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Abstract  

 It is increasingly recognized that a patient’s response to a medical treatment is a statistically 

heterogeneous phenomenon. The average treatment effects may not represent a heterogeneous 

population of patients. The benefits each patient receive from the treatment could differ, requiring 

measurement of treatment benefits at the patient level. Despite of the development of methods in 

this field, new methods are needed for predicting individual treatment benefits using longitudinal 

binary outcomes or hospital data with nonignorable missingness.  

 This dissertation has three main chapters. Chapter 1 introduces a method for predicting 

individual treatment benefits based on a personalized medicine model that implements random 

effects logistic regression of binary outcomes that may change over time. The method uses 

empirical Bayes (EB) estimators based on patients’ characteristics and responses to treatment. The 

prediction performance is evaluated in simulated new patients using correlations between the 

predicted and the true benefits as well as relative biases of the predicted benefits versus the true 

benefits. As an application, the method is used to examine changes in the disorganized dimension 

of antipsychotic-naïve patients from an antipsychotic randomized clinical trial.  

 Chapter two of the dissertation presents a method for predicting individual treatment 

benefits with a novel 2-dimensional personalized medicine model that handles non-ignorable 

missingness due to hospital discharge and evaluate its reliability and accuracy by simulations. The 

longitudinal outcome of interest is modeled simultaneously with the hospital length of stay through 

a joint mixed model. The method is illustrated with an application assessing individual pain 

management benefits post spine fusion surgery. EB-Predicted individual benefits are compared 

with Monte-Carlo computed benefits. Pearson’s correlations and relative biases are used to assess 

the prediction accuracy.  
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 Finally, Chapter three of the dissertation applies the methodology developed in Chapter 

two to analyze with more clinical detail the impact of depression and age on individual benefits of 

postoperative pain management in lumbar spinal fusion patients using Cerner HealthFacts® 

electronic health records. The developed joint multivariate mixed model of pain scores and length 

of hospital stay is used to analyze individual benefits. The effects of depression and age on the 

amount and rate of change of the pain management benefits are evaluated, as well as the 

association between individual benefits and post-surgical hospital length of stay.  

We conclude that the utilization of the EB prediction of individual treatment benefits is 

useful in the analyses of treatment effects using not only clinical trial data but also electronic health 

records. Predicted individual treatment benefits are accurate when model parameters are reliably 

estimated. 
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Chapter 1: Measuring individual benefits of psychiatric treatment using longitudinal binary 

outcomes: Application to antipsychotic benefits in non-cannabis and cannabis users   

In collaboration with Drs. Benedicto Crespo-Facorro, M.D., Jose de Leon, M.D., and Francisco J. Diaz, 

Ph.D. 

(See collaborator affiliations in Acknowledgements) 

1.0. Abstract 

 We present and evaluate a method for predicting individual treatment benefits based on random 

effects logistic regression models of binary outcomes that change over time. The method uses empirical 

Bayes estimators based on patients’ characteristics and responses to treatment. It is applicable to both 1-

dimentional and 2-dimentional personalized medicine models. Comparisons between predicted and true 

benefits of simulated new patients using correlations and relative biases were used to evaluate prediction 

performance. The predicted benefits had relatively small relative biases and relatively high correlations 

with the true benefits in the simulated new patients. The predictors also captured overall population trends 

in the evolution of individual benefits. The proposed approach can be used to retrospectively evaluate 

patients’ responses in a clinical trial, or to retrospectively or prospectively predict individual benefits of 

different treatments for new patients using patients’ characteristics and previous responses. The method is 

used to examine changes in the disorganized dimension of antipsychotic-naïve patients from an 

antipsychotic randomized clinical trial. Retrospective prediction of individual benefits revealed that more 

cannabis users had slower and lower responses to antipsychotic treatment as compared to non-cannabis 

users, revealing cannabis use as a negative prognostic factor for psychotic disorders in the disorganized 

dimension. 

Keywords: individual benefits, longitudinal binary outcomes, cannabis, psychosis, empirical Bayesian 

prediction 

  



2 

1.1 Introduction 

Randomized clinical trials (RCT) are often used to establish the best treatment for the average 

patient. Heterogeneity in patients’ responses are largely overlooked. In the era of personalized medicine, 

which perceives patients’ responses to medications as a heterogeneous phenomenon (de Leon, 2012; 

Ruberg et al., 2010; Sies et al., 2019; Xu and Hedeker, 2001), it is essential to develop statistical tools for 

the analysis of individualized treatment benefits in RCTs that guide therapy in medical practice.  

The statistical approaches developed in recent years for establishing personalized treatment rules 

or predicting individualized treatment benefits include methods based on generalized linear mixed-effects 

models (Andrews and Cho, 2018; Botts et al., 2008; Cho 2017; Diaz, 2016, 2017; Diaz et al., 2007, 2008, 

2012a, 2012b, 2013a, 2013b, 2014; Senn, 2016;  Zhu and Qu, 2016), penalized regression for high-

dimensional data (Boulesteix et al., 2017; Kim et al., 2017; Ma et al., 2016), and machine learning methods 

(Goldstein et al., 2017; Powers et al., 2018). Among them, generalized linear mixed-effects modeling is an 

excellent tool for predicting individuated treatment benefits. Diaz (2016, 2019) proposed the concepts of 

1-dimensional personalized medicine (1-PM) and 2-dimensional personalized medicine (2-PM) models for 

treatments of chronic diseases using mixed effects. These models use random effects in addition to fixed 

effects to represent the heterogeneity of patients’ characteristics including unknown traits. If the random 

effects only include a random intercept representing unexplained patient variability before treatment 

administration, then the model is considered a 1-PM model. In this case, the treatment effect is fixed in the 

sense that it is independent of the patient. If the random effects additionally include random coefficients 

whose variabilities are explained by differences in the treatment effect across patients, then it is considered 

a 2-PM model (Diaz 2016, 2019). While treatment effects are still measured with regression coefficients 

other than the intercept, the individual treatment benefit is a dimension that may also depend on some of 

the patient’s known or unknown baseline characteristics.   

Cannabis is a psychoactive drug widely used around the world; it has a significant impact on mental 

and physical health (Barrigón et al., 2010; Cobo et al., 2017; Legleye, 2018). Cannabis use has been shown 

to be associated with increased risk of developing psychotic disorders as well as adverse outcomes in 
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patients with psychosis (Linszen et al., 1994; Moore et al., 2007; Zammit et al., 2008). Multiple cohort 

studies suggest that cannabis abuse leads to more severe psychotic symptoms in patients with psychosis or 

schizophrenia (Caspari, 1999; Grech et al., 2005; Foti et al., 2010; Kuepper et al., 2011). Cannabis use is 

also known to be associated with increased relapse and non-adherence (Hides et al., 2006; Linszen et al., 

1997; Schoeler, 2016). Clausen et al. (2014) found that patients who stopped using cannabis had a 

significantly lower level of psychotic symptoms after adjusting for baseline conditions and medications.  In 

our pragmatic RCT of patients with a first episode of non-affective psychosis, after adjusting for potential 

confounders, cannabis use was associated with poorer responses to antipsychotic treatment when responses 

were measured with the disorganized or the positive dimensions of the Scale for the Assessment of Positive 

Symptoms and Negative Symptoms (SAPS-SANS) (Andreasen, 1983a, 1983b; Pelayo-Teran et al., 2014).  

The objective of the current study is three-fold. The first is to extend the methodology for measuring 

individual treatment benefits proposed by Diaz (2016, 2019) to longitudinal binary outcomes, which utilizes 

empirical Bayesian (EB) predictors of individual benefits. This is necessary because patients’ responses to 

treatment may change over time, whereas the previous approach to measuring individual benefits with 

binary outcomes considered only stable post-treatment responses (Diaz, 2016). The second is to evaluate 

the performance of the proposed EB predictors by showing that they correlate with the true benefits 

achieved by simulated hypothetical new patients and showing that the predictors can also reflect overall 

clinical population trends. The third is to illustrate the methodology by measuring the individual benefits 

of antipsychotic treatment and showing how cannabis use affects these, using the disorganized dimension 

scores of the SAPS-SANS scale from the patients of our pragmatic RCT (Pelayo-Teran et al., 2014).  

In Section 2, we present the methods used for this study. Section 2.1 describes 1-PM and 2-PM 

logistic regression models for longitudinal responses that evolve over time.  Section 2.2 describes disease 

severity measures and benefit functions under the logistic model. Section 2.3 describes how individual 

benefits can be calculated for each time point using EB prediction. Section 2.4 introduces the application 

of the proposed method of benefit prediction in the analysis of data from the antipsychotic RCT (Pelayo-

Teran et al., 2014). Section 2.5 describes two methods for evaluating the performance of EB predictors. 
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One compares their distribution with estimates obtained through Monte Carlo computations, and the other 

implements simulations of hypothetical new patients. The model and analysis for the antipsychotic RCT 

are in Sections 3.1 and 3.2.  Results of the evaluations of EB predictors are in Sections 3.3, 3.4 and 3.5. A 

discussion is in Section 4. 

1.2. Methods  

1.2.1 Time-dependent personalized medicine models for binary outcomes 

We assume that the treatment response is a binary outcome of ‘1’ (‘Yes’) versus ‘0’ (‘No’), with 1 

indicating a good condition for the patient. This also applies to controlling the measurement of a continuous 

or ordinal response such that it is below or above a pre-set value or within a pre-set range, for instance, 

dichotomizing a response for which the assumptions of alternative regression models may not be valid. For 

example, as a therapeutic target, we may want to reduce the discrete disorganized dimension score (ranged 

0-15) of a psychiatric patient to less than or equal to 3. The response is defined as 1 if the measurement is 

≤ 3, and 0 if it is > 4. We also assume that the responses vary over time, which is often the case in medical 

treatments.  

We used mixed-effects logistic regression models to predict the treatment benefits. The binary 

outcome is denoted as 𝑦𝜔,𝑗 where 𝜔 represents a subject (or patient) and 𝑗 a specific observation at a given 

time point 𝑡𝜔,𝑗. The 2-PM logistic model is  

               

 logit (𝑃(𝑦𝜔,𝑗 = 1|𝑿𝜔, 𝑡𝜔,𝑗)) = 𝛼0,𝜔 + 𝝀𝑇𝑿𝜔  + ∑ 𝛽𝑘

𝑛

𝑘=0

𝑔𝑘(𝑡𝜔,𝑗) +   ∑ 𝛼𝑘,𝜔

𝑛

𝑘=1

𝑔𝑘(𝑡𝜔,𝑗), (1)  

 𝜔 = 1, … , 𝐼, 𝑗 = 1, … , 𝐽𝜔    

where 𝐼 indicates number of subjects used to estimate model parameters, 𝐽 indicates number of observations 

for subject 𝜔,  𝑿𝜔 indicates patient-level covariates (i.e., a subject’s characteristics) with fixed effects, 𝑔𝑘 

are functions of time, 𝛽𝑘 and 𝝀 are fixed effects (population constants). 𝛼𝑘,𝜔 (𝑘 ≥ 0) are random effects in 
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the sense that each patient has their own values. Usually, 𝛼𝑘,𝜔 are considered normally distributed with 

mean 0 (Hedeker & Gibbons, 2006; White et al., 2003). When 𝛼𝑘,𝜔 = 0 for 𝑘 ≥ 1, Formula (1) reduces to 

a 1-PM model. 

 A usual choice for 𝑔𝑘(𝑡) is 𝑡𝑘, 𝑘 = 0, … , 𝑛, which models the evolution of the response over time with a 

polynomial trend of degree 𝑛. Here, however, 𝑔0(𝑡), … , 𝑔𝑛(𝑡) represent orthogonal polynomials of degree 

0, … , 𝑛, respectively, which facilitate numerical computations and are interpreted similarly (see Section 

2.4) (Emerson, 1968; Pettofrezzo, 1984; Hamming, 1987; Hedeker and Gibbons, 2006).                                                      

1.2.2 Disease severity and individual benefits  

Once model parameters are estimated, we can use them to “predict” (estimate) individual treatment 

benefits, not only for patients from the clinical trial but also for new patients. The severity of a patient’s 

chronic disease at a given time point is defined as the probability that the patient’s response is outside the 

therapeutic target (Diaz, 2016). At time 0, that is, before treatment starts, the severity is  

𝑠0 = 1 − (1 + exp (−𝛼0 − 𝝀𝑇𝑿 − ∑ 𝛽𝑘

𝑛

𝑘=0

𝑔𝑘(0)))

−1

 

where the index 𝜔 is not written in the equation to emphasize that the patient may be a new patient and 𝛼0 

is a patient-specific intercept. 

The severity for the patient at time 𝑡 post treatment initiation is  

𝑠𝑡 = 1 − (1 + exp (−𝛼0 − 𝝀𝑇𝑿 −  ∑ 𝛽𝑘

𝑛

𝑘=0

𝑔𝑘(𝑡) −   ∑ 𝛼𝑘

𝑛

𝑘=1

𝑔𝑘(𝑡)))

−1

 

The individual benefit of the treatment is the reduction in disease severity from time 0 (Diaz, 2016, 2019). 

Thus, the patient’s benefit after 𝑡 units of time under treatment is 

𝑏(𝑡; 𝝀, 𝜷, 𝜶, 𝑿)  = 𝑠0 − 𝑠𝑡            (2) 

where  𝜷 = (𝛽0, … , 𝛽𝑛)𝑇, and 𝜶 = (𝛼0, … , 𝛼𝑛)𝑇 is the vector of patient-specific random effects.     

1.2.3 Empirical Bayesian prediction of individual benefits 
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For calculating the predicted individual treatment benefits at a given time point, we need to estimate 

the random effects for each patient. For the current study, the command for multilevel mixed-effects 

generalized linear models (“meglm”) in the Stata software was used to fit the mixed-effects logistic model 

and obtain EB means as predictors of the random effects 𝜶 (version 15.1, StataCorp LLC, College Station, 

TX). Once parameter estimates are obtained for the mixed-effects model, Stata’s “predict” command only 

needs the responses and covariates of a patient, either from the original sample or as a new patient, to predict 

the patient’s random effects. The command combines the specific patient’s data with the estimated model 

parameters to compute the predictions. The EB predictor of the patient’s random effects is an estimate of 

the mean of the conditional (posterior) distribution of the random effects given the patient’s data. Stata’s 

predict command computes this estimate using adaptive Gaussian quadrature (Skrondal and Rabe-Heketh, 

2004).  

If 𝜶̂  is the EB predictor of a patient’s  𝜶, the EB predictor of the individual benefit at time 𝑡 ≥ 0 

is   

𝑏(𝑡; 𝝀̂, 𝜷̂, 𝜶̂, 𝑿)             (3) 

where 𝝀̂ and 𝜷̂ are the maximum likelihood estimates of 𝝀 and 𝜷.  

Here we adopt standard EB terminology and use the term “predictor” to refer to an estimator of a random 

coefficient or an individual benefit, which are random variables at the patient population level (Robinson, 

1991). In this sense, the term prediction does not refer to the forecast of future values of 𝑦. We restrict the 

term “estimator” to estimators of fixed effects or variance components.   

1.2.4 Application to an antipsychotic RCT: retrospective empirical Bayesian prediction of benefits 

The antipsychotic-naïve patients with non-affective psychosis provided a written informed consent 

to be included in the RCT (Pelayo-Teran et al., 2014), which conformed to international standards for 

research ethics and was approved by the local institutional review board. Here, we analyzed the 

disorganized dimension scores of the SAPS-SANS scale, with higher scores representing poorer outcomes 

(Andreasen, 1983a; 1983b). The dichotomous response 𝑦 was coded as 1 if the subject had a disorganized 
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dimension score  ≤ 3, or 0 otherwise. The responses were available at baseline and at the end of 1, 2, 3, 4, 

and 6 weeks of antipsychotic treatment. One hundred sixty-one patients were randomized to olanzapine, 

risperidone or haloperidol (Pelayo-Teran et al., 2014). Since our goal was to measure individual benefits, 

only the 117 patients with 𝑦 =  0 at baseline were included in these analyses (55 non-cannabis users and 

62 cannabis users). Those within the therapeutic target at baseline (𝑦 =  1) were excluded (26 non-cannabis 

users and 18 cannabis users).  

The final model included cannabis use as a time-independent patient characteristic (Table 1). 

Therefore, in this application, 𝑿 included only cannabis use. As in prior analyses (Pelayo-Teran et al., 

2014), variable selection for the mixed-effects logistic model did not produce any significant differences 

among the three antipsychotics. Similarly, diagnosis, duration of untreated psychosis, gender, and smoking 

did not have significant effects on the odds of being within the therapeutic target. The analyses ruled out 

the possibility that these variables were confounders of cannabis use and the response. 

 

Table 1.  Random intercept logistic regression model of disorganized dimension score less than or equal to 

3 from 117 subjects with a first episode of non-affective psychosis under antipsychotic treatment. 

 

Parameter name 
Parameter estimate 

(SE) 
p-value 95% CI 

Fixed effects    

Cannabis usea -1.647 (0 .7128) 0.021 [-3.044, -0.250] 

Orthogonalized timeb,c 3.722 (0.4242) <0.0001 [2.890, 4.553] 

Orthogonalized time-squareb,d -1.911 (0.3079) <0.0001 [-2.514, -1.307] 

Orthogonalized time-cubeb,e 0.876 (0.2133) <0.0001 [0.458, 1.294] 

Interceptf 0.918 (0.5268) 0.081 [-0.115, 1.950] 

Variance of random effects    

Intercept 10.681 (3.0136)  [6.144, 18.569] 

CI: 95% confidence interval; SE: standard error. 
aThe dichotomous covariate “cannabis use” was defined as 1 if the subject was a cannabis user, 0 otherwise.  
bTime in weeks was transformed into three mutually orthogonal covariates to build a polynomial of degree 3. The 

polynomial represented the evolution over time of the logit of the probability of having a disorganized dimension less 

than or equal to 3.  
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cThe 1st order orthogonal polynomial was 𝑔1(𝑡)  =  1.352 + 0.507𝑡, where 𝑡  is time. The covariate “orthogonalized 

time” was computed with this formula.   
dThe 2nd order orthogonal polynomial was 𝑔2(𝑡) =  1.336 − 1.604𝑡 + 0.267𝑡2. The covariate “orthogonalized time-

square” was computed with this formula. 
eThe 3rd order orthogonal polynomial was 𝑔3(𝑡) =  1.028 + 3.693𝑡 − 1.713𝑡2 + 0.190𝑡3 . The covariate 

“orthogonalized time-cube” was computed with this formula.  
fThe zero-order orthogonal polynomial, 𝑔0(𝑡) is the fixed intercept. 

 

Orthogonal polynomials (Emerson, 1968; Pettofrezzo 1984; Hamming, 1987; Hedeker and 

Gibbons, 2006) up to degree 3 were used to model the changes of responses over time (Table 1). The 

orthogonal polynomial representation greatly reduces collinearity and scale differences between time 

powers and simplifies the computation. The transformation of time into orthogonal polynomials is 

especially useful in mixed-effects models since it speeds up the convergence, which can be challenging for 

mixed models. No significant random effects for orthogonally-transformed time powers were observed in 

the random effects logistic model; therefore, only fixed effects were used for the transformed time variables 

and 𝜶 included only a random intercept. The Stata command “orthpoly” was used to transform the time 

variable to orthogonal polynomials (StataCorp LLC, College Station, TX). The “poly” option provided the 

coefficients of the orthogonal polynomials, allowing treatment benefit prediction at specific time points.  

The orthogonal polynomials are reported in footnotes c-e in Table 1. 

Similar to Diaz (2019), we used parameter estimates and data from a specific patient to predict the 

patient’s benefit at time 𝑡 + ℎ. Here, 𝑡 is the prediction origin, defined as the time up to which the patient’s 

data are collected to make the prediction; and ℎ is the prediction horizon, defined as the elapsed time 

between the prediction origin and the time for which we want to predict the benefit. For instance, if we 

have collected data during 3 weeks of treatment and want to predict the patient’s benefit at week 5, then 

𝑡 = 3 and ℎ = 2. If we want to predict the benefit at week 2, then 𝑡 = 3, ℎ = −1.   If ℎ ≤  0, we are 

retrospectively estimating the benefit achieved at time 𝑡 +  ℎ. If ℎ >  0, we are forecasting a future benefit 

value at time 𝑡 +  ℎ (Diaz, 2019). Prediction origin 𝑡 =  0 indicates only baseline responses are available 

for predicting benefits. Although 𝑡 and ℎ can be non-integers, we used only integer numbers.  
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To illustrate how the proposed method can be used in data analysis for retrospective benefit 

predictions, we predicted the benefits for each of the 55 non-cannabis users and 62 cannabis users at weeks 

1 through 6 using Formula (3) and the estimates in Table 1. This formula allows predicting benefits at any 

given time point, even if the clinical trial did not collect data at that point. To compare the evolutions of 

individual benefits over time, the sample quartiles of the 62 EB benefit predictions from cannabis users 

were computed, and similarly for the 55 non-cannabis users (Table 2). These sample quartiles can be 

viewed as estimates of the quartiles of the distributions of individual benefits for the populations of cannabis 

and non-cannabis users 

1.2.5 Assessment of empirical Bayesian predictions 

We conducted Monte Carlo computations as an alternative to the EB approach to estimate 

population quartiles of individual benefits. For cannabis or non-cannabis users at a time point, Monte Carlo 

estimates of population quartiles were obtained by simulating 1,000 patients assuming the model in Table 

1, and then calculating the quartiles of their benefits, as described in Supporting Information S1. The 

estimated population quartiles, reported in Table 3, were compared with the sample quartiles of the benefits 

for the 55 non-cannabis users and 62 cannabis users predicted with the EB approach and reported in Table 

2. We consider an agreement between these two types of estimates as evidence that EB individual benefit 

predictors reflect overall population trends reliably.  

In addition, a simulation study was conducted to evaluate how well EB benefit prediction would 

work in new patients. The simulations assessed the performance of Formula (3) for various prediction 

origins (𝑡), prediction horizons (ℎ), and distances of parameter estimates from true parameters (𝛿) in 

standard error units (Diaz, 2017). Spearman’s correlations (𝐶𝑡+ℎ) between predicted benefits and 

simulated true benefits were computed (Table 4). Relative biases (ℬ𝑡+ℎ), defined as {(mean of bias) / 

(mean of true benefit)} x 100 were used to examine prediction accuracy, where bias is the difference 

between predicted and true benefit (Table 5). The simulation methodology is in Supporting Information 

S2 and S3.  
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1.3. Results  

1.3.1 The impact of cannabis on individual responses to antipsychotic treatment  

A mixed-effects logistic model was used to examine the impact of cannabis use on individual 

treatment effects of antipsychotics. As described above, the response was defined as 1 if the disorganized 

dimension score was ≤ 3, or 0 otherwise. The selected 1-PM model had cannabis as well as orthogonalized 

time, time-square and time-cube as covariates with fixed effects, and a random intercept (Table 1). The 

likelihood of not being in the therapeutic target followed a cubic-polynomial trend over time. On average, 

cannabis use was significantly associated with decreased odds of having a disorganized dimension ≤ 3, 

with an odds ratio of 0.193 (95% CI: 0.048 to 0.779) as compared to no use.  

1.3.2 Retrospectively predicted antipsychotic benefits  

The antipsychotic benefits the subjects received during the RCT were analyzed retrospectively for 

treatment durations of 1 to 6 weeks. Please note that although the RCT measured patients’ responses only 

at the end of weeks 1, 2, 3, 4, and 6, benefits can be predicted for any treatment duration between 0 and 6 

weeks using Formula (3). The medians and the first and third quartiles of the predicted benefits for non-

cannabis and cannabis users are shown in Table 2.  

The quartiles of the benefits for cannabis users were much smaller at earlier weeks as compared to 

non-cannabis users, indicating generally slower responses to the treatment in cannabis users (Table 2). For 

instance, in non-cannabis users, the median decrease in disease severity was 0.235 probability units 

compared to 0.037 for cannabis users at week 1. Treatment benefits tended to increase with time for both 

groups. By weeks 5 or 6, the medians of the benefits are comparable for cannabis users and non-cannabis 

users; however, the first quartile for cannabis users remained much smaller than that for non-cannabis users, 

indicating that there were more cannabis users receiving little benefits than non-cannabis users.  

1.3.3 Comparison of quartile estimates based on empirical Bayesian predictors with Monte Carlo 

estimates 

The patterns of the evolution of EB predicted benefits (Table 2) were like those of the benefit 

evolution suggested by the Monte Carlo approach (Table 3), indicating a reliable estimation of quartiles of 
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treatment benefits when using EB predictors of random effects. Both tables reveal a negative impact of 

cannabis on antipsychotic treatment benefits by delaying the responses in some patients, suggesting a 

moderating effect for cannabis. Although the number of non-cannabis and cannabis users achieving tangible 

benefits increased with time, cannabis users achieved benefits more slowly. Even at the end of week 6, 

there were more cannabis users than non-cannabis users who had not received high benefits yet.   

The variations of the EB predicted benefits over time and the differences between cannabis and 

non-cannabis users are also illustrated using histograms in Figure 1, and analogously for the benefits of the 

1,000 simulated patients per cannabis status group from Monte Carlo computations shown in Figure 2.  

The two figures exhibit similar patterns, suggesting the adequacy of EB predictors for detecting overall 

group trends. For each time point, there were more cannabis users who were not receiving substantial 

benefits compared to non-cannabis users. Even at week 6, there were more cannabis users whose treatment 

benefits remained minimal.  

To visualize how the medians of the retrospectively- predicted EB benefits changed over time for 

non-cannabis versus cannabis users and compare their patterns with the Monte-Carlo computed medians, 

we plotted the medians from Tables 2 and 3 in Panels A and B of Figure 3, respectively.  The medians of 

benefits for cannabis users increased at a slower pace compared to non-cannabis users. The patterns for 

medians of EB predictions (Panel A) are consistent with those for Monte Carlo medians (Panel B), 

suggesting that the medians of EB retrospective predictions accurately captured group trends in benefit 

evolution.   

1.3.4 Evaluation of EB benefit prediction in simulated new patients using correlations between 

predictions and true benefits  

To examine the performance of the benefit predictor in Formula (3), we analyzed the correlations 

between the predicted individual benefits and the true individual benefits from simulated new patients using 

Spearman’s correlations (𝐶𝑡+ℎ). Each 𝐶𝑡+ℎ was calculated from 1,000 simulated cannabis users or 1,000 

non-cannabis users. Results for cannabis users are shown in Table 4. See the Supporting Information for 

non-cannabis users. 
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Table 4. Spearman correlations (𝐶𝑡+ℎ) between EB predicted benefits and true benefits of antipsychotic 

treatment in simulated new patients who are cannabis users, by prediction origin (𝑡), prediction horizon 

(ℎ) and distance of parameter estimates from true parameters in standard error units (𝛿).  

  𝑡 + ℎ (weeks) 

𝑡 (weeks) 𝛿 2 4 6 

0 0 -0.07  -0.03  0.01 

 0.5 -0.07 (-0.17, 0.05) -0.03 (-0.17, 0.08) -0.01 (-0.14, 0.15) 

 1 -0.07 (-0.31, 0.08) -0.05 (-0.32, 0.17) 0.01 (-0.28, 0.26) 

 1.5 -0.06 (-0.49, 0.16) -0.06 (-0.49, 0.32) -0.04 (-0.46, 0.33) 

2 0 0.80  0.60  0.61 

 0.5 0.79 (0.75, 0.82) 0.59 (0.47, 0.68) 0.62 (0.50, 0.68) 

 1 0.77 (0.70, 0.82) 0.60 (0.22, 0.68) 0.62 (0.29, 0.69) 

 1.5 0.75 (0.59, 0.80) 0.59 (-0.05, 0.70) 0.59 (0.06, 0.67) 

4 0 0.87  0.75  0.68  

 0.5 0.87 (0.83, 0.90) 0.77 (0.67, 0.84) 0.67 (0.50, 0.77) 

 1 0.87 (0.77, 0.90) 0.77 (0.51, 0.86) 0.69 (0.19, 0.83) 

 1.5 0.85 (0.68, 0.90) 0.75 (0.25, 0.86) 0.69 (0.01, 0.84) 

6 0 0.89  0.82  0.74  

 0.5 0.89 (0.85, 0.92) 0.80 (0.69, 0.87) 0.74 (0.58, 0.83) 

 1 0.89 (0.79, 0.93) 0.81 (0.55, 0.89) 0.74 (0.41, 0.87) 

 1.5 0.88 (0.71, 0.93) 0.81 (0.27, 0.91) 0.75 (0.16, 0.89) 

Note: Parameter estimates in the second column of Table 1 were used for predicting treatment benefits. 𝛿 = 0 

corresponds to the ideal situation when parameter estimates are equal to the true model parameters, in which case 

there is only one 𝐶𝑡+ℎ. For 𝛿 > 0, each entry in the table gives the median (minimum, maximum) of 64 (=26) values 

of 𝐶𝑡+ℎ corresponding to different combinations of parameter values that are at a distance of 𝛿 standard errors from 

their corresponding estimates. Each value of 𝐶𝑡+ℎ  was computed using 1,000 simulated new patients who were 

cannabis users.  
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Minimal correlations were observed when only baseline data were used for predictions (𝑡 =  0). When 

prediction origin 𝑡 ≥ 1, relatively high correlations between the predicted benefits and the corresponding 

true benefits were observed, especially when the parameter estimates were at a distance of 1 standard error 

or less (𝛿 ≤ 1) from their corresponding true parameters (see Supporting Information for results at 𝑡 = 1, 

3, and 5). This is most apparent if parameter estimates are the same as the true model parameters (𝛿 = 0). 

When parameter estimates moved further away from the true parameter values, that is as 𝛿 grew, the range 

of possible correlations grew wider, as expected. However, the median of the correlations stayed 

approximately the same as for 𝛿 = 0. The correlations were relatively high for retrospective predictions not 

only when predicting the benefits achieved up to the current week (ℎ = 0) but also for predictions of past 

benefits (ℎ < 0). Correlations for prospective predictions (ℎ > 0) were slightly lower than those for 

retrospective predictions with comparable 𝑡 and 𝛿 but still above 0.5, indicating a relatively reliable 

forecasting of future treatment benefits with a prediction horizon of 4 weeks or less, especially when 𝛿 ≤

1. 

 

1.3.5 Evaluation of benefit prediction in simulated new patients using relative biases (𝓑𝒕+𝒉) 

To further examine the performance of Formula (3), we assessed the biases of the predicted benefits 

relative to the true benefits. Each 𝓑𝒕+𝒉 was calculated from 1,000 simulated new cannabis users, and the 

results are shown in Table 5. Negative signs indicate that the predicted benefits are smaller than the true 

benefits. In general, when predicting the benefits for a given time point, the relative bias 𝓑𝒕+𝒉 decreased as 

the prediction origin (𝑡) increased, indicating that the more data we can use the less biased the prediction. 

For 𝑡 > 0 and 𝛿 ≤ 1, the 𝓑𝒕+𝒉 were relatively small, suggesting accurate predictions of past, current and 

future benefits when the patient provides at least one post-treatment response measure, even if the parameter 

estimates somewhat differ from their corresponding true parameter values. As expected, the range of 

possible values of 𝓑𝒕+𝒉 became wider as 𝛿 increased. However, the median of 𝓑𝒕+𝒉 stayed approximately 

the same as for  𝛿 = 0.  
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Table 5. Relative biases (ℬ𝑡+ℎ) of empirical Bayesian predictions of antipsychotic treatment benefits in 

simulated new patients who are cannabis users, by prediction origin (𝑡), prediction horizon (ℎ) and distance 

of parameter estimates from true parameters in standard error units (𝛿).  

  𝑡 + ℎ (weeks) 

𝑡 (weeks) 𝛿 2 4 6 

0 0 8.6  24.4  17.6  

 0.5 10.1 (-8.1, 36.3) 25.1 (8.3, 48.9) 16.9 (7.2, 33.8) 

 1 10.2 (-20.3, 82.1) 25.3 (-0.8, 82.7) 17.4 (1.0, 65.7) 

 1.5 9.5 (-29.2, 156.3) 25.9 (-7.5, 139.2) 16.5 (-2.3, 111.4) 

2 0 -7.0  -4.2 2.7  

 0.5 -5.9 (-10.5, 1.0) -2.9 (-10.9, 8.7) 3.3 (-4.3, 16.1) 

 1 -4.9 (-10.8, 5.8) -3.8 (-16.4, 25.8) 3.7 (-8.7, 40.8) 

 1.5 -4.6 (-12.8, 26.8) -2.1 (-23.7, 56.4) 3.8 (-13.3, 78.0) 

4 0 0.7  -1.3   -1.0  

 0.5 -0.5 (-5.4, 7.0) -1.4 (-5.8, 3.7) -1.0 (-8.0, 8.2) 

 1 -0.4 (-9.6, 18.8) -1.1 (-8.2, 13.7) -1.2 (-14.5, 27.1) 

 1.5 0.2 (-13.6, 42.6) -0.9 (-11.9, 35.6) -1.2 (-22.1, 60.3) 

6 0 0.4 -1.0  -1.6  

 0.5 0.1 (-7.4, 11.1) -0.3 (-4.4, 5.7) -1.2 (-5.4, 6.0) 

 1 0.2 (-12.6, 31.7) -0.4 (-6.4, 12.5) -1.3 (-9.8, 19.8) 

 1.5 -0.7 (-25.4, 63.1) 0.3 (-10.2, 28.0) -1.1 (-14.3, 46.7) 

Note: Parameter estimates in the second column of Table 1 were used for predicting treatment benefits. 𝛿 = 0 

corresponds to the ideal situation when parameter estimates are equal to the true model parameters, in which case 

there is only one ℬ𝑡+ℎ. For 𝛿 > 0, each entry in the table gives the median (minimum, maximum) of 64 (=26) values 

of ℬ𝑡+ℎ corresponding to different combinations of parameter values that are at a distance of 𝛿 standard errors from 

their corresponding estimates. Each value of ℬ𝑡+ℎ  was computed using 1,000 simulated new patients who were 

cannabis users.  
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Figure 1. Histograms of retrospectively-predicted antipsychotic treatment benefits at weeks 1 through 6 for 

the 55 non-cannabis users and 62 cannabis users in the pragmatic clinical trial. Benefits were predicted with 

the empirical Bayesian approach [Formula (3)]. (A), (C), (E), (G), (I) and (K) are predicted benefits for 

non-cannabis users at weeks 1, 2, 3, 4, 5 and 6, respectively; (B), (D), (F), (H), (J) and (L) are predicted 

benefits for cannabis users at weeks 1, 2, 3, 4, 5 and 6, respectively. 
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Figure 2. Histograms of individual antipsychotic treatment benefits at weeks 1 through 6 from 1,000 

simulated non-cannabis users and 1,000 simulated cannabis users, assuming the model in Table 1. (A), (C), 

(E), (G), (I), and (K) are benefits for non-cannabis users at weeks 1, 2, 3, 4, 5, and 6, respectively; (B), (D), 

(F), (H), (J), and (L) are benefits for cannabis users at weeks 1, 2, 3, 4, 5, and 6, respectively. 
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Figure 3. Comparison of estimators of medians of individual antipsychotic benefits at weeks 1 through 6. 

(A) Plots of medians of retrospectively predicted antipsychotic treatment benefits for the 55 non-cannabis 

users and 62 cannabis users from the pragmatic clinical trial, using the empirical Bayesian approach. (B) 

Medians of the individual benefits of 1,000 non-cannabis users and 1,000 cannabis users were simulated 

assuming the Model in Table 1. 

 

1.4. Discussion  

In this paper, we evaluated EB predictors of individual treatment benefits in the context of 

longitudinal binary outcomes which are frequent in medical research. Our results suggest that EB predictors 

accurately capture overall population trends in the achievement of individual benefits and show that EB 

predictors will reliably measure individual benefits in new patients both retrospectively and prospectively.  

Our approach utilizes EB predictors of individual random effects that are plugged into the formula 

defining benefit functions (Formula 3). The method is applicable to both 1-PM and 2-PM models (Diaz, 
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2016, 2019) and can be used to retrospectively evaluate patients’ responses from a RCT. It can also be used 

to retrospectively or prospectively predict individual benefits of different treatments in new patients with 

known characteristics and previous responses. Standard statistical packages implementing mixed-effects 

logistic models such as Stata (StataCorp LLC, College Station, TX) or SAS (SAS Institute Inc., Cary, NC) 

can be used to compute EB predictors.  

As an application, we used data from an antipsychotic RCT in patients with a first episode of non-

affective psychosis (Pelayo-Teran et al., 2014) and fitted a 1-PM model for the dichotomized disorganized 

dimension. Simulations showed that EB prediction of benefits was reliable, with small relative biases and 

relatively high correlations between predicted and true benefits, except when only baseline data are 

available for predictions.  

The present study confirmed cannabis use as a negative prognostic predictor for the disorganized 

dimension during antipsychotic treatment. Cannabis users were found to respond less and more slowly as 

compared to non-cannabis users based on individual benefit measurements, which is consistent with an 

analysis of the same data using a censored normal model of response trajectories that quantified only 

average cannabis effects (Pelayo-Teran et al., 2014). Our results support earlier findings that cannabis use 

is associated with more severe psychotic symptoms in patients with psychosis (Caspari, 1999; Foti et al., 

2010; Grech et al., 2005; Kuepper et al., 2011; Zammit et al., 2008).  

There is strong experimental evidence that cannabis use may cause psychotic symptoms 

(Bhattacharryya et al., 2009, 2012, 2015). In a carefully designed cross-over study, Bhattacharryya et al. 

(2015) randomized 36 healthy subjects to either the sequence of 10 mg of delta-9-tetrahydrocannabinol 

(delta-9-THC) and placebo or vice versa. The subjects did not have a personal or family history of mental 

illness, had minimal use of cannabis, alcohol or other psychotropic drugs and refrained from consuming 

caffeine, alcohol or tobacco during the study. Relative to placebo, the acute administration of delta-9-THC 

significantly induced the appearance of psychotic-like symptoms and anxiety (Bhattacharryya et al., 2015). 

This suggests that the reported associations between cannabis use and psychosis severity from observational 



23 

studies, or from experiments without randomization to cannabis or non-cannabis use, are not just the result 

of uncontrolled confounding factors. 

It is noteworthy that the 1-PM model with just a random intercept (and no interaction terms between 

cannabis and time or random effect for time) can show how the benefits evolve differently over the 

treatment period depending on patient characteristics, in this case cannabis use. This supports Diaz’s 

observation that individual benefit prediction reveals aspects of clinical phenomena that regression models 

alone cannot show (Diaz 2016, 2019). In this sense, it is a useful complement to standard regression 

analyses. In fact, we did not find any significant interaction between cannabis use and time when following 

the standard approach of testing the significance of the product of these two variables (data not shown).  

We were able to show, however, that cannabis use modified the effect of antipsychotic treatment in a time-

dependent way.  

At week 6 post-treatment, although the median individual benefits for cannabis users was 

comparable to that for non-cannabis users (Tables 2 and 3), there were more cannabis users without 

substantial treatment benefits (Figures 1 and 2). EB prediction makes it feasible to visualize the variation 

of treatment benefits among patients with different known characteristics as well as with the same known 

characteristics.  

We used correlations and relative biases to evaluate how well EB-predicted individual benefits 

measure true benefits (Tables 4 and 5). The correlations and relative biases were poor when only baseline 

data were available, which makes sense since the model did not include a random effect for time that was 

correlated with the intercept. Various 𝛿 values (0, 0.5, 1, and 1.5) were used to mimic the fact that the true 

parameter values may differ from the parameter estimates. As expected, the ranges for both correlations 

and relative biases became wider as 𝛿 increased (the less precise the estimators were, the less reliable 

predictions were). Nevertheless, the medians of correlations and relative biases remained stable, suggesting 

some robustness of EB benefit predictors to imprecise parameter estimation.  

The proposed method offers an excellent tool for analyzing clinical trials with binary outcomes that 

evolve over time. In the example application there were no variables in the model representing the three 
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different antipsychotics used in the trial because their effects did not significantly differ. The method, 

however, does allow inclusion of covariates representing treatment options. As such, it can be used to 

compare individual benefits for various treatments and help clinicians choose medications with the most 

promising benefits for new patients using patients’ characteristics and previous responses. Moreover, we 

can utilize existing software for computing EB predictors of random effects to predict individual benefits. 

This makes the application of this method more practical in clinical trial data analysis and potentially in 

medical practice.  

1.5. Limitations 

Our data do not allow completely establishing a causal relationship between cannabis and response 

to antipsychotics, because subjects were not randomized to cannabis or non-cannabis use. However, our 

results are consistent with other studies that show an association between cannabis use and increased risk 

of developing psychotic disorders as well as adverse outcomes in patients with psychosis (Linszen et al., 

1994; Moore et al., 2007; Zammit et al., 2008), and are consistent with experimental evidence of causality 

in this association (Bhattacharryya et al., 2009, 2012, 2015). 

In the application, we excluded 44 patients (26 non-cannabis and 18 cannabis users) whose 

disorganized dimension score at baseline was within the treatment target (≤ 3). More non-cannabis users 

were excluded, as expected, which could have potentially biased the regression results in favor of the null 

hypothesis of no difference between the two groups. Thus, if such bias occurred, the differences in 

antipsychotic benefits between the two populations may be greater than the differences observed in our 

patient sample. This, however, would not invalidate the model as a predictor of individual benefits in new 

patients because the model would be applicable only to patients with scores outside the treatment target.  
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Chapter 2: Predicting individual benefits of medical treatments using longitudinal hospital data with 

non-ignorable missing responses caused by patient discharge 

In collaboration with Drs. Nikos Pantazis, Ph.D. and Francisco J. Diaz, Ph.D.  

(See collaborator affiliations in Acknowledgements) 

2.0. Abstract  

 We present a method for predicting individual treatment benefits with a novel 2-PM model that 

handles non-ignorable missingness due to hospital discharge and evaluate its reliability and accuracy by 

simulations. The longitudinal outcome of interest is modeled simultaneously with the hospital length of 

stay. The method was illustrated with an application assessing individual pain management benefits post 

spine fusion surgery, and the pain scores were pre-transformed with a discrete logit transformation. 

Empirical Bayes (EB) prediction was used to estimate patient level random effects. EB-Predicted individual 

benefits were compared with the Monte-Carlo computed benefits. To assess the prediction accuracy, we 

calculated Pearson’s correlation between the predicted and the true benefits as well as relative biases of the 

predicted benefits. Results showed that the EB-predicted individual benefits are close to Monte-Carlo 

computed ones. The prediction is reliable given that the parameter estimates are not far from the true 

parameter values. In summary, we proposed to use a 2-PM model with joint mixed effects to predict 

individual treatment benefits using unbalanced EHR data. This method will help to gain insights on 

treatment effects from real-world data.  

Keywords: individual benefits, Empirical Bayesian prediction, non-ignorable missingness, random effects, 

observational data  
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2.1. Introduction 

 It is increasingly recognized that a patient’s response to a medical treatment is a statistically 

heterogeneous phenomenon (de Leon, 2012). The average treatment effects may not represent a 

heterogeneous population of patients (Ruberg et al., 2010). The benefits each patient receive from the 

treatment could differ, requiring measurement of treatment benefits at the patient level (Diaz, 2016, 2019). 

Generalized linear mixed-effects models (Andrews and Cho, 2018; Botts et al., 2008; Cho 2017; Diaz, 

2016, 2019; Diaz et al., 2007, 2008, 2012a, 2012b, 2013a, 2013b, 2014; Senn, 2016; Zhu and Qu, 2016) 

allow identifying the various sources of variation of patients’ responses (Gewandter et al., 2019), offering 

an excellent tool for analyzing individual benefits. Diaz (2016, 2019) used 1-dimensional personalized 

medicine (1-PM) and 2-dimensional personalized medicine (2-PM) models to assess individual treatment 

benefits for clinical trial data using empirical Bayes (EB) predictors. The EB predictors of individual 

benefits are obtained using the EB predictor of the patient’s random effects as well as the estimated fixed 

effects. The EB predictor of the random effects is an estimate of the mean of the conditional distribution of 

the random effects given the patient’s data. 

 It is also increasingly recognized that real-world data (RWD) such as electronic health records 

(EHR) collected in a non-randomized setting hold critical value for clinical evidence generation and play a 

complementary role to clinical trial data (Miksad and Abernethy 2018). EHR data provide contextual details 

and longitudinal follow-up for patient’s outcomes. One limitation of the EHR data, however, is that there 

is usually incomplete follow-up due to hospital discharge. Since hospital discharge often depends on patient 

responses, the missing responses after discharge are nonignorable missing data (Little and Rubin 2002; 

Pantazis et al. 2010). This creates a problem for predicting treatment benefits because generalized mixed 

effects models assume missing at random (Hedeker and Gibbons, 2006; Laird 1998). When the missingness 

is non-ignorable, the analysis results can be seriously biased (Touloumi  et al. 1999).  

 Here, we propose to measure individual treatment benefits with hospital data by jointly modeling 

the patients’ responses to the medical treatment and hospital length of stay (LOS). Joint mixed-effects 

https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Touloumi,%20G&dais_id=190484&excludeEventConfig=ExcludeIfFromFullRecPage
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models combining a generalized linear mixed effects model and a survival model have been used to handle 

longitudinal clinical trial data with informative drop-outs which produce non-ignorable missings 

(Schluchter 1992; De Gruttola and Tu 1994; Touloumi  et al. 1999; Pantazis et al. 2010; Crowther et al. 

2012;  Armero et al. 2018; Hickey  et al. 2018; Shardell and Ferrucci 2018; Schluchter and Piccorelli 2019; 

Papageorgiou et al. 2019). For example, Touloumi  et al. (1999) developed a method of parameter 

estimation for joint models that  combines restricted iterative generalized least-squares with a nested 

expectation-maximization algorithm. To our knowledge, these models have not been used to model hospital 

data, which are unavoidably biased by non-ignorable missingness due to discharge.   

 This study was motivated by the fact that many outcomes of clinical procedures, pharmacological 

therapies, or patient-reported outcomes measurements recorded in longitudinal EHR data are associated 

with hospital LOS. For instance, laboratory results such as biological markers of acute myocardial 

infarction (Gronski et al. 2012) or acute kidney injury (Edelstein 2008), as well as physical/behavioral 

scores (Shaw et al. 2018), are often measured only during hospital stay and are used in discharge planning 

and decision making. One example of patients’ self-reported measurements is pain scores post a surgical 

procedure, which are available before surgery or during the hospital stay after the surgery but are no longer 

recorded after discharge.  

 This study has three objectives. The first is to extend the methodology for predicting individual 

benefits in clinical trials (Diaz 2016, 2019) to predicting individual benefits using hospital data with non-

ignorable missingness. The second is to extend the definition of 2-PM models to joint mixed effects models 

that simultaneously represent the longitudinal patients’ outcome and the hospital LOS. The third is to 

evaluate the performance of the EB predictors of individual benefits based on joint mixed models using 

Pearson’s correlations between the predicted and the true benefits and the relative biases of the predicted 

benefits.   

2.2. Methods  

2.2.1. Joint model for observational longitudinal continuous outcomes with non-ignorable 

missingness  

https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Touloumi,%20G&dais_id=190484&excludeEventConfig=ExcludeIfFromFullRecPage
https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Crowther,%20MJ&dais_id=976984&excludeEventConfig=ExcludeIfFromFullRecPage
https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Hickey,%20GL&dais_id=635895&excludeEventConfig=ExcludeIfFromFullRecPage
https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Schluchter,%20Mark%20D.&dais_id=7664270&excludeEventConfig=ExcludeIfFromFullRecPage
https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Piccorelli,%20AV&dais_id=8515024&excludeEventConfig=ExcludeIfFromFullRecPage
https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Papageorgiou,%20G&dais_id=7217045&excludeEventConfig=ExcludeIfFromFullRecPage
https://apps-webofknowledge-com.proxy.kumc.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=5FS8x7zbXsNVX2C11fv&author_name=Touloumi,%20G&dais_id=190484&excludeEventConfig=ExcludeIfFromFullRecPage
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 Next we describe a joint multivariate random effects model to jointly model a continuous 

outcome and the hospital LOS. Suppose subject 𝑖 provided 𝑛𝑖 outcome measurements on days 𝑡1 < ⋯ <

𝑡𝑛𝑖
 counted from treatment day 𝑡1 = 0 . Let 𝒚𝑖

∗ = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖
)

𝑇
 be the outcome measurements, where 

𝑦𝑖1 is assumed to be measured before treatment and 𝑦𝑖𝑘  , 𝑘 ≥ 2  are measured after treatment. Let 𝒙𝑖𝑗 =

(𝑥𝑖𝑗,1, … , 𝑥𝑖𝑗,𝑝 )
𝑇

 and 𝒛𝑖𝑗 = (𝑧𝑖𝑗,1, … , 𝑧𝑖𝑗,𝑞 )
𝑇
be  vectors of covariates obtained at time 𝑡𝑗. A covariate can 

be time-independent (for instance, gender, race, etc.) or a known function of time (for instance, 𝑡, 𝑡2, etc.) 

The covariates in 𝒛𝑖𝑗 are usually a subset of the covariates in 𝒙𝑖𝑗. For subject 𝑖, the design matrix for the 

fixed and random effects of the outcome model are 𝑿𝑖
∗ = (𝒙𝑖,1, … , 𝒙𝑖,𝑛𝑖

)
𝑇
 and 𝒁𝑖

∗ = (𝒛𝑖,1, … , 𝒛𝑖,𝑛𝑖
)

𝑇
, 

respectively. The outcome model is  

𝒚𝑖
∗ = 𝑿𝑖

∗𝜷 + 𝒁𝑖
∗ 𝜶𝑖 + 𝒆𝑖 

where  𝒚𝑖
∗ = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖

)
𝑇

 is a vector containing the outcomes for subject 𝑖 in time order, 𝜷  is the 

vector of fixed regression coefficients,  𝜶𝑖 is the normally distributed vector of random effects with mean 

0, and 𝒆𝑖 is the vector of residuals for subject 𝑖 that are assumed to be independent between subjects and 

normally distributed with mean 0 and variance-covariance 𝑹𝑖
∗ = 𝜎𝑒

2𝐼𝑛𝑖
.  

 Let 𝑇𝑖
𝑑 be the hospital LOS in days. We assume that discharge always occurs after the last 

available outcome measurement, that is, 𝑡𝑛𝑖
< 𝑇𝑖

𝑑. Thus, if 𝑇𝑖
𝑑 was available in the EHR dataset and 𝑡𝑛𝑖

=

𝑇𝑖
𝑑  we add a small offset (i.e. 0.01 days) to make discharge time slightly larger than the last outcome 

measurement time. The discharge time is considered censored at 𝑡𝑛𝑖
+ 0.01 if either 𝑇𝑖

𝑑   is missing in the 

dataset or if 𝑇𝑖
𝑑   is available but 𝑡𝑛𝑖

≤ 𝑇𝑖
𝑑 − 1. 

 Let 𝒙𝑖
𝑑 = (1, 𝑥𝑖1

𝑑 , … , 𝑥𝑖𝑟
𝑑 )

𝑇
 be time-independent patient’s characteristics possibly related to LOS. 

The discharge time model is 

log(𝑇𝑖
𝑑) =  𝒙𝑖

𝑑𝑇
 𝜷𝑑 + 𝑒𝑖

𝑑 ,  

where 𝜷𝑑 is a vector of fixed regression coefficients and 𝑒𝑖
𝑑~𝑁(0, 𝜎𝑑

2) is a residual. 
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The joint multivariate random effects model is 

𝒚𝒊 =  𝑿𝒊𝜷𝑗 +  𝒁𝒊 𝜶𝑖
𝑗

+  𝜺𝑖,     

where 𝒚𝒊 =  [
𝒚𝑖

∗

𝑇𝑖
𝑑] , 𝑿𝒊 =  [

𝟎 𝑿𝑖
∗

𝒙𝑖
𝑑𝑇

𝟎𝑇
] , 𝜷𝑗 =  [

𝜷𝑑

𝜷
], 𝒁𝒊 = (

𝟎 𝒁𝑖
∗

1 𝟎𝑇
) ,  𝜶𝑖

𝑗
=  [

𝑒𝑖
𝑑

 𝒃𝑖
] , and 𝜺𝑖 =  [

𝒆𝑖

0
] .  

2.2.2. EB prediction of the random effects 

 The EB predictor of the random effects  𝜶𝑖
𝑗
 is  

  𝜶𝐸𝐵,𝑖
𝑗

= 𝑫̂𝒁𝒊
𝑻𝑽̂𝑖

−1𝒆̂𝒊 , 

where 𝑫̂ is the estimator of 𝑫 = Var(𝒃𝑖
𝑗
), and 𝑽𝑖̂  is the estimator of 𝑽𝒊 = Var(𝒚𝑖) = 𝑹𝒊 + 𝒁𝒊𝑫𝒁𝒊

𝑻 with 

𝑹𝒊 = Var( 𝜺𝑖) = (
𝑹𝑖

∗ 𝟎

𝟎𝑇 0
), and 𝒆̂𝑖 = [𝒚𝒊

∗ − 𝑿𝒊
∗𝜷̂

0
] is the estimated residuals for subject 𝑖. 

 The last row of 𝒆̂𝑖 is set to 0 during the calculation of the random effects because the error term of 

the LOS model (𝑒𝑖
𝑑) is already included in  𝜶𝑖

𝑗
. 

 The 1st element of  𝜶𝐸𝐵,𝑖
𝑗

 is the EB estimate of the LOS model residual for subject 𝑖. The other 

elements of 𝜶𝐸𝐵,𝑖
𝑗

 estimate  𝜶𝑖 and are denoted here by  𝜶̂𝑖.  

2.2.3. Disease severity and individual benefits  

Individual treatment benefits can be predicted/estimated using the estimated model parameters, not 

only for the subjects in the analysis but also for simulated new patients. The severity of a patient’s outcome 

at a given time point is defined as the probability that the patient’s outcome is outside of the therapeutic 

target (Diaz, 2016). The disease severity for patient 𝑖 before treatment (time 0) is  

𝑠0,𝑖 =  1 −  Φ (
𝑐 − 𝒙𝑖1

𝑇 𝜷 − 𝒛𝑖1
𝑇 𝜶𝑖 

𝜎𝑒
) 

where the therapeutic target is to achieve 𝑦 ≤ 𝑐.  

The post-treatment severity of the patient at time 𝑡 is  

𝑠𝑡,𝑖 =  1 − Φ (
𝑐 − 𝒙𝑖

(𝑡)𝑇
𝜷 − 𝒛𝑖

(𝑡)𝑇
𝜶𝑖

𝜎𝑒
) 
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where 𝒙𝑖
(𝑡)

  and 𝒛𝑖
(𝑡)

 are covariate values measured at time 𝑡.  

 The individual benefit of the treatment for patient 𝑖 after 𝑡 units of time is defined as the reduction 

in disease severity at time t from time 0 (Diaz, 2016, 2019), that is,  

𝑏 (𝑡; 𝜷, 𝜶𝑖, 𝒙𝑖
(𝑡)

, 𝒛𝑖
(𝑡)

)  = 𝑠0,𝑖 − 𝑠𝑡,𝑖.            (2) 

2.2.5. Empirical Bayesian prediction of benefits  

 As described in 2.2, the individual treatment benefit is defined as the decrease of the disease 

severity from baseline for the patient (Diaz 2019).  If 𝒃̂𝑖  is the EB predictor of the patient’s  𝒃𝒊, the EB 

predictor of the individual benefit at time 𝑡 ≥ 0 is   

𝑏 (𝑡; 𝜷̂, 𝜶̂𝑖, 𝒙𝑖
(𝑡)

, 𝒛𝑖
(𝑡)

 ) = {Φ (
𝑐 − 𝒙𝑖

(𝑡)𝑇
𝜷̂ − 𝒛𝑖

(𝑡)𝑇
𝜶̂𝑖

𝜎̂𝑒
) −  Φ (

𝑐 − 𝒙𝑖1
𝑇 𝜷̂ − 𝒛𝑖1

𝑇 𝜶̂𝑖

𝜎̂𝑒
)} × 100,          (3) 

where 𝜷̂ is the maximum likelihood estimate of 𝜷 and 𝜎̂𝑒 is the maximum or restricted maximum likelihood 

estimate of the standard deviation of the pain score model residuals. 

2.2.4. Transformation of outcome variable. 

 Here we are concerned with outcomes that decrease over time and have a minimum value during 

the study.  If the outcome is continuous, we can use a logit transformation. If not, we can use a discrete 

logit transformation. For instance, if the outcome is in the range of 0 to m where m is the maximum value 

of the outcome. The following discrete logit transformation can be used to transform the discrete outcomes: 

𝑇(𝑦𝑖𝑗) = log  (
𝑦𝑖𝑗 + 1

𝑚 + 1 −  𝑦𝑖𝑗
)    (4) 

where 𝑦𝑖𝑗  is the outcome for subject 𝑖 at time j.  

  

2.2.5. Application  

In this study, we used EHR data from the Cerner HealthFacts® dataset (Cerner HealthFacts®; 

Kansas City, MO).  The Cerner HealthFacts dataset is a deidentified EHR database, and this study 

exempted from institutional review by Western IRB (Olympia, WA).  Adult patients undergoing spine 
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fusion surgery as inpatients in the United States between January 1, 2014 and December 31, 2015 were 

selected using International Classification of Diseases ICD-9 codes 81.00 to 81.08 and corresponding 

ICD-10 codes for spine fusion. Additional inclusion criteria were 1) patients with at least one pain score 

available on the day of surgery (day 0) and at least one pain score post-surgery; 2) the maximum baseline 

pain score was at least 7; and 3) patients had 1 to 5 days of post-surgical hospital stay. Patients without at 

least 6 months of records in the database prior to the surgery were excluded. We identified 940 patients 

who satisfied the inclusion criteria and the 330 patients from the hospital with the largest number of 

patients were selected as the subjects for this study to obtain greater homogeneity since each hospital may 

have different pain management protocols. 

In the application, the outcome is maximum daily pain score post spine fusion surgery. The pain 

scores are patient-reported measurements that ranged from 0 to 10, with 0 indicating no pain and 10 

indicating the most severe pain. The outcome of interest is the patient’s maximum daily pain score, 

obtained at day 0 and during the 1-5 days of post-surgical hospital stay.  In most cases, patients last pain 

score was observed on the day of the discharge. In a few cases, patients’ pain score measurement was 

deaminated before the day of discharge. In these few cases, the outcome was considered censored on the 

day of the last pain score measurement. An offset of 0.01 was added to the LOS and censoring time to 

make them slightly larger than the time of the last pain scores. We used the jmre1 (Pantazis et al. 2010) 

command in Stata (StataCorp LLC, College Station, TX) for this analysis.  

 In the pain score model, the design matrix for the fixed effects is  

𝑿𝑖
∗ =  [𝟏 𝑋𝑖1 𝑋𝑖2 𝒕𝑖 𝑋𝑖3] 

where 𝑥𝑖1, 𝑥𝑖2 denote the dichotomous variables Elderly (1 if age>65, 0 otherwise) and Depression (1 if 

the patient had a record of preoperative depression diagnosis, 0 otherwise), respectively. 𝑋𝑖1 =

(𝑥𝑖1, … , 𝑥𝑖1)𝑇 , 𝑋𝑖2 = (𝑥𝑖2, … , 𝑥𝑖2)𝑇, 𝒕𝑖 = (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖
)

𝑇
 is the vector containing the days from surgery on 

which the pain scores were observed for subject 𝑖, and  𝑋𝑖3 = (𝑥𝑖2𝑡𝑖1, … , 𝑥𝑖2𝑡𝑖𝑛𝑖
)

𝑇
 is the interaction 

between Depression and time. 
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 In the LOS model, the design vector 𝒙𝑖
𝑑 =  [1 𝑥𝑖1 𝑥𝑖2] , where 𝑥𝑖1, 𝑥𝑖2 are Elderly and 

Depression variables, respectively.  

 The maximum daily pain score is 10, that is m=10 in formula (3).  The discrete logit 

transformation we used for pain scores is 

log  (
y𝑖𝑗 + 1

11 −   𝑦𝑖𝑗
) 

where 𝑦𝑖  is the maximum daily pain score for subject 𝑖 at Day𝑖𝑗. The distribution of the original pain 

scores are highly skewed with higher frequencies for severe pain scores. After this transformation, the 

distributions of the EB predictor of the LOS model residuals and the random intercept and the random 

effect of time for the pain score model were relatively normal, suggesting good model fit. 

 The postoperative treatment target was defined as a maximum pain score level of 6 or lower, 

which corresponds to a transformed pain score of 𝑐 = 𝑇(6) = 0.3365 or lower.  

 𝜶𝐸𝐵,𝑖
𝑗

 was calculated using the Stata “predict” command after running the jmre1 command. 

2.2.6. Monte Carlo computation of individual benefits based on patients’ characteristics 

 As an alternative approach to analyze the pain management benefits, Monte Carlo computation was 

used to estimate the quartiles of the probability distribution of individual benefits for the four 

subpopulations by time (Table 3) using the algorithm below.   

1. Draw 1000 random effects for each group of patients (depending on age and depression) from the 

distribution of the random effects 

2. Generate random coefficients of the intercept and the time for the 1000 patients in each group by 

adding up the fixed effects and the random effects for the intercept and time, respectively 

3. Calculate benefits for each patient on days 1 through 5 post-surgery using the benefit function by 

plugging in the therapeutic target of the transformed pain score, age, depression, the random 

coefficients, days post-surgery, and the variance of the pain score model residuals 

4. Calculate median, p25, p75 for days 1 through 5 post-surgery for the 4 groups  
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2.2.7. Simulations to evaluate the performance of individual benefit predictions in hypothetical new 

patients 

 To evaluate how well the proposed method of benefit prediction would work in new patients, we 

assessed the predicted benefits through simulations for various prediction origins (𝑡), prediction horizons 

(ℎ) and distance of parameter estimates from true parameters (𝛿) in standard error units (Diaz 2019) 

(Tables 4 and 5). 

 The performance of the predictions was assessed using the approach used by Diaz (2019). Pearson’s 

correlation (𝐶𝑡+ℎ) was used to examine the correlation between the predicted benefits and the simulated 

true benefits. Each value of 𝐶𝑡+ℎ was computed with a simulated sample of 1000 new patients. The accuracy 

of the prediction was also assessed using relative bias (Diaz, 2019). Briefly, the bias was defined as the 

predicted benefit minus the true benefit for each simulated patient at each time point, and the relative bias 

(ℬ𝑡+ℎ) was defined as {(mean of bias) / (mean of true benefit)} x 100 for each set of 1,000 simulated 

patients. 

 Simulations of the true and predicted benefits were carried out with the algorithm described below. 

1. Define values of the distance 𝛿 between the parameter estimates in Table 1 and the true 

parameters, prediction origin 𝑡, prediction horizon ℎ, age, and depression. Since t=0 represents 

baseline, and we also need a row for the drop-out model, a total of t+2 simulated responses are 

needed. 

2. Obtain the estimates of both the vector of fixed effects and the variance of the random intercept 

from Table 1.  

3. Calculate the true fixed effects for the pain score model and the true variance/covariance matrix 

of the random effects based on 𝛿. For instance, 𝛿 = 0.5 indicates each true parameter value is 

± 0.5 times standard errors (SE) away from the corresponding parameter estimate of the model 

(Column 2 of Table 1). Hence, for 12 parameters, there are 212 =  4096 sets of true parameter 

values for a particular 𝛿 > 0 (Diaz, 2019).  
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4. For SE of principle minor and determinant of D, multiply the estimates of principle minor and 

determinant by 0.6 and use as proxies for the SE. 

5. Obtain the design matrix of dimension (𝑡 + 2) × 8  corresponding to the fixed effects. Also 

obtain the design matrix of dimension (𝑡 + 2) × 3  corresponding to the random effects.  

6. Draw 1,000 random effects from a joint normal distribution with mean 0 and variance/covariance 

matrix D equal to the true variance calculated at step 4. These represent 1,000 new patients. Draw 

t+1 of error terms for each of the 1,000 patients. 

7. Calculate the true benefits using the benefit formula (3), the true fixed effects from step #3, the 

simulated true random effect, and the errors from step 6. 

8. Obtain EB predictors for the random effects using matrix calculation for the 1,000 new patients. 

9. Calculate the predicted benefits using the benefit formula, the fixed effects from Table 1 and 

predicted random effects for the pain score model from step 8. 

2.3. Results  

2.3.1. The association between pain scores and LOS and the impact of depression and age on 

individual postoperative pain management   

 The joint model (Table 3) showed a positive covariance between the random residual of the LOS 

model and the random intercept of the pain score model (0.4985), between the random residual of the LOS 

model and the random effect of time in the pain score model (0.6631), as well as between the random 

intercept and the random effect of time in the pain score model (0.8471).  Log-likelihood ratio test 

comparing the full model and the constrained model (setting the covariance between the random residual 

of the LOS model and the random intercept or the random effect of time of the pain score model) indicated 

that the association between the pain score model and the LOS model was significant (p = 1.697e-22). 

 As shown in Table 3, the preoperative depression comorbidity was significantly associated with 

higher pain scores at baseline on average (parameter estimate = 0.2278) whereas older age was significantly 

associated with lower baseline pain scores (parameter estimate = -0.1853). The interaction between 
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depression and time is positive (parameter estimate=0.1327), indicating that the slope of the decrease in 

pain scores overtime is less steep for patients with depression.  

 For the LOS model, older age was significantly associated with longer post-surgical LOS 

(parameter estimate = 0.2196), and preoperative depression comorbidity tended to have slightly longer LOS 

(parameter estimate = 0.0886). 

2.3.2. Comparison of Empirical Bayesian quartile estimates with Monte Carlo estimates of individual 

benefits  

We first analyzed the EB predicted individual pain management benefits in the 330 subjects during 

the study using formula (4). The medians and the first and third quartiles of the predicted benefits are shown 

in Table 2. During the 5 days’ recovery post the surgery, all four groups of patients gradually received more 

benefits in pain management over time. For the same time points, how much benefits each subject received 

differ depending on the patient’s preoperative depression status and age. The degree of variations in the 

amount of benefits within the same subgroup defined by depression and age also differ depending on the 

group and time points.   For instance, in elderly patients with no depression, the median decrease in disease 

severity was 25.5% probability units compared to 12.1% for patients in the same age group with depression 

at day 1. The minimum and maximum benefits for elderly patients with no depression at day 1 were 4.4% 

and 34.2%, respectively, whereas for patients in the same age group with depression these were 3.5% and 

19.1%, respectively. Similar effects of depression were observed in younger patients. The effects of age 

were more apparent in patients with depression, with younger patients showing lower median as well as 

minimum benefits at earlier time points.   

 As an alternative approach to analyze the pain management benefits, Monte Carlo computation was 

used to estimate the quartiles of the probability distribution of individual benefits for the four 

subpopulations (Table 3). The random effects (random residuals of the LOS model, random intercept and 

random slope of the pain score model) were simulated from a joint normal distribution with mean 0 and 

variance/covariance matrix (Table 1). The treatment benefits were calculated for the four subpopulations 
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at days 1 through 5 with formula (4), using the estimated values of the fixed effects shown in Table 1 in 

place of 𝜷. 

 To visualize how the medians of the predicted pain management benefits changed over time post-

surgery for the four groups of subjects in the study and compare the patterns with the Monte-Carlo 

computed benefits, we plotted the medians in Tables 3 and 4 in Panels A and B of Figure 1, respectively. 

Separate plots (Figure 2) were also made for each of the four groups, comparing EB-predicted and Monte-

Carlo calculated benefits. The medians of benefits for patients increase at a slower pace for patients with 

depression compared to patients without depression in the same age group. In patients with no depression, 

the effects of age on the medians of benefits are minimal. In patients with depression, however, younger 

age was associated with slightly lower medians of benefits in earlier days post-surgery. The patterns for 

EB-predicted benefits are consistent with the Monte-Carlo computed benefits (Figures 1 and 2), suggesting 

that the medians of EB predictions, which are less computationally demanding than medians based on 

simulations, are good estimators of median benefits.  

2.3.3. Evaluation of benefit prediction in simulated new patients using correlations between 

predictions and true benefits  

 Correlations between the predicted individual benefits and the true individual benefits in simulated 

new patients were analyzed the using Pearson’s correlations (𝐶𝑡+ℎ). Each 𝐶𝑡+ℎ was calculated from 1000 

simulated patients in each of the four subpopulations defined by age and depression categories. Results for 

younger patients without depression are shown in Table 4. Results for the other three groups are included 

in the Supporting Information. Minimal correlations were observed when only baseline data were used for 

predictions (prediction origin 𝑡 =  0). Correlations increased as t increased. This is true for predicting 

benefits for a given day (i.e., day 2 post-surgery) as well as predicting benefits for the same day (h=0), 

which is most apparent if the parameter estimates are the same as the true model parameters (𝛿 = 0). When 

parameter estimates moved further away from the true parameter values in the model, that is, as 𝛿 increased, 

the range of correlation values grew wider, as expected. However, the median of the correlations stayed 

approximately the same as for 𝛿 = 0. When 𝛿 was sufficiently small and t was sufficiently large, the 
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correlations were good for the predictions not only when predicting the benefits achieved up to the current 

week (ℎ = 0) but also for predictions of past benefits (ℎ < 0). For predicting future benefits, correlations 

decreased as h increased, which is especially true for small t (i.e., t <2).  

 

2.3.4. Evaluation of benefit prediction in simulated new patients using relative biases (𝓑𝒕+𝒉) 

 To further evaluate the performance of the benefit predictor, we assessed the biases of the predicted 

benefits relative to the true benefits as defined in the Methods section. Each 𝓑𝒕+𝒉 was calculated from 1000 

simulated patients for each of the four subpopulations, and the results for younger patients without 

depression are shown in Table 5. The negative signs indicate that the predicted benefits are smaller than 

the true benefits. Higher relative biases were observed when t=0. 𝓑𝒕+𝒉 decreased as t increased. This is true 

for predicting benefits for a given day (i.e., day 2 post-surgery) as well as predicting benefits for the same 

day (h=0), indicating that the more data we can use the less biased the prediction will be. When 𝛿  is 

sufficiently small, relative biases were relatively small when t > 0, suggesting relatively accurate predictions 

of past, current and future benefits when the patient provides at least one measure of the pain scores post-

surgery. As expected, the range of possible values of 𝓑𝒕+𝒉 became wider as the 𝛿 increased. However, the 

median of 𝓑𝒕+𝒉 stayed approximately the same as for  𝛿 = 0.  

 

Table 1.  Mixed effects model of transformed pain scores from 330 subjects after spine fusion surgery.  

Parameter name 
Parameter 

estimate (SE) 
p-value 

Fixed effects for LOS (days)   

LOS intercept 0.2465 (0.0385) <0.0001 

Older agea 0.2196 (0.0644) 0.001 

Depressionb 0.0886 (0.0532) 0.096 

Fixed effects for transformed pain score   

Pain score intercept 1.4704 (0.0544) <0.0001 

Older agea -0.1853 (0.0931) 0.047 
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Depressionb 0.2278 (0.0742) 0.001 

Time (days)c -0.6771 (0.0461) <0.0001 

Interaction between depression and time 
0.1327 (0.0662) 0.045 

Variance of random effects   

LOS residual, 𝑑11 0.2281  -- 

Pain score intercept, 𝑑22 0.1384 
-- 

Timeb, 𝑑33 0.0916 
-- 

Covariances   
 

Cov (LOS residual, Pain score intercept),  𝑑12 0.4985 
-- 

Cov (LOS residual, Time),  𝑑13 0.6631 
-- 

Cov (Pain score intercept, Time), 𝑑23 0.8471 
-- 

Residual variance,  σ2 0.3835 
-- 

SE: standard error. 
aThe dichotomous covariate was defined as 1 if the age of the subject was greater than 65, and 0 otherwise.  
bThe dichotomous covariate depression was defined as 1 if the subject had a record of depression diagnosis, and 0 

otherwise.  
cTime was defined as days post spine fusion surgery.  
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Table 2. Sample medians (and first and third quartiles) of individual benefits (x100) of postoperative pain 

management on days 1 through 5 for 330 subjects after spine fusion.  Empirical Bayesian predictors of the 

subject’s random effects were used for predicting treatment benefits, combining data with parameter 

estimates in Table 1.  

 

Study group Day 1 Day 2 Day 3 Day 4 Day 5 

Age ≤ 65, 

 no depression 

(N=191) 

18.6 

 (9.3, 37.1) 

59.3 

(35.9, 81.1) 

87.7 

 (70.9, 91.8) 

93.0 

 (87.3, 95.5) 

94.4 

(89.7, 97.0) 

Age ≤ 65, 

depression 

(N=80) 

5.6 

(1.3, 17.3) 

23.8 

(5.7, 56.1) 

53.6 

(16.2, 87.3) 

81.3 

(34.4, 95.2) 

93.6 

 (57.2, 96.9) 

Age > 65, 

 no depression 

(N=49) 

25.5 

 (4.4, 34.2) 

64.2 

 (15.4, 76.3) 

87.6 

 (34.6, 89.4) 

89.4 

 (58.3, 93.3) 

90.4 

(76.2, 93.8) 

Age > 65, 

depression 

(N=10) 

12.1 

(3.5, 19.1) 

40.3 

(12.2, 56.4) 

72.5 

(28.9, 83.5) 

89.3 

(52.6, 92.8) 

91.6 

(75.1, 96.1) 

 

 

Table 3. Estimates of medians (and first and third quartiles) of individual benefits (x100) of postoperative 

pain management on days 1 through 5 after spine fusion, obtained with Monte Carlo computation.  The 

model in Table 1 was used for simulating 1,000 patients for each study group.   

 

Study group Day 1 Day 2 Day 3 Day 4 Day 5 

Age ≤ 65, 

no depression 

18.5 

 (5.4, 39.8) 

57.6 

(21.6, 79.1) 

82.8 

 (49.2, 90.6) 

89.5 

 (72.1, 94.4) 

92.4 

(82.0, 96.3) 

Age ≤ 65, 

depression 

5.8 

(1.3, 21.8) 

28.5 

(5.4, 65.4) 

62.3 

(14.7, 88.7) 

85.1 

(29.8, 94.5) 

92.2 

 (51.1, 96.7) 

Age > 65, 

no depression  

25.1 

 (8.9, 46.2) 

63.7 

 (30.3, 77.6) 

80.1 

 (56.3, 87.8) 

86.0 

 (71.7, 92.1) 

88.9 

(78.2, 93.8) 

Age > 65, 

depression  

11.0 

(2.5, 28.9) 

38.0 

(9.2, 70.8) 

69.4 

(22.2, 87.4) 

84.9 

(40.5, 92.8) 

89.7 

(60.9, 94.9) 
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Table 4. Pearson correlations (𝐶𝑡+ℎ) between empirical Bayesian predicted benefits and true 

benefits of postoperative pain management on days 1, 3, 5 in simulated new patients who are 

under 65 and with no depression, by prediction origin (𝑡), prediction horizon (ℎ) and distance of 

parameter estimates from true parameters in standard error units (𝛿).  

 

  𝑡 + ℎ (weeks) 

𝑡 (𝑤𝑒𝑒𝑘𝑠)  𝛿 1 2 3 4 5 

0 0 0.51  0.38 0.31  0.22  0.02 
 0.2 0.45 (0.32, 0.56) 0.41 (0.25, 0.54) 0.34 (0.15, 0.50) 0.21 (0.04, 0.37) 0.00 (-0.02, 0.27) 

 0.4 0.42 (0.16, 0.61) 0.36 (0.09, 0.56) 0.28 (-0.01, 0.52) 0.15 (-0.07, 0.40) 0.01 (-0.24, 0.38) 

 0.8 0.31 (-0.28, 0.64) 0.22 (-0.37, 0.60) 0.12 (-0.32, 0.55) 0.05 (-0.14, 0.41) 0.06 (-0.28, 0.55) 

 1.2 0.17 (-0.45, 0.65) 0.09 (-0.55, 0.62) 
-0.02 (-0.40, 

0.57) 
0.03 (-0.14, 0.47) 0.08 (-0.30, 0.57) 

1 0 0.69 0.69 0.63  0.59 0.42 

 0.2 0.73 (0.62, 0.82) 0.69 (0.54, 0.79) 0.63 (0.45, 0.77) 0.54 (0.33, 0.68) 0.43 (0.19, 0.60) 
 0.4 0.73 (0.49, 0.84) 0.68 (0.42, 0.82) 0.58 (0.29, 0.77) 0.49 (0.13, 0.71) 0.37 (0.01, 0.64) 

 0.8 0.76 (0.02, 0.90) 0.70 (-0.17, 0.87) 0.61 (-0.24, 0.80) 0.47 (-0.18, 0.73) 0.35 (-0.10, 0.65) 

 1.2 0.80 (-0.24, 0.93) 0.75 (-0.39, 0.89) 0.66 (-0.35, 0.82) 0.54 (-0.18, 0.76) 0.43 (-0.15, 0.70) 

2 0 0.87  0.84 0.80 0.76 0.70 

 0.2 0.87 (0.78, 0.93) 0.84 (0.78, 0.91) 0.80 (0.67, 0.88) 0.75 (0.57, 0.85) 0.69 (0.47, 0.81) 

 0.4 0.88 (0.69, 0.94) 0.84 (0.63, 092) 0.79 (0.53, 0.89) 0.71 (0.31, 0.86) 0.64 (0.20, 0.83) 

 0.8 0.91 (0.28, 0.96) 0.88 (0.04, 0.94) 0.81 (-0.14, 0.91) 0.72 (-0.11, 0.88) 0.64 (-0.03, 0.86) 

 1.2 0.88 (0.06, 0.96) 0.84 (-0.10, 0.94) 0.77 (-0.14, 0.92) 0.69 (-0.11, 0.90) 0.62 (-0.09, 0.88) 

3 0 0.93 0.92 0.89 0.88  0.83 
 0.2 0.93 (0.87, 0.96) 0.91 (0.86, 0.95) 0.89 (0.80, 0.94) 0.86 (0.73, 0.93) 0.82 (0.66, 0.90) 

 0.4 0.93 (0.79, 0.97) 0.92 (0.79, 0.96) 0.89 (0.67, 0.95) 0.85 (0.50, 0.93) 0.80 (0.35, 0.92) 

 0.8 0.90 (0.30, 0.97) 0.90 (0.30, 0.96) 0.86 (0.05, 0.95) 0.81 (-0.03, 0.94) 0.76 (0.02, 0.93) 

 1.2 0.89 (0.17, 0.98) 0.89 (0.33, 0.97) 0.84 (0.11, 0.96) 0.77 (0.01, 0.95) 0.71 (-0.01, 0.93) 

4 0 0.95 0.95 0.94 0.92 0.90 

 0.2 0.95 (0.91, 0.97) 0.95 (0.90, 0.97) 0.93 (0.87, 0.96) 0.91 (0.83, 0.96) 0.89 (0.76, 0.95) 

 0.4 0.94 (0.84, 0.98) 0.95 (0.87, 0.97) 0.93 (0.77, 0.97) 0.90 (0.60, 0.96) 0.88 (0.46, 0.95) 

 0.8 0.89 (0.28, 0.98) 0.92 (0.49, 0.98) 0.90 (0.20, 0.97) 0.86 (0.15, 0.97) 0.82 (0.00, 0.96) 

 1.2 0.86 (0.06, 0.99) 0.90 (0.54, 0.98) 0.88 (0.27, 0.97) 0.84 (0.19, 0.97) 0.80 (-0.04, 0.96) 

5 0 0.96 0.96 0.96 0.95 0.93 

 0.2 0.96 (0.93, 0.98) 0.97 (0.93, 0.98) 0.96 (0.91, 0.98) 0.94 (0.86, 0.97) 0.93 (0.81, 0.97) 

 0.4 0.94 (0.87, 0.98) 0.96 (0.89, 0.98) 0.95 (0.82, 0.98) 0.93 (066, 0.98) 0.91 (0.56, 0.97) 

 0.8 0.88 (0.19, 0.99) 0.94 (0.62, 0.99) 0.93 (0.44, 0.98) 0.90 (0.25, 0.98) 0.86 (-0.02, 0.98) 

 1.2 0.83 (-0.02, 0.99) 0.90 (-0.57, 0.99) 0.89 (0.40, 0.98) 0.87 (0.31, 0.98) 0.84 (0.106,0.97) 

Note: Parameter estimates in the second column of Table 1 were used for predicting treatment benefits. 𝛿 = 0 

corresponds to the ideal situation when parameter estimates are equal to the true model parameters, in which case 

there is only one 𝐶𝑡+ℎ. For 𝛿 > 0, each entry in the table gives the median (minimum, maximum) of 4096 (=212) values 

of 𝐶𝑡+ℎ corresponding to different combinations of parameter values that are at a distance of 𝛿 standard errors from 

their corresponding estimates. Each value of 𝐶𝑡+ℎ  was computed using 1,000 simulated new patients who were 

cannabis users.  
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Table 5. Relative biases (ℬ𝑡+ℎ) of empirical Bayesian predictions of postoperative pain 

management benefits on days 1, 3, 5 in simulated new patients who are under 65 and with no 

depression, by prediction origin (𝑡), prediction horizon (ℎ) and distance of parameter estimates 

from true parameters in standard error units (𝛿).  
 

  𝑡 + ℎ (weeks) 

𝑡 (𝑤𝑒𝑒𝑘𝑠)  𝛿 1 2 3 4 5 

0 0 -13.5 13.8  25.0  24.6  20.5 
 0.2 -15.6 (-28.7, -1.7) 12.9 (3.9, 24.3) 25.0 (12.0, 39.5) 22.6 (10.6, 38.3) 18.6 (6.9, 33.5) 
 0.4 -16.1 (-35.5, 7.9) 14.2 (-1.9, 28.8) 30.2 (3.5, 50.3) 29.1 (3.7, 52.5) 24.9 (3.4, 50.0) 

 0.8 -20.6 (-47.8,41.3) 18.2 (-10.8, 40.9) 42.4 (-5.2, 74.4) 44.9 (-0.7, 82.4) 41.0 (-0.1, 78.0) 

 1.2 -26.7 (-55.2,97.9) 22.3 (-14.1, 60.8) 53.4 (-4.6, 99.4) 58.0 (1.4, 123.4) 55.2 (2.9,117.6) 

1 0 -9.4  9.8  14.5  13.8  11.0 

 0.2 -9.0 (-20.2, 2.6) 7.7 (0.0, 16.3) 15.3 (5.8, 26.3) 15.8 (5.4, 27.4) 13.5 (4.6, 25.9) 
 0.4 -8.9 (-26.7, 11.8) 8.4 (-3.8, 11.0) 18.3 (-1.0, 33.4) 20.1 (0.0, 36.3) 19.0 (0.5, 38.8) 

 0.8 -12.3 (-35.0,37.1) 10.0 (-10.4, 29.4) 24.8 (-8.2, 49.5) 22.9 (-3.4, 61.4) 30.6 (-0.5, 57.5) 

 1.2 -17.5 (-40.1,76.7) 10.9 (-10.7, 40.0) 28.2 (-7.4, 59.4) 35.8 (-1.8, 17.9) 38.8 (1.5, 71.5) 

2 0 -4.5  4.3  9.9  9.0  8.5 

 0.2 -4.5 (-12.4, 3.5) 4.0 (-1.5, 9.9) 8.1 (1.8, 13.1) 9.0 (2.7, 16.6) 8.5 (2.2, 16.3) 

 0.4 -3.8 (-16.8, 8.8) 3.7 (-4.2, 13.3) 9.0 (-2.9, 16.0) 11.2 (-1.0, 19.4) 11.6 (-0.2, 21.5) 

 0.8 -5.9 (-28.3, 29.5) 2.9 (-14.0, 21.2) 9.8 (-6.5, 29.7) 13.3 (-1.7, 35.0) 14.8 (-0.2, 35.9) 

 1.2 -10.5 (-47.4,62.7) 1.2 (-34.9, 27.8) 9.8 (-27.6, 36.7) 13.7 (-22.5, 42.5) 15.3 (-21.0, 47.0) 

3 0 -3.6  1.4  5.0  4.0  4.5 
 0.2 -2.1 (-8.5, 5.4) 2.0 (-2.7, 8.3) 4.1 (0.9, 7.6) 4.9 (1.0, 8.8) 5.0 (1.0, 9.5) 

 0.4 -1.0 (-13.8, 8.9) 1.4 (-7.3, 9.6) 3.8 (-2.3,11.2) 5.1 (-0.9, 11.9) 5.9 (-0.4, 12.5) 

 0.8 -3.6 (-31.4, 27.4) -0.9 (-23.7, 17.0) 3.3 (-17.7, 18.8) 5.6 (-12.8, 23.2) 6.6 (-11.0, 25.3) 

 1.2 -8.3 (-57.2, 64.4) -4.7 (-47.5, 27.5) 1.1 (-42.8, 23.8) 4.5 (-39.2, 27.4) 6.3 (-37.0, 34.1) 

4 0 0.7 1.3  2.1  3.4  2.9 

 0.2 -0.8 (-6.6, 5.6) 1.0 (-4.5, 5.7) 2.2 (-1.4, 5.8) 2.6 (0.0, 6.0) 2.8 (0.6, 5.7) 

 0.4 0.0 (-13.4, 10.3) 0.2 (-9.8, 9.6) 1.6 (-6.4, 8.0) 2.3 (-4.0, 9.2) 2.7 (-2.8, 10.0) 

 0.8 -3.1 (-34.0, 28.0) -3.2 (-27.4, 15.9) -0.3 (-23.8, 12.6) 1.9 (-21.3, 15.3) 3.0 (-18.7, 16.6) 

 1.2 -7.9 (-61.1, 66.3) -8.8 (-54.6, 23.7) -4.8 (-49.1, 19.1) -1.9 (-46.2, 18.6) -0.1 (-45.2, 22.3) 

5 0 0.0  0.7  1.2  1.5  2.1 

 0.2 -0.3 (-0.9, 5.7) 0.5 (-5.3, 5.5) 1.2 (-2.9, 4.8) 1.6 (-1.7, 4.9) 1.7 (-1.2, 4.4) 

 0.4 0.1 (-12.7, 11.1) -0.4 (-12.1, 8.8) 0.4 (-9.1, 7.6) 1.1 (-6.9, 6.8) 1.5 (-5.4, 7.8) 

 0.8 -2.6 (-35.9, 31.1) -4.6 (-31.5, 14.8) -2.4 (-26.9, 11.5) -0.4 (-25.1, 10.6) 0.7 (-22.3, 12.1) 

 1.2 -7.9 (-63.6, 72.1) -11.3 (-57.3,23.2) -8.1 (-52.8, 17.6) -5.9 (-51.3, 15.5) -4.2 (-48.8, 17.5) 

Note: Parameter estimates in the second column of Table 1 were used for predicting treatment benefits. 𝛿 = 0 

corresponds to the ideal situation when parameter estimates are equal to the true model parameters, in which case 

there is only one ℬ𝑡+ℎ. For 𝛿 > 0, each entry in the table gives the median (minimum, maximum) of 4096 (=212) 

values of ℬ𝑡+ℎ corresponding to different combinations of parameter values that are at a distance of 𝛿 standard 

errors from their corresponding estimates. Each value of ℬ𝑡+ℎ  was computed using 1,000 simulated new patients 

who were cannabis users.  
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Figure 1. Comparison of estimators of medians of individual pain management benefits at days 1 through 

6. (A) Plots of medians of predicted antipsychotic treatment benefits for the 330 subjects in this study. (B) 

Medians of the individual benefits of 1,000 patients in each of the four groups were computed using Monte-

Carlo simulations assuming the Model in Table 1.  
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Figure 2. Comparisons of medians of empirical Bayes-predicted and Monte-Carlo computed antipsychotic 

treatment benefits for the four groups of patients. Medians of the empirical Bayes-predicted treatment 

benefits were calculated for the 330 subjects in this study, and medians of the Monte-Carlo computed 

benefits were calculated using 1,000 simulated patients for each of the four groups assuming the Model in 

Table 1. (A) Younger age with no depression. (B) Younger age with depression. (C) Older age with no 

depression. (D) Older age with depression.  

 

2.4. Discussion  

 In this paper, we extended the methods for individual treatment benefit prediction using mixed- 

effects models proposed by Diaz (2016, 2019) to allow non-ignorable missingness in the longitudinal data. 

Although modeling informative drop-out in the analysis of clinical trial data with some patients dropping 

out of the study after randomization is not new, the idea of extending this concept to real-world hospital 

data for which the follow-up data are incomplete due to hospital discharge is novel. This is the first paper 

to analyze individual treatment benefits using EHR data. Since RWD are becoming more and more 
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important in clinical evidence generation, this offers a new way of analyzing treatment effects from 

personalized medicine perspective. 

 In the application, longitudinal pain score data of patients undergoing spine fusion surgery, 

extracted from Cerner HealthFacts® HER database, were modeled simultaneously with post-surgical LOS 

using a 2-PM model for joint mixed effects. This is another novelty of the current study. Previously, the 2-

PM model was defined as a mixed effects model of a single outcome of repeated measures with random 

effects for both the intercept and time-dependent covariates.  By extending the 2-PM model to allow for 

joint modeling of the outcome of interest and the hospital LOS, the prediction of individual treatment 

benefits can now handle longitudinal data with non-ignorable missingness. The correlation between the 

longitudinal outcome and the LOS is taking into consideration, leading to more reliable and accurate 

estimation of the model parameters. More accurate parameter estimates in turn lead to better prediction of 

individual treatment benefits.  

 Although the “predict” command in JMRE1 provides the EB estimates of the random effects in the 

joint mixed effects model, previous publications by the author did not explicitly describe the method used 

in the prediction (Touloumi et al. 1999, Pantazis et al. 2010).  In this study, we provided detailed 

information on the calculation of the random effects using matrix algebra. The joint model defines that the 

level 1 residual in the LOS model is always 0; therefore, the values of LOS model level 1 residuals as well 

as the variance were set to 0.  

 We are interested in longitudinal outcomes that decrease over time and stabilize at a minimum 

value. A transformation of the outcome is necessary to make sure the estimated outcomes are within a 

meaningful range. For discrete outcomes, like the pain scores we used in the application, a discrete logit 

transformation can be used as described in the Methods section. This is another contribution of the current 

study. To our best knowledge, there has been no publications in the literature that proposed this type of 

transformation for discrete outcomes such as patient-reported scores.  

 A lognormal accelerated failure time model was used to model the post-surgical hospital LOS. This 

is a reasonable model in terms of the pattern of the hazard of discharge. We are investigating patients 
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undergoing a major surgery, who would be unlikely to go home immediately after surgery and more likely 

to go home in the several days after the surgery, but then less likely to go home if they remain in the hospital 

longer due to any complications associated with the surgery.  

 We used two methods to estimate the individualized pain management benefits in the application. 

The results from the EB method are quite similar to those from Monte-Carlo computations. This confirms 

that the prediction of individualized benefits using EB-predicted random effects is reliable. In JMRE1, the 

“predict” command gives the EB-predicted random effects.  The makes it convenient for researchers to 

implement the prediction of individualized benefits for their data using the Stata.  

 The prediction performance using the 2-PM model for joint mixed effects was evaluated using 

Pearson’s correlation and relative bias comparing predicted benefits with true benefits for simulated new 

patients. Results showed that, except when only baseline data are available, the prediction of benefits is 

reliable, with small median relative biases and good correlations when the model parameter estimates are 

reasonably close to the true parameter values. When the model parameter estimates move further away 

from the true parameter values, the range of the predicted correlation or relative biases get wider, especially 

when the prediction origin t is small. As the prediction origin t goes larger, the results become more stable 

and less sensitive to the changes in δ.  

 In summary, we proposed to use a 2-PM model with joint mixed effects that simultaneously models 

the longitudinal outcome and the hospital LOS for predicting individualized treatment benefits using 

unbalanced continuous or discrete outcomes in EHR data. Evaluation of the prediction using simulations 

demonstrated that the prediction is reliable in the application used in this study, given that the parameter 

estimates are not far from the true parameter values. This method can be used to analyze individualized 

benefits for many longitudinal clinical outcomes in the EHR data. The JMRE1 command is conveniently 

available in Stata, making it practical for the application of this method.   
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Chapter 3: Effects of depression and age on individual benefits of pain management post spinal 

fusion: an analysis of longitudinal hospital data 

In collaboration with Drs. Nikos Pantazis, Ph.D., Jose de Leon, M.D., and Francisco J. Diaz, Ph.D. 

(See collaborator affiliations in Acknowledgements) 

3.0. Abstract  

Objectives:  This study analyzed the impact of depression and age on individual benefits of postoperative 

pain management in lumbar spinal fusion patients using longitudinal observational data.  

Methods: Cerner HealthFacts electronic health records were used. Patients were selected using 

International Classification of Diseases (ICD)-9 codes and ICD-10 codes for spinal fusion and 

predetermined inclusion/exclusion criteria. A joint multivariate mixed model of pain scores and length of 

hospital stay was used to analyze individual benefits. 

Results: Depression was significantly associated with higher baseline pain scores (p=0.001) on average, 

whereas geriatric age was associated with lower baseline pain scores (p=0.047). Antidepressant use had no 

significant effects on postoperative pain scores in patients with depression. Although pain management 

benefits tended to increase with time, the amount and rate of change of the benefits depended on depression 

status and age. More patients with depression received small benefits than those without depression after 

controlling for age and time. For patients with depression, non-geriatric age was associated with slower 

individual benefits development, except for those achieving the highest benefits. In general, the detrimental 

depression effects on individual benefits outweigh age effects in the patients achieving the highest benefits. 

Patients with higher immediate benefits tended to have shorter lengths of stay.   

Conclusions: This study revealed that preoperative depression and geriatric age may be important factors 

affecting individual benefits of postoperative pain management in patients undergoing spinal fusion 

surgery. Depression had a negative impact on pain relief, while age had varied effects depending on 

depression status and other traits. 

Keywords: individual benefits, random effects, depression, pain management, spinal fusion.  
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3.1. INTRODUCTION 

Although lumbar spinal fusion is the top procedure for treating chronic low back pain and is the 

second most common low back operation overall, better understanding is needed of how patients’ 

characteristics influence postoperative outcomes (Gaudin et al., 2017). Depression is known to be 

associated with chronic pain such as back pain (Trivedi, 2004) and is a negative predictor of spinal fusion 

outcomes (Gaudin et al., 2017). Retrospective cohort studies have found that: 1) patients with pre-existing 

depression were absent from work for more days after spinal fusion surgery compared to those without 

depression (Anderson et al., 2015), and 2) preoperative depression influences patient satisfaction 

independent of the surgery’s effectiveness (Adogwa et al., 2013). 

Patient-reported maximum pain levels on a scale from 0 to 10 are often used as postoperative 

quality measures to monitor pain relief and track patients’ progress after spinal fusion. Studies of risk factors 

for severe postoperative pain have provided varying results. The risk factors could be procedure-specific; 

however, preoperative chronic pain and younger age were associated with higher postoperative pain level 

independent of the type and extent of the surgery in pooled data from 150 German hospitals (Gerbershagen 

et al., 2014). In a German registry of knee replacement, older age was associated with lower reported 

maximum pain levels. On the other hand, the elderly patients did not report less functional impairment 

caused by pain, suggesting that they tend to underreport their pain levels (Weinmann et al., 2017). 

 It is important to further understand the impact of patients’ characteristics such as preoperative 

depression and age on individual benefits of pain management after spinal fusion surgery. Generalized 

linear mixed-effects modeling is a statistical approach useful for predicting individuated treatment benefits 

(Diaz, 2016 and 2019), which take into consideration the heterogeneity of patients’ characteristics including 

unknown traits. While traditional statistical analyses focus on average treatment effects, mixed-effects 

modeling can analyze the variation of treatment effects in individual patients.   

Electronic health records (EHR) provide valuable resources for longitudinal studies and 

understanding risk factors associated with poor clinical outcomes. However, they may not provide complete 

follow-up, and the missing data are not at random since hospital discharge may depend in part on expected 
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but unrecorded clinical outcomes after discharge (Ibrahim and Molenberghs, 2009). This is called “non-

ignorable missingness” and requires novel statistical techniques.14 Ignoring the unbalanced nature of 

longitudinal EHR data may lead to serious bias (Albers et al., 2018). 

In this study, we use novel statistical methods to evaluate the effects of depression and geriatric 

age (age>65 years) on patient-reported pain levels (Diaz, 2016 and 2019; Pantazis and Touloumi, 2010). 

The main goal is to measure and compare individual benefits of postoperative pain management, using 

EHR data from patients undergoing spinal fusion surgeries  (Cerner HealthFacts®; Kansas City, MO).  

3.2. METHODS 

Data source and study subjects 

The EHR dataset (Cerner HealthFacts®, Kansas City, MO) is deidentified and has been used in 

previously published articles (Shaw et al., 2018; Urman et al., 2018). An Institutional Review Board (IRB) 

exemption for this study was granted by Western IRB (Olympia, WA).  We selected adult inpatients 

undergoing spinal fusion surgery in the United States between January 1, 2014, and December 31, 2015, 

using International Classification of Diseases ICD-9 codes 81.00 to 81.08 and corresponding ICD-10 codes.  

Additional inclusion criteria were 1) at least one pain score on the day of surgery (day 0) and at 

least one score after that day; 2) a maximum score on day 0 between 7 and 10 inclusive; 3) 1 to 5 days post-

surgical hospital stay; and 4) at least 6 months of history captured in the database prior to the surgery. For 

greater sample homogeneity, patients from the hospital with the largest number of patients meeting the 

above criteria were selected for this study. The reason for choosing a single hospital is that each hospital 

may have different pain management protocols. We identified 940 patients who satisfied the inclusion 

criteria, and 330 from the hospital with the largest number of patients were selected (Table 1).  

Pain assessments 

The numerical patient-reported pain scores ranged from 0 to 10, with 10 indicating the most severe 

pain (0: no pain, 1-3: mild pain, 4-6: moderate pain, 7-10 severe pain). The outcome of interest was the 

patient’s maximum daily score, obtained at day 0 and during 1 to 5 days of post-surgical hospital stay (Table 
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2). Since patients’ pain levels were not measured after discharge, this longitudinal observational study 

conveys the challenges of a highly unbalanced dataset caused by non-random missing data. Since pain 

scores are usually lower on or after the discharge day, the assumption that missing data would be random, 

which is required by standard longitudinal statistical models, is violated (Ibrahim and Molenberghs, 2009). 

Depression assessments 

Depression comorbidity was defined as having ICD-9 codes (3004, 30112, 3090, 3091, and 311) 

or ICD-10 codes (F320, F321, F322, F323, F328, F3281, F3289, F329, F330, F331, F332, F333, F338, 

F339, F341, F4321) during the hospital stay or within 6 months before admission, or having received 

antidepressants during the stay.                        

Hospital length of stay (LOS) 

The patients’ hospital LOS after surgery may be affected by their characteristics and responses to 

postoperative pain management. Pain levels are usually not measured after discharge and even when 

patients are in the hospital their pain measurements may be terminated for various reasons. Ignoring this 

incomplete follow-up in the data analysis could lead to serious bias (Ibrahim and Molenberghs, 2009). 

Hence, there is a need to apply special methods that account for the relationship between pain scores and 

LOS and model the premature termination of measurements in some patients. 

Statistical model 

This study utilized a joint multivariate random-effects (JMRE) model (Touloumi et al., 1999; 

Pantazis and Touloumi 2010), which is a generalized linear mixed-effects model that accounts for non-

ignorable missingness. The model combined a model of daily maximum pain scores with a model of LOS 

(Table 3, Footnotes a-e).  The daily maximum pain scores were transformed to improve the model’s 

goodness-of-fit.  

The variables included in the pain model were older age (1 if age >65 years, 0 otherwise), 

depression (1 if the patient had depression comorbidity, 0 otherwise), time as the number of days from 

surgery, and the interaction between depression and time. The transformed pain scores followed a linear 
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time trend. The intercept and the time slope were considered random, meaning they were different for each 

patient (Diaz, 2016 and 2019). 

Details on the LOS model are provided in Table 3, Footnote c.  It was assumed that the random 

residual of the LOS model was correlated with both the random intercept and random time slope of the pain 

model. Initial explorations showed that gender and race had no significant effects on either the pain scores 

or LOS and were therefore not included in the final model.  

Individual pain management benefits 

The severity of the patient’s disease is defined as the probability of being outside the pain treatment 

target, which in turn is defined as a daily maximum pain score ≤6 (Table 4, Footnote a) (Diaz, 2016 and 

2019). The patient’s individual treatment benefit is defined as the decrease in disease severity from baseline 

(x100).  

 To examine how much benefit patients received from postoperative pain management during the 

5 days after spinal fusion, we predicted the individual benefits for each of the 330 patients. Estimated 

random effects for each patient were used to predict treatment benefits, combining all available patient data 

with parameter estimates in Table 2. Details regarding calculation of the empirical Bayes (EB) predictors 

of the benefits are provided in Table 4, Footnote a (Diaz, 2016 and 2019). 

For each patient, individual benefits were predicted from day 0.2 to day 5 by 0.2-day increments. 

Although patients’ pain scores were observed for days 0 to 5, benefits can be predicted for any non-integer 

interval from 0 to 5 days using the formula in Table 4, Footnote a (Diaz, 2016 and 2019). Median, 25th and 

75th percentiles of individual benefits were calculated. For each of the 4 groups determined by age and 

depression status, these statistics were plotted (Figure 1) and presented in Table 4 for days 1 through 5. To 

compare the evolution of individual benefits over time across the 4 groups, we plotted histograms of the 

benefits (Figure 2).  

3.3. RESULTS  

Patient Characteristics  
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Patients’ characteristics, pain medications and antidepressant medications are described in Table 1. 

Almost half (46%) the patients had comorbid depression. Depression was more frequent in females (54%, 

94/173) than in males (36%, 56/157) and in non-geriatric patients (49%, 132/271) than in geriatric patients 

(31%,18/59). Baseline pain scores and hospital LOS are in Table 2. 
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Table 1.  Demographics and clinical characteristics of 330 patients who underwent a spinal fusion 

surgery.             

 

       Mean  SD     

Age (years)      53.9 12.4     

       %      

GERIATRIC AGE (>65 years)  

 Yes       18 (59/330) 

 No       82 (271/330) 

GENDER     

 Female       52 (173/330) 

 Male       48 (157/330) 

RACE     

 Caucasian      93 (308/330)      

 African American        2 (7/330) 

 Other          5 (15/330) 

PAIN MEDICATION   

 Opioids and acetaminophen    78 (257/330) 

 Opioids, NSAIDs and acetaminophen   18 (60/330)   

 Opioids only         4 (12/330)  

 Opioids and NSAIDs       <1 (1/330)  

DEPRESSION 

 Yes       46 (150/330) 

 No       54 (180/330)  

ANTIDEPRESSANT MEDICATION 

 Taking antidepressants      81 (121/150)      

 SSRI        34 (51/150)      

 SNRI        11 (17/150) 
 Othera              9 (13/150) 

 SSRI and other               7 (11/150) 

 SSRI and TCA             5 (8/150) 

 TCA              5 (7/150)  

 SNRI and TCA                 4 (6/150)  

 SSRI and SNRI              1 (2/150)  

 SNRI and other                 1 (2/150)  

 MAOI            <1 (1/150) 
 Other and TCA             <1 (1/150) 

 SSRI, SNRI and other         <1 (1/150)  

 SSRI, other and TCA           <1 (1/150)                                  

Abbreviations: SD = standard deviation, MAOI = monoamine oxidase inhibitor, NSAID = nonsteroidal 

anti-inflammatory drug, SNRI = serotonin norepinephrine reuptake inhibitor, SSRI = serotonin selective 

reuptake inhibitor, TCA = Tricyclic antidepressant. 
aThe EHR database did not itemize the medications in the “Other” category. 
  

 

Joint model and the impact of depression and age on pain scores and LOS 

We found positive correlations between 1) high baseline pain scores and longer postoperative LOS 

(r=0.50, p<0.001), 2) slower pain reduction and longer LOS (r=0.67, p<0.001), and 3) high baseline pain 
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scores and slower pain reduction post-surgery (r=0.85, p<0.001).  These significant correlations indicated 

that 1) patients who had higher baseline pain scores tended to stay longer after surgery; 2) patients whose 

pain decreased more slowly after surgery tended to stay longer; and 3) patients with higher pain scores at 

baseline tended to have slower pain reduction after surgery. 

The pain model demonstrated that, on average: 1) a preoperative record of depression was 

significantly associated with higher baseline pain scores (P = 0.001; Table 3); 2) geriatric age was 

significantly associated with lower baseline pain scores (P = 0.047); 3) a significant interaction existed 

between depression and time (parameter estimate=0.1327, p=0.045), meaning that patients with depression 

had significantly slower pain reduction after surgery.  

The LOS model demonstrated that, on average: 1) geriatric age was significantly associated with 

longer LOS (p = 0.001; Table 3); and 2) depression tended to be associated with a slightly longer LOS, 

although it did not reach significance (P = 0.096).  

 

Table 2.  Mean and SD of stratified maximum baseline pain scores and hospital LOS after surgery in 330 

patients who underwent a spinal fusion surgery      

 

    Baseline Pain scores  LOS      

    Mean SD   Mean SD  Min   Max   

All (N=330)   8.65  1.11   1.62  1.00      1.0    5.0 

GERIATRIC AGEa 

  Yes (N=59)        8.31  0.99   1.98  1.17      1.0    5.0 

   No (N=271)   8.72  1.12   1.54  0.94      1.0    5.0 

GENDER 

  Female (N=173)       8.66  1.11   1.64  1.03      1.0    5.0 

  Male (N=157)   8.62  1.11   1.59  0.97      1.0    5.0 

RACE 

  Caucasian (N=308)       8.62  1.11   1.61  1.00      1.0    5.0 

  African American (N=7) 8.71  1.25   1.71  1.50      1.0    5.0 

  Other (N=15)   9.20  1.21   1.67  0.62      1.0    5.0 

DEPRESSION 

  Yes (N=150)       8.81  1.13   1.67  1.03      1.0    5.0 

   No (N=180)   8.51  1.07   1.57  0.97      1.0    5.0           

Abbreviations: SD = standard deviation, LOS = Length of stay.  
aGeriatric age was defined as age >65 years. 

 

 

 



65 

Table 3. Joint random-effects model of transformed daily maximum pain scores and hospital length of stay 

from 330 patients after spinal fusion surgery       

Parameter name    Estimate      P           95% CI   

FIXED EFFECTS FOR TRANSFORMED PAIN SCORESa,b 

  Pain score intercept   1.470    <0.0001     1.364 to1.577 

  Geriatric agee    -0.185    0.047     -0.337 to -0.003 

  Depressionf    0.228    0.001      0.102 to 0.393 

  Time (days)g     -0.677    <0.0001    -0.768 to -0.587 

  Interaction between depression and time 0.133    0.045      0.003 to 0.263 

FIXED EFFECTS FOR LOS (days)c,d 

  LOS intercept     0.247    <0.0001      0.171 to 0.322 

  Geriatric agee                   0.220    0.001       0.093 to 0.346 

  Depressionf     0.089    0.096      -0.016 to 0.193 

                                                                                
Abbreviation: CI = 95% confidence interval, LOS = length of stay.  
aA random effects linear model of the transformed maximum pain scores was fitted, simultaneously with an 

accelerated failure-time lognormal model of hospital LOS postsurgery.14 This joint mixed model accounted for the 

correlation between LOS and the evolution of pain scores after surgery. The distribution of the original pain scores 

was highly skewed with higher frequencies for severe pain scores. Maximum pain scores were previously transformed 

as log ((Pain Score𝑖𝑗 + 1)/(11 − Pain Score𝑖𝑗)), where Pain Score𝑖𝑗  is the maximum daily pain score for patient 

𝑖 at day Time𝑖𝑗 . After this transformation, the model fitted well according to residual and random effects analyses. 

The pain model included a random intercept and a random slope for time and had the form 

Transformed Pain Scores𝑖𝑗 = 𝛽0 +  𝛽1  × Geriatric Age𝑖 +  𝛽2 × Depression𝑖 +  𝛽3 × Time𝑖𝑗 + 𝛽4 ×

Depression𝑖  × Time𝑖𝑗 + 𝛼0𝑖  + 𝛼1𝑖  ×  Time𝑖𝑗 +  𝑒𝑖𝑗 ,   where 𝑒𝑖𝑗 indicates the residuals for the pain score model for 

patient 𝑖 at occasion 𝑗 which has mean 0 and residual variance 𝜎𝑒
2. The parameters 𝛽𝑘, 𝑘 = 1, … ,4, are population-

average effects (the fixed effects), whereas 𝛼0𝑖 and 𝛼1𝑖 are parameters specific to patient 𝑖 denoting deviations from 

the corresponding population-averages (the random effects). The joint mixed model was fitted using the “jmre1” Stata 

command (StataCorp LLC, College Station, TX)14 

bThe variances of the random effects were 0.1384 for the pain score intercept, and 0.0916 for the time slope. The 

residual variance for the pain model was 0.3835. 
cThe model of LOS for patient 𝑖 had the form log(LOS𝑖) = 𝛽0

𝑑 +  𝛽1
𝑑  × Geriatric Age𝑖 + 𝛽2

𝑑 × Depression𝑖 + 𝑒𝑖
𝑑, 

where 𝑒𝑖
𝑑 is a random residual following a normal distribution with mean 0. 

dThe variance of the LOS intercept was 0.2281. 
eThe dichotomous covariate geriatric age was defined as 1 if the age of the subject was >65, and 0 otherwise.  
fThe dichotomous covariate depression was defined as 1 if the patient had a record of depression diagnosis or was 

under antidepressants, and 0 otherwise.  
gTime was defined as days post spinal fusion surgery. 
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Impact of depression and age on individual benefits of postoperative pain management  

Although treatment benefits tended to increase over time for all four groups of patients, the amount 

and rate of change of achieved benefits varied across groups (Table 4). For instance, at day 1, in non-

geriatric patients without depression the median decrease in disease severity was 18.6% probability units 

compared to 5.6% in non-geriatric patients with depression  

 

Table 4. Sample medians (and first and third quartiles) of individual benefits (x100) of postoperative pain 

management on days 1 through 5 for 330 patients after spinal fusiona    

 

Study group  Day 1  Day 2  Day 3  Day 4  Day 5   

Age > 65 and  25.5  64.2  87.6  89.4  90.4  

No depression  (4.4, 34.2)  (15.4, 76.3) (34.6, 89.4) (58.3, 93.3) (76.2, 93.8) 

(N=49) 

Age ≤ 65 and  18.6  59.3  87.7  93.0  94.4  

No depression  (9.3, 37.1)  (35.9, 81.1) (70.9, 91.8) (87.3, 95.5) (89.7, 97.0) 

(N=191) 

Age > 65 and  12.1  40.3  72.5  89.3  91.6  

depression  (3.5, 19.1)  (12.2, 56.4) (28.9, 83.5) (52.6, 92.8) (75.1, 96.1) 

(N=10) 

Age ≤ 65 and  5.6  23.8  53.6  81.3  93.6  

depression  (1.3, 17.3)  (5.7, 56.1) (16.2, 87.3) (34.4, 95.2) (57.2, 96.9) 

(N=80)              
aThe individual benefit is the increase in the probability of being in the treatment target from baseline.7,8 The treatment 

target was defined as a maximum daily pain score ≤6, which corresponds to a transformed pain score ≤0.3365.  

bThe individual benefit for subject 𝑖 at time 𝑡 was calculated as 𝑏̂𝑖(𝑡) = {Φ (
0.3365−𝑦̂𝑖(𝑡)

𝜎̂𝑒
) −

Φ (
0.3365−𝑦̂𝑖(0)

𝜎̂𝑒
)} × 100,  with  𝑦̂𝑖(𝑡) = 𝛽̂0 + 𝛽̂1  × Geriatric Age𝑖 + 𝛽̂2 × Depression𝑖 +  𝛽̂3 ×

𝑡 +  𝛽̂4 × Depression𝑖  × 𝑡 + 𝛼̂0𝑖  + 𝛼̂1𝑖  × 𝑡, where 𝑦̂𝑖(𝑡) is the patient’s predicted transformed pain score 

at time 𝑡; 𝛽̂𝑗 is the maximum likelihood estimator of 𝛽𝑗 for 𝑗 = 1, … ,4; 𝛼̂0𝑖 and 𝛼̂1𝑖 are the empirical Bayes predictors 

of 𝛼0𝑖 and 𝛼1𝑖, respectively; Φ is the standard normal cumulative distribution function; and 𝜎̂𝑒 is the estimated standard 

deviation of the pain model residuals 𝑒𝑖𝑗.The empirical Bayes predictors of the random effects of each patient were 

calculated using the “predict” command of the “jmre1” Stata command (StatCorp LLC, College Station, TX). 
 

By day 5, the median achieved benefits were comparable for patients with or without depression. 

However, the first quartiles for patients with depression tended to be smaller than those for non-depressive 

patients of comparable age group at specific times, indicating that there were more patients with depression 

receiving small benefits than patients without depression after controlling for age and time. 



67 

Figure 1. Predicted evolution of individual pain management benefits (x100) after a spinal fusion surgery 

over days 1 through 5 for 330 patients. For a particular patient, predicted individual treatment benefits were 

obtained by combining the patient’s data with the parameter estimates in Table 2. (A), (B), and (C) show 

50th, 25th and 75th percentiles of individual benefits, respectively.  
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For patients with depression, non-geriatric age was associated with slower individual benefits 

development. For instance, in geriatric patients with depression, the median decrease in disease severity 

was 12.1% probability units at day 1 compared to 5.6% for non-geriatric patients with depression. On day 

5, the first quartile for geriatric patients with depression (75.1%) was higher than that for non-geriatric 

patients with depression (57.2%). Figure 1A illustrates that for average patients with depression non-

geriatric age was associated with smaller benefits, compared to geriatric age. In general, average patients 

with depression had much smaller benefits after controlling for age.      

In patients receiving the poorest benefits from pain management the combination of depression and 

non-geriatric age was associated with the slowest responses whereas non-geriatric age without depression 

was associated with the fastest responses (Figure 1B).  Interestingly, for the patients achieving the greatest 

benefits (Figure 1C), individual benefits were more clearly affected by depression comorbidity than by age.  

Figure 2 suggests that preoperative depression diagnosis was associated with slower pain reduction 

after controlling for age and time. The number of non-geriatric patients who received substantial benefits 

on a given day post-surgery was higher for the group without than for the group with depression (Figure 2, 
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left panels). Even by day 5 post-surgery, there was still a much higher number of patients in the group with 

depression who only received minimal benefits from pain management.  Similar patterns were seen in 

geriatric patients (Figure 3, right panels).  

Effect of antidepressants on individual benefits of postoperative pain management in patients with 

depression 

To assess whether treatment with antidepressants influenced response to pain management in 

patients with depression, we fitted an additional joint mixed model using only patients with depression, 

similar to the model in Table 3 except that the depression variable was replaced by antidepressant use. 

Antidepressant use was not significantly associated with baseline pain scores (p=0.283) and did not 

significantly modify postoperative pain reduction (p=0.53). There were no significant differences in 

hospital LOS (p=0.792) after surgery between patients with and without antidepressant use. Furthermore, 

geriatric age was not significantly associated with baseline pain scores (p=0.099) or LOS (p=0.126). 

Individual benefits one day after surgery as predictors of LOS  

To examine whether levels of individual benefits from post-surgery pain management achieved 

after 1 day are predictive of hospital LOS, we compared the LOS from patients whose individual benefits 

were between the 1st, 2nd, 3rd, and 4th quartiles (Table 5). Patients with higher immediate benefits tended to 

have shorter LOS.  

 

Table 5. Hospital LOS (in days) for study patients grouped by quartiles of individual pain management 

benefits at day 1 post spinal fusion surgery         

Individual Benefits   N Mean (SD) Median Minimum Maximum  

1st quartile (0 to 3.28%) 82 2.44 (1.25) 2  1  5 

2nd quartile (3.29 to 13.64%) 83 1.69 (0.96) 1  1  5  

3rd quartile (13.65 to 27.92%) 84 1.19 (0.50) 1  1  3  

4th quartile (≥27.93%)  81 1.15 (0.45) 1  1  3   

Abbreviation: LOS = length of stay. 

 

  



70 

Figure 2. Histograms of predicted individual pain management benefits (x100) after a spinal fusion surgery 

on days 1 through 5 in patients with age ≤ 65 with or without depression (left panels) and age > 65 with or 

without depression (right panels), assuming the model in Table 2. (A), (C), (E), (G), and (I) are benefits for 

patients with age ≤ 65 with or without depression on days 1, 2, 3, 4, and 5, respectively. (B), (D), (F), (H), 

and (J) are benefits for patients with age > 65 with or without depression on days 1, 2, 3, 4, and 5, 

respectively.  
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3.4. DISCUSSION  

Strengths of our statistical model  

Unlike randomized clinical trials, EHR data are longitudinally unbalanced due to incomplete 

follow-up. This type of data is likely to have non-ignorable missingness (Touloumi, 1999; Pantazis and 

Touloumi, 2010) caused by termination of pain measurements due to discharge. The simultaneous modeling 

of LOS and pain took into consideration the correlations between them. It reduced the bias associated with 

unbalanced data and provided more accurate estimation of the effects of age and depression on pain scores.   

Another novelty of this study is the assessment of the impact of preoperative depression and age 

on the individual benefits of post-operative pain management instead of focusing only on average effects. 

These analyses are more consistent with the goals of personalized medicine (Diaz, 2016 and 2019). 

Limitations 

 Our study included patients with severe pain at baseline and at least one pain score and who stayed 

at least 1 day in the hospital. These criteria may have excluded less severe cases so our results cannot be 

extrapolated to them. Moreover, to increase homogeneity we selected our sample from the hospital with 

more cases in the EHR database. There is no way of knowing how representative this hospital sample was, 

although this is a typical limitation of observational data. 

The pain scores used in this study were self-reported values. Patient-reported measures such as pain 

scores and levels of satisfaction are important measures for evaluating treatment effects (Lotzke, 2016). 

They could be biased, however, since each patient may have different levels of sensitivity and expectation. 

However, predictors of individual benefits, which are on a probability scale, compare baseline pain 

severities with post-treatment severities within a patient, canceling out potential individual biases in the 

perception of pain. 

Comparison with prior studies 

 In the present study, almost half (46%) the patients undergoing spinal fusion surgery had 

depression. Pain scores decreased at a slower pace after surgery in patients with depression. The effect of 

geriatric age was not as dramatic but did have an impact on the individual benefits of pain management in 
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subsets of patients. For example, we could see the effects of geriatric age in those who were not doing so 

well and those with average benefits, although geriatric age did not show substantial effects on the benefits 

for the patients who were responding well. We also found associations between higher baseline pain scores, 

longer LOS, and slower speeds of postoperative pain relief. Our study confirms the finding from earlier 

studies that a high proportion of patients with chronic pain have depression (Greden, 2009). It has been 

demonstrated that depression and chronic pain go together, making it hard to determine cause and effect 

(Gaudin, 2017; Trivedi, 2004; Anderson et al., 2015; Greden, 2009; Arnold et al., 2012). Several studies 

showed that depression and age both have an impact on the feeling of pain (Gaudin, 2017; Trivedi, 2004; 

Anderson et al., 2015; Gerbershagen et al., 2014; Weinmann et al., 2017). Geriatric patients tend to report 

lower pain levels, which could be due to their decreased sensitivity to pain (Gerbershagen et al., 2014; 

Weinmann et al., 2017). 

An earlier study found that females tended to have slightly higher postoperative pain levels as 

compared to males (Gerbershagen et al., 2014). In our study, however, gender was not significant in a joint 

mixed model that adjusted for depression. More females (35%) had a preoperative depression diagnosis 

than males (19%), and the p-value for gender before adjusting for depression was smaller although still not 

significant (p= 0.178). Thus, it is possible that depression mediated the previously reported relationship 

between female gender and pain to some degree.  

Antidepressants had no significant effects 

To rule out the possibility that antidepressant medication explains the observed slower response to 

pain management in patients with depression, we analyzed the effects of antidepressant treatments in 

patients with depression. We found that antidepressants were not significantly associated with baseline pain 

scores or the response to pain management. Thus, the slow response to pain management in patients with 

depression may be due to the comorbidity itself instead of antidepressant medication.  

Individual benefits 

This study compared individual benefits of pain management among four groups of patients 

determined by depression diagnosis and age. An examination of median benefits was not enough, and other 
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subgroups of individuals emerged (Figure 1). In “average” patients, age played an important role in those 

with depression, who were prone to receive less benefit (Figure 1A).  In contrast, among patients tending 

to receive the smallest benefits (Figure 1B), younger patients without depression achieved some benefit 

quicker than geriatric patients with depression, whereas younger patients with depression were the least 

benefitted from pain management. Moreover, among patients achieving the highest benefits (Figure 1C), 

the effect of age on treatment benefits was negligible compared to the effect of depression. Our finding that 

the effect of age is unimportant in patients receiving high benefits is consistent with the results of a previous 

study that found that, although elderly patients reported lower pain scores post total knee replacement, their 

functional impairment caused by pain did not differ from younger patients.6 

LOS 

Interestingly, patients who received less benefit from one day of post-surgery pain management 

tended to stay longer at the hospital (Table 5), suggesting that early benefit measurements may serve as 

predictors of hospital LOS after surgery.  

Conclusion 

Our study revealed that preoperative depression and geriatric age are important factors affecting 

individual benefits of postoperative pain management in patients undergoing spinal fusion surgery. 

Depression had a negative impact on pain relief, while age had varied effects depending on depression 

status and potentially other traits. Moreover, joint mixed models are useful tools for analyzing unbalanced 

longitudinal EHR data caused by hospital lengths of stay that are related to treatment response. Finally, 

individual benefit predictions provided a practical way to evaluate the performance of postoperative pain 

management.  
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3.6. Appendix: Stata Code 

3.6.1. Stata Code for Chapter One 

evaluate_disorganized.do.  

(Stata do file. Run simulations from this file.) 

trueparam_disorganized, delta(0.5) canna01(0) predorig(3) h(1) numpat(1000) reseed(24) 

display "canna01: "$canna01 

display "Prediction origin: t="$PredOrig 

display "Prediction horizon: h="$h 

display "delta= " $delta 

display "Median of relative biases: " r(MedianRelBias)   

display "Minimum of relative biases: " r(MinRelBias)      

display "Maximum of relative biases: " r(MaxRelBias)      

display "Median of correlations between predicted and true transformed benefits:  " r(MedianCorr)      

display  "Minimum of correlations: " r(MinCorr)  

display "Maximum of correlations:  " r(MaxCorr)     

trueparam_disorganized.ado.  

(Stata ado program that performs the Monte Carlo simulations. This program is called by 

evaluate_disorganized.do) 

program trueparam_disorganized, rclass 

version 15.1 

syntax, delta(numlist max=1 >=0)  canna01(numlist integer >=0 <=1) predorig(integer) h(integer) /// 

  [numpat(integer 1000) reseed(integer -1 )]  

clear  

*Seed for simulating random effects with drawnorm command 

if `reseed'<0 { 

global reseed " " 
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} 

else { 

global reseed "seed(`reseed')" 

} 

****************** 

global canna01=`canna01'  // enter 1 if patient used cannabis 

******************* 

global PredOrig=`predorig' //PredOrig is the prediction origin (a time point). 

global h=`h'  //h=horizon; enter a negative number or 0 for retrospective measurement of benefits; 

********************** 

global NumPat=`numpat'   //Enter number of simulated patients 

******************* 

global delta=`delta'   // Enter distance from a true parameter to parameter estimate in Table 1 in standard 

error units 

********************** 

* 64 is the total number of possible combinations of true parameter values for a fixed value of delta. 

* There are 6 model parameters and, therefore,  2^ 6 = 64 

set matsize 64   

if $NumPat>64 { 

if $NumPat<=11000 set matsize $NumPat 

else { 

display as error "Number of simulated patients cannot be higher than 11000" 

exit, clear 

} 

} 

TrueParam_Module1_disorganized 
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TrueParam_Module2_disorganized 

clear     

quietly svmat Results, names(col)    // convert the matrix into a data set 

save 

"Results_delta${delta}_canna01${canna01}_PredOrig${PredOrig}_h${h}_NumPat${NumPat}.dta", 

replace 

quietly summarize MeanBias,detail  

return scalar MedianMeanBias=r(p50) 

return scalar MinMeanBias=r(min) 

return scalar MaxMeanBias=r(max) 

quietly summarize SDBias, detail 

return scalar MedianSDBias=r(p50) 

return scalar MinSDBias=r(min) 

return scalar MaxSDBias=r(max) 

quietly summarize RelBias, detail 

return scalar MedianRelBias=r(p50) 

return scalar MinRelBias=r(min) 

return scalar MaxRelBias=r(max) 

quietly summarize Correlation, detail 

return scalar MedianCorr=r(p50) 

return scalar MinCorr=r(min) 

return scalar MaxCorr=r(max) 

quietly summarize MeanTrueBenef, detail 

return scalar MedianMeanTrueBenef=r(p50) 

return scalar MinMeanTrueBenef=r(min) 

return scalar MaxMeanTrueBenef=r(max) 
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******************** 

end 

TrueParam_Module1_disorganized.ado.  

(Stata ado program used by trueparam_disorganized.) 

set more off 

set matsize 11000 

*This reads the estimates of the model reported in Table 1 of paper 

estimates use  "Fitted_model" 

*This gets the variance covariance matrix of estimates 

matrix VCe=e(V) 

******************************************** 

*Vector of estimated fixed effects from Model in Table 1 is created 

global b1=_b[dis_lt4:_cons] 

global b2=_b[dis_lt4:canna01] 

global b3=_b[dis_lt4:pt1] 

global b4=_b[dis_lt4:pt2] 

global b5=_b[dis_lt4:pt3] 

matrix bGLS=($b1   \   /// 

               $b2   \   /// 

  $b3   \   /// 

   $b4   \   /// 

   $b5) 

*The variance-covariance matrix D of random effects from model in Table 1 is created 

global D11=_b[/var(_cons[id])] 

matrix D=$D11  

end 
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TrueParam_Module2_disorganized.ado.  

(Stata ado program used by trueparam_disorganized.) 

if $delta!=0 {                       

    matrix Results=J(64,5,0)   //2^6=64 

    local deltalist -$delta  $delta 

    } 

else { 

    matrix Results=J(1,5,0) 

    local deltalist 0 

     }  

***********************  

matrix colnames Results = MeanBias SDBias RelBias Correlation MeanTrueBenef 

local RowOfResults=1   

foreach delta1 of numlist `deltalist' { 

foreach delta2 of numlist `deltalist' { 

foreach delta3 of numlist `deltalist' { 

foreach delta4 of numlist `deltalist' { 

foreach delta5 of numlist `deltalist' { 

foreach delta6 of numlist `deltalist' { 

*True fixed effects are computed 

global b1True=$b1 + `delta1'*sqrt(VCe[5,5])           

global b2True=$b2 + `delta2'*sqrt(VCe[1,1]) 

global b3True=$b3 + `delta3'*sqrt(VCe[2,2]) 

global b4True=$b4 + `delta4'*sqrt(VCe[3,3]) 

global b5True=$b5 + `delta5'*sqrt(VCe[4,4]) 

matrix bTrue=($b1True   \   /// 
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               $b2True   \   /// 

  $b3True   \   /// 

  $b4True   \   /// 

  $b5True) 

matrix list bTrue 

*True variance covariance matrix is computed 

global D11True=$D11+`delta6'*sqrt(VCe[6,6])   /* variance of intercept */          

matrix DTrue=$D11True 

***************************************** 

display "Simulation `RowOfResults' for canna01=$canna01, Delta=$delta, Prediction Origin=$PredOrig, 

Horizon=$h" 

clear 

TrueParam_Module3_disorganized       

matrix Results[`RowOfResults',1]=$MeanBias 

matrix Results[`RowOfResults',2]=$SDBias 

matrix Results[`RowOfResults',3]=$RelBias 

matrix Results[`RowOfResults',4]=$Correlation 

matrix Results[`RowOfResults',5]=$MeanTrueBenef   

local RowOfResults=`RowOfResults'+1    

} 

} 

} 

} 

} 

} 

End 
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TrueParam_Module3_disorganized.ado.  

(Stata ado program used by trueparam_disorganized.) 

*Design matrix Z for random effects    

matrix A=J(7, 1, 1) 

matrix pt1=J(7, 1, 0) 

forvalues i=1/7{ 

 matrix pt1[`i', 1]=P[1,1]*(`i'-1) + P[1,2]*(`i'-1)^2 + P[1,3]*(`i'-1)^3 + P[1,4]  

}     

matrix Z=A  

matrix colnames Z=Intercept  

**********************************************    

*Design matrix X for fixed effects              

matrix A=J(7, 1, 1) 

matrix B=J(7, 1, $canna01) 

matrix pt2=J(7, 1, 0) 

forvalues i=1/7{ 

 matrix pt2[`i', 1]=P[2,1]*(`i'-1) + P[2,2]*(`i'-1)^2 + P[2,3]*(`i'-1)^3 + P[2,4]   

} 

matrix pt3=J(7, 1, 0) 

forvalues i=1/7{ 

 matrix pt3[`i', 1]=P[3,1]*(`i'-1) + P[3,2]*(`i'-1)^2 + P[3,3]*(`i'-1)^3 + P[3,4]   

}  

matrix X=A,B,pt1,pt2,pt3 

matrix colnames X=Intercept canna01 ptime1 ptime2 ptime3 

********************************************** 
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if $PredOrig==0|$PredOrig==1|$PredOrig==2|$PredOrig==3|$PredOrig==4|$PredOrig==5 

|$PredOrig==6 { 

     

  if $PredOrig==0 { 

  matrix Z=Z[1..1,1...]   // 

  matrix X=X[1..1,1...] 

   } 

  if $PredOrig==1{ 

  matrix Z=Z[1..2,1...] 

  matrix X=X[1..2,1...] 

  } 

  if $PredOrig==2{ 

  matrix Z=Z[1..3,1...] 

  matrix X=X[1..3,1...] 

  } 

  if $PredOrig==3{ 

  matrix Z=Z[1..4,1...] 

  matrix X=X[1..4,1...] 

  } 

  if $PredOrig==4{ 

  matrix Z=Z[1..5,1...]               

  matrix X=X[1..5,1...]              

   }    

     if $PredOrig==5{ 

  matrix Z=Z[1..6,1...] 

  matrix X=X[1..6,1...] 



85 

  } 

   

       if $PredOrig==6{ 

  matrix Z=Z[1..7,1...] 

  matrix X=X[1..7,1...] 

  } 

} 

else{ 

display as error "Values for predOrig should be 0,1,2,3,4,5,or 6" 

exit, clear 

} 

********************************************* 

if !(1<=$PredOrig+$h & $PredOrig+$h<=6) { 

display as error "predorig+h should be in the interval [1,6]" 

exit, clear 

} 

******************************************** 

*First we simulate the patients 

*The simulated random intercept LambdaR has mean zero  

clear   

quietly drawnorm  LambdaR, n($NumPat)  cov(DTrue)  $reseed  // DTrue was created in Module2 

mkmat LambdaR, matrix(RanEff)  // Each row of matrix RanEff corresponds to a set of random effects (for 

intercept and ptime1) for one simulated patient 

*Columns of matrix MatbTrue will contain the true fixed effects repeatedly  

matrix MatbTrue=bTrue 

forvalues i=2/$NumPat { 
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 matrix MatbTrue=MatbTrue,bTrue    // each column has a vector of bTrue 

} 

*Calculate linear predictor 

matrix RanEfft=RanEff' 

matrix ZR=Z*RanEfft  

matrix XB=X*MatbTrue 

matrix ata=ZR+XB 

*For each element of anta, calculate p. This will be the predicted P, which can be used to calculate the 

predicted benefit as well as to simulate y. 

matrix p=J(rowsof(ata), colsof(ata), 0)  // number of time points by number of patients  

matrix y=J(rowsof(ata), colsof(ata), 0) 

/* begin loop */ 

local i=1            // i for time 

while `i'<=rowsof(ata){ 

  local j=1          // j for patients 

  while `j'<=colsof(ata){ 

    matrix p[`i',`j']=exp(ata[`i',`j'])/(1+exp(ata[`i',`j']))  

     

 matrix y[`i',`j']=rbinomial(1, p[`i',`j'])    

    

    local j = `j' + 1 

  } 

   local i = `i' + 1 

}  

/* end loop */ 

*Create dataset xy with y and Xs for 1000 patients in rows by appending matrices. Include patient id 
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matrix X1=X 

forvalues i=2/$NumPat { 

 matrix X1=X1\X 

} 

matrix y1=y[1..., 1] 

forvalues j=2/$NumPat { 

 matrix y2=y[1..., `j'] 

 matrix y1=y1\y2 

} 

matrix id=J(rowsof(ata), 1, 1) 

forvalues j=2/$NumPat { 

 matrix id2=J(rowsof(ata), 1, `j') 

 matrix id=id\id2 

} 

matrix xy=y1, X1, id     

matrix colnames xy=dis_lt4 Intercept canna01 pt1 pt2 pt3 id   

// convert to dataset 

clear 

svmat xy, names(col) 

predict PrRanEff* , reffects 

duplicates drop id, force 

keep PrRanEff* id 

svmat RanEff, names(col)  

spearman PrRanEff1 LambdaR  

******************************************************************************** 

*Compute predicted benefit and true benefit for each patient 



88 

 

quietly generate ppred2=1/(1+ exp(-($b1 + PrRanEff1 + $b2*$canna01  + $b3 * pt1[$PredOrig+$h+1, 1] 

+ ///              $b4 * pt2[$PredOrig+$h+1, 1] + $b5 * pt3[$PredOrig+$h+1, 1] ))) 

quietly generate ppred1=1/(1+ exp(-($b1 + PrRanEff1 + $b2*$canna01 + $b3* pt1[1, 1] + /// 

       $b4 * pt2[1, 1] +  $b5 * pt3[1, 1] ))) 

quietly generate PredBenef=ppred2-ppred1 

quietly generate ptrue2=1/(1+ exp(-($b1True + LambdaR + $b2True*$canna01  + $b3True * 

pt1[$PredOrig+$h+1, 1] + /// 

       $b4True * pt2[$PredOrig+$h+1, 1] + $b5True * 

pt3[$PredOrig+$h+1, 1] ))) 

quietly generate ptrue1=1/(1+ exp(-($b1True + LambdaR + $b2True*$canna01  + $b3True * pt1[1, 1] + /// 

       $b4True * pt2[1, 1] + $b5True * pt3[1, 1] ))) 

quietly generate TrueBenef=ptrue2-ptrue1 

keep PredBenef TrueBenef 

******************************************************************************** 

*Individual bias is computed 

quietly generate double Bias=PredBenef-TrueBenef 

*Individual relative bias is computed 

quietly summarize Bias, detail 

global MeanBias=r(mean)  //Mean bias 

global SDBias=sqrt(r(Var))  // SD of bias 

quietly summarize TrueBenef, detail 

global MeanTrueBenef=r(mean) 

global RelBias=($MeanBias/$MeanTrueBenef)*100  // Relative bias 

******************************************************************************** 

*Computation of correlation between predicted and true benefit 
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quietly spearman TrueBenef PredBenef 

global Correlation=r(rho)    

end 

3.6.2. Stata Code for Chapter Two 

evaluate.do.  

(Stata do file. Run simulations from this file.) 

trueparam, delta(0) age(0) depress(0) predorig(5) h(0) numpat(1000) reseed(24) erseed(30) 

display "age: "$age 

display "depress: "$depress 

display "Prediction origin: t="$PredOrig 

display "Prediction horizon: h="$h 

display "delta= " $delta 

display "Median of relative biases: " r(MedianRelBias)   

display "Minimum of relative biases: " r(MinRelBias)      

display "Maximum of relative biases: " r(MaxRelBias)    

display "Median of correlations between predicted and true transformed benefits:  " r(MedianCorr)      

display  "Minimum of correlations: " r(MinCorr)  

display "Maximum of correlations:  " r(MaxCorr)     

trueparam.ado. 

(Stata ado program that performs the Monte Carlo simulations. This program is called by evaluate.do.) 

program trueparam, rclass 

version 15.1 

syntax, delta(numlist max=1 >=0) age(numlist integer >=0 <=1) depress(numlist integer >=0 <=1) 

predorig(integer) h(integer) /// 

   [numpat(integer 1000) reseed(integer -1 ) erseed(integer -1)] 

clear  
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if `reseed'>=0&`erseed'>=0&`reseed'==`erseed'{ 

display as error "reseed has to be different from erseed." 

exit, clear 

} 

*Seed for simulating random effects with drawnorm command 

if `reseed'<0 { 

global reseed " " 

} 

else { 

global reseed "seed(`reseed')" 

} 

*Seed for simulating model error terms 

if `erseed'<0 { 

global erseed " " 

} 

else { 

global erseed "seed(`erseed')" 

} 

****************** 

global age=`age'     // enter 1 if patient's age >65, 0 otherwise 

global depress=`depress'   // enter 1 if patient had depression, 0 otherwisec 

global delta=`delta' 

******************** 

global y=0.3365     // The treatment target is <=6; The transformation log((6+1)/(11-

6)) gives 0.3365 

global PredOrig=`predorig'  //PredOrig is the prediction origin (a time point).     
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global h=`h'     //h=horizon 

********************** 

global NumPat=`numpat'    //Enter number of simulated patients 

* 4096 is the total number of possible combinations of true parameter values for a fixed value of delta. 

* There are 12 model parameters that we need to calculate the true benefit and, therefore, 2^12=4096) 

set matsize 4096     

if $NumPat>4096 { 

if $NumPat<=11000 set matsize $NumPat 

else { 

display as error "Number of simulated patients cannot be higher than 11000" 

exit, clear 

} 

} 

TrueParam_Module1 

TrueParam_Module2 

clear 

quietly svmat Results, names(col) 

save 

"Results_delta${delta}_age${age}_depress${depress}_PredOrig${PredOrig}_h${h}_NumPat${NumPat

}.dta", replace 

quietly summarize RelBias, detail 

return scalar MedianRelBias=r(p50) 

return scalar MinRelBias=r(min) 

return scalar MaxRelBias=r(max) 

quietly summarize Correlation, detail 

return scalar MedianCorr=r(p50) 
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return scalar MinCorr=r(min) 

return scalar MaxCorr=r(max) 

******************** 

End 

TrueParam_Module1.ado.  

(Stata ado program used by trueparam.) 

set matsize 11000 

**** This reads the estimates of the model reported in Table 1 of paper  

estimates use "Fitted_model.ster" 

**** Covariance matrix  

matrix D=e(cov_re) 

global D11 D[1, 1]   

global D12 D[1, 2] 

global D13 D[1, 3] 

global D21 D[2, 1] 

global D22 D[2, 2] 

global D23 D[2, 3] 

global D31 D[3, 1] 

global D32 D[3, 2] 

global D33 D[3, 3] 

**** Extract fixed effects 

matrix B=e(b)' 

**** Fixed effects for pain score model 

global b4=_b[Marker:_M] 

global b5=_b[Marker:_Mage_gt65] 

global b6=_b[Marker:_I_Mdepress_1] 
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global b7=_b[Marker:_Mtime] 

global b8=_b[Marker:_I_MdX_Mtim_1] 

matrix b=( $b4 \   /// 

               $b5 \   /// 

  $b6 \   /// 

  $b7 \   /// 

  $b8)    

**** This gets the variance covariance matrix of fixed effects estimates 

matrix VCe=e(V)   // We will need the SE for fixed effects of the marker model in module 2. 

**** Variance of the error term for the pain score model in Table 1 

global VarErr=e(var_eij) 

**** Obtaining standard error of determinant of principal minor of D (eliminating 3rd row and 3rdcolumn) 

local D11 D[1, 1]   

local D12 D[1, 2] 

local D13 D[1, 3] 

local D21 `D12' 

local D22 D[2, 2] 

local D23 D[2, 3] 

local D31 `D13' 

local D32 `D23' 

local D33 D[3, 3] 

**** Computation of principal minor of D and its SE 

global pminor2=`D11'*`D22'-(`D21')^(2) 

global SEpminor2=$pminor2*0.6  // We have to give a value since we cannot calculate the SE of principal 

minor  

**** Computation of determinant of D and its standard error 
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Global detD=`D11'*(`D22'*`D33'-(`D32')^(2))-(`D21')^(2)*`D33'+2*`D21'*`D31'*`D32'-

`D22'*(`D31')^(2) 

global SEdetD=$detD*0.6  

****************************************** 

End 

TrueParam_Module2.ado.  

(Stata ado program used by trueparam.) 

 if $delta!=0 { 

 matrix Results=J(4096,2,0)  

    local deltalist -$delta  $delta 

    } 

else { 

 matrix Results=J(1,2,0) 

    local deltalist 0 

     }  

***********************  

matrix colnames Results = RelBias Correlation 

local RowOfResults=1   

foreach delta1 of numlist `deltalist' { 

foreach delta2 of numlist `deltalist' { 

foreach delta3 of numlist `deltalist' { 

foreach delta4 of numlist `deltalist' { 

foreach delta5 of numlist `deltalist' { 

foreach delta6 of numlist `deltalist' {    

foreach delta7 of numlist `deltalist' {   

foreach delta8 of numlist `deltalist' {    
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foreach delta9 of numlist `deltalist' {   

foreach delta10 of numlist `deltalist' {   

foreach delta11 of numlist `deltalist' {   

foreach delta12 of numlist `deltalist' {   

**** True fixed effects are computed 

global b4True=$b4 + `delta1'*sqrt(VCe[4,4]) 

global b5True=$b5 + `delta2'*sqrt(VCe[5,5]) 

global b6True=$b6 + `delta3'*sqrt(VCe[6,6]) 

global b7True=$b7 + `delta4'*sqrt(VCe[7,7]) 

global b8True=$b8 + `delta5'*sqrt(VCe[8,8]) 

matrix bTrue=($b4True   \   /// 

               $b5True   \   /// 

  $b6True   \   /// 

  $b7True   \   /// 

   $b8True ) 

**** True variance covariance matrix of the random effects is computed 

global D11True=$D11+`delta6'*0.228*0.2 

global D12True=$D12+`delta7'*0.0931 

global D13True=$D13+`delta8'*0.0942 

global D21True=$D12True 

local pminor2True=$pminor2+`delta9'*$SEpminor2  //The Variance-Covariance matrix was 

reparametrized to get a positive definite matrix 

lobal D22True=(`pminor2True'  +($D21True)^(2))/$D11True 

global D23True=$D23+`delta10'*0.2008 

global D31True=$D13True 

global D32True=$D23True 
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local detDTrue=$detD+`delta11'*$SEdetD   //The Variance-Covariance matrix of random effects was 

reparametrized to get a positive definite matrix 

global D33True=((`detDTrue'+$D11True*($D32True)^(2)-(2*$D21True*$D32True-

$D22True*$D31True)*$D31True  ) / ($D11True*$D22True-($D21True)^(2))) 

matrix DTrue=( $D11True  , $D12True  , $D13True  \   /// 

             $D21True  , $D22True  , $D23True  \  /// 

   $D31True  , $D32True  , $D33True  ) 

***************************************** 

**** True error variance is computed 

global VarErrTrue=$VarErr+`delta12'* 0.38353*0.2 

*TrueParam_Module3 simulates the random effects, creates design matrices of the appropriate size 

(according to PredOrig and h), 

*and simulates the responses of patients, which are placed in matrix Y.  

*The random effects plus their corresponding fixed effects are also saved in the database temporarily. 

display "Simulation `RowOfResults' for age=$age, depress=$depress,Delta=$delta, Prediction 

Origin=$PredOrig, Horizon=$h" 

clear 

TrueParam_Module3 

*TrueParam_Module4 computes the BLUPs. They are saved in database. 

TrueParam_Module4  

*TrueParam_Module5 computes the empirical Bayesian predictors of benefits and true benefits (and save 

them temporarily in database)  

TrueParam_Module5 

matrix Results[`RowOfResults',1]=$RelBias 

matrix Results[`RowOfResults',2]=$Correlation 

local RowOfResults=`RowOfResults'+1 
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} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

End 

TrueParam_Module3.ado.  

(Stata ado program used by trueparam.)     

if $PredOrig==0|$PredOrig==1|$PredOrig==2|$PredOrig==3|$PredOrig==4 |$PredOrig==5 {     

  if $PredOrig==0 { 

  matrix Z=(0, 1, 0 \ /// 

        1, 0, 0)    

  matrix X=(0, 0, 0, 1, 1*$age, 1*$depress, 0, 0*$depress \  /// 

   1, 1*$age, 1*$depress, 0, 0, 0, 0, 0) 

  local errors "eps01"    

  } 

  if $PredOrig==1{ 

  matrix Z=(0, 1, 0 \ /// 

        0, 1, 1 \ /// 
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        1, 0, 0)    

  matrix X=(0, 0, 0, 1, 1*$age, 1*$depress, 0, 0*$depress \  /// 

              0, 0, 0, 1, 1*$age, 1*$depress, 1, 1*$depress \  /// 

  1, 1*$age, 1*$depress, 0, 0, 0, 0, 0) 

  local errors  "eps01 eps02" 

  } 

  if $PredOrig==2{ 

  matrix Z=(0, 1, 0 \ /// 

       0, 1, 1 \ /// 

       0, 1, 2 \ /// 

       1, 0, 0)    

  matrix X=(0, 0, 0, 1, 1*$age, 1*$depress, 0, 0*$depress \  /// 

                    0, 0, 0, 1, 1*$age, 1*$depress, 1, 1*$depress \  /// 

           0, 0, 0, 1, 1*$age, 1*$depress, 2, 2*$depress \  /// 

        1, 1*$age, 1*$depress, 0, 0, 0, 0, 0) 

  local errors "eps01 eps02 eps03" 

  } 

  if $PredOrig==3{ 

  matrix Z=(0, 1, 0 \ /// 

        0, 1, 1 \ /// 

        0, 1, 2 \ /// 

        0, 1, 3 \ /// 

        1, 0, 0)    

  matrix X=(0, 0, 0, 1, 1*$age, 1*$depress, 0, 0*$depress \  /// 

                    0, 0, 0, 1, 1*$age, 1*$depress, 1, 1*$depress \  /// 

        0, 0, 0, 1, 1*$age, 1*$depress, 2, 2*$depress \  /// 
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        0, 0, 0, 1, 1*$age, 1*$depress, 3, 3*$depress \  /// 

        1, 1*$age, 1*$depress, 0, 0, 0, 0, 0) 

  local errors  "eps01 eps02 eps03 eps04" 

  } 

  if $PredOrig==4{ 

  matrix Z=(0, 1, 0 \ /// 

       0, 1, 1 \ /// 

       0, 1, 2 \ /// 

       0, 1, 3 \ /// 

       0, 1, 4 \ /// 

       1, 0, 0)    

  matrix X=(0, 0, 0, 1, 1*$age, 1*$depress, 0, 0*$depress \  /// 

              0, 0, 0, 1, 1*$age, 1*$depress, 1, 1*$depress \  /// 

   0, 0, 0, 1, 1*$age, 1*$depress, 2, 2*$depress \  /// 

   0, 0, 0, 1, 1*$age, 1*$depress, 3, 3*$depress \  /// 

     0, 0, 0, 1, 1*$age, 1*$depress, 4, 4*$depress \  /// 

  1, 1*$age, 1*$depress, 0, 0, 0, 0, 0)               

  local errors "eps01 eps02 eps03 eps04 eps05" 

  }   

  if $PredOrig==5{ 

  matrix Z=(0, 1, 0 \ /// 

 0, 1, 1 \ /// 

 0, 1, 2 \ /// 

 0, 1, 3 \ /// 

 0, 1, 4 \ /// 

 0, 1, 5 \ /// 
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 1, 0, 0)    

  matrix X=(0, 0, 0, 1, 1*$age, 1*$depress, 0, 0*$depress \  /// 

            0, 0, 0, 1, 1*$age, 1*$depress, 1, 1*$depress \  /// 

 0, 0, 0, 1, 1*$age, 1*$depress, 2, 2*$depress \  /// 

 0, 0, 0, 1, 1*$age, 1*$depress, 3, 3*$depress \  /// 

   0, 0, 0, 1, 1*$age, 1*$depress, 4, 4*$depress \  /// 

  0, 0, 0, 1, 1*$age, 1*$depress, 5, 5*$depress \  /// 

 1, 1*$age, 1*$depress, 0, 0, 0, 0, 0)           

  local errors "eps01 eps02 eps03 eps04 eps05 eps06" 

  } 

} 

else{ 

display as error "Values for predOrig should be 0,1,2,3,4, or 5" 

exit, clear 

} 

matrix colnames Z=_D _M _Mtime 

matrix colnames X=_D _Dage _Ddepress _M _Mage _Mdepress _Mtime _Mdepresstime 

********************************************* 

if !(1<=$PredOrig+$h & $PredOrig+$h<=5) { 

display as error "predorig+h should be in the interval [1,5]" 

exit, clear 

} 

******************************************** 

*Variance covariance matrix of error terms 

matrix RTrue=I(rowsof(Z)-1)  *  $VarErrTrue 

*Simulation of pain scores Y  
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*First we simulate the patients 

 

*The random effects are simulated.  

*A particular value of vector (re_D re_M re_Mtime) correspond to one patient. 

*The simulated random variables  re_D re_M re_Mtime have mean zero  

clear   

quietly drawnorm  re_D re_M re_Mtime , n($NumPat)  cov(DTrue)  $reseed 

mkmat re_M re_Mtime, matrix(RanEff)  // Each row of matrix RanEff corresponds to one simulated patient 

*Random coefficients are computed 

*A random coefficient is what is usually called a random effect plus its corresponding fixed effect. 

quietly generate re_M_c=$b4True+re_M 

quietly generate re_Time_c=$b7True+re_Mtime   

*The errors are simulated 

quietly drawnorm  `errors', n($NumPat)  cov(RTrue)  $erseed // errors are generated 

mkmat `errors', matrix(Errors)    // Each row of matrix Errors contains errors for corresponding patient in 

RanEff  

*Columns of matrix MatbTrue will contain the true fixed effects repeatedly  

matrix MatbTrue=bTrue 

forvalues i=2/$NumPat { 

matrix MatbTrue=MatbTrue,bTrue 

} 

*Matrix of responses is computed 

*Each column of Y contains the simulated responses of the patient in corresponding column of RanEff' 

matrix Z2=Z[1..rowsof(Z)-1, 2..3] 

matrix X2=X[1..rowsof(X)-1, 4..8] 

matrix Y=Z2*RanEff'+X2*MatbTrue+Errors'    
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matrix colnames Y=Patient 

matrix rownames Y=PainScore 

end 

2.7.6. TrueParam_Module4.ado.  

(Stata ado program used by trueparam.) 

*Variance covariance matrix of error terms 

matrix R=I(rowsof(Z))  *  $VarErr 

matrix R[rowsof(Z),rowsof(Z)]=0 

*Columns of matrix MatbGLS will contain the estimated fixed effects B repeatedly  

matrix MatbGLS=B 

forvalues i=2/$NumPat { 

matrix MatbGLS=MatbGLS,B 

} 

*Residual 

matrix zero=0 

matrix zero_pt=zero 

forvalues i=2/$NumPat { 

matrix zero_pt=zero_pt,zero 

} 

matrix Ynew=Y\zero_pt 

matrix Res=Ynew-X*MatbGLS 

matrix Res2=Res[1..rowsof(Res)-1, 1...] 

matrix Res3=Res2\zero_pt 

*The EB predictors are computed 

matrix BLUP=D*Z'*inv(R+Z*D*Z')*Res3 

matrix rownames BLUP=re1 re2 re3  
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*EB predictors are saved in database 

matrix BLUPT=BLUP' 

svmat BLUPT, names(col) 

end 

TrueParam_Module5.ado.  

(Stata ado program used by trueparam.) 

*True benefit is computed  

*(True variance of error is in global macro VarErrTrue) 

quietly generate double TrueBenef=100*(normal(  ($y-(re_M_c + $b5True*$age + $b6True*$depress + 

re_Time_c *($PredOrig+$h) + $b8True*$depress*($PredOrig+$h) )   ) /sqrt($VarErrTrue) ) /// 

          -  normal(    ($y-(re_M_c 

+ $b5True*$age + $b6True*$depress) )   /sqrt($VarErrTrue)    )) 

label var TrueBenef "True benefit (x100)" 

*Predicted benefit is computed 

*(Computed with parameters in Table 1 of article) 

*(Variance of error from model in Table 1 is in global macro $VarErr) 

*The EB predictors of the pain score model random effects are in re2 re3. 

quietly generate double PredBenef=100*(normal(  ($y-($b4+re2 + $b5*$age + $b6*$depress + ($b7+re3) 

*($PredOrig+$h) + $b8*$depress*($PredOrig+$h) )   ) /sqrt($VarErr) ) /// 

          -  normal(    ($y-

($b4+re2 + $b5*$age + $b6*$depress) )   /sqrt($VarErr)    )) 

label var PredBenef "Predicted benefit (x100)" 

*Individual bias is computed 

quietly generate double Bias=PredBenef-TrueBenef 

*Individual relative bias is computed 

quietly summarize Bias, detail 
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global MeanBias=r(mean)  //Mean bias 

quietly summarize TrueBenef, detail 

global MeanTrueBenef=r(mean) 

global RelBias=($MeanBias/$MeanTrueBenef)*100  // Relative bias 

quietly correlate TrueBenef PredBenef 

global Correlation=r(rho) 

end 

 


