Physicochemical stability and effector function of IgG4-Fc: impact of photo-induced chemical modification and glycosylation

By

Copyright 2019

Huan Kang

Submitted to the graduate degree program in Pharmaceutical Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Chairperson Christian Schöneich

Teruna J. Siahaan

John F. Stobaugh

Thomas J. Tobert

Robert C. Dunn

Date Defended: July 9, 2019
The Dissertation Committee for Huan Kang certifies that this is the approved version of the following dissertation:

Physicochemical stability and effector function of IgG4-Fc: impact of photo-induced chemical modification and glycosylation

Chairperson Christian Schöneich

Date Approved: July 9, 2019
Abstract

Immunoglobulin gamma monoclonal antibodies are glycoproteins that have emerged as powerful and promising protein therapeutics. During the process of production, storage and transportation, exposure to ambient light is inevitable, which can cause protein physical and chemical degradation. For mechanistic studies of photo-degradation, we have exposed IgG4-Fc to UV light. The photoirradiation of IgG4-Fc with monochromatic UVC light at $\lambda = 254$ nm and UVB light with $\lambda_{\text{max}} = 305$ nm in air-saturated solutions revealed multiple photo-products originating from tyrosine side chain fragmentation at Tyr300, Tyr373 and Tyr436. Tyr side chain fragmentation yielded either Gly or various backbone cleavage products, including glyoxal amide derivatives. A mechanism is proposed involving intermediate Tyr radical cation formation, either through direct light absorption of Tyr or through electron transfer to an initial Trp radical cation, followed by elimination of quinone methide. In previous studies we discovered that the exposure of IgG4-Fc and IgG1 to UV light resulted in the side chain cleavage of specific Tyr and Trp residues, converting these amino acids into a series of products, including Gly (Haywood et al. Mol. Pharm. 2013, 10, 1146-1150; Kang et al. Mol. Pharm. 2019, 16, 258-272). In order to evaluate the physico-chemical consequences of such photochemical transformations, we prepared a series of IgG4-Fc mutants, in which Trp and Tyr residues were mutated to Gly, i.e., Y300G, Y373G, Y436G, W381G, and W381A for biophysical studies. Among these mutants, Y373G displayed significantly lower melting temperatures compared to wild-type IgG4-Fc, as analyzed by differential scanning calorimetry and fluorescence spectroscopy, indicating a decrease of thermal stability of both the $C_{\text{H}2}$ and $C_{\text{H}3}$ domains. In contrast, W381G and W381A showed no thermal transitions, indicating
a significant loss of overall thermal stability. Both, W381A and Y300G IgG4-Fc displayed ca. 10-fold reduction of binding affinity to FcγRIIIA as compared to wild-type IgG4-Fc. Interestingly, W381A and W381G IgG4-Fc did not only contain N-linked glycans but also high levels of O-mannose (> 60%) at Ser³⁷⁵. Furthermore, a series of well-defined N-glycosylated IgG4-Fc variants were utilized as model to investigate the effect of glycan structure on the physico-chemical properties (conformational stability and photostability) and interaction with FcγRIIIA. The size of glycans at Asn²⁹⁷ affects the yields of light-induced Tyr side chain fragmentation products, where the yields decreased in the following order: N297Q > GlcNAc₁ > Man₅ > HM. These yields correlate with the thermal stability of the glycoforms. The presence of HM and Man₅ reveals increased affinity for FcγRIIIA by at least 14.7-fold, as compared to GlcNAc₁ IgG4-Fc. N297Q does not present a detectable affinity to FcγRIIIA.
Acknowledgements

First, I would like to express my gratitude and forever appreciation to my advisor, Christian Schöneich, for providing me with unsurpassed guidance, mentorship, and words of wisdom. He has helped me succeed despite of my failures, limitations and challenges. I am grateful to him for his breadth of knowledge enlightening me through my graduate work, for his support of my industry internship, and for giving me the opportunities to present in multiple scientific conferences. His mentorship has developed me into a scientist to think critically, independently, and creatively to solve problems.

I would like to thank my excellent dissertation committee members: Chrisitan Schöneich, Teruna Siahaan, John Stobaugh, Thomas Tolbert, and Robert Dunn. Thank you for attending my review meetings and my defense. Your critiques and suggestions assisted me in interpreting the experimental results from different perspectives and training me with a deep desire to question the data. My special thanks go to the readers of my dissertation, Christian, Teruna and Thomas, for their invaluable expertise, comments and insights.

I would like to thank the group members of the Schöneich’s group: Olivier Mozziconacci, Björn-Hendrik Peters, Rupesh Bommana, Yi Yang, Asha Hewarathna, Indira Prajapati, Hasitha Rathnayaka, and Natalia Subelzu, for making the laboratory an enjoyable place to work. I would like to thank my collaborators that made significant contributions to my projects: Thomas Tolbert for contributions in multiple projects of my dissertation, Ishan Shah and Solomon Okbazghi for protein expression and purification, Derek White for the binding studies and providing us with receptors, Russell Middaugh for his comments and insights in biophysical characterization,
Nicholas Larson for his significant contributions to multiple projects of my dissertation, Yangjie Wei for biophysical analysis, David Weis and Yuqi Shi for HX MS analysis.

All the research I have completed would not have been possible without our funding sources. I would like to thank the support by a Graduate Fellowship from the Genentech Foundation.

Last and foremost, I would like to dedicate this dissertation to my family and friends. I would not be able to reach this point without the love and support of my family and friends.
Table of contents

Chapter 1. Photostability, effector function, and glycosylation of mAbs ... 1

1.1. IgG4 as therapeutics .. 2
1.2. Structures of IgG4 ... 3
1.3. The importance of Fc fragment in IgGs ... 3
1.4. Effector function of IgG4 .. 4
1.5. Photostability .. 5
 1.5.1. Photochemistry of Tyr ... 6
 1.5.2. Photochemistry of Trp .. 9
 1.5.3. Consequences of photo-induced chemical modifications of mAbs ... 11
 1.5.4. Mitigation strategies to protect from light .. 11
1.6. Glycosylation and its role in effector function and physicochemical properties of mAbs 12
1.7. Aim and outline of the dissertation .. 14
 1.7.1. Dissertation outline ... 14
1.8. References ... 15

Chapter 2. Photo-induced tyrosine side chain fragmentation in IgG4-Fc: mechanisms and solvent isotope effects ... 24

2.1. INTRODUCTION .. 25
2.2. EXPERIMENTAL SECTION .. 30
 2.2.1. Materials. .. 30
 2.2.2. Production of WT IgG4-Fc. ... 30
 2.2.3. Purification of high mannose (HM) IgG4-Fc. .. 32
 2.2.4. Cloning, expression and purification of N297Q-IgG4-Fc, H435R/Y436F-IgG4-Fc and W381F-IgG4-Fc ... 33
 2.2.5. Characterization of WT, W381F, and H435R/Y436F IgG4-Fc by intact protein LC-MS analysis. .. 34
 2.2.6. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). 35
 2.2.7. Peptide mapping with GluC ... 36
 2.2.8. HPLC-MS/MS analysis .. 37
2.3. RESULTS .. 39
2.3.1. WT IgG4-Fc production and initial characterization .. 39
2.3.2. Photoirradiation of WT HM IgG4-Fc and N297Q IgG4-Fc .. 41
2.3.3. Quantification of the photodegradation products .. 50
2.3.4. Conformational effects on photo-product formation ... 51
2.3.5. Solvent isotope effects (SIE) ... 54
2.3.6. Comparison of WT HM and W381F HM IgG4-Fc .. 56
2.3.7. Comparison of WT HM and H435R/Y436F HM IgG4-Fc .. 58
2.3.8. Photo-irradiation of N-acetyl-tyrosine (N-Ac-Tyr) in the presence of oxidized glutathione (GSSG) .. 60
2.4. DISCUSSION .. 63
2.4.1. Tyr side chain fragmentation mechanism .. 63
2.4.2. Effect of IgG4-Fc conformation on Tyr side chain cleavage ... 64
2.5. CONCLUSION .. 68
2.6. Acknowledgements .. 68
2.7. REFERENCES .. 69
Chapter 3. Photo-induced Trp and Tyr side chain cleavage in IgG4-Fc: impact on physicochemical stability and receptor binding, and effect of N- and O-glycosylation on product formation .. 99
3.1. Introduction ... 100
3.2. Materials .. 106
 3.2.2. Expression of IgG4-Fc .. 108
 3.2.3. Purification of IgG4-Fc using affinity chromatography ... 109
 3.2.4. PNGase F digestion of WT, S375A, W381A, S375A/W381A IgG4-Fc 110
 3.2.5. Characterization of WT, S375A, W381A, S375A/W381A, Y300G, Y373G, and Y436G IgG4-Fc by LC-MS analysis of intact proteins .. 110
 3.2.6. Characterization of IgG4-Fc with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) .. 111
 3.2.7. Peptide mapping with GluC and Trypsin/LysC ... 112
 3.2.8. HPLC-MS/MS .. 113
 3.2.9. Differential scanning calorimetry (DSC) .. 113
3.2.10. Intrinsic fluorescence. ... 114
3.2.11. FTIR analysis. ... 115
3.2.12. Hydrogen Exchange (HX) - Mass spectrometry analysis of WT and W381A IgG4-Fc. 115
3.2.13. Deuteration controls. .. 116
3.2.14. Photoirradiation of glycosylated and deglycosylated WT, S375A, W381A and S375A/W381A IgG4-Fc .. 117
3.2.15. Binding assays of WT, Y300G, Y373G, Y436G and W381A IgG4-Fc. .. 117

3.3. Results. ... 119

3.3.1 Characterization of Y300G, Y373G, and Y436G IgG4-Fc. .. 120
3.3.2 Initial characterization of WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc by MS and SDS-PAGE. ... 122
3.3.3. HPLC-MS/MS analysis of O-mannosylation at Ser375 in W381A IgG4-Fc. 123
3.3.7. Backbone flexibility of WT and W381A IgG4-Fc examined by HX-MS. 132
3.3.9. Binding of WT, Y300G, Y373G, Y436G, and W381A IgG4-Fc to FcγRIIIA. 144

3.4. Discussion. ... 150

3.4.1. The impact of photo-induced conversion of Tyr to Gly on the conformational stability of IgG4-Fc .. 151
3.4.2. Thermal stability of WT, S375A, W381A, and S375A/W381A IgG4-Fc. 151
3.4.3. The impact of photo-induced conversion of Trp and Tyr on binding kinetics and equilibria with FcγRIIIA .. 154
3.4.4. O-glycosylation at Ser375 in W381A and W381G IgG4-Fc .. 156
3.4.5. Photostability of WT, S375A, W381A, and S375A/W381A IgG4-Fc. .. 157

3.5. Conclusions ... 158
Chapter 4. Effects of glycan structure on the physicochemical stability, photostability, and receptor binding of IgG4-Fc .. 189

Chapter 5. The reaction of acetonitrile with N-terminal Cys of IgG4-Fc .. 235

5.1 Introduction .. 236

5.2 Experimental section .. 237

5.2.1 Materials. .. 237

5.2.2 Reaction of acetonitrile with intact WT IgG4-Fc under reducing conditions. 238

5.2.3 Reaction of 4-cyano-1-butyn (HCCCH₂CH₂CN) and intact N297Q IgG4-Fc under reducing conditions ... 238

5.2.4 HPLC-MS of intact IgG4-Fc .. 238

5.2.5 Peptide mapping of IgG4-Fc ... 239

5.2.6 HPLC-MS/MS. .. 239

5.3 Results. ... 240

5.3.1 Identification of an N-terminal peptide derivative resulting from reaction with acetonitrile ... 240

5.3.2 Characterization of reaction of intact IgG4-Fc with acetonitrile: identification of reaction intermediates, products and effect of incubation time ... 242

5.3.3 Characterization of the reaction of IgG4-Fc with 4-cyano-1-butyn. 244

5.4 Discussion .. 246

5.4.1 Proposed mechanism of N-terminal Cys of IgG4-Fc with acetonitrile. 246

5.5 References .. 248

Chapter 6. The role of ultrafiltration device bias hydrolysis products during peptide map ... 249

6.1 Introduction .. 250

6.2 Materials and Methods .. 251

6.2.1 Materials. ... 251

6.2.2 Peptide mapping of IgG4-Fc ... 251

6.2.3 HPLC-MS analysis. .. 252

6.3 Results .. 252
6.3.1 Identification of hydrolysis products... 252
6.3.2 The origin of oxygen in hydrolysis products... 255
6.3.3 The effects of the usage of Amicon filter on the quantity of products. 257
6.4 Discussion... 259
6.5 References... 263
Chapter 7. Conclusions and future perspectives... 266
7.1 Summary and conclusions.. 267
7.2 Future directions .. 269
7.3 References... 270
Chapter 1. Photostability, effector function, and glycosylation of mAbs
1.1. IgG4 as therapeutics

Monoclonal antibodies (mAbs), primarily immunoglobulin Gs (IgGs), have evolved as effective therapeutics, owing to their target specificity and long serum half-life\(^1\). IgGs are composed of four subclasses, including IgG1, 2, 3, and 4, named in order of decreasing abundance in serum. The four IgG subtypes differ in their constant region, particularly upper hinge region and C\(_{H2}\) domain\(^2\). Among the four subclasses, IgG1, 2, and 4 have been developed into therapeutics. IgG3 is rarely used due to its shorter half-life and bioprocessing issues associated with IgG3’s long hinge region\(^3\).

Since the first antibody approved in 1986, approximately 80 mAb-based therapeutics have been marketed in the USA and the EU (data collected at the end of 2018)\(^4,5\). IgG4 is utilized in more than 10 mAbs (including IgG4-based Fc-fusion protein)\(^4,5\). So far, IgG4 has been utilized for several indications, e.g., migraine prevention, HIV infection, allergy and cancers\(^5\). The IgG4 subclass is preferably selected when the recruitment of host effector functions is undesired or unnecessary. For example, IgG4-based mAbs developed for targeting programmed cell death protein 1 (PD1) are utilized to block the binding between PD1 on patients’ immune cells and the ligand for PD1 on tumor cells\(^6\), referred to as immune-check point therapy. Such therapy does not require the deletion of patients’ immune cells. A similar example is the development of an IgG4-based ibalizumab targeting CD4 on immune cells, approved for HIV infection\(^5\). IgG4 is an important ‘blocking antibody’ in immune-checkpoint therapy, HIV infection, and allergy.
1.2. Structures of IgG4

IgG4 is a dimer composed of two heavy chains and two light chains, connected by inter-chain disulfide bonds in the hinge region\(^7\). The light chain is composed of one variable domain (V\(_L\)) and one constant domain (C\(_L\)), while the heavy chain is composed of one variable domain (V\(_H\)) and three constant domains (C\(_H1\), C\(_H2\), and C\(_H3\))\(^2\). The IgG4 structure can also be divided into two fragments: the antigen-binding fragment (Fab, including V\(_L\), C\(_L\), V\(_H\), and C\(_H1\) domains) and the crystallizable fragment (Fc, including C\(_H2\) and C\(_H3\) domains). IgG4 reveals several unique properties as compared to other subclasses. First, it is capable to form hinge isomers (e.g., intra-chain disulfides and inter-chain disulfides) due to the presence of the sequence CPS\(_{228}^\text{C}\) (instead of the equivalent sequence CPP\(_{228}^\text{C}\) in IgG1\(^2\); Eu numbering\(^8\)). Second, it reveals relatively weak hydrophobic interactions between the C\(_H3\) domains due to the presence of Arg\(_{409}\) (instead of an equivalent Lys\(_{409}\) in IgG1). Based on these properties, wild type IgG4 can undergo half-molecule exchange, and predominantly exists as a monovalent bispecific antibody in vivo\(^9,\,10\).

1.3. The importance of Fc fragment in IgGs

The importance of the Fc fragment in an IgG can be rationalized in various factors. First, it is critical in extending IgG serum half-life through binding to the neonatal Fc receptor (FcRn), rescuing it from lysosomal degradation\(^11\). Second, it contributes to elicit antibody dependent cell cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) through binding to cell surface Fc\(\gamma\) receptors (Fc\(\gamma\)Rs) and complement protein 1 q (C1q), respectively. The binding
affinity to FcγRs and C1q is significant for IgG biological functions12. Third, the Fc fragment eases the purification of IgGs from cell media due to its high affinity to protein G/A columns at neutral pH, and reduced binding affinity at acidic pH. Fourth, previous biophysical analysis indicates that the Fc domain folds independently, and improves solubility and stability of the partner molecule in vivo and in vitro13. So far, approximately twenty Fc-fusion proteins and peptides have been approved by regulatory authorities14. Fc-fusion proteins have been developed for autoimmune diseases and enzyme replacement therapy15.

1.4. Effector function of IgG4

Antibodies present two important functions: (i) antigen-binding functions though binding to specific antigens with their Fab region, and (ii) effector functions through binding to complement proteins and FcγRs with their Fc region16. IgG1 and IgG3 typically trigger effector functions, while IgG2 and IgG4 induce more subtle ones. IgG4 presents no binding affinity to C1q, resulting in a lack of CDC activity2. For ADCC responses, IgG4 displays low affinity to activating receptor, FcγRIIIA, while comparatively high affinity to inhibiting FcγRs (e.g., FcγRIIB and IIC). This prevents IgG4 excessive host effector functions against targeting antigen. Hence IgG4 has been utilized as a “blocking antibody”2.

There are three types of FcγR: FcγRI, FcγRII (IIA, IIB and IIC), and FcγRIII (IIIA and IIIB). Among these, FcγRIIB and IIC are inhibitory receptors, and all others are activating receptors17. FcγRIIIA is the only activating Fc receptor present on natural killer cells and essential in eliciting
ADCC. The interaction between the Fc-domain and FcγRIIIA involves carbohydrate-carbohydrate interactions, and is sensitive to the glycosylated state of the Fc fragment and FcγRIIIA18.

\textbf{1.5. Photostability}

Light exposure is inevitable during the stages of pharmaceutical processing19 from upstream production, downstream purification, visual inspection, storage, transportation to administration to patients20. The light conditions can be categorized into ultraviolet (UV) and visible-light exposure. Three types of UV radiation include UVA (315-400 nm), UVB (280-315nm) and UVC (100-280 nm), where UVA accounts for ca. 95\% of the UV radiation reaching the Earth’s surface, while UVB and UVC are primarily absorbed by the ozone layer and the atmosphere21. UVB and UVC exposure can be encountered during purification and analysis steps. For instance, chromatography analysis commonly uses UV (214 nm, 254 nm or 280 nm) absorbance for analytical detection22. Under these conditions, photo-sensitive amino acids, e.g., Trp, Tyr, Phe, Cys, and cystine can directly absorb light23, which induce photochemical degradation. Such mechanisms will be discussed in sections \textbf{1.5.1} and \textbf{1.5.2}, summarizing the photochemistry of Tyr and Trp, respectively. Visible light exposure, on the other hand, is difficult to avoid. The small-scale production of proteins using clear glass bioreactors can potentially result in the exposure to ambient light. Visual inspection for visible particles in parenteral leads to light exposure. The usage of prefilled syringes and IV bags for medication administration can increase the risk of light exposure. Ambient light sources (e.g., cool white fluorescence light and LED white lamp) emit
primarily visible light (400 nm-800 nm)24, 25. Both UV and visible light sources can negatively impact protein stability24, 26, although the mechanisms of protein degradation can be different. Therefore, the International Conference for Harmonization guideline on photostability (ICH Q1B) suggests the exposure of a combination of a minimum of 200 Whr/m2 of UVA (320 nm-400 nm) and 1.2 million lux hours of visible light (400-800 nm) at room temperature to cover the potential light exposure conditions27.

\textbf{1.5.1. Photochemistry of Tyr}

The photochemistry of Tyr is summarized in Scheme 128, 29. Ground state Tyr directly absorbs light at wavelengths below 290 nm with an absorption maximum at ca. 275 nm30. Upon absorption, ground state Tyr is excited to its singlet state \(^1\)Tyr, which is highly reactive31. \(^1\)Tyr undergoes several degradation pathways32. First, it can fluoresce back to ground state Tyr. Second, \(^1\)Tyr undergoes intersystem crossing (ICS) forming triplet \(^3\)Tyr. \(^3\)Tyr reacts with \(^3\)O\(_2\), generating reactive oxygen species (ROS), such as \(^1\)O\(_2\) and/or O\(_2\)\(^-\), and in parallel, yielding Tyr and Tyr radical cation (Tyr\(^+\)), respectively. Third, \(^1\)Tyr can undergo photoionization yielding Tyr\(^+\) and a solvated electron (e\(_{aq}\)). The Tyr\(^+\) radical cation can potentially eliminate its side chain, yielding carbon-center glycyl radical33. Alternatively, the Tyr\(^+\) radical cation can deprotonate and yield the tyrosyl radical (TyrO\(^-\)). The addition of \(^3\)O\(_2\)34, peroxyl radical (ROO\(^-\))35 and hydroxyl radicals (RO\(^-\))36 on TyrO\(^-\) subsequently yields dihydroxyphenylalanine (DOPA). On the other hand, TyrO\(^-\) can dimerize and yield dityrosine (Di-Tyr). DOPA reveals a mass addition of 16 Da compared to native Tyr, which can be detected by HPLC-MS. Recently, a fluorogenic derivatization protocol of DOPA with 4-
amino methyl benzenesulfonic acid (ABS) was reported to be a potential fast screening approach, considering the fact that HPLC-MS/MS analysis requires method development, which can be time-consuming. Di-Tyr has been extensively studied in biological sample and recognized as an important biomarker of oxidative stress; however to our knowledge is rarely reported in mAbs. The formation of Di-Tyr depends on the proximity of two Tyr, the solvent accessibility of Tyr, and the higher order structure of proteins. Analytical methods for the detection and quantification of Di-Tyr have been reviewed, including fluorescence spectroscopy (e.g., excitation at 284 nm and/or 315 nm, emission at 420 nm), immuno-histochemical detection and HPLC-MS/MS, etc.
Scheme 1. Photochemistry of Tyr and generation of potential degradation products.
1.5.2. Photochemistry of Trp

Trp represents the strongest UV chromophore in proteins, predominantly absorbing light below 310 nm (the maxima absorption at 280 nm). The photochemistry of Trp is summarized in Scheme 2, revealing similar pathways as Tyr. Common oxidation products of Trp such as hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), and kynurenine (Kyn) were observed during the UV exposure of mAbs (e.g., at 254 nm) and near UV-visible light at 300-700 nm. These products need to be carefully characterized and controlled. It was reported that Kyn is associated with the color-change in an IgG1. In addition, the absorption of these Trp oxidation products shifts to a longer wavelength, and results in additional susceptibility of proteins to photo-degradation. Various studies have reported novel Trp degradation products in mAbs upon exposure to UV irradiation. These products include the conversion of Trp into Gly/Gly hydroperoxide in an IgG1. The resultant Trp side chain (3-methyleneindolenine, e.g., 3-MEI) crosslinks with an adjacent nucleophilic Lys residue. In addition, Trp plays important roles in electron transfer with Tyr, resulting in Tyr radical cation.
Scheme 2. Photochemistry of Trp and generation of potential degradation products.
1.5.3. Consequences of photo-induced chemical modifications of mAbs

Photo-induced modifications of mAbs potentially result in alterations of the primary, secondary, tertiary and quaternary structures. The perturbed structures can subsequently lead to unfolding of the hydrophobic region, resulting in additional oxidation. For example, the C\textsubscript{H}2 domain of a photo-stressed IgG1 was considerably destabilized57. In addition, the aggregation hotspot (segment 247-256) in the heavy chain of an IgG1 revealed increased flexibility after irradiation with UVA light for 72 hr58. In the above two cases, Met sulfoxide (MetSO) at Met252 and Met428 were proven to be the major products. Moreover, photo-induced chemical instability of mAbs can contribute to charge heterogeneity50,59, discoloration (e.g., oxidation of His51,60 or Trp42,61), immunogeneicity62, reduced affinity to protein A, FcRn, and Fc\gammaRs63, and loss of binding to antigen47.

1.5.4. Mitigation strategies to protect from light

The majority of marketed therapeutic antibodies contain the warning label “protect from light” due to the intrinsic susceptibility of protein drugs to light. From the pharmaceutical development perspective, mitigation strategies can be designed such as applications of primary and secondary packaging containers (e.g., cardboard boxes)61, installation of safe lights (e.g., exclusion of the potential damaging wavelengths) during manufacturing and storage25, and addition of excipients (e.g., Met or N-acetyl-tryptophan as free radical or oxygen scavengers)64,65. Mallela et al., reported that the addition of Met mitigates the photo-oxidation of an IgG157. Stroop et al., reported that light prevention, pH modification, and oxygen depletion are effective migration strategies for His buffer-mediated photo-degradation of a monoclonal antibody51. Hence, in order to select a proper mitigation strategy, the photo-degradation pathway needs to be fully understood.
1.6. Glycosylation and its role in effector function and physicochemical properties of mAbs

Glycosylation is a heterogeneous post-translational modification (PTM) composed of two types, N- and O-linked ones. N-glycosylation has been extensively studied in IgGs. All IgG subclasses contain N-glycans at Asn^{297} in the C_{H2} domain. Crystal structures reveal that Asn^{297} glycans are shielded and occupy the inner space between the C_{H2} domains, maintaining the optimal ‘open’ conformation of the Fc domain. In contrast, biophysical characterization with size exclusion chromatography indicates that the hydrodynamic radius of non-glycosylated IgGs is slightly larger than that of glycosylated ones. Such discrepancy of observation indicates the potential different states of IgGs in crystal structures and in solution. The presence and the unique forms of Asn^{297} glycans are essential in preserving IgGs conformations, enhancing their binding to FcγRs, and maintaining long serum half-life. In addition, N-glycans are present in approximately 20% of Fab regions in human IgG. These N-glycans can positively and negatively affect their binding to antigens. The glycoforms in the Fab regions contain high galactose, sialic acid, and high mannose as compared to the Fc region, suggesting the increased exposure and accessibility of Fab regions for cellular glycosylation enzymes. N-glycans in the Fab regions are resistant to PNGase F treatment, and require the treatment with endoglycosidase F for release of the Fab glycans. Moreover, N-glycans are reported to be present in Fab variable regions in some therapeutic mAbs (e.g., Cetuximab). The selection of expression host cells for such mAbs needs to be carefully considered, since Fab regions preferably present elongated glycoforms.
Atypical N-glycans at Asn in a C_H1 domain of human antibodies were observed in non-consensus sequences at a quantity of 0.5-2.0%76. O-linked glycosylation in IgGs is not as common, but has been characterized in the hinge region of human serum-derived IgG377, or in the complementarity-determining regions (CDRs) of recombinant mAbs (rMAb), e.g., O-fucosylation78, 79 and O-glucosylation (~10%) at Ser in an IgG1, or O-mannosylation in an IgG280.

Table 1 summarizes the previously characterized N-glycosylation in IgGs, and their potential role for the pharmacokinetic (PK) profile, referred to as clearance; for the pharmacodynamic (PD) profile, referred to as ADCC; and for the physicochemical profile of mAbs, referred to as “other effect”15, 81, 82. Generally, Asn297 glycans impact IgG half-life83 via the presence of specific carbohydrate patterns. For example, terminal mannose, GlcNAc, and galactose correlate with a faster removal of antibodies from the circulation, due to their binding to glycan receptors (e.g., the mannose and the asialoglycoprotein receptors)15. Asn297 glycans play an essential role in the binding to FcγRIIIA, attributed to carbohydrate-carbohydrate interactions84. The binding between therapeutic mAbs and FcγRIIIA is strongly associated with mechanisms of action for cancer therapy and autoimmunity. The role of individual glycan structure in binding to FcγRIIIA is summarized in Table 1. It has to be noted that heterogeneous glycoforms can be caused by culture media components85, host cell lines86, and protein primary sequences, etc87. The glycoforms of therapeutic mAbs, which potentially lead to increased clearance, low ADCC, and reduced thermal stability78, belong to important critical quality attributes (CQAs). These glycoforms need to be controlled within strict limits (Table 1). Studies regarding the impact of different glycans on the
safety, quality and efficacy profiles of IgGs can help guide process optimization studies to ensure the antibody is being produced with appropriate and consistent glycosylation\(^{88,89}\).

1.7. **Aim and outline of the dissertation**

As outlined in the introduction, photo-induced chemical modifications and glycosylation potentially introduce heterogeneity in mAb-based therapeutics. A thorough characterization of these modifications will help fill in the gap to understand their impact on the quality and efficacy of mAb therapeutics. The goal of this dissertation was to utilize IgG4-Fc as the model system to investigate the undiscovered photo-induced chemical modifications and post-translational modifications (e.g., glycosylation) induced microheterogeneity, and their correlation with physicochemical stability and receptor binding.

1.7.1. **Dissertation outline**

Chapter 2 investigates photo-induced Tyr side chain fragmentation in IgG4-Fc upon exposure to UVB and UVC irradiation with respect to mechanisms and solvent isotope effects.

Chapter 3 studies the impact of photo-induced Trp and Tyr side chain fragmentation of IgG4-Fc on its physicochemical stability, receptor binding, and the effects of N- and O-linked glycosylation on product formation.

Chapter 4 explores effect of glycan structure on the physicochemical stability and receptor binding of IgG4-Fc.

Chapter 5 reports a reaction between acetonitrile and N-terminal Cys of IgG4-Fc, which leads to
the formation of a cyclic product

Chapter 6 investigates the role of Amicon filter bias a hydrolysis reaction during sample preparation

Chapter 7 summarizes our findings and conclusions of this dissertation and suggestions for future research directions

1.8. References

8. Sandrine Béranger, C. M.-J. Fatena Bellahcene and Marie-Paule Lefranc Correspondence between the IMGT unique numbering for C-DOMAIN, the IMGT exon numbering, the Eu and Kabat numberings: Human IGHG. http://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html.

34. Dalsgaard, T. K.; Nielsen, J. H.; Brown, B. E.; Stadler, N.; Davies, M. J., Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photooxidation. J Agric Food Chem 2011, 59 (14), 7939-47.

68. Zhou, Q.; Qiu, H., The Mechanistic Impact of N-Glycosylation on Stability,

<table>
<thead>
<tr>
<th>N-glycans</th>
<th>Consensus sequence</th>
<th>Core structures</th>
<th>Fc glycans</th>
<th>Glycan</th>
<th>ADCC</th>
<th>clearance</th>
<th>Other effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-X-S/T; X can be any amino acids except Pro</td>
<td>GlcNAc2Man3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc glycans</td>
<td></td>
<td></td>
<td>Asn<sup>297</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mannose</td>
<td></td>
<td></td>
<td>enhance FcγRIIIa binding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reduce thermal stability<sup>90</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fucose</td>
<td></td>
<td></td>
<td>reduce FcγRIIIA binding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><sup>a</sup>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No effect on thermal stability<sup>90</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>galactose</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bisecting GlcNAc</td>
<td></td>
<td></td>
<td>enhance FcγRIIIa binding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>increase for Fc-fusion<sup>81, 82</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><sup>b</sup>Sialic acid NANA</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reduce for Fc-fusion<sup>81, 82</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>anti-inflammatory activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><sup>c</sup>Sialic acid NGNA</td>
<td></td>
<td></td>
<td>reduce FcγRIIIa binding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>immunogenic in human</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galα1-3Galβ1-4GlcNAc-R</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>immunogenic in human</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aglycosylated</td>
<td></td>
<td></td>
<td>remove FcγRIIIa binding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>increased protein backbone flexibility<sup>91</sup>, decreased solubility<sup>92</sup>, reduce thermal stability<sup>93</sup>, faster deamidation<sup>45</sup> at Asn<sup>315</sup></td>
</tr>
<tr>
<td>Fab glycans</td>
<td></td>
<td></td>
<td></td>
<td>variable domain in ~15%-20% of serum IgG</td>
<td></td>
<td></td>
<td>increased bisecting GlcNAc, galactose, sialic acid; decreased core fucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>potentially increase, decrease, or no effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asn<sup>88</sup> of cetuximab</td>
<td></td>
<td></td>
<td>increased bisecting GlcNAc, galactose, NGNA<sup>94</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No effect<sup>95</sup></td>
</tr>
</tbody>
</table>

Table 1. Summary of N-glycan sites and impact in IgGs and Fc-fusion proteins. Adapted from Liu et al¹⁵. ^aNot applicable. ^bN-acetylneuraminic acid. ^cN-glycolylneuraminic acid.
Chapter 2. Photo-induced tyrosine side chain fragmentation in IgG4-Fc: mechanisms and solvent isotope effects
2.1. INTRODUCTION

Light exposure represents an important stress condition for proteins *in vivo*, i.e. in the eye\(^1\), and *in vitro*, i.e. for protein pharmaceuticals\(^2-3\). Within proteins, photo-sensitive amino acids (Trp, Tyr, Phe, Cys) can be converted into various photodegradation products via several distinct mechanisms, including photoionization and the generation of reactive oxygen species.\(^4\) The formation of photodegradation products can change the physical-chemical properties of proteins\(^5-6\). In pharmaceutical protein formulations, the chemical modification of proteins can lead to potency loss\(^7-8\) and, possibly, cause safety issues\(^9\). Therefore, the International Conference on Harmonization guidelines (Q5C)\(^10\) requires photostability tests for biomolecules, which are forced degradation studies, although some modifications have been recommended regarding the photo-irradiation conditions\(^11\).

The potential for immunogenicity is a major concern for the development of protein pharmaceuticals\(^12-13\). Numerous studies have reported on the importance of aggregate and particle formation for immunogenicity\(^14\). However, more recent studies have recognized an additional, critical role of chemical, and especially oxidative\(^9,15\) and light–induced\(^9,16\), protein modifications for immunogenicity. Importantly, when Boll et al.\(^17\) analyzed immunogenic samples of an oxidized monoclonal antibody (mAb) for common oxidation products of Met and Trp, they concluded that these did not contribute significantly to immunogenicity. Therefore, there is a need to identify chemical modifications other than conventional oxidation products, which may lead to potentially
immunogenic neo-epitopes. In this regard, we recently reported on the light-induced side chain fragmentation of Trp in a mAb, several Fc-fragments of mAbs (mAb-Fc), and Trp-containing peptides. Earlier mass spectrometry experiments with Trp and Trp-containing peptides had documented such fragmentation reactions under specific conditions in the gas phase, detecting 3-methyleneindolenine (3-MEI) as an important product. In our solution studies with peptides and a protein, we detected that the electrophilic 3-MEI added to nucleophilic amino acid side chains, i.e. of Lys. Hence, the side chain cleavage of Trp did not only modify the Trp residue but also an adjacent Lys residue. These Trp side fragmentation are responsible for a variety of novel Trp-derived products, which should be monitored in addition to other common photoproducts from Trp such as kynurenine, N-formylkynurenine, and hydroxytrptophan. Gas phase experiments also demonstrated the side chain cleavage of radical ions from Tyr-containing peptides, leading to the elimination of para-quinone methide (p-QM; 4-methylene cyclohexa-2,5-dien-1-one). This finding motivated us to evaluate whether such reaction could occur during the light-exposure of a protein in solution. We report here, that Tyr side chain cleavage proceeds selectively for three Tyr residues out of a total of eight Tyr residues in the Fc-domain of immunoglobulin G4 (IgG4-Fc) exposed to UV light. These studies with UV light enable us to formulate a reaction mechanism, which will be useful for future studies on protein degradation under ambient light, the predominant light experienced by protein pharmaceuticals during manufacturing, storage and transportation.

Immunoglobulin G (IgG) is a dimer composed of two heavy chains and two light chains, connected
by inter-chain disulfide bonds in the hinge region28. The light chain is composed of one variable domain (\(V_L\)) and one constant domain (\(C_L\)), while the heavy chain is composed of one variable domain (\(V_H\)) and three constant domains (\(C_{H1}\), \(C_{H2}\), and \(C_{H3}\))29. The IgG structure can also be divided into two fragments: the antigen-binding fragment (Fab, including \(V_L\), \(C_L\), \(V_H\), and \(C_{H1}\) domains) and the crystallizable fragment (Fc, including \(C_{H2}\) and \(C_{H3}\) domains). For our experiments, we used the Fc domain of an IgG subtype, IgG4. IgG4 has unique properties compared to other subtypes, which can undergo half-molecule exchange30 due to its capability of forming intra-chain disulfide bonds in the hinge region as well as relatively weak interactions between the \(C_{H3}\) domains31. The Fc domain of an IgG can interact with cell surface Fc binding receptors, complement proteins, and, therefore, plays an important role in IgG effector function, \textit{in vivo} half-life and the efficacy of IgGs29.

IgG4-Fc is a dimer containing 444 amino acid residues including the hinge region (Chart 1), with 2 inter-chain disulfide and 4 intra-chain disulfide bonds. We produced IgG4-Fc from the yeast \textit{Pichia pastoris}32, which, due to incomplete glycosylation site occupancy, initially yields non-glycosylated, mono-glycosylated, and di-glycosylated forms of IgG4-Fc. The di-glycosylated IgG4-Fc (shown in Chart 1) can be purified from the other glycoforms by hydrophobic interaction chromatography (HIC)33. The glycan, located at Asn297 in the \(C_{H2}\) domain34-35, was of the high mannose (HM) structure, containing GlcNAc\textsubscript{2}-Man\(_{8+n}\) (\(n = 0-4\)). These covalently bound glycans are critical for the physical and chemical stability, and biological functions of IgG4-Fc36. However, the micro-heterogeneity of the glycan, including the presence of GlcNAc\textsubscript{2}-Man\(_{8+n}\) (\(n=0-4\)) on
Asn297 (Fig. S1A), introduces complexity in the characterization of photo-degradation products. For that reason, also a nonglycosylated N297Q mutant of IgG4-Fc was prepared. HM IgG4-Fc and N297Q IgG4-Fc, formulated in 20 mM sodium phosphate (pH 7.1), were photoirradiated with UV light at either $\lambda = 254$ nm or $\lambda = 295$–360 nm ($\lambda_{\text{max}} = 305$ nm) in air- or Ar- saturated solutions. Mechanistic details of the photo-induced Tyr side chain fragmentation were examined by comparison of wild-type IgG4-Fc (WT) with several mutants, and by quantification of product solvent isotope effects.
Chart 1. High mannose (GlcNAc$_2$Man$_{(8+n)}$ (n=0-4)) WT IgG4-Fc structures with intra–hinge disulfide bonds (A) or inter-hinge disulfide bonds (B), where Asn297 is glycosylated. The positions of Tyr300 (C_H2 domain), Tyr373 (C_H3 domain), and Tyr436 (C_H3 domain) are highlighted.
2.2. EXPERIMENTAL SECTION

2.2.1. Materials. The SacI-HF® enzyme for cDNA linearization was supplied by New England BioLabs (Ipswich, MA). Dextrose, sodium chloride, sodium phosphate (monobasic, anhydrous) and glycine were supplied by Fisher (Fair Lawn, NJ). Yeast nitrogen base (YNB) was purchased from Sunrise Biosciences (San Diego, CA). Bacto Tryptone and Yeast Extract were obtained from Becton Dickinson and Company (Franklin Lakes, NJ). Zeocin was supplied by Invitrogen (Carlsbad, CA). His-Protein G was expressed from E. coli Rosetta (Novagen, Burlington, MA) and purified on a Ni²⁺- nitrilotriacetic acid (NTA)-agarose column. Protein G resin was then produced by coupling recombinantly-expressed protein G with Sepharose CL-4B (Sigma-Aldrich, Saint Louis, MO) using divinyl sulfone as a coupling reagent.³⁷-³⁸ Ethylenediaminetetraacetic acid (EDTA) was supplied by EM Science (Gibbstown, NJ, USA). Ammonium sulfate (Ultra pure grade) was supplied by AMRESCO (Solon, OH). Rabbit anti-antigen human IgG (Fc) Pierce antibody® for dot plot analysis was supplied by Thermo Scientific (Rockford, IL, USA). Antifoam 204, 2-mercaptoethanol, dithiothreitol (DTT), iodoacetamide (IAA), ammonium bicarbonate, guanidine hydrochloride, sodium phosphate (dibasic), N-acetyl-L-tyrosine and L-glutathione disulfide (GSSG) were provided by Sigma-Aldrich (Saint Louis, MO). GluC was supplied by Promega Corporation (Madison, WI). The SDS gradient gels (Mini-PROTEAN® TGX™ Gels, 4-20%) were provided by Bio-Rad (Richmond, CA, USA).

2.2.2. Production of WT IgG4-Fc. WT IgG4-Fc, including non-glycosylated, mono-glycosylated,
and di-glycosylated forms, was produced in an OCH1/PNO1 deleted and STT3D added *Pichia pastroris* yeast strain as described elsewhere. Briefly, IgG4-Fc cDNA cloned in a pPICZαA *Pichia* vector (Invitrogen, Carlsbad, CA) was sequenced with 100% accuracy and linearized with the SacI-HF enzyme (Table S1). The yeast was then transformed with the linearized IgG4-Fc cDNA through electroporation. Colonies transformed with IgG4-Fc cDNA were screened by Yeast Extract Peptone Dextrose (YPD) plate containing 100 µg/mL zeocin. The YPD plate contains 1% yeast extract (w/v), 2% peptone (w/v), 2% dextrose (w/v), and 1.5% agar (w/v). High expression colonies were screened by dot blot analysis with rabbit anti-antigen human IgG (Fc) using small scale (2.5 mL) expression systems. A selected high expression colony was used for 1L scale IgG4-Fc production.

The selected colony was inoculated with 2.5 mL of 100 µg/mL zeocin-containing YPD medium as a starting culture and grown under shaking at 26°C for 72 hr. The 2.5 mL culture was transferred to 50 mL of YPD media (100 µg/mL zeocin) and grown under shaking at 26°C for 72 hr. Then, the 50 mL cell culture was transferred to a 1 L spinner flask containing BMGY (buffered glycerol-complex media, 1% yeast extract, 2% peptone, 2% glycerol, 0.34% of yeast nitrogen base and 1% ammonium sulfate, and 4 x 10^{-5} % biotin) buffered with 100 mM potassium phosphate at pH 6.0. The 1L cell culture was grown at room temperature under constant delivery of air for 72 hr. Then 2% of methanol (v/v) was added every 24 hr for inducing protein expression for 3 times before harvesting.
2.2.3. Purification of high mannose (HM) IgG4-Fc. Yeast cells were harvested and centrifuged at 4629 g for 20 min on an Avanti™ J-25I centrifuge (Beckman Coulter, Palo Alto, CA) using a JLA 10500 rotor (Beckman Coulter, Palo Alto, CA). The supernatant was collected and filtered with 5 layers of 90 mm Whatman filter pads to remove insoluble particles. An in-house prepared protein G affinity column (15 mL column volume) was equilibrated with 10 column volumes (CV) of 20 mM sodium phosphate, pH 6.0. The filtered supernatant was loaded onto the equilibrated column to allow IgG4-Fc to bind to the column. The column was then washed with 5 CV of 500 mM NaCl in 20 mM sodium phosphate (pH 6.0) to minimize nonspecific protein binding to the column. IgG4-Fc was then eluted with 100 mM glycine/HCl at pH 2.7, and the protein fraction was immediately neutralized with 1M Tris/HCl (pH 9.0), and subsequently dialyzed into 20 mM sodium phosphate at pH 7.0 at 4°C for 24 hrs before freezing at -80°C.

The protein G-purified IgG4-Fc was further purified by hydrophobic interaction chromatography (HIC) to separate di-glycosylated IgG4-Fc from mono-glycosylated and non-glycosylated IgG4-Fc. Samples (25 mg) were dissolved in 1 M ammonium sulfate and 20 mM sodium phosphate at pH 7.0 and filtered through a 0.2 μm filter (“Nalgene” Rapid-Flow 75 mm Filter Unit, Thermo Scientific, Rockford, IL) before loading onto the HIC column.

For HIC purification on an ÄKTAmicro chromatographic system, 125 mL of phenyl sepharose high performance resin (GE Healthcare, Uppsala, Sweden) were packed into an XK 26 column (GE Healthcare) and washed with 600 mL of filtered double-distilled water. Mobile phase A was
1 M ammonium sulfate in 20 mM sodium phosphate at pH 7.0, and mobile phase B was 20 mM sodium phosphate at pH 7.0. All buffers were filtered before loading onto the column. A volume of 675 mL mobile phase A was loaded to equilibrate the column. IgG4-Fc samples, dissolved in mobile phase A, were injected onto the column, followed by 50 mL of mobile phase A to wash the sample loop. In the following, unbound proteins were washed off with 240 mL of 100% mobile phase A. Subsequently, a linear gradient changing mobile phase B from 0% to 33% within 144 minutes was applied at 2 mL/min, followed by changing mobile phase B from 33% to 55% within 141 minutes. Then the column was washed with 55% of 750 mL containing mobile phase B. A flow rate of 2 mL/min was used for the full gradient. The eluate was monitored at 214 nm. The protein fractions were collected with a fraction collector. The collected fractions were dialyzed into 20 mM sodium phosphate, pH 7.0, for 24 hr. After characterization by LC-MS analysis and SDS-PAGE, HM IgG4-Fc fractions were combined and then dialyzed into 5 mM EDTA in 20 mM sodium phosphate, pH 7.0, to eliminate trace amounts of transition metals. After 12 hr, HM IgG4-Fc (0.22 mg/mL) was dialyzed back into 20 mM sodium phosphate (pH 7.0) and stored at -80°C.

2.2.4. Cloning, expression and purification of N297Q-IgG4-Fc, H435R/Y436F-IgG4-Fc and W381F-IgG4-Fc. A forward primer, 5’-CGGGAGGAGCAGTTCCAGAGCAGCTACCCTGTG-3’, and a reverse primer, 3’-GCCCTCCTCGTCAAGGTCTCGTGCATGGCACAC-5’, were designed for the mutant N297Q-IgG4-Fc. A forward primer, 5’-gcatgaggctgcaacacagattcacaagagcctctc-3’, and a reverse primer, 3’-cgtactcagagactgtgctgtaagtggtgtctctctgaggg-5’, were designed for the double mutant
H435R/Y436F-IgG4-Fc. A forward primer, 5’-gacatgcctggagttcagagcaatgggcag-3’, and a reverse primer, 3’-cttgtacggacctcaagctctcgttacccgtc-5’, were designed for the mutant W381F-IgG4-Fc. The primers were synthesized by Eurofins Genomics (Louisville, KY). A QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, Inc., Santa Clara, CA) was used for mutagenesis. Successfully mutated cDNA-transformed colonies were selected with 25 µg/mL zeocin-containing low salt lysogeny broth (LB) plate (1% tryptone, 0.5% NaCl, and 0.5% yeast extract) and inoculated in 6 mL LB culture overnight. The plasmids of the selected colonies were extracted with a miniprep kit (QIAGEN, Valencia, CA), and sequenced by the University of California Berkeley DNA Sequencing Facility (Berkeley, CA) with 100% accuracy. The plasmids were then linearized with the SacI-HF enzyme and transformed to an OCH1/STT3D/PNO1/Bmt1/Bmt2 KO yeast strain following the same procedures as for WT IgG4-Fc. All mutant IgG4-Fc were purified by protein G chromatography as described for WT IgG4-Fc. Since the two mutants, H435R/Y436F-IgG4-Fc and W381F-IgG4-Fc, contained >90% of HM structure [GlcNAc$_2$Man$_{(8+n)}$] (n=0-4) after affinity column purification (Figures S6 and S7), the two mutants were not further purified by HIC.

2.2.5. Characterization of WT, W381F, and H435R/Y436F IgG4-Fc by intact protein LC-MS analysis. Intact protein mass spectra were obtained under reducing conditions. An aliquot of 100 µg of IgG4-Fc was reduced with 10 mM DTT for 10 min at room temperature, and injected onto a C4 column (50 mm, 4.6 mm i.d.; 300-Å pore size, 5 µm particle size, Vydac 214 MS, Grace, Deerfield, IL), connected to an Agilent 1200 series LC (Agilent Technologies, Santa Clara, CA)
coupled to an Agilent 6520 Quadrupole Time-of-Flight mass spectrometer (Agilent Technologies, Santa Clara, CA). The mass spectrometer was operated with an electrospray ionization source in the positive ion mode with the mass range acquired from m/z 300 to m/z 3000 at a scan rate of 1 spectrum/second. Mobile phase A was 99.9% H₂O, 0.08% formic acid, and 0.02% trifluoroacetic acid, mobile phase B was 99.9% acetonitrile, 0.08% formic acid, and 0.02% trifluoroacetic acid. A linear gradient changing mobile phase B from 5 to 90% within 7 minutes was applied and the intact protein eluted at 5.5 minutes at a flow rate of 0.5 mL/min. The Agilent MassHunter Acquisition software was used for data collection, and the Agilent Mass Hunter Qualitative Analysis software (version B.03.01) was applied to data analysis. The obtained m/z values were de-convoluted through a maximum entropy deconvolution function through the Agilent Mass Hunter Qualitative Analysis software.

2.2.6. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). For SDS-PAGE under non-reducing conditions, 20 µL of 0.22 mg/mL HM IgG4-Fc were combined with 20 µL of 2X loading dye (2x Laemmli sample buffer, BIO-RAD, Richmond, CA) and loaded onto the SDS gradient gel (Mini-PROTEAN® TGX™ Gels, 4-20%, BIO-RAD, Richmond, CA). For SDS-PAGE under reducing conditions, 1 µL of 2-mercaptoethanol was added to 20 µL solution, and the mixture was boiled in a water bath for 5 min prior to loading the mixture onto the gradient gel. For calibration, 4 µL of a Precision Plus Protein Dual Color standard marker (BIO-RAD, Richmond, CA) was used in lane 1 of the SDS-PAGE. The electrophoresis was run at 200 volt until the front dye arrived at the bottom of the gel. When the run finished, the gel was stained with 0.05%
Coomassie Brilliant Blue (BIO-RAD, Hercules, CA) for 30 min and destained with 30% methanol, 10% acetic acid and 60% water (v:v:v). The Canon solution menu EX software and canoscan (Canon, Costa Mesa, CA) were used to record the gel images.

2.2.7. Peptide mapping with GluC. Control and photo-irradiated samples were processed side by side for enzymatic digestion by GluC. Aliquots of 500 µL were denatured by addition of 500 µL of 6M guanidine hydrochloride in 50 mM ammonium bicarbonate, pH 8, and subsequently reduced by addition of 10 µL of 500 mM DTT in 50 mM ammonium bicarbonate (pH 8.0) for 1 hr at 37 °C. The reduced samples were then alkylated with 50 µL of 500 mM IAA in 200 mM ammonium bicarbonate for 1 hr at 37 °C. The samples were then transferred to Amicon Ultra Centrifugal Filter Units with 3kDa cutoff, and centrifuged at 16,900 g for 15 min at 4°C until the whole solution was concentrated to about 200 µL. Volumes of 250 µL of 5mM ammonium bicarbonate (pH 8.0) were added twice to the filter and centrifuged to wash out residual denaturing and alkylating agents. The filters were reverse-flipped, and the proteins on the top were collected at 300 g for 4 min at 4°C. The collected proteins were digested with GluC in 5 mM ammonium bicarbonate, pH 8, with a protein: enzyme ratio of 10:1 (w/w) for 5 hr at 37°C. The GluC was divided into two aliquots containing 11 µg each. The first aliquot was added and the mixture was incubated at 37°C. After 2 hours, the second aliquot was added. The digested peptides were collected by centrifugation with Microcon Centrifugal Filters with 10kDa cutoff at 16,900 g for 10 min to eliminate undigested protein and the enzyme GluC, and the flow-through was collected and stored at -80 °C until further analysis.
2.2.8. HPLC-MS/MS analysis. HPLC-MS/MS analysis was performed on two different systems, a nanoAcquity ultra performance liquid chromatography system (Waters Corporation, Milford, MA), coupled to a Waters Xevo-G2 mass spectrometer (Waters Corporation, Milford, MA) and a nanoAcquity ultra performance liquid chromatography system (Waters Corporation, Milford, MA) coupled to a Synapt-G2 mass spectrometer (Waters Corporation, Milford, MA).

2.2.8.1 Analysis on the Xevo-G2 mass spectrometer. Aliquots of 4 µL of enzymatic digests were loaded and desalted on a trap column (nanoACQUITY UPLC 2G-V/M Trap 5 µm Symmetry C18 180 µm x 20 mm, Waters, Milford, MA), eluted at 4 µL/min for 3 min with 97% of mobile phase A (0.1% formic acid in water, Optima, Fisher Chemical, Fair Lawn, NJ) and 3% of mobile phase B (0.1% formic acid in acetonitrile, Optima, Fisher Chemical, Fair Lawn, NJ). The eluted peptides were moved at a velocity of 300 nL/min to an analytical column (ACQUITY UPLC Peptide CSH C18 NANOACQUITY column 10K psi, 1.7 µm, 75 µm x 250mm, Waters, Milford, MA), and eluted with a linear gradient changing mobile phase B from 3% to 35% within 50 min, followed by a linear gradient changing mobile phase B from 35% to 95% within 20 min. Subsequently, the column was washed with 95% mobile phase B for 10 min, before re-equilibrating to 97% of mobile phase A. Mass spectra were collected for 80 min in the positive electrospray ionization mode at a scan rate of 1 scan/second, with a mass range of m/z 200 to m/z 2000. MS/MS analysis was performed in the MSE mode with the collision energy switching between 18 V and 45 V. Since no major peaks co-elute with the observed photo-products under our chromatographic conditions, all the CID spectra collected from Xevo-G2 were obtained in the MSE mode.
2.2.8.2 Analysis on the Synapt-G2 mass spectrometer. Aliquots of 5 µL of enzymatic digests from N297Q IgG4-Fc were loaded onto a CSH C18 column (1.7 µm, 300 µm x 100 mm, Waters, Milford, MA) with 99% mobile phase A (0.8% formic acid in water) and 1% mobile phase B (acetonitrile: isopropanol; 95: 5; v: v) for 1 min at 10 µL/min. The column was equilibrated with a linear gradient changing mobile phase B from 1% to 6% at 10 µL/min. Subsequently, the injected peptides were eluted with successive gradients changing mobile phase B from 6% to 21% within 35 min at 10 µL/min, from 21% to 26% within 16 min at a flow rate of 10 µL/min, and from 26% to 95% of mobile phase B for 1 min at 11 µL/min. The column was washed with 95% mobile phase B for 4 min at 11 µL/min, followed by a change of mobile phase B from 95% to 60% within 1 min at a velocity of 14 µL/min. The column was then washed with 60% mobile phase B for 2 min at 10 µL/min, before it was re-equilibrated to 99% of mobile phase A. Mass spectra were collected in the positive electrospray ionization mode at a scan rate of 1 scan/2 seconds, with a mass range of m/z 50 to m/z 2000. MS/MS analysis was performed in the data dependent acquisition (DDA) mode with the collision energy ramped from 18 V to 28 V for low masses of 250 Da to 880 Da, and ramp from 30 V to 55 V for high masses of 880 Da to 2000 Da.

The data collected on the Xevo-G2 and Synapt-G2 instruments were analyzed with Protein Prospector (http://prospector.ucsf.edu/) and the MassLynx software (Waters Inc., Milford, CA). All assignments were conducted manually.
2.2.9. Photoirradiation of WT, N297Q, W381F and H435R/Y436F IgG4-Fc.

Photoirradiation was performed in a UV irradiator (Rayonet®, The Southern New England Ultraviolet Company, Branford, CT) equipped with 4 UV lamps emitting at \(\lambda = 254 \) nm (Rayonet®, catalog # RPR-2537Å) or with \(\lambda_{\text{max}} = 305 \) nm (Rayonet®, catalog# RPR-3000 Å; these lamps emit 95% of light between \(\lambda = 265-340 \) nm). We used the iodide-iodate actinometer\(^{41-42}\) to quantify the photon flux at 254 nm for 4 RPR 2537A lamps to 1.5x10\(^{-8}\) einstein/s. Due to the broad spectrum of the RPR-3000A lamps, an actinometry was not performed for photo-irradiation at \(\lambda_{\text{max}} = 305 \) nm. For light exposure at 254 nm, 500 µL air-saturated solutions of 0.22 mg/mL HM IgG4-Fc in 20 mM sodium phosphate, pH 7.1, were placed in ca. 13x100 mm quartz vials (Product #8683; Ace Glass Inc.; Vineland, NJ), sealed with rubber stoppers, and irradiated for 0, 15 or 30 min. For light-exposure with \(\lambda_{\text{max}} = 305 \) nm, 500 µL of air-saturated solution of 0.22 mg/mL HM IgG4-Fc in 20 mM sodium phosphate, pH 7.1, were placed in 13x100 mm borosilicate vials (Fisher Scientific) sealed with rubber stoppers and irradiated for 0, 30 or 60 min. The cutoff for UV light of borosilicate glass is at \(\lambda = 295 \) nm. Control, non-irradiated samples were kept in a dark place. For comparison, photo-irradiation was also performed in Ar-saturated solutions. Here, 500 µL solutions in either quartz or borosilicate vials, sealed with rubber stoppers, were carefully purged with Ar for 1 hour prior to photo-irradiation.

2.3. RESULTS

2.3.1. WT IgG4-Fc production and initial characterization.

The average yield of HM IgG4-Fc
from spinner flasks was 10 mg/L. To express sufficient protein for HIC purification, WT IgG4-Fc was expressed in 10 one liter spinner flasks. Due to incomplete glycosylation at Asn^297 by *Pichia pastoris*, protein G-purified WT IgG4-Fc contained non-glycosylated, mono-glycosylated and di-glycosylated IgG4-Fc. Different batches of affinity column-purified IgG4-Fc were analyzed by MS and SDS-PAGE, and batches of similar quality were combined and subjected to HIC purification. Di-glycosylated HM IgG4-Fc, mainly containing GlcNAc_2Man_{(8+n)} (n= 0-4), eluted in the early fractions of HIC, and was collected. The quality of HM IgG4-Fc used for photostability studies was initially characterized by LC-MS analysis after reduction (Supporting Information, Fig. S1A) and by SDS-PAGE under reducing and non-reducing conditions (Fig. S1B). The purity of HM IgG4-Fc was calculated by addition of the peak areas for all detected HM forms [GlcNAc_2Man_{(8+n)} (n= 0-4)], divided by the sum of the peak area recorded for both non-glycosylated protein and IgG4-Fc [GlcNAc_2Man_{(8+n)} (n= 0-4)]. The theoretical and observed masses for each glycoform are listed in Fig.S1A. The WT HM IgG4-Fc utilized for our photostability studies was of 99.1% purity, and showed a single band during SDS-PAGE under reducing conditions (Fig. S1B, lane 1), migrating with an apparent molecular weight between 25 kDa and 37 kDa. However, when analyzed by SDS-PAGE under non-reducing conditions, two bands were obtained (Fig. S1B, lane 2), migrating with apparent molecular weights between 25 kDa and 37 kDa and between 50 kDa and 75 kDa, respectively. These indicate the presence under denaturing conditions of both monomers (with intra-disulfide bond formation in the hinge region; see Chart 1) and dimers (with inter-disulfide bonds in the hinge region). The content of dimers of IgG4-Fc is about 76%, while the content of monomers is about 24%, based on a densitometry
analysis with ImageJ (National Institutes of Health, Washington D.C., USA).

2.3.2. Photoirradiation of WT HM IgG4-Fc and N297Q IgG4-Fc. WT HM IgG4-Fc (0.22 mg/mL) and the nonglycosylated N297Q IgG4-Fc (0.22 mg/mL) in 20 mM sodium phosphate, pH 7.1, were photoirradiated at 254 nm in quartz tubes or at $\lambda_{\text{max}} = 305$ nm in Pyrex tubes under air or Ar atmosphere. Ar saturation was achieved by placing protein samples in quartz or Pyrex vials, sealed with rubber stoppers, and saturated through headspace equilibration with Ar for 90 min. We confirmed that the absence or presence of 5 mM EDTA had no effect on product formation, so that all subsequent experiments were carried out in the absence of EDTA. IgG4-Fc (control and photoirradiated) were then reduced with DTT, alkylated with IAA, and digested with GluC side by side, prior to analysis by HPLC-MS/MS.

Three Tyr-containing peptides from GluC-treated IgG4-Fc revealed Tyr side chain fragmentation under light exposure: Tyr373 in the sequence MTKNQVSLTC(+57)LVKGFY373PSDIAVE/WE, referred to as peptide 1 (where the subsequence E/WE indicates that we detected peptides without and with one missed cleavage between E and W; the mass adduct of + 57 Da indicates that Cys is carboxymethylated), Tyr436 in the sequence ALHNHY436TQKSLSLSLGK, referred to as peptide 2, and Tyr300 in the sequence QFN297STY300RVVSVLTVLHQDWLNGKE (where Asn297 is glycosylated), referred to as peptide 3. To elucidate the influence of glycosylation on photoproduct formation, the N297Q mutant was photoirradiated; in N297Q IgG4-Fc the Tyr300-containing sequence QFQ297STY300RVVSVLTVLHQDWLNGKE is referred to as peptide 3'. All
photoprodusts derived from Tyr side chain fragmentation were identified by HPLC-MS/MS analysis on the Xevo-G2 in the MSE mode or on the Synapt-G2 in the DDA mode, and are summarized in Table 1. The characterization of the products is described in more detail in the following sections.

2.3.2.1. MS/MS identification of photoproducts from Tyr373 side chain cleavage.

Fragmentation of the Tyr373 side chain from peptide 1 yields three peptide backbone cleavage products, MTKNQVSLTC(+57)LVKGF-NH$_2$, M(+16)TKNQVSLTC(+57)LVKGF-NH$_2$, and MTKNQVSLTC(+57)LVKGFG373PSDIAVE, referred to as products 1, 2, and 3, respectively, in Table 1.

i) Product 1 (m/z 575.61): The MS/MS analysis of product 1 shows nearly a complete series of b and y ions, which are presented in Fig. 1A (Xevo-G2) and Fig.S2A (Synapt-G2). Specifically, the b14 fragment and the series of y ions from y2 to y9, and y13, indicate the presence of a C-terminal amide group (-CONH$_2$).

ii) Product 2 (m/z 580.96): Product 2 is a secondary oxidation product resulting from product 1, where Met358 is oxidized to methionine sulfoxide. The MS/MS spectrum of product 2 is shown in Fig. 1B (Xevo-G2) and Fig. S2B (Synapt-G2). The presence of b3 confirms a mass addition of +16 to the sequence MTK. The loss of 64 amu from the b4 and a10 ions (resulting in b4-64 and a10-NH$_3$-64) reflects the loss43 of CH$_3$SOH from the side chain of methionine sulfoxide, indicating that the +16 mass addition is located on the Met residue of the sequence MTK. Specifically, the y14-NH$_3$ fragment ion in Fig. S2B is consistent with methionine sulfoxide on the N-terminal Met.
Overall, the MS/MS spectra of product 2 are very similar to those of product 1, confirming the peptide backbone cleavage between Phe372 and Tyr373 during light exposure.

Figure 1. Collision-induced dissociation (CID) spectra of products 1 and 2 derived from Tyr373 side chain fragmentation collected from Xevo-G2 in the MSE mode. Product information is listed in Table 1.

Fig. 1A. MS/MS spectrum of product 1 resulting from peptide backbone cleavage induced by Tyr373 side chain fragmentation, analyzed on the Xevo-G2 mass spectrometer in the MSE mode.
iii) Product 3 (m/z 832.08): The MS/MS spectrum of product 3 is presented in Fig. S2C (Synapt-G2 DDA), indicating the photo-induced side chain conversion of Tyr373 into Gly373, specifically through the characteristic b15 and b16 ions.

2.3.2.2. MS/MS identification of photoproducts from Tyr436 side chain cleavage. Side chain fragmentation of Tyr436 from the sequence ALHNHY436TQKSLSLGK (peptide 2) yielded four products, referred to as products 4, 5, 6, and 7, respectively, which are listed in Table 1.

i) Product 4 (m/z 448.50): The MS/MS spectra of product 4, where Tyr436 is converted into Gly436 are shown in Fig. 2A and Fig. S3A. The ions with m/z 597.67 (z=3) and m/z 448.5 (z=4) are
consistent with a mass loss of 106 amu from the original Tyr-containing sequence ALHNHY436-TQKSLSLSLGK. The fragment ions b5, b8 and y9 reveal that the loss of 106 amu does not originate from the peptide sequences ALHNH and KSLSLSLGK, indicating that the mass loss of 106 is derived from the peptide sequence YTQ. The only amino acid in this sequence, which can lose 106 amu, is Tyr, and, therefore, we propose the conversion of Tyr into Gly, analogous to the conversion of Tyr373 to Gly373 characterized for product 3 (see above).

ii) Products 5 and 6 (m/z 609.30 and m/z 618.30): The MS/MS spectra of product 5 (O=CH-CO-TQKSLSLSLGK) and of its hydrated form, product 6 ((OH)\textsubscript{2}CH-CO-TQKSLSLSLGK) are presented in Fig. S3B (Synapt-G2) and Fig. 2B (Xevo-G2). The nature of the y9 fragment indicates that there is no modification on the sequence KSLSLSLGK. Therefore, the modification is located on the N-terminal sequence TQ. Based on the observation of both a free aldehyde (product 5) and a hydrated form (product 6), we propose the formation of a glyoxal amide derivative on the N-terminal sequence TQ. As expected, both products 5 and 6 show many similar fragment ions (y3, y7, y8, y9). MS/MS spectra of peptide aldehyde hydrates have been reported44-46.

iii) Product 7 (m/z 387.89): The MS/MS spectra of product 7 are displayed in Fig. 2C (Xevo-G2) and Fig. S3C (Synapt-G2), and show a nearly complete series of fragment ions from y2 to y10. This fragmentation pattern indicates that product 7 has the sequence TQKSLSLSLGK.
Figure. 2. CID spectra of products 4, 6, and 7 derived from Tyr^{436} side chain fragmentation collected from the Xevo-G2 mass spectrometer in the MS^E mode. Product information is listed in Table 1.

Fig. 2A. MS/MS of product 4 derived from Tyr^{436} side chain fragmentation and conversion into Gly^{436}, analyzed on the Xevo-G2 mass spectrometer in the MS^E mode.
Fig. 2B. MS/MS spectrum of product 6 resulting from peptide backbone cleavage forming a glyoxal amide derivative, induced by Tyr436 side chain fragmentation, analyzed on the Xevo-G2 mass spectrometer in the MSE mode.
Fig. 2C. MS/MS spectrum of product 7 derived from peptide backbone cleavage induced by side chain fragmentation of Tyr426, analyzed on the Xevo-G2 mass spectrometer in the MSE mode.
2.3.2.3. MS/MS identification of photoproducts from Tyr300 side chain cleavage. Side chain fragmentation of Tyr\(^{300}\) from QFN\(^{297}\)STY\(^{300}\)RVSVLTVLHQDWLNGKE (peptide 3 in WT IgG4-Fc) and QFQ\(^{297}\)STY\(^{300}\)RVSVLT VLHQDWLNGKE (peptide 3’ in N297Q IgG4-Fc) yielded two products, products 8 and 9, which are listed in Table 1.

i) Product 8 (m/z 686.11): The MS/MS spectrum of product 8 is shown in Fig. S4A. This product is generated by photo-induced conversion of Tyr\(^{300}\) into Gly\(^{300}\) in peptide 3’, showing a loss of 106 amu from the native peptide, similar to the data presented for product 4. The nature of the y16 and b3 ions indicate no modification on the sequences QFQ and VSVLTVLHQDWLNGKE, and the nature of the y19 and b8 fragment ions locate the mass loss of 106 amu to the original sequence YRV. Hence, we propose the conversion of the sequence YRV to GRV. Product 8 was detected only after photo-irradiation of N297Q IgG4-Fc.

ii) Product 9 (m/z 723.05): The MS/MS spectrum of product 9 is presented in Fig. S4B. Specifically, the nature of the y17 fragment locates a glyoxal amide modification on the N-terminal amino acid Arg. The mass spectrum presented in Fig. S4B shows data derived from the hydrated form of the glyoxal amide-containing product.

2.3.2.4. Other photoproducts. A number of additional chemical modifications, including methionine sulfoxide at Met\(^{252}\), Met\(^{358}\) and Met\(^{426}\); asparagine deamidation at Asn\(^{315}\); tryptophan oxidation, e.g. N-formylkynurenine formation at Trp\(^{313}\), tryptophan side chain cleavage product, VVSVLTVLHQD-NH\(_2\), at Trp\(^{313}\); and vinyl thiols generated from Cys\(^{261}\), Cys\(^{321}\), Cys\(^{367}\), and Cys\(^{425}\), were observed during photo-irradiation. These products are summarized in Table S2. The
yields of oxidation products generated from Met and Trp were significantly lower in Ar-saturated compared to air-saturated solutions. The formation of oxidation products under Ar is likely due to the presence of residual oxygen in Ar-saturated solutions. We also detected the formation of di-tyrosine cross-links by fluorescence spectroscopy, monitoring the characteristic fluorescence emission around 420-425 nm\(^{47}\). However, to date we could not identify these cross-links by mass spectroscopy in our proteolytic digests.

2.3.3. Quantification of the photodegradation products.

Our photo-irradiation experiments were conducted mainly in air-saturated conditions. In the presence of oxygen, peptide back bone cleavage is the main degradation pathway induced by Tyr side chain fragmentation, represented by products 1, 2, 5, 6, 7 and 9. In contrast, the product yields for photo-induced Tyr conversion into Gly (products 3, 4, 8) were relatively low in air-saturated solutions. Hence, we did not include products 3, 4, and 8 in the quantification of reaction products under air atmosphere. In addition, we excluded product 9 from the quantification as its native peptide (peptide 3) is glycosylated at Asn\(^{297}\) in HM WT IgG4-Fc, which leads to uncertainties in obtaining the peak area of the native peptide 3.

The yields of the respective photoproducts were calculated by means of MassLynx. Briefly, extracted ion chromatograms (XIC) of the photo-products were generated from base peak intensity chromatograms based on their respective m/z values (+/-0.05 Da) to include all the peaks of interest. The XIC were further integrated with a peak-to-peak noise amplitude of 500 to calculate
the areas of the extracted peaks, which were used as numerators referred to as “area of photoproduct” in equation 1. The peak areas for the respective native peptides were obtained in the same way as those of the photo-products; these are referred to as the “area of the native peptide” in equation 1. All quantitative data are displayed in Table 2.

\[
\text{yield (%) relative to conversion of native peptide} = \frac{\text{area of photoproduct} \times 100}{\text{area of photoproduct} + \text{area of native peptide}} \quad \text{Equation 1}
\]

2.3.4. Conformational effects on photo-product formation. The role of protein conformation on photo-product formation was examined by photo-irradiation of WT HM IgG4-Fc at \(\lambda_{\text{max}} = 305\text{nm}\) in the presence of 0, 10, 25 and 40\% (v/v) 1-propanol. The effect of 1-propanol on the secondary structure of WT HM IgG4-Fc was determined by circular dichroism (CD) spectroscopy, as displayed in Fig. S5. For 0\% and 10\% (v/v) 1-propanol, the CD spectra demonstrate similar patterns, where the range of 220 - 230 nm shows the lowest ellipticity. However, the presence of 25\% and 40\% 1-propanol, respectively, leads to significantly decreased ellipticity in the range of 200 – 240 nm, indicating that the secondary structure of the IgG4-Fc is altered from a beta sheet to a random coil structure\(^{48}\) in the presence of increasing amount of 1-propanol. Three photoproducts resulting from Tyr side chain fragmentation, products 1, 2, and 7, show overall decreasing yields with increasing 1-propanol content (Fig. 3). In contrast, products 5 and 6 respond differently, showing an initial increase of yields with a change of 1-propanol between 0 and 10\% (v/v), followed by a decrease of yields upon raising the 1-propanol content to 40\% (v/v). Common to all products is the decrease of yields upon increasing the 1-propanol content from 10 to 40\%
(v/v), suggesting that the co-solvent disrupts a conformation and/or pathway critical for Tyr side chain cleavage. Note, that in order to remove 1-propanol quantitatively for digestion and MS studies, the photo-irradiated samples were subjected to Amicon filtration twice, resulting in some loss of products, reflected in the generally lower percentages of yields compared to those listed in Table 2. Qualitatively similar results were obtained when acetonitrile was added between 10 and 40% (v/v) to aqueous solutions of WT HM IgG4-Fc.
Figure 3. Conformational role in Tyr side chain fragmentation photoirradiated at wavelength > 295 nm for 60 min in the presence of 0%, 10%, 25% and 40% of 1-propanol. For 0%, 10% and 25% 1-propanol, n = 2. For 40% 1-propanol, n = 1.
2.3.5. Solvent isotope effects (SIE). HM IgG4-Fc (0.22 mg/mL) in 20 mM sodium phosphate in either H$_2$O or D$_2$O solutions (pH, pD = 7.1) was photoirradiated at 254 nm for 20 min in quartz tubes under air. After photo-irradiation, samples were buffer-exchanged to 20 mM sodium phosphate in H$_2$O, followed by denaturation, reduction and alkylation as described in section 2.7. The photolytic conversion (%) of native peptides in H$_2$O and D$_2$O is plotted in Fig. 4, where either no (product 1) or inverse product solvent isotope effects (products 2, 5, 6 and 7) are observed. The numerical values for product yields and the inverse product isotope effects are displayed in Table 2. Interestingly, product 1 (MTKNQVSLC(+57)LVKGF-NH$_2$) reveals no SIE while the Met-oxidized product, product 2 (M(+16)TKNQVSLC(+57)LVKGF-NH$_2$), shows an inverse SIE of 1.46. This inverse SIE may reflect Met sulfoxide formation through a singlet oxygen pathway, where singlet oxygen has a longer life time in D$_2$O than in H$_2$O49. Products 5, 6 and 7 from Tyr436 from peptide 2 show significant inverse SIE between 1.89 and 2.02, indicating a potential role for proton transfer in the mechanism leading to the cleavage of Tyr436. The mechanism will be discussed in detail in the Discussion section.
Figure 4. Product solvent isotope effects on HM WT IgG4-Fc Tyr side chain fragmentation during photoirradiation at 254 nm for 20 min. The sequences of the products are listed in Table 1. The error bars plotted indicate standard errors from three independent experiments (n=3).
2.3.6. Comparison of WT HM and W381F HM IgG4-Fc. WT and W381F IgG4-Fc at 0.71 mg/mL in 20 mM sodium phosphate (pH 7.1) were placed in quartz vials sealed with rubber stoppers and saturated through headspace equilibration with air or Ar for 90 min. Photo-irradiation of WT and W381F IgG4-Fc was conducted side by side at \(\lambda = 254 \text{ nm} \) for 15 min. Products 1, 2, 5, 6 and 7 were quantified under air, and the results are shown in Fig. 5A. Furthermore, the conversion (\%) of Tyr\(^{373}\) and Tyr\(^{436}\) into Gly\(^{373}\) and Gly\(^{436}\), products 3 and 4, was quantified in Ar-saturated solution and the data are shown in Fig. 5B. The yields of photo-products under air for W381F IgG4-Fc are at least three-fold lower compared to the yields for WT IgG4-Fc (Fig. 5A). In addition, the photo-products observed under Ar are lower by a factor of 2.0 - 4.0 in W381F compared to WT IgG4-Fc (Fig. 5B). These data suggest that Trp\(^{381}\) plays a critical role in the mechanisms leading to Tyr side chain fragmentation.
Figure 5. Quantification of light-induced Tyr side chain fragmentation product yields in WT and W381F IgG4-Fc for photoirradiation at 254 nm for 15 min. (A) Air-saturation. (B) Ar-saturation. Data show mean values and the range (n=2).
2.3.7. Comparison of WT HM and H435R/Y436F HM IgG4-Fc. The double mutant H435R/Y436F was characterized by intact protein LC-MS under reducing conditions (Fig. S7). The double mutant H435R/Y436F IgG4-Fc was initially designed to change the chromatographic behavior during purification. However, for our mechanistic investigation only the replacement of Tyr436 by Phe436 is important while we do not expect any effect of the replacement of His435 by Arg435, under our photoirradiation conditions ($\lambda_{\text{max}} = 305$ nm). WT and H435R/Y436F IgG4-Fc (0.22 mg/mL) in 20 mM sodium phosphate (pH 7.1) in Pyrex tubes were photoirradiated at $\lambda_{\text{max}} = 305$ nm for 1 hr. Fig. 6 summarizes the yields of photo-products from WT and H435R/Y436F IgG4-Fc. The Tyr373 cleavage products, products 1 and 2, from peptide 1, MTKNQVSLTC(+57)LVKGFY373PSDIAVE, where Tyr is not mutated, show similar yields for WT and in the double mutant H435R/Y436F IgG4-Fc (Fig. 6). However, Tyr436 cleavage products, products 5, 6 and 7, from peptide 2, ALHNH435Y436TQKSLSLGLK, were only observed for WT IgG4-Fc. In contrast, these products were not observed for the double mutant, which contains a modified peptide sequence, ALHNHR435F436TQKSLSLGLK of H435R/Y436F IgG4-Fc (Fig. 6). These data confirm that these products originate from the cleavage of Tyr436.
Figure 6. Quantification of light-induced Tyr side chain fragmentation product yields from non-mutated MTKNQVSLTC(+57)LVKGFY373PSDIAVE in WT and H435R/Y436F mutant, as well as product yields from ALHNH435Y436TQKSLSLGK in WT and from ALHN435R436TQKSLSLGK in the mutant. Photoirradiation was conducted at $\lambda_{\text{max}} = 305$ nm. Data show mean values and the range (n=2).
2.3.8. Photo-irradiation of N-acetyl-tyrosine (N-Ac-Tyr) in the presence of oxidized glutathione (GSSG). The identification of Tyr side chain fragmentation products in photo-irradiated IgG4-Fc solutions suggests the elimination of quinone-methide from Tyr residues. For mechanistic confirmation, we photo-irradiated N-Ac-Tyr in the presence of GSSG. In this experiment, GSSG serves to accept an electron generated by photo-ionization of N-Ac-Tyr, ultimately yielding GS^-/GSH. Any one-electron oxidized N-Ac-Tyr can undergo side chain cleavage, eliminating a protonated quinone-methide, which can be trapped by GS^-/GSH, generated from GSSG, yielding an addition product. The efficient addition of quinone methides to thiols had been demonstrated before^{50-52}.

1 mM N-Ac-Tyr and 200 µM GSSG were dissolved in 20 mM sodium phosphate buffer, pH 6.8. The mixtures were placed in quartz vials sealed with rubber stoppers, saturated with Ar for 1hr, and subsequently irradiated for 30 min at \(\lambda = 254 \) nm. Control, non-irradiated samples were saturated with Ar for 1hr and then placed in the dark. Experiments were conducted in triplicates. The resultant photoproducts were analyzed by HPLC-MS/MS on a Xevo-G2 mass spectrometer. The product expected from the addition of GS^-/GSH to quinone methide has a theoretical m/z of 414.13 amu, which was identified in the photo-irradiated solutions by data dependent acquisition (DDA). MS/MS data, together with the proposed fragment structures are displayed in Fig. 7. The fragment ions mainly result from the fragmentation of peptide bonds and the newly formed thioether bond of the glutathionyl moiety. However, specifically, the ion with m/z 285.14 represents a fragment from the addition product. The adduct of GS^-/GSH to quinone methide (m/z
was only observed when both GSSG and N-Ac-Tyr were photo-irradiated together, and not in controls lacking either GSSG or N-Ac-Tyr. When we performed photo-irradiations in the presence of air rather than Ar, the yield of trapped quinone methide dropped ca. 3-fold.
Figure 7. MS/MS of the precursor ion with m/z 414, which corresponds to the adduct of GS'/GSH to quinone methide. Here, the adduct is shown where GSH added to the 4-methylene moiety of 4-methylenecyclohexa-2,5-dien-1-one.
2.4. DISCUSSION

Under light exposure, Tyr300 in the $\text{C}_{\text{H}2}$ domain and Tyr373 and Tyr436 in the $\text{C}_{\text{H}3}$ of IgG4-Fc were observed to undergo $^\alpha\text{C} - \beta\text{C}$ cleavage of the Tyr side chain. The corresponding photo-degradation products, including several peptide backbone cleavage products, and Gly, were identified by peptide mapping and HPLC-MS/MS analysis. Based on these degradation products, a mechanism for Tyr side chain fragmentation is proposed and displayed in Scheme 1.

2.4.1. Tyr side chain fragmentation mechanism. We propose that the photolytic side chain cleavage of Tyr involves an intermediate Tyr radical cation (TyrOH$^+$) (Scheme 1, reaction 1). In reaction 1, the Tyr radical cation is generated directly via photo-ionization of Tyr. However, an alternative pathway involves electron-transfer from Tyr to another photochemically generated radical cation, i.e., from Trp (see below). Formation of the Tyr radical cation is followed by the elimination of a protonated quinone methide and the formation of a carbon-centered glycyl radical (Scheme 1, reaction 2). Under Ar, the electron generated via reaction 1 can reduce an adjacent disulfide bond (RSSR), leading to a thiol (RSH) and a thyl radical (RS$^•$). The glycyl radical generated in reaction 2 can, therefore, abstract a hydrogen atom from RSH, producing Gly (Scheme 1, reaction 3). The conversion of Tyr into Gly was detected for Tyr373 (product 3), Tyr436 (product 4), and Tyr300 (product 8) (Table 1). In the presence of O$_2$, the glycyl radical converts into a peroxyl radical (Scheme 1, reaction 4). The latter can eliminate superoxide to generate a carbocation (Scheme 1, reaction 5), which, in water, cleaves the HN-$^\alpha\text{C}$ bond into glyoxal amide and a C-terminal amide (Scheme 1, reaction 6). Evidence for this mechanism is provided by the
generation of products 1, 2, 5, 6 and 9 under our experimental condition. Alternatively, two peroxyl radicals can recombine and generate alkoxy radicals (Scheme 1, reaction 7)\(^55\). These alkoxy radicals further react via reactions 8 and 9 (Scheme 1) to yield an isocyanate derivative, which can react with water (Scheme 1, reaction 10). Evidence for this mechanism is provided by the formation of product 7 (Table 1).

2.4.2. Effect of IgG4-Fc conformation on Tyr side chain cleavage.

The role of IgG4-Fc conformation on photo-induced Tyr side chain fragmentation was examined through the addition of various amounts of 1-propanol, which has been shown to alter protein structure\(^56\text{--}57\). We used CD spectroscopy (Fig. S2) to demonstrate that 1-propanol induced changes in the IgG4-Fc secondary structure when present in the solution at \(\geq 25\% \,(v/v)\). The structural change caused by \(\geq 25\% \,(v/v)\) 1-propanol is sufficient to lower the yields of Tyr side chain fragmentation. Mechanistically, the reduced efficiency of Tyr side chain cleavage can be rationalized in multiple ways: first, a solvent-induced conformational change can affect the formation of TyrOH\(^+\), for example by electron transfer to a photo-ionized Trp residue, Trp\(^+\) (Reactions 12-14). Second, a solvent-induced conformational change may affect the life-time of TyrOH\(^+\), which, through deprotonation, can convert into the neutral tyrosyl radical (TyrO\(^\cdot\)) (Scheme 1, reaction 11), which should be resistant to side chain fragmentation.

In order to evaluate a role of electron transfer from Tyr to Trp\(^+\) for the initiation of Tyr side chain cleavage, we inspected the crystal structure of IgG4-Fc (PDB 4C54)\(^31\text{,}58\). The structure revealed
three Trp residues located adjacent to Tyr373, Tyr436 and Tyr300, respectively, displayed in Fig. 8: Trp313 is located 11.3 Å from Tyr373, Trp381 is located 12.1 Å from Tyr436, and Trp313 is located 18.1 Å from Tyr300. These spatial distances are reported to be sufficiently close for electron transfer between Tyr and Trp residues59. We then representatively mutated Trp381 into Phe381, which resulted in a significant reduction of Tyr side chain cleavage (Figure 5A and 5B). The remaining, low yields of Tyr cleavage products are likely the result of electron transfer from Tyr to alternative photo-ionized Trp residues, or of direct photo-ionization of Tyr45,46,47.
Figure 8. Tyr373 (A), Tyr436 (B), and Tyr300 (C) in the crystal structure of IgG4-Fc (PDB 4C54) displayed with PyMOL are adjacent to Trp313, Trp381, and Trp277, respectively.
In order to evaluate, whether the yield and/or the lifetime of TyrOH\(^+\) influences the yields of Tyr side chain cleavage products, we measured the product solvent isotope effects. Interestingly, products 5-7 showed significant inverse product solvent isotope effects between 1.89 and 2.02. These products originate from side chain cleavage of Tyr\(^{436}\). However, no significant product solvent isotope effect was measured for product 1, resulting from side chain cleavage of Tyr\(^{373}\) (the inverse product solvent isotope effect for product 2, revealing oxidation of Met to Met sulfoxide, is likely the result of singlet oxygen reaction with Met). The increased yields of products 5-7 in D\(_2\)O can be rationalized with a slower rate constant of deprotonation of TyrOD\(^+\) via reaction 11, allowing for a more efficient side chain cleavage (reaction 2). In general, slower rates of D\(^+\) transfer vs H\(^+\) transfer have been observed for proton-coupled electron transfer reactions of tyrosyl radicals\(^{60-62}\). While these reactions concern proton/deuterium transfer to a tyrosyl radical prior to reduction, a similarly slower deuterium vs proton transfer to base can be expected for the deprotonation of TyrOD\(^+\) vs deprotonation of TyrOH\(^+\). However, we also need to discuss some additional aspects of potential relevance to the observed product solvent isotope effect. First, it was reported that the reverse electron transfer from Trp to tyrosyl radical is slower in D\(_2\)O\(^{62}\). Considering that tyrosyl radical and tyrosyl radical cation exist in equilibrium 11, the efficiency of such reverse electron transfer may affect the yields of side chain cleavage products. However, such reverse electron transfer from Trp to tyrosyl radical occurs predominantly in the acidic and alkaline pH region\(^{62-63}\) and not at the pH/pD =7.1 of our experiments. Second, deprotonation of Trp\(^+\) to the neutral Trp\(^-\) radical may affect the yield of TyrOH\(^+\), which can be directly generated by electron transfer reaction 14 (Scheme 2). It can be expected that deprotonation of Trp\(^+\) occurs slower in
D$_2$O as compared to H$_2$O, potentially resulting in higher yields of TyrOH$^+$ in D$_2$O as compared to H$_2$O.

The general possibility for Tyr side chain cleavage following the one-electron oxidation of Tyr was confirmed in a model experiment where N-acetyl-tyrosine (NATS) was photo-irradiated in the presence of GSSG. Here, photo-induced electron transfer from NATS to GSSG leads to the generation of TyrOH$^+$ and GS$^-$/GSH. The quinone methide generated through side chain cleavage of TyrOH$^+$ has electrophilic properties, amenable to the addition of GS$^-$/GSH. The reaction product of this addition was detected by HPLC-MS/MS analysis.

2.5. CONCLUSION

The present paper discovers three Tyr residues undergo side chain cleavage under UV light stress, and result in peptide back bone cleavages and conversion into Gly. Based on our knowledge, the photo-induced Tyr side chain cleavage reaction is first reported in a protein solution. These reactions may be relevant to light-induced inactivation, aggregation, fragmentation or immunogenicity of protein therapeutics.

2.6. Acknowledgements

We gratefully acknowledge support of H.K. by a Graduate Fellowship from the Genentech Foundation, and experimental assistance by Drs. S. Okbazghi and I.S. Shah.
2.7. REFERENCES

35. Sandrine Béranger, C. M.-J., Fatena Bellahcene and Marie-Paule Lefranc Correspondence between the IMGT unique numbering for C-DOMAIN, the IMGT exon numbering, the Eu and Kabat numberings: Human IGHG. http://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html.
42. Rahn, R. O.; Stefan, M. I.; Bolton, J. R.; Goren, E.; Shaw, P. S.; Lykke, K. R., Quantum yield of the iodide-iodate chemical actinometer: Dependence on wavelength and concentration.

57. Wicar, S.; Mulkerrin, M. G.; Bathory, G.; Khundkar, L. H.; Karger, B. L., Conformational

Scheme 1. Proposed photolytic processes of Tyr side chain fragmentation in IgG4-Fc under air-saturation when Tyr is photo-ionized.
Scheme 2. Proposed mechanisms of electron transfer reactions between Tyr and photo-ionized Trp.
Scheme 3. Proposed mechanism of photo-irradiation of N-acetyl-tyrosine (NATS) in the presence of GSSG at 254 nm under Ar-saturation, where GSSG is oxidized glutathione and GSH is reduced glutathione.
Table 1. Photoproducts derived from Tyr side chain fragmentation in HM WT and N297Q IgG4-Fc at $\lambda = 254$ nm and $\lambda_{\text{max}} = 305$ nm. The label “√” indicates the corresponding photoproduct is observed, whereas “x” indicates that the photoproduct is not observed under the condition. Products 1-7, and 9 were observed in photoirradiated HM WT IgG4-Fc. All the products were observed in N297Q IgG4-Fc under irradiation.

<table>
<thead>
<tr>
<th>Product</th>
<th>Photoproducts</th>
<th>Position</th>
<th>$\lambda_{\text{254 nm}}$</th>
<th>$\lambda_{\text{max}=305,\text{nm}}$</th>
<th>mass/charge</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MTKNQVSLTC(+57)LVKGF-NH$_2$</td>
<td>Tyr373</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>M(+16)TKNQVSLTC(+57)LVKGF-NH$_2$</td>
<td>Tyr373</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>3</td>
<td>MTKNQVSLTC(+57)LVKGFGPSDIAVE</td>
<td>Tyr373</td>
<td>√</td>
<td>√</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>ALHNHGTQKSLSLGLK</td>
<td>Tyr436</td>
<td>√</td>
<td>X</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>H_\text{C}--\text{O}</td>
<td>TQKSLSLGLK</td>
<td>Tyr436</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>6</td>
<td>H_\text{C}--\text{O}</td>
<td>[\text{TQKSLSLGLK}^+\text{18}]</td>
<td>Tyr436</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>7</td>
<td>TQKSLSLGLK</td>
<td>Tyr436</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>8</td>
<td>QFQSTGRVVSVLTVLHQQWLNGKE</td>
<td>Tyr300</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>H_\text{C}--\text{O}</td>
<td>[\text{RVVSVLTVLHQ}^+\text{18}]</td>
<td>Tyr300</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Table 2. Deprotonation mechanistic studies on HM WT IgG4-Fc Tyr side chain fragmentation during photoirradiation at 254 nm for 20 min. The sequences of the products are listed in Table 1.

<table>
<thead>
<tr>
<th>Products</th>
<th>Reaction position</th>
<th>%conversion of native peptide in H₂O (±SE)</th>
<th>%conversion of native peptide in D₂O (±SE)</th>
<th>%conversion of native peptide [D₂O/H₂O]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tyr 373</td>
<td>76.2 ± 3.4</td>
<td>78.5 ± 1.9</td>
<td>1.03</td>
</tr>
<tr>
<td>2</td>
<td>Tyr 373</td>
<td>47.8 ± 4.6</td>
<td>68.8 ± 2.8</td>
<td>1.44</td>
</tr>
<tr>
<td>5</td>
<td>Tyr 436</td>
<td>8.6 ± 0.98</td>
<td>16.3 ± 0.79</td>
<td>1.89</td>
</tr>
<tr>
<td>6</td>
<td>Tyr 436</td>
<td>7.6 ± 1.3</td>
<td>14.6 ± 0.39</td>
<td>1.92</td>
</tr>
<tr>
<td>7</td>
<td>Tyr 436</td>
<td>11.0 ± 0.26</td>
<td>22.3 ± 1.3</td>
<td>2.02</td>
</tr>
</tbody>
</table>
Table 3: Photoproduct formation under Ar- and air-saturated conditions at λ=254 nm or λ_{max}=305 nm for WT and several mutants. Product details are displayed in Table 1. Photo-products of WT IgG4-Fc are summarized in Table 1.

<table>
<thead>
<tr>
<th>Tyr residue</th>
<th>N297Q (254nm)</th>
<th>W381F (254nm)</th>
<th>H435R/Y436F (305nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ar</td>
<td>air</td>
<td>Ar</td>
</tr>
<tr>
<td>Tyr373</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Tyr436</td>
<td>4,5,6,7</td>
<td>5,6,7</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Tyr300</td>
<td>8,9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Very little or NA
Supplementary Figures

Figure S1. Characterization of WT HM IgG4-Fc. (A) Intact IgG4-Fc MS analysis under reducing conditions; (B) Intact IgG4-Fc characterization on SDS-PAGE under reducing (lane 1) and non-reducing conditions (lane 2).
Figure S2. Collision-induced dissociation (CID) mass spectra of products 1, 2, and 3 resulting from Tyr373 side chain fragmentation under photodestruction. Product information is listed in Table 1.

Fig. S2A. MS/MS spectrum of product 1 resulting from peptide backbone cleavage induced by Tyr373 side chain fragmentation, analyzed with Synapt-G2 in the data dependent acquisition (DDA) mode.
Fig. S2B. MS/MS spectrum of product 2 with an oxidized methionine, a secondary oxidation product of product 1, analyzed with Synapt-G2 in the DDA mode.
Fig. S2C. MS/MS spectrum of product 3 resulting from Tyr373 conversion into Gly373, analyzed with Synapt-G2 in the DDA mode.
Figure S3. CID mass spectra of products 4, 5, and 7 resulting from Tyra436 side chain fragmentation under photoirradiation. Product information is listed in Table 1.

Fig. S3A. MS/MS spectrum of product 4 derived from Tyra436 conversion into Gly436, analyzed with Synapt-G2 in the DDA mode.
Fig. S3B. MS/MS spectrum of product 5 resulting from peptide backbone cleavage forming a glyoxal derivative, induced by Tyr\(^{436}\) side chain fragmentation, analyzed with Synapt-G2 in the DDA mode.
Fig. S3C. MS/MS spectrum of product 7 derived from peptide backbone cleavage induced by side chain fragmentation of Tyr436, analyzed with Synapt-G2 in the DDA mode.
Figure S4. CID mass spectra of products 8 and 9 resulting from Tyr\(^{300}\) side chain fragmentation under photoirradiation. Product information is listed in Table 1.

Fig. S4A. MS/MS spectrum of product 8 derived from Tyr\(^{300}\) conversion into Gly\(^{300}\), analyzed with Synapt-G2 in the DDA mode.
Fig. S4B. MS/MS spectrum of product 9 resulting from peptide backbone cleavage forming a glyoxal derivative, induced by Tyr300 side chain fragmentation, analyzed with Synapt-G2 in the DDA mode.
Figure S5. CD analysis of WT HM IgG4-Fc secondary structure in the presence of 1-propanol.
Figure S6. Intact protein MS characterization of the W381F HM IgG4-Fc mutant. The protein was reduced with dithiothreitol (DTT).
Figure S7. Intact protein MS characterization of the H435R/Y436F HM IgG4-Fc mutant. The protein was reduced with DTT.
Table S1. IgG4-Fc full amino acid sequence from Cys226 to Lys447 with Eu numbering.

<table>
<thead>
<tr>
<th>Eu numbering</th>
<th>IgG4 Fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>-</td>
</tr>
<tr>
<td>226</td>
<td>C</td>
</tr>
<tr>
<td>227</td>
<td>P</td>
</tr>
<tr>
<td>228</td>
<td>S</td>
</tr>
<tr>
<td>229</td>
<td>C</td>
</tr>
<tr>
<td>230</td>
<td>P</td>
</tr>
<tr>
<td>231</td>
<td>A</td>
</tr>
<tr>
<td>232</td>
<td>P</td>
</tr>
<tr>
<td>233</td>
<td>E</td>
</tr>
<tr>
<td>234</td>
<td>F</td>
</tr>
<tr>
<td>235</td>
<td>L</td>
</tr>
<tr>
<td>236</td>
<td>G</td>
</tr>
<tr>
<td>237</td>
<td>G</td>
</tr>
<tr>
<td>238</td>
<td>P</td>
</tr>
<tr>
<td>239</td>
<td>S</td>
</tr>
<tr>
<td>240</td>
<td>V</td>
</tr>
<tr>
<td>241</td>
<td>F</td>
</tr>
<tr>
<td>242</td>
<td>L</td>
</tr>
<tr>
<td>243</td>
<td>F</td>
</tr>
<tr>
<td>244</td>
<td>P</td>
</tr>
<tr>
<td>245</td>
<td>P</td>
</tr>
<tr>
<td>246</td>
<td>K</td>
</tr>
<tr>
<td>247</td>
<td>P</td>
</tr>
<tr>
<td>248</td>
<td>K</td>
</tr>
<tr>
<td>249</td>
<td>D</td>
</tr>
<tr>
<td>250</td>
<td>T</td>
</tr>
<tr>
<td>251</td>
<td>L</td>
</tr>
<tr>
<td>252</td>
<td>M</td>
</tr>
<tr>
<td>253</td>
<td>I</td>
</tr>
<tr>
<td>254</td>
<td>S</td>
</tr>
<tr>
<td>255</td>
<td>R</td>
</tr>
<tr>
<td>256</td>
<td>T</td>
</tr>
<tr>
<td>257</td>
<td>P</td>
</tr>
<tr>
<td>258</td>
<td>E</td>
</tr>
<tr>
<td>259</td>
<td>V</td>
</tr>
<tr>
<td>260</td>
<td>T</td>
</tr>
<tr>
<td>261</td>
<td>C</td>
</tr>
<tr>
<td>262</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>263</td>
<td>V</td>
</tr>
<tr>
<td>264</td>
<td>V</td>
</tr>
<tr>
<td>265</td>
<td>D</td>
</tr>
<tr>
<td>266</td>
<td>V</td>
</tr>
<tr>
<td>267</td>
<td>S</td>
</tr>
<tr>
<td>268</td>
<td>Q</td>
</tr>
<tr>
<td>269</td>
<td>E</td>
</tr>
<tr>
<td>270</td>
<td>D</td>
</tr>
<tr>
<td>271</td>
<td>P</td>
</tr>
<tr>
<td>272</td>
<td>E</td>
</tr>
<tr>
<td>273</td>
<td>V</td>
</tr>
<tr>
<td>274</td>
<td>Q</td>
</tr>
<tr>
<td>275</td>
<td>F</td>
</tr>
<tr>
<td>276</td>
<td>N</td>
</tr>
<tr>
<td>277</td>
<td>W</td>
</tr>
<tr>
<td>278</td>
<td>Y</td>
</tr>
<tr>
<td>279</td>
<td>V</td>
</tr>
<tr>
<td>280</td>
<td>D</td>
</tr>
<tr>
<td>281</td>
<td>G</td>
</tr>
<tr>
<td>282</td>
<td>V</td>
</tr>
<tr>
<td>283</td>
<td>E</td>
</tr>
<tr>
<td>284</td>
<td>V</td>
</tr>
<tr>
<td>285</td>
<td>H</td>
</tr>
<tr>
<td>286</td>
<td>N</td>
</tr>
<tr>
<td>287</td>
<td>A</td>
</tr>
<tr>
<td>288</td>
<td>K</td>
</tr>
<tr>
<td>289</td>
<td>T</td>
</tr>
<tr>
<td>290</td>
<td>K</td>
</tr>
<tr>
<td>291</td>
<td>P</td>
</tr>
<tr>
<td>292</td>
<td>R</td>
</tr>
<tr>
<td>293</td>
<td>E</td>
</tr>
<tr>
<td>294</td>
<td>E</td>
</tr>
<tr>
<td>295</td>
<td>Q</td>
</tr>
<tr>
<td>296</td>
<td>F</td>
</tr>
<tr>
<td>297</td>
<td>N</td>
</tr>
<tr>
<td>298</td>
<td>S</td>
</tr>
<tr>
<td>299</td>
<td>T</td>
</tr>
<tr>
<td>300</td>
<td>Y</td>
</tr>
<tr>
<td>301</td>
<td>R</td>
</tr>
<tr>
<td>302</td>
<td>V</td>
</tr>
<tr>
<td>303</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>304</td>
<td>S</td>
</tr>
<tr>
<td>305</td>
<td>V</td>
</tr>
<tr>
<td>306</td>
<td>L</td>
</tr>
<tr>
<td>307</td>
<td>T</td>
</tr>
<tr>
<td>308</td>
<td>V</td>
</tr>
<tr>
<td>309</td>
<td>L</td>
</tr>
<tr>
<td>310</td>
<td>H</td>
</tr>
<tr>
<td>311</td>
<td>Q</td>
</tr>
<tr>
<td>312</td>
<td>D</td>
</tr>
<tr>
<td>313</td>
<td>W</td>
</tr>
<tr>
<td>314</td>
<td>L</td>
</tr>
<tr>
<td>315</td>
<td>N</td>
</tr>
<tr>
<td>316</td>
<td>G</td>
</tr>
<tr>
<td>317</td>
<td>K</td>
</tr>
<tr>
<td>318</td>
<td>E</td>
</tr>
<tr>
<td>319</td>
<td>Y</td>
</tr>
<tr>
<td>320</td>
<td>K</td>
</tr>
<tr>
<td>321</td>
<td>C</td>
</tr>
<tr>
<td>322</td>
<td>K</td>
</tr>
<tr>
<td>323</td>
<td>V</td>
</tr>
<tr>
<td>324</td>
<td>S</td>
</tr>
<tr>
<td>325</td>
<td>N</td>
</tr>
<tr>
<td>326</td>
<td>K</td>
</tr>
<tr>
<td>327</td>
<td>G</td>
</tr>
<tr>
<td>328</td>
<td>L</td>
</tr>
<tr>
<td>329</td>
<td>P</td>
</tr>
<tr>
<td>330</td>
<td>S</td>
</tr>
<tr>
<td>331</td>
<td>S</td>
</tr>
<tr>
<td>332</td>
<td>I</td>
</tr>
<tr>
<td>333</td>
<td>E</td>
</tr>
<tr>
<td>334</td>
<td>K</td>
</tr>
<tr>
<td>335</td>
<td>T</td>
</tr>
<tr>
<td>336</td>
<td>I</td>
</tr>
<tr>
<td>337</td>
<td>S</td>
</tr>
<tr>
<td>338</td>
<td>K</td>
</tr>
<tr>
<td>339</td>
<td>A</td>
</tr>
<tr>
<td>340</td>
<td>K</td>
</tr>
<tr>
<td>341</td>
<td>G</td>
</tr>
<tr>
<td>342</td>
<td>Q</td>
</tr>
<tr>
<td>343</td>
<td>P</td>
</tr>
<tr>
<td>344</td>
<td>R</td>
</tr>
</tbody>
</table>
386 Q
387 P
388 E
389 N
390 N
391 Y
392 K
393 T
394 T
395 P
396 P
397 V
398 L
399 D
400 S
401 D
402 G
403 S
404 F
405 F
406 L
407 Y
408 S
409 R
410 L
411 T
412 V
413 D
414 K
415 S
416 R
417 W
418 Q
419 E
420 G
421 N
422 V
423 F
424 S
425 C
426 S
427 V
428 M
429 H
430 E
431 A
432 L
433 H
434 N
435 H
436 Y
437 T
438 Q
439 K
440 S
441 L
442 S
443 L
444 S
445 L
446 G
447 K
448 *
Table S2. A summary of chemical modifications of the amino acid of WT IgG4-Fc during photoirradiation.

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Photo-induced modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys<sub>261</sub></td>
<td>254 nm (air or argon) Vinyl thiol</td>
</tr>
<tr>
<td>Met<sub>252</sub></td>
<td>Vinyl thiol Methionine sulfoxide</td>
</tr>
<tr>
<td>Asn<sub>315</sub></td>
<td>Vinyl thiol Asn deamidation</td>
</tr>
<tr>
<td>Cys<sub>321</sub></td>
<td>Vinyl thiol Methionine sulfoxide</td>
</tr>
<tr>
<td>Met<sub>428</sub></td>
<td>Vinyl thiol N-formylkynurenine</td>
</tr>
<tr>
<td>Trp<sub>313</sub></td>
<td>Vinyl thiol</td>
</tr>
<tr>
<td>Cys<sub>367</sub></td>
<td>Vinyl thiol</td>
</tr>
<tr>
<td>Cys<sub>425</sub></td>
<td>Vinyl thiol</td>
</tr>
</tbody>
</table>
Chapter 3. Photo-induced Trp and Tyr side chain cleavage in IgG4-Fc: impact on physicochemical stability and receptor binding, and effect of N- and O-glycosylation on product formation
3.1. Introduction.

The exposure of proteins to UV and visible light1-2 leads to chemical modifications, which may impact function, and/or cause aggregation and potentially immunogenicity3-5. An important study by Boll et al.5 suggests that chemical modifications of proteins contribute to the immunogenicity of protein aggregates. However, this study also concludes that it is not routinely observed chemical modifications, such as Met sulfoxide or common Trp oxidation products, which are responsible for this contribution to immunogenicity5. Therefore, there is a need to identify other, potentially new, chemical modifications, which may predispose proteins to aggregation and/or immunogenicity.

In prior work we reported that protein Trp residues are prone to side chain fragmentation induced by UV light6-9, including the exposure to ICH light stress in an Atlas SUNTEST CPS+ system operated in the ID65 configuration10. This reaction converts Trp into a series of products including Gly. In a monoclonal antibody (mAb) of the IgG1 subclass this side chain fragmentation targets specific Trp residues such as Trp191 in the light chain (LC) and Trp309 and Trp373 in the heavy chain (HC)6,10. Trp residues are frequently part of residue clusters important for protein folding and stability11-14. Hence, the conversion of Trp to Gly can induce a cavity in the three-dimensional structure of a protein, which may result in (local) unfolding and destabilization15. The extent of such destabilization will depend on the exact location of the targeted Trp residue and its chemical environment15. More recently, we reported for IgG4-Fc that also protein Tyr residues undergo side
chain fragmentation during UV light exposure, likely induced by electron transfer to a photochemically generated Trp radical cation16. This reaction converts Tyr into a number of products, including Gly, suggesting that also such reaction may lead to the unfolding of protein domains containing these Tyr residues.

The purpose of the present work was to examine the consequences of photo-induced conversion of Trp and Tyr to Gly on the physicochemical properties and receptor binding of the constant region of an antibody, IgG4-Fc. For these experiments we generated Tyr-to-Gly mutants for all three Tyr residues on IgG4-Fc, which are target for photochemical conversion to Gly, and the Trp-to-Gly mutant at position Trp381. Unfortunately, the expression yields of the Trp381Gly mutant were low, so that we also prepared the Trp381Ala mutant as a surrogate for the Trp381Gly mutant, which provided larger yields of protein required for some of our biophysical studies. To our surprise, we noted that both Trp381Gly and Trp381Ala mutations introduced an atypical glycosylation, where > 60% of the glycoprotein was O-glycosylated at Ser375, confirmed by MS analysis under reducing conditions. This necessitated the characterization of any differences induced by O-glycosylation, and provided an opportunity for addressing the effects of N- vs. O-glycosylation on the physicochemical properties of IgG4-Fc and on its photo-induced degradation. For these studies additional mutants, IgG4-Fc S375A and W381A/S375A (Chart 1 and 2) were generated.
Chart 1: Wild-type (A), S375A (B), W381A (C), and S375A/W381A (D) IgG4-Fc structures with inter-hinge disulfide bonds (intra-hinge disulfide not shown), where Asn297 is glycosylated with high mannose (GlcNAc\textsubscript{2}Man\textsubscript{(8+n)} (n=0-4)) in all four IgG4-Fc, while Ser375 in W381A is O-glycosylated with mannose to an extent of ca. 61%.
Chart 2: N-de-glycosylated structures WT_degly (A), S375A_degly (B), W381A_degly (C), and S375A/W381A_degly (D) IgG4-Fc shown with inter-hinge disulfide bonds (intra-hinge disulfide bonds not shown), where Ser375 in W381A is glycosylated with mannose with \(~61\%\) occupancy to an extent of ca. \(61\%\).
Glycosylation represents a heterogeneous post-translational protein modification (PTM), which is a critical determinant of intrinsic protein properties.8,17-18 In antibodies, glycosylation affects the physicochemical stability and therapeutic efficacy19-20. Of the approximately 400 FDA-approved therapeutic proteins21, the majority are glycoproteins, where monoclonal antibodies (mAbs) represent a dominant fraction22. The glycans of glycoproteins are complex and (bio)synthetically difficult to control. They can vary for different expression systems, processing conditions (e.g., temperature, pH), and the native properties of proteins23. Studies on the effect of glycosylation on the stability and function of protein pharmaceuticals are important for glycoengineering and development of therapeutic proteins18,24.

The two main types of glycosylation are N- and O-linked glycosylation25. N-glycosylation involves the attachment of a carbohydrate group to the side chain N atom of Asn within a consensus sequence Asn-X-Thr/Ser, where X can be any amino acid except Pro26. N-glycosylation has been extensively studied, especially in mAbs27. Specifically immunoglobulin G (IgG), has become an important therapeutic for the treatment of cancer, immune, and infectious diseases due to its specificity, efficacy, long serum half-life and largely reduced side effects. IgGs consist of two heavy chains, including variable (V\textsubscript{H}) and constant heavy chain domains (C\textsubscript{H}1, C\textsubscript{H}2, and C\textsubscript{H}3), and two light chains containing the V\textsubscript{L} and C\textsubscript{L} domains. The heavy and light chains, are connected by inter-chain disulfide bonds, where the V\textsubscript{H}, V\textsubscript{L}, C\textsubscript{H}1, and C\textsubscript{L} domains compose the antigen-binding region (Fab), while C\textsubscript{H}2 and C\textsubscript{H}3 are parts of the constant region (which is part of the crystallizable fragment, Fc). All IgG subclasses are glycosylated at Asn297 in the C\textsubscript{H}2 domain. Crystal structures
of the IgG-Fc domain have shown that the attached N-glycans at Asn\(^{297}\) can influence the conformation of the C\(_{H2}\) domain\(^{28-29}\), and therefore affect the interactions between Fc domain and Fc receptors. N-linked glycosylation contains a uniform core structure, GlcNAc\(_2\)Man\(_3\), which can be further modulated by Golgi enzymes\(^{30}\). This modulation of the glycan core structure affects the biological activity\(^{31-33}\) and physico-chemical properties\(^8, 29, 34-35\) of IgG1. In contrast to IgG1, the effect of glycan modulation on the physico-chemical properties of IgG4 has not been extensively studied, even though also this subtype has been developed into biotherapeutics.\(^{36-37}\)

O-glycosylation involves the covalent attachment of a carbohydrate to the hydroxyl group of Ser, Thr, or Tyr\(^{38}\). Mammalian O-glycosylation can involve Fuc, GalNAc, GlcNAc, Man, and Gle\(^{38}\). The lack of a consensus sequence for O-glycosylation\(^{39-40}\) leads to difficulties in the prediction and characterization of O-glycosylation. IgGs have been reported to be O-glycosylated both \textit{in vivo} and \textit{in vitro}\(^{41}\). For example, ca. 8\% of IgG3, extracted from human serum revealed O-glycosylation in the hinge region\(^{42}\). Recombinant human mAb therapeutics expressed in Chinese hamster ovary (CHO) can be O-glycosylated, e.g., via O-fucosylation\(^{41, 43}\) and O-glucosylation (\(~10\%\)\(^\text{~29}\)) in IgG1, as well as O-mannosylation at Ser in the variable regions of IgG2\(^44\). These unexpected observations suggest that the introduction of structural heterogeneity by enzymatic O-glycosylation during the process of antibody engineering and manufacturing may be inevitable. Therefore, molecular features which predispose mAbs to O-glycosylation, and its potential consequences, need to be addressed and thoroughly characterized.
In the present work, we examined the impact of N- and O-linked glycans on the physico-chemical properties of IgG4-Fc variants. The IgG4-Fc variants containing Asn\(^{297}\) N-glycans, are referred to as WT, S375A, W381A, and S375A/W381A IgG4-Fc (Chart 1) (For WT, S375A, and S375A/W381A, the attached N-glycans are N-GlcNAc\(_2\)Man\(_{8+n}\), n = 0-4; for W381A, the attached glycans are a mixture of N- and O-glycans, predominantly N-GlcNAc\(_2\)Man\(_{8+n}\) or N-GlcNAc\(_2\)Man\(_{8+n}\)/O-Man\(_1\), n = 0-4). These glycoforms are named as high mannose (HM). The PNGase F-treated IgG4-Fc variants are referred to as WT\(_{\text{degly}}\), S375A\(_{\text{degly}}\), W381A\(_{\text{degly}}\), and S375A/W381A\(_{\text{degly}}\) (Chart 2).

3.2. Materials.

Yeast extract and peptone were purchased from Becton Dickinson and Company (Franklin Lakes, NJ). Dextrose, sodium phosphate, sodium chloride, methanol, and glycerol were purchased from Fisher (Fair Lawn, NJ). Zeocin was obtained from Invitrogen (Carlsbad, CA). Yeast nitrogen base (YNB) was obtained from Sunrise Biosciences (San Diego, CA). Rmp protein A sepharose\(^\text{TM}\) fast flow was purchased from GE Healthcare Bio-Sciences (Uppsala, Sweden). Potassium phosphate, biotin, citric acid, dithiothreitol (DTT), iodoacetamide (IAA), iodoacetic acid (IAC), ammonium bicarbonate, and guanidine hydrochloride were purchased from Sigma-Aldrich (Saint Louis, MO). The SacI-HF was bought from New England BioLabs (Ipswich, MA). GluC and Trypsin/LysC were purchased from Promega Corporation (Madison, WI). Tris (2-carboxyethyl) phosphine (TCEP) was obtained from Thermo Fisher Scientific (Waltham, MA). D\(_2\)O, D 99.9%, was
purchased from Cambridge Isotope Laboratories (Tewksbury, MA).

A forward primer, 5'-CGACATCGCCGTGGAGGCTGAGAGCAATGGGCAGC-3’, and a reverse primer, 5’-GCTGCCCATTGCTCTCAGCCTCCACGGCGATGTCG-3’, were designed for W381A. WT IgG4-Fc cDNA cloned in a pPICZαA vector (Invitrogen, Carlsbad, CA) was used as W381A parent plasmid. A forward primer, 5’-AAGGCTTCTACCCCGCCGACATCGCGTGG-3’, and a reverse primer, 5’-CCACGGCGATGTCGGCGGGAAGTGAAG CGCTTT-3’, were designed for S375A and S375A/W381A. A forward primer, 5’-GCAGTTCACACAGCAGGCGGTGTTGAC-3’, and a reverse primer, 5’-GACGCTGACCACACGGCCCGTGCTGGTTGAACTGC-3’, were designed for Y300G. A forward primer, 5’-CTGGTTCAAAAGGC TTGGCAGGGAAGCAGCGTCCGC-3’, and a reverse primer, 5’-GCGATGTCGCTGGGGCCGAAGCTTTGACCAG-3’ were designed for Y373G. A forward primer, 5’-GGCTCTGCAACAACCACGGCCACACAGAAGGACCTC-3’, and a reverse primer, 5’-GAGGCTCTCTCTGTGCTGGCGGTGTTGTGCAGAGCC-3’ were designed for Y436G. A forward primer, 5’-GACATCGCCGTGGAGGCTGAGAGCAATGGGCAGC-3’, and a reverse primer, 5’-CTGCCATTGCTCTCACCCTCCACGGCGATGTC-3’ were designed for W381G. WT cDNA-containing plasmid was used for S375A, Y300G, Y373G, and Y436G, W381A, and W381G cDNA-containing plasmid was used as W381A/S375A parent plasmid. The primers were bought from Eurofins Genomics (Louisville, KY). The mutagenesis was achieved with a QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, Inc., Santa Clara, CA).
Mutated cDNA-plasmids were transferred to XL10-Gold ultracomplement cells, provided by Agilent Technologies, by means of heat shock. The cells were grown in low salt lysogeny broth (LB) medium (1% tryptone, 0.5% NaCl, and 0.5% yeast extract) at 37°C for 1hr, and then plated onto a 25 µg/mL zeocin-containing LB for colony selection. The plate was incubated at 37°C overnight, and colonies grown with zeocin resistance were selected. The plasmids of selected colonies were inoculated in 6 mL of zeocin-containing LB medium (25 µg/mL), amplified by shaking at 250 rpm at 37°C overnight, purified with a miniprep Kit (QIAGEN, Valencia, CA), and sequenced by the University of California Berkeley DNA Sequence Facility (Berkeley, CA). Those cDNA-plasmids showing 100% sequence accuracy were linearized with SacI-HF, and electroporation transferred to a pno11/och1 KO and STT3D added Pichia pastoris yeast strain. Those yeast colonies grown with zeocin resistance (100 µg/mL) were selected for IgG4-Fc production.

3.2.2. Expression of IgG4-Fc. For IgG-Fc expression we followed a procedure which was described previously. Briefly, a starting medium of 2.5 mL YPD containing 1% yeast extract (w/v), 2% peptone (w/v), 2% dextrose (w/v), and 2.5 mg zeocin was inoculated with the selected yeast colonies and shaken in an incubator (New Brunswick Innova 4200 Incubator-Shaker, Edison, NJ, USA) at 250 rpm at 26°C. After 72 hr, the 2.5 mL yeast cells were transferred to 50 mL YPD medium placed in a 250 mL Erlenmeyer flask, and the yeast culture was grown under shaking at 26°C. After 72 hr, the 50 mL yeast cells were transferred to a 1 L spinner flask containing buffered glycerol-complex media, referred to as BMGY (1% yeast extract, 2% peptone, 2% glycerol,
0.34% of yeast nitrogen base and 1% ammonium sulfate, 4×10^{-5}% biotin, and 100 mM potassium phosphate, pH 6.0), followed by addition of two drops of sterilized antifoam. The 1L yeast cell culture was grown at room temperature (RT) for 72 hr on a stir plate under a constant flow of air, which was filtered by a 0.2 µm Millipore Express® PES membrane. The protein production was induced by addition of a final content of 1% methanol (v:v) to the 1 L spinner flask every 24 hr for 3 times. After 72 hr of induction, the yeast cells were harvested, and IgG4-Fc was purified.

3.2.3. Purification of IgG4-Fc using affinity chromatography

The yeast cells were transferred to centrifuge bottles and centrifuged in an Avanti™ J-25I centrifuge (Beckman Coulter, Palo Alto, CA) with a JLA-10500 rotor (Beckman Coulter, Palo Alto, CA) at 6,693 g for 20 min at 4°C. After the centrifugation, the supernatant was collected and filtered by six layers of 90 mm Whatman filter pads. IgG4-Fc was purified from the supernatant with a pre-packed column containing rmp Protein A Sepharose™ Fast Flow resin. The mobile phase was controlled by a Masterfles L/S economy pump system (Cole Parmer Instrument, Chicago, IL), and the eluting fractions were monitored by an ISCO model UA-5 absorbance detector at 214 nm. The column (10 mL) was initially equilibrated with 10 column volumes (CV) of 20 mM sodium phosphate (pH 7.0). Afterwards, the filtered supernatant was applied to the column at a flow rate of 1.5 mL/min, followed by wash with high salt concentration (500 mM NaCl in 20 mM sodium phosphate, pH 7.0) until the intensity of the UV absorption at 214 nm dropped to baseline level. Then equilibration buffer (10 CV) was applied to wash off residual salt. Bound IgG4-Fc was eluted with 50 mM citric acid (pH 3.0) and immediately dialyzed in 2 L of 20 mM sodium phosphate (pH 7.0). The dialysis
buffer was exchanged twice. IgG4-Fc of good quality (evaluated by HPLC-MS and SDS-PAGE gel analysis) was aliquoted and stored at -80°C for further analysis.

3.2.4. PNGase F digestion of WT, S375A, W381A, S375A/W381A IgG4-Fc. The N-linked glycans of 500 µL aliquots of proteins (0.2 mg/mL, pH 7.0) were deglycosylated by mixing with 0.5 µL N-glycosidase F (PNGase F) in a protein to enzyme ratio of 500:1 (w/w) and incubating at RT for 24 hrs. The extent of the enzymatic reaction was monitored by mass spectrometry, as described in section 2.5. PNGase F was expressed in E.coli, purified with a Nickel column, and stored in 50% glycerol at -20°C for further use. Deglycosylated proteins are from here on indicated by the label “-degly”.

3.2.5. Characterization of WT, S375A, W381A, S375A/W381A, Y300G, Y373G, and Y436G IgG4-Fc by LC-MS analysis of intact proteins. The masses of intact WT and the six IgG4-Fc mutants were initially analyzed by LC-MS. Briefly, 20 µg of each protein was dissolved at 0.2 mg/mL in 20 mM sodium phosphate, pH 7.0, and reduced with 10 mM DTT for 10 min at RT. The reduced proteins were injected onto a C4 column (50 mm, 4.6 mm i.d.; 300-Å pore size, 5 um particle size, Vydac 214 MS, Grace, Deerfield, IL), operated by an Agilent 1200 series LC system (Agilent Technologies, Santa Clara, CA). A linear gradient was operated at a flow rate of 0.5 mL/min, changing mobile phase B (99.9% acetonitrile, 0.08% formic acid, and 0.02% trifluoroacetic acid) from 5 to 90% within 7 min. Mobile phase A contained 99.9% H₂O, 0.08 % formic acid, and 0.02 % trifluoroacetic acid. The reduced protein eluted at approximately 5.5 min.
and was analyzed with an online-coupled Agilent 6530 Quadrupole Time-of-Flight mass spectrometer (Agilent Technologies, Santa Clara, CA). The mass spectrometer was operated with an electrospray ionization source (ESI) in the positive mode, scanning from mass/charge (m/z) values of m/z 300 to m/z 3000 at a scan rate of 1 scan/second. The collected chromatographic data were extracted and de-convoluted with the Agilent MassHunter Qualitative Analysis software.

3.2.6. Characterization of IgG4-Fc with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The characterization of IgG4-Fc with SDS-PAGE (Mini-PROTEAN TGX™ Gels, 4-20%, BIO-RAD, Richmond, CA) was performed under non-reducing and reducing conditions. Initially, about 3.3 µg of each protein (0.2 mg/mL) in 15 µL of 20 mM sodium phosphate was mixed with 15 µL of 2x concentration of Laemmli sample buffer, containing 20-35% of glycerol and 1-2.5% of SDS (BIO-RAD, Richmond, CA). For non-reducing conditions, the mixtures were immediately loaded onto the SDS-PAGE. For reducing conditions, 1.5 µL of 2-mercaptoethanol (14.3 M) were added, followed by boiling in a water bath for 2 min, and subsequently loaded onto the SDS-PAGE. 3 µL of a Precision Plus Dual Color standard marker (BIO-RAD, Richmond, CA) were loaded in the first lane. The gel was run at 200 volts for about 40 min until the front dye ran to the bottom of the gel. The gel was stained with 0.25% Coomassie Brilliant blue (50% methanol, 0.25% Coomassie blue, 10% acetic acid and 40% water) for 10 min, followed by staining with 0.05% Commassie blue for 10 min, and de-staining with 30% methanol, 10% acetic acid and 60% water until the bands were clear.
3.2.7. Peptide mapping with GluC and Trypsin/LysC. Control and light-exposed protein samples were subjected to peptide mapping side by side. Aliquots of 500 µL reaction mixtures containing 0.2 mg/mL protein (in 20 mM sodium phosphate) were denatured by the addition of 500 µL of 6 M GdnHCl (in 50 mM NH₄HCO₃, pH 8.0) and reduced with 10 µL of 500 mM DTT (in 50 mM NH₄HCO₃) for 1 hr in a water bath maintained at 37°C. Free thiols resulting from the reduction step were alkylated by reaction with 40 µL of 500 mM IAA (in 50 mM NH₄HCO₃ for GluC digestion) or IAC (in 50 mM NH₄HCO₃ for Trypsin/LysC digestion) for 1 hr in a water bath maintained at 37 °C. After 1 hr, the denaturing, reducing, and alkylating agents were removed by exchange with 5 mM NH₄HCO₃, pH 8.0, using a 3kDa filter unit (Amicon Ultra Centrifugal Filter, County Cork, Ireland), and the protein solution was concentrated to about 200 µL through centrifugation at 16,900 g for 10 min. The concentrated protein solution was finally collected by reverse-flip of the filter, and centrifuged at 300 g for 4 min. For GluC treatment, aliquots of 40 µL (~20 µg protein) were digested. GluC solutions were prepared by dissolving 10 µg GluC in 50 µL of 5 mM NH₄HCO₃. Two aliquots of GluC (5 µL each) with 2 µg in total were added. The first aliquot was added, and incubated at 37 °C for 3 hrs, followed by the second aliquot and incubation at 37 °C for another 3 hr. The protein to GluC ratio was about 10:1 (w:w). For Trypsin/LysC digestion, aliquots of 100 µL (~62.5 µg protein) were used. Trypsin/LysC solutions were prepared by dissolving 20 µg Trypsin/LysC in 220 µL of 5 mM NH₄HCO₃. Two aliquots of Trypsin/LysC (10 µL each) with 1.8 µg in total were added. The protein to Trypsin/LysC ratio was about 35:1 (w:w).
3.2.8. **HPLC-MS/MS.** Proteolytic IgG4-Fc peptides were analyzed with a nanoAcquity ultra performance liquid chromatography system (Waters Corporation, Milford, MA), coupled to a Xevo-G2 mass spectrometer (Waters Corporation, Milford, MA). A volume of 2 μL was injected onto a C18 guard column (nanoACQUITY UPLC 2G-V/M Trap 5 μm Symmetry C18 180 μm x 20mm, Waters, Milford, MA), and washed with 97% mobile phase A (0.1% formic acid in H₂O, Optima, Fisher Chemical, Fair Lawn, NJ) and 3% mobile phase B (0.1% formic acid in CH₃CN, Optima, Fisher Chemical, Fair Lawn, NJ) for 3 min at a flow rate of 4 μL/min. After the washing step, the following gradient program was applied to move and separate the peptides onto an analytical column (ACQUITY UPLC Peptide CSH C18 NANOACQUITY column 10K psi, 1.7 μm, 75 μm x 250 mm, Waters, Milford, MA) at a flow rate of 300 nL/min: between 0 to 50 min, mobile phase B was linearly increased from 3% to 35%; after 50 min, mobile phase B was linearly increased from 35% to 95% within 20 min; after 70 min, the column was washed with 95% mobile phase B for 10 min prior to equilibration with 97% of mobile phase A. The peptides were ionized in an electrospray ionization (ESI) source, and analyzed in the positive mode within a m/z range of 200-2000 at a scan rate of 1 scan/second. The peptide fragment ions were analyzed in the MS² mode, with the collision energy ramping from 18 V to 45 V, or in the data-dependent acquisition (DDA) mode with the collision energy ramping from 15 V to 40 V for low masses and ramping from 30 V to 55 V for high masses.

3.2.9. **Differential scanning calorimetry (DSC).** DSC was performed using a MicroCal VP-capillary calorimeter (Malvern, UK). Protein samples (0.22 mg/mL) were kept in a 96-well plate,
which was sealed using a plastic cover and stored at 5°C during the DSC run. Samples were scanned from 10 to 90°C at a scan rate of 1°C/min using a filtering period of 16 sec. Raw DSC thermograms were processed using the Origin software (Origin Lab, Northampton, MA). Buffer subtraction, baseline correction, and concentration normalization were first performed. The processed thermograms were then fit to a non-two-state equilibrium model to derive T_m values for WT, S375A, WT_degly, S375A_degly, Y300G, Y373G, and Y436G IgG4-Fc.

3.2.10. Intrinsic fluorescence. The intrinsic fluorescence spectra of the protein variants were collected using a fluorescence plate reader (Fluorescence Innovations, Inc., Minneapolis, MN), as previously described. This instrument is equipped with a dye laser (280-300 nm), a temperature-controlled sample plate, and a charge-coupled device detector. Samples (0.22 mg/mL) were loaded into a 384 well plate, and silicon oil was added to avoid sample evaporation during thermal ramping. The sample plate was centrifuged at 2,000 rpm for 1 min to remove air bubbles. Proteins were excited at 295 nm (>95% of the absorbance by Trp) and their emission spectra were collected from 300 to 400 nm. The temperature was ramped from 10 to 90 °C with an increment of 2.5 °C per step and an equilibration time of 2 min. The moments of spectra at each temperature were calculated employing the ThermoSpec software (Fluorescence Innovations, Inc., Minneapolis, MN) according to the following equation:

\[
\text{Moment} = \frac{\int I(x) x dx}{\int I(x) dx}
\]

where \(x\) and \(I(x)\) are the wavelength and fluorescence intensity, respectively. The moments were then plotted as a function of temperature to generate melting curves. The melting temperature (T_m)
was calculated using a first derivative method using the Origin software (OriginLab Corporation, Northampton, MA).

3.2.11. FTIR analysis. A Tensor-27 FTIR spectrometer (Buker, Billerica, MA) equipped with a Bio-ATR cell was used to acquire the FTIR spectra. The detector was cooled with liquid nitrogen prior to use. The interferometer was continuously purged with N₂ gas to void the cell of CO₂. Samples were equilibrated for ten minutes at 20 °C prior to acquisition. Spectra were recorded from 4000 to 800 cm⁻¹ with a resolution of 4 cm⁻¹. Scans were performed in triplicate; for each replicate a total of 256 scans were averaged. Buffer subtraction, atmospheric compensation and baseline subtraction were executed using the OPUS V6.5 software (Buker, Billerica, MA). Spectra were fit as the sum of pseudo-Voigt bands (linear combinations of Gaussian and Lorentzian). Secondary structures were assigned according to Kong et al.48 Second derivative spectra were calculated using a 13 point, 2ⁿᵈ order Savitzgy-Golay algorithm.

3.2.12. Hydrogen Exchange (HX) - Mass spectrometry analysis of WT and W381A IgG4-Fc.

The procedures used for HX mass spectrometry analysis are described in detail elsewhere49. Briefly, HX was achieved with an H/DX PAL robot (LEAP Technologies, Carrboro, NC), and the mass differences were measured through an online Agilent 1260 Infinity LC system (Agilent Technologies, Santa Clara, CA) coupled to a quadrupole-time-of-flight mass spectrometer (Agilent 6530, Santa Clara, CA). Aliquots of 10 µL of 3.7 µM WT and W381A (in 20 mM sodium phosphate, pH 7.1) were deuterium-labeled by injection of 36 µL deuterated labeling buffer (20
mM sodium phosphate in D$_2$O, pH 7.1) at six time points (20 s, 100 s, 500 s, 2500 s, 12500 s, and 62500 s). Each labeling time point was conducted in triplicates. The HX reaction was conducted at the pre-set time points at room temperature, followed by combination of 43 µL labeling mixture with 35 µL of quench buffer, containing 200 mM sodium phosphate, 0.5 M TCEP, pH 2.5, at 1°C. Subsequently, a volume of 75 µL was injected and analyzed by HPLC-MS.

An injected sample was desalted on a C8 trap column through a linear gradient ranging from 0% to 50% of mobile phase B (0.1% formic acid in acetonitrile) within 1 min, followed by another 1 min elution with 50% mobile phase B. Subsequently, the mobile phase was re-equilibrated to 100% of mobile phase A (0.1% formic acid in water) within 1 min. The collected mass spectra were deconvoluted and analyzed by a built-in software, BioConfirm B.08 (Agilent 6530, Santa Clara, CA). Specifically the signals for the N-GlcNAc$_2$Man$_9$ glycoform of WT and the N-GlcNAc$_2$Man$_9$ or N-GlcNAc$_2$Man$_8$/O-Man$_1$ glycoforms of W381A were monitored for HX, due to their high respective intensity and abundance.

3.2.13. Deuteration controls. The maximum deuterium incorporation into both WT and W381A IgG4-Fc was evaluated separately with thoroughly denatured proteins. 10 µL of 3.7 µM WT and W381A stock solution, respectively, were denatured with 4 M GdnDCl for 2 hr at room temperature, followed by labeling with deuterated labeling buffer containing 20 mM Na$_2$HPO$_4$/NaH$_2$PO$_4$, 4 M GdnDCl, 20 mM TCEP, pH 7.1, and incubation for 4 hr at room temperature. Fully deuterated samples were then quenched and analyzed by HPLC-MS as
described below. GdnDCl was prepared in-house by dissolving 1.5 g of GdnHCl in 15 mL of D₂O, followed by lyophilization with a Labconco freezone 2.5 lyophilizer (Labconco Corporation, Kansas City, MO) until the powder was dried completely. The dissolution and lyophilization steps were repeated three times.

3.2.14. Photoirradiation of glycosylated and deglycosylated WT, S375A, W381A and S375A/W381A IgG4-Fc. Photo-irradiation of the 8 IgG4-Fc proteins (4 glycosylated and 4 deglycosylated variants) was conducted in a UV irradiator (Rayonet®, The Southern New England Ultraviolet Company, Branford, CT) equipped with 4 lamps emitting between 265 nm and 340 nm, with $\lambda_{\text{max}} = 305$ nm. The ferrioxalate actinometer$^{50-51}$ was utilized to quantify the photon flux for four RPR-300A lamps to 1.87×10^{-8} Einstein/s. A volume of 500 µL of each protein (0.22 mg/mL, pH 7.0) in 20 mM sodium phosphate was placed in Pyrex tubes, sealed with rubber stoppers, and photo-irradiated for 45 min at RT. Pyrex tubes have a wavelength-cutoff of around 295 nm. These photo-irradiation conditions correspond to light intensities of <25 Whr/m², i.e., less than 12.5% of the minimal intensity (200 Whr/m²) recommended for UV photostability testing by the ICH Q1B guideline52. Two independent experiments were performed. Control, non-irradiated samples were wrapped in aluminum foil and placed in the dark at RT.

3.2.15. Binding assays of WT, Y300G, Y373G, Y436G and W381A IgG4-Fc. The affinity of WT, Y300G, Y373G, Y436G and W381A to Fcγ receptor IIIA (FcγRIIIA) was evaluated by immobilizing biotinylated FcγRIIIA (the Val₁⁵⁸ polymorph; prepared as previously described33) on
a streptavidin (SA) tip (ForteBio, Menlo Park, CA). The binding assays were described in detail elsewhere. Briefly, the SA tips were prepared by hydration in PBS buffer (150 mM NaCl, 50 mM sodium phosphate, pH 7.4) for 10 min, followed by hydration in PBS kinetic buffer (PBS buffer containing 1mg/mL bovine serum albumin (VWR Chemicals, Solon, OH)) for 30 min. The hydrated tip was then assembled to a ForteBio BLItz system (Menlo Park, CA), and the tip was held in a black microcentrifuge tube (Argos Technologies, Vernon Hills, IL) containing 250 µL PBS kinetic buffer. The BLItz system, protein and buffer solutions were kept in a 25 ºC incubator during the binding assays.

For receptor loading, an initial baseline (30 s) was established with PBS kinetic buffer. In the association step (3 min), 0.02 µM FcγR IIIA in PBS kinetic buffer was loaded to a response level of Δnm ca. 0.4, then the tube was switched to the PBS kinetic buffer. The response level was measured by a wavelength shift of reflected white light, referred to as light interference, recorded as binding responses (Δnm). Last, the dissociation step (3 min) was performed with PBS kinetic buffer. For baseline collection, the baseline (30s), association (3 min) and dissociation (3 min) steps performed with PBS kinetic buffer. For sample loading, an initial baseline (30 s) was established with PBS kinetic buffer. In the association step (3min), protein solution in PBS kinetic buffer was loaded to the biosensor tip. The dissociation step (3 min) was performed with PBS kinetic buffer. Based on the binding affinity of different proteins, a series of five protein concentrations was used for each variant. For WT, a concentration series of 0.2 µM, 0.4 µM, 0.8 µM, 1.6 µM, and 3.2 µM was prepared in PBS kinetic buffer. For Y300G, a concentration series
of 1.8 μM, 3.6 μM, 7.2 μM, 14.4 μM, and 28.8 μM was prepared in PBS kinetic buffer. For Y373G, a concentration series of 0.5 μM, 1.0 μM, 2.0 μM, 4.0 μM, and 8.0 μM was prepared in PBS kinetic buffer. For Y436G, a concentration series of 1.1 μM, 2.2 μM, 4.5 μM, 8.9 μM, and 26.7 μM was prepared in PBS kinetic buffer. For W381A, a concentration series of 0.78 μM, 1.56 μM, 3.125 μM, 6.25 μM, and 12.5 μM was prepared in PBS kinetic buffer. The protein solutions were loaded from low concentration to high concentration. The tip was regenerated with 1 mM NaOH for 30 s, followed by washing with PBS kinetic buffer for 2 min. For each sample, experiments were performed in triplicates. The tip was replaced between each replicate.

For data analysis, each run was exported as a CSV file with binding response (Δnm) and time (s), and baseline subtracted. The sensorgram data were fitted with a two-exponential association model using the program XL fit analysis (IDBS, Boston, MA) in the excel (Microsoft Corporation, Redmond, WA) software. The data were fit to the equation:

\[y = A(1 - \exp(-Bx)) + C(1 - \exp(-Dx)) \]

where x corresponds to time, and B and D correspond to \(k_{\text{obs}} \) of the slow and fast phase, respectively. For the iteration, B and D were constrained to be \(\geq 0 \).

3.3. Results.

All samples of IgG4-Fc utilized for the experiments were 0.22 mg/mL in 20 mM sodium phosphate (pH 7.0), unless specifically stated otherwise.
3.3.1 Characterization of Y300G, Y373G, and Y436G IgG4-Fc. Y300G, Y373G, and Y436G IgG4-Fc were expressed in the *Pichia pastoris* yeast strain, purified with protein A chromatography, and initially characterized by MS analysis after reduction with DTT. PNGase F-treated Y300G, Y373G and Y436G presented one major peak (Supporting Information, Fig. S1A), suggesting that N-glycosylation at Asn^{297} represents the major glycosylation site. The MS spectra of glycosylated IgG4-Fc are presented in Fig. S1B, and the corresponding percentages of N-linked glycoforms are summarized in Table S1. Y300G reveals a higher amount of bulky HM glycoforms, e.g., a total of 37.6% comprising GlcNAc₂Man₁₁ to GlcNAc₂Man₁₆ as compared to WT, Y373G, and Y436G (which contain ≤21.61% GlcNAc₂Man₁₁ to GlcNAc₂Man₁₆).

The overall conformational stability of WT, Y300G, Y373G, and Y436G was examined by DSC, scanning from 10 to 90°C, and the obtained thermograms were de-convoluted into two T_m values, denoted as T_{m1} and T_{m2} (Fig. 1A, Table 1). The mutation Y373G caused an approximate 10°C decrease in both T_{m1} and T_{m2} values compared to WT. The mutant Y436G presented a similar T_{m1} value, but a decrease of 5.6°C for T_{m2} compared to WT. Instead, the mutant Y300G revealed no significant differences of T_{m1} and T_{m2} compared to WT. In addition, the characterization of tertiary structure was achieved by intrinsic fluorescence spectroscopy increasing the temperature from 10 to 90°C, where the fluorescence moments (defined in Section 2.1.0) were plotted as a function of temperature (Fig. 1B). The corresponding T_m values are listed in Table 1. Overall, WT and Y300G present a similar T_m, while the Y436G mutant displays a 1°C decrease in T_m; instead, the mutant Y373G showed an approximate 8°C decrease in T_m compared to WT.
Fig. 1. (A) Representative DSC thermograms and (B) representative intrinsic fluorescence thermograms of Y300G, Y373G and Y436G. The corresponding T_m values are displayed in Table 1.
3.3.2 Initial characterization of WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc by MS and SDS-PAGE. WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly, were initially characterized by MS analysis after chemical reduction with DTT. The respective theoretical and observed masses are summarized in Table S2. The mass differences of 1701-2512 Da between WT_degly and the series of glycosylated WT forms (Fig. S2 and S3) correspond to the presence of various mannosylated forms of the HM glycoform, GlcNAc₂Man₈₋₉ (n=0-4). WT, S375A, W381A and S375A/W381A all yield HM glycoforms (Fig. S2). WT_degly, S375A_degly and S375A/W381A_degly IgG4-Fc present one major peak (Fig. S3), indicating that they were mainly N-glycosylated at Asn²⁹⁷ prior to PNGase F treatment. W381A_degly, on the other hand, presents two major peaks, where one of them corresponds to a non-glycosylated form, and the other one corresponds to an O-glycosylated form, indicated by a mass addition of 162 ion (Table S2). The percentages of O-glycosylated WT, S375A, W381A, S375A/W381A proteins were calculated after PNGase F treatment based on the signal intensities for the O-glycosylated forms, divided by the sum of the signal intensities for de-glycosylated and O-glycosylated forms (+162) (Fig. S3). We calculate about 8.1% O-glycosylation in WT, 1.4% O-glycosylation in the S375A mutant, 61.4% O-glycosylation in W381A and 4.9% O-glycosylation in S375A/W381A. The double mutant S375A/W381A displays a significantly reduced intensity of the signal for the O-glycosylated form, suggesting that Ser³⁷⁵ is O-glycosylated in W381A. O-linked glycosylation was further confirmed by peptide mapping and HPLC-MS/MS analysis, as described in Section 3.3. On the other hand, the S375A mutant still reveals 1.4% O-glycosylation,
a relatively lower quantity as compared to WT. This indicates the potential presence of other O-glycation sites besides Ser\(^{375}\). We also calculated the relative fraction of non-glycosylated proteins (prior to PNGase F treatment), which were generally <5\%, using the de-convoluted MS intensities of non-glycosylated forms, divided by the sum of the intensities of non-glycosylated forms and those of all glycosylated IgG4-Fc forms (GlcNAc\(_2\)Man\(_{8+n}\) (n=0-4)).

We used SDS-PAGE under reducing and non-reducing conditions to further monitor the purity of the glycoforms (Fig. S4). Lanes 2, 3, 4, and 5 were run under reducing conditions, and displayed single bands, respectively, indicating that proteins were obtained with good purity. Lanes 7, 8, 9 and 10 were run under non-reducing conditions, and showed two major bands, indicating the existence of intra- and inter-disulfide bonds in the hinge regions of the IgG4-Fc glycoforms\(^{53}\). The formation of intra-disulfide bonds of IgG4-Fc subtype is mainly due to the presence of a Ser instead of a Pro residue in the core-hinge region, which leads to increased flexibility\(^{54}\). Densitometry analysis with Image J (National Institutes of Health, Washington D.C., USA) quantifies about 63\% inter-chain disulfide and 37\% intra-chain disulfide in WT, 67\% inter-chain and 33\% inter-chain disulfide in W381A, 67\% inter-chain disulfide and 33\% intra-chain disulfide in S375A, and 77\% inter-chain disulfide and 24\% intra-chain disulfide in S375A/W381A.

3.3.3. HPLC-MS/MS analysis of O-mannosylation at Ser375 in W381A IgG4-Fc

The localization of the additional O-mannosylation site in W381A was determined by peptide mapping. W381A IgG4-Fc was reduced with DTT, alkylated with IAA, and digested with GluC. The GluC
digested peptides were analyzed with HPLC-MS/MS and covered 100% of the W381A IgG4-Fc primary sequence. The O-mannosylated proteolytic peptide MTKNQVSLTC(+57)LVKGFYPS(+162)375DIAVE (m/z 921.47, z=3) and the corresponding non-O-mannosylated peptide MTKNQVSLTC(+57)LVKGFYPS375DIAVE (m/z 867.45, z=3) are referred to as peak 1 and peak 2, respectively, in Fig. S5, where +57 represents a Cys residue alkylated with IAA. Peak 1 elutes about 0.5 min before peak 2, indicating the increased hydrophilicity of peak 1 due to the additional O-mannosylation. The collision-induced dissociation (CID) MS/MS spectrum of MTKNQVSLTC(+57)LVKGFYPS (+162)375DIAVE, collected in the data-dependent acquisition (DDA) mode, is presented in Fig. 2. The m/z values of the b15 and b16 ions indicate that the carbohydrate is not located on the subsequence MTKNQVSLTC(+57)LVKFY. Additionally, the y3, b19, b19-162, b20, b20-162, b21, b21-162, b22 and b22-162 fragment ions indicate that the carbohydrate is located on the sequence PSD. Since O-glycosylation is mainly targeting Ser or Thr residues, our results are consistent with the carbohydrate located on Ser375.
Fig. 2. MS/MS spectra of the O-glycosylated peptide MTKNQVSLTC(+57)LVKGFYPS\(^{375}(+162)\) DIAVE (m/z 921.47) of W381A IgG4-Fc, where +162 indicates that Ser\(^{375}\) is mannosylated, and +57 indicates that the Cys residue is alkylated due to reaction with IAA.
3.3.4. Thermal stability of WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc. The overall conformational stability of the various IgG4-Fc variants was examined by DSC. The thermograms of WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc are shown in Fig. 3A and 3B, respectively. The thermograms of WT and S375A were de-convoluted into three transitions, represented by melting temperatures (T_m) referred to as T_m^1, T_m^2, and T_m^3. All T_m values are summarized in Table 2. The T_m^1 of WT_degly is 5.8°C lower compared to WT, T_m^2 is 3°C lower, and T_m^3 is 2°C lower. The T_m^1 of S375A_degly is 1°C higher compared to S375A, T_m^2 is 2.4°C higher, and T_m^3 is 0.1°C higher. Importantly, the thermograms of W381A and W381A/S375A present no transitions in the temperature range 30 – 80°C, regardless of the presence or absence of N-linked glycans, indicating that the mutation of Trp381 to Ala381 results in a loss of conformation. A similar loss of conformation was detected by DSC analysis of W381G IgG4-Fc (Fig. S6A). In addition, we tried rescuing the conformational structures of W381A and W381G IgG4-Fc by the addition of indole. Such a chemical rescue approach has been recently described where a Trp to Gly mutation of a single-chain variable fragment was structurally and functionally rescued by the addition of 1000-fold concentration of indole$^{15, 55}$. However, the W381A and W381G IgG4-Fc (3.5 µM) were not rescued by the addition of up to 4 mM indole (>1000-fold excess of indole), indicated by the absence of any obvious thermal transition (Fig. S6B).
Fig. 3. Representative DSC thermograms of WT, S375A, W381A, and S375A/W381A (A) and
WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly (B). All the derived T_m
values of WT and S375A are summarized in Table 2.
3.3.5. Tertiary structure of WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc. The tertiary structures of the IgG4-Fc variants were evaluated by intrinsic fluorescence spectroscopy with a temperature ramp from 10 to 90°C. The fluorescence moments were plotted on the y axis as a function of temperature, as shown in Fig. 4. Between 10 and 90°C, the S375A mutant displays a slight blue shift compared to WT IgG4-Fc (Fig. 4A), regardless of the presence of N-linked glycans (Fig. 4B), indicating that S375A has a relatively more compact tertiary structure compared to WT, consistent with our DSC analysis (Table 2). At 10°C, the fluorescence moments of W381A and S375A/W381A show a 2 nm-red shift compared to WT. The T_m values obtained by intrinsic fluorescence are displayed in Table 2, with 63.6 °C for glycosylated WT and S375A, and 62.6°C and 62.8°C for PNGase F-treated WT and S375A, respectively. W381A and W381A/S375A demonstrate no transition upon increasing the temperature from 10 to 90°C, indicating that the mutation of Trp^{381} to Ala^{381} causes a perturbation of tertiary structure in both W381A and S375A/W381A. We did not observe any differences between O-glycosylated W381A and the non-glycosylated double mutant S375A/W381A with regard to their tertiary structures monitored by intrinsic fluorescence spectroscopy.
Fig. 4. Tertiary structure characterization through intrinsic fluorescence spectroscopy of (A) glycosylated WT, S375A, W381A and S375A/W381A and (B) PNGase F-treated WT_degly, S375A_degly, W381A_degly and S375A/W381A_degly. The shaded areas represent standard deviations from four independent measurements.
3.3.6. Secondary structure of WT, S375A, W381A, S375A/W381A, WT\textsubscript{degly}, S375A\textsubscript{degly}, W381A\textsubscript{degly}, and S375A/W381A\textsubscript{degly} IgG4-Fc. Fig. 5 shows the second-derivative amide I spectra of WT, S375A, W381A, and S375A/W381A IgG4-Fc and their respective N-deglycosylated forms. These spectra are stacked to facilitate comparison. All proteins reveal an overall β-sheet structure (~1630 cm-1). Here, W381A and S375A/W381A shift the β-sheet bands by 1 - 2 cm-1 to lower wavenumbers compared to WT and S375A. There are no substantial differences induced by PNGase F treatment for WT, W381A, and S375A, but the N-deglycosylation of the double mutant S375A/W381A IgG4-Fc induces a significant absorbance increase at wavenumbers around 1650 cm-1 and 1680 cm-1, characteristic of random coil and β-turn structures based on the second-derivative analysis48. Spectra were also deconvoluted and fit to individual secondary structures, displayed in Fig. S7, with little differences.
Fig. 5. Secondary-derivative amide I spectra from FTIR analysis of (A) glycosylated and (B) PNGase F-treated WT, S375A, W381A, and S375A/W381A IgG4-Fc.
3.3.7. Backbone flexibility of WT and W381A IgG4-Fc examined by HX-MS. Maximally deuterated reference proteins were generated by deuterium-labeling of denatured WT and W381A IgG4-Fc, respectively, referred to as deuteration controls. The deuteration controls of WT and W381A revealed similar deuterium incorporation of approximate 100-110 Da (data not shown). These values were utilized for the calculation of % deuteration for native WT and W381A IgG4-Fc, plotted on the y-axis as a function of HX time in Fig. 6. Two species, IgG4-Fc-GlcNAc$_2$Man$_8$ and IgG4-Fc-GlcNAc$_2$Man$_9$, were tracked for HX measurements, because of their high abundance (Fig. S2). The two GlcNAc$_2$Man$_8$ and GlcNAc$_2$Man$_9$ glycoforms demonstrate the same trend. W381A displays a constantly higher incorporation of deuterium compared to WT at the six times sampled, where for the last two HX times (12500 s and 62500 s), W381A is close to full deuteration with a % deuteration of 96.86% - 100%. This indicates that W381A presents higher backbone flexibility compared to WT. Moreover, W381A does not reach a full deuteration between 10 s and 10000s sampling time, suggesting that also this mutant is characterized by some structure, consistent with our FTIR analysis.
Fig. 6. HX exchange of W381A (red) and WT (blue) IgG4-Fc, showing %deuteration vs labeling time, where %deuteration is normalized on deuteration controls. (A) represents the GlcNAc$_2$Man$_8$ glycoform, whereas (B) represents the GlcNAc$_2$Man$_9$ glycoform. The error bars represent the standard deviation from three independent HX experiments.

3.3.8. Photo-degradation of WT, S375A, W381A, S375A/W381A, WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc. The photostability of the IgG4-Fc variants was evaluated by comparison of the yields of photo-products after photoirradiation at $\lambda_{\text{max}} = 305$ nm for 45 min under air. All yields are reported as the conversion of native peptides (in %), quantified as the ratio of the peak areas of the products to the sum of peak areas for products and native peptides. The peak areas of the native and modified peptides were extracted by Masslynx (Waters Corporation, Milford, MA). As a complementary method, the total ion count (TIC) was
also utilized for relative quantification, which demonstrated a similar trend (data not shown). A total of 16 photo-products resulting from the photo-degradation of several Tyr, Met, Cys, and Trp residues were identified and quantified, as shown in Fig. 7-11 (where the products from Tyr, Met and Cys degradation were characterized after GluC digestion, and the products from Trp degradation were characterized after Trypsin/LysC digestion). All detected photo-degradation products are listed in Table 3.

During the exposure of WT IgG4-Fc to UV light, three Tyr residues, including Tyr\(^{300}\), Tyr\(^{373}\), and Tyr\(^{436}\), undergo side chain fragmentation to yield Gly and several peptide backbone cleavage products\(^{16}\). For WT and mutant IgG4-Fc, the side chain fragmentation products of Tyr\(^{373}\) and Tyr\(^{436}\) are summarized in Table 3 (products 1-5) and their relative yields in Fig. 7. These compilations do not contain data on photo-products from Tyr\(^{300}\), which are typically observed best in the absence of oxygen\(^{16}\). As photo-irradiation was in the present work performed under air atmosphere, the photo-products from Tyr\(^{300}\) were not included. The transformation of Met\(^{252}\), Met\(^{358}\), and Met\(^{426}\) to Met sulfoxide (MetSO) is summarized in Fig. 8, and the transformation of Cys\(^{321}\), Cys\(^{367}\) and Cys\(^{425}\) to vinyl cysteine (vinyl Cys) is presented in Fig. 9. The photo-degradation products from Trp\(^{313}\) and Trp\(^{417}\) are summarized in Fig. 10 and 11.

3.3.8.1. **Photo-induced Tyr side chain fragmentation.** The photo-induced Tyr side chain fragmentation of WT IgG4-Fc was previously documented by us\(^{16}\). Here, the peptide backbone cleavage products (products 1-5; Table 3) dominate for photo-irradiation under air atmosphere, where products 1-2 resulted from the cleavage of Tyr\(^{373}\), and products 3, 4 and 5 result from the
cleavage of Tyr436. The yields of products 1-5 from S375A are similar to those of WT, but W381A and S375A/W381A show between 2.6- and 13.5-fold reduction of the yields of photoproducts 1-5 (Fig. 7A and 7B). Hence, the W381A mutation has a similar effect as our previously reported W381F mutation16. The thermal stability of W381F IgG4-Fc was evaluated by DSC and displayed in Fig. S8.

The yields of products 1 and 2 originating from Tyr373 are higher in WT_degly and S375A_degly as compared to the glycosylated WT and S375A. For example, product 1 accounts for a relative yield of 22.1\% in WT, 22.8\% in S375A, 30.7\% in WT_degly, and 33.0\% in S375A_degly, while product 2 accounts for 3.8\% in WT, 4.1\% in S375A, 5.5\% in WT_degly, and 5.0\% in S375A_degly, respectively. This indicates that the presence of N-glycans has an effect on the formation of photoproducts from Tyr373, but less from Tyr436 (products 3-5), other than the fact that a two-fold reduction of product 5 was observed in S375A compared to S375A_degly. We attempted to monitor the formation of di-tyrosine by MS analysis, but could not detect it. Hence, the yields were probably below the detection limit. As an alternative, fluorescence emission between 370 and 500 nm (excitation at 320 nm) was utilized, where an emission maximum at 410-425 nm corresponds to the formation of di-tyrosine56. As displayed in Fig. S9, we note that the fluorescence maximum shifts to ca. 430 nm for WT, Y300G, Y373G, Y436G, and to ca 439 nm for W381A, suggesting the contribution of N-formylkynurenine to the fluorescence emission, which perturbs the analysis of di-tyrosine.
Fig. 7. Relative yields of products 1-5 originating from photo-induced side chain fragmentation of Tyr373 (products 1-2) and Tyr436 (products 3-5). Photo-irradiation was performed at $\lambda_{\text{max}} = 305$ nm for 45 min under air. (A) Product formation from WT, S375A, W381A, and W381A/S375A IgG4-Fc. (B) Product formation from WT$_{\text{degly}}$, S375A$_{\text{degly}}$, W381A$_{\text{degly}}$, and W381A/S375A$_{\text{degly}}$. Products 1-5 are displayed in Table 3.
3.3.8.2. **Formation of MetSO.** Three Met residues in IgG4-Fc are transformed into MetSO after photo-irradiation under air. These include Met\(^{252}\) in the C\(_{1\text{H}2}\) domain, and Met\(^{358}\) and Met\(^{426}\) in the C\(_{1\text{H}3}\) domain. Representative yields of MetSO, referred to as products 6, 7, 8, are displayed in Fig. 8. For WT, S375A, W381A and S375A/W381A, the relative yields of MetSO rank as follows: MetSO\(^{252}\) > MetSO\(^{426}\) > MetSO\(^{358}\). This may be due to the differences of their solvent accessibility, based on previously reported structures of WT IgG1 and IgG2\(^{57-58}\). The most significant differences between WT and the mutants are observed for product 7 (both glycosylated and N-deglycosylated forms), and for product 8 (Fig. 8B)
Fig. 8. Relative yields of MetSO originating from Met252, Met358, and Met426, referred to as products 6, 7, and 8. Detailed peptide sequences are presented in Table 3. (A) Product yields from WT, S375A, W381A, and W381A/S375A. (B) Product yields from WT_degly, S375A_degly, W381A_degly, and W381A/S375A_degly.
3.3.8.3. **Formation of vinyl Cys.** The yields of photo-chemically generated vinyl Cys from Cys321, Cys367 and Cys425 are displayed in Fig. 9. These products are referred to as products 9, 10, and 11, respectively. Vinyl Cys forms about 1.4 -1.9 fold more in WT compared to S375A, and about 1.3-2.9 fold more in WT_degly compared to in S375A_degly. O-mannosylation does not have much of an effect on vinyl Cys formation derived from a comparison between the product yields from W381A and S375A/W381A.
Fig. 9. Relative yields of vinyl Cys originating from Cys^{321}, Cys^{367}, and Cys^{425}, referred to as products 9, 10, and 11. Detailed peptide sequences are presented in Table 3. (A) Product yields from WT, S375A, W381A, and W381A/S375A. (B) Product yields from WT_dehly, S375A_degly, W381A_degly, and W381A/S375A_degly.
3.3.8.4. Photo-degradation of Trp. The yields of hydroxytryptophan (Trp-OH) (product 12 from Trp313 and product 14 from Trp417) and N-formylkynurenine (NFK) (product 13 from Trp313) from the IgG4 variants are displayed in Fig. 10. The yields of kynurenine (Kyn) (product 15 from Trp313) and Trp side chain fragmentation (product 16 from Trp313) are displayed in Fig. 11. Overall, the mutation of Trp381 to Ala381 results in ca. 1.5 – 3 fold increase in the yields of Trp313 and Trp417 oxidation. The product yields for W381A and S375A/W381A are similar, suggesting that the presence of an O-glycan at Ser375 does not have much of an effect on Trp313 and Trp417 degradation. Interestingly, products 12, 13, 15, and 16 resulting from Trp313 degradation consistently demonstrate slightly higher yields for N-glycosylated IgG4-Fc (p values <0.05, one-tailed paired t-test with Excel), while product 14 from Trp417 reveals slightly higher yields in N-deglycosylated IgG4-Fc (p values <0.05, one-tailed paired t-test with Excel).
Fig. 10. Relative yields of Trp oxidation products originating from Trp313 (product 12 and 13) and Trp417 (product 14). Detailed peptide sequences are presented in Table 3. (A) Product yields from WT, S375A, W381A, and W381A/S375A. (B) Product yields from WT$_{degy}$, S375A$_{degy}$, W381A$_{degy}$, and W381A/S375A$_{degy}$.
Fig. 11. Relative yields of Trp degradation originating from Trp313, referred to as products 15 and 16. Detailed peptide sequences are presented in Table 3. (A) Product yields from WT, S375A, W381A, and W381A/S375A. (B) Product yields from N-deglycosylated WT, S375A, W381A, and W381A/S375A.
3.3.9. Binding of WT, Y300G, Y373G, Y436G, and W381A IgG4-Fc to FcγRIIIA. The affinity of the IgG4-Fc variants to FcγRIIIA was obtained with a BLItz system by immobilizing FcγRIIIA on SA tips. The binding responses (Δnm) as a function of time (s) were then fit to a two-exponential association model with XLFit. Two representative examples of the fits for WT and Y300G, are shown in Fig. 12A and 12B, respectively, and the fits for Y373G, Y436G and W381A are presented in Fig. S10. A dilution series of five concentrations was applied to each sample protein sample.

The experimental sensorgram of association reveals a deviation from mono-exponential kinetics (Fig. 12)^59-60^, requiring two parallel equilibria (Reaction 1 and 2) for kinetic analysis.

\[L_1 + P \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} L_1P \quad \text{Reaction 1} \]
\[L_2 + P \overset{k_2}{\underset{k_{-2}}{\rightleftharpoons}} L_2P \quad \text{Reaction 2} \]

Here, \(L_1 \) and \(L_2 \) represent two forms of FcγRIIIA, based on the potential for heterogeneity of FcγR\(^61\). The variable \(P \) represents the concentration of the IgG4-Fc variants, \(k_1 \) and \(k_2 \) represent the \(k_{on} \) values, and \(k_{-1} \) and \(k_{-2} \) represent the \(k_{off} \) values for Reactions 1 and 2. Reaction 1 stands for the fast phase, and reaction 2 stands for the slow phase. Based on the relative concentrations where \([FcγRIIIA] \ll [IgG4-Fc]\), the association reactions are of pseudo first order. We obtained

\[[L_1P] + [L_2P] = [L_1P]_\infty (1-\exp(-(k_1[P_0]+ k_{-1})t)) + [L_2P]_\infty (1-\exp(-(k_2[P_0]+ k_{-2})t)), \]

where \([L_1P] \) and \([L_2P] \) represent the concentrations of the complexes \(L_1P \) and \(L_2P \) at time \(t \) as dependent variables, respectively; \([P_0] \) represents the initial and approximately constant concentration of \(P \). \([L_1P]_\infty \) and \([L_2P]_\infty \) represent the concentrations of \(L_1P \) and \(L_2P \) at infinite reaction time. A two-exponential association fit was applied using XL fit analysis: \(y = A(1-\exp(-...\)
Bx)) + C(1-exp(-Dx)), where $A = [L_1]_e; B = k_1 [P_0] + k_{-1}; C = [L_2]_e; D = k_2 [P_0] + k_{-2}$. Therefore, the fitting parameters, B and D correspond to k_{obs} of the fast (Fig. 13) and the slow phases (Fig. S11), which can be plotted as a function of the concentration of $[P_0]$. From the slope, we derive k_{on} ($M^{-1}s^{-1}$) (k_1 or k_2), and from the intercept, we derive k_{off} (s^{-1}) (k_{-1} or k_{-2}) (Fig. 14). The plots of k_{obs} vs. $[P_0]$ of the fast phase display a linear relation for the five IgG4-Fc variants (Fig. 13). However, the plots of k_{obs} vs. $[P_0]$ of the slow phase show linearity only for WT, Y373G, and Y300G (Fig. S11). The k_{on} and k_{off} values derived from the fast phase are consistent with the specific binding affinity between Fc and FcγRIII^{33, 62}. Therefore, in the following we compare the binding affinity of the IgG4-Fc variants based on the rate constants obtained from the fast phase.

By comparison, we observed the following trend of the k_{on} values: WT > Y373G > Y436G > Y300G > W381A, where k_{on} of WT is about 11.5-fold higher than k_{on} for W381A. On the other hand, the trend of k_{off} values is as follows: Y373G < W381A < WT < Y300G < Y436G, where Y373G, W381A and WT present similar k_{off} values within a 1.5-fold difference, while Y300G and Y436G display (2.0-3.5)-fold increased k_{off} values with respect to Y373G, W381A, and WT. The equilibrium dissociation constants (K_D) were obtained by calculating the ratio of k_{off} over k_{on}, and the trend was as follows: WT < Y373G < Y436G < Y300G < W381A, where WT and Y373G present similar K_D values (1.6-1.9 μM), while Y436G, Y300G, and W381A display ca. 9-10 fold increased K_D values as compared to WT and Y373G, indicating that WT and Y373G have about a 10-fold higher affinity to FcγRIII A than Y300G, Y436G and W381A.
Fig. 12. BLI association sensorgrams for (A) WT and FcγRIII A, and (B) Y300G and FcγRIII A in PBS kinetic buffer (pH 7.4), where the red line corresponds to a two-phase exponential association fit, and the blue dots correspond to experimental data points.
Fig. 13. Plot of k_{obs} of the fast phase as a function of concentrations of the IgG4-Fc variants. The error bars represent the standard error from three independent measurements.
Fig. 14. k_{on} (A), k_{off} (B) and K_D (C) values of the fast phase for WT, Y300G, Y373G, Y436G, and W381A IgG4-Fc.
3.4. Discussion.

Physico-chemical stability and biological function are central for safety, potency, and comparability assessment of protein therapeutics. These properties depend on the intrinsic (primary sequence, structure, glycosylation) and extrinsic factors (pH, temperature, exposure to light, formulation additives). Here, we examined the consequences of photo-induced conversion of Trp and Tyr of IgG4-Fc to Gly\(^6\)\(^{19}\) on the structure, backbone flexibility, and receptor binding. During preparation of the various Tyr to Gly and Trp to Gly/Ala mutants, we realized that these mutations led to a change of glycosylation, especially the formation of atypical O-glycosylation. Therefore, we designed additional mutants to evaluate the effect of N- vs O-glycosylation, and N-deglycosylation on protein structure, receptor binding, and photochemical product formation. Our results show that: (1) The conversion of Tyr\(^{373}\) to Gly\(^{373}\) significantly decreased the thermal stability of both the C\(_{H2}\) and C\(_{H3}\) domains of IgG4-Fc; (2) the single conversion of Trp\(^{381}\) to Ala\(^{381}\) or Gly\(^{381}\) in the C\(_{H3}\) domain of IgG4-Fc- caused overall conformational and tertiary structure perturbation; (3) the conversion of Tyr\(^{300}\) to Gly\(^{300}\) and Trp\(^{381}\) to Ala\(^{381}\) results in a ca. 10-fold reduction of binding affinity to the Fc\(\gamma RIII\) A; (4) an O-linked glycosylation site at Ser\(^{375}\) was enriched to more than 60% in W381A and W381G IgG4-Fc; (5) both, the mutation of a single Trp and the introduction of N-glycans have an effect on the yields of photo-induced product formation. Therefore, it is critical to characterize and control Trp and Tyr degradation during processing and storage of protein therapeutics.
3.4.1. The impact of photo-induced conversion of Tyr to Gly on the conformational stability of IgG4-Fc.

Three Tyr residues in IgG4-Fc, Tyr\(^{300}\), Tyr\(^{373}\), and Tyr\(^{436}\), were representatively mutated to Gly, to investigate the impact of photo-induced transformation of Tyr to Gly on the physical stability of IgG4-Fc. We observed reduced conformational stability for Y373G and Y436G, but not for Y300G, evaluated by DSC and intrinsic fluorescence spectroscopy (Fig. 1 and Table 1). However, based on our MS analysis, the mutant Y300G contains a larger fraction of bulky glycoforms (i.e., Man\(_{12}\)-Man\(_{16}\); Table S1). The presence of bulkier glycoforms may compensate for any loss of stability possibly resulting from Tyr\(^{300}\)Gly mutation\(^{62}\). The reduced thermal stability of Y373G and Y436G indicates that the photo-induced conversion of Tyr\(^{373}\) and Tyr\(^{436}\) into Gly can lead to destabilization of conformational structures of IgG4-Fc.

Upon photoirradiation, Trp\(^{381}\) (Eu numbering\(^\text{64-65}\)) in IgG4-Fc\(^\text{16}\) and IgG1\(^\text{6}\) can be photoionized, resulting in the loss of the indole side chain, and convert to Gly and several peptide backbone cleavage products. Therefore, we evaluated the effect of such degradation on physical properties utilizing IgG4-Fc as model protein. An atypical O-glycosylation at Ser\(^{375}\) was detected in the Trp\(^{381}\) mutants, W381A and W381G IgG4-Fc, and to evaluate the impact of O-glycans, S375A and the S375A/W381A mutants were prepared. During the production of W381A and W381G, the expression yields of W381A were significantly higher than of the W381G mutant. Hence, W381A was selected for some of the biophysical experiments requiring larger amounts of protein.
The thermal unfolding of IgG4-Fc was monitored by DSC, and the thermograms were fit to two or three transitions depending on the IgG4-Fc variants. WT IgG4-Fc presents a similar thermal stability of the Cβ2 domain as IgG4-Fc, but an approximate 10°C reduction of Tm2, corresponding to the unfolding of the Cβ3 domain (Table 2). The reduced thermal stability of the Cβ3 domain in IgG4-Fc can be explained by the weak Cβ3-Cβ3 interactions, which are about three orders of magnitude weaker as compared to IgG1-Fc.

The DSC and intrinsic fluorescence thermograms (10-90°C) of W381A and S375A/W381A are similar and reveal no thermal transitions, indicating that the overall conformation and tertiary structures are disrupted by the mutation of Trp381 to Ala381. Trp381 sits in the hydrophobic core of Cβ3 domain, and the loss of the hydrophobic side chain leads to reduced protein conformational stability. A similar observation was reported for a four-helix-bundle protein, Rop, where the unpacking of its hydrophobic core caused not only the loss of protein activity but decreased protein stability. Additionally, the Cβ3-Cβ3 interaction is critical for the assembly of the Fc domain, and, therefore, disruption of the inter-chain Cβ3 interactions can perturb the folding of the overall IgG4-Fc. The reduced thermal stability of proteins can potentially lead to increased aggregation propensity, shorter shelf-life, and safety issues.

3.4.2.1. Backbone flexibility of WT and W381A IgG4-Fc.

Changes in protein conformation can potentially accompany in changes in the backbone flexibility
of proteins. Therefore, the backbone flexibilities of WT and W381A were evaluated by HX MS analysis. Deuteration controls were prepared with denatured WT and W381A, and display a maximum of 100 - 110 Da mass increase due to deuterium incorporation. This value can be utilized to calculate the fraction of deuteration of native WT and W381A. W381A reaches full deuteration (~96 -100%) within 12500 s exposure to D$_2$O, whereas, WT achieves only 87.83 -89.46% deuteration even at 62500 s. Therefore, W381A possesses much higher backbone flexibility than WT IgG4-Fc. On the other hand, W381A does not reach full deuteration at the initial time point, indicating that it is not completely unstructured. These data are consistent with our FTIR analysis (Fig. 5), revealing that W381A and WT IgG4-Fc display similar amounts of secondary structure, where β-sheet shows the highest abundance (Fig S7).

3.4.2.2. The effects of N-glycans on thermal stability.

N-glycans at Asn297 in IgGs are critical for their thermal stability, particularly for the C$_{H2}$ domain of Fc17. Hence, the effects of N-glycans on the thermal stability of WT, S375A, W381A, and S375A/W381A IgG4-Fc were examined. PNGase F was utilized to release N-glycans from these IgG4-Fc variants, to obtain WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc. The DSC thermograms of WT_degly and S375A_degly IgG4-Fc present three transitions. For comparison, we fitted also the DSC thermograms of WT and S375A to three transitions, and derived T_{m1}, T_{m2} and T_{m3} (Table 2). As expected18, the removal of N-glycans reduced thermal stability of WT IgG4-Fc. However, the removal of N-glycans did not modify the thermal stability of S375A IgG4-Fc, indicating a possible interaction of the O-glycan at Ser375 with the N-glycan at
Asn\(^{297}\). W381A, S375A/W381A, and W381A_degly, S375A/W381A_degly (Chart 1 and 2) reveal no thermal transitions independent of the presence of N-glycans or O-glycans (Fig. 3 and 4), indicating that the Trp\(^{381}\)Ala mutation results in the loss of conformation. It must be pointed out that PNGase F dependent deglycosylation of Asn\(^{297}\) yields Asp\(^{297}\), introducing a negative charge\(^{74}\) at residue 297, which may affect protein structure.

3.4.3. The impact of photo-induced conversion of Trp and Tyr on binding kinetics and equilibria with FcγRIIIA.

We evaluated the impact of light-induced conversion of Tyr to Gly on the affinity of IgG4-Fc to FcγRIIIA. We also evaluated the W381A mutant instead of W381G as the expression yields of W381A were sufficiently high to generate sufficient material for the binding experiments. As both W381A and W381G showed no significant thermal transition during DSC experiment, we concluded that the W381A mutant was a viable substitute for W381G in the receptor binding experiments. FcγRIIIA binds with the lower hinge and hinge-proximal C\(_{H}2\) domain of IgG-Fc in a 1:1 stoichiometry\(^{75}\). Interestingly, our BLI sensorgrams could not be fitted with monoexponential kinetics (Fig. 10 and Fig. S10). On close inspection of the literature\(^{76}\), we found references\(^{77,78}\) which did not show simple mono-exponential binding kinetics of IgG to FcγR. This can be rationalized in various ways. First, our FcγRIIIA may be heterogeneous, e.g. distinct receptor populations at the biosensor surface resulting from immobilization\(^{78}\). In addition, the two N-linked glycosylation sites at Asn\(^{162}\) and Asn\(^{45}\) of FcγRIIIA may present distinct glycoforms\(^{79-80,81-82}\). The literature shows that the binding between Fc and FcγRIIIa involves carbohydrate-carbohydrate
interactions, which require unique glycoforms of both proteins to achieve high affinity73. Second, IgG4-Fc is expressed with various glycans at Asn297 (see Table S1)83. The glycosylation at Asn297 in the C\textsubscript{H}2 domain has shown not only to affect the affinity of mAbs to FcγRIIIA but also the binding kinetics84. Third, the presence of low levels of impurities of IgG4-Fc, e.g., ca. 2\% of aggregates of mAbs, can affect binding kinetics with FcγRIIIA78. Fourth, the sensorgrams may contain elements of non-specific reversible association in IgG4-Fc as a function of increased protein concentration. To minimize potential nonspecific binding, a 1 mg/mL BSA additive was supplemented to the running buffers and sample solutions. All the above conditions can lead to heterogeneous binding, resulting in two or more phases of association events. Thus, to achieve a better fit and more accurate results, a two-phase exponential association model was utilized to derive the k_{on} and k_{off} values for a slow and a fast phase. Here, we reported values for the fast phase based on previous knowledge62 of the specific binding between Fc and FcγRIIIA. Overall, Y300G and W381A display up to 10-fold reduced affinity to FcγRIIIA as compared to WT. The reduced binding affinity can be due to different reasons. Tyr300 residue is located in the upper C\textsubscript{H}2 domain adjacent to the N-glycosylated site at Asn297, potentially participating in interaction with FcγRIIIA85-86. The mutation Trp381Ala causes a loss of conformation of IgG4-Fc, which may perturb the potential structural interface, or orientations of the Fc domains, critical for affinity to FcγRIIIA87. Y436G presents relative high k_{on} and k_{off} values, which, overall, result in an 8-fold increase in K_D compared to WT, and thus weaker binding affinity. In addition, Tyr436 is part of a common ‘consensus’ sequence of the C\textsubscript{H}2-C\textsubscript{H}3 interface to interact with FcRn88, which is crucial to protect mAbs from lysosomal degradation and to maintain long serum half-life.
3.4.4. O-glycosylation at Ser375 in W381A and W381G IgG4-Fc.

We initially prepared the mutants W381A and W381G IgG4-Fc to evaluate the effect of Trp side chain cleavage on biophysical stability. The biophysical analysis of W381A and W381G IgG4-Fc reveals a perturbation of overall thermal stability (Fig. 3 and Fig. S6). Moreover, the expression yields of W381G were very low, suggesting that W381G is potentially even less stable than W381A89. The lower stability would be consistent with the ca. 15\% higher level of O-glycosylation at Ser375 in W381G as compared to W381A (Fig. S12). Since W381A was expressed with higher yields, it was selected for further production and characterization.

IgG4-Fc variants were produced in the pno1/och1 KO and STT3D added \textit{Pichia pastoris} yeast strain. Several IgG-Fc subtypes, e.g., IgG1-Fc49 and IgG3-Fc90, were previously expressed from the same system, showing <10\% O-glycosylation. We obtained similar results with IgG4-Fc, displaying approximate 8.1\% O-glycosylation in WT IgG4-Fc. However, the mutation of Trp381 to Ala381 in the C\textsubscript{H}3 domain of IgG4-Fc leads to a surprising increase of up to 61\% O-glycosylation at Ser375, which was confirmed by mass spectrometry analysis: (1) the identification of two major peaks in the mass spectra of W381A_degly (Fig. S3) is consistent with the presence of N-deglycosylated and O-glycosylated forms, respectively. Here, the O-glycosylated form is indicated by a mass addition of 16291-92; (2) peptide mapping of W381A identifies Ser375 as the major O-glycosylated site (Fig.2); (3) the O-glycosylated form is removed in S375A/W381A_degly IgG4-Fc (Fig. S3).
O-linked glycosylation at Ser375 does not appear to cause the structural alterations, but occurs more easily when the structure of IgG4-Fc is perturbed, e.g., in W381A and W381G. This is particularly consistent with the observation of Neubert et al., who mapped the O-mannose glycoproteome in *Saccharomyces cerevisiae*[^39], where O-linked mannosylation was more favored in unstructured regions and β-strands. Alternatively, protein O-mannosyltransferases can participate in protein folding quality control as a part of unfolded protein O-mannosylation (UPOM), which may explain that W381A and W381G are better substrates for O-mannosylation than the more stable WT, and reveal a higher level of O-mannose[^93].

3.4.5. Photostability of WT, S375A, W381A, and S375A/W381A IgG4-Fc

During photo-irradiation, the formation of different photo-products can result from distinct reaction pathways. For example, the side chain fragmentation of Tyr is induced by electron transfer from Tyr to a radical cation, Trp$^+$, generated by photo-ionization of Trp[^16]. The yield of the respective photo-products can therefore, be affected by the mutation of Trp and conformational alterations changing the distance between Tyr and Trp$^+$. As such, photo-products from the side chain fragmentation of Tyr reveal a 2.6-13.5 fold reduction of yields in W381A and S375A/W381A (Fig. 7) compared to WT and S375A. The higher susceptibility of photo-degradation at Trp313 and Trp417 to photo-degradation in W381A, S375A/W381A, W381A_degly, and S375A/W381A_degly is likely due to the fact that Trp381 is deleted in these mutant leading to preferred light absorption of other Trp residues, e.g., Trp313 and Trp417. In parallel, the increased susceptibility of Trp313 and Trp417 to

[^39]: Reference number
[^16]: Reference number
[^93]: Reference number
photo-degradation leads to an increase in photo-induced electron transfer to disulfide bonds containing Cys^{321}, Cys^{367}, and Cys^{425}, resulting higher vinyl Cys formation from Cys^{321}, Cys^{367}, and Cys^{425}.

With regard to the effect of glycans on photostability, O-glycosylation does not significantly affect the yield of photoproducts, evident from a comparison of W381A and S375A/W381A. This is likely due to the fact that the mutation of Trp to Ala has a more significant impact on photo-degradation, leading to unfolding, to which O-glycosylation, does not add much. Alternatively, the size of O-mannose is small, which does not significantly modify the structure. The presence of N-glycans, on the other hand, does play a role in the yield of photo-products. Similar observations were documented regarding IgG1-Fc^{8}.

3.5. Conclusions

The present paper elucidates the impact of photo-induced Tyr and Trp side chain fragmentation on the physico-chemical stability and receptor binding of IgG4-Fc, and the effect of N- vs O-glycans on product formation. Surprisingly, the side chain cleavage of Trp^{381}, represented by W381G and W381A, causes a conformational perturbation of both the C_{H}2 and C_{H}3 domains of IgG4-Fc. Moreover, W381A and W381G reveal significantly enriched atypical O-glycosylation at Ser^{375}. The fragmentation of Tyr side chain results in reduced thermal stability, and decreased receptor binding affinity to FcγRIIA. These findings help elucidate photo-induced inactivation,
fragmentation and physical instability in protein therapeutics.

3.6. Acknowledgements

We gratefully acknowledge support of H.K. by a Graduate Fellowship from the Genentech Foundation.

3.7. Associated content

Fig. S1. Mass spectrometry analysis of (A) Y300G__degly, Y373G__degly, Y436G__degly and (B) Y300G, Y373G, Y436G after reduction with DTT.

Fig. S2. MS analysis of WT, S375A, W381A, and S375A/W381A IgG4-Fc after chemical reduction of disulfides.

Fig. S3. MS analysis of WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc after chemical reduction of disulfides.

Fig. S4. SDS-PAGE analysis of WT, S375A, W381A, and S375A/W381A, glycosylated proteins were run under reducing conditions; deglycosylated proteins were run under nonreducing conditions.

Fig. S5. Chromatogram of proteolytic digest of W381A IgG4-Fc analyzed with HPLC-MS/MS. Peak 1 contains the O-linked glycosylated peptide, MTKNQVSLTC(+57)LVKGFYPS375(+162) DIAVE (m/z 921.47). Peak 2 contains the nonglycosylated peptide, MTKNQVSLTC(+57)LVKGFYPS375DIAVE (m/z 867.45).
Fig. S6. Thermal stability of (A) WT, W381G, and W381A, and (B) chemical rescue with indole.

Fig. S7. Relative percentage of individual secondary structures of WT, S375A, W381A, and S375A/W381A, glycosylated and deglycosylated, analyzed by FTIR.

Fig. S8. Representative DSC thermograms of W381F. The corresponding T\textsubscript{m} values are displayed.

Fig. S9. Dityrosine detection of WT, Y300G, Y373G, Y436G and W381A by exciting photo-irradiated IgG4-Fc at 320 nm and fluorescence emission scan from 371 – 500 nm. Photo-irradiation was performed at λ\textsubscript{max} =305 nm for 45 min.

Fig. S10. BLI association of (A) Y373G and Fc\gammaRIII A, (B) Y436G and Fc\gammaRIII A, (C) W381A and Fc\gammaRIII A in PBS kinetic buffer (pH 7.4), where the red line corresponds to two-phase exponential association fit, and the blue dots correspond to experimental data points.

Fig. S11. Plot of k\textsubscript{obs} of the slow phase as a function of concentrations of the IgG4-Fc variants, WT, Y373G, and Y300G. The error bars represent the standard error from three independent measurements. Y373G and W381A were not shown due to the absence of linear relationship between k\textsubscript{obs} of their slow phase and protein concentrations.

Fig. S12. The presence of O-linked glycosylation (%) in W381G, W381A, and WT IgG4-Fc characterized by HPLC-MS analysis.

Table S1. Relative abundance (in %) of different glycoforms of Y300G, Y373G, and Y436G IgG4-Fc.

Table S2. Theoretical and observed masses of glycosylated WT, S375A, W381A, and S375A/W381A, and the N-deglycosylated variants WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly under reducing conditions.
3.8. References.

38. Darula, Z.; Medzihradszky, K. F., Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018, 17 (1), 2-17.

60.
65. Sandrine Béranger, C. M.-J., Fatena Bellahcene and Marie-Paule Lefranc Correspondence between the IMGT unique numbering for C-DOMAIN, the IMGT exon numbering, the Eu and Kabat numberings: Human IGHG. http://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html.

Table 1. Melting temperature (T_m) of Y300G, Y373G, and Y436G from DSC and fluorescence.

Experiments were conducted in triplicate.

<table>
<thead>
<tr>
<th></th>
<th>T_{m1} (DSC)</th>
<th>T_{m2} (DSC)</th>
<th>T_m (Fluorescence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>65.12± 0.1</td>
<td>71.68± 0.1</td>
<td>63.6 ± 0.3</td>
</tr>
<tr>
<td>Y300G</td>
<td>64.6 ± 0.1</td>
<td>71.3 ± 0.1</td>
<td>63.5 ± 0.1</td>
</tr>
<tr>
<td>Y373G</td>
<td>54.9 ± 0.1</td>
<td>60.8 ± 0.04</td>
<td>55.3 ± 0.1</td>
</tr>
<tr>
<td>Y436G</td>
<td>64.6 ±0.1</td>
<td>66.1 ± 0.1</td>
<td>62.1 ± 0.1</td>
</tr>
</tbody>
</table>
Table 2. Melting temperature (Tm) of WT, S375A, WT_degly, and S375A_degly from DSC and fluorescence. Experiments were conducted in triplicate.

<table>
<thead>
<tr>
<th></th>
<th>(T_m1) (DSC)</th>
<th>(T_m2) (DSC)</th>
<th>(T_m3) (DSC)</th>
<th>(T_m) (Fluorescence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>60.0 ± 0.1</td>
<td>65.9 ± 0.1</td>
<td>71.8 ± 0.4</td>
<td>63.6 ± 0.3</td>
</tr>
<tr>
<td>S375A</td>
<td>62.2 ± 0.1</td>
<td>66.8 ± 0.2</td>
<td>72.7 ± 0.1</td>
<td>63.6 ± 0.2</td>
</tr>
<tr>
<td>WT_degly</td>
<td>54.2 ± 0.7</td>
<td>62.9 ± 0.6</td>
<td>69.9 ± 0.5</td>
<td>62.6 ± 0.4</td>
</tr>
<tr>
<td>S375A_degly</td>
<td>63.3 ± 0.2</td>
<td>69.2 ± 0.2</td>
<td>72.8 ± 0.1</td>
<td>62.8 ± 0.2</td>
</tr>
</tbody>
</table>
Table 3. Photo-degradation products identified by HPLC-MS/MS through peptide mapping. The corresponding modified residue is listed in the “position” column. The mass modification of +57 or +58 of Cys indicates the alkylation by IAA or IAC, respectively, M(+16) is the formation of methionine sulfoxide, C(+55) is the formation of vinyl thiol, W(+16), W(+32), and W(+4) are the formation of Trp-OH, NFK, and Kyn, respectively.

<table>
<thead>
<tr>
<th>Product</th>
<th>Photoproduts</th>
<th>Position</th>
<th>m/z</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MTKNQVSLTC(+57)LVKGF-NH₂</td>
<td>Tyr<sup>373</sup></td>
<td>575.61</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>M(+16)TKNQVSLTC(+57)LVKGF-NH₂</td>
<td>Tyr<sup>373</sup></td>
<td>580.96</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TQKSLSLSLGK</td>
<td>Tyr<sup>436</sup></td>
<td>609.30</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>[BTHC]TQKSLSLSLGK+18</td>
<td>Tyr<sup>436</sup></td>
<td>618.30</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>TQKSLSLSLGK</td>
<td>Tyr<sup>436</sup></td>
<td>387.89</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>FLGGPSVFLPPKPDLM(+16)ISRTPE</td>
<td>Met<sup>252</sup></td>
<td>698.38</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>M(+16)TKNQVSLTC(+57)LVKGFYSDFAVED</td>
<td>Met<sup>358</sup></td>
<td>872.76</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>GNVFSC(+57)SVM(+16)HE</td>
<td>Met<sup>426</sup></td>
<td>641.75</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>YKC(+55)KVSNKLGPSSIE</td>
<td>Cys<sup>321</sup></td>
<td>569.96</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>MTKNQVSLTC(+55)LVKGFYSDFIAVE</td>
<td>Cys<sup>367</sup></td>
<td>866.76</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>GNVFSC(+55)SVMHE</td>
<td>Cys<sup>425</sup></td>
<td>632.75</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>VVSVLTVHQDW(+16)LNGK</td>
<td>Trp<sup>313</sup></td>
<td>608.65</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>VVSVLTVHQDW(+32)LNGK</td>
<td>Trp<sup>313</sup></td>
<td>613.99</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td>Peptide</td>
<td>Mass (Da)</td>
<td>Score</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>14</td>
<td>SRW(+16)QEGNFSC(+58)SVMHEALH NYHTQK</td>
<td>Trp417</td>
<td>613.26</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>VVSVLTVLHQDW(+4)LNGK</td>
<td>Trp313</td>
<td>604.65</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>VVSVLTVLHQDW-NH$_2$</td>
<td>Trp313</td>
<td>604.84</td>
<td>2</td>
</tr>
</tbody>
</table>
Fig. S1. Mass spectrometry analysis of (A) Y300G_degly, Y373G_degly, Y436G_degly and (B) Y300G, Y373G, Y436G after reduction with DTT.

(A).
Fig. S2. MS analysis of WT, S375A, W381A, and S375A/W381A IgG4-Fc after chemical reduction of disulfides.
Fig. S3. MS analysis of WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly IgG4-Fc after chemical reduction of disulfides.
Fig. S4. SDS-PAGE analysis of WT, S375A, W381A, and S375A/W381A, glycosylated proteins were run under reducing conditions; deglycosylated proteins were run under nonreducing conditions.
Fig. S5. Chromatogram of proteolytic digest of W381A IgG4-Fc analyzed with HPLC-MS/MS. Peak 1 contains the O-linked glycosylated peptide, MTKNQVSLTC(+57)LVKGFYPS\(^{375}(+162)\)DIAVE (m/z 921.47). Peak 2 contains the nonglycosylated peptide, MTKNQVSLTC(+57)LVKGFYPS\(^{375}\)DIAVE (m/z 867.45).
Fig. S6. Thermal stability of (A) WT, W381G, and W381A, and (B) chemical rescue with indole.
Fig. S7. Relative percentage of individual secondary structures of WT, S375A, W381A, and S375A/W381A, glycosylated and deglycosylated, analyzed by FTIR.
Fig. S8. Representative DSC thermograms of W381F. The corresponding T_m values are displayed.
Fig. S9. Dityrosine detection of WT, Y300G, Y373G, Y436G and W381A by exciting photo-irradiated IgG4-Fc at 320 nm and fluorescence emission scan from 371 – 500 nm. Photo-irradiation was performed at $\lambda_{\text{max}} = 305$ nm for 45 min.
Fig. S10. BLI association of (A) Y373G and Fc\(\gamma\)RIII A, (B) Y436G and Fc\(\gamma\)RIII A, (C) W381A and Fc\(\gamma\)RIII A in PBS kinetic buffer (pH 7.4), where the red line corresponds to two-phase exponential association fit, and the blue dots correspond to experimental data points.
Fig. S11. Plot of k_{obs} of the slow phase as a function of concentrations of the IgG4-Fc variants, WT, Y373G, and Y300G. The error bars represent the standard error from three independent measurements. Y373G and W381A were not shown due to the absence of linear relationship between k_{obs} of their slow phase and protein concentrations.
Fig. S12. The presence of O-linked glycosylation (%) in W381G, W381A, and WT IgG4-Fc characterized by HPLC-MS analysis.
Table S1. Relative abundance (in %) of different glycoforms of Y300G, Y373G, and Y436G IgG4-Fc.

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>Y300G</th>
<th>Y373G</th>
<th>Y436G</th>
</tr>
</thead>
<tbody>
<tr>
<td>No glycan</td>
<td>2.89</td>
<td>0.69</td>
<td>2.69</td>
<td>0.77</td>
</tr>
<tr>
<td>Man8</td>
<td>35.61</td>
<td>34.87</td>
<td>52.06</td>
<td>64.48</td>
</tr>
<tr>
<td>Man 9</td>
<td>36.58</td>
<td>21.43</td>
<td>19.40</td>
<td>18.70</td>
</tr>
<tr>
<td>Man10</td>
<td>15.49</td>
<td>5.24</td>
<td>4.24</td>
<td>3.74</td>
</tr>
<tr>
<td>Man11</td>
<td>6.49</td>
<td>14.22</td>
<td>10.06</td>
<td>6.46</td>
</tr>
<tr>
<td>Man12</td>
<td>2.46</td>
<td>13.12</td>
<td>7.17</td>
<td>4.04</td>
</tr>
<tr>
<td>Man13</td>
<td>0.48</td>
<td>2.74</td>
<td>1.20</td>
<td>0.70</td>
</tr>
<tr>
<td>Man14</td>
<td>0.00</td>
<td>2.92</td>
<td>1.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Man15</td>
<td>0.00</td>
<td>3.93</td>
<td>1.37</td>
<td>0.49</td>
</tr>
<tr>
<td>Man16</td>
<td>0.00</td>
<td>0.84</td>
<td>0.23</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table S2. Theoretical and observed masses of glycosylated WT, S375A, W381A, and S375A/W381A, and the N-deglycosylated variants WT_degly, S375A_degly, W381A_degly, and S375A/W381A_degly under reducing conditions.

<table>
<thead>
<tr>
<th></th>
<th>Theoretical</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT_degly</td>
<td>25006.24</td>
<td>25004.6</td>
</tr>
<tr>
<td>S375A_degly</td>
<td>24990.24</td>
<td>24987.9</td>
</tr>
<tr>
<td>W381A_degly</td>
<td>24891.11</td>
<td>24889.6/25051.8</td>
</tr>
<tr>
<td>W381A/S375A_degly</td>
<td>24875.11</td>
<td>24870.8</td>
</tr>
</tbody>
</table>

Theoretical

<table>
<thead>
<tr>
<th></th>
<th>GlcNAc_Man(_8)</th>
<th>GlcNAc_Man(_9)</th>
<th>GlcNAc_Man(_10)</th>
<th>GlcNAc_Man(_11)</th>
<th>GlcNAc_Man(_12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>26707.7</td>
<td>26869.75</td>
<td>27031.81</td>
<td>27193.86</td>
<td>27355.91</td>
</tr>
<tr>
<td>S375A</td>
<td>26691.7</td>
<td>26853.75</td>
<td>27015.81</td>
<td>27177.86</td>
<td>27339.91</td>
</tr>
<tr>
<td>W381A</td>
<td>26592.56</td>
<td>26754.61</td>
<td>26912.66</td>
<td>27078.72</td>
<td>27240.77</td>
</tr>
<tr>
<td>W381A/S375A</td>
<td>26576.56</td>
<td>26738.61</td>
<td>26900.66</td>
<td>27062.72</td>
<td>27224.77</td>
</tr>
</tbody>
</table>

Observed

<table>
<thead>
<tr>
<th></th>
<th>GlcNAc_Man(_8)</th>
<th>GlcNAc_Man(_9)</th>
<th>GlcNAc_Man(_10)</th>
<th>GlcNAc_Man(_11)</th>
<th>GlcNAc_Man(_12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>26705.5</td>
<td>26867.5</td>
<td>27029.7</td>
<td>27191.7</td>
<td>27354.3</td>
</tr>
<tr>
<td>S375A</td>
<td>26688.8</td>
<td>26850.9</td>
<td>27012.9</td>
<td>27175.2</td>
<td>27338.1</td>
</tr>
<tr>
<td>W381A</td>
<td>26591.4</td>
<td>26753.5</td>
<td>26915.6</td>
<td>27077.8</td>
<td>27240</td>
</tr>
<tr>
<td>W381A/S375A</td>
<td>26572</td>
<td>26734.1</td>
<td>26896</td>
<td>27058.2</td>
<td>27220.4</td>
</tr>
</tbody>
</table>

\(^a\)W381A_degly presents two masses, 24889.6 and 25051.8, corresponding to the absence and presence of O-glycan, respectively.
Chapter 4. Effects of glycan structure on the physicochemical stability, photostability, and receptor binding of IgG4-Fc
1. Introduction.

Monoclonal antibodies (mAbs), primarily IgGs, represent important therapeutics owing to their target specificity and long serum half-life (1-3). Among the four human isotypes of IgG (i.e., IgG1, 2, 3 and 4), isotypes 1, 2 and 4 have been developed into therapeutic mAbs. IgG3-based mAbs are usually not developed due to their susceptibility to proteolysis, the existence of many allotypes, and the shorter half-life in vivo (4). The four IgG isotypes are highly conserved with respect to their primary residual sequences, presenting more than 90% similarity (5). However, each isotype reveals a distinctive profile with regard to biological effector functions and immune complexes (5). For example, IgG4 displays no affinity to complement component 1q (C1q) and a low affinity to Fc receptors (6). Because of this IgG4 has been preferably selected as an isotype for therapeutic mAbs when a host effector function is undesirable or unnecessary. For example, IgG4-based mAbs have been selected for immune-checkpoint therapy, blocking the inhibitory interaction between programmed death protein-1 (PD-1) on immune cells and the ligand PD-L1 on tumor cells by binding to PD-1 on immune cells and allowing an effective immune response to be initiated against tumor cells (7). By the end of 2018, 10 IgG4-based mAbs were introduced into the market among approximately 80 approved mAbs in the USA and the EU (8, 9). Therefore, IgG4 is an essential IgG subclass for the development of effective immunotherapies.

Glycosylation at Asn^{297} (Eu numbering (10)) is a heterogeneous, conserved, and critical post-translational modification (PTM) of IgGs. It contributes to their biological function and physicochemical stability (11-13). However, glycan structures are difficult to control and can be
affected by host cell genotypes, strains, culture conditions, protein sequences, the manufacturing process(14) as well as the length of storage(15). Hence, glycosylation at Asn\(^{297}\) is a critical quality attribute (CQA) that is required to be strictly defined and controlled(16), (17). Several analytical approaches have been developed to qualitatively and quantitatively monitor oligosaccharide profiles of mAbs, including fluorescence detection of 2-aminobenzamide (AB) labeled glycans and HPLC-MS analysis of released glycans, glycopeptides and glycoproteins(18). Analytical results suggest that variations of glycan structures constantly exist among biosimilars and reference products(19). Alterations in glycan structures have been shown to affect physico-chemical properties(11, 12, 20, 21) and biological effector functions(13, 17) of IgG1 or the crystallizable fragment of IgG1 (IgG1-Fc), but such knowledge is limited with regard to IgG4.

IgG4-Fc is a dimer, composed of a lower hinge region, and the C\(_{\text{H}}\)2 and C\(_{\text{H}}\)3 domains (Scheme 1). Although IgG4-Fc presents a structure similar to IgG1-Fc, it reveals several unique properties such as the capability of undergoing half-molecule exchange(22). Half-molecule exchange refers to a process where an IgG4-Fc dimer dissociates into monomers, and the dissociated monomer exchanges with an adjacent monomer to reform a new dimer(23). The capability of IgG4 to undergo half-molecule exchange has been investigated by mutagenesis(24) and by a high-resolution crystal structure of IgG4-Fc(23), where two amino acid modifications were found to be essential for such exchange. One is the replacement of Ser\(^{228}\) by Pro\(^{228}\) (Eu numbering(10)) in the core-hinge region(22), which enhances the flexibility of the hinge, allowing the formation of inter- and intra-chain disulfides. The other is the presence of a bulkier Arg\(^{409}\) instead of a Lys\(^{409}\) in the
C\textsubscript{H}3 domain, which disrupts the essential hydrogen bond interaction between Asn390 in one C\textsubscript{H}3 domain and Ser400 in the other C\textsubscript{H}3 domain, leading to the dissociation of C\textsubscript{H}3-C\textsubscript{H}3(24). Many IgG4 therapeutics are designed for hinge stabilization via mutating Ser228 to Pro228 to prevent half molecule exchange \textit{in vivo}(25). In addition, the crystal structure of IgG4 presents an altered conformation (compared to IgG1) of the C\textsubscript{H}2 FG loop (residues 325-331), which may explain reduced affinity of IgG4-Fc to Fc\gamma receptor IIIA (Fc\gammaRIIIA) relative to IgG1-Fc. A variety of studies of Fc\gammaRIIIA binding to IgG1 have shown that the interaction is complex, with both antibody and receptor glycosylation altering binding(26-31). IgG1 Asn297 glycan structures, e.g., the attachment of core fucose, significantly reduce the binding affinity of IgG1 to Fc\gammaRIIIA, and this has been attributed to carbohydrate-carbohydrate interactions or entropic effects. Fc\gammaRIIIA glycosylation at N162, has also been demonstrated to alter IgG1 binding, with Man\textsubscript{5} Fc\gammaRIIIA glycoforms exhibiting higher affinity. The affinity of IgG-Fc to Fc\gammaRIIIA is important in eliciting antibody-dependent cellular cytotoxicity (ADCC) which can be important in the mechanism of action of mAb therapeutics. The purpose of this work was to evaluate the effect of glycan structure on the physico-chemical properties, photochemical stability and receptor binding of IgG4-Fc. These are critical parameters, which could affect shelf-life and \textit{in vivo} half-life of IgG4-based protein therapeutics. We selected photostability studies as representative for chemical stability studies in view of our recent results, demonstrating that the UV exposure of wild-type IgG4-Fc leads to the side chain cleavage of specific Tyr residues(32). The mechanism of this reaction involves photo-induced electron transfer between Tyr and an intermediate Trp radical cation and is controlled by solvent-dependent changes of protein conformation(32). Therefore, we expect
differences in the yields of Tyr-derived reaction products depending on the effect of glycan structure on the dynamics of IgG4-Fc. In addition, we monitored the photo-induced formation of methionine sulfoxide (MetSO) and disulfide cleavage products.

Scheme 1. A scheme presentation of three glycosylated IgG4 including HM, Man$_5$, and GlcNAc$_1$, where HM was obtained from yeast expression, Man$_5$ (A) and GlcNAc$_1$ (B) were obtained from in vitro enzymatic remodeling of HM. N297Q IgG4-Fc (C) was obtained through site-directed mutation.
Previous studies reported the affinity between FcγRIIIA and human serum-derived IgG4 with an equilibrium dissociation constant of 4-5 µM, where IgG4 potentially contained a mixture of various glycoforms(6). However, the affinity of specific glycoforms of IgG4 to FcγRIIIA is unknown. Considering that the micro-heterogeneity of Asn297 glycans may impact the binding affinity of the Fc domain to FcγRIIIA, we prepared three well-defined glycosylated and one non-glycosylated IgG4-Fc. The designed IgG4-Fc variants include GlcNAc2Man_{(8+n)} (n =0-4), referred to as high mannose (HM); GlcNAc2Man_5, referred to as Man_5; GlcNAc_1 and the N297Q mutant, as displayed in Scheme 1. Binding affinities to FcγRIIIA of the four IgG4-Fc were evaluated and correlated with physico-chemical properties.

2. Materials and methods. Yeast extract, peptone, and agar were purchased from Becton Dickinson and Company (Franklin Lakes, NJ). Yeast nitrogen base (YNB) was bought from Sunrise Biosciences (San Diego, CA). Zeocin was provided by Invitrogen (Carlsbad, CA). Rmp protein A sepharose™ fast flow, phenyl sepharose™ high performance and XK 26 empty columns were obtained from GE Healthcare Bio-Sciences (Uppsala, Sweden). Endo H was provided by NEB Biolab (Ipswich, MA). Dextrose, sodium chloride, methanol, glycerol, ammonium hydroxide, phosphoric acid, and sodium phosphate were obtained from Fisher (Fair Lawn, NJ). Biotin, citric acid, ammonium bicarbonate, dithiothreitol (DTT), and iodoacetamide (IAA) were obtained from Sigma-Aldrich (Saint Louis, MO). 0.1% formic acid in H_2O and 0.1% formic acid in acetonitrile were provided by Optima Fisher Chemical (Fair Lawn, NJ).
2.1 Expression of wild-type IgG4-Fc. For the expression of wild-type IgG4-Fc, we followed an approach described by Okbazghi et al (33, 34). Briefly, the gene of IgG4-Fc-cDNA was transferred to pno1/och1/bmt 1/bmt 2 deleted and STT3D added *Pichia pastoris* yeast strain through electroporation (34). The successfully transformed yeast colonies were screened on a yeast extract-peptone-dextrose (YPD, 1% yeast extract, 2% peptone, 2% dextrose and 1.5% agar) plate containing 100 µg/mL zeocin. A selected single colony was then inoculated in a 2.5 mL YPD culture media containing 100 µg/mL zeocin, and shaken at 27 °C for 72 hr. The 2.5 mL YPD cell culture was transferred to a 250 mL YPD medium containing 100 µg/mL zeocin, and shaken at 27 °C for ca. 72 hr before transfer to an NBS BioFlo 415 fermenter (Eppendorf, Enfield, CT). The fermenter was prepared in the following way: initially, 7 L of a media base composed of 1% yeast extract, 2% peptone, and 2% glycerol with anti-foam were prepared and sterilized. After the media was cooled, the temperature was set to 30 °C, and 0.34% of yeast nitrogen base, 1% ammonium sulfate, and 4 x 10⁻⁵% biotin were filter sterilized and added to the fermenter. The pH of the medium was adjusted to 6 and maintained during fermentation by addition of concentrated ammonium hydroxide. Finally, the 250 mL yeast cell culture was added to the fermenter. The yeast cells were allowed to grow until the batch glycerol was consumed, followed by an additional addition of 300 mL of glycerol. Once the added glycerol was also consumed, methanol was added by peristaltic pump to induce the production of IgG4-Fc, initially at a rate of 1% (v/v) per 24 hr and increasing to approximately 4% (v/v) once the culture was acclimated to metabolize methanol. For induction, the cells were grown at 25 °C for approximately 3 days prior to harvest. Protein A-purified IgG4-Fc yielded non-glycosylated, mono-glycosylated, and di-glycosylated IgG4-Fc with a yield of ca.
150 mg/L, which is sufficient for analytical characterization. Therefore, in total, one batch was prepared.

2.2 Purification of IgG4-Fc with protein A affinity chromatography. Yeast cells harvested from the fermentation batch were centrifuged at 6,693 g for 20 min on an Avanti J-25I centrifuge (Beckman Coulter, Palo Alto, CA) with a JLA-10500 rotor at 4°C. After centrifugation, the supernatant was combined and filtered with five layers of 90 mm Whatman type 1 filter pads, where the flow-through was collected. A volume of approximate 100 mL of Sepharose Fast Flow protein A (GE Healthcare, Uppsala, Sweden) was packed into a XK50/20 column container (GE Healthcare). The column was equilibrated with 10 column volumes of 20 mM sodium phosphate, pH 7, followed by loading the filtered yeast culture supernatant to allow IgG4-Fc to bind. Non-specific binders were washed out with high salt wash buffer, containing 500 mM NaCl in 20 mM sodium phosphate, pH 7.0. IgG4-Fc was eluted with 50 mM citric acid, pH 3.0, and immediately neutralized with Tris-HCl, pH 9.0. The eluted IgG4-Fc was dialyzed overnight in 20 mM sodium phosphate, pH 7.0, at 4°C prior to further purification.

2.3 Purification of HM IgG4-Fc with hydrophobic interaction chromatography (HIC). Protein A-purified IgG4-Fc contained di-, mono-, and non-glycosylated IgG4-Fc, where the major glycosylation form was HM, GlcNAc$_2$Man$_{(8+n)}$ (n=0-4) (Fig. 1). To obtain a more homogeneous protein solution, a second purification step utilizing HIC chromatography was applied to remove mono- and non-glycosylated IgG4-Fc and potential aggregates. Briefly, a volume of 75 mL phenyl
sepharose™ high-performance resin was packed into an XK26 column and operated by an ÄKTA micro system controlled by the Unicorn 5.20 software (Amersham Biosciences, Piscataway, NJ). Initially, the packed column was washed with 8 column volumes (CV) of distilled water, followed by equilibrating with 9 CV of mobile phase A (1 M ammonium sulfate in 20 mM sodium phosphate, pH 7.0). An IgG4-Fc solution was prepared by mixing with 1 M ammonium sulfate in 20 mM sodium phosphate, pH 7.0, and loaded onto the HIC column through an autosampler loop controlled by a MINIPULS 2 pump (Gilson, Lewis Center, OH) loading at ca. 2 mL/min. After loading, the sample loop was washed with 50 mL mobile phase A to wash off the residual IgG4-Fc. To elute different patterns of glycosylated IgG4-Fc, a linear gradient was applied ranging from 0% to 33% of mobile phase B (20 mM sodium phosphate, pH 7.0) for 288 mL, from 33% to 55% of mobile phase B for 282 mL, followed by a constant level of mobile phase B at 55% for 750 mL. Di-glycosylated IgG4-Fc eluted in the early fractions, and was collected for future use. The eluates were monitored by UV absorption at 220 nm. All the aqueous solutions were filtered with a 0.22 µm filter prior to loading onto the column.

2.4 Expression and purification of *B. t.* α-1,2-mannosidase. *E. coli* cells containing the His-*B. t.* α-1,2-mannosidase-cDNA(35, 36) were inoculated into 6 mL LB media, containing 50 µg/mL kanamycin, and shaken at 37°C for 12 hr. The 6 mL cell culture was then transferred to 1 L LB medium, containing 50 µg/mL kanamycin in a baffled flask and shaken at 37°C. After 12 hr, the cells were induced with 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and shaken for an additional 12 hr for enzyme production. The cells were harvested by centrifugation at 6,693 g
for 30 min on an Avanti J-25I centrifuge (Beckman Coulter, Brea, CA) with a JLA-10500 rotor at 4°C. The pellets were collected and suspended in 30 mL of 50 mM sodium phosphate containing 5 mM β-mercaptoethanol, pH 7.5, and then sonicated on ice. The cell lysate was then centrifuged at 15,000 rpm for 30 min, where the supernatant was collected and filtered, followed by loading onto a Ni²⁺-NTA-agarose column. The column (ca. 5 mL) was initially equilibrated with 50 mM sodium phosphate, pH 7.5, and 5 mM β-mercaptoethanol for 10 CV, followed by loading of the supernatant. The column was washed with 50 mM sodium phosphate, pH 7.5, and eluted with 50 mM sodium phosphate, pH 7.5, containing 250 mM imidazole. The enzyme was dialyzed overnight against 20 mM MES buffer, pH 6.6, at 4 °C, followed by the addition of a final content at 50% glycerol, to store the enzyme in 50% glycerol, 10 mM MES, pH 6.6 at -20 °C.

2.5 In vitro enzymatic synthesis of Man₅ IgG4-Fc. Di-glycosylated Man₅ IgG4-Fc were obtained by truncating HM IgG4-Fc through in vitro enzymatic remodeling with α-1,2-mannosidase, respectively(13). To obtain Man₅ IgG4-Fc, 2 mL HM IgG4-Fc at 2 mg/mL were mixed with 8 mL solution containing 5 mM CaCl₂, 150 mM NaCl, 10 mM MES, pH 6.6, and α-mannose IA at an enzyme:protein ratio of 1:8 (w:w). The mixture was placed in a dialysis bag, and kept in a 2 L dialysis bottle containing the reaction buffer. The reaction was conducted at room temperature, covered with aluminum foil, at a constant moderate stir rate. The dialysis buffer was exchanged once every 24 hr for 4 days. The expected and observed masses for Man₅ IgG4-Fc under reducing conditions are 26221.76 Da and 26220.2 Da, respectively (Fig. 1A).
2.6 In vitro enzymatic synthesis of GlcNAc\(_1\) IgG4-Fc. To obtain GlcNAc\(_1\) IgG4-Fc, 8 mg of HM IgG4-Fc in a volume of 31 mL 20 mM sodium phosphate, pH 7.1, were digested with 5 µL Endo H, and incubated at room temperature for approximate 18 hr. The completeness of the enzymatic reaction was monitored by HPLC-MS analysis. The enzymes, Endo H and \(B.t. \alpha-1,2\)-mannosidase, were removed using protein A affinity chromatography, respectively. The expected and observed masses for GlcNAc\(_1\) IgG4-Fc under reducing conditions are 25207.88 Da and 25207.7 Da, respectively (Fig. 1A).

2.7 Mutagenesis, production and purification of N297Q IgG4-Fc. A forward primer, 5’-CGGGAGGAGCAGTTCCAGAGCACGTACCGTGTG-3’, and a reversed primer, 3’-GCCCTCCT CG TCAAGGTCTCGTGCATGGCACAC-5’, were designed to produce the non-glycosylated N297Q IgG4-Fc. The site-directed mutation was achieved with a QuikChange Lightening Site-Directed Mutagenesis Kit (Agilent Technologies, Inc., Santa Clara, CA). The mutated N297Q IgG4-Fc cDNA–transformed colonies were screened with low salt broth (LB) plate (1% tryptone, 0.5% NaCl, 0.5% yeast extract, and 1.5% agar) containing 25 µg/mL zeocin, inoculated in 6 mL LB media, and grown at 37 °C for 12 hr with shaking. The plasmids were then extracted with a miniprep kit (QIAGEN, Valencia, CA), sequenced by the University of California Berkeley DNA Sequencing Facility (Berkeley, CA) with 100% accuracy, and linearized with the SacI-HF (NEB Biolab, Ipswich, MA). The linearized plasmids were then transferred to an och1/pno1/bmt1/bmt2 deleted and STT3D added \(Pichia\ pastoris\) yeast strain. The successfully N297Q-IgG4-Fc cDNA-transformed yeast colony, selected by tolerance to 100 µg/mL zeocin
containing YPD plate, was inoculated in a 2 mL YPD culture with 100 µg/mL zeocin and grown at 27 °C for 72 hr with shaking, followed by transfer to a 50-mL flask containing 100 µg/mL zeocin, and grown at 27 °C for 72 hr with shaking. The 50 mL yeast cells were then scaled up to a 1 L spinner flask, containing buffered glycerol-complex media (37) (1% yeast extract, 2% peptone, 2% glycerol, 0.34% of yeast nitrogen base and 1% ammonium sulfate, 4 x 10^{-5} % biotin, and 100 mM potassium phosphate, pH 6.0), with a constant flow of air and stirring, followed by growth at room temperature. After 72 hr, the expression of N297Q IgG4-Fc was induced by the addition of 1% (v/v) MeOH every 24 hr for three times before harvesting the cells. N297Q IgG4-Fc was purified in the same manner as WT IgG4-Fc.

2.8 Characterization of IgG4-Fc with intact protein HPLC-MS and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The initial characterization of the four glycoforms of IgG4-Fc was evaluated by LC-MS analysis of the intact protein under reducing conditions. A volume of 90 µL of 0.22 mg/mL IgG4-Fc protein solution, after reduction with 10 mM DTT for 5 min at room temperature, was loaded onto a C4 column (50 mm, 4.6 mm i.d.; 300-Å pore size, 5 µm particle size, Vydac 214 MS, Grace, Deerfield, IL), coupled to an Agilent 1200 series LC system (Agilent Technologies, Santa Clara, CA). The analytes were eluted by a linear gradient, changing mobile phase B (99.9% acetonitrile, 0.08% formic acid, and 0.02% trifluoroacetic acid) from 5 to 90% within 7 min. Mobile phase A was 99.9% H$_2$O, 0.08 % formic acid, and 0.02 % trifluoroacetic acid. The IgG4-Fc was ionized in an electrospray ionization (ESI) source, and analyzed in the positive mode by an Agilent 6520 Quadrupole Time-of-Flight mass
spectrometer (Agilent Technologies, Santa Clara, CA). A scan rate of 1 scan/second and a mass/charge (m/z) range of m/z 300 to m/z 3000 were applied. The acquired raw file was extracted and deconvoluted by the Agilent MassHunter Qualitative Analysis software to obtain the molecular weight and relative intensities of different IgG4-Fc species (Fig. 1A).

SDS-PAGE analysis was conducted under reducing and non-reducing conditions. For non-reducing conditions, 20 µL of 0.2 mg/mL IgG4-Fc in 20 mM sodium phosphate were mixed with Laemmli sample buffer (containing 20-35% of glycerol and 1-2.5% of SDS, BIO-RAD, Richmond, CA) at a 1:1 (v:v) ratio, followed by loading onto a 4%-20% gradient PAGE gel (Mini-PROTEAN TGX™ Gels, BIO-RAD, Richmond, CA). For reducing conditions, an additional 1.5 µL of 2-mercaptoethanol (14.3 M) were added to the protein solution, followed by boiling for 5 min to achieve full reduction. The gel was run at 200 volts until the front dye reached the bottom. A typical stain with 0.25% Coomassie Brilliant Blue and destain with 30% methanol, 10% acetic acid, 60% water was applied until the bands became clear (Fig. 1B).

2.9 Peptide mapping. Aliquots of 500 µL at 0.22 mg/mL of photo-irradiated and controlled IgG4-Fc were denatured with 3 M GdnHCl, reduced with 5 mM DTT, and alkylated with 20 mM IAA in 50 mM NH₄HCO₃. The reduction and alkylation was conducted at 37 °C for 1 hr, respectively, in the presence of GdnHCl. Excess amounts of reducing and alkylating agents were removed with Amicon Ultra Centrifugal Filter Units with 10 kDa cutoff by centrifugation at 16,900 g for 10 min. The protein solution was collected by reverse flip of the filter and centrifugation at 300 g for 4 min.
Peptides were obtained by digestion with GluC (Promega Corporation, Madison, WI) at a w:w ratio of 10:1 (protein:enzyme) at 37 °C for 6 hr. The obtained peptides were analyzed by HPLC-MS/MS.

2.10 HPLC-MS/MS analysis. An aliquot of 4 µL of GluC-digested IgG4-Fc was injected onto a nanoAcquity ultra performance liquid chromatography (UPLC) system (Waters Corporation, Milford, MA) coupled to a Xevo-G2 mass spectrometer (Waters Cooperation, Milford, MA), equipped with an electrospray ionization source (ESI). The injected peptides were initially loaded onto a C18 trap column (nanoACQUITY UPLC 2G-V/M Trap 5 µm Symmetry C18 180 µm x 20mm, Waters, Milford, MA), and desalted for 3 min isocratically with 97% of mobile phase A (0.1% formic acid in water) and 3% of mobile phase B (0.1% formic acid in acetonitrile) at a flow rate of 4 µL/min. The peptides were eluted to and fractionated on an analytical C18 column (ACQUITY UPLC Peptide CSH C18 NANOACQUITY column 10K psi, 1.7 µm, 75 µm x 250 mm, Waters, Milford, MA) with a linear gradient of mobile phase B changing from 3% to 35% within 50 minutes at a flow rate of 300 nL/min, followed by a linear gradient changing mobile phase B from 35% to 95% between 50 and 70 min. The column was subsequently washed with 95% mobile phase B for 10 min before re-equilibration with 97% of mobile phase A. The analytes were ionized by ESI, and analyzed in the positive mode with an m/z range of 200-2000 at a scan rate of 1 scan/second. The fragment ions were collected in the MS² mode after collision-induced dissociation (CID).
2.11 **Photo-degradation.** Photoirradiation was conducted in a UV irradiator (Rayonet®, The Southern New England Ultraviolet Company, Branford, CT), equipped with 4 lamps (Rayonet®, catalog# RPR-3000A) emitting continuous wavelengths between 265 nm and 340 nm, with a maximum emission at $\lambda_{\text{max}} = 305$ nm. We used the ferrioxalate actinometer(38, 39) to quantify the photon flux to 1.87×10^8 Eistein/s. Aliquots of 500 µL of IgG4-Fc (HM, Man$_5$, GlcNAc$_1$, and N297Q at 0.22 mg/mL, pH 7.1) in 20 mM sodium phosphate were placed in Pyrex tubes, and capped with rubber stoppers. Pyrex tubes have a wavelength cutoff of 295 nm. The photoirradiation was conducted for 30 min at RT. These photo-irradiation conditions ensured that our samples were exposed to light intensities of < 20 Whr/m2, i.e., $<10\%$ of the minimum light exposure (200 Whr/m2) advised by the ICH Q1B guideline for UV photostability testing(40). Control samples were placed in the dark at RT. Two independent experiments were conducted.

2.12 **Differential scanning calorimetry (DSC).** The thermal stability of the four IgG4-Fc glycoforms was evaluated using a MicroCal VP-capillary calorimeter (Malvern, UK). A volume of 400 µL of 0.22 mg/mL IgG4-Fc was placed in a 96-well plate at 5 °C, sealed with a plastic cover. Thermograms were obtained within a temperature of 10°C-90°C at a scan rate of 1°C/min with a filtering period of 16 s. The built-in Origin software (Origin Lab, Malvern, UK) was utilized for the analysis of the raw thermograms after the processing of buffer subtraction, baseline correction and concentration normalization. T_m values were then derived from the processed thermograms by a fit to a non-two-state equilibrium model(41).
2.13 **Intrinsic fluorescence.** The intrinsic fluorescence of the four IgG4-Fc glycoforms was measured by excitation with a dye laser emitting from 280 nm to 300 nm, a temperature-controlled fluorescence plate reader, and a charge coupled device detector (Fluorescence Innovations, Inc., Minneapolis, MN). The fluorescence was examined within a temperature range between 10°C and 90°C at an increment rate of 2.5 °C/step. A volume of 20 µL containing 0.22 mg/mL IgG4-Fc was applied to a 384 well plate, followed by loading 2 µL silicon oil on top of the protein solution to minimize sample evaporation. The excitation was conducted at 295 nm, and the emission spectra were collected between 300 nm and 400 nm. The fluorescence center of mass, defined as moment, was calculated as follows, using the ThermoSpec software (Fluorescence Innovations, Inc.):

\[
\text{Moment} = \frac{\int x I(x) dx}{\int I(x) dx}
\]

where x is the wavelength, and I(x) is the intensity. The fluorescence moment was plotted as a function of temperature, and T_m values were derived from the 1st derivative of the plot.

2.14 **Biolayer interferometry (BLI) binding assays.** Binding affinities of the four IgG4-Fc to FcγRIIIA were evaluated by BLI using a BLItz system (ForteBio, Menlo Park, CA) via immobilizing biotinylated FcγRIIIA to a streptavidin tip (SA; ForteBio, Menlo Park, CA). The biotinylated FcγRIIIA (Val^{158}) was prepared as described(13). IgG4-Fc was dialyzed into 2 L PBS buffer (39.3 mM Na_2HPO_4, 150 mM NaCl, and 10.65 mM NaH_2PO_4, pH 7.4) at 4 °C. The dialysis buffer was exchanged once after 12 hr. PBS kinetic buffer, containing 1 mg/mL BSA (VWR Chemicals, Solon, Ohio) in PBS, was prepared. After dialysis, IgG4-Fc was mixed with 10 mg/mL BSA (prepared in PBS buffer) at a ratio of 9:1 (v:v) to obtain a protein mixture in 1 mg/mL BSA.
in PBS buffer, pH 7.4, to minimize non-specific binding. A series of five concentrations were applied for each IgG4-Fc glycoforms. For HM, a series of 0.2 µM, 0.4 µM, 0.8 µM, 1.6 µM, and 3.2 µM was applied. For Man₅, a series of 0.0478 µM, 0.0958 µM, 0.192 µM, 0.383 µM, and 0.766 µM was applied. For GlcNAc₃, a series of 2.7 µM, 3.28 µM, 5.4 µM, 6.57 µM and 13.14 µM was applied. For N297Q, two concentrations, 11.35 µM and 16.27 µM, were applied.

The SA tip was prepared by hydration in PBS for 10 min, followed by hydration in PBS kinetic buffer for 30 min. The SA tip was then loaded onto the BLIItz system. For FcγRIIIA loading, a 30 s of baseline was first established with 250 µL of PBS kinetic buffer. In the 3-min receptor loading step, 0.02 µM of FcγRIIIA in PBS kinetic buffer was loaded until the response level reaches 0.4 Δnm. BLI measures the interaction of proteins at the surface of the SA tips (equipped with biosensors), which results in a shift of light wavelength (Δnm), referred to as light interference. After the response level reached Δnm= 0.4, the FcγRIIIA solution was exchanged with a PBS kinetic buffer. In the 3-min dissociation step, the tips were dipped into PBS kinetic buffer. For collection of a blank, tips were dipped into 250 µL PBS kinetic buffer in all three binding steps, including 30 s of baseline collection, 180 s of association and 180 s of dissociation. For sample analysis, in the 30-s baseline step, tips were dipped into PBS kinetic buffer, then in the 3-min association step the sample was loaded at various concentrations, and finally the tips were dipped into PBS kinetic buffer in the 3-min dissociation step. For each IgG4-Fc variant, the samples were loaded from the lowest to the highest concentrations. Between each sample run, a regeneration step was applied through washing with 1 mM NaOH for 30 s, followed by washing with PBS.
kinetic buffer for 2 min. A minimum of two independent replicates were conducted. The tip was replaced between each replicate.

The association sensorgrams of IgG4-Fc and FcγRIIIA cannot be fit by mono-exponential kinetics (42-45) (Fig. S1). Instead, a model based on two separate association equilibria (Reactions 1 and 2), a fast and a slow one, led to excellent kinetic fits. Here, L₁ and L₂ represent two variants within a heterogeneous population of FcγRIIIA (46, 47), P represents IgG4-Fc, k₁ and k₂ represent the k_on values for Reactions 1 and 2, respectively, and k_-1 and k_-2 represent the k_off values for Reactions 1 and 2, respectively.

\[L_1 + P \xrightleftharpoons{k_1 \over k_-1} L_1P \]
\[L_2 + P \xrightleftharpoons{k_2 \over k_-2} L_2P \]

Kinetically, the reactions are of pseudo first order due to the excess quantity of P (IgG4-Fc). The following equations were used for the kinetic fits.

\[[L_1P] + [L_2P] = [L_1P]_\infty(1-\exp(-\left(k_1[P_0]+k_1\right)t)) + [L_2P]_\infty(1-\exp(-\left(k_2[P_0]+k_2\right)t)) \quad (1) \]

\[y = A(1-\exp(-Bx)) + C(1-\exp(-Dx)) \quad (2) \]

where in equation 1, \([L_1P]\) and \([L_2P]\) are the concentrations of complex \(L_1P\) and \(L_2P\) at time \(t\) as dependent variables, respectively. \([P_0]\) is the initial and constant concentration of P, based on \([P]\) \(\gg\) L. \([L_1P]_\infty\) and \([L_2P]_\infty\) are the concentrations of \(L_1P\) and \(L_2P\) at infinite reaction time. A two-exponential association fit was applied using XL fit analysis (IDBS, Boston, MA) as displayed in equation 2, where \(A = [L_1P]_\infty; B = k_1[P_0]+k_1; C = [L_2P]_\infty; D = k_2[P_0]+k_2\). The values for B and D
were constrained to be \(\geq 0 \). The fitting parameters B and D correspond to \(k_{\text{obs}} \) of the fast and the slow phase, respectively. Linear plots of \(k_{\text{obs}} \) as a function of the concentration of \([P_0]\) were obtained, where the slopes represent \(k_{\text{on}} \) (M\(^{-1}\)s\(^{-1}\)) (\(k_1 \) or \(k_2 \)), and the intercepts represent \(k_{\text{off}} \) (s\(^{-1}\)) (\(k_{1,1} \) or \(k_{2,2} \)). The \(k_{\text{on}} \) and \(k_{\text{off}} \) values derived from the fast phase are consistent with previously reported binding affinities between Fc and FcγRIII(5, 6, 13). Hence, in the present work, we focus mainly on the kinetic parameters derived from the fast phase. The \(k_{\text{on}} \) and \(k_{\text{off}} \) from the slow phase were derived for HM and Man\(_5\) IgG4-Fc.

3. Results. The physicochemical stability of the four IgG4-Fc variants (0.22 mg/mL) was analyzed in 20 mM sodium phosphate, pH 7.1, while binding assays were performed in PBS, pH 7.4.

3.1 Initial characterization of HM, Man\(_5\), GlcNAc\(_1\), and N297Q IgG4-Fc. HM, Man\(_5\) and GlcNAc\(_1\)-IgG4-Fc were derived from the same batch of a 10 L-fermenter production. N297Q was expressed in 1L-scale spinner flasks. To ensure that the three glycosylated IgG4-Fc variants and the non-glycosylated IgG4-Fc were of adequate quality, an initial characterization with HPLC-MS and SDS-PAGE analysis was performed (Fig. 1). In the reducing gel (Fig. 1B, right panel), single bands of HM, Man\(_5\), GlcNAc\(_1\), and N297Q were observed, migrating between 25 kDa and 37 kDa, indicating that the four IgG4-Fc variants were obtained with good purity. In the non-reducing gel (Fig. 1B, left panel), HM displays two bands, and a reduced mobility compared to Man\(_5\), GlcNAc\(_1\) and N297Q. The differential mobility in both the reducing and non-reducing gels results from the differences of glycan mass and branching associated with each IgG4-Fc form. The two bands, predominantly observed for HM in the non-reducing gel, are consistent with both intra- and inter-
chain disulfide bonds in the hinge region, where intra-chain disulfide band formation leads to dissociation of an IgG4-Fc dimer. The intra- and inter-chain disulfides were quantified by densitometry analysis with Image J (National Institutes of Health, Washington D.C., US). Here, inter-chain disulfides account for 50.6% for HM, 70.5% for Man$_5$, 67.4% for GlcNAc$_1$, and 80.3% for N297Q IgG4-Fc. In turn, intra-chain disulfides are present at 49.4% for HM, 29.5% for Man$_5$, 32.6% for GlcNAc$_1$ and 19.7% for N297Q IgG4-Fc.

Intact protein HPLC-MS was applied to analyze the homogeneity of the glycoforms of HM, Man$_5$ and GlcNAc$_1$ IgG4-Fc (Fig. 1A). The signal intensities of glycosylated and nonglycosylated forms were recorded utilizing MassHunter Qualitative Analysis. The homogeneity of HM was calculated as the sum of intensity of Man$_8$ to Man$_{12}$ forms divided by the sum of intensity of nonglycosylated and Man$_8$ to Man$_{12}$ forms. The homogeneity of GlcNAc$_1$ was calculated as the intensity of GlcNAc$_1$ form divided by the sum of nonglycosylated and GlcNAc$_1$ forms. The homogeneity of Man$_5$ was calculated as the intensity of Man$_5$ form divided by the sum of intensity of nonglycosylated and Man$_5$ to Man$_9$ forms. HM, GlcNAc$_1$ and Man$_5$ presented a homogeneity of 97.1%, 96.4%, and 86.7%, respectively. N297Q was obtained through site-directed mutation and the homogeneity was 100%.
Fig. 1. Initial characterization of intact GlcNAc$_2$Man$_{(8+n)}$ (n =0-4), GlcNAc$_2$Man$_5$, GlcNAc$_1$, and N297Q IgG4-Fc with (A) MS under reducing conditions after treatment with DTT and (B) SDS-PAGE under non-reducing (left) and reducing conditions (right).

3.2 DSC. The overall conformational stability of the four IgG4-Fc glycoforms was evaluated by
DSC using a temperature ramp from 10 to 90°C with 1°C increments (Fig. 2). All of the four IgG4-Fc variants display two thermal transitions, corresponding to the unfolding of the C$_{H2}$ and C$_{H3}$ domains, respectively. Melting temperatures of the transitions, represented as T$_{m1}$ and T$_{m2}$, were derived and are listed in Table 1. Overall, the thermal stability of HM, Man$_5$, and GlcNAc$_1$ does not vary significantly, where T$_{m1}$ and T$_{m2}$ values show only small differences within 1°C. On the other hand, N297Q IgG4-Fc shows a reduction of approximate 3°C for T$_{m1}$ as compared to the other three glycoforms. N297Q does not reveal significant changes of T$_{m2}$ compared to the other glycoforms.
Corresponding T_m values are displayed in Table 1, where T_{m1} represents the melting temperature of the C_{H2} domain, and T_{m2} represents the melting temperature of the C_{H3} domain.

3.3. Intrinsic fluorescence. The tertiary structures of the four IgG4-Fc variants were evaluated by intrinsic fluorescence spectroscopy through excitation at 295 nm, and emission measurements between 300 nm and 400 nm. The fluorescence emission spectra of the four IgG4-Fc recorded at 25°C (Fig. 3A) reveal a maximum fluorescence intensity at similar wavelengths, between 337 and 340 nm. This suggests, that the four IgG4-Fc variants present similar tertiary structure.
temperature ramp from 10 to 90 °C was applied to evaluate the thermal stability of the four IgG4-Fc variants, and the fluorescence moment plotted as a function of temperature (Fig. 3B). The respective transition values T_m were derived and are listed in Table 1. These data suggest the thermal stability ranks in the following order: Man$_5$ \sim HM $>$ GlcNAc$_1$ $>$ N297Q IgG4-Fc.
Fig. 3. Intrinsic fluorescence of HM, Man₅, GlcNAc, and N297Q of IgG4-Fc, where (A) is the normalized fluorescence intensity (%) as a function of wavelength, (B) is fluorescence moment (nm) as a function of temperature (°C). Three independent experiments were performed.

3.4 Photostability. The photostability of the four IgG4-Fc variants was evaluated by photo-
irradiation at $\lambda_{\text{max}} = 305$ nm for 30 min. The conversion of native peptides (%) into eleven photoproducts was quantified, and relative yields of the photoproducts are displayed in Fig. 4. These products include five peptide backbone cleavage products resulting from photo-induced Tyr side chain fragmentation(32), three Met sulfoxide products (MetSO), and three vinyl Cys products. Detailed information on the nature of the photoproducts is provided in Table 2.

3.4.1 Formation of Tyr side chain fragmentation products. Two Tyr residues in IgG4-Fc, Tyr373 and Tyr436, were monitored to quantify photo-induced tyrosine side chain fragmentation. The mechanism of such Tyr fragmentation was documented in a previous publication(32). In the presence of O_2, the major degradation products are peptide backbone cleavage products (Table 2), including product 1 from Tyr373, and products 3, 4 and 5 from Tyr436. Product 2 (from Tyr373) is a secondary oxidation product, derived from Met oxidation of product 1. Products 1-5 were formed with higher relative yields in GlcNAc$_1$ and N297Q IgG4-Fc, presenting more than 1.5- and 2-fold increase over the yields obtained from HM and Man$_5$ IgG4-Fc, respectively. It appears, that the size of the glycans inversely correlates with the relative yields of products 1-5 (Fig. 4A and 4B).

3.4.2 Formation of MetSO. IgG4-Fc contains three Met residues, Met252, Met358, and Met426. Their corresponding oxidation products, referred to as products 6, 7 and 8 (Fig. 4C), show an increase of yields in the following order: MetSO$^{252} \rightarrow$ MetSO$^{426} \rightarrow$ MetSO358. This trend is similar to observed trends for peroxide-treated IgG1 and photo-oxidized IgG2(48). The glycan structure does not significantly affect the yields of MetSO (products 6-8, Fig. 4C).

3.4.3 Formation of Vinyl Cys Three Cys residues in IgG4-Fc, Cys321, Cys367, and Cys425, were monitored to quantify the yield of vinyl Cys formation. Their corresponding products are referred
to as products 9, 10, and 11 (Fig. 4D). Interestingly, their relative yields follow an opposite trend as compared to the yields of Tyr derived products, where HM shows the most efficient formation of vinyl Cys. The other IgG4-Fc variants, Man₅, GlcNAc₁, and N297Q, show approximate half the yields as compared to HM IgG4-Fc.

Fig. 4. Conversion of native peptides resulting from Tyr (A and B), Met (C) and Cys (D) photodegradation. The photoirradiation was conducted at $\lambda_{\text{max}} = 305 \text{ nm}$ for 30 min. Detailed peptide sequences information is presented in Table 2. Product yields from the four IgG4-Fc: HM, Man₅, GlcNAc₁ and N297Q are plotted. Two independent replicates were performed.
3.5 Binding of IgG4-Fc variants to FcγRIIIA. The effect of glycan structure at Asn\(^{297}\) in IgG4-Fc on binding to FcγRIIIA(Val\(^{158}\)) was evaluated using biolayer interferometry on a BLItz system. The equilibrium binding for HM, Man\(_5\), GlcNAc\(_1\), and N297Q IgG4-Fc is displayed in Fig. 5. The sensorgrams for the association between IgG4-Fc and FcγRIIIA are displayed in Fig. 6. All binding curves were well fit to bi-exponential kinetics, indicative of at least two separate association equilibria, potentially reflecting the glycan heterogeneity of FcγRIIIA (28, 29, 42, 45). For comparison, also the surface plasmon resonance data by Bruhns et al. (6) suggest more than one process in the interaction of FcγRIIIA(Val\(^{158}\)) with full length IgG4. In the two-exponential association model used for the kinetic fits \(y = A(1-\exp(-Bx)) + C(1-\exp(-Dx))\), \(B = k_{\text{obs,1}} = k_1[P_0] + k_{-1}\) and \(D = k_{\text{obs,2}} = k_2[P_0] + k_{-2}\), as described in Section 2.13. Here, \(k_1\) and \(k_2\) represent the \(k_{\text{on}}\) values for Reactions 1 and 2, respectively, and \(k_{-1}\) and \(k_{-2}\) represent the \(k_{\text{off}}\) values for Reactions 1 and 2, respectively. This two-exponential association model leads to good quality curve fits (Fig. 6, in red) for HM, Man\(_5\), and GlcNAc\(_1\) IgG4-Fc (Fig. 6, experimental data in blue). No measurable binding to FcRγIIIA was observed for the non-glycosylated variant N297Q IgG4-Fc (Fig. 5 and Fig. 6D). The values for \(k_{\text{obs}}\) were plotted as a function of the concentration \([P_0]\), from where \(k_{\text{on}}(\text{M}^{-1}\text{s}^{-1})\) was derived from the slope, and the \(k_{\text{off}}(\text{s}^{-1})\) was derived from the intercept. The plots for the fast phase are shown in Fig. 5, while the plots for the slow phase are shown in Fig. S2 (for the slow phase, linear plots were only obtained for HM and Man\(_5\) IgG4-Fc). The fitting parameters for the fast phase correspond more closely to the affinity between IgG4 and FcγRIIIA (6), and, therefore, we primarily compared the IgG4-Fc variants based on the kinetic parameters for the fast phase. Equilibrium dissociation \(K_D\) constants were calculated as the ratio of \(k_{\text{off}}\) over
k_{on}. All values for k_{on}, k_{off}, and K_D for HM, Man_5, and GlcNAc_1 IgG4-Fc are summarized in Table 3.

Man_5 IgG4-Fc reveals a two-fold increase of k_{on} compared to HM IgG4-Fc, resulting in a ca. two-fold reduction of K_D. The lower K_D of Man_5 indicates a ca. two-fold higher affinity to FcγRIIIA over HM IgG4-Fc. For GlcNAc_1, k_{on} reveals a 2- to 4-fold reduction compared to HM and Man_5, while k_{off} shows a 7.7-fold increase over HM and Man_5 IgG4-Fc. Hence, GlcNAc_1 presents a 14.7-fold reduction of binding affinity to FcγRIIIA as compared to HM and Man_5. For N297Q IgG4-Fc, the binding response merely reached Δnm = 0.03 at concentrations [P_0] of 11.35 μM and 16.27 μM (Fig. 5 and 6). In addition, no reasonable curve fits were obtained, indicating no significant binding with FcγRIIIA at the high concentration tested as a result of the lack of glycans.
Fig. 5. Equilibrium dissociation constant, K_D, obtained with non-linear regression, using equation equivalent to the Langmuir isotherm. Respective K_D constants are displayed. Not applicable (NA) of N297Q indicates there is no measurable binding for the non-glycosylated IgG4-Fc.
Fig. 6. BLI sensorgrams of (A) HM (B) Man$_5$ (C) GlcNAc$_1$, and (D) N297Q IgG4-Fc, where the red line is curve fit, and the blue dots are experimental data. The curve fitting is not applicable for N297Q IgG4-Fc.
Fig. 7. Plots of $k_{obs} \, (s^{-1})$ as a function of IgG4-Fc concentration (M) for (A) HM, (B) Man$_5$ and (C) GlcNAc$_1$.
4. Discussion.

The aim of this work was to evaluate the effect of glycan structure (HM, Man$_5$, GlcNAc$_1$ and non-glycosylated) at Asn297 IgG4-Fc on the physicochemical stability (pH 7.1, 20 mM sodium phosphate, 0.22 mg/mL), photostability, and receptor binding. The four IgG4-Fc variants were initially characterized by HPLC-MS, indicating that the glycoforms display > 95% (HM and GlcNAc$_1$), 86% (Man$_5$), and 100% (N297Q) homogeneity.

The nature of these glycans was previously shown to affect IgG1-Fc conformation, which is essential for mAb stability, safety and efficacy (11). A similar effect of glycans was observed here on the thermal stability of IgG4-Fc. Based on the values for T$_{m1}$ derived by DSC, HM, Man$_5$ and GlcNAc$_1$ IgG4-Fc display similar thermal stability, while N297Q IgG4-Fc shows lower thermal stability (Table 1). The T$_{m1}$ value, corresponding to the melting temperature of the C$_{H2}$ domain, is a measure of conformational stability, involving the unfolding of C$_{H2}$ domains, C$_{H2}$ glycan contacts, and C$_{H2}$/C$_{H3}$ inter-domain interactions (49). The decreased T$_{m1}$ value of N297Q can, therefore, be attributed to the lack of a glycan, which prevents glycan-glycan or glycan-protein interactions (50). For all four IgG4-Fc variants, more than two thermal transitions were observed by DSC (Fig. 1). Interestingly, a previous report showed that homogeneous G0 and G2 glycoforms of IgG4-Fc reveal only one thermal transition with a melting temperature of 64°C(51). It was also reported that deglycosylated IgG4-Fc reveals two transitions, where T$_{m1}$ = 60 °C, and T$_{m2}$ = 68 °C(51). In this work, the DSC thermograms of IgG4-Fc with different truncated glycans present a similar phenomenon: two thermal transitions are resolved better for the smaller sized glycans.
(Fig. 1). All four IgG4-Fc variants reveal a 10°C reduction of T_m2 as compared to IgG1-Fc, where the T_m2 of IgG4-Fc is approximately 70°C while the T_m2 of IgG1-Fc is approximately 78-80°C, reported elsewhere(11). This difference can be attributed to the weakened hydrophobic interactions between the C_H3 domains in IgG4-Fc homodimers compared to IgG1-Fc (22, 24).

During the process of pharmaceutical development, light exposure needs to be strictly controlled, due to the fact that mAb-based therapeutics are prone to photo-degradation(52, 53) (54, 55). Upon exposure to UV light, photo-sensitive amino acids (Tyr, Trp, Cys, cystine, and Phe) can directly absorb light leading to several pathways of photo-transformation(52). Upon exposure to visible light, proteins are potentially damaged by reactive oxygen species(54, 56). Here, we investigated the effects of glycan structure on IgG4-Fc photo-stability during photo-irradiation at λ_{max} =305 nm (between 295 nm and 340 nm). The relative yields of photo-degradation products resulting from Tyr (Tyr^{373} and Tyr^{436}), Met (Met^{252}, Met^{358}, and Met^{426}), and Cys (Cys^{321}, Cys^{367}, and Cys^{425}) were quantified.

We previously discovered and characterized a photo-induced Tyr side chain fragmentation, initiated by electron transfer from Tyr to an intermediary Trp radical cation (Trp^+)(32). The distance between Tyr and Trp can affect the efficiency of photo-induced Tyr side chain fragmentation(32). Products 1-5, resulting from photo-induced Tyr side chain fragmentation reveal relatively higher yields in IgG4-Fc with smaller sizes of Asn^{297} glycans (e.g., in N297Q and GlcNAc_1). The smaller size glycans may allow for a more dynamic protein conformation (57)
resulting a closer approach between Tyr and Trp⁺.

FcγRIIIA is the most important Fc receptor for natural killer cells since it is the only one present for ca. 80% of people (58, 59). In addition, binding affinities between IgGs and FcγRIIIA depend on the patterns of Asn²⁹⁷ glycans in IgGs (27, 60). Therefore, FcγRIIIA was selected in the present work. We utilized biotinylated FcγRIIIA (Val¹⁵⁸) and streptavidin (SA) to immobilize FcγRIIIA on SA biosensor tips (13), to measure its affinities to the IgG4-Fc variants. The association rate of Man₅ IgG4-Fc (2.60 x 10⁵ M⁻¹s⁻¹) reveals a somewhat higher k_on value compared to HM (1.24 x 10⁵ M⁻¹s⁻¹), and both present rather similar k_off values. The truncated GlcNAc₁ glycoform revealed an approximate two-fold reduction of k_on, and a seven-fold increase of k_off, as compared to Man₅ and HM. N297Q does not reveal any significant binding to FcγRIIIA at the highest concentration tested (16 µM). The reduction of N29 glycan size in IgG4-Fc has a smaller effect on k_on but a larger effect on k_off. The effect of glycan nature on IgG4-Fc affinities to FcγRIIIA is similar to that reported for similar glycoforms of IgG1-Fc in that both HM and Man₅ glycoforms bind tightly, the GlcNAc₁ glycoform retains weak affinity, and the non-glycosylated IgG4-Fc mutant does not show significant affinity (13).

The equilibrium constant (K_D) between a serum-derived IgG4 and FcγRIIIA was reported to be ca. 4 µM (6). This K_D value was obtained via analysis of the binding response at equilibrium as a function of protein concentration, where the corresponding steady-state K_D can be derived (6). For comparison, we applied a similar analysis of our data, rendering steady-state K_D values of 0.39
µM, 0.54 µM, and 25.76 µM for HM, Man₅ and GlcNAc₁₁, respectively (Fig. S3). The Kᵦ of HM and Man₅ IgG4-Fc reveal a 10- and 8-fold reduction as compared to the serum-derived IgG4, suggesting an 8-10-fold increase of the affinities to FcγRIIIA. These increased affinities of our IgG4-Fc glycoforms can be rationalized by the absence of fucos in the high mannose glycoforms tested in this study and the likelihood of high levels of core-linked fucose in serum derived IgG4 (60-62). As mentioned previously, fucosylation of IgG1-Fc and differential glycosylation of N162 of FcγRIIIA has proven to modulate the interactions between the two proteins (60-62). Given that the dissociation constants measured in this study for HM and Man₅ IgG4-Fc, 0.39 and 0.54 µM respectively, are similar to dissociation constants that have been measured for fucosylated IgG1 Fc glycoforms (ranging from 0.095-0.5 µM)(6, 27) high mannose IgG4 glycoforms may elicit ADCC similar to fucosylated IgG1. Based on this, in addition to monitoring levels of afucosylated IgG4 (63), it would be prudent to monitor levels of high mannose IgG4 glycoforms as well for IgG4 based mAb therapeutics.

5. Acknowledgements.

We gratefully acknowledge financial support by a Genentech Foundation Fellowship.

References.

3. Peyrin-Biroulet L, Demarest S, Nirula A. Bispecific antibodies: The next generation of targeted

60. Subedi GP, Barb AW. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor. MAbs. 2016; 8:1512-24.
Table 1. T_m values of HM, Man$_5$, GlcNAc$_1$, and N297Q IgG4-Fc from DSC and intrinsic fluorescence analysis. The average T_m and the range from two independent measurements are presented.

<table>
<thead>
<tr>
<th></th>
<th>T_m 1 ($^\circ$C) (DSC)</th>
<th>T_m 2 ($^\circ$C) (DSC)</th>
<th>T_m ($^\circ$C) (Fluorescence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>64.5 ± 0.0071</td>
<td>71.7 ± 0.11</td>
<td>61.97 ± 0.14</td>
</tr>
<tr>
<td>Man$_5$</td>
<td>65.3 ± 0.25</td>
<td>71.3 ± 0.099</td>
<td>62.69 ± 0.16</td>
</tr>
<tr>
<td>GlcNAc$_1$</td>
<td>64.6 ± 0.014</td>
<td>70.8 ± 0.078</td>
<td>61.24 ± 0.23</td>
</tr>
<tr>
<td>N297Q</td>
<td>61.5 ± 0.028</td>
<td>70.5 ± 0.035</td>
<td>59.86 ± 0.08</td>
</tr>
</tbody>
</table>
Table 2. A list of eleven photoproducts were identified and quantified from photoirradiation of HM, Man$_5$, GlcNAc$_1$, and N297Q IgG4-Fc at $\lambda_{\text{max}} = 305$ nm for 30 min. Corresponding product sequences and modified residues are listed.

<table>
<thead>
<tr>
<th>Product</th>
<th>Photoproducts</th>
<th>Position</th>
<th>m/z</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MTKNQVSLTC(+57)LVKGF-NH$_2$</td>
<td>Tyr373</td>
<td>575.61</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>M(+16)TKNQVSLTC(+57)LVKGF-NH$_2$</td>
<td>Tyr373</td>
<td>580.96</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>HC–C–QTQKSLSLSLGK</td>
<td>Tyr436</td>
<td>609.30</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>[HC–C–QTQKSLSLSLGK]+18</td>
<td>Tyr436</td>
<td>618.30</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>TQKSLSLSLGK</td>
<td>Tyr436</td>
<td>387.89</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>FLGGPSVFLFPKPDTLM(+16)ISRTPE</td>
<td>Met252</td>
<td>698.38</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>M(+16)TKNQVSLTC(+57)LVKGFYPSDIAVE</td>
<td>Met358</td>
<td>872.76</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>GNVFSC(+57)SVM(+16)HE</td>
<td>Met426</td>
<td>641.75</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>YKC(+55)KVSNKGLPSSIEa</td>
<td>Cys321</td>
<td>569.96</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>MTKNQVSLTC(+55)LVKGFYPSDIAVE</td>
<td>Cys367</td>
<td>866.76</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>GNVFSC(+55)SVMHE</td>
<td>Cys425</td>
<td>632.75</td>
<td>2</td>
</tr>
</tbody>
</table>

a The product Cys(+55) indicates an amidomethyl adduct of vinyl Cys
Table 3. Binding parameters, k_{on}, k_{off} and K_D of HM, Man₅, GlcNAc₁, and N297Q IgG4-Fc, representative of binding affinities to FcγRIIIA. k_{on}, k_{off} and K_D (kinetic) were obtained from kinetic binding analysis. K_D (kinetic) was obtained from the ratio of k_{off} to k_{on}. K_D (equilibrium) was obtained from equilibrium binding analysis with non-linear regression fit. These data are averaged from 2 or 3 independent measurements.

<table>
<thead>
<tr>
<th></th>
<th>k_{on} (M⁻¹s⁻¹)</th>
<th>k_{off} (s⁻¹)</th>
<th>K_D (μM): kinetic</th>
<th>K_D (μM): equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>(1.24±0.3) x10⁵</td>
<td>0.207 ± 0.052</td>
<td>1.66</td>
<td>0.39</td>
</tr>
<tr>
<td>Man₅</td>
<td>(2.60±0.9) x10⁵</td>
<td>0.177 ± 0.035</td>
<td>0.68</td>
<td>0.54</td>
</tr>
<tr>
<td>GlcNAc₁</td>
<td>(6.30±3) x10⁴</td>
<td>1.546 ± 0.238</td>
<td>24.52</td>
<td>25.76</td>
</tr>
<tr>
<td>N297Q</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Fig. S1. Binding analysis of IgG4-Fc glycoforms and FcγRIIIA. Fitted curve is displayed in black with corresponding glycoform structure (A) HM-IgG4-Fc (B) Man5-IgG4-Fc (C) GlcNAc1 IgG4-Fc (D) N297Q IgG4-Fc.
Fig. S2. Plots of k_{obs} of the slow phase as a function of $[P_0]$ for HM and Man$_5$ IgG4-Fc. The error bars represent the standard error from two or three independent measurements. GlcNAc$_1$ IgG4-Fc is not displayed due to the lack of linear relationship between k_{obs} and protein concentration. N297Q is not displayed due to no obvious binding with FcγRIIIA.
Chapter 5. The reaction of acetonitrile with N-terminal Cys of IgG4-Fc
5.1 Introduction.

Antibody-drug conjugates (ADCs) are rapidly evolving due to their high potency and specificity. So far, two ADCs have been marketed in the US and approximately 60 ADCs are in the clinical development\(^1\). ADCs refer to the chemical conjugation of a humanized antibody to small cytotoxic molecules (e.g., antimitotic agents) through a chemical linker. Thus, ADCs combine the specificity of an antibody for its target antigen and the potency of a small molecule drug\(^2\). In ADCs, the antibody reacts as a cell-targeting molecule and its conjugation with cytotoxic drugs, enabling the selective delivery of the toxic agents, leading to death of the targeted cells.

The selection of the linker chemistry is critical for the successful development of ADCs. An optimal linker needs to meet the potential criteria as follows\(^1\). First, the linker needs to present sufficient stability before reaching target cells. Second, the linker is readily to be cleaved after endocytosis. Third, the linker should not induce instability of the conjugated molecule. Conjugation is typically achieved via two major methods, e.g., chemical and enzymatic conjugation, where chemical conjugation potentially involves coupling with Lys amine or Cys thiol. Overall, Cys-based conjugation is superior to Lys attributed to Cys low abundance in proteins, leading to more controlled drug-to-antibody ratio (DAR)\(^3\), reduced heterogeneity, high efficacy and improved therapeutic window\(^4\). The most common approach of Cys coupling is to utilize maleimide-based conjugation, e.g., in brentuximab vedotin, an FDA approved ADC\(^5\), where such process requires reduction and re-oxidation of disulfides. These processes normally introduce
difficulties to control the extent of the reactions and lead to undesired polymerization\(^6\). For example, the partial reduction process may result in the loss of the light chain, impairing binding affinity of mAbs to antigens, and additionally lead to reduced stability\(^7\). Therefore, in this work, a specific chemical modification at the N-terminal Cys of an IgG4-Fc was investigated via reaction with acetonitrile, which results in a cyclic product at the N-terminus of the IgG4-Fc. An Fc domain was utilized due to its simplicity for deriving reactions, as compared to a full IgG. Conjugation to an Fc fragment prolongs the half-life of the conjugated molecule\(^8\), and potentially improves solubility and stability of the partner molecule in vivo and in vitro\(^9\). The IgG4-Fc was expressed from yeast strain \emph{Pichia pastoris}, presenting predominantly high mannose (HM) glycoforms at Asn\(^{297}\) containing GlcNAc\(_2\)Man\(_{(8+n)}\) (n = 0-4).

\section*{5.2 Experimental section.}

\subsection*{5.2.1 Materials.}

GluC was purchased from Promega Corporation (Madison, WI). Iodoacetamide (IAA), iodoacetic acid (IAC), ammonium bicarbonate, tris (2-carboxyethyl)phosphine hydrochloride (TCEP), 4-cyano-1-butyn (HCCCH\(_2\)CH\(_2\)CN) and guanidine hydrochloride (GdnHCl) were bought from Sigma-Aldrich (Saint Louis, MO). Bis(2-mercaptoethyl)sulfone (BMS) was purchased from EMD Millipore Corp. (Billerica, MA). Acetonitrile (CH\(_3\)CN) was bought from Fisher (Fair Lawn, NJ). Deuterium-labeled acetonitrile (CD\(_3\)CN) was purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA).
5.2.2 Reaction of acetonitrile with intact WT IgG4-Fc under reducing conditions.

An aliquot of 150 µL of IgG4-Fc (0.2 mg/mL) in 20 mM sodium phosphate, pH 7.0, was mixed with 8 µL of 100 mM BMS (dissolved in CH$_3$CN). 100 mM BMS was prepared by dissolving 93.1 mg of BMS in 5 mL of CH$_3$CN. The mixture was incubated at 37°C for different time points: 1 hr, 2 hr, 3 hr, 6 hr, 12 hr, and 24 hr. At each time point, the reaction mixtures were collected and stored at -80°C for future analysis.

5.2.3 Reaction of 4-cyano-1-butyn (HCCCH$_2$CH$_2$CN) and intact N297Q IgG4-Fc under reducing conditions.

An aliquot of 150 µL of N297Q IgG4-Fc (0.2 mg/mL) in 20 mM sodium phosphate, pH 7.0, was mixed with 4 µL of 200 mM tris (2-carboxyethyl)phosphine hydrochloride (TCEP) and 8 µL of HCCCH$_2$CH$_2$CN. 200 mM TCEP was prepared by dissolving 57.3 mg of TCEP in 1 mL of sodium phosphate, pH 7.0. The mixture was incubated at 37°C for 90 min, followed by analyzed with HPLC-MS.

5.2.4 HPLC-MS of intact IgG4-Fc

Wild type and nonglycoform N297Q IgG4-Fc were prepared in the same manner as described in Sections 2.2.2 and 2.2.4 in Chapter 2. The reaction mixtures of IgG4-Fc (0.2 mg/mL in 20 mM sodium phosphate, pH 7.5) and acetonitrile in the presence of reducing agents were collected at different time points and analyzed on an HPLC-MS system. Aliquots of 95 µL of the reaction
mixtures were injected onto a C4 column (50 mm, 4.6 mm i.d.; 300-Å pore size, 5 µm particle size, Vydac 214 MS, Grace, Deerfield, IL) operated by an HPLC system coupled with ESI-MS. The analysis was performed in the same way as described Section 3.2.5 in Chapter 3.

5.2.5 Peptide mapping of IgG4-Fc.

An aliquot of 250 µL IgG4-Fc in 20 mM sodium phosphate (pH 7.0) was denatured and reduced by addition of 250 µL 6 M GdnHCl and 25 µL of 100 mM BMS, followed by incubation at 37°C for 1 hr. 6 M GdnHCl was prepared by dissolving 5.73 g in 10 mL of 50 mM ammonium bicarbonate. 100 mM BMS was prepared by dissolving 93.1 mg of BMS in 5 mL of CH$_3$CN or CD$_3$CN. After reduction, 41.6 µL of 500 mM IAA (in NH$_4$HCO$_3$) were added, and the protein solution was incubated at 37°C for 1 hr. Excess quantities of GdnHCl, BMS and IAA were exchanged to 5 mM NH$_4$HCO$_3$ through a 10 kDa filter unit (Amicon, Ultra Centrifugal Filter, County Cork, Ireland) via centrifugation at 16,900 g for 15 min at 4°C. The protein solution was reverse-flip collected via centrifugation at 300g for 4 min at 4°C. The collected IgG4-Fc (ca. 50 µg) was digested with 5 µg of GluC for 6 hr. GluC was prepared by dissolving in 5 mM NH$_4$HCO$_3$ at 0.2 mg/mL. Two shots of GluC were applied, with 12.5 µL in each shot, and added at 0 hr and 3 hr, respectively. The GluC-digested peptides were analysed by HPLC-MS/MS.

5.2.6 HPLC-MS/MS. A detailed approach was described in Section 2.2.8 in Chapter 2.
5.3 Results.

5.3.1 Identification of an N-terminal peptide derivative resulting from reaction with acetonitrile.

IgG4-Fc was reduced with BMS (dissolved in acetonitrile), alkylated with IAA, digested with GluC, and analyzed by HPLC-MS/MS. A new peak with an m/z value of 884.34 (z=1) was observed. The MS/MS spectrum of this peak is displayed in Fig. 1, bottom. The presence of a series of b ions, including b2, b3, b4 and b6, indicates that the N-terminal Cys reveals a mass addition of 24 Da. Overall, the peak was identified as an N-terminal peptide derivative with the following sequence: $C^{225}(+24)PSC^{228}(+57)PAPE$, where $+24$ indicates that Cys225 is modified, $+57$ indicates that Cys228 is alkylated by IAA. The product is proposed to result from the reaction of the N-terminal Cys with acetonitrile, which was utilized to dissolve the reducing agent, BMS. Therefore, a deuterium-labeled acetonitrile (CD_3CN) was subsequently applied. The MS/MS spectrum of the product from CD_3CN corresponds to $C^{225}(+27)PSC^{228}(+57)PAPE$, indicating that the product results from reaction with acetonitrile, and that the three hydrogens in acetonitrile are all incorporated in the product at the N-terminal Cys residue, revealed by the mass addition of 27 Da at Cys225.
Fig. 1. MS/MS identification of N-terminal cyclic product, top: $C(+27)PSC(+57)PAPE$, formed in CD$_3$CN; and bottom: $C(+24)PSC(+57)PAPE$, formed in CH$_3$CN.
5.3.2 Characterization of reaction of intact IgG4-Fc with acetonitrile: identification of reaction intermediates, products and effect of incubation time

To further characterize the reaction of IgG4-Fc and acetonitrile, 150 µL HM IgG4-Fc (0.2 mg/mL, pH 7.1) was incubated with 8 µL acetonitrile under reducing conditions at 37°C for different times, e.g., 1 hr, 2 hr, 3 hr, 6 hr, 12 hr, and 24 hr. At each time point, the solution was collected and subsequently analyzed by HPLC-MS, where the de-convoluted mass spectra are shown in Fig. 2. The top two abundant species of IgG4-Fc, GlcNAc\(_2\)Man\(_8\) IgG4-Fc (theoretical mass: 26708.6 Da) and GlcNAc\(_2\)Man\(_9\) IgG4-Fc (theoretical mass: 26870.16 Da) were monitored for potential chemical modifications, displayed in Fig. 2. After 1 hr incubation, two new peaks were observed, derived from native GlcNAc\(_2\)Man\(_8\) IgG4-Fc (experimental mass: 26708.2 Da) (Fig. 2A), revealing the mass addition of 24 Da and 41 Da, referred to as peak 1 and peak 2, respectively. The mass of peak 1 is consistent with the modification at N-terminal Cys\(^{225}\), as described in Section 5.3.1. We propose that peak 2 corresponds to a potential intermediate. A reaction scheme will be discussed in Section 5.4.1. Meanwhile, similar products were observed for GlcNAc\(_2\)Man\(_9\) IgG4-Fc, referred to as peak 1’ and peak 2’ (Fig. 2A). Approximately 30% of non-modified IgG4-Fc is present after 1 hr incubation (Fig. 2A). After 2 hr (Fig. 2B) and 3 hr (Fig. 2C) incubation, the quantity of native proteins decreased significantly, yielding higher intensities of peak 1, 2, 1’ and 2’ (Fig. 2B). It needs to be noted that there is not much of an effect of incubation time on the relative difference in intensities between peak 1 and peak 2, or peak 1’ and peak 2’. When the incubation time was longer than 12 hr, more peaks are observed, referred to as peaks 3, 4, 3’, and 4’ in Fig. 2E and 2F. We propose that these correspond to the products resulting from side reactions occurring during
elongated incubation time. A proposed mechanism is discussed in Section 5.4.2.

Fig. 2. Characterization of reaction of CH$_3$CN and WT IgG4-Fc in the presence of 5 mM BMS after incubation at (A) 1 hr (B) 2 hr (C) 3 hr (D) 6 hr (E) 12 hr, and (F) 24 hr at 37°C. Theoretical mass of IgG4-Fc-GlcNAc$_2$Man$_8$ is 26708.06 Da, observed mass of IgG4-Fc-GlcNAc$_2$Man$_8$ is 26708.02 Da, theoretical mass of IgG4-Fc-GlcNAc$_2$Man$_9$ is 26870.16 Da, observed mass of IgG4-Fc-GlcNAc$_2$Man$_9$ is 26870.5 Da. Corresponding GlcNAc$_2$Man$_8$-IgG4-Fc and GlcNAc$_2$Man$_9$-IgG4-Fc species are labeled in Fig. 2A. The labeled Peak 1, 2, 3, 4, 1’, 2’, 3’, and 4’ represent the IgG4-Fc species derived from reaction with acetonitrile.
5.3.3 Characterization of the reaction of IgG4-Fc with 4-cyano-1-butyne.

We designed to utilize the reactions between N-terminal Cys of IgG4-Fc and acetonitrile as potential linker chemistry for molecules of interests to proteins 4-cyano-1-butyne was selected, because of the presence of two functional groups, a terminal nitrile and alkyne, where the nitrile can selectively react with the N-terminal Cys of a protein and the alkyne can react with azide in a process known as “click” reaction10. Additionally, we incorporated two methyl groups between the two functional groups to allow increased flexibility.

To characterize the reaction of IgG4-Fc and 4-cyano-1-butyne, 150 µL of nonglycosylated N297Q IgG4-Fc (0.2 mg/mL, pH 7.1) was incubated with 8 µL of 4-cyano-1-butyne at 37°C for 90 min, followed by analysis with HPLC-MS. Unexpectedly, the presence of alkyne induces polymerization of N297Q IgG4-Fc (Fig. 3), under reducing (Fig. 3B) and non-reducing (Fig. 3C) conditions. In particular, under reducing conditions, there is a new peak presenting a mass value of 25313 Da, indicating the potential reaction of 4-cyano-1-butyne with the free thiol (RSH). In the absence of the reducing agent, TCEP, a series of potential protein polymerization products were observed as well (Fig. 3C), suggesting that other functional groups of N297Q can potentially react with the alkyne and induce polymerization.
Fig. 3. Characterization of reaction of (A) N297Q IgG4-Fc and TCEP at 37°C for 90 min, pH 7.0 (B) N297Q, HCCCH\textsubscript{2}CH\textsubscript{2}CN and TCEP at 37°C for 90 min, pH 7.0; (C) N297Q and HCCCH\textsubscript{2}CH\textsubscript{2}CN at 37°C for 90 min, pH 7.0.
5.4 Discussion

5.4.1 Proposed mechanism of N-terminal Cys of IgG4-Fc with acetonitrile.

A chemical modification at the N-terminal Cys of IgG4-Fc was observed, likely resulting from the presence of a co-solvent (CH$_3$CN) during the process of reduction. Particularly, we examined the role of acetonitrile with a deuterium-labeled acetonitrile (CD$_3$CN), where the modification at the N-terminal Cys presented an additional mass of 3 Da (Fig. 1). Based on these observations, we propose the mechanism displayed in Scheme 1. Under reducing conditions, the thiol group (RSH) attacks the nitrile carbon and forms a thioether intermediate A, where the nitrile carbon can be subsequently attacked by the N-terminal primary amine, forming cyclic intermediate B. Intermediates A and B present same mass (Fig.2, peak 2 and/or peak 2’), and the mass corresponding to intermediates A and B is detected by HPLC-MS (Fig. 2). The primary amine formed on the 5-membered ring eliminates ammonia, resulting in the cyclic product with a mass addition of +24 Da (Fig.2, peak 1 and/or peak 1’). The cyclic product was observed with a mass addition of +27 Da during reaction with CD$_3$CN, confirming that the methyl group from acetonitrile is incorporated (Fig. 1).

We further investigated the effects of incubation time on the yields of the product (Fig. 2), where the duration of 3 hr reveals potentially the optimal incubation time, due to the fact that the native IgG4-Fc was predominantly reacted. A longer incubation, on the other hand, results in increased formation of side products, indicated by the increased intensities of additional peaks, peak 3, 4, 3’
and 4' in Fig. 2E and 2F. We propose that this results from the reaction of other Cys residues with acetonitrile (Scheme 2), considering that the protein:CH₃CN ratio is 1:2.5x10⁵ (concentration:concentration). The major products reveal the addition of acetonitrile to other Cys residues, e.g., peak 3 derived from peak 1, peak 4 derived from peak 2. These observations indicate that the other Cys residues in IgG4-Fc react at a significant slower rate with acetonitrile, as compared to the N-terminal Cys. These side reactions can be potentially minimized through dialysis of the excess quantity of CH₃CN and shortened reaction time.

Scheme 1. Proposed mechanism of reduced N-terminal Cys of IgG4-Fc with acetonitrile.

\[
\begin{align*}
\text{H₂N} & \quad \text{O} \\
\text{HS} & \quad \text{R} \\
\longrightarrow & \quad \text{H₂N} \\
\text{O} & \quad \text{R} \\
\text{H₂C} & \quad \text{NH} \\
\text{S} & \quad \text{O} \\
\text{R} & \quad \text{H}_3\text{C} \\
\text{NH} & \quad \text{S} \\
\text{N} & \quad \text{O} \\
\text{R} & \quad \text{H}_3\text{C} \\
\text{H}_2\text{N} & \quad \text{NH}_3 \\
\text{H}_3\text{C} & \quad \text{N} \\
\end{align*}
\]

Scheme 2. Proposed mechanism of reduced non-N-terminal Cys residues of IgG4-Fc with acetonitrile.
5.5 References.

Chapter 6. The role of ultrafiltration device bias hydrolysis products during peptide map
6.1 Introduction

Peptide mapping refers to selective fragmentation of a protein into well-defined peptides using suitable enzymes or chemicals\(^1\). Through peptide mapping of a protein product, primary structures and corresponding covalent modifications (e.g., site-specific glycosylation, oxidation, and amino acid substitution) can be identified. A typical peptide mapping contains a denaturation step to unfold the protein to be accessible for the following reduction and alkylation\(^2\). The reduction step serves to break covalently linked disulfide bonds, and the alkylation step serves to protect reduced thiol with alkylating agents, due to the fact that the reduced thiol (RSH) is highly reactive\(^3\). Typical reducing agents are dithiothreitol (DTT) and bis(2-mercaptoethyl)sulfone (BMS), and typical alkylating agents are iodoacetic amide (IAA), iodoacetic acid (IAC), and N-ethylmaleimide (NEM)\(^4\). After denaturation, reduction and alkylation, proteins are accessible for enzymatic or chemical treatment. Peptide map is a powerful and universal analytical technique to characterize primary structures of proteins. Hence, the International Council for Harmonization (ICH) Q6B guideline recommends the utilization of peptide mapping for structural characterization and confirmation of biotherapeutics\(^5\).

Sufficient quantities of denaturing, reducing and alkylating agents are introduced during peptide mapping to ensure the completion of each step. The subsequent depletion of these components is necessary for reducing side reactions\(^6\), minimizing matrix effects (generating good signals in analytical detection)\(^7\), and sustaining an efficient enzymatic digestion. Enzymes are recommended
to be in a buffer system, where they maintain their optimal activity. Ultra-centrifugal filters, spin column, and dialysis are the common approaches to remove the salts. Among these, centrifugal filter device represents a relatively convenient and efficient tool, and has been extensively utilized.

In the present work, we observed a hydrolysis reaction between Cys425 and Ser426 (Eu numbering) in an IgG4-Fc during peptide mapping, where the hydrolysis products were identified by HPLC-MS/MS. Notably, the measured relative yields of the hydrolysis products are dependent on the steps selected for sample preparation, e.g., the usage of distinct alkylating agents and filtration devices.

6.2 Materials and Methods

6.2.1 Materials. Sodium phosphate, guandine hydrochloride (GdnHCl), IAA, IAC, ammonium bicarbonate, and Trypsin/LysC were purchased from the same sources as described in Chapter 2.2.1. 18O-labeled water (95–98% atom pure 18O) was purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA).

6.2.2 Peptide mapping of IgG4-Fc. An aliquot of 500 µL IgG4-Fc (0.22 mg/mL, pH 7.1) in 20 mM sodium phosphate was mixed with 500 µL of 6 M GdnHCl, 5 µL of 1 M DTT, and incubated at 37°C for 1 hr. IgG4-Fc was alkylated by the addition of 20 µL 1 M IAA, and incubated at 37°C for 1 hr. The excess quantity of denaturing, reducing and alkylating agents was filtered with a 10 kDa filter unit (Amicon Ultra Centrifugal Filter, County Cork, Ireland), and exchanged with 300
µL of 5 mM ammonium bicarbonate twice via centrifugation at 16,900 g. For the last centrifugation step, the protein solution was concentrated to approximately 200 µL. The protein solution was collected by reverse-flip of the filters, and centrifuged at 300g for 4 min. The stock solutions of GdnHCl, DTT, and IAA were prepared in 50 mM ammonium bicarbonate. Collected protein was digested with trypsin/LysC at a protein:enzyme ratio of 30:1 (w:w). 20 µg of trypsin/LysC was dissolved in 100 µL of 5 mM ammonium bicarbonate, where 16.6 µL of trypsin/LysC solution were added to the protein solution. The digestion was performed at 37°C for 6 hr prior to analysis by HPLC-MS/MS.

6.2.3 HPLC-MS analysis. A similar approach was described in Section 3.2.8.

6.3 Results

6.3.1 Identification of hydrolysis products.

IgG4-Fc was denatured with GdnHCl, reduced with DTT, alkylated with IAA, and digested with trypsin/LysC, followed by analysis with HPLC-MS. Two hydrolysis products, WQEGNVFSC(+57) and SVMHEALHNHYTQK, were observed, originating from the tryptic peptide WQEGNVFSC(+57)SVMHEALHNHYTQK, where +57 indicates that Cys has been chemically alkylated by IAA. The collision-induced dissociation (CID) MS/MS spectra of WQEGNVFSC(+57) (m/z =563.7, z=2) are displayed in Fig.1. The presence of y3, y7, and b7 ions identifies the peptide as a hydrolysis product with the C-terminal sequence SC(+57). The CID
MS/MS spectra of SVMHEALHNHYTQK (m/z=424.4, z=4) are displayed in Fig. 2. The identification of the b7 ion, and a series of the y ions (e.g., y3, y4, y7, y10, y11, and y12 ions) confirms the amino acid sequence of the product.
Fig. 1. CID spectra of hydrolysis product WQEGNVFSC(+57) (m/z 563.71; z=2).

Fig. 2. CID spectra of hydrolysis product SVMHEALHNHYTQK (m/z 424.4; z=4).
6.3.2 The origin of oxygen in hydrolysis products.

Two fragment products, WQEGNVFSCR(57) and SVMHEALHNHYTQK, were observed originating from the tryptic peptide WQEGNVFSCR(57)SVMHEALHNHYTQK. A carboxylic acid was formed at the C-terminus of WQEGNVFSCR(57), indicating the incorporation of one oxygen. Hence, we investigated the origin of the oxygen utilizing 18O-labeled water during tryptic digestion. Aliquots of IgG4-Fc were denatured, reduced and alkylated as described in Section 6.2.2 in H$_2^{16}$O prior to tryptic digestion. The excess denaturing, reducing and alkylating agents were exchanged into 5 mM ammonium bicarbonate in H$_2^{18}$O using 10 kDa Amicon Ultra centrifuge filters. The digestion was performed in 5 mM ammonium bicarbonate in H$_2^{18}$O with trypsin/LysC for 8 hrs at 37°C, followed by analysis with HPLC-MS. The incorporation of 18O was monitored for the two products, WQEGNVFSCR(57) and SVMHEALHNHYTQK, displayed in Fig. 3 and 4, respectively. WQEGNVFSCR(57) reveals the incorporation of one 18O indicated by the mass addition of 2 Da. SVMHEALHNHYTQK reveals the incorporation of one and two oxygens, respectively, indicated by the mass additions of 2 Da and 4 Da, respectively.

Prior to digestion, IgG4-Fc was buffer-exchanged to 18O-labeled water through filtration, indicating the presence residual H$_2^{16}$O. Therefore, the highest mass shift of each product is taken into consideration. The mass shift in product WQEGNVFSCR(57) corresponds to a hydrolysis reaction. The mass shift in product SVMHEALHNHYTQK corresponds to a tryptic cleavage.11
Fig. 3. Incorporation of 18O in peptides WQEGNVFSC(+57) due to hydrolysis from WQEGNVFSC(+57)SVMHEALHNHYTQK. Spectra displayed in front correspond to digestion performed in H_2^{16}O, spectra displayed in bottom indicate digestion performed in H_2^{18}O.
Fig. 4. Incorporation of 18O in peptides SVMHEALHNHYTQK due to digestion. Spectra displayed in front correspond to digestion performed in H$_2^{16}$O, spectra displayed in bottom indicates digestion performed in H$_2^{18}$O.

6.3.3 The effects of the usage of Amicon filter on the quantity of products.

Prior to enzymatic digestion, a filtration step was introduced in the sample preparation as described in section 6.2.2. We, therefore, evaluated the potential role of this step on the relative quantity of the hydrolysis products. The quantification of each peptide was obtained by extracting the intensity of each peak using MassLynx (Waters Inc., Milford, CA). The relative hydrolysis products are quantified by the means of taking the ratio of the quantity of the product to the total ion count of the full chromatography. The equation is shown as follows.
Interestingly, the introduction of the filtration step results in a 1000- to 2000- fold enrichment of products 1 and 2, as compared to sample preparation without usage of the filter (Fig. 5).

Fig. 5. The yields of hydrolysis products (%) formed during peptide map of IgG4-Fc after denaturation with GdnHCl, reduction with DTT and alkylation with IAA, with or without filtration, where product 1 corresponds to WQEGNVSC(+57), and product 2 corresponds to
6.4 Discussion

In this chapter, a hydrolysis reaction was observed between Cys425 and Ser426 in an IgG4-Fc during the process of peptide mapping. Two hydrolysis fragments, WQEGNVSC(+57) and SVMHEALHNHYTQK, were identified by HPLC-MS/MS (Fig. 1 and Fig. 2) originating from the native peptide, WQEGNVSC(+57)SVMHEALHNHYTQK. To rule out the potential effects of digestion from Trypsin/LysC leading to the formation of these products, digestion was performed in 18O-labeled H\textsubscript{2}O. As displayed in Fig. 3, WQEGNVFSC(+57) (m/z 563.71, z=2) reveals the presence of no mass shift and an additional mass of 2 Da, indicating there is 0 to 1 18O incorporation. On the other hand, SVMHEALHNHYTQK (m/z 424.4, z=4) reveals the presence of no mass shift, an additional mass of 2 Da and 4 Da, indicating there is 0, 1 and 2 18O incorporation. We prepared the digestion solution in H\textsubscript{2}18O with Amicon filtration via exchange H\textsubscript{2}16O to H\textsubscript{2}18O through centrifugation, suggesting that residual amounts of H\textsubscript{2}16O were present during trypsin/LysC digestion, which explains the additional presence of no mass shift in products 1 and 2. We conclude the +2 Da mass addition of WQEGNVFSC(+57) is due to the hydrolysis from the parent peptide, with one oxygen from H\textsubscript{2}18O incorporated at the C-terminus of the peptide. The +2 Da and +4 Da mass additions for the other hydrolysis product, SVMHEALHNHYTQK, are due to trypsin/LysC digestion. Therefore, these observations confirm that the two fragments originated from hydrolysis. It needs to be noted that the hydrolysis reaction can occur during the
process of reduction, alkylation and digestion.

The yields of the hydrolysis products are higher when IAA was used as the alkylation agent as compared to IAC (Fig. 6). The proposed mechanisms are displayed in Scheme 1 (with IAA) and Scheme 2 (with IAC), respectively, involving the side chain (OH group) of Ser426 adding to the neighboring N-terminal peptide bond, resulting in the fragmentation of the backbone at Cys425-Ser426. In addition, our rationale that alkylation of Cys with IAA results in higher yields is due to inductive effects of the amide group of IAA, as compared to IAC, facilitating the addition of OH group of Ser426 to carbonyl group of peptide bond. (Scheme 1 and Scheme 2)
Fig. 6. The yields of hydrolysis products (%) formed during peptide map of IgG4-Fc after denaturation with GdnHCl, reduction with DTT and alkylation with IAA and IAC, respectively, where product 1 corresponds to WQEGNVSC(+57), and product 2 corresponds to SVMHEALHNHYTQK. No filtration step was applied.

Moreover, we observed the utilization of Amicon filters played significant roles in the quantity of
the fragmentation products (Fig. 5), where the application of filter step enriched the fragmentation products. Our rationale for this observation is that a filtration step potentially enriches the shorter protein resulted from the hydrolysis, where the relatively long unfolded proteins may preferably attach to the filter units.
6.5 References

Scheme 1. Proposed mechanism for hydrolysis between Cys425 and Ser426 in an IgG4-Fc, where Cys425 is chemically alkylated by IAA.
Scheme 2. Proposed mechanism for hydrolysis between Cys\(^{425}\) and Ser\(^{426}\) in an IgG4-Fc, where Cys\(^{425}\) is chemically alkylated by IAC.
Chapter 7. Conclusions and future perspectives
7.1 Summary and conclusions

IgG mAbs are glycoproteins that have emerged as powerful and promising protein therapeutics. IgGs are marginally stable\(^1\) and sensitive to intrinsic (e.g., glycosylation, primary sequences) and extrinsic factors (e.g., light, temperature)\(^2\). Photodegradation in IgGs alters their primary structures, associated with chemical and physical instability\(^3\). More recent studies have recognized an additional, critical role of light-induced oxidative, chemical protein modifications for immunogenicity\(^4\)\(^-\)\(^6\). Importantly, when Boll et al.\(^7\) analyzed immunogenic samples of an oxidized monoclonal antibody (mAb) for common oxidation products of Met and Trp, they concluded that these did not contribute significantly to immunogenicity. Hence, the initial aim of the thesis was to identify photo-induced chemical modifications other than conventional oxidation products, using IgG4-Fc as a model protein. Furthermore, we elucidated the consequences of these chemical modifications on the quality and function of IgG4-Fc, in combination with the effects of glycosylation. During the method development processes, the reaction of N-terminal Cys of IgG4-Fc with acetonitrile under reducing conditions was observed and investigated. These reactions can likely be utilized as linker chemistry in molecules of interest to proteins. In addition, an ultrafiltration device was observed to bias towards the detection of two hydrolysis products from peptide backbone cleavage between Cys\(^{425}\) and Ser\(^{426}\).

Chapter 2 details a mechanism for the photolytic Tyr side chain fragmentation at Tyr\(^{300}\), Tyr\(^{373}\) and Tyr\(^{436}\) in IgG4-Fc upon irradiation at UVC light at \(\lambda = 254\) nm and UVB light with \(\lambda_{\text{max}} = 305\) nm. Tyr side chain fragmentation yielded either Gly or various backbone cleavage products,
including glyoxal amide derivatives. A mechanism is proposed involving intermediate Tyr radical cation formation, either through direct light absorption of Tyr or through electron transfer to an initial Trp radical cation, followed by elimination of quinone methide. To our knowledge, this is the first observation of a photo-induced Tyr side chain reaction in a protein.

Chapter 3 elucidates the impact of photo-induced side chain fragmentation at Tyr\(^{300}\), Tyr\(^{373}\), Tyr\(^{436}\) and Trp\(^{381}\) on physicochemical stability and receptor binding of IgG4-Fc. Trp and Tyr are the two major light-sensitive amino acids and are critical to maintain the conformational structures of proteins. Photo-induced side chain fragmentation at these amino acids typically leads to their transformation to Gly\(^8, 9\). To evaluate the impact of these photodegradation products, Y300G, Y373G, Y436G, W381G and W381A IgG4-Fc were representatively prepared. Y373G and Y436G reveal significantly reduced thermal stability, as compared to WT. W381A and W381G reveal an overall conformational structure perturbation, indicated by no detectable thermal transition on DSC. W381A, Y300G, and Y436G present a ca. 10-fold reduction in binding affinity to Fc\(\gamma\)RIIIA, as compared to WT. Nearly two thirds of an adjacent Ser\(^{375}\) was O-mannosylated in W381A and W381G IgG4-Fc. Results from this study demonstrate that photo-induced conversion of Trp and Tyr to Gly (e.g., at Trp\(^{381}\), Tyr\(^{373}\), Tyr\(^{300}\)) notably modifies the physico-chemical properties and biological functions of IgG4-Fc.

Chapter 4 characterizes the impact of N-glycan structures on physico-chemical stability, photostability, and receptor binding of IgG4-Fc. N297Q reveals the lowest thermal stability in the C\(_{H2}\) domain, as compared to HM, Man\(_5\), and GlcNAc\(_1\). Man\(_5\) presents two-fold higher in binding affinity to Fc\(\gamma\)RIIIA than HM, and ca. 36-fold higher as compared to GlcNAc\(_1\). N297Q does not
present measurable binding affinity to FcγRIIIA. Moreover, N-glycan structures at Asn^{297} were revealed to play a role in the yield of photoproduct formation including vinyl Cys and backbone cleavage products from Tyr side chain fragmentation.

Chapter 5 investigates a reaction between N-terminal Cys of IgG4-Fc and a co-solvent (acetonitrile) under reducing conditions, where a five-membered cyclic product was formed at the N-terminal Cys.

Chapter 6 discovers two hydrolysis products resulting from a hydrolysis reaction of IgG4-Fc during peptide mapping. Two factors were demonstrated to impact the relative quantity of the hydrolysis products analyzed by HPLC-MS, including the selection of alkylating agents and the application of a filtration device during sample preparation.

7.2 Future directions

Currently, several specific glycan patterns10,11 and oxidation products12 of mAbs, known to impact their half-life, efficacy, and shelf-life, are listed as critical quality attributes, and need to be strictly controlled and monitored. The findings of this thesis elucidate the consequences of photo-induced Trp and Tyr side chain fragmentation and glycan structures of IgG4-Fc to its physicochemical properties, receptor binding, and photostability. Studying these characteristics of IgGs can advance our knowledge to maintain IgGs stability and functions, aid in the development of a better drug substance and product.
7.3 References

