
M.; Saha, S.; Zhou, S., Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Science 
Translational Medicine 2014, 6 (249), 249ra111-249ra111. 

211. Ridolfi, L.; Ridolfi, R.; Ascari‐Raccagni, A.; Fabbri, M.; Casadei, S.; Gatti, A.; Trevisan, G.; Righini, M., Intralesional 
granulocyte‐monocyte colony‐stimulating factor followed by subcutaneous interleukin‐2 in metastatic melanoma: a pilot 
study in elderly patients. Journal of the European Academy of Dermatology and Venereology 2001, 15 (3), 218-223. 

212. Kramer, G.; Steiner, G. E.; Sokol, P.; Handisurya, A.; Klingler, H. C.; Maier, U.; Földy, M.; Marberger, M., Local 
Intratumoral Tumor Necrosis Factor-α and Systemic IFN-α2b in Patients with Locally Advanced Prostate Cancer. Journal 
of Interferon & Cytokine Research 2001, 21 (7), 475-484. 

213. Rand, R. W.; Kreitman, R. J.; Patronas, N.; Varricchio, F.; Pastan, I.; Puri, R. K., Intratumoral administration of 
recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clinical Cancer 
Research 2000, 6 (6), 2157-2165. 

214. Dummer, R.; Eichmüller, S.; Gellrich, S.; Assaf, C.; Dreno, B.; Schiller, M.; Dereure, O.; Baudard, M.; Bagot, M.; 
Khammari, A.; Bleuzen, P.; Bataille, V.; Derbij, A.; Wiedemann, N.; Waterboer, T.; Lusky, M.; Acres, B.; Urosevic-
Maiwald, M., Phase II Clinical Trial of Intratumoral Application of TG1042 (Adenovirus-interferon-γ) in Patients With 
Advanced Cutaneous T-cell Lymphomas and Multilesional Cutaneous B-cell Lymphomas. Molecular Therapy 2010, 18 
(6), 1244-1247. 

215. Trillium Pipeline. Inc., T. T., Ed. 2019. 
216. Wenig, B. L.; Werner, J. A.; Castro, D. J.; Sridhar, K. S.; Garewal, H. S.; Kehrl, W.; Pluzanska, A.; Arndt, O.; Costantino, 

P. D.; Mills, G. M.; Dunphy Ii, F. R.; Orenberg, E. K.; Leavitt, R. D., The Role of Intratumoral Therapy With 
Cisplatin/Epinephrine Injectable Gel in the Management of Advanced Squamous Cell Carcinoma of the Head and Neck. 
Archives of Otolaryngology–Head & Neck Surgery 2002, 128 (8). 

217. Li, S. Y.; Li, Q.; Guan, W. J.; Huang, J.; Yang, H. P.; Wu, G. M.; Jin, F. G.; Hu, C. P.; Chen, L. A.; Xu, G. L.; Liu, S. Z.; 
Wu, C. G.; Han, B. H.; Xiang, Y.; Zhao, J. P.; Wang, J.; Zhou, X.; Li, H. P.; Zhong, N. S., Effects of para-
toluenesulfonamide intratumoral injection on non-small cell lung carcinoma with severe central airway obstruction: A 
multi-center, non-randomized, single-arm, open-label trial. Lung Cancer 2016, 98, 43-50. 

218. Guan, W. J.; Li, S. Y.; Zhong, N. S., Effects of para-toluenesulfonamide intratumoral injection on pulmonary adenoid 
cystic carcinoma complicating with severe central airway obstruction: a 5-year follow-up study. J Thorac Dis 2018, 10 (4), 
2448-2455. 

219. Mohamadnejad, M.; Zamani, F.; Setareh, M.; Nikfam, S.; Malekzadeh, R., Mo1495 EUS-Guided Intratumoral 
Gemcitabine Injection in Locally Advanced Non-Metastatic Pancreatic Cancer. Gastrointestinal Endoscopy 2015, 81 (5, 
Supplement), AB440-AB441. 

220. Ross, M. I., Intralesional therapy with PV-10 (Rose Bengal) for in-transit melanoma. J Surg Oncol 2014, 109 (4), 314-9. 
221. Thompson, J. F.; Hersey, P.; Wachter, E., Chemoablation of metastatic melanoma using intralesional Rose Bengal. 

Melanoma Res 2008, 18 (6), 405-11. 
222. Agarwala, S. S., Intralesional therapy for advanced melanoma: promise and limitation. Curr Opin Oncol 2015, 27 (2), 151-

6. 
223. Provectus Biopharmaceuticals, I., PV-10-based Cancer Combination Therapy Clinical Trial Design Wins Australasian 

Gastro-Intestinal Trials Group’s New Concepts Award. 2019. 
224. Read, T. A.; Smith, A.; Thomas, J.; David, M.; Foote, M.; Wagels, M.; Barbour, A.; Smithers, B. M., Intralesional PV-10 

for the treatment of in-transit melanoma metastases—Results of a prospective, non-randomized, single center study. 
Journal of Surgical Oncology 2018, 117 (4), 579-587. 

225. Marshall, J. D.; Fearon, K. L.; Higgins, D.; Hessel, E. M.; Kanzler, H.; Abbate, C.; Yee, P.; Gregorio, J.; Cruz, T. D.; 
Lizcano, J. O.; Zolotorev, A.; Mcclure, H. M.; Brasky, K. M.; Murthy, K. K.; Coffman, R. L.; Nest, G. V., Superior 

62



Activity of the Type C Class of ISS In Vitro and In Vivo Across Multiple Species. DNA and Cell Biology 2005, 24 (2), 63-
72. 

226. Thermofisher, DNA and RNA Molecular Weights and Conversions. 
227. Aznar, M. A.; Planelles, L.; Perez-Olivares, M.; Molina, C.; Garasa, S.; Etxeberría, I.; Perez, G.; Rodriguez, I.; Bolaños, 

E.; Lopez-Casas, P.; Rodriguez-Ruiz, M. E.; Perez-Gracia, J. L.; Marquez-Rodas, I.; Teijeira, A.; Quintero, M.; Melero, I., 
Immunotherapeutic effects of intratumoral nanoplexed poly I:C. Journal for ImmunoTherapy of Cancer 2019, 7 (1), 116. 

228. Coler, R. N.; Day, T. A.; Ellis, R.; Piazza, F. M.; Beckmann, A. M.; Vergara, J.; Rolf, T.; Lu, L.; Alter, G.; Hokey, D.; 
Jayashankar, L.; Walker, R.; Snowden, M. A.; Evans, T.; Ginsberg, A.; Reed, S. G.; Ashman, J.; Sagawa, Z. K.; Tait, D.; 
Ishmukhamedov, S.; Blatner, G.; Sutton, S.; Shepherd, B.; Johnson, C.; The, T.-S. T., The TLR-4 agonist adjuvant, GLA-
SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. 
npj Vaccines 2018, 3 (1), 34. 

229. Terheyden, P.; Weishaupt, C.; Heinzerling, L.; Klinkhardt, U.; Krauss, J.; Mohr, P.; Kiecker, F.; Becker, J. C.; Dähling; 
Döner, F.; Heidenreich, R.; Scheel, B.; Schönborn-Kellenberger, O.; Seibel, T.; Gnad-Vogt, U., 1305TiPPhase I dose-
escalation and expansion study of intratumoral CV8102, a RNA-based TLR- and RIG-1 agonist in patients with advanced 
solid tumors. Annals of Oncology 2018, 29 (suppl_8). 

230. ssRNA-based immunomodulator CV8102. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/792862 
(accessed Oct. 2019). National Cancer Institute. 

231. Pettenati, C.; Ingersoll, M. A., Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nature Reviews 
Urology 2018, 15 (10), 615-625. 

232. Staedtke, V.; Roberts, N. J.; Bai, R.-Y.; Zhou, S., Clostridium novyi-NT in cancer therapy. Genes & diseases 2016, 3 (2), 
144-152. 

233. NCI Drug Dictionary: Daromun. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/794649 (accessed June 
2019). National Cancer Institute. 

234. Lee, C. S.; Bishop, E. S.; Zhang, R.; Yu, X.; Farina, E. M.; Yan, S.; Zhao, C.; Zeng, Z.; Shu, Y.; Wu, X.; Lei, J.; Li, Y.; 
Zhang, W.; Yang, C.; Wu, K.; Wu, Y.; Ho, S.; Athiviraham, A.; Lee, M. J.; Wolf, J. M.; Reid, R. R.; He, T.-C., 
Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized 
medicine. Genes & Diseases 2017, 4 (2), 43-63. 

235. Eissa, I. R.; Naoe, Y.; Bustos-Villalobos, I.; Ichinose, T.; Tanaka, M.; Zhiwen, W.; Mukoyama, N.; Morimoto, T.; 
Miyajima, N.; Hitoki, H.; Sumigama, S.; Aleksic, B.; Kodera, Y.; Kasuya, H., Genomic Signature of the Natural Oncolytic 
Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Front Oncol 2017, 7, 149-149. 

236. Harrow, S.; Papanastassiou, V.; Harland, J.; Mabbs, R.; Petty, R.; Fraser, M.; Hadley, D.; Patterson, J.; Brown, S. M.; 
Rampling, R., HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: 
safety data and long-term survival. Gene Therapy 2004, 11 (22), 1648-1658. 

237. Gong, J.; Mita, M. M., Activated ras signaling pathways and reovirus oncolysis: an update on the mechanism of 
preferential reovirus replication in cancer cells. Front Oncol 2014, 4, 167-167. 

238. Koski, A.; Kangasniemi, L.; Escutenaire, S.; Pesonen, S.; Cerullo, V.; Diaconu, I.; Nokisalmi, P.; Raki, M.; Rajecki, M.; 
Guse, K.; Ranki, T.; Oksanen, M.; Holm, S.-L.; Haavisto, E.; Karioja-Kallio, A.; Laasonen, L.; Partanen, K.; Ugolini, M.; 
Helminen, A.; Karli, E.; Hannuksela, P.; Pesonen, S.; Joensuu, T.; Kanerva, A.; Hemminki, A., Treatment of Cancer 
Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF. Molecular Therapy 2010, 18 (10), 
1874-1884. 

239. Vaccinia Virus. http://www.aabb.org/tm/eid/Documents/160s.pdf (accessed Sept. 2019). AABB Center for Cellular 
Therapies. 

240. Cyrklaff, M.; Risco, C.; Fernández, J. J.; Jiménez, M. V.; Estéban, M.; Baumeister, W.; Carrascosa, J. L., Cryo-electron 
tomography of vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 
(8), 2772-2777. 

241. NCI Drug Dictionary: EGFR antisense DNA. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/egfr-
antisense-dna (accessed July 2019). National Cancer Institute. 

242. Lavie, O.; Edelman, D.; Levy, T.; Fishman, A.; Hubert, A.; Segev, Y.; Raveh, E.; Gilon, M.; Hochberg, A., A phase 1/2a, 
dose-escalation, safety, pharmacokinetic, and preliminary efficacy study of intraperitoneal administration of BC-819 (H19-
DTA) in subjects with recurrent ovarian/peritoneal cancer. Archives of Gynecology and Obstetrics 2017, 295 (3), 751-761. 

243. Hanna, N.; Ohana, P.; Konikoff, F. M.; Leichtmann, G.; Hubert, A.; Appelbaum, L.; Kopelman, Y.; Czerniak, A.; 
Hochberg, A., Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral 
administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Therapy 2012, 19 (6), 374-381. 

244. Darleukin. http://www.philogen.com/en/products/darleukin_9.html (accessed Sept 2019). Philogen. 
245. ADC-1013: Clinical drug candidate. https://alligatorbioscience.se/en/research-and-development/pipeline/adc-1013/ 

(accessed Sept 2019). Alligator Bioscience. 
246. Wang, R.; Feng, Y.; Hilt, E.; Yuan, X.; Gao, C.; Shao, X.; Sun, Y.; D'silva, M.; Yang, K.; Penhallow, B.; Bogdanoski, G.; 

Anand, R.; Pak, I.; Greenawalt, D.; Klippel, A.; Manjarrez-Orduno, N.; Neely, R.; Quigley, M.; Hedrick, M.; Aanur, P.; 
Cao, Z., Abstract LB-127: From bench to bedside: Exploring OX40 receptor modulation in a phase 1/2a study of the OX40 
costimulatory agonist BMS-986178 ± nivolumab (NIVO) or ipilimumab (IPI) in patients with advanced solid tumors. 
Cancer Research 2018, 78 (13 Supplement), LB-127-LB-127. 

63



247. Lead Product: INT230-6. https://intensitytherapeutics.com/products/lead-product-int230-6/ (accessed July 2019). Intensity 
Therapeutics. 

248. Malhotra, H.; Plosker, G. L., Cisplatin/Epinephrine Injectable Gel. Drugs & Aging 2001, 18 (10), 787-793. 
249. Liu, Z.; Liang, C.; Zhang, Z.; Pan, J.; Xia, H.; Zhong, N.; Li, L., Para-toluenesulfonamide induces tongue squamous cell 

carcinoma cell death through disturbing lysosomal stability. Anti-Cancer Drugs 2015, 26 (10), 1026-1033. 
250. Plunkett, W.; Huang, P.; Xu, Y. Z.; Heinemann, V.; Grunewald, R.; Gandhi, V., Gemcitabine: metabolism, mechanisms of 

action, and self-potentiation. Seminars in oncology 1995, 22 (4 Suppl 11), 3-10. 
251. Qin, J.; Kunda, N.; Qiao, G.; Calata, J. F.; Pardiwala, K.; Prabhakar, B. S.; Maker, A. V., Colon cancer cell treatment with 

rose bengal generates a protective immune response via immunogenic cell death. Cell Death Dis 2017, 8 (2), e2584-e2584. 

 

 

 

64



 

 

 

 
Chapter 2: 

Immunostimulant Complexed 
with Polylysine for Sustained 

Delivery and Immune Cell 
Activation 

 

 

 

 

 

 

  

65



1. Introduction 

Immunotherapy is a powerful form of cancer treatment that harnesses the body’s own immune 

system to fight cancer. Therapies range from checkpoint inhibitors to decrease immune suppression, 

adoptive T cell transfer using autologous cells engineered to express chimeric antigen receptors against 

tumor antigen, monoclonal antibodies that can mark tumor cells for killing, and immunostimulants like toll-

like receptor agonists, cytokines, or bacteria.1 Immunostimulants, or compounds that activate innate 

immune responses, are particularly useful for surmounting the suppressive tumor microenvironment. The 

tumor microenvironment employs a variety of immune evasion and suppression techniques, including 

suppressive cell subtypes, cytokines, T-cell exhaustion, and even downregulation of tumor antigen 

expression.2-5 The use of immunostimulants in the presence of tumor antigens causes a number of reactions 

including upregulation of co-stimulatory molecules, increased antigen presentation, and secretion of 

proinflammatory cytokines which can induce tumor specific T-cells.6-8 Immunostimulants, however, can 

induce off-target side effects by causing improper activation of the immune system in healthy tissue, thus 

beckoning improved delivery systems. 

Toll-like-receptor agonists are a class of immunostimulants capable of inducing strong T cell 

activation after binding to their respective toll-like receptors (TLRs). TLRs recognize bacterial and viral 

pathogen associated molecular patterns (PAMPs), which then trigger pro-inflammatory, innate immune 

responses. Only two TLR agonists are currently FDA approved. The TLR4 agonist monophosphoryl lipid 

A (MPL) is incorporated into the adjuvant system for Ceravarix™, a cervical cancer vaccine.9 In Aldara™, 

a cream for superficial basal cell carcinoma, the main active ingredient is a TLR7/8 agonist called 

imiquimod.10 Currently there are many immunotherapy clinical trials utilizing TLR agonists either alone or 

in combination with other immunotherapy strategies like checkpoint inhibitors.11 

Many research efforts and clinical trials have explored the use of polyI:C 

(polyinosinic:polycyticylic acid) and CpG, two TLR agonists with the ability to induce strong pro-

inflammatory responses after binding to their respective TLRs. PolyI:C is a TLR3 agonist consisting of 
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double-stranded (ds) RNA that resembles viral RNA and has shown both antiviral and anticancer activity.12-

13 Furthermore, TLR3 agonists have demonstrated the ability to directly inhibit tumors in vitro by 

decreasing proliferation and inducing apoptotic cell death.12 CpG is a short, single-stranded unmethylated 

synthetic oligonucleotide resembling bacterial DNA that agonizes TLR9.14 Both TLR3 and TLR9 are 

located within endosomes, therefore the immunostimulants must be endocytosed to reach their target. While 

both polyI:C and CpG are promising candidates for use in cancer immunotherapy, one major challenge is 

determining how to properly deliver these potential therapies to tumor tissue.  

Traditional systemic delivery offers the potential to target multiple tumor sites, however, full body 

exposure of immunostimulants can cause improper activation of the immune system in healthy tissue, 

causing inflammation and generating autoimmune reactions.15 Intratumoral (IT) delivery offers a possible 

solution with an aim of generating anti-tumor immune responses capable of reaching distal tumor sites 

concurrently with shrinkage of treated tumors. This process, called the abscopal effect, can occur when 

tumor-activated immune cells drain to lymph nodes and circulate to distal cancer loci.16 In this work, we 

aim to create a formulation of polyI:C or CpG that will be retained at the site of injection to avoid systemic 

toxicity and facilitate intracellular delivery.  

Poly-L-lysine (PLL) is a highly positively charged polycation that has been extensively utilized as 

a delivery tool in intracellular genetic material (DNA or RNA) delivery research.17-20 In fact, a candidate 

drug called Hiltonol, consisting of polyI:C combined with PLL stabilized by carboxymethylcellulose, has 

been seen some success as a vaccine adjuvant and as an immunostimulant in cancer therapy.21 Where DNA 

alone would be small and have electrostatic repulsion from cell membranes, formulation of DNA into 

polycationic complexes compacts DNA into a particle and allows for attraction to cell membranes followed 

by endocytosis and lysosomal release once inside the acidic conditions of lysosomes. While similar 

polyplexes have been broadly explored in their capacity to deliver genetic material intracellularly, less work 

has been conducted on the formulation and transport of polyplexes and intracellular delivery of TLR 

agonists.  The current study was focused on exploring the relationship between PLL molecular weight and 

complexation, TLR activation, and transport in a simple, simulated tumor microenvironment. Various 
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characterization methods were employed including particle sizing, and zeta potential but also experiments 

to assess the accessibility of the TLR agonist within the polyplex. To evaluate injection site retention, 

polyplexes were tested in an assay to emulate transport in human tissue. Finally, HEK blue TLR cells were 

used to assess the ability of the complexed TLR agonist to activate its respective TLR in vitro. Overall, this 

work illuminates the possibility of an additional purpose for polycationic polyplexes in cancer 

immunotherapy and emphasizes the importance of optimizing physiochemical properties of IT delivery 

systems. 

2. Methods 

2.1 Polyplex formation 

Poly-L-lysine (K9) was purchased from Biomatik (Cambridge, Ontario, Canada). Poly-L-lysine 

hydrobromide of lengths K20 through K250 were purchased from Alamanda Polymers (Huntsville, AL). 

Poly-L-lysines will be referred to generally as PLL or specifically as poly(number of lysines).  CpG ODN 

1826 and LMW polyI:C were purchased from Invivogen (San Diego, CA). The average molecular weight 

(MW) of the individual polyplex components is provided in table 1. PLL polyplexes with CpG ODN 1826 

or LMW polyI:C were prepared in 4% mannitol by adding equal volumes of pre-diluted PLL and pre-

diluted CpG or polyI:C followed by repeated pipetting for 30 seconds (figure 1). The polyplexes were then 

stored at room temperature for a minimum of 20 minutes before measurements or cell culture use. 

Polyplexes were prepared at varying mass ratios of 0.5, 1, 2, 3, 5, 10 that represent mass of PLL divided by 

the polyplex partner, CpG or polyI:C. Mass ratio was utilized rather than a N:P ratio due to heterogeneity 

of the components. Supplementary table 1 contains a translation of mass ratio to molar ratio which for 

PLL+CpG polyplexes is exact and for PLL+polyI:C polyplexes is based on the median average MW of 

polyI:C. For PLL+CpG polyplexes N/P ratio can be calculated and is available in supplementary table 2.  
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2.2 Agarose gel electrophoresis 

Agarose was purchased from Sigma Aldrich (St. Louis, MO). Tris-acetate-EDTA (TAE) buffer was 

purchased from Invitrogen (Carlsbad, CA). PLL + CpG or polyI:C polyplexes were prepared as described 

holding the CpG or polyI:C concentration constant while varying the PLL concentration. Then, 4 µL 6x 

DNA Loading dye (Takara Bio Inc., Japan) was added to 10 µL of the polyplex and subsequently 12 µL 

was loaded onto a 3% agarose gel, and electrophoresed for 25 minutes at 100 V. CpG and polyI:C alone 

were run as controls and a 1 kb bench top DNA ladder (Promega, Madison, WI) was used. The gel was 

stained using SYBR Gold (Invitrogen, Carlsbad, CA) in TAE buffer for 25 minutes, shaking at room 

temperature then imaged on AlphaImager (Protein Simple, San Jose, CA). 

2.3 Particle sizing 

The effective radius (nm) of PLL + CpG or polyI:C polyplexes was determined by dynamic light scattering 

(DynaPro, Wyatt Technology, Santa Barbara, CA). Samples for particle sizing were prepared in 4% 

mannitol (Sigma Aldrich, St. Louis, MO). Measurements were conducted after a minimum of 20 minutes 

of incubation at room temperature.  

2.4 Zeta potential 

Zeta potential measurements were measured by Zeta PALS (Brookhaven Instruments, Holtsville, NY). All 

samples for zeta potential measurements were prepared in 4% mannitol and diluted into 1 mM KCl for 

analysis.  

2.5 Scanning electron microscopy (SEM) 

SEM images were captured using Hitachi SU8230 field emission scanning electron microscope at the 

University of Kansas Microscopy and Analytical Imaging Laboratory. Polyplexes or individual components 

were added to carbon coated grids and touched on a Kimwipe to remove excess liquid, then immediately 

dipped into liquid nitrogen prior to imaging.  
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2.6 Assessment of DNA/RNA accessibility by SYBR gold staining 

The degree of accessibility of the DNA or RNA following complexation with PLL was assessed by the 

staining of SYBR Gold to accessible DNA or RNA. Polyplexes were made as described above and after 20 

minutes polyplexes were added to a 96-well plate in triplicate followed by SYBR gold stain and mixed 

well. After approximately 5 minutes the fluorescence was measured using a Synergy H4 microplate reader 

(BioTek, Winooski, VT). The excitation filter was set to 495 nm and emission filter to 537 nm. 

2.7 Hyaluronic acid gel retention 

To test the polyplexes ability to retain at an injection site, we devised a model in vitro system to evaluate 

transport in human tissue made of highly viscous hyaluronic acid (HA) to which we could inject labeled 

polyplexes in the center and watch it spread over time. 0.8-1.5 MDa HA was added to PBS buffer at 20 

mg/mL then placed on end-over-end rotator overnight to dissolve. The HA gel was then weighed out into 

a 96 well black plate at 0.28 g/well. The plate was centrifuged to remove bubbles then placed at 4 ˚C until 

use. Polyplexes were prepared as described but for this test they were first made up in 90% of the total 

volume, let incubate for 20 minutes, then 10% of the total volume of 20x SYBR Gold stain was added for 

an additional 5 minutes. A 3D printed device was designed to allow uniform injection into the wells at half 

the depth of the gel. 7 µL of sample was injected through the device into the center of the well using reverse 

pipetting. Fluorescent images were obtained at varying time points on a MaestroFlex Imager (Cambridge 

Research and Instrumentation, Woburn, MA). A control placed in each image was used to normalize the 

intensity across all images. To further normalize the data, a percent reduction was calculated based on the 

intensity at time 0 between pixels 15-25 as depicted in figure 8A.  

2.8 In Vitro HEK blue reporter cell assay  

HEK-Blue TLR9, TLR3, and Null cell lines (Invivogen, California) were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM; Corning, NY) supplemented with 10% FBS, 1% penicillin-streptomycin, and 

the selective antibiotics according to the manufacturer’s protocol. HEK-Blue TLR cells allow for the study 
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of TLR activation by observing the stimulation of SEAP, a protein associated with downstream activation 

of TLRs. At 50-80% confluency, cells were harvested and resuspended in HEK detection media (Invivogen, 

California) and 180 uL was seeded into 96-well plates at ~8x10^5 cells/well. 20 uL of treatment were added 

to respective wells and the plate was incubated at 37 °C, 5% CO2 for at least 6 hours or until color change. 

Absorbance readings were measured at 640 nm. Null cells were used as a control. Concentration of polyplex 

for the study was determined based on a titration of polyI:C or CpG (Figure# slide15). PolyI:C was held 

constant at 200 µg/mL and CpG was at 100 µg/mL.  

3. Results 

3.1 Polyplex formation 

Agarose gel electrophoresis studies were used to visually test the ability of the different molecular 

weights of PLL to complex with the polyanionic TLR agonists. Free polyI:C or CpG migrated freely 

through the agarose gel whereas PLL did not. When polyI:C or CpG are complexed with PLL, the material 

retained in the loading well. The agarose gels in figures 2 and 3 show the differences in the interactions 

between PLL and polyI:C or CpG. PLL mass was increased, increasing the mass ratio, while the polyanion 

counterpart was held constant. The immobilization of polyanion was seen in every PLL polyplex and 

occurred at a lower ratio for the higher MW PLL’s. For all studied polyplexes, full immobilization was seen 

by a mass ratio of 1.5.  

3.2 Polyplex characterization 

Zeta potential measurements (figure 4) agreed with the agarose gels. A net positive charge emerged 

at the same mass ratio where the TLR polyanion agonist was immobilized on the gels. At higher ratios, the 

zeta potential started to plateau, indicating PLL had saturated the surface of the polyplexes.  

Particle size is also an important consideration, since size has been shown to impact cell uptake, trafficking, 

and ultimately immune activation.22-27 For all CpG-containing polyplexes the radius was between 20 and 
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100 nm (figure 4). Polyplexes with polyI:C were unable to be measured by DLS or zeta potential due to 

heterogeneity. To corroborate particle sizing data, SEM images were collected and the results correlate with 

the particle sizes determined by DLS measurements (figure 5). Control solutions of PLL or TLR agonist 

lacked visible particles. In the CpG polyplex samples, many dark spherical particles were seen within the 

expected size range. PolyI:C polyplexes did not result in spherical particles, which validates the 

unsuccessful DLS measurements.  

3.3 SYBR gold accessibility 

To investigate how PLL encapsulates or polyplexes with the polyanions, we utilized a DNA/RNA 

stain to measure accessibility of the polyanion. In this experiment the polyanion concentration is held 

constant. Free polyanion was more accessible whereas complexed polyanion was more encapsulated and 

inaccessible. To compare between different MW PLL’s, figure 6 graphs show the fluorescence intensity 

normalized to the intensity of the respective control, either polyI:C or CpG. Any value under 1 implies 

some amount of immunostimulant encapsulation by the PLL. In general, the fluorescence decreased as the 

ratio increased suggesting increased encapsulation. Gel electrophoresis data previously indicated that the 

immunostimulant was fully immobilized by a ratio of 1.5, yet the K9 polyplexes appeared to have some 

accessible immunostimulant at all ratios than the higher MW PLLs. The strength of the interaction appeared 

weaker for lower molecular weights of PLL and at lower ratios of PLL to the polyanions.  

3.4 Hyaluronic acid gel retention 

To simulate tumor retention of polyplexes in correlation with the ratio of polycation to polyanion, 

we injected sample into a viscous HA gel and diffusion of the TLR agonist polyanions was monitored over 

time. HA is a major component within the tumor and high molecular weight HA has been used to model 

subcutaneous (SC) space injection simulators.28-29 For typical SC injection site simulations, 10 mg/mL HA 

has been used. To model a denser tumor environment, the HA concentration was increased to 20 mg/mL. 

The negative charge of HA emulates extracellular matrix and we hypothesized positively-charged 
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polyplexes would remain at the injection site in the center of the well longer than polyI:C or CpG alone. 

The controls, polyI:C and CpG alone diffused quickly, even within two hours (figures 7&9). For both sets 

of data, the lower MW PLL polyplexes diffused much more than higher MW PLLs. Furthermore, in some 

of the higher MW PLL sample wells, a “donut” shaped spot was formed likely due to immediate aggregation 

following leaving the pipette (figure 7). Due to MW differences, the ratios cannot be directly compared 

between polyI:C and CpG polyplexes however we can say that at the same mass ratios, the CpG polyplexes 

have a greater potential of retention than the polyI:C polyplexes with the same PLL. Since the polyplexes 

were labeled using SYBR Gold stain, each polyplex stained slightly differently depending on the 

accessibility of the polyI:C or CpG. To make the retention comparable between samples, a percent reduction 

was calculated. Figure 8B&C show percent reductions at 2 and 5 hours, where the greatest differences 

were observed. Figures 10 and 11 have the percent reduction for every time point next to the respective 

spatial plots. For both polyI:C and CpG polyplexes, the percent reduction was increasingly influenced by 

ratio as the MW of PLL was increased. In all but the K9 polyplexes where ratio seemed to be independent, 

the percent reduction decreased with increase in ratio. CpG polyplexes had less dispersion from the center 

than polyI:C polyplexes at all PLL sizes above K9.  

3.5 In vitro HEK blue reporter cell assay 

PolyI:C and CpG are TLR agonists of TLR3 and TLR9, respectively. In our approach, their activation 

is crucial in the stimulation of the desired immune response. To examine the effect of complexation on TLR 

activation, we utilized HEK blue hTLR reporter cells. The polyplexes and controls were tested in the null 

cell line and reporter cell lines for their respective TLRs. Samples were run in the null cell line as an 

additional control. Polyanion concentrations were determined by selecting a concentration that achieved a 

reasonable response factor as shown from a concentration curve completed in the respective cell lines 

(supplementary figure 1).  Polyplexes were made as previously described by holding the polyanion 

concentration constant and increasing the mass ratio of PLL. TLR activation in HEK blue cells could be 

detected by absorbance using the HEK blue detection media. Figure 12-13 graphs show the absorbance of 
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the samples minus signal produced by PLL control normalized to the polyanion control. Figure 14 

combines the activation data to relate PLL length and ratio. Therefore any value above 1, reflects that the 

sample activated the TLR better than the polyanion alone. K20 and K30 polyplexes were only tested with 

CpG since polyI:C polyplexes were not yielding promising results. None of the polyI:C polyplexes were 

able to activate TLR3 as well as the polyI:C alone. On the other hand, some of the lower ratio CpG 

polyplexes activated TLR9 as well as the CpG control. In both data sets, K9 polyplexes provided better 

TLR activation than higher MW PLLs. CpG polyplexes appeared to have a greater dependency on ratio 

than polyI:C polyplexes where an increase in ratio led to decrease in activation- an expected result 

considering the decreased accessibility of the immunostimulant. For CpG polyplexes, the activation showed 

a dependency on PLL length except at R0.5, or at a lower concentration of PLL. Interestingly, there 

appeared to be a range of PLL length at which the activation of TLR is more dependent on the ratio. For 

polyI:C this is around K50 and for CpG, any tested PLL length over K9. In addition to the TLR activation, 

cellular metabolism was also measured in the respective HEK cells using a resazurin assay. It is well known 

that higher MW PLL’s can cause toxicity in cells therefore we aspired to find a range in which there was 

limited cellular damage and acceptable TLR activation.30  Figure 12-13 shows metabolism of cells 

incubated with polyplexes adjacent to the corresponding PLL to show that the metabolism is directly a 

result of the PLL’s effect on the cells.  Figure 15 combines the metabolism data to compare the PLL length 

and the ratio. Bear in mind the concentration of PLL in the CpG polyplexes is half of the concentration in 

the equivalent polyI:C polyplexes. The metabolism was highly dependent on both PLL length and 

concentration (ratio). At K9, the metabolism was not affected by ratio/concentration but with increase in 

PLL length, the metabolism decreased with ratio increase. The CpG polyplex’s metabolism profile showed 

a dependence on concentration more so than PLL length (ratio=concentration and clear pattern) whereas 

the polyI:C polyplexes were only dependent on concentration up to K50. At ratios above R0.5, polyI:C 

polyplexes yielded metabolism dependent on PLL length- with values being close together regardless of 

ratio. The metabolism data matched the TLR activation trends especially in the CpG polyplexes’ 

dependency on ratio.  
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4. Discussion 

The use of the immunostimulants, polyI:C and CpG, to overcome the suppressive tumor 

microenvironment has shown great promise. The IT route of delivery circumvents trafficking and 

penetration into the tumor, but transport of therapy out of the tumor tissue and into systemic circulation is 

still an issue. IT clinical trials have demonstrated the necessity to optimize the retention of potent 

immunostimulants to decrease systemic toxicity.31-32 Many approaches have suggested enhanced efficacy 

and safety when the TLR agonist is structurally modified or formulated into an emulsion or complex.21, 33-

37 Polycationic delivery vehicles have frequently been utilized for intracellular delivery of negatively 

charged genetic material by packing it into a net positively charged complex.38-39 Here, we evaluated 

polyplexes of the polycation PLL with polyanionic TLR against. Specifically, we examined the relationship 

between PLL molecular weight and complex formation, TLR activation, and retention in a simulated tumor 

microenvironment.  

All molecular weights of PLL tested were found to fully complex with both polyI:C and CpG as 

indicated by agarose gel electrophoresis. Interestingly, it appeared that the PLL MW did not have a 

significant impact on the ratio at which the immunostimulant became fully complexed but this could be 

elucidated by testing a smaller range of lower ratios. While immobilization is important, the biophysical 

characteristics of the particles like size and charge play a major role in determining transport and cell uptake 

following injection. While results vary depending on route of administration, a general understanding for 

transport after injection is that for uncharged particles <4 nm drain to systemic, particles between 10-100 

nm drain to lymphatics, and particles >100 nm tend to form depot or retain at the injection site or are 

trafficked after being taken up by antigen-presenting cells (APCs).40-42 One study evaluated therapy 

clearance from tumor space after intratumoral injection of small or large emulsions, and neutral or cationic 

liposomes.22 They found that larger (120-250 nm) particles and cationic particles have increased tumor 

retention in comparison to smaller or neutral particles. Interestingly, they also concluded that the rate of 

transfer from the poorly-perfused area to well-perfused area is the determining factor for IT transport and 
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not the rate of transfer from interstitial space to the vascular side. Further, the efficacy of TLR agonists, 

polyI:C and CpG, require intracellular delivery to reach endosomes, which is typically optimal for 

positively charged particles 20-500 nm in diameter where the mechanism of uptake can differ based on the 

size.30, 40-41, 43-45  

DLS and SEM measurements showed that PLL+CpG polyplexes formed spherical particles 

between 50-200 nm in diameter. For CpG polyplexes, the K9 group had a slightly greater diameter than the 

higher MW PLLs which could be a result of a different complex arrangement, or a weaker electrostatic 

interaction of the polyplex at lower MW PLL’s. On the other hand, the PLL+polyI:C polyplexes did not 

form particles measurable by DLS or EM methods. The discrepancy between the two immunostimulants 

may be explained by structural differences between dsRNA (polyI:C) and ssDNA (CpG). Previous research 

has indicated that dsRNA resists condensation, or complexation in comparison to ds or ssDNA due to spatial 

and distribution of electrostatic potential differences.46-47 For Lynn et. al., the formation of a particle by 

their TLR-7/8 agonist candidate was found to be critical for duration of innate cytokine production and 

reduced systemic toxicity.48 Specifically, they found that while increased therapy retention was necessary, 

it was not sufficient for enhancing the immune response; only particles were properly taken up by APCs 

leading to increase in innate activation.  

Model injection site retention experiments confirmed that PLL polyplexes remain at the injection 

site longer than immunostimulant alone.  While agarose gel electrophoresis for both polyI:C and CpG 

polyplexes indicated immobilization at similar ratios, the diffusion profiles in concentrated HA were 

different, suggesting retention may have some dependency on the formation of spherical particles only seen 

with CpG polyplexes. We saw increased retention by the polyplexes that formed particles which agrees 

with the previously described research that showed particle formation does increase in vivo retention and 

persistence in lymph nodes in comparison to non-particulate material.48 For both polyplexes, K9 was 

insufficient for retention even at higher ratios where there appeared to be complete immobilization. Since 

the fluorescence label was on the immunostimulant, the differences in retention could be explained by a 

weaker interaction strength between polyI:C and PLL compared to CpG polyplexes as well as K9 
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polyplexes versus higher MW PLL. Higher MW PLL and larger ratios increase retention overall, however 

CpG polyplexes appear to have superior retention abilities. 

In addition to biophysical transport considerations, efficient activation of the TLRs after 

complexation with polycation is significant for determination of therapeutic efficacy. Only a few of the 

lower ratio and lower MW CpG polyplexes were able to activate the target TLR as well as CpG alone. For 

all polyplexes, the lowest ratio had the highest TLR activation, and at higher ratios, the increase in MW 

PLL led to decreased activation. Taken together with resazurin data, it is likely that the decrease in 

activation at higher ratios and MWs of PLL was due to toxicity caused by the PLL except in the case of K9 

whose efficacy was not dependent on ratio (concentration). Some evidence suggests that a PLL MW larger 

than 3000 Da is required to complex with DNA effectively.20, 49 Higher MW polycations have enhanced 

intracellular delivery potential, however, there is also an increase in cellular toxicity.38, 50-51 Futhermore, 

while larger ratios may be more efficient at intracellular delivery, the lower ratio polyplexes are more potent 

at activating TLR which could be attributed to decrease in immunostimulant availability at higher ratios.30, 

38 Availability of the immunostimulant evaluated by SYBR Gold staining indeed showed that lower ratios 

have more available immunostimulant and that polyI:C seems to be less accessible in a comparable polyplex 

of CpG. More accessible immunostimulant with K9 polyplexes could potentially be explained by a weaker 

polyplex interaction strength which may also account for the lack of dependency on ratio in the TLR 

activation experiments. Thus, there must be a balance between the ratio of PLL to immunostimulant and 

the MW of PLL such that there is and sufficient complexation for intracellular delivery, but a weak enough 

interaction to allow immunostimulant to reach its target once endocytosed, increased retention and minimal 

cell toxicity. The lowest MW PLL, K9 was insufficient for increasing retention and the highest MW PLLs 

induced cytotoxicity. Our results indicate that the ideal PLL length appeared to lie above K9, up to K50.  
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5. Conclusion 

 Immunostimulants for immunotherapeutic treatment of tumors are powerful weapons, however, 

delivery methods need to be optimized for minimizing systemic toxicity and maximizing retention at the 

injection site. For negatively charged immunostimulants like many TLR agonists, formulation with a 

polycation has resulted in increased intracellular delivery. Here, we present results that demonstrate the 

potential for polycations in polyplexes to aid in injection site retention for minimized systemic exposure of 

immunostimulants. TLR activation was largely driven by the MW of PLL followed by the accessibility of 

the immunostimulant within the polyplex. Retention was also driven by these factors but in an opposite 

manner. Taken together, we believe that there is an optimal window of polycation MW and ratio that favors 

TLR activation and retention without causing toxicity. For CpG polyplexes, K9 through K50 was ideal for 

limiting cytotoxicity but higher MW was best for retention. Furthermore, this work supports with the 

hypothesis that particle formation is critical for immune activation and retention. These findings illustrate 

the potential use of polycations for carrier vehicles that not only aid in intracellular delivery but also 

contribute to injection site retention. The characterization results in this work suggest that PLL+CpG 

polyplexes may be a good candidate for increased intracellular delivery and decreased transport away from 

the tumor. Future studies could optimize the molecular weight and composition of the polycation such that 

the polyplex interaction strength allows for efficient TLR activation, the biophysical characteristics 

strengthen the retention and intracellular delivery, and cellular toxicity is minimized.  
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6. Figures and Tables 

 

 

 

Figure 1. Polyplex formation schematic. R is a mass ratio of PLL over the immunostimulant.  

 

 

 

Table 1. Molecular weights of polyplex components. 
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Figure 2. Agarose gels of PLL+CpG polyplexes. (A) K9+CpG, (B) K20+CpG, (C) K30+CpG, (D) 
K50+CpG, (E) K100+CpG, (F) K250+CpG 

 

 

 

Figure 3. Agarose gels of PLL+polyI:C polyplexes. (A) K9+polyI:C, (B) K20+polyI:C, (C) 
K30+polyI:C, (D) K50+polyI:C, (E) K100+polyI:C 

80



 

Figure 4. (A) Zeta potential and (B) dynamic light scattering (DLS) measurements of PLL+CpG 
polyplexes. 
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Figure 5. Representative SEM images of individual components and PLL+CpG R1.5 polyplexes 
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Figure 6. Effect of PLL molecular weight and mass ratio on accessibility of polyI:C or CpG using SYBR 
Gold assay.  
 

 

Figure 7. Fluorescent images of polyplex samples or immunostimulant alone after injection into HA gel at 
0, 2, and 5 hours.   
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Figure 8. (A) Fluorescence intensity across the well was averaged from three measurements, normalized 
to a standard in each image, and then plotted. To calculate percent reduction, AUC of the middle of the well 
was used. Percent reduction at 2 (black) and 5 (grey) hours for (B) PLL+polyI:C polyplexes and (C) 
PLL+CpG polyplexes. 
 
 

 
Figure 9. Normalized spatial plots and percent reduction graphs for polyanion alone controls.  
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Figure 10. Normalized spatial plots and percent reduction graphs for PLL+polyI:C polyplexes. 
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Figure 11. Normalized spatial plots and percent reduction graphs for PLL+CpG polyplexes. 
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Figure 12. TLR3 activation 8 hr (black) and 20 hr (grey) and cellular metabolism of polyplex (blue) and of 
the equivalent PLL (red) in HEK blue TLR3 reporter cells after incubation with PLL+polyI:C polyplexes. 
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Figure 13. TLR9 activation 8 hr (black) and 20 hr (grey) and cellular metabolism of polyplex (blue) and of 
the equivalent PLL (red) in HEK blue TLR9 reporter cells after incubation with PLL+CpG polyplexes.  
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Figure 14. Effect of PLL molecular weight and mass ratio on TLR activation. 

89



 

Figure 15. Effect of PLL molecular weight and mass ratio on TLR activation HEK blue cell metabolism 
for (A) PLL+polyI:C and (B) PLL+CpG polyplexes. 
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7. Supplemental Materials 

 

Supplementary table 1. Mass ratio translation to molar ratio. 

 

 

Supplementary Table 2. Mass ratio translation to N/P ratio for PLL+CpG polyplexes 
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Supplementary Figure 1. Concentration curve of polyI:C and CpG in their respective HEK blue reporter 
cell lines.  
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1. Introduction 

The concept of cancer immunotherapy was proposed a century ago when Dr. William Coley first 

attempted to harness the body’s immune system to fight off cancer.1-2 While this approach seemed 

promising, manipulation of the immune response can be dangerous and therefore must be deliberately 

controlled. Scientists made significant progress in developing cancer immunotherapies as alternatives to 

traditional treatments such as chemotherapy and radiation. Currently approved cancer immunotherapies 

range from checkpoint inhibitor monoclonal antibodies (mAbs) that decrease tumor immune suppression, 

viral therapies that activate immune cells, and mAbs that label certain cell types for death.3 Unfortunately, 

current therapies often fail to evoke an immune response capable of overcoming the immunosuppressive 

tumor microenvironment while also exhibiting acceptable safety profiles.4-7 Additionally, checkpoint 

inhibitors are predominantly effective in tumors that are considered ‘hot’, tumors characterized by high 

infiltration of immune cells that express the target immune-dampening markers.8-9  In order to properly 

activate T cells for tumor killing, there must be expression of co-stimulatory molecules, secretion of 

proinflammatory cytokines, and presentation of antigens, all of which are suppressed in the tumor 

microenvironment.10-12  

 One method to overcome the suppressive tumor microenvironment is the use of immunostimulants, 

which are typically compounds that activate a proinflammatory, innate immune response. The use of 

immunostimulants in the presence of antigen causes a number of reactions including upregulation of co-

stimulatory molecules, increased antigen presentation, and secretion of proinflammatory cytokines, which 

can lead to the formation of tumor specific T-cells.10, 13-14 One class of immunostimulants, toll-like-receptor 

agonists, are capable of inducing a strong T cell response after binding to their respective toll-like receptors 

(TLRs). TLRs recognize bacterial and viral pathogen associated molecular patterns (PAMPs), which trigger 

specific signaling pathways. Two TLR agonists are currently FDA approved. Ceravarix™ is a cervical 

cancer vaccine that contains monophosphoryl lipid A (MPL), a TLR4 agonist in the adjuvant system.15 The 

96



other, Aldara™, is a cream for superficial basal cell carcinoma, the main active ingredient is a TLR7/8 

agonist called imiquimod.16  

 Two vastly explored TLR agonists in cancer immunotherapy are polyinosinic:polycytidylic acid 

(polyI:C) and CpG, which are TLR3 and TLR9 agonists, respectively. Both compounds exhibit strong 

induction of interferons, leading to a proinflammatory environment after binding to TLRs, thus generating 

memory and tumor-specific T cells.17-19 Several clinical trials utilize TLR agonists alone or in combination 

with other anti-cancer therapies such as radiation or checkpoint inhibitors. PolyI:C is a double-stranded (ds) 

RNA mimic that has shown both antiviral and anticancer activity.20-21 Additionally, TLR3 agonists have 

demonstrated the ability to directly inhibit tumors in vitro by decreasing cell proliferation and inducing 

apoptotic cell death.20 To date, polyI:C therapy has not been successful in cancer patients because of dose-

limiting side effects.22 The side effects are reduced when polyI:C is mixed with poly-L-lysine in an 

experimental drug called Hiltonol.23 Another TLR agonist, CpG, is a short, single-stranded synthetic 

oligonucleotide that contains multiple, unmethylated cytosine-phosphate-guanine motifs, which mimic 

bacterial DNA. Since its discovery in 1994, CpG has been extensively evaluated in clinical trials for 

cancer.24 Unfortunately, no therapeutics containing CpG are currently approved. One company, Checkmate 

Pharmaceuticals, utilizes a modified version of CpG class-A that self assembles into G tetrads that stack to 

form G-quadruplexes.25 Despite the fact that PolyI:C and CpG are promising candidates for use in cancer 

immunotherapy, one vital challenge is determining how to properly deliver these agents to tumor tissue. 

While systemic delivery can target multiple tumor sites, full body exposure of immunostimulants 

can cause improper activation of the immune system in healthy tissue, generating harmful immune and 

autoimmune reactions.6 One possible solution to this dilemma has been termed human intratumoral 

immunotherapy (HIT-IT) with the aim of propagating anti-tumor responses at sites distal to the injection 

concurrently with shrinkage of treated tumors. This process, called the abscopal effect, can occur when 

tumor-activated immune cells drain to the lymph nodes and circulate to other parts of the body.26  Immune 

cells recruited to the site of stimulation and activated by the immunostimulant could ultimately present 

tumor antigen and activate tumor-specific T cells. From a drug delivery perspective, the immunostimulants 
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should to be retained at the tumor injection site and yet available for endocytosis by immune cells to reach 

endosomal TLR3 and TLR9. Since free polyI:C and CpG are both negatively charged, intracellular delivery 

is hindered by electrostatic repulsion due to the negatively charged cell membrane. In contrast, a net 

positively charged nanoparticle may allow for tumor retention, attraction to cell membranes, and increased 

intracellular delivery of the TLR agonists.27 Polyplex nanoparticles, which are complexes between 

polycations and polyanions, have been widely explored for gene delivery therapies since they can be 

modulated with specific size, charge, and loading capacity.28-31  

Previously, our lab has shown how glatiramer acetate (GA), a highly positively charged 

polypeptide, is effective in delivering plasmid DNA to cells.32 GA, otherwise known as Copaxone®, is an 

FDA-approved drug for relapsing-remitting multiple sclerosis. Specifically, GA is comprised of four amino 

acids in a random sequence with the following amino acid ratios: L-glutamic acid (0.14), L-alanine (0.43), 

L-tyrosine (0.09), and L-lysine (0.34) (Figure 1). It has an average molecular weight between 5,000 and 

9,000 Da, but can range anywhere from 2,500 to 20,000 Da.33 Although the mechanism of action is unclear, 

GA has limited systemic exposure and pronounced reactions at the site of injection. Previous works to 

characterize the mechanism of GA led to an understanding that GA persists at the site of injection and forms 

aggregates in situ.33 These aggregates appeared as spherical particles that could be seen associating with 

local connective tissue.33 Unlike other polycations utilized in polyplexes, studies have shown that GA 

persists at the injection site and potentially aids in activating an immune response.33  

In the current work, we aim to exploit the characteristics of positively-charged GA in order to 

deliver the negatively-charged immunostimulants as a polyplex nanoparticle. Moreover, due to the 

persistence of GA at the injection site, we hypothesized GA may recruit immune cells to the site of injection. 

Here, we study complexation between GA and either polyI:C or CpG and the relation to in vitro and in vivo 

efficacy. Various methods were employed to characterize the polyplexes including particle sizing, zeta 

potential, and experiments that elucidated the stability of the polyplexes. To evaluate retention, polyplexes 

were tested in an in vitro system to emulate transport in human tissue. In vitro assays were used to assess 

98



the activity of the complexed TLR agonist. Finally, in vivo efficacy and immune responses were determined 

in a mouse tumor model of head and neck squamous cell carcinoma (HNSCC).   

2. Methods 

2.1 Polyplex formation 

20 mg/mL solutions of Copaxone® 1 mL pre-filled syringes from Teva Neuroscience, Inc. (Kansas City, 

MO) were donated by the University of Kansas Medical Center. Copaxone, or Glatiramer acetate will 

hereafter be referred to as GA. CpG ODN 1826 and LMW PolyI:C were purchased from Invivogen (San 

Diego, CA). GA polyplexes with CpG ODN 1826 or LMW PolyI:C were prepared by adding equal volumes 

of GA and CpG or PolyI:C diluted to the desired concentration followed by repeated pipetting for 30 

seconds. The polyplexes were then stored at room temperature for a minimum of 20 minutes before being 

analyzed to use in cell culture. Polyplexes were prepared at varying mass ratios of 1, 2, 3, 4, 5, 10, 20 that 

represent mass of GA divided by the complex partner, CpG or PolyI:C (Figure 2). Mass ratio was utilized 

rather than a polymer nitrogen to anion phosphate (N:P) ratio due to heterogeneity of the components. 

Polyplexes were made up in 4% mannitol except for the pH comparison in agarose gel and zeta potential 

measurements which used PBS and 1mM KCl.  

2.2 Agarose gel electrophoresis 

 Agarose was purchased from Sigma Aldrich (St. Louis, MO). Tris-acetate-EDTA (TAE) buffer was 

purchased from Invitrogen (Carlsbad, CA). CpG or PolyI:C polyplexes were prepared as described holding 

the CpG or PolyI:C concentration constant while varying the GA concentration. Then, 4 µL 6x DNA 

loading dye (Takara Bio Inc., Japan) was added to the polyplex (10 µL) before the solution was loaded onto 

a 3% agarose gel, and electrophoresed for 25 minutes at 100 V. CpG and PolyI:C alone were utillized as 

controls. A 1 kb DNA ladder (Promega, Madison, WI) was used as a general reference. The gel was stained 
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by shaking with SYBR Gold (Invitrogen, Carlsbad, CA) in TAE buffer for 25 minutes at room temperature. 

Then, the gel was imaged on AlphaImager (Protein Simple, San Jose, CA). 

2.3 Particle sizing and zeta potential 

 The effective radius (nm) of CpG or PolyI:C polyplexes was determined by dynamic light scattering 

(DynaPro, Wyatt Technology, Santa Barbara, CA). Samples for particle sizing were prepared in 4% 

mannitol (Sigma Aldrich, St. Louis, MO). Measurements were conducted after a 20 minute incubation time 

at room temperature. Zeta potential measurements were measured by Zeta PALS (Brookhaven Instruments, 

Holtsville, NY). All samples for zeta potential measurements were prepared in 4% mannitol and diluted 

into 1 mM KCl for analysis.  

2.4 Rhodamine labeled GA 

Copaxone® in pre-filled syringes was first dialyzed against DI water to remove the mannitol buffer.  It was 

then reacted with 2 equivalents of Rhodamine B N-hydroxysuccinimide (NHS) ester in CPB buffer (10mM 

citrate, 20mM phosphate, 40mM borate) pH 7.5 with 20 % dimethyl sulfoxide (DMSO). The reaction was 

protected from light and allowed to react at room temperature for 4 hours with gentle agitation. To separate 

labeled drug from excess dye, the reaction mixture was placed into 2 kDa MWCO dialysis cassettes and 

dialyzed against 5% dimethylformamide (DMF) in water at pH 2, followed by 0.5 M LiCl solution, and 

finally DI water. Dialysis was performed sequentially in each buffer for 24 hours with one buffer change 

in between for total of 72 hours. The resulting reaction solution was characterized by HPLC and lyophilized. 

7000 Da was used as the approximate molecular weight (MW) of Copaxone®. The conjugation of dye 

labeled onto GA was determined by constructing a calibration curve based on the fluorescence of 

Rhodamine B NHS ester at various concentrations and comparing the fluorescence of the labeled product 

to the calibration curve. The fluorescence experiments were performed using Synergy™ H4 Microplate 

Reader (BioTek, Winooski, VT) with 540/25 nm excitation filter and 620/40 nm emission filter. 
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2.5 Fluorescence polarization 

Fluorescence polarization measurements were taken on Synergy H4 microplate reader (BioTek, Winooski, 

VT). Rhodamine labeled GA was complexed with varying amounts of CpG or PolyI:C as previously 

described. Standard curves for Rhod-GA, CpG, and PolyI:C were prepared. Then, 200 µL of the polyplexes, 

or standards were added to a 96 well, black microplate (Corning, Corning, NY). Using fluorescence 

polarization settings on the plate reader, the excitation filter was set to 485 nm/ 20 nm and emission filter 

to 620 nm/ 40 nm. To calculate the polarization, first the parallel and perpendicular values for the standards 

(CpG or PolyI:C alone) are subtracted from their respective polyplexes. Then polarization was calculated 

using the following equation: 𝑃𝑃 = 𝐼𝐼∥−𝐼𝐼⊥
𝐼𝐼∥+𝐼𝐼⊥

.  

2.6 Transmission electron microscopy (TEM) 

TEM images were captured using FEI Tecnai F20 XT Field Emission Transmission Electron Microscope 

at the University of Kansas Microscopy and Analytical Imaging Laboratory. Polyplexes or individual 

components were added to carbon coated grids and touched on a Kimwipe to remove excess liquid, then 

immediately dipped into liquid nitrogen prior to imaging.  

2.7 Assessment of DNA/RNA accessibility by SYBR gold assay 

The degree of accessibility of the DNA or RNA following complexation with GA was assessed by the 

staining of SYBR Gold to accessible DNA or RNA. Polyplexes were made as described above and after 20 

minutes polyplexes were added to a 96-well plate in triplicate followed by SYBR gold stain and mixed 

well. After approximately 5 minutes the fluorescence was measured using a Synergy H4 microplate reader 

(BioTek, Winooski, VT). The excitation filter was set to 495 nm and emission filter to 537 nm. 
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2.8 The effect of dextran sulfate on the stability of the polyplexes 

The effect of dextran sulfate on the stability of the polyplexes was assessed by observing the change in 

fluorescence of SYBR Gold upon increasing amounts of dextran sulfate. 90 uL of each polyplex was added 

to a 96-well plate followed by 10 uL of various concentrations of dextran sulfate and mixed well. After 20-

30 minutes of RT incubation, 11 uL of 10x SYBR Gold was added and 5 minutes later the plate was 

analyzed as described previously.  

2.9 Hyaluronic acid gel retention 

To test the polyplexes ability to retain at an injection site, we devised a model system to emulate transport 

in human tissue made of highly viscous hyaluronic acid (HA) to which we could inject labeled polyplexes 

in the center and observe the dispersion over time. 0.8-1.5 MDa HA was added to PBS buffer at 20 mg/mL 

then placed on end-over-end rotator overnight to dissolve. The HA gel was then weighed out into a 96 well 

black plate at 0.28 g/well. The plate was centrifuged to remove bubbles then placed at 4 ˚C until use. 

Polyplexes were prepared as described but for this test they were first made up in 90% of the total volume, 

let incubate for 20 minutes, then 10% of the total volume of 20x SYBR Gold stain was added for an 

additional 5 minutes. A 3D printed device was designed to allow uniform injection into the wells at half the 

depth of the gel. 7 µL of sample was injected through the device into the center of the well using reverse 

pipetting. Fluorescent images were obtained at varying time points on a MaestroFlex Imager (Cambridge 

Research and Instrumentation, Woburn, MA). Wells were analyzed using ImageJ software. Fluorescence 

intensity was measured across the well at 3 different angles (rotated 60˚ each) and averaged to create a 

spatial intensity plot (figure 8A). The values were then normalized to a standard that was constant in every 

image. Area under the curve from pixels 15-25 was used to calculate the percent intensity reduction from 

time 0.  
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2.10 Jaws II cells 

Jaws II cells (ATCC Manassas, VA) were cultured in RPMI, 10% FBS (Atlanta Biologicals), 1% penicillin-

streptomycin (P/S, MP Biomedicals), and 5 ng/mL GM-CSF (Tonbo Biosciences). Jaws II cells were plated 

at 2.5x105 cells/well, at 270 µL/well in a 96 well plate and allowed to adhere for an hour before adding 

treatments. Then, 30 µL of 10x polyplex or GA, polyI:C, or CpG was added to each well. Additionally to 

assess cell stability in the presence of various buffers, 30 µL of either 4% mannitol, 5% glucose, nuclease-

free water (NFW), or saline was added to the well and images were taken on an inverted microscope (Accu-

Scope, Hicksville, NY). Additionally, a resazurin assay was utilized to assess cell metabolism.  

2.11 Bone marrow derived dendritic cells (BMDCs) 

Five-week-old C57BL/6J mice were purchased from Jackson Laboratories and housed under specified, 

pathogen-free conditions at The University of Kansas. All protocols involving mice were approved by the 

Institutional Animal Care and Use Committee at The University of Kansas. Mice were sacrificed and their 

femurs were collected. The ends of the femur were clipped, and the bone marrow was flushed out using a 

21-gauge needle attached to a 5 mL syringe containing RPMI supplemented with 1% penicillin-

streptomycin. Cells were collected and centrifuged for 7 minutes at 1,350 rpm at 4℃. The supernatant was 

removed, replaced with red cell lysis buffer, and incubated at room temperature for 10 minutes. Lysis was 

stopped with 6x volume of cold complete medium (RPMI, 10% FBS, 1% penicillin-streptomycin). The cell 

solution was passed through a 70 µm nylon cell strainer and centrifuged for 5 minutes at 1,700 rpm and 

4℃. The supernatant was removed and replaced with complete medium, and cells were plated at 

approximately 2x106 cells per T-75 culture flask in 12 mL complete medium spiked with 20 ng/mL GM-

CSF. On day 3, the medium was removed to discard any floating cells, and 12 mL of media with fresh GM-

CSF was added to the cells. On day 8, the media with cells were collected and the bottom of the flask was 

thoroughly rinsed to collect any loosely adherent cells. BMDCs were then plated at 2.5x105 cells/well and 

treated as previously described for the Jaws II culture conditions. Cell viability was inferred from metabolic 

103



activity measured by the resazurin assay. Wells were washed and 100 µL of RPMI and 20 µL of 0.01% 

resazurin were added to the wells. Plates were incubated at 37°C for one or two hours, and the fluorescence 

was measured at ex/em 560/590 nm using a Synergy H4 microplate reader (BioTek, Winooski, VT). Data 

within each stimulation group was normalized to the untreated media control at their respective time points. 

TNF-α ELISA. TNF-α expression by the dendritic cells was measured by ELISA (R&D systems, 

Minneapolis, MN) as per manufacturer instructions.  

2.12 In vitro HEK blue reporter cell assay  

HEK-Blue TLR9, TLR3, and Null cell lines (Invivogen, California) were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM; Corning, NY) supplemented with 10% FBS, 1% penicillin-streptomycin, and 

the selective antibiotics according to the manufacturer’s protocol. HEK-Blue TLR cells allow for the study 

of TLR activation by observing the stimulation of secreted embryonic alkaline phosphatase (SEAP), a 

protein associated with downstream activation of TLRs. At 50-80% confluency, cells were harvested and 

resuspended in HEK detection media (Invivogen, California) and 180 uL was seeded into 96-well plates at 

~8x105 cells/well. 20 uL of polyplexes or controls were added to respective wells and the plate was 

incubated at 37 °C, 5% CO2 for at least 6 hours or until color change. Absorbance readings were measured 

at 640 nm. Null cells were used as the control. Working polyanion concentrations were determined by 

selecting a concentration that achieved a reasonable response factor as shown from a concentration curve 

completed in the respective cell lines (supplementary figure 1). PolyI:C was held constant at 200 µg/mL 

and CpG was at 100 µg/mL. Cells and sample were incubated with the HEK blue detection media for TLR 

activation measurements or in regular media for metabolism evaluation in resazurin assays. 

2.13 AT84 cells 

AT84 cells were derived from a spontaneous squamous cell carcinoma in the oral mucosa of a C3H 

mouse (Hier/Karp 1995, Paolini/Venuti 2013) and were gifted by Aldo Venuti (Regina Elena National 
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Cancer Institute, Rome, Italy). Cells tested negative for interspecies contamination (species: mouse(+), 

rat(-), human(-), Chinese hamster(-), African green monkey(-); Idexx BioResearch), negative for rodent 

pathogens (Idexx BioResearch, 21 pathogen IMPACT I PCR profile), and negative for Mycoplasm 

contamination prior to animal studies (Lonza, Basel, Switzerland, MycoAlert test kit). Idexx CellCheck 

STR (short tandem repeat) profile: MCA-4-2: 20.3, 21.3; MCA-5-5: 15; MCA-6-4: 18, 19; MCA-6-7: 12; 

MCA-9-2: 15; MCA-12-1: 16; MCA-15-3: 25.3, 26.3; MCA-18-3: 16; MCA-X-1: 26, 27. Cells were 

cultured in RPMI-1640 media (Gibco, Thermo Fisher Scientific, Waltham, MA) supplemented with 10% 

FBS (Corning Corning, NY), and 100 U/mL penicillin / 100 µg/mL streptomycin (HyClone, Thermo 

Fisher Scientific, Waltham, MA) in a humidified incubator at 37°C and 5% CO2.  

All rodent studies were done at the University of Kansas Animal Care Unit, which is in compliance with 

the “Guide for the Care and Use of Laboratory Animals” and is accredited by the Association for the 

Assessment and Accreditation of Laboratory Animal Care International (AAALAC). The studies were done 

according to a protocol approved by the University of Kansas IACUC committee.  

2.14 Immuno-competent tumor model for efficacy  

CpG polyplexes displayed better TLR activation and retention potential over polyI:C polyplexes so CpG 

polyplexes were selected to move forward in tumor studies. Wildtype C3H mice (Charles River Strain 025, 

6-8 weeks old, 20-25g) were used for in vivo tumor studies. Both male and female mice were used in the 

studies. Since no differences were found between the sexes, results combined both sexes into one group. 

Mice were anesthetized using 5% isoflurane in O2 for 5 minutes. One million AT84 cells in 50 µl PBS were 

injected subcutaneous (s.c.) into the floor of the mouth via an extra-oral route of C3H mice to obtain 

orthotopic allograft tumors (Hier/Karp 1995, Paolini/Venuti 2013). Treatment began when tumors reached 

~100 mm3, generally days 10-12 days after cell injection. Under isoflurane anesthesia, mice were treated 

intratumorally with 75 µg (based on immunostimulant) in 50 µL sterile 4% mannitol every three days for 

5 total treatments. Serum was collected via retroorbital bleeding 2 hours after the first and fifth injections. 
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Serum cytokines were measured using a U-PLEX kit (Meso scale Diagnostics, LLC, Rockville, MD) as per 

the manufacturer instructions. Animal survival was evaluated, however, in this model, death was usually 

caused by a tumor size large enough to impede regular mobility. Tumor size was monitored twice per week 

and calculated: tumor volume (mm3) = 0.52 × (width)2 × length, where length is the longer of two 

perpendicular dimensions. Statistical comparisons were done using GraphPad Prism software. On day 36 

when all vehicle-treated tumors reached the maximum allowable size (1800 mm3), all animals were 

sacrificed, and tumors extracted.  Tumor was bisected, and one half was frozen in OTC media (Fisher 

Scientific) for cryosectioning and staining.  The other half was cut into small pieces (< 5 mm) and stored 

in RNA Later solution (Ambion, Inc. Austin, TX). For cryosectioning slices, the sections were fixed in 10% 

formalin, blocked with 5% goat serum in PBS, and stained with primary antibodies. Primary antibodies 

were diluted to 5 µg/mL in blocking buffer (5% goat serum in PBS) and incubated overnight at 4 °C. 

Antibodies used were Alexa Fluor ® 488 anti-CD8a, Alexa Fluor® 594 anti-CD11b, and Alexa Fluor® 

647 anti-CD11c (BioLegend). After antibody staining, sections were stained with Hoechst 33342 and 

mounted in SouthernBiotech™ Fluoromount-G™ Slide Mounting Medium (SouthernBioTech, 

Birmingham, AL) and stored in the dark at 4 °C. Images were acquired using an Olympus IX-81 inverted 

epifluorescence microscope at 10x magnification. The acquired images were compiled on Slidebook 6.0. 

3. Results 

3.1 Polyplex formation 

  Agarose gel electrophoresis studies were used to visually test the ability of the GA to polyplex with 

the polyanions (polyI:C and CpG). Specifically, free, negatively charged polyI:C or CpG migrated through 

the agarose gel whereas positively charged GA did not. When polyI:C or CpG are complexed with GA, the 

material is retained in the loading well. In the higher pH buffer (Figure 3A and C), more GA (a higher 

mass ratio) was required to fully immobilize the polyanion. The GA immobilized polyI:C at lower mass 

ratios than CpG but this can be attributed to molecular weight differences of the polyanions. Differences in 
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complexation as a function of pH were observed with both polyI:C and CpG. In particular, polyI:C was 

fully immobilized at R5 at pH 7 and R2 at pH 5.  A similar trend was seen with CpG polyplexes where 

immobilization occured at R10 and R4 for pH 7 and pH 5, respectively. In more acidic conditions, the 

nitrogens on GA become more protonated, requiring less GA to immobilize the polyanionic TLR agonists.  

3.2 Polyplex characterization 

Zeta potential measurements (Figure 4A-B) agreed with electrophoresis studies, showing a transition 

to net positive charge at the same mass ratio where the polyanion was immobilized on agarose gels. At pH 

7, both polyI:C and CpG polyplexes required a higher GA ratio to achieve a net positive charge than at pH 

5. At the lowest ratio, the pH did not significantly impact the zeta potential. At higher ratios, the charge 

started to plateau, indicating an excess of GA. At lower ratios, the negative zeta potential could be a result 

of free polyanion in solution or rather the polyanion exposed on the surface of the polyplex whereas at 

higher ratios the polyanions are encapsulated within the polyplex. These results exhibited the ability to 

control the surface charge with pH and ratio. For all polyplexes the radius was between 20 and 70 nm, or a 

diameter range of 40-140 nm (Figure 4C-D). For polyI:C and CpG, the polyplexes were net positively 

charged when the ratio is R2 and R5, respectively in 4% mannitol buffer (pH 5), which is the diluent used 

for GA in the product Copaxone®. To corroborate particle sizing data, TEM images were collected and the 

results correlated with the particle sizes determined by DLS measurements (Figure 5). With controls alone, 

spherical particles were not observed, but in the polyplex samples, spherical particles were detected within 

the expected size range.  

3.3 Immunostimulant accessibility characterization 

Fluorescence polarization is typically utilized to quantify the associations between a protein and a 

ligand, however, this technique can also be used to analyze binding of fluorescent molecules and a protein. 

Here, fluorescence polarization was utilized to monitor complexation of fluorescently labeled-GA to 
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polyI:C or CpG. In the assay, samples were first subjected to polarized light. If the fluorescent molecule is 

free in solution, it will emit de-polarized light. Conversely, when it is bound and its mobility is decreased, 

the emitted light remains polarized, resulting in an increase in polarization. Rhodamine-labeled GA and the 

polyanion were mixed at various ratios holding the Rhodamine-GA constant and changing the concentration 

of polyI:C or CpG. The data collected complimented the agarose gel and zeta potential data. Specifically, 

the increase in polarization plateaued at the same mass ratio in which the net charge was positive and gel 

electrophoresis indicated immobilization (Figure 6).  

The accessibility of polyI:C or CpG within the polyplexes was assessed by staining with SYBR 

Gold (Figure 7A-B). Free polyanion is more accessible for stain whereas complexed polyanion is more 

encapsulated and inaccessible. As expected, fluorescence decreased as the mass ratio increased indicating 

that the polyanion was becoming more encapsulated in the polyplex. Interestingly, the polyI:C control 

sample did not have the highest level of fluorescence compared to the polyplexes which was expected (and 

seen with the CpG group). One possible explanation is that GA may be rearranging or displaying the polyI:C 

on the surface rather than encapsulating it at the smaller mass ratios. To assess the interaction strength of 

the polyplexes, dextran sulfate was titrated into polyplex samples. Fluorescence measurements were 

obtained after incubation with increasing amounts of dextran sulfate for each polyplex tested and the signal 

was normalized to the signal at 0 dextran sulfate for the same polyplex (Figure 7C-D). For higher mass 

ratios, fluorescence increased with increasing dextran sulfate. At lower ratios, no trend was evident 

suggesting free polyanion dominated the fluorescence emitted. Additionally, polyI:C polyplexes had a 

larger fold increase in fluorescence with increasing dextran sulfate than CpG polyplexes suggesting a 

weaker interaction strength.  

3.4 Hyaluronic acid gel retention  

To simulate tumor tissue transport, polyplexes were injected into a model system to emulate transport 

in human tissue. HA is one of the main components within the extracellular network and high molecular 

weight HA has been used to simulate subcutaneous (SC) space injection.34-35 For SC injection simulation, 
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10 mg/mL HA was previously reported35, thus to model a denser tumor environment, the concentration was 

increased to 20 mg/mL. Figure 8C are representative examples some of the samples in this experiment 

over 0, 2, and 5 hour time points- where the greatest differences were observed. Normalized spatial plots 

are provided in figure 8D. Free polyI:C and CpG diffused quickly. Interestingly, the polyI:C polyplexes 

also appeared to diffuse quickly, even at higher ratios of polycation in comparison to CpG polyplexes. 

While the ratios cannot be directly compared between polyI:C and CpG polyplexes due to MW differences, 

the zeta potential and agarose gel profiles are similar. For the higher ratio CpG polyplexes, a peak in the 

center could still be observed at 24 hours and a clear, non-diffused spot was still seen but not imaged out 

to 72 hours. Since the polyplexes were labeled using SYBR Gold stain, each polyplex stained differently 

depending on the accessibility of the polyI:C or CpG. To make the samples directly comparable, data were 

normalized to the fluorescence intensity at time zero (Figure 8A-B). PolyI:C polyplexes diffused faster and 

were less dependent on ratio at the time points measured, but never diffused as quickly as the polyI:C 

control. CpG polyplex retention at the injection site was dependent on the ratio with polyplexes made using 

more GA persisting longer.  

3.5 Dendritic cell metabolism 

In an effort to determine an optimal buffer for polyplex formulation, cellular metabolism data and 

microscopy images of Jaws II dendritic cells were acquired after incubation with various buffers 

including nuclease free water, glucose, mannitol, PBS, and NaCl (supplementary figure 2). Glucose was 

the only buffer that showed detrimental effect on the cells.  Next, to evaluate cytotoxicity in dendritic 

cells, cellular metabolism was measured after individual component or polyplex incubation with either 

Jaws II cells or BMDCs at two concentrations (supplementary figure 3). For the controls, GA, polyI:C, 

and CpG, no significant toxicity was observed however the metabolism was increased in BMDCs as 

compared to Jaws II DCs, particularly for CpG. Polyplexes showed a similar trend where BMDCs were 

more effected. CpG polyplexes impact on cellular metabolism was not effected by ratio whereas polyI:C 

polyplexes showed decreased metabolism with increased ratio. Further, for select samples, TNFα 
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secretion was measured from cell culture supernatant (supplementary figure 4). CpG polyplexes had a 

significant impact on BMDCs when polyI:C polyplexes did not and the opposite trend was true for 

incubation with Jaws II DCs. This could be a result of levels of toll-like receptors in the different cell 

types.36 

3.6 In vitro HEK blue reporter cell assay 

PolyI:C and CpG are TLR agonists of TLR3 and TLR9, respectively. HEK blue hTLR reporter cells 

were used to examine the effect of complexation on TLR activation. TLR activation was normalized to the 

respective polyanion control. An increased mass ratio of GA:CpG resulted in decreased TLR activation 

(Figure 9). Interestingly, some of the CpG polyplexes were up to twice as effective at activating TLR9 as 

the CpG alone. The trend was less pronounced for polyI:C polyplexes, but still showed the lowest TLR 

activation at the highest ratio. Generally, the polyI:C polyplexes activated TLR3 similar to free polyI:C 

with the exception of a GA:polyI:C ratio of 20. TLR activation did not seem to be affected by the differences 

in cellular metabolism (Figure 10). There was a slight decrease in metabolism as the ratio increased which 

was more pronounced at 20 hours but overall there were few significant differences compared to the 

untreated control.  

3.7 Tumor studies in mice 

CpG polyplexes were evaluated in a mouse tumor model of head and neck squamous cell carcinoma. 

Mice were inoculated with 1x106 AT84 cells into the floor of the mouth. IT injections were administered 

every 3 days for a total of five injection and began when tumors reached ~100 mm3 (Figure 11A). 

Treatment groups included CpG, CpG polyplexes at two mass ratios (R4 and R6), GA low and GA high 

corresponding to the GA dose delivered for R4 and R6, and the 4% mannitol vehicle control. The injection 

volume was consistent and CpG concentration was constant in all CpG containing treatments. The 

polyplexes as well as CpG alone had 100% survival whereas the controls, mannitol, and both GA 
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concentrations had 50% or less survival (Figure 11C). The separation was also clear in the tumor burden 

data with the control groups having tumors almost twice as large as those treated with polyplexes or CpG 

alone at the end of the study (Figure 11B). At the completion of the study, tumors were resected, 

cryosectioned, and stained for markers of immune cells. Tumor slice staining revealed differences in 

CD11b, a marker for many types of immune cells (monocytes, granulocytes, macrophages, dendritic cells, 

NK cells, and some T and B cells), and CD11c, a marker for dendritic cells (Figure 13-14). Polyplexes and 

CpG groups induced the infiltration of CD11b and CD11c immune cells into the tumor compared to the 

controls. While not statistically significant, R6 appeared to have some increased CD8a (cytotoxic T 

lymphocyte) infiltration. Further, GA-Hi appeared to have some enhancement of CD11b and CD11c but 

was not statistically different than the control. Images of the staining indicated that the infiltrating immune 

cells remained mostly in the periphery of the tumor (Figure 13).  

3.8 Serum cytokines 

To evaluate the systemic effect of the IT treatments, cytokine levels from serum taken two hours after 

the first and fifth injections were determined (Figure 15). CpG treatment induced the greatest level of 

cytokines across the panel in all but IL-2 after the fifth injection where R4 and R6 were higher. CpG, R4, 

and R6 produced significantly greater cytokine levels compared to both mannitol and GA groups for the 

majority of cytokines. CpG was always significantly higher. R6 treatment showed increased cytokine 

production compared to R4 in all cytokines.  

4. Discussion 

Intratumoral injection of immunostimulants has the potential to induce immunity to local and distal 

tumor tissue and to work synergistically with checkpoint inhibitors. Immunostimulant transport out of the 

tumor and into systemic circulation requires attention. High incidences of AEs in recent clinical trials have 

highlighted the necessity to optimize delivery of immunostimulants to decrease systemic toxicity.37-38 In 

order to achieve HIT-IT of immunostimulants without systemic toxicity, retention and activity of the 
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therapy at the site of injection is a critical parameter.39-40 Immunostimulants such as PAMPs may traffic 

into systemic circulation after IT injection, however, studies have shown dramatic benefits to depots, slow 

release, and particulate formulations of PAMPs to increase tumor retention and local activity.30, 37, 39-41 

Furthermore, many approaches aimed at increased immune activation have seen slightly enhanced safety 

and efficacy profiles when using structurally modified immunostimulants or emulsion or complex 

formulations.23, 25, 42-45 Specifically, packaging of immunostimulants into condensed particles has been 

found to have a positive effect on retention and innate immune activation over the unformulated active 

ingredient.30, 39 

The packaging of DNA or RNA by polycations into a net positively charged particle has been 

frequently used for intracellular delivery46-49, but this work introduces a new perspective that these 

polyplexes can also aid in tumor retention. Common polycations used for delivery have a history of toxicity 

problems, especially at higher molecular weights30-31, 50-53, therefore utilization of a polycation that already 

has an approved safety profile is attractive. An already FDA approved and polycationic drug, glatiramer 

acetate (GA), is a potential delivery tool when formulated with TLR agonists, polyI:C or CpG. Based on 

the characteristics of GA33, the resulting cationic polyplex particles was hypothesized to promote cellular 

uptake and promote injection site retention.  

Major factors contributing to tissue transport and immune activation are hydrodynamic radius and 

charge.39, 54 Depending on the route of administration, particles 10-70 nm tend to drain to lymph nodes and 

>70 nm tend to form depots at the injection site.54-60 Furthermore, positively charged particles below 500 

nm have been seen to be optimal for APC uptake.31, 54-55, 61 Previous studies of IT injection reported cationic 

liposomes and particles 120 – 250 nm were retained at the injection site whereas neutral and smaller 

liposomes drained from the tumor.62-63 DLS measurements of the GA polyplexes yielded particle diameters 

of 40 nm – 140 nm, suggesting these could retain at injection site, or localize to draining lymph nodes, and 

attract the attention of APCs. Similar to previous reports, the particle size did not vary significantly with 

changing of the mass ratio.64 Further, the polyplexes can be tuned to achieve a net positive charge, which 

is important for increased cell uptake as it can enhance the attractive force towards the negatively charged 
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cell surface. Positive charge has been shown to be specifically significant for injection site retention33 

including tumor62-63 retention via electrostatic interactions.  

GA polyplexes enhanced TLR activation compared to free immunostimulant suggesting particle 

formation promoted cell uptake. Others have shown particle formation is critical for enhanced APC 

uptake.39, 56, 65 While most pronounced with the CpG polyplexes, TLR activation decreased as the ratio 

increased. Others found a similar correlation of TLR agonist accessibility within a polyplex and the 

corresponding receptor activation.66 Immunostimulant accessibility studies revealed an increasing 

polycation:CpG ratio rendered the immunostimulant less accessible suggesting an intermediate ratio may 

promote release and TLR engagement. While increased ratio may result in promotion of endocytosis into 

cells due to increased positive charge attracting the polyplex to the cell surface, the tighter binding causes 

a decrease in TLR agonist availability. Optimization of a polyplex for immunostimulant delivery would 

involve finding a “sweet spot”, or a ratio that favors efficient internalization but also an interaction strength 

that allows release or availability of the agonist within the cell. 

 Notably, the CpG polyplexes produced similar trends between accessibility and TLR activation 

whereas TLR activation induced by polyI:C polyplexes did not reflect its accessibility trends. This suggests 

that polyI:C may have a weaker association with GA than CpG. In fact, TLR agonist accessibility evaluated 

after challenge with a competing charged molecule revealed that fully immobilized polyI:C polyplexes 

were quicker to release the immunostimulant over CpG polyplexes at the same ratios indicating a weaker 

polyplex interaction strength. Therefore, a possible explanation for the TLR activation trend of polyI:C 

polyplexes could be disassociation of the polyplexes in cell culture media resulting in activation similar to 

polyI:C alone. Previous studies have indicated that dsRNA resists condensation compared to DNA which 

could explain the differences in interaction strength and TLR agonist accessibility.67-68 Overall, this data 

tells us that the polyplex interaction strength and TLR agonist accessibility are both important for TLR 

activation but are not necessarily directly related. 

Model tissue retention studies provided evidence that net positively charged polyplexes could 

remain at the injection site longer than immunostimulant alone. Because of HA’s negative charge, we 
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hypothesized that our net positively charged polyplexes would retain in the center of the well longer than 

polyI:C or CpG alone. These studies indicated that polyI:C polyplexes may have a weaker interaction 

strength than CpG polyplexes at the same mass ratio, a conclusion also drawn from the accessibility studies. 

Both polyI:C and CpG polyplexes showed increased retention with increase in ratio but CpG polyplexes 

displayed more pronounced retention capabilities. Taken together, while GA is able to condense both 

polyI:C and CpG into net positively charged particles, CpG polyplexes appeared to have a greater benefit 

to TLR activation and retention over polyI:C polyplexes.  

CpG polyplexes were studied in an immunocompetent tumor model of HNSCC. Polyplexes and 

CpG showed highly significant and similar efficacy over mannitol and GA controls. Interestingly, the CpG 

alone exhibited the smallest tumor size. Evaluation of tumor infiltrating immune cells showed that 

polyplexes and CpG were able to induce immune cell migration into tumor in comparison to controls. 

Interestingly, the immune cells were mainly located around the periphery with minimal staining towards 

the center. This could likely be a result of lack of vasculature penetrating the tumor tissue.  One theory to 

explain the differences in efficacy and immune infiltration seen with CpG alone over polyplexes could be 

that the availability of the CpG within the polyplex is effectively limiting the dose in vivo. However, while 

there may be slightly decreased efficacy, the increase in safety could mean the difference in being able to 

apply the immunostimulant in immunotherapy. Further work to understand the required potency and how 

complexation effects it would be needed. 

While CpG alone did appear to have the greatest effect on tumor burden, the survival and tumor 

burden information do not account for potential systemic exposure and safety concerns. The free, 

unformulated CpG produced significantly greater systemic cytokines related to toxicity. Specifically, 

cytokine release syndrome (CRS), whose symptoms are frequently seen in clinical trials of 

immunotherapies, is associated with elevated levels of IL-6, IL-10, TNFα, and IFNγ.37, 69 The elevated 

serum cytokines seen in treatment with CpG alone suggested that the polyplexes were retained at the 

injection site better than CpG alone. Previous studies examined CRS associated cytokines after CAR-T cell 

infusion immunotherapy. Patients exhibiting high grade CRS produced IL-6 that remained elevated whereas 
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IFNγ and IL-10 produced a more transient increase.70-71 In this work, IFNγ and IL-2 levels in R4 and R6 

increased between injection one and five whereas CpG did to a lesser degree. Along the same lines, for IL-

12 and GM-CSF, R4 and R6 increase and CpG decreases between injection one and five. Overall, levels of 

IL-10, IFNγ, and IL-2 increase from injection one to injection five whereas IL-23 and IL-17 decrease. These 

trends may be useful in understanding the kinetics of cytokine induction after immunostimulant therapy but 

more time points would be needed to establish plausible kinetics. 

5. Conclusion 

Immunostimulants are potent tools in immunotherapeutic treatment of tumors, however, even in IT 

administration, systemic toxicity issues are of concern. Our studies found that FDA approved GA can 

complex with TLR agonist immunostimulants polyI:C and CpG. These polyplexes mitigated systemic 

markers of toxicity in comparison to free TLR agonists, demonstrating increased retention. TLR activation 

and diffusion in model tumor tissue were highly dependent on the TLR agonist accessibility and particle 

properties, which can be tuned by altering the ratio of GA to the TLR agonist polyanion. While GA formed 

a polyplex particle with both polyI:C and CpG, CpG polyplexes exhibited higher retention at the simulated 

injection site and enhanced TLR activation capabilities. These results demonstrate the importance of 

particle characteristics in terms of efficacy and retention ability. Particle formation and immobilization of 

immunostimulant are not the only requirements for subsequent TLR activation or retention; interaction 

strength of the polyplex plays a significant role. This work displayed a novel method of delivering 

immunostimulants but also highlighted the design factors that affect the function of polyplexes.  
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6. Figures 

 

 

 

 
Figure 2. Polyplex formation. 
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7. Supplementary Figures 
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1. Conclusions 

 While traditional cancer treatments like radiation and chemotherapy directly kill cancer 

cells, cancer immunotherapy trains the body to fight its own cancer and can create lasting 

immune responses. Immunotherapy approaches aim to overcome the immune suppression 

established by the tumor microenvironment by activating an innate immune response. Activation 

of an innate immune response can be accomplished by delivering PAMPs, cytokines, viruses, 

targeted mAbs, or autologous engineered immune cells. For most immunostimulant therapies, 

the activation is non-specific therefore, immunostimulants should be delivered in the presence of 

tumor antigen so as not to cause improper immune activation towards healthy tissue. 

Furthermore, the use of local immunostimulants can induce the infiltration of immune cells into 

the tumor therefore increasing the efficacy of therapies like anti- PD-1 or anti-PD-L1 checkpoint 

inhibitors whose activity is dependent on interactions between tumor cells and immune cells. 

Traditional, systemic administration of immunostimulants has generated adverse events 

associated with systemic toxicity which are most commonly flu like symptoms or symptoms 

related to cytokine release syndrome (CRS). Local delivery can circumvent trafficking barriers 

and should reduce the systemic toxicity seen with systemic administration, however, clinical 

trials with intratumoral immunostimulants indicate that local delivery itself is not enough to 

prevent systemic toxicity events. Diffusion, or trafficking out of the tumor injection site and into 

systemic circulation can lead to similar adverse events seen with systemic administration. Many 

approaches have focused on modifications of therapy or formulations that have led to increased 

efficacy after IT injection, but few have directed strategies at increasing retention at the injection 

site.  
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 Chapter 1, reviewed the intratumoral cancer therapies currently in human clinical trials 

with discussions on the effects of therapy and formulation characteristics on the safety and 

efficacy. While it was difficult to make correlations, it was concluded that therapies with 

modified active or therapies formulated into a particle or emulsion tended to have better safety 

profiles presumably because of increased retention after injection.  

 This dissertation focuses on delivery strategies for two negatively charged TLR agonists 

polyI:C and CpG which are highly explored as immunostimulants in cancer immunotherapy. 

Both compounds exhibit strong induction of interferons, leading to a proinflammatory 

environment after binding to TLRs, thus generating memory and tumor-specific T cells.1-3 

PolyI:C is a double-stranded (ds) RNA mimic and TLR3 agonist that has shown both antiviral 

and anticancer activity.4-5 CpG is a short, single-stranded synthetic oligonucleotide and TLR9 

agonist that contains multiple, unmethylated cytosine-phosphate-guanine motifs, which mimic 

bacterial DNA.6 Notably, both polyI:C and CpG are agonists to an intracellular TLR and 

therefore require endocytosis. To achieve both goals of increased retention and intracellular 

delivery, polycations were selected as a delivery tool. Polycations have historically been 

employed for intracellular delivery of nucleic acid material7-10 and this work suggests that 

electrostatics can aid in injection site retention through interactions with highly negatively 

charged extracellular matrix (ECM).  

Chapter 2 explored the use of poly-L-lysine (PLL) as a polycationic delivery vehicle for 

negatively charged immunostimulants polyI:C and CpG to aid in injection site retention and for 

minimized systemic exposure. We evaluated polyplexes of the polycation PLL with polyanionic 

TLR agonists. Specifically, the relationship between PLL molecular weight and complex 

formation, TLR activation, and retention in a simulated tumor microenvironment was explored. 
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TLR activation was largely driven by the MW of PLL followed by the accessibility of the 

immunostimulant within the polyplex. Retention was also driven by these factors but in an opposite 

manner. Taken together, there is likely an optimal window of polycation MW and ratio that favors 

TLR activation and retention without causing toxicity. For CpG polyplexes, K9 through K50 was 

ideal for limiting cytotoxicity but higher MW was best for retention. Furthermore, this work 

supported with the hypothesis that particle formation is critical for immune activation and 

retention.11 These findings illustrate the potential use of polycations for carrier vehicles that not 

only aid in intracellular delivery but also contribute to injection site retention. The characterization 

results in this work suggest that PLL + CpG polyplexes may be a good candidate for increased 

intracellular delivery and decreased transport away from the tumor.  

 Chapter 3 developed and researched the novel idea of using an FDA approved, and safe 

drug called Glatiramer Acetate (GA) or Copaxone® as a delivery tool for negatively charged 

immunostimulants polyI:C and CpG. The studies found that GA can complex with TLR agonist 

immunostimulants polyI:C and CpG with consistent size and tunable charge. In a mouse tumor 

model, these polyplexes mitigated systemic markers of toxicity in comparison to free TLR 

agonists, demonstrating increased retention. TLR activation and diffusion in model tumor tissue 

were highly dependent on the TLR agonist accessibility and particle properties, which can be 

tuned by altering the ratio of GA to the TLR agonist polyanion. While GA formed a polyplex 

particle with both polyI:C and CpG, CpG polyplexes exhibited higher retention at the simulated 

injection site and enhanced TLR activation capabilities. These results demonstrate the 

importance of particle characteristics in terms of efficacy and retention ability. Particle formation 

and immobilization of immunostimulant are not the only requirements for subsequent TLR 

activation or retention; interaction strength of the polyplex plays a significant role. This work 
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displayed a novel method of delivering immunostimulants but also highlighted the design factors 

that affect the function of polyplexes. 

To conclude, the data in this dissertation demonstrates the use of polycations as delivery 

tools in cancer immunotherapy for not only increasing intracellular delivery, but also for 

increasing injection site retention through electrostatic interactions with extracellular matrix. 

These polyplexes offer a promising therapeutic approach for decreasing systemic toxicity 

generated by immunostimulants. Upon consideration of the results from both chapters, one could 

speculate that the charge density, and presence of different types of residues on the polycation 

(the differences between PLL and GA) may have a significant influence on the ability to create a 

particle, cytotoxicity level, and ability to increase TLR activation in vitro. Previous studies from 

the Berkland lab have suggested a similar hypotheses that the anionic, cationic, and hydrophobic 

amino acids of GA may aid in transfection efficiency in comparison to PLL.12 Furthermore, a 

balance of hydrophobic and positively charged domains has been seen to be important for 

penetration of cell-penetrating peptides used for intracellular delivery.13-15 In addition to the type 

of polycation, polyplex particle formation, retention ability, and TLR activation ability varied 

based on the type of immunostimulant used. In both chapters this seemed to be driven by 

different interaction strengths but could also be due to structural arrangement of the polyplex. 

Overall, the approved and safe drug, GA was a highly effective at complexing and delivering 

negatively charged immunostimulants in comparison to PLL, a polycation routinely utilized for 

delivery of nucleic acid material. In tumor studies the GA + CpG polyplexes exhibited marked 

tumor burden reduction and were able to reduce levels of systemic pro-inflammatory cytokines 

in comparison to CpG alone suggesting increased injection site retention. Efficient and safe 
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delivery of immunostimulants will be a powerful tool for cancer immunotherapy and could either 

be administered alone or in synergy with checkpoint inhibitor mAbs to increase their efficacy.  

2. Future Directions 

These studies demonstrate the encouraging potential use of polycations in local injection 

site retention for negatively charged immunostimulants which would otherwise cause systemic 

toxicity, however, there are many aspects that remain to be explored. Future studies should focus 

on optimizing the components and composition of the polyplex such that the polyplex interaction 

strength allows for efficient TLR activation, the biophysical characteristics strengthen the retention 

and intracellular delivery, and cellular toxicity is minimized. Further, a better understanding of 

GA polyplexes enhanced ability to activate TLR over PLL polyplexes may aid in design of future 

polycations for immunostimulant delivery. Finally, more in vitro and in vivo studies would be 

needed to evaluate further changes in composition but also to assess the mechanisms involved after 

local injection of polyplex.  

In both chapters, a range of ratios of polycation to immunostimulant were assessed for their 

different characteristics, ability to retain, and activate TLR. As stated in the conclusions, a larger 

ratio led to greater retention abilities but lower ratios had enhanced TLR activation. Further work 

should narrow down the ideal window of ratio that achieves a balance between retention and TLR 

activation. Other possibilities for future work in terms of the composition of the polyplex would 

be modifying the individual components to change the physical characteristics of the polyplex, 

using a different polycation, or using different immunostimulants. One significant factor in cellular 

uptake and local retention of therapy is particle size.11 In this work, mixing unmodified polycation 

and immunostimulant led to the formation of a particle (excluding PLL + polyI:C) between 40-

136



150 nm in diameter which was not tunable based on ratio. An interesting extension of this work 

could be examining chemical modifications of the individual components to see if the particle size 

can be controlled- followed by determination of optimal size for uptake and decreased diffusion 

away from injection site.  

In addition to the physical composition of the polyplex, other work may include using 

different polycations or different immunostimulants. For example, CpG comes in a few different 

classes that have different structures and slightly different in vivo effects. As discussed in chapter 

1, much research has attempted to use modified versions of CpG to increase stability and increase 

efficacy. Similarly, for this work changing the CpG class or using modified versions could alter 

the polyplex characteristics but also impact the efficacy. While the use of a safe and approved drug 

as a delivery tool is attractive, some may argue that GA is difficult to use in this context due to its 

heterogeneity. Therefore, a great future branch of this work could include the design of an ideal 

polycation. Comparing both PLL and GA as polycations for delivery led to an interesting idea to 

design a peptide for delivery that has similar characteristics to GA in terms of the balance of 

hydrophobic and positive domains.  

While the simulation of tissue retention experiments in this work provided information 

about the polyplex compared to the controls, further work could be done to improve the model. 

For example, CpG can be degraded in vivo by enzymes that cleave the DNA backbone therefore 

it would be valuable to examine the effect of the addition some of these physiological components 

to the hyaluronic acid.  Additionally, ongoing efforts in the lab are working to create a model tumor 

using cross-linked hyaluronic acid and collagen with an aim to measure diffusion of therapy. In 

animals, there are plans to measure retention in HNSCC tumors using radiolabeled polyplexes for 

the GA + CpG polyplexes. In this study, a different radiolabel would be conjugated to each 
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component of the polyplex. This study design would be compelling for the evaluation of not only 

retention in vivo but also observing the interaction strength of polyplexes. In the case of some of 

the polyI:C polyplexes, it was hypothesized that the components were disassociating from each 

other in cell culture media or in the retention study. It would be very interesting to see after 

radiolabeling, if in vivo, the components separated and trafficked separately.  

One critical future animal study would be determination of dose and ratio. As mentioned 

in Chapter 3, there may have been some anaphylaxis reactions for animals dosed with GA, which 

highlights the importance of optimizing the dose required. In chapter 3, CpG alone had enhanced 

tumor burden reduction than the two polyplexes but showed drastically increased systemic 

cytokines. One question raised with these results was whether the differences were a result of 

increased retention in vivo or rather availability of the immunostimulant within the polyplex- 

meaning in a polyplex of sufficient interaction strength, was the dose effectively lowered? Further, 

optimization of ratio has the same justifications as mentioned previously, balancing charge and 

interaction strength for optimized retention and efficacy. To elucidate mechanisms of retention 

after injection, another in vivo study could use electron microscopy to image tumor issue after 

injection. Previous work in the lab captured images of GA aggregating into spherical particles and 

sticking to muscle tissue upon injection, thus it would be curious to observe what occurs after 

injection of particles that are formed pre-injection as in the polyplexes. Finally, future studies 

should evaluate the use of these polyplexes in synergy with established immunotherapies like 

checkpoint inhibitors. While checkpoint inhibitors have had an enormous impact on cancer 

immunotherapy, it is estimated that only 12.46% of patients are receptive to the therapy.16 Patients 

who have tumors with excluded immune cells, or ‘cold’ tumors, are much less likely to be have 

success with checkpoint inhibitors. Local administration of immunostimulants like polyI:C and 
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CpG can induce recruitment of immune cells to the tumor by activating an innate immune response 

and therefore could expand the reach of the checkpoint inhibitors.  
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