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Abstract 

 
In longitudinal data analysis, the introduction of random effects provides statisticians with 

a convenient tool for modeling repeated measurements. Mixed effects linear models extend linear 

and generalized linear models for non-repeated measures to repeated measures or longitudinal 

data. One important assumption of these models is that the random effects are normally distributed. 

In this dissertation, we investigated via simulations the impact of violations of this assumption on 

the prediction of the random effects, by comparing the prediction accuracy and robustness of two 

methods: the empirical Bayes method and a semi-parametric method based on quadratic inference 

functions. Chapter 1 explores this impact for continuous responses modeled with the random 

effects linear model and Chapter 2 explore this impact for the random-effects logistic regression 

model. Finally, Chapter 3 proposes and examines a graphical method to examine this assumption 

in the context of two-dimensional time-dependent personalized medicine models with continuous 

responses that track the trajectories of patients’ disease severities and individual treatment benefits 

when the patients are under medical or behavioral treatments. One important conclusion of these 

investigations is that the empirical Bayes approach is very robust to violations of the normality 

assumption. The EB approach has non-inferior but usually higher accuracy in random effects 

prediction, and is computational, numerical and algebraic simply. Thus, it is more recommendable 

for random-effects prediction than the method based on quadratic inference functions in statistical 

practice. Finally, our graphical approach successfully detected departures from the normality 

assumption and worked efficiently even with small and moderate sample sizes.  
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Chapter I: Introduction 
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Repeated measurements over time within individuals often occur in longitudinal studies in 

medicine, public health, social science, economy, education and agriculture. Two commonly used 

approaches to dealing with the repeated measurements are marginal models and mixed effects 

models.  Marginal models are useful when the research is focused on average population effects 

and the mean responses depend on the fixed effects of the covariates of interest. In contrast, in 

regression models with mixed effects, the individual responses are modeled not only with the fixed 

effects but also with the random effects that constitute the unique individual regression parameters. 

The two approaches differ in how model parameters are estimated and, also important, how they 

are interpreted.  In applications, these approaches allow statisticians to study the temporal changes 

of the responses within individuals and the relationships of the covariates with the responses, and 

to make inferences on the population and individual effects of the covariates and predictions of 

future responses (Diaz, 2016; Gillies et al., 2006; Have et al., 1998; Hedeker, 2003; Horrocks and 

van Den Heuvel, 2009; Kleinman et al., 2004; Lin and Breslow, 1996; D. Liu et al., 2008; Mann 

et al., 2018; Sashegyi et al., 2000; Skrondal and Rabe-Hesketh, 2003; Van Den Noortgate et al., 

2003). 

In mixed effects models, the random effects are usually assumed to follow a normal 

distribution with zero mean. In theory, any other distribution could be used in this assumption, but 

the normal distribution is widely used due to its ease in implementation and well-known and 

convenient theoretical properties. The estimation of the fixed effects is implemented by 

maximizing the marginal likelihood, which is the likelihood function of responses obtained by 

integrating over the distribution of the random effects. This process usually involves high-

dimensional integration if approximation methods such as Gauss-Hermite quadrature is used. An 

alternative to maximum likelihood is the quasi-likelihood method. Marginal quasi-likelihood 

2
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(MQL) and penalized quasi-likelihood (PQL) are variants of this method (Breslow and Clayton, 

1993).  

In mixed effects models,  the prediction of the random effects is frequently made via an 

empirical Bayes approach (Fitzmaurice et al., 2011, 2009; Frees, 2004; Hedeker and Gibbons, 

2006).  In linear mixed effects models the empirical Bayes predictor of random effects is an 

estimator of the best linear unbiased predictor, which, as suggested by previous research 

(McCulloch and Neuhaus, 2011a, 2011b) and confirmed in this dissertation, is relatively robust to 

violations of the normality assumption of the random effects. For the logistic model with random 

effects it is not possible to obtain a closed-form formula for the empirical Bayes predictor of the 

random effects. The robustness of this predictor to violations of the normality assumption of the 

random effects is also explored in this dissertation. 

Using linear and logistic mixed effects models, Verbeke and Lesaffre (1996), McCulloch 

and Neuhaus (2011a, 2011b) found that histograms of the empirical Bayes predictors of the 

random effects may not reflect the true shape of the distribution of the random effects and thus 

they are not a convincing tool in evaluating the normality assumption. But prediction accuracy 

measured by mean square errors of prediction are less affected by violations of the normality 

assumption of the random effects. Agresti et al. (2004) found that in logistic models with random 

effects the estimates of the variance components are not severely affected by this violation except 

for very extreme cases.  Marquart and Haynes (2019) showed that in the logistic model with only 

a random intercept, if the true random effects are from a three-components mixture of normal 

distributions, the bias of the estimator of the random intercept variance is large. 

3



4 

Some methods have been proposed to check the goodness-of-fit of mixed effects models 

(Abad et al., 2010; Alonso et al., 2008; Drikvandi et al., 2017; Efendi et al., 2017; Pan and Lin, 

2005; Tchetgen and Coull, 2006; Verbeke and Molenberghs, 2013; Waagepetersen, 2006). In 

statistical practice, however, the normality assumption for the random effects is often hard to 

validate. Due to this limitation and the desire of incorporating population heterogeneity in a more 

realistic way, estimation methods robust to violations of the normality assumption have been 

proposed (Chen et al., 2002; Cho et al., 2017; Ghidey et al., 2004; Jiang, 1999; Shen and Louis, 

1999; Ten Have et al., 1999; Ten Have and Localio, 1999; Wang et al., 2012; Zhang and Davidian, 

2001; Zhu and Qu, 2016).   

In addition to the empirical Bayesian approach, this dissertation examines the approach 

proposed by Wang et al. (2012), which is a semi-parametric method based on quadratic inference 

functions (QIFs), which in turn are an extension of generalized estimation equations (GEEs). An 

important concept of GEEs is the utilization a working correlation matrix. In the QIF approach, 

the inverse of this matrix is approximated by linear combinations of known basis matrices (Qu et 

al. 2000). The fixed and random effects are obtained by iteratively minimizing the quadratic 

inference functions based on the extended score equations of both fixed and random effects. 

Little research has been done to compare random effects predictors and it is unclear to what 

extent the violations of normality for random effects affects these predations of random effects. 

This dissertation compares the prediction performance and the robustness to violations of the 

normality assumption of two approaches: the common empirical Bayes approach and the approach 

based on quadratic inference functions. Predictors in the context of linear mixed effects models 

and logistic mixed effects models are examined in Chapters II and III, respectively.  

4
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Random effects models have useful applications to the prediction of individual effects of 

medical treatments (Diaz, 2017, 2016), drug dose individualization (Diaz, Cogollo, et al., 2012; 

Diaz & de Leon, 2013; Diaz, Yeh, & de Leon, 2012; Zhu & Qu, 2016), and treatment 

individualization (Cho et al., 2017; Diaz, 2018). In Chapter IV, we propose a method to examine 

the normality assumption for the random effects when the goal of using a random effects model is 

to predict individual treatment benefits in severely ill patients.  The essential idea of our graphical 

approach is to plot the quantiles of the empirical Bayes estimates of individual treatment benefits 

against the theoretical quantiles of the distribution of individual benefits which are derived under 

a normality assumption for the random effects. We used Monte Carlo simulations to study the 

performance of the proposed graphical approach assuming a variety of non-normal distributions 

for the random effects.  

In Chapter V, the dissertation is concluded with a summary and a discussion of potential 

future research directions. 
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ABSTRACT 

Several methods for predicting random effects in linear mixed effects models have been 

proposed. The performances of these methods have not been thoroughly investigated when the 

normality assumption for the random effects is violated, except for the empirical Bayes (EB) 

approach, and comparisons of the methods have not been made. This simulation study compared 

the prediction accuracy of the EB approach with that of an approach based on quadratic inference 

functions (QIFs) under different distributional assumptions for the random effects, using a 

longitudinal linear model that included a random intercept and a random slope for time. The 

simulations revealed that the EB approach was generally superior to the QIF approach in predicting 

the random effects, even under non-normal distributions for the random effects, except in some 

scenarios with very large error variances. In addition, the EB approach is mathematically and 

computationally less complex. Thus, our study suggests that the EB approach is more 

recommendable as the first choice in statistical practice, even if non-normal random effects are 

suspected. An application to the prediction of individual benefits of an anti-depressant drug was 

considered. 

 

KEYWORDS: Best linear unbiased predictors (BLUPs); Bivariate t distribution; Cross-

validation; Distribution misspecification; Estimating equations; Mixtures of normal distributions. 
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1. Introduction 

Linear mixed effects models are widely used in biostatistics applications (Cho et al., 2017; 

Diaz, 2018, 2017, 2016; Dimova et al., 2011; Fitzmaurice et al., 2011; Hooks et al., 2009; Laird 

and Ware, 1982; Verbeke and Molenberghs, 2000; Yau et al., 2003; Zhu and Qu, 2016). In 

particular, in the analysis of longitudinal data, they are used to model continuous responses 

measured over time from subjects under study. A basic assumption is the normality of both random 

effects and measurement error terms (Cho et al., 2017; Fitzmaurice, 2009; Frees, 2004; Laird and 

Ware, 1982; Verbeke and Molenberghs, 2009). Failure to include a subject-specific covariate, 

however, could result in a violation of the normality assumption for the random effects (Frees, 

2001; Verbeke and Lesaffre, 1996). The assumption is also violated if the random effects follow 

heavy tailed distributions or mixtures of different distributions determined by unidentified 

different groups of subjects under study (Verbeke and Lesaffre, 1997, 1996). These assumption 

violations usually do not have a large impact on fixed effects estimation but may affect the 

estimation of variance components, which in turn may affect the prediction of individual random 

effects  (Agresti et al., 2004; Alonso et al., 2008; Heagerty and Kurland, 2001; Mcculloch and 

Neuhaus, 2011a, 2011b; Verbeke and Lesaffre, 1997, 1996). Thus, inaccuracies in random effects 

prediction may be possible if the true random effects follow non-Gaussian distributions. This 

limitation of the normality assumption suggests the need for robust methods to estimate (or 

“predict”) random effects in linear mixed effects models.  

The goal of this paper is to compare two methods of predicting random effects: a method 

based on quadratic inference functions (Wang et al., 2012) versus the classic empirical Bayes 

approach that is based on best linear unbiased predictors (BLUPs) (Fitzmaurice et al., 2011; López 
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et al., 2007; Skrondal and Rabe-Hesketh, 2004; Verbeke and Molenberghs, 2000). Comparisons 

under Gaussian and non-Gaussian random-effect distributions were made. 

There are situations in which an accurate prediction of random effects is necessary. For 

instance, in personalized medicine applications, a precise prediction of random effects is important 

for medical or behavioral treatment individualization, assessment of individual treatment benefits, 

and drug dosage individualization (Andrews and Cho, 2018; Cho et al., 2017; Diaz, 2017, 2016; 

Diaz et al., 2012a, 2012b, 2007; Diaz and de Leon, 2013; Zhu and Qu, 2016). In particular, a 

precise measurement of individual benefits requires an accurate prediction of both random slopes 

and random intercepts (Diaz, 2017, 2016). In these applications, one is not always convinced that 

the random intercepts and slopes that model patients’ heterogeneity follow a Gaussian distribution. 

Thus, robust methods to estimate (or “predict”) random effects in linear mixed effects models may 

be useful in personalized medicine. 

The most common approach to predicting random effects is the empirical Bayesian (EB) 

method (Carlin and Louis, 2009; Efron and Morris, 1972; Fitzmaurice et al., 2011; Frees, 2004; 

Liu et al., 2008; Martínez et al., 2012; Morris, 1983; Robinson, 1991). The EB approach is 

implemented in popular statistical packages, such as the MIXED procedure in SAS (SAS Institute 

Inc, Cary, NC) or the meglm command in STATA (StataCorp LLC2, College Station, TX). An 

EB predictor can be justified as an estimator of the mean of the conditional distribution of the 

random effects given the data, assuming that the random effects follow a Gaussian distribution. 

Under this point of view, the distribution of the random effects is interpreted as an empirical prior 

distribution in the sense that it is objectively estimated with data (Robinson, 1991). 
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In the context of linear mixed effects models, however, EB predictors are also estimators 

of the Best Linear Unbiased Predictors (BLUPs) of the random effects (Frees, 2004; Rabe-Hesketh 

and Skrondal, 2012). This suggests that EB predictors must enjoy some robustness to non-

normality because the BLUP property does not require any distributional assumption for the 

random effects, except for the existence of second moments (Frees, 2004). The estimation of the 

BLUPs, however, requires using estimates of variance components that are usually obtained under 

normality assumptions (Harville and Jeske, 1992). Thus, further research is needed to examine the 

accuracy and robustness of EB predictors and to compare them with alternative approaches. 

 Shen and Louis (1999) proposed a recursive smoothing-by-roughening approach to 

estimate random effects. Verbeke and Lesaffre (1996) proposed a heterogeneity model that can 

identify subgroups of random effects that come from a mixture of distributions. Zhang and 

Davidian (2001) proposed a semi-nonparametric representation to approximate random effects 

densities, which requires a user-chosen tuning parameter. Ghidey et al. (2004) proposed a 

penalized estimation of the marginal likelihood to estimate the random effects. These methods 

have been compared in cases in which the basic assumptions of linear mixed effects models are 

violated (Ghidey et al., 2010). 

Qu et al. (2000) proposed a robust estimation method for marginal models. The method is 

based on quadratic inference functions (QIFs) with extended scores, which do not require 

estimating correlation parameters using the repeated measurements. This method represents the 

inverse of the conditional correlation matrix of responses given the random effects, using a linear 

combination of basis matrices. The improvement in estimation efficiency and robustness becomes 

most apparent when the working correlation is miss-specified. This common issue is usually 

handled with generalized estimation equations, which are widely used in longitudinal data 

10
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analysis. Building on this approach, Wang et al. (2012) proposed an efficient and robust estimation 

method applicable to generalized linear mixed models. The method is based on conditional 

extended scores that require only first and second conditional moments. Therefore, the method 

does not require a closed form likelihood function. It is robust in that neither normality distribution 

assumptions on the random effects nor independence assumptions on measurement errors are 

required. This method is implemented by iteratively minimizing fixed effect and random effect 

quadratic inference functions, utilizing an optimal tuning parameter. The asymptotic properties of 

the obtained fixed effects estimates have been extensively studied (Cho et al., 2017; Wang et al., 

2012). The QIF approach has been proven useful in the prediction of personalized treatments by 

applying random forest algorithms on the estimated subject-specific treatment random effects (Cho 

et al., 2017). It has also been proposed as a tool for individualized dosage computations via a 

procedure that accounts for the patient-specific random effects that determine patients’ 

heterogeneity (Zhu and Qu, 2016). 

Since the QIF approach to the prediction of random effects does not assume normality, we 

can hypothesize that this approach is a robust alternative to the EB approach. To our knowledge, 

however, there are no published studies comparing the two approaches. The main purpose of this 

study was to elucidate via simulations the conditions under which the QIF approach predicts 

random effects more accurately in comparison with the traditional and more widely used EB 

approach.  

This paper focuses on linear mixed effects models. Thus, we applied the QIF and EB 

approaches to continuous responses. The computational formulas of the QIF approach are usually 

presented under a very general modelling setting that encompasses these and other types of 

responses and model structures (Cho et al., 2017; Wang et al., 2012; Zhu and Qu, 2016). So, a 
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secondary aim of this paper was to translate this published work to the context of the linear mixed 

effects model and clarify the equations for computational purposes. 

The article is organized as follows. Section 2 reviews the notation and assumptions of linear 

mixed effects models. Section 3 reviews the QIF and EB approaches, placing emphasis on 

computational aspects. Sections 4 describes the simulation scenarios which include Gaussian and 

non-Gaussian distributions. Simulation results are in Section 5. In Section 6, we apply the two 

approaches to the prediction of random effects and individual treatment benefits using data from 

a clinical trial of patients with depression (Diaz, 2017; Reisby et al., 1977).  Discussion and 

conclusions are in Section 7. 

 

2. The linear mixed effects model 

For a subject 𝑖 , 𝑖 = 1,… , 𝑁 , we consider the linear mixed effects model, 𝒀𝑖 = 𝑋𝑖𝜷 +

𝑍𝑖𝒃𝑖 + 𝛆𝑖, where 𝒀𝑖 = (𝑦𝑖1, … , 𝑦𝑖,𝑛𝑖
)
𝑇
 is the subject’s response vector, 𝜷 = (𝛽1, … , 𝛽𝑝)

𝑇
 is a fixed 

effects vector,  𝒃𝑖 = (𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖𝑞)
𝑇

 is a random effects vector, 𝛆𝑖 = (ε𝑖1, ε𝑖2, … , ε𝑖,𝑛𝑖
)
𝑇

 is a 

measurement error vector assumed to be normally distributed with mean 𝟎, and 𝑋𝑖  and 𝑍𝑖  are 

design matrices. 𝑁 is the number of subjects. We assume that 𝛆𝑖~𝑁(𝟎,𝐻𝑖) and 𝒃𝑖 is independent 

of 𝛆𝑖. To estimate parameters through maximum likelihood or restricted maximum likelihood, it 

is usually assumed that 𝒃𝑖~𝑁(𝟎, 𝐷) (Frees, 2004). Thus, the marginal distribution of the response 

is  𝒀𝑖~𝑁(𝑋𝑖𝜷, 𝑍𝑖𝐷𝑍𝑖
𝑇 + 𝐻𝑖). Here, we will consider two cases: independent errors (𝐻𝑖 = 𝜎2𝐼𝑛𝑖

 

with 𝐼𝑛𝑖
 the identity matrix) and first order autocorrelated errors [the (𝑗, 𝑘) -th and (𝑘, 𝑗) -th 

elements of matrix 𝐻𝑖 is 𝜎2𝜌|𝑗−𝑘|, where 𝜌 is the autocorrelation coefficient].  
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3. Prediction methods for random effects 

3.1. Empirical Bayesian approach 

Under the assumption that 𝒃𝑖 and 𝛆𝑖 are Gaussian, the conditional mean of 𝒃𝑖 given 𝒀𝑖 is 

𝐸[𝒃𝑖|𝒀𝑖] = 𝐷𝑍𝑖
𝑇𝑉𝑖

−1 (𝒀𝑖 − 𝑋𝑖𝜷)                   (1) 

where 𝑉𝑖 = 𝑍𝑖𝐷𝑍𝑖
𝑇 + 𝐻𝑖 . If the distribution of 𝒃𝑖  is viewed as an empirical prior distribution, 

𝐸[𝒃𝑖|𝒀𝑖] is the mean of the posterior distribution of 𝒃𝑖 given the subject’s responses. From this 

perspective, 𝐸[𝒃𝑖|𝒀𝑖] is a Bayesian estimator of 𝒃𝑖  (Frees, 2004). When 𝜷 is replaced with its 

generalized least squares estimator in Equation (1), and 𝐷 and 𝐻𝑖  are known, 𝐸[𝒃𝑖|𝒀𝑖] can be 

shown to be the BLUP of 𝒃𝑖  (Frees, 2004). If, in addition to this replacement, 𝐷  and 𝐻𝑖  are 

replaced by their maximum or restricted maximum likelihood estimators, 𝐸[𝒃𝑖|𝒀𝑖] is called the 

empirical Bayesian (EB) predictor of 𝒃𝑖 (Fitzmaurice et al., 2009; Frees, 2004; Laird and Ware, 

1982).  

For the purposes of this study, it is important to keep in mind that the assumption of 

normality is not needed to demonstrate that Equation (1) gives the BLUP of 𝒃𝑖 after replacing 𝜷 

with its estimator (Frees, 2004). This suggests that the EB predictor can be robust to violations of 

the normality assumption (McCulloch and Neuhaus, 2011b).  

 

3.2. Approach based on quadratic inference functions 

The random effects 𝒃𝑖  may not be normally distributed. The QIF approach has been 

proposed as an estimation method robust to violations of this assumption or to misspecifications 
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of the structure of the variance covariance matrix 𝐷 (Wang et al., 2012).  Here, we review the 

computational aspects of the method in the context of linear mixed effects models. Let 𝐾 be the 

total number of unique time points recorded in the dataset.  Every subject was observed on at least 

one of these points. Thus, 1 ≤ 𝑛𝑖 ≤ 𝐾.  We assume first that  𝑛𝑖 = 𝐾 for all 𝑖, that is, balanced 

data with respect to time. Unbalanced data handling is explained in Section 3.2.1.  

The estimating equations for the fixed and random effects are respectively 

∑𝑋𝑖
𝑇𝑊𝑖

−1(𝒀𝑖 − 𝝁𝑖)

𝑁

𝑖=1

= 𝟎     and 

𝑍𝑖
𝑇𝑊𝑖

−1(𝒀𝑖 − 𝝁𝑖) = 𝟎  ,   𝑖 = 1,… , 𝑁 

where 𝝁𝑖 = 𝝁𝑖(𝜷|𝒃𝑖) = 𝑋𝑖𝜷 + 𝑍𝑖𝒃𝑖  is the mean response for subject 𝑖 , and 𝑊𝑖
−1 =

𝐴𝑖
−1/2

𝑅−1𝐴𝑖
−1/2

, with 𝐴𝑖 = diag(𝐻𝑖) . Here, 𝑅  is the conditional correlation matrix of the 

responses given the random effects which is assumed to be the same for all subjects.  

The QIF approach utilizes the fact that  𝑅−1  can usually be expressed as a linear 

combination of known basis matrices, that is, 𝑅−1 = ∑ 𝑎𝑗𝑀𝑗
𝑚
𝑗=1 . The 𝑀𝑗’s depend on the assumed 

structure for 𝑅 and the 𝑎𝑗’s are unknown constants that do not enter in the estimation process (Qu 

et al., 2000).  For instance, for independent errors, 𝑚 = 1 and 𝑀1 is the identity matrix. For AR(1) 

errors, 𝑚 = 2, 𝑀1 is the identity matrix, and 𝑀2 is a matrix whose entries directly above and 

directly below the main diagonal are all 1’s and all other entries including those on the main 

diagonal are 0’s (Qu et al., 2000).  

Following Wang et al. (2012), we denote 
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𝑔𝑖
𝑓(𝜷) =

(

 
 

𝑋𝑖
𝑇𝐴

𝑖

− 
1

2𝑀1𝐴𝑖

− 
1

2(𝒀𝑖 − 𝝁𝑖)

⋮

𝑋𝑖
𝑇𝐴

𝑖

−
1

2𝑀𝑚𝐴
𝑖

−
1

2(𝒀𝑖 − 𝝁𝑖))

 
 

𝑚𝑝×1

   and          𝑔𝑖
𝑟 =  𝑍𝑖

𝑇𝐴𝑖
−1(𝒀𝑖 − 𝝁𝑖) 

and simultaneously estimate the fixed and random effects by iteratively minimizing two objective 

functions, namely the fixed-effects QIF (Wang et al., 2012) 

𝐿𝑓(𝜷|𝒃) = 𝑁(𝐺𝑁
𝑓)

𝑇
(𝐶𝑁

𝑓)
−1

𝐺𝑁
𝑓
 

and the random-effects QIF 

𝐿𝑟(𝒃|𝜷) = ‖𝐺𝑟(𝒃)‖2 

where 𝒃 = (𝒃1
𝑇 , … , 𝒃𝑁

𝑇 )𝑇, 

𝐺𝑁
𝑓

=
1

𝑁
∑ 𝑔𝑖

𝑓(𝜷)𝑁
𝑖=1              

𝐶𝑁
𝑓

=
1

𝑁
∑𝑔𝑖

𝑓
(𝜷)(𝑔𝑖

𝑓(𝜷))
𝑇

𝑁

𝑖=1

 

and 

𝐺𝑟(𝒃) = {(𝑔1
𝑟)𝑇 , … , (𝑔𝑁

𝑟 )𝑇 ,  𝜆1𝒃
𝑇 ,  𝜆2(𝑃𝐽𝒃)

𝑇
}
𝑇

 

The matrix 𝑃𝐽 is computed as follows. Denote the design matrix 𝑋 = (𝑋1
𝑇 , … , 𝑋𝑁

𝑇)𝑇   with 

𝑋𝑖 = (𝒙𝑖1
𝑻 , … , 𝒙𝑖,𝑛𝑖

𝑇 )
𝑇

, and the block diagonal matrix 𝑍 = diag(𝑍1, … , 𝑍𝑁)  with  𝑍𝑖 =

(𝒛𝑖1
𝑻 , … , 𝒛𝑖,𝑛𝑖

𝑇 )
𝑇

. Compute the Q-R decomposition of 𝐴 = ((𝐼 − 𝑃𝑋)𝑍)
𝑇

such that 𝐴 = 𝑄 × 𝑅 , 

where 𝑃𝑋 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 , and obtain 𝑟 = rank(𝐴). Let 𝐽 be the matrix whose columns are the 
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columns of 𝑄  beyond the 𝑟 th column (Boyd and Vandenberghe, 2004). Thus, 𝐽  has 𝑁𝑞 − 𝑟 

columns. Then, 𝑃𝐽 = 𝐽(𝐽𝑇𝐽)−𝐽𝑇.  

The iterative process starts with an initial value for 𝜷, denoted 𝜷̂(0), obtained through linear 

regression. Then 𝐿𝑟(𝒃|𝜷̂(0)) is minimized with respect to 𝒃 to obtain 𝒃̂(1) . Next 𝐿𝑓(𝜷|𝒃̂(1)) is 

minimized with respect to 𝜷 to obtain 𝜷̂(1), and so on. The process stops when |𝜷̂(𝑠+1) − 𝜷̂𝑠 | +

|𝒃̂(𝑠+1) − 𝒃̂𝑠 | < 10−5 with 𝒃̂(0) = 𝟎.  

For homoscedastic errors, 𝐴𝑖 = 𝜎2𝐼𝑛𝑖
 where 𝐼𝑛𝑖

 is an identity matrix. Therefore, 𝐿𝑓(𝜷|𝒃) 

does not depend on 𝜎2 because it cancels out. Also, since 𝜆1 and 𝜆2 can be written as proportional 

to 𝜎2, 𝐿𝑟(𝒃|𝜷) is proportional to 𝜎2. Thus, the value of 𝜎2 does not need to be known for the 

minimization of 𝐿𝑟(𝒃|𝜷). Therefore, in practice, we use 𝐴𝑖 = 𝐼𝑛𝑖
 for the minimization of these 

objective functions. 

Finally, note that the QIF approach does not make distributional assumptions about the 

random effects and, therefore, about 𝐷. Instead, the approach works directly with the conditional 

variance-covariance matrix 𝑊𝑖 . Also note that, in contrast to the default estimation methods 

implemented in the most common statistical packages, 𝐻𝑖  may differ among subjects. This 

provides additional generality and gives flexibility for handling unbalanced data.  

 

3.2.1. Handling of unbalanced data 

The assumption that the subjects have the same number of responses is needed to ensure 

that the dimension of 𝑔𝑖
𝑓(𝜷) does not change with 𝑖 (the 𝑀𝑗s are the same for all subjects). Thus, 

a transformation of the response vectors is necessary for unbalanced data. For subject 𝑖  with 
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unbalanced responses such that 𝑛𝑖 < 𝐾, let Λ𝑖  be a transformation matrix of dimension 𝐾 × 𝑛𝑖 

obtained by removing the columns of the 𝐾 × 𝐾 identity matrix corresponding to the time points 

with missing observations. In the iterative algorithm, we use  𝒀𝑖
∗ = Λ𝑖𝒀𝑖,  𝑋𝑖

∗ = Λ𝑖𝑋𝑖,  𝑍𝑖
∗ = Λ𝑖𝑍𝑖, 

𝐴𝑖
∗ = Λ𝑖𝐴𝑖Λ𝑖

𝑇 , and  (𝐴𝑖
∗)−1 = Λ𝑖𝐴𝑖

−1Λ𝑖
𝑇 , respectively in place of 𝒀𝑖, 𝑋𝑖, 𝑍𝑖, 𝐴𝑖 and 𝐴𝑖

−1 (Wang et 

al., 2012). This approach provides matrices of equal sizes by assigning zeros to the missing 

responses, inserting rows with zeros to the corresponding rows of 𝑋𝑖 and 𝑍𝑖, and inserting zeros to 

the corresponding elements of the diagonals of 𝐴𝑖 and 𝐴𝑖
−1. In this way, missing responses are both 

replaced with zeros and predicted as zeros without affecting parameter estimation and random 

effects prediction. 

 

3.2.2. Penalization parameters 

The penalization parameter 𝜆2 is usually fixed to log(𝑁) (Cho et al., 2017; Wang et al., 

2012; Zhu and Qu, 2016). Since 𝜆1 controls the variability of random-effect predictors, we chose 

𝜆1  using cross-validation as in Cho et al. (2017). Given a value of 𝜆1 , let  𝜷̂𝜆1

−𝑘  and 𝒃̂𝜆1

 −𝑘,𝑖
 be 

respectively the fixed-effects estimate and the random effects predictor for subject 𝑖, computed 

after excluding all observations at the 𝑘𝑡ℎ time point. The cross-validation error is  

𝐶𝑉𝜆1
= 𝐾−1 ∑ ∑(𝑦𝑖𝑘 − (𝒙𝑖𝑘

𝑇 𝜷̂𝜆1

−𝑘 + 𝒛𝑖𝑘
𝑇 𝒃̂𝜆1

−𝑘,𝑖))
2

𝑁

𝑖=1

𝐾

𝑘=1

  

We chose the value of 𝜆1 that minimized 𝐶𝑉𝜆1
.  
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4. Simulation scenarios for comparing the QIF and EB approaches 

The simulation study is based on the model: 

𝑌𝑖𝑗 = 𝛽1 + 𝛽2𝑡𝑖𝑗 + 𝑏𝑖1 + 𝑏𝑖2𝑡𝑖𝑗 + 𝜀𝑖𝑗 , 𝑖 = 1, … ,𝑁;  𝑗 = 1,… , 𝑛 

where 𝑌𝑖𝑗 is the continuous response of the 𝑖th subject at time 𝑡𝑖𝑗. This model and parameter values 

were motivated by an analysis of the Framingham Study data (Zhang and Davidian, 2001). 

For a given number of subjects 𝑁, we examined 3 different values of 𝑛, making sure the 

range of values for the time variable is the same. Thus, for 𝑛 = 3, 𝑡𝑖𝑗 = 0, 5 or 10. For 𝑛 = 6, 

𝑡𝑖𝑗 = 0, 2, 4, 6, 8 or 10. And for 𝑛 = 11, 𝑡𝑖𝑗 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Thus, for instance, 

for 𝑛 = 3,   𝑋𝑖 = 𝑍𝑖 = [  
1 0
1 5
1 10

]. 

Table 1 describes the simulation scenarios. For non-Gaussian random effects, we used 

𝛽1 = 2.35 and 𝛽2 = 0.28 and, as a variance-covariance matrix for 𝒃𝑖 = (𝑏𝑖1, 𝑏𝑖2), we used 𝐷∗ =

[0.15 0.02
0.02 0.04

]. This gives a correlation coefficient between the random intercept and random slope 

of 0.258. Variations about these values were used for Gaussian random effects. All random errors 

were simulated as Gaussian either independently or correlated with AR(1) structure, with 𝜎2 = 1, 

10,  or 30. 

Three general cases for the random effects {𝒃𝑖 , 𝑖 = 1,… ,𝑁} were used:  

1. Bivariate Gaussian with correlated or uncorrelated random effects.  

2. A mixture of two bivariate Gaussian distributions: 
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𝒃𝒊~ 
1

2
 𝑁 { [

−0.35
−0.1

] , [
0.028 −0.015

−0.015 0.03
]} +

1

2
 𝑁 { [

0.35
0.1

] , [
0.028 −0.015

−0.015 0.03
]} , 𝑖 = 1,… ,𝑁 ,  

so that the mean is 0 and the variance-covariance matrix is 𝐷∗ 

3. A bivariate t-distribution (d.f.=3) with mean 0 and variance-covariance matrix 𝐷∗. This 

distribution allows examining prediction performance in the presence of heavy tails. 

Since QIFs computations are time consuming, only thirty datasets were simulated for each 

scenario. Mean square prediction errors (MSPEs) were used to compare the prediction 

performances of the two approaches. The ratio of the average MSPE for the QIF approach to the 

average MSPE for the EB approach was calculated for each simulation scenario. For the 𝑙-th 

dataset, the MSPE for the random intercept was 

𝑀𝑆𝑃𝐸1
(𝑙) =

∑ (𝑏̂𝑖1,𝑙   − 𝑏𝑖1,𝑙 )
2𝑁

𝑖=1

𝑁
 

where 𝑏̂𝑖1,𝑙 is a predictor of the random intercept and 𝑏𝑖1,𝑙 is the true (simulated) value. The MSPE 

for the random slope is defined analogously, replacing subscript 1 with 2.  Ratios comparing QIF 

with EB were calculated as 𝑀𝑆𝑃𝐸𝑄𝐼𝐹,𝑗/𝑀𝑆𝑃𝐸𝐸𝐵,𝑗 , where 𝑀𝑆𝑃𝐸𝑄𝐼𝐹,𝑗 =
∑ 𝑀𝑆𝑃𝐸𝑗

(𝑙)30
𝑙=1

30
  when the 

random effects were predicted using the QIF approach, and analogously for 𝑀𝑆𝑃𝐸𝐸𝐵,𝑗, 𝑗 = 1, 2. 

Thus, a ratio smaller than 1 indicates that the QIF approach is more accurate in predicting the 

random effect. Boxplots of ratios were also used to compare the two approaches (Figure 1). 

Simulations were programmed in SAS IML and EB predictors were computed with SAS PROC 

MIXED (SAS Institute Inc, Cary, NC). The computer code is available as Supplementary Material.  
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5. Simulation results 

5.1. Random effects with a bivariate Gaussian distribution and Gaussian independent 

errors 

Results for true random effects simulated from a bivariate Gaussian distribution, 

independent errors, large error variance, and independent random intercept and slope are shown in 

Tables 2A (random intercept) and 2B (random slope). QIF predictions on the random intercept 

were substantially more accurate than EB predictions (Table 2A). In contrast, EB predictions on 

the random slope tended to be more accurate than QIF predictions, although the two approaches 

performed similarly for large 𝑁 and 𝑛 (Table 2B).  

When the error variance was small, the average MSPEs obtained with the QIF approach 

were always larger than those for the EB approach for both the random intercept (Table 3A) and 

slope (Table 3B), suggesting a better accuracy for the EB approach. When predicting intercepts 

with relatively large numbers of subjects and repeated measures, MSPE ratios were close to 1 

(Table 3A); thus, the accuracy of the QIF tended to be similar to that of the EB approach. In 

contrast, when predicting slopes, larger values of 𝑁  and 𝑛  improved the accuracy of the EB 

approach faster, which is suggested by the considerably larger ratios for 𝑛 = 11 in Table 3B. The 

EB approach thus seems to be more responsive to increases in the number of observations than the 

QIF approach.  Interestingly, the accuracies of the QIF and EB approaches did not depend 

substantially on the coefficient of variation 𝐶𝑣 of the last measure. 
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5.2. Bivariate Gaussian distributions for the random effects and AR (1) Gaussian errors  

Tables 4-5 show simulation results when the random effects followed a bivariate Gaussian 

distribution and the Gaussian measurement errors were correlated with an AR(1) structure. The 

random intercept and slope were correlated in Table 4 and uncorrelated in Table 5. For the random 

intercept (Tables 4A and 5A), MSPE ratios were smaller than 1 only for 𝑛 = 3. This suggests that 

the QIF approach is more accurate than the EB approach only when there is a relatively small 

number of repeated measures. For larger numbers of repeated measures, the EB approach 

performed substantially better in intercept predictions. 

Tables 4B and 5B, which compare slope predictors, reveal that, in the presence of 

autocorrelated errors, the EB approach produces more accurate predictions on the random slope, 

except perhaps under small sample sizes and small numbers of repeated measures.  

 

5.3. Mixtures of bivariate Gaussian distributions for the random effects 

Table 6A shows ratios of average MSPEs for the random intercepts comparing the QIF to 

the EB approach, when the random intercept and slope were simulated from a mixture of bivariate 

Gaussian distributions. Except for relatively small error variances 𝜎2, the ratios were < 1. Thus, 

when predicting intercepts under relatively large error variances, the prediction accuracy of the 

QIF approach was less deteriorated than that of the EB approach by the violation of the normality 

assumption, regardless of sample size and number of repeated measures. 

In contrast, Table 6B shows that ratios for the random slopes tended to be close or higher 

than 1 regardless of error variance, sample size and number of repeated measures. This suggests 
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that the accuracy of the EB approach was better than that of the QIF approach when predicting 

slopes under the violation of the normality assumption for the random effects. However, for large 

numbers of subjects and repeated measures, the QIF and EB approaches had similar accuracies, 

except for small error variances in which case the EB approach was superior. For fixed 𝑁 and 𝑛, 

an increased error variance 𝜎2 tended to make the accuracy of the two approaches more similar.  

 

5.4. Bivariate 𝒕(𝟑) distribution for the random effects 

When the random effects were simulated from a bivariate t distribution, the results (Table 

7) were very similar to those corresponding to bivariate Gaussian distributions in Section 5.1. If 

error variances are relatively large, the QIF approach tended to be more accurate than the EB 

approach to predict intercepts, but less accurate to predict slopes. For small error variances, the 

EB approach was always better. The important point that the EB approach tended to be more 

accurate and robust in the presence of small error variances emerges from these simulations. 

 

6. Application: prediction of random effects in patients with depression. 

As an illustration, we use clinical trial data consisting of a sample of 66 patients with two 

types of depression diagnosis: endogenous (N=37) and nonendogenous (N=29) (Reisby et al., 

1977). The data is available in Hedeker and Gibbons (2006). Here, the response variable is the 

Hamilton Rating Scale (HRS) for depression. Data collection started two weeks before initiation 

of imipramine treatment and continued for four weeks during treatment. We fitted the same 

polynomial model as in Diaz (2017), which, as covariates, included diagnosis, time 𝑡 (weeks on 
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treatment) and 𝑡2. The model had random effects for the intercept and time covariates. The SAS 

procedure MIXED, which assumes Gaussian random effects, was used to obtain maximum 

likelihood estimates (MLEs) of the fixed effects and EB predictors of the random effects (SAS 

Institute Inc. Cary, NC). An unstructured covariance matrix for the random effects was assumed 

in this case.   

The predictions on the intercept by the EB and QIF approaches correlated very strongly 

(Table 8), and similarly for the predictions on the slope of time. Predictions for the slope of 𝑡2 

were only moderately correlated. Figure 2 shows scatterplots comparing the predictions of the 

random effects by the QIF and EB approaches under homoscedastic independent errors. 

Scatterplots for exchangeable and AR(1) errors are in the Supplementary Material (Figures S1, 

S2). Overall, the two prediction methods agreed strongly, except perhaps for the predictions on 

the random intercept. Specifically, scatterplots for the intercept were slightly tilted with respect to 

the y=x line, suggesting that QIF intercept predictions tended to be larger in absolute value than 

EB predictions (Figure 2A). This deviation was more pronounced in the AR(1) structure (Figure 

S2C in the Supplementary Material). The histograms for the random intercepts from the two 

approaches exhibited similar shapes, and similarly for the random slopes (Figure S3 in 

Supplementary Material).   

As additional illustration, we use the approach in Diaz (2017) to explore the individual 

benefits of imipramine treatment for the 66 subjects after 4 weeks of treatment, using an HRS 

score ≤ 7 as the therapeutic target.  Since the model is a 2-dimensional personalized medicine 

model, predictions of both  random intercepts and slopes are needed for these computations (Diaz, 

2017, 2016). Diaz (2017) calculated individual benefits for these subjects by predicting the random 

effects using the EB approach. Here, we additionally use the QIF approach. Percentiles of 
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individual benefits by diagnosis are shown in Table 9. Both approaches suggest that, after 4 weeks 

of treatment, nonendogenous patients tended to achieve greater imipramine benefits than 

endogenous patients. However, on average, the EB approach predicted greater benefits than the 

QIF approach for both endogenous and nonendogenous patients.    

 

7. Discussion and conclusions 

Two methods of predicting random effects in the linear mixed effects model were 

compared under various assumptions for the random effects and measurement errors: the classical 

empirical Bayes approach and an alternative approach based on QIFs (Wang et al., 2012). An 

important conclusion of this study is that, under the investigated non-Gaussian random effects and 

small to moderate error variances, the EB approach was more accurate than the QIF approach for 

predicting both slopes and intercepts. For larger error variances, QIF was a better predictor for the 

random intercept but not for the random slope. This latter observation is consistent with the 

findings presented in Verbeke and Lesaffre (1996) who investigated mixtures of bivariate 

Gaussian distributions and found that the EB approach does not capture accurately the shape of 

the random effects distribution when the error variance is large. Our results are also consistent 

with the findings of other studies suggesting that prediction accuracy of EB predictors is not 

significantly affected by mild to moderate violations of the normality assumption (Mcculloch and 

Neuhaus, 2011a, 2011b). This robustness is probably due to the fact that EB predictors inherit the 

optimality properties of the BLUPs, which do not depend on the normality assumption (see Frees, 

2004). 
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In general, in the presence of Gaussian random effects, the EB approach outperformed the 

QIF approach for predicting random slopes; and the QIF approach was superior to the EB approach 

only under relatively large error variances and, in some scenarios, under a relatively small number 

of repeated measures. The box-plots in Figures 1A and 1B illustrate some of the situations in which 

very large error variances were associated with a higher prediction accuracy for the QIF approach 

when the normality assumption was violated. In contrast, Figures 1C and 1D illustrate situations 

in which the EB approach performed relatively better than the QIF approach under the Gaussian 

assumption for the random effects. 

For relatively large sample sizes, QIF computations are time consuming. For instance, 

using a high-performance computation cluster, for 𝑁 = 150 , 𝑛 = 11  and Gaussian random 

effects, the average computation time was about 240 hours, regardless of the magnitude of the 

error variance. In light of this limitation and considering the fact that the EB approach is 

mathematically and computationally less complex, our simulations suggest the EB approach is 

more recommendable in most practical situations, even if non-Gaussian random effects are 

suspected.  

The QIF approach ignores the serial correlation of repeated measures in the prediction of 

random effects, although it takes it into account in the estimation of the fixed effects (Wang et al., 

2012). It is possible to circumvent this limitation by incorporating an empirical correlation matrix 

into the random-effects QIF. This approach was followed in applications to personalized medicine 

(Cho et al., 2017; Zhu and Qu, 2016). Further research is needed to compare these modifications 

of the QIF with the EB approach.   
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  Table 2. Ratios of the average MSPE from the QIF approach to the average MSPE from 

the EB approach, when the true random effects were simulated from a bivariate Gaussian 

distribution, and the independent errors had a large error variance. Averages summarized 

30 simulated datasets.   

 

 

(A) Random Intercept 

corr(𝑏𝑖1, 𝑏𝑖2) = 0 

𝜎2 = 30  

 

Sample Size (𝑁) 

𝑛 𝐶𝑣
 60 90 120 150 

3 10% 0.4164 0.4588 0.1674 0.2800 

40% 0.3343 0.3708 0.2049 0.2539 

80% 0.3190 0.5253 0.3091 0.2118 

6 10% 0.7229 0.8787 0.6589 0.3998 

40% 0.5716 0.7112 0.7512 0.4471 

80% 0.4854 0.8231 0.9512 0.4758 

11 10% 0.4143 0.7864 0.7556 0.7267 

40% 0.3622 0.6298 0.8955 0.7650 

80% 0.4773 0.8345 0.8135 0.8474 

 

 

(B) Random Slope 

corr(𝑏𝑖1, 𝑏𝑖2) = 0 

𝜎2 = 30 

 

Sample Size 𝑁 

𝑛 𝐶𝑣 60 90 120 150 

3 10% 1.403 1.373 1.118 1.097 

40% 1.342 1.980 0.9664 1.074 

80% 1.778 1.237 1.177 1.095 

6 10% 1.049 1.094 1.031 0.9508 

40% 1.085 1.059 0.9989 0.9648 

80% 1.069 1.080 1.057 0.9518 

11 10% 0.8021 0.9818 1.024 0.9849 

40% 0.8790 0.9732 1.014 0.9979 

80% 0.9247 1.000 0.9746 0.9990 

𝜎2: Variance of the measurement error. 

𝑁: Number of simulated subjects.  

𝑛: Number of repeated measures for each subject. 

𝐶𝑣: Coefficient of variation at the last measure. 
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Table 3. Ratios of the average MSPE from the QIF approach to the average MSPE from 

the EB approach, when the true random effects were simulated from a bivariate Gaussian 

distribution, small error variance and independent random effects and errors. Averages 

summarized 30 simulated datasets.   

 

 

(A) Random Intercept 

corr(𝑏𝑖1, 𝑏𝑖2) = 0 

𝜎2 = 1  

 

Sample Size 𝑁 

𝑛 𝐶𝑣 60 90 120 150 

3 10% 1.035 1.082 1.103 1.087 

40% 1.005 1.042 1.118 1.069 

80% 1.032 1.078 1.059 1.119 

6 10% 1.263 1.270 1.228 1.270 

40% 1.168 1.180 1.211 1.219 

80% 1.178 1.164 1.213 1.233 

11 10% 1.517 1.494 1.090 1.067 

40% 1.496 1.305 1.058 1.066 

80% 1.290 1.489 1.048 1.059 

 

 

(B) Random Slope 

corr(𝑏𝑖1, 𝑏𝑖2) = 0 

𝜎2 = 1 

Sample Size 𝑁 

𝑛 𝐶𝑣 60 90 120 150 

3 10% 1.171 1.166 1.159 1.139 

40% 1.162 1.118 1.157 1.141 

80% 1.197 1.157 1.175 1.164 

6 10% 1.169 1.170 1.133 1.156 

40% 1.134 1.098 1.106 1.113 

80% 1.118 1.085 1.109 1.141 

11 10% 441.4 404.3 1.138 12.73 

40% 381.1 255.1 1.140 14.12 

80% 282.0 384.2 1.128 13.01 

𝜎2: Variance of the measurement error. 

𝑁: Number of simulated subjects.  

𝑛: Number of repeated measures for each subject. 

𝐶𝑣: Coefficient of variation at the last measure. 
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Table 4. Ratios from the average MSPE from the QIF approach to the average MSPE 

from the EB approach, when the true random effects were simulated from a bivariate 

Gaussian distribution and the error terms had an AR(1) correlation matrix. The random 

intercept and slope were correlated. Averages summarized 30 simulated datasets.   

 

(A) Random Intercept 

corr(𝑏𝑖1, 𝑏𝑖2) = 0.5 

𝜎2 = 1 

 

Sample Size 𝑁 

𝑛 𝜌 60 90 120 150 

3 0.1 0.6523 0.6933 0.4813 0.5760 

0.4 0.4766 0.5679 0.5387 0.7356 

0.7 0.3647 0.3604 0.3225 0.5666 

6 0.1 1.193 1.441 1.335 1.472 

0.4 3.007 4.021 4.226 4.290 

0.7 3.495 3.960 4.072 3.661 

11 0.1 1.508 1.316 1.386 1.612 

0.4 2.923 2.861 3.084 3.167 

0.7 4.349 1.035 1.023 1.033 

 

 

(B) Random Slope  

corr(𝑏𝑖1, 𝑏𝑖2) = 0.5 

𝜎2 = 1 

 

Sample Size 𝑁 

𝑛 𝜌 60 90 120 150 

3 0.1 1.084 1.130 0.1883 1.108 

0.4 1.267 1.332 1.388 1.505 

0.7 0.2766 1.951 0.2798 1.967 

6 0.1 1.129 1.299 1.235 1.274 

0.4 1.750 2.060 2.094 2.030 

0.7 1.724 1.713 1.689 1.672 

11 0.1 1.413 1.305 1.350 1.461 

0.4 1.941 1.783 1.900 1.960 

0.7 2.266 1.085 1.074 1.089 

𝜎2: Variance of the measurement error. 

𝑁: Number of simulated subjects.  

𝑛: Number of repeated measures for each subject. 

𝜌: Correlation coefficient of errors within a subject. 

 

35



 

36 

 

  
Table 5. Ratios from the average MSPE from the QIF approach to the average MSPE 

from the EB approach, when the true random effects were simulated from a bivariate 

Gaussian distribution and the error terms had an AR(1) correlation matrix. The random 

intercept and slope were uncorrelated. Averages summarized 30 simulated datasets.   

 

(A) Random Intercept 

corr(𝑏𝑖1, 𝑏𝑖2) = 0 

𝜎2 = 1 

 

Sample Size 𝑁 

𝑛 𝜌 60 90 120 150 

3 0.1 0.6189 0.5694 0.5820 0.8422 

0.4 0.4796 0.5274 0.3958 0.6191 

0.7 0.4075 0.6029 0.3991 0.7015 

6 0.1 1.189 1.238 1.124 1.194 

0.4 2.477 2.843 2.969 3.516 

0.7 2.726 3.215 3.326 3.371 

11 0.1 1.049 1.123 1.052 1.107 

0.4 1.903 2.325 2.236 2.309 

0.7 3.774 1.003 1.003 1.000 

 

 

(B) Random Slope 

corr(𝑏𝑖1, 𝑏𝑖2) = 0 

𝜎2 = 1 

 

Sample Size 𝑁 

𝑛 𝜌 60 90 120 150 

3 0.1 0.3935 0.5339 1.001 1.129 

0.4 0.9899 1.275 0.2371 1.290 

0.7 0.2181 1.787 1.931 1.954 

6 0.1 1.101 1.163 1.130 1.141 

0.4 1.547 1.656 1.726 1.745 

0.7 1.441 1.555 1.554 1.496 

11 0.1 1.106 1.112 1.091 1.109 

0.4 1.408 1.573 1.569 1.612 

0.7 1.769 1.045 1.043 1.000 

𝜎2: Variance of the measurement error. 

𝑁: Number of simulated subjects.  

𝑛: Number of repeated measures for each subject. 

𝜌: Correlation coefficient of errors within a subject. 
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Table 6. Ratios of the average MSPE from the QIF approach to the average MSPE from 

the EB approach, when the true random effects were simulated from a mixture of 

bivariate Gaussian distributions. Averages summarized 30 simulated datasets.  

 

(A) Random Intercept 

  

Sample Size 𝑁 

𝑛 𝜎2 60 90 120 150 

3 30 0.1174 0.2715 0.2732 0.3989 

10 0.4624 0.4042 0.4235 0.5421 

1 0.9435 1.037 1.018 1.138 

6 30 0.2969 0.2724 0.3962 0.4800 

10 0.5453 0.6740 0.7236 0.6142 

1 1.252 1.218 1.312 1.291 

11 30 0.3734 0.5247 0.4441 0.6250 

10 0.6729 0.8064 0.8960 0.9452 

1 1.327 1.339 1.131 1.151 

 

 

(B) Random Slope 

  

Sample Size 𝑁 

𝑛 𝜎2 60 90 120 150 

3 30 1.090 1.558 1.057 1.044 

10 1.414 1.342 1.348 1.222 

1 1.584 1.682 1.664 1.712 

6 30 0.9573 0.8363 0.9980 0.9323 

10 0.9444 1.028 1.058 0.9905 

1 1.223 1.185 1.278 1.292 

11 30 0.9637 0.9720 0.9128 0.9511 

10 0.8943 1.119 0.9996 1.077 

1 199.9 274.5 1.194 11.56 

𝜎2: Variance of the measurement error. 

𝑁: Number of simulated subjects.  

𝑛: Number of repeated measures for each subject. 
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Table 7. Ratios of the average MSPE from the QIF approach to the average MSPE from 

the EB approach, when the true random effects were simulated from a bivariate t(3) 

distribution. Averages summarized 30 simulated datasets.   

 

(A) Random Intercept 

  

Sample Size 𝑁 

𝑛 𝜎2 60 90 120 150 

3 30 0.4433 0.5014 0.5791 0.4581 

10 0.4631 0.6332 0.7834 0.9097 

1 1.484 1.424 1.819 1.525 

6 30 0.5919 0.6715 0.5876 0.6047 

10 0.8593 0.9498 0.9586 1.048 

1 1.242 1.385 1.286 1.270 

11 30 0.6210 0.8303 0.8661 0.9197 

10 1.040 1.052 1.075 1.172 

1 1.483 1.230 1.148 1.151 

 

 

(B) Random Slope 

  

Sample Size 𝑁 

𝑛 𝜎2 60 90 120 150 

3 30 1.207 1.314 1.242 1.187 

10 1.269 1.260 1.288 1.358 

1 1.325 1.296 1.398 1.319 

6 30 1.109 1.034 1.007 0.9689 

10 0.9942 1.015 1.057 1.120 

1 1.164 1.215 1.203 1.181 

11 30 0.8940 1.321 1.020 1.005 

10 4.624 2.682 1.036 1.191 

1 302.7 169.7 1.166 12.60 

𝜎2: Variance of the measurement error. 

𝑁: Number of simulated subjects.  

𝑛: Number of repeated measures for each subject. 
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Table 8. Correlations between QIF and EB predictors by error covariance structure 

for the depression data. 

Predicted Random Effect Error covariance structure 

Independent Exchangeable AR(1) 

Intercept 0.9900 0.9902 0.9969 

Time 0.8951 0.8951 0.8914 

Time square 0.6258 0.6259 0.6587 

EB: Empirical Bayes approach. 

QIF: Quadratic inference function approach. 

 

Table 9. Percentiles of individual imipramine benefits after 4 weeks of treatment. The 

therapeutic target was an HRS score ≤ 7. Individual benefits were multiplied by 100. An 

independent error structure was used. 

 QIF EB 

Percentiles Percentiles 

10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 

Endogenous 0.00 0.00 3.67 52.31 98.29 0.00 0.05 5.77 38.59 63.49 

Nonendogenous 0.00 0.09 6.32 58.89 98.80 0.00 2.03 10.15 47.70 88.19 

EB: Empirical Bayes approach. 

QIF: Quadratic inference function approach. 
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Figure 1. Boxplots of ratios comparing MSPEs of QIF versus EB. Each boxplot 

corresponds to 30 simulated datasets, 𝑁 = 120, 𝑛 = 11. Red boxplots are for random 

intercepts, and blue ones are for random slopes. (A) The true random effects were 

simulated from mixtures of bivariate Gaussian distributions (Table 6). (B) The true 

random effects were simulated from a bivariate 𝑡(3) distribution (Table 7). (C) The 

independent true random effects were simulated from bivariate Gaussian distributions 

with independent errors (Table 3). (D) The independent true random effects were 

simulated from bivariate Gaussian distributions with AR(1) error structure (Table 5).   
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Figure 2. Scatterplots of random effects for depression data, predicted by QIF versus 

EB approaches under homoscedastic independent measurement errors.  (A) Random 

intercept predictors. (B) Predictors of random coefficient of time. (C) Predictors of 

random coefficient of time square. The solid line is the y=x line. 
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ABSTRACT 

For the logistic mixed effects model in longitudinal data analysis, research on the accuracy 

and robustness to violations of the normality assumption of predictors of random effects is scarce. 

In this paper we use the mean square prediction error to assess the performance of predictors of 

random effects and compared the random effects prediction accuracy and robustness of two 

approaches: the empirical Bayes (EB) and a robust approach based on quadratic inference 

functions (QIFs). Our simulation study showed that in logistic models with random intercepts only, 

more accurate predictions were generated using the EB approach when the true random intercept 

variance was large. For logistic models with both random intercept and slope, the performances of 

the EB and QIF approaches were comparable, but the EB approach outperformed the QIF approach 

when the random effects were independent, and the sample size was relatively large. Our 

conclusion holds regardless of whether the true distribution of random effects is normal or non-

normal. A consequence for statistical practice is that in logistic mixed effects models the EB 

approach from random effects prediction is relatively robust to violations of the normality 

assumption. Considering that the EB approach is easier to implement computationally, this 

approach is more recommendable for predicting random effects than the QIF approach. An 

application to a schizophrenia study using both approaches to predict random effects was 

illustrated. 

 

KEY WORDS: Logistic model, prediction, random effects, BIC, distribution misspecification 
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1. Introduction 

Mixed effects models are widely used when modeling repeatedly measured outcomes. In 

this family, linear mixed effects models, generalized linear mixed effects models and nonlinear 

mixed effects models are the three most commonly used models for continuous or discrete types 

of responses. Among generalized linear mixed effects models, the logistic mixed effects models 

are one of the most useful tools in modeling binary repeated outcomes for cluster data via logit 

link function. Logistic mixed effects models are widely used in biomedical research (Diaz, 2016; 

Have et al., 1998; Hedeker, 2003; Horrocks & van Den Heuvel, 2009; Lin & Breslow, 1996; Liu 

et al., 2008), epidemiology (Kleinman et al., 2004; Sashegyi et al., 2000; Skrondal & Rabe-

Hesketh, 2003), social science (Mann et al., 2018), psychometrics (Van Den Noortgate et al., 2003) 

and animal ecology (Gillies et al., 2006). Statistical procedures, such as PROC GLIMMIX, PROC 

NLMIXED in SAS, or packages such as lme4 or nlme in R, are widely used for statistical practice. 

One of the basic assumptions for estimation and inference in mixed effects models is that 

the random effects are assumed to follow normal distribution for simplicity and ease of 

computation. This assumption may be too restricted to follow in practice. For instance, when a 

categorical covariate is omitted, a multimodal distribution could be the best description for the 

distribution of random effects. 

Research is heavily focused on estimation accuracy of the fixed effects parameters and 

their robustness to the violation of normality assumption of the random effects. There are some 

conflicting conclusions about whether the fixed effects estimates are affected by the distribution 

misspecification of the random effects.  It has been shown that for logistic random intercept 

models, the estimates for fixed effects parameters are relatively robust with respect to the 
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distribution misspecification due to small biases occurring in the estimates (Neuhaus et al., 1992). 

This conclusion is also validated by presenting the conditions for obtaining consistent fixed effects 

parameter estimates under misspecification of the random effect distribution (Neuhaus et al., 

1994). Agresti et al. (2004) showed that generally the fixed effects and variance components have 

small biases when the true random effects distribution was mis-specified, except in cases where 

the true random effects were simulated from an extreme two-point distribution with relatively large 

variance. On the contrary, Heagerty and Kurland (2001) illustrated that significantly biased 

estimates result for random intercept in logistic models, when the variance of the random effects 

depends on a between-cluster covariate. Heagerty and Zeger (2000) showed that in modeling 

longitudinal binary responses, for conditional logistic model with random intercept only, the 

estimated coefficients for between-cluster covariates could be severely biased; while small biases 

result for marginal logistic models. Using logistic models with random intercept and slope, and 

assuming a wide variety of true distributions for the random effects, Litière et al. (2008) illustrated 

that the misspecification of the random effects distribution has a severe effect on the fixed effects 

and variance components parameters estimates. Furthermore, the bias is more severe when there 

is more than one random effect included in the model. In Litière et al. (2007) they also showed 

that the type I error rate and statistical power of Wald tests on the mean structure, which are the 

fixed effects, are affected. 

As important as the fixed effects and variance components, random effects play an essential 

role for inference, especially in personalized medicine, since the individual disease severity and 

treatment benefits are calculated based on individual random effects (Diaz, 2017, 2016). By 

comparing the mean square prediction errors under different distributions of the random effects, it 

is indicated that the prediction accuracy was little to mildly affected (Mcculloch & Neuhaus, 
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2011a). In McCulloch and Neuhaus (2011b) the authors validated their conclusion and stated that 

although the prediction accuracy was mildly affected, the exact shape of the distribution of random 

effects predictors could be severely biased. Agresti et al. (2004) showed that when the true random 

effects were distributed from an extreme 2-point mixture distribution with a large variance, severe 

prediction bias occurred on the random effects. A recent study showed that by using random 

intercept logistic models, and simulating the true random effects from a three-components mixture 

of normal distributions, the random intercept variance was biasedly estimated and this bias was 

relatively large when the true random intercept variance was large (Marquart and Haynes, 2019). 

Thus, some authors have proposed robust methods for parameter estimation or prediction 

in generalized linear mixed effects models.  For random effects in logistic models, Ten Have and 

Localio (1999) proposed two extensions of the empirical Bayes approach; one is based on Kass 

and Steffey (1989), and the other is based on Breslow and Clayton (1993). The performance of the 

two approaches were shown in terms of different cluster sizes, number of clusters and covariance 

of random effects. Shen and Louis (1999) proposed an empirical Bayes method based on 

smoothing by roughening estimate of the prior. The simulation studies in which the true prior was 

distributed from a mixture of Gaussian distribution and Poisson distribution showed its robustness 

to the violation and efficiency in estimation of prior distribution. Their methods could be applied 

in mixed effects models as a robust method for predicting the random effects. Requiring only that 

the random effects distribution be smooth, Chen et al. (2002) proposed a method which was based 

on a Monte Carlo EM algorithm with rejection sampling to estimate the fixed effects, variance 

components and to predict random effects. Wang et al. (2012) proposed an inference method by 

iteratively minimizing the extended score equations of both fixed and random effects. And their 

approach based on quadratic inference functions (QIF) was widely applied in treatment 
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personalization (Cho et al., 2017) and dosage individualization (Zhu and Qu, 2016) for 

longitudinal data via mixed effects models. 

Since in logistic mixed effects model, little research has been done for evaluating the 

prediction performance of random effects, especially comparing the empirical Bayes approach 

with the modern robust approach, this paper focuses on comparing the prediction accuracy to the 

violation of the normality assumption of random effects, using the common empirical Bayes 

approach and the robust approach based on quadratic inference functions (Wang et al., 2012). 

The paper is organized as follows. Section 2 presents the formulas and notations of logistic 

mixed effects models. Sections 3 reviews the empirical Bayes method of predicting random effects 

in mixed effects models and derives the formula of QIFs in the context of logistic models. Section 

4 describes the simulation scenarios used in this paper and section 5 presents the simulation results 

and discussions. A clinical trial dataset was applied to both approaches for predicting random 

effects, and the results are shown in section 6. Conclusion and discussion are given in section 7. 

 

2. Logistic mixed effects model 

We present a logistic mixed effects model in the following. The total number of subjects 

is 𝑁. For subject 𝑖 at time point 𝑗 there are 𝑛𝑖 number of repeated binary measurements 𝑦𝑖𝑗 . We 

assume the probabilities 𝑝𝑖𝑗 = 𝑃(𝑦𝑖𝑗 = 1|𝒙𝑖𝑗 , 𝒛𝑖𝑗), and build the model via logit link function such 

that  

log(
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
) = 𝒙𝑖𝑗

𝑇 𝜷 + 𝒛𝑖𝑗
𝑇 𝒃𝑖 , 𝑖 = 1,… , 𝑁; 𝑗 = 1,… , 𝑛𝑖 
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where 𝒀𝑖 = (𝑦𝑖1, … , 𝑦𝑖,𝑛𝑖
)
𝑇

 is 𝑛𝑖 × 1  vector of responses such that 𝑌 = (𝒀1, … , 𝒀𝑁)𝑇  is 

(∑ 𝑛𝑖
𝑁
𝑖=1 ) × 1  vector of responses of all subjects; 𝜷 = (𝛽1, … , 𝛽𝑝)

𝑇
 is 𝑝 × 1  vector of fixed 

effects; 𝒙𝑖𝑗 = (𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑝)
𝑇

  is 𝑝 × 1  vector of covariates for subject 𝑖  at time 𝑗 , 𝑋𝑖 =

(𝒙𝑖1
𝑇 , … , 𝒙𝑖𝑛𝑖

𝑇 )
𝑇

 is 𝑛𝑖 × 𝑝  matrix of fixed effects covariates for subject 𝑖 , such that 𝑋 =

(𝑋1
𝑇 , … , 𝑋𝑁

𝑇)𝑇  is (∑ 𝑛𝑖
𝑁
𝑖=1 ) × 𝑝  matrix for all subjects; 𝒃𝑖 = (𝑏1, … , 𝑏𝑞)

𝑇
 is 𝑞 × 1  vector of 

random effects for subject 𝑖  and 𝒃 = (𝒃1
𝑇 , … , 𝒃𝑁

𝑇 )𝑇 . Similarly, 𝒛𝑖𝑗 = (𝑧𝑖𝑗1, … , 𝑧𝑖𝑗𝑞)
𝑇

 is 𝑞 × 1 

vector of covariates for subject 𝑖 at time 𝑗, 𝑍𝑖 = (𝒛𝑖1
𝑇 , … , 𝒛𝑖𝑛𝑖

𝑇 )
𝑇
 is 𝑛𝑖 × 𝑞 matrix of random effects 

covariates for subject 𝑖, such that 𝑍 = [

𝑍1 0 … 0
0 𝑍2 … 0
⋮ ⋮ ⋮ ⋮
0 0 0 𝑍𝑁

]  is (∑ 𝑛𝑖
𝑁
𝑖=1 ) × (𝑁 × 𝑞) block-diagonal 

matrix for all subjects. The random effects 𝒃𝑖  follow a distribution 𝜑  with mean of zero and 

variance covariance matrix 𝐺; most commonly it is normal distribution, but violation is possible. 

In this paper we assume that conditional on the random effects, the binary responses are 

independent. 

 

3. Prediction methods for random effects 

3.1. Empirical Bayes (EB) 

Empirical Bayes method of predicting random effects are widely used in biostatistics and 

medical research (Albert, 2012; Candel, 2009; Diaz, 2016; Feng et al., 2006; Mikulich-Gilbertson 

et al., 2019; Parzen et al., 2011; Sammel et al., 1997). The empirical Bayes predictor of the random 

effects is the posterior expectation of the distribution of random effects while treating the fixed 
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effects and variance components as fixed and replaced by their maximum likelihood estimates 

(MLE). The random effects predictor can be obtained by  

𝒃𝑖̂ =
∫𝒃𝑖 𝜑(𝒃𝑖 , 𝐺̂)∏ 𝑓(𝑦𝑖𝑗|𝒃𝑖 , 𝒙𝑖𝑗 , 𝒛𝑖𝑗 , 𝜷̂)𝑑𝒃𝑖

𝑛𝑖
𝑗=1

∫𝜑(𝒃𝑖 , 𝐺̂)∏ 𝑓(𝑦𝑖𝑗|𝒃𝑖 , 𝒙𝑖𝑗 , 𝒛𝑖𝑗 , 𝜷̂)𝑑𝒃𝑖
𝑛𝑖
𝑗=1

 

where 𝑓(𝑦𝑖𝑗|𝒃𝑖 , 𝒙𝑖𝑗 , 𝒛𝑖𝑗 , 𝜷̂) is the probability distribution function of the responses given the MLE 

of fixed effects 𝜷̂, and 𝜑(𝒃𝑖 , 𝐺̂) is the assumed probability distribution function of random effects 

given the MLE of variance components 𝐺̂ (Fitzmaurice et al., 2009). In logistic mixed effects 

models, there is no closed form expression for it. This predictor is also called the best predicted 

values (best predictor), since it is the one that has the minimum overall mean square prediction 

errors (McCulloch et al., 2008), which is the conditional mean of the random effects given the 

distribution of random effects. From Bayesian perspective, the empirical Bayes predictor is the 

Bayes rule that minimizes the expected posterior loss using quadratic loss function (Carlin and 

Louis, 2009; Skrondal and Rabe-Hesketh, 2004). It is shown in Carlin and Louis (2009) that using 

a Gaussian/Gaussian model, empirical Bayes point estimator has smaller empirical Bayes risk, 

compared with frequentist (MLE), pure Bayesian and hierarchical Bayesian estimators in most 

cases. And this superior performance naturally extends to the empirical Bayes coverage of the 

nominal 95% intervals of the parameter estimate.  

 

3.2. An approach based on quadratic inference function (QIF) 

Proposed by Wang et al. (2012) the approach based on quadratic inference functions is 

robust to the distributional assumption on the random effects when it is mis-specified from the 

default normal distribution. The fixed and random effects are obtained by iteratively minimizing 
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the fixed and random effects QIFs, and normality assumption is not required for the random 

effects. Denoting 𝐾 as the total number of unique time points observed for all subjects, we assume 

that for each subject there is at least one measurement on at least one of the time points, such that, 

1 ≤ 𝑛𝑖 ≤ 𝐾. Section 3.2.1 illustrates an implementation strategy for unbalanced data. We show 

the derivation of the QIFs for logistic mixed effects models in the following. 

For the previously defined logistic mixed effects model, for response 𝑦𝑖𝑗 , we have the 

conditional mean 

𝜇𝑖𝑗
𝒃𝑖 = 𝐸(𝑦𝑖𝑗|𝒙𝑖𝑗 , 𝒛𝑖𝑗 , 𝒃𝑖) =

exp(𝒙𝑖𝑗
𝑇 𝜷 + 𝒛𝑖𝑗

𝑇 𝒃𝑖) 

1 + exp(𝒙𝑖𝑗
𝑇 𝜷 + 𝒛𝑖𝑗

𝑇 𝒃𝑖)
=

1

1 + exp (−(𝒙𝑖𝑗
𝑇 𝜷 + 𝒛𝑖𝑗

𝑇 𝒃𝑖))
 

and the conditional variance  

𝑣𝑖𝑗 = 𝑉𝑎𝑟(𝑦𝑖𝑗|𝒙𝑖𝑗 , 𝒛𝑖𝑗 , 𝒃𝑖) = 𝜇𝑖𝑗
𝒃𝑖(1 − 𝜇𝑖𝑗

𝒃𝑖) =
exp(𝒙𝑖𝑗

𝑇 𝜷+𝒛𝑖𝑗
𝑇 𝒃𝑖) 

(1+exp(𝒙𝑖𝑗
𝑇 𝜷+𝒛𝑖𝑗

𝑇 𝒃𝑖))
2. 

For subject 𝑖 its mean vector is 𝝁𝑖
𝒃𝑖 = (𝜇𝑖1

𝒃𝑖 , … , 𝜇𝑖𝑛𝑖

𝒃𝑖 )
𝑇

and variance vector is 𝒗𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑛𝑖
)
𝑇
. 

Thus, we have 

𝐴𝑖 = 𝑑𝑖𝑎𝑔(𝑉𝑎𝑟(𝒀𝑖|𝑋𝑖 , 𝑍𝑖, 𝒃𝑖)) = 𝑑𝑖𝑎𝑔(𝒗𝑖)

=

[
 
 
 
 
 𝜇𝑖1

𝒃𝑖(1 − 𝜇𝑖1
𝒃𝑖) 0 … 0

0 𝜇𝑖2
𝒃𝑖(1 − 𝜇𝑖2

𝒃𝑖) … 0

⋮ ⋮  ⋮

0 0 0 𝜇𝑖𝑛𝑖

𝒃𝑖 (1 − 𝜇𝑖𝑛𝑖

𝒃𝑖 )]
 
 
 
 
 

𝑛𝑖×𝑛𝑖

 

Then,  
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𝑑𝝁𝑖
𝒃𝑖

𝑑𝜷
=

[
 
 
 
 
 
 
 
 𝑑𝜇𝑖1

𝒃𝑖

𝑑𝛽1
 

𝑑𝜇𝑖1
𝒃𝑖

𝑑𝛽2
…

𝑑𝜇𝑖1
𝒃𝑖

𝑑𝛽𝑝

𝑑𝜇𝑖2
𝒃𝑖

𝑑𝛽1

𝑑𝜇𝑖2
𝒃𝑖

𝑑𝛽2
…

𝑑𝜇𝑖2
𝒃𝑖

𝑑𝛽𝑝

⋮ ⋮  ⋮

𝑑𝜇𝑖𝑛𝑖

𝒃𝑖

𝑑𝛽1

𝑑𝜇𝑖𝑛𝑖

𝒃𝑖

𝑑𝛽2
…

𝑑𝜇𝑖𝑛𝑖

𝒃𝑖

𝑑𝛽𝑝 ]
 
 
 
 
 
 
 
 

𝑛𝑖×𝑝

 

=

[
 
 
 
 
 
 
 
 

exp(𝒙𝑖1
𝑇 𝜷 + 𝒛𝑖1

𝑇 𝒃𝑖) 

(1 + exp(𝒙𝑖1
𝑇 𝜷 + 𝒛𝑖1

𝑇 𝒃𝑖))2
𝑥𝑖11 …

exp(𝒙𝑖1
𝑇 𝜷 + 𝒛𝑖1

𝑇 𝒃𝑖) 

(1 + exp(𝒙𝑖1
𝑇 𝜷 + 𝒛𝑖1

𝑇 𝒃𝑖))2
𝑥𝑖1𝑝

exp(𝒙𝑖2
𝑇 𝜷 + 𝒛𝑖2

𝑇 𝒃𝑖) 

(1 + exp(𝒙𝑖2
𝑇 𝜷 + 𝒛𝑖2

𝑇 𝒃𝑖))2
𝑥𝑖21 …

exp(𝒙𝑖2
𝑇 𝜷 + 𝒛𝑖2

𝑇 𝒃𝑖) 

(1 + exp(𝒙𝑖2
𝑇 𝜷 + 𝒛𝑖2

𝑇 𝒃𝑖))2
𝑥𝑖2𝑝

⋮ ⋮ ⋮
exp(𝒙𝑖𝑛𝑖

𝑇 𝜷 + 𝒛𝑖𝑛𝑖

𝑇 𝒃𝑖) 

(1 + exp(𝒙𝑖𝑛𝑖

𝑇 𝜷 + 𝒛𝑖𝑛𝑖

𝑇 𝒃𝑖))
2 𝑥𝑖𝑛𝑖1

…
exp(𝒙𝑖𝑛𝑖

𝑇 𝜷 + 𝒛𝑖𝑛𝑖

𝑇 𝒃𝑖) 

(1 + exp(𝒙𝑖𝑛𝑖

𝑇 𝜷 + 𝒛𝑖𝑛𝑖

𝑇 𝒃𝑖))
2 𝑥𝑖𝑛𝑖𝑝

]
 
 
 
 
 
 
 
 

𝑛𝑖×𝑝

 

=

[
 
 
 
 𝜇𝑖1

𝑏𝑖(1 − 𝜇𝑖1
𝑏𝑖) 0 … 0

0 𝜇𝑖2
𝑏𝑖(1 − 𝜇𝑖2

𝑏𝑖) … 0

⋮ ⋮  ⋮

0 0 0 𝜇𝑖𝑛𝑖

𝑏𝑖 (1 − 𝜇𝑖𝑛𝑖

𝑏𝑖 )]
 
 
 
 

𝑛𝑖×𝑛𝑖

[

𝑥𝑖11 𝑥𝑖12 … 𝑥𝑖1𝑝

𝑥𝑖21 𝑥𝑖22 … 𝑥𝑖2𝑝

⋮ ⋮  ⋮
𝑥𝑖𝑛𝑖1

𝑥𝑖𝑛𝑖2
… 𝑥𝑖𝑛𝑖𝑝

]

𝑛𝑖×𝑝

 

= 𝐴𝑖𝑋𝑖 

Similarly, we have that 
𝑑𝝁

𝑖

𝒃𝑖

𝑑𝒃𝑖
= 𝐴𝑖𝑍𝑖. 

Thus, the fixed effects QIF is 

𝐿𝑓(𝜷|𝒃) = 𝑁(𝐺𝑁
𝑓)

𝑇
(𝐶𝑁

𝑓)
−1

𝐺𝑁
𝑓
 

where 𝐶𝑁
𝑓

=
1

𝑁
∑ 𝑔𝑖

𝑓
 (𝑔𝑖

𝑓)
𝑇

𝑁
𝑖=1  and 𝑔𝑖

𝑓
= (

𝑋𝑖
𝑇(𝒀𝑖 − 𝝁𝑖

𝒃𝑖)

𝑋𝑖
𝑇𝐴𝑖𝐴𝑖

−
1

2𝑀2𝐴𝑖

−
1

2(𝒀𝑖 − 𝝁𝑖
𝒃𝑖)

)

2𝑝×1

. 

And the random effects QIF is  
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𝐿𝑟(𝒃|𝜷) = 𝐺𝑁
𝑟  (𝐺𝑁

𝑟)𝑇 

where the extended score for random effects 𝒃 is 𝑔𝑖
𝑟 = (

𝑑𝝁
𝑖

𝒃𝑖

𝑑𝒃𝑖
)

𝑇

𝐴𝑖
−1(𝒀𝑖 − 𝝁𝑖

𝒃𝑖) = 𝑍𝑖
𝑇(𝒀𝑖 − 𝝁𝑖

𝒃𝑖) 

and 𝐺𝑁
𝑟 (𝒃) = {(𝑔1

𝑟)𝑇 , … , (𝑔𝑁
𝑟 )𝑇 ,  𝜆1𝒃

𝑇 ,  𝜆2(𝑃𝐽𝒃)
𝑇
}
𝑇

. 

Tuning parameter 𝜆2 is chosen to be log (𝑁) which works fine from numerical studies (Cho 

et al., 2017; Wang et al., 2012; Zhu and Qu, 2016). It is known that the magnitude of the variance 

of random effects predictors is controlled by parameter 𝜆1 and thus should be selected by the value 

that gives the smallest BIC, in which 

𝐵𝐼𝐶 = 𝑁(𝐺𝑁
𝑓)

𝑇
(𝐶𝑁

𝑓)
−1

𝐺𝑁
𝑓

+ (log(𝑁))(𝑃𝐽𝒃)
𝑇
Σ−1(𝑃𝐽𝒃), where Σ = cov(𝑃𝐽𝒃). 

We compute the projection matrix 𝑃𝐽  as follows. Apply Q-R decomposition to 𝐴 =

((𝐼 − 𝑃𝑋)𝑍)
𝑇
such that 𝐴 = 𝑄 × 𝑅, where 𝑃𝑋 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇, and obtain 𝑟 = rank(𝐴). We will 

obtain a matrix 𝐽  whose columns are the columns of 𝑄  beyond the 𝑟 th column (Boyd and 

Vandenberghe, 2004). Thus, 𝐽 has 𝑁𝑞 − 𝑟 columns. The projection matrix is 𝑃𝐽 = 𝐽(𝐽𝑇𝐽)−𝐽𝑇 .  

To start the iteration process, logistic regression was used to obtain an initial estimate for 

𝜷, denoted 𝜷̂(0). After the initial estimate, 𝐿𝑟(𝒃|𝜷̂(0)) is minimized with respect to 𝒃 to obtain 

𝒃̂(1). Then, 𝐿𝑓(𝜷|𝒃̂(1)) is minimized with respect to 𝜷 to obtain 𝜷̂(1). And we repeat this iterative 

process until |𝜷̂(𝑠+1) − 𝜷̂𝑠 | + |𝒃̂(𝑠+1) − 𝒃̂𝑠 | < 10−5 with 𝒃̂(0) = 𝟎. 
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3.2.1. Strategy for unbalanced data  

The approach of handling unbalanced data was the same with Cho et al. (2017) and Wang 

et al. (2012). Assuming for subject 𝑖 with unbalanced responses such that 𝑛𝑖 < 𝐾, a transformation 

matrix Λ𝑖 of dimension 𝐾 × 𝑛𝑖 was defined by removing the columns of the 𝐾 × 𝐾 identity matrix 

corresponding to the time points with missing observations. In the iterative algorithm, we use  

𝒀𝑖
∗ = Λ𝑖𝒀𝑖 ,  𝝁𝑖

∗ = Λ𝑖𝝁𝑖 ,  𝝁𝑖
∗̇ = Λ𝑖𝝁̇𝑖 , where 𝝁̇𝑖 =

𝑑𝝁𝑖

𝑑𝜷
, 𝐴𝑖

∗ = Λ𝑖𝐴𝑖Λ𝑖
𝑇 , and (𝐴𝑖

∗)−1 = Λ𝑖𝐴𝑖
−1Λ𝑖

𝑇 , 

respectively in place of 𝒀𝑖, 𝝁𝑖, 𝝁𝑖
∗̇ , 𝐴𝑖 and 𝐴𝑖

−1 (Wang et al., 2012). Both the missing responses and 

their predicted values are replaced with zeros. 

 

4. Simulation scenarios for comparison of EB and QIF  

Simulations were carried out to examine the prediction performance of both approaches 

under different distributions of random effects. We used two models that were motivated by NIMH 

schizophrenia collaborative study (Hedeker and Gibbons, 2006). The normal and non-normal 

distributions shared the same mean and variance-covariance in each model. For simplicity we 

assumed 𝑛𝑖 = 𝑛 for all 𝑖, for all scenario in both models, so that all subjects have the same number 

of repeated measures, thus were of the same size.  

Model 1: logistic random intercept model: 

log (
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
) = 𝛽0 + 𝛽1𝑑𝑟𝑢𝑔𝑖 + 𝛽2√𝑤𝑒𝑒𝑘𝑖𝑗 + 𝛽3 (𝑑𝑟𝑢𝑔𝑖 × √𝑤𝑒𝑒𝑘𝑖𝑗) + 𝑏𝑖 , 𝑖 = 1,… ,𝑁; 𝑗

= 1,… , 𝑛 

Sample size 𝑁 = {50, 100, 200}, and the total number of repeated measurements for time 

covariate “week” was chosen to be either 4 or 7. For a subject 𝑖, when 𝑛 = 4, 𝑤𝑒𝑒𝑘𝑖𝑗 ∈ {0, 1, 3, 6}; 
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when 𝑛 = 7, 𝑤𝑒𝑒𝑘𝑖𝑗 ∈ {0, 1, 2, 3, 4, 5, 6}. The binary “drug” covariate indicated whether a subject 

𝑖  was under treatment (drug=1) or placebo (drug=0) and was simulated from a Bernoulli 

distribution such that drugi~Bernoulli(0.5), 𝑖 = 1,… ,𝑁. 

The true fixed effects vector was 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3)
𝑇 = (5.5,−0.025,−1.5,−1)𝑇. 

Random effects were simulated from 5 different normal and non-normal distributions with the 

same mean 0 and variance 𝜎2 ∈ {2, 4, 8, 10}. Necessary transformations were used when the 

distributions were chi-square and exponential to make sure that they all share the same mean and 

variance. We summarize the scenarios in the following: for subject 𝑖, 𝑖 = 1,… , 𝑁, 

1. Normal distribution: 𝑏𝑖~Normal (0, 𝜎2). 

2. t distribution: 𝑏𝑖~𝑡 with degree of freedom 𝑑𝑓 =
2𝜎2

𝜎2−1
. 

3. Exponential distribution: 𝑏𝑖~exponential (√𝜎2). 

4. Chi-square distribution: 𝑏𝑖~𝜒2 (
𝜎2

2
). 

5. Symmetric mixture of normal distributions: 𝑏𝑖~
1

2
Normal(−1, 𝜎2 − 1) +

1

2
Normal(1, 𝜎2 − 1). 

Similarly, we used the following bivariate random effects logistic model: 

Model 2: logistic random intercept and slope model: 

log(
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
) = 𝛽0 + 𝛽1𝑑𝑟𝑢𝑔𝑖 + 𝛽2√𝑤𝑒𝑒𝑘𝑖𝑗 + 𝛽3 (𝑑𝑟𝑢𝑔𝑖 × √𝑤𝑒𝑒𝑘𝑖𝑗) + 𝑏0𝑖 + 𝑏1𝑖√𝑤𝑒𝑒𝑘𝑖𝑗 ,

𝑖 = 1,… , 𝑁; 𝑗 = 1, … , 𝑛 
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The binary “drug” covariate for subject 𝑖 was simulated from a Bernoulli distribution such 

that  drugi~Bernoulli(0.75). 

The true fixed effects vector was 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3)
𝑇 = (6,0.3,−1.5,−1.6)𝑇. 

We assume the random effects were distributed from a distribution 𝜑 such that, for subject 

𝑖, 𝑖 = 1,… , 𝑁, 

𝒃𝑖 = (𝑏1𝑖 , 𝑏2𝑖)
𝑇~𝜑([

0
0
] , 𝑉 = [

𝑑1 𝑑12

𝑑12 𝑑2
]) 

In detail, we used the following distributions for 𝜑: 

1. Normal distribution:  

𝒃𝑖~𝑁 ([
0
0
] , 𝑉𝑘) , 𝑘 = 1, 2, 3 

where 𝑉1 = [
2.7 0
0 1.6

]  such that the correlation between random effects is zero, i.e. 

𝑐𝑜𝑟𝑟(𝑏1𝑖 , 𝑏2𝑖) = 0 ; 𝑉2 = [
2.7 −0.8

−0.8 1.6
]  such that 𝑐𝑜𝑟𝑟(𝑏1𝑖 , 𝑏2𝑖) = 0.4 ; 𝑉3 =

[ 2.7 −1.65
−1.65 1.6

] such that 𝑐𝑜𝑟𝑟(𝑏1𝑖 , 𝑏2𝑖) = 0.8. 

2. Symmetric mixture of normal distributions: 

𝒃𝑖~
1

2
𝑁 (𝝁,𝐷𝑘) +

1

2
𝑁(−𝝁, 𝐷𝑘), 𝑘 = 1, 2, 3 where 𝝁 = [0.45

0.45
] and 𝐷𝑘 = 𝑉𝑘 − 𝜇𝜇𝑇 . 

3. t distribution with 3 degrees of freedom: df = 3: 

𝒃𝑖~𝑡df=3 ([
0
0
] , Σk) , 𝑘 = 1, 2, 3 where Σk =

df−2

df
𝑉𝑘 . 

For each scenario, 100 datasets were simulated and both EB and QIF approaches were used 

to predict the individual random effects assuming a normal distribution for the random effects. 
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Mean square prediction error (MSPE) were used to compare the prediction performance of the two 

approaches. For the 𝑙 − 𝑡ℎ dataset, the MSPE for the random intercept was  

𝑀𝑆𝑃𝐸𝑙 =
∑ (𝑏̂1𝑖,𝑙   − 𝑏1𝑖,𝑙 )

2𝑁
𝑖=1

𝑁
 

where 𝑏̂1𝑖,𝑙 was a predictor of the random intercept and 𝑏1𝑖,𝑙 was the true simulated one. Similarly, 

MSPE was defined for the random slope by replacing 1 with 2. The ratio 𝑅 of average MSPE for 

the QIF approach to the average MSPE for the EB approach was calculated for random intercept 

and random slope for each scenario. 𝑅 = 𝑀𝑆𝑃𝐸𝑄𝐼𝐹/𝑀𝑆𝑃𝐸𝐸𝐵 , where 𝑀𝑆𝑃𝐸𝐸𝐵 =
∑ 𝑀𝑆𝑃𝐸𝐸𝐵,𝑙

∆𝑙
𝑙=1

∆
  and 

𝑀𝑆𝑃𝐸𝑄𝐼𝐹 =
∑ 𝑀𝑆𝑃𝐸𝑄𝐼𝐹,𝑙

∆𝑙
𝑙=1

∆
 and ∆≤ 100. ∆ is the number of converged datasets ∆𝑙, 𝑙 = 1,… , ∆. The 

SAS procedure GLIMMIX was used to obtain the empirical Bayes predictor of random effects. 

Adaptive quadrature was used for maximization of the likelihood functions; hence, not all datasets 

were converged. Thus, the comparisons of MSPEs were based on the converged datasets from the 

EB approach. If the ratio was smaller than 1, the QIF approach outperformed the EB approach 

with respect to the prediction accuracy, and vice versa. 

 

5. Simulation results 

5.1. Model 1: logistic random intercept model 

The MSPEs of the two approaches and the ratios comparing the two approaches are shown 

in Table 1 and Table 2. Generally, regardless of the true distribution of the random intercept, the 

MSPEs obtained using the EB approach were always smaller than those obtained using the QIF 

approach. Therefore, the ratios of MSPEs were all larger than 1. This indicated that for the 
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prediction accuracy of the random intercept, the EB approach was better compared with the QIF 

approach, no matter whether the true distribution of random intercept was normal or non-normal.  

For a fixed sample size, as the random intercept variance increased, the MSPEs and the 

ratios of the MSPEs increased as well, maybe except for the t scenarios, in which the ratios 

decreased slightly.  This illustrated that although the performance of both approaches worsened 

due to the larger MSPEs in scenarios with large random intercept variance, the EB approach was 

still superior to the QIF approach. Although for the t scenarios, the performance of two approaches 

were becoming similar with each other as the variance of random intercepts increased. The MSPEs 

obtained when 𝑛 = 7 are generally smaller compared with those from the same scenario when 𝑛 =

4, and the ratios were generally larger when 𝑛 = 7. The more information we have, either by 

increasing the number of subjects or increasing the number of repeated measurements, the smaller 

the MSPE values were, and the larger the ratios were. These conclusions were true not only when 

the random intercept was simulated from normal distributions, but also the non-normal 

distributions. This observation proved that the EB method for random effects was sufficiently 

accurate when compared with the relatively robust QIF approach. The larger the sample size, the 

larger the number of repeated measurements, the more accurate the prediction of both approaches. 

As the variance of random effects increased, the EB approach outperformed the QIF approach 

greatly. 

 

5.2. Model 2: logistic random intercept and slope model 

The MSPEs of the two approaches and the ratios comparing the two approaches are shown 

in Table 3 and 4 for 𝑛 = 7 and Table 5 and 6 for 𝑛 = 4 . Generally, for a fixed correlation 
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coefficient between random intercept and random slope, the larger the sample size, the smaller the 

MSPEs obtained for the EB approach, not for the QIF approach, and the larger the ratios 𝑅. For a 

fixed sample size, the larger the correlation coefficient between random intercept and random 

slope, the larger the MSPEs obtained for both approaches, and the smaller the ratios 𝑅. For a 

scenario in which the true random effects distribution was known and the sample size was fixed, 

the larger the number of repeated measurements, the smaller the MSPEs. Generally, when there 

exists strong correlation between random effects, the QIF approach is more accurate in predicting 

random effects, and this was especially true when true random effects were from bivariate t 

distributions with 3 degrees of freedom. But when the sample size was sufficiently large, more 

accurate predictors were obtained by the EB approach, and this is especially true when the true 

random effects were from bivariate normal distributions and a symmetric mixture of bivariate 

normal distributions.  

In conclusion, when the sample size was sufficiently large, and a weak correlation existed 

between random intercept and random slope, generally, the EB approach outperformed the QIF 

approach. But when the correlations between random effects were relatively strong, the QIF 

approach outperformed the EB approach even when the sample size was not relatively large. This 

was especially true for random intercept prediction. 

 

6. Application to a schizophrenia study 

As an illustration, to check agreement on random effects prediction two approaches, we 

applied both prediction methods to a NIMH schizophrenia collaborative study (Hedeker and 

Gibbons, 2006), in which the binary scores of “Item 79 of Inpatient Multidimensional Psychiatric 
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Scale(IMPS)” were measured for 4 treatment periods, for 108 patients from placebo arm and 329 

patients from treatment arm. We denote 𝑦𝑖𝑗 = 1 if a patient 𝑖 is mildly ill based on this score at 

treatment duration 𝑗 , and 𝑦𝑖𝑗 = 0  if the patient is moderately ill. The treatment arm is a 

combination of treatments chlorpromazine, fluphenazine and thioridazine. We fit the same model 

as in Hedeker and Gibbons (2006), where the random effects were intercept and square root of 

treatment duration, in which 𝑑𝑟𝑢𝑔 is an binary indicator of patient 𝑖 being in either treatment or 

placebo group. 

log(
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
) = 𝛽0 + 𝛽1𝑑𝑟𝑢𝑔𝑖 + 𝛽2√𝑤𝑒𝑒𝑘𝑖𝑗 + 𝛽3 (𝑑𝑟𝑢𝑔𝑖 × √𝑤𝑒𝑒𝑘𝑖𝑗) + 𝑏0𝑖 + 𝑏1𝑖√𝑤𝑒𝑒𝑘𝑖𝑗 ,

𝑖 = 1,… , 𝑁; 𝑗 = 1, … , 𝑛𝑖  

The maximum number of repeated measurements 𝑛 = 4, such that for subject 𝑖, 𝑤𝑒𝑒𝑘𝑖𝑗 ∈

{0, 1, 3, 6}. Missing responses were observed in all time points, thus missing handling method was 

used in the QIF approach. The SAS procedure GLIMMIX, which assumes random effects follow 

normal distribution, was used to obtain maximum likelihood estimates of the fixed effects and EB 

predictors of the random effects (SAS Institute Inc. Cary, NC). An unstructured covariance matrix 

for the random effects was assumed in this application.   

The predictions on the random slope by the EB and QIF approaches correlated relatively 

strongly, with correlation of 0.78, while the correlation for random intercept is 0.71. Figure 1 

shows scatterplots comparing the predictions of the random effects by the QIF and EB approaches 

under homoscedastic independent errors. Overall, the two prediction methods agreed moderately, 

except for the prediction on the random slope. Specifically, predictors for the intercept were 

scattered around mean zero, suggesting that EB intercept predictions tended to be larger in absolute 
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value than QIF predictions. The random slope predictors were scattered more evenly around the 

diagonal line. 

 

7. Discussion and conclusion 

In this paper we compared the random effects prediction performance of two approaches, 

i.e. the EB approach and the QIF approach. The EB approach requires that the random effects 

follow a parametric distribution, usually normal distribution. The QIF approach does not require 

the random effects to follow any specific parametric distribution, thus it is a robust method.  

In the simulation study, the true random effects were distributed from both normal and 

non-normal distributions, such as t distribution, mixture of normal distributions, chi-square 

distribution, etc. To obtain the empirical Bayes predictors, SAS procedure GLIMMIX was used 

assuming independent working correlation assumption for responses. The comparison of the 

MSPEs was based on the converged datasets only.  Out of the 100 simulations, for model 1, the 

proportion of converged simulated datasets was no smaller than 91% when 𝑛 = 7, and no less than 

71% when 𝑛 = 4. And the smallest proportion was observed when the true random effects were 

from an exponential distribution. The proportions were relatively smaller for the bivariate logistic 

models. When 𝑛 = 7, it was as small as 30% when the true random effects were from normal 

distribution and a mixture of normal distributions. When 𝑛 = 4, this proportion was only 25% 

when the true random effects were from a t distribution with 3 degrees of freedom. Our results 

were consistent with the findings reported in the simulation study in Wang et al. (2012). 

From the simulation study we conclude that in logistic models with random intercept only, 

the EB approach generates more accurate random intercept predictors compared with the QIF 
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approach. This conclusion is unrelated with the true distribution of random effects, number of 

subjects, and number of repeated measurements. Generally, the larger the sample size, and the 

larger the true variance of random intercept, the performance of the EB approach is superior 

compared with the QIF approach. The exception occurs when the true distribution of the random 

effects is t distribution: the smaller the variance, the greater accuracy of the EB approach. For 

logistic models with more than one random effect, we observe that in most cases, the performance 

of the two approaches are comparable. Generally, the EB approach performs slightly better than 

the robust QIF approach, when the random effects are independent, and the sample size is 

relatively large. And this observation is especially true when the true random effects are from 

normal or a mixture of normal distributions. When the random effects were from bivariate t 

distribution, and the random effects were strongly correlated, the QIF approach has greater 

accuracy in random effects prediction. 

Generally, in logistic models with random intercept only, the MSPEs from exponential 

distributions are relatively larger than those from other distributions. This is because the 

exponential distribution has limited support, while the assumed true normal distribution does not. 

This is observed regardless of the number of repeated measures, and our findings are consistent 

with the ones reported in Mcculloch and Neuhaus (2011a). An important message stated in 

McCulloch and Neuhaus (2011a) is that the prediction  performance of the EB approach was less 

affected by the misspecification of the distribution of random effects. Their conclusion was also 

validated in Mcculloch and Neuhaus (2011a) in which they derived the formulas for the MSPE of 

the random intercept for both linear and logistic models. The authors concluded that although the 

shape of the distribution of the EB predictors may not match the true underlining distribution, the 

performance measured by MSPE was not affected significantly by the misspecification. The 
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excellent prediction performance of the EB approach is not a surprise to us. As shown in Searle et 

al. (1992) for linear models, the EB predictor is the best predictor which minimized the mean 

square error of prediction given the sampling distribution of the response and all parameters are 

known. The well-known optimal property of BLUP for linear models further illustrated the 

robustness of EB predictor of random effects. Although there is no closed form of EB predictor 

for logistic model, the optimality from the linear case shed some light on understanding its 

robustness in the binary case. And we also proved this property through simulations in the paper. 

Thus, for statistical practice, when focus is on prediction of random effects, even when one 

has doubts about the normal assumption of the random effects distribution, the empirical Bayes 

approach is still recommended, due to its noninferior performance in predicting random effects 

compared with a more robust method, i.e. the QIF approach, its robustness to violations of the 

normality assumption of predictors of random effects and its easy implementation with existing 

statistical packages. 
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Table 1. Average MSPE (𝑀𝑆𝑃𝐸𝐸𝐵 , 𝑀𝑆𝑃𝐸𝑄𝐼𝐹 ), and ratio of the average MSPEs comparing QIF 

approach to EB approach (𝑅 = 𝑀𝑆𝑃𝐸𝑄𝐼𝐹/𝑀𝑆𝑃𝐸𝐸𝐵) for random intercept prediction in Model 1, 

when the true random effects were simulated from normal, symmetric mixture of normal, t, 

exponential and chi-square distributions with difference variances, and the independent working 

correlation assumption. Averages summarized 100 simulated datasets.  𝑛 = 7. 

 𝑀𝑆𝑃𝐸𝐸𝐵  𝑀𝑆𝑃𝐸𝑄𝐼𝐹  𝑅 
 Normal distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.02 0.974 0.936 1.45 1.45 1.54 1.42 1.49 1.64 

4 1.61 1.56 1.52 2.72 2.80 2.54 1.69 1.79 1.67 

8 2.71 2.59 2.45 5.40 5.24 5.14 1.99 2.02 2.09 

16 5.34 4.97 4.51 10.9 11.5 11.6 2.05 2.32 2.58 
 Symmetric mixture of normal distributions 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.02 0.975 0.962 1.45 1.54 1.51 1.42 1.58 1.57 

4 1.67 1.53 1.47 2.88 2.57 2.41 1.73 1.68 1.64 

8 2.76 2.51 2.39 5.55 4.93 4.95 2.01 1.96 2.07 

16 5.21 4.64 4.73 10.6 11.1 11.6 2.04 2.38 2.45 
 t distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.14 1.09 1.09 1.59 1.49 1.52 1.40 1.36 1.40 

4 2.20 2.07 2.13 2.86 2.81 2.76 1.30 1.36 1.30 

8 6.90 3.38 4.11 7.98 4.23 5.02 1.16 1.25 1.22 

16 7.47 7.20 7.57 8.81 8.23 8.72 1.18 1.14 1.15 
 Shifted exponential distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.47 1.42 1.46 1.77 1.77 1.83 1.21 1.24 1.25 

4 2.65 2.50 2.56 3.32 3.34 3.20 1.25 1.33 1.25 

8 4.49 4.80 4.50 6.24 6.52 5.92 1.39 1.36 1.32 

16 9.67 8.38 8.54 14.2 13.5 14.4 1.47 1.61 1.69 
 Shifted Chi-square distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.57 1.64 1.53 1.93 1.93 1.87 1.23 1.18 1.22 

4 2.70 2.55 2.58 3.39 3.26 3.35 1.26 1.28 1.30 

8 3.93 3.75 3.75 6.22 5.77 5.37 1.58 1.54 1.43 

16 6.63 6.17 6.10 12.0 12.3 12.8 1.81 1.99 2.09 
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Table 2. Average MSPE (𝑀𝑆𝑃𝐸𝐸𝐵 , 𝑀𝑆𝑃𝐸𝑄𝐼𝐹 ), and ratio of the average MSPEs comparing QIF 

approach to EB approach (𝑅 = 𝑀𝑆𝑃𝐸𝑄𝐼𝐹/𝑀𝑆𝑃𝐸𝐸𝐵) for random intercept prediction in Model 1, 

when the true random effects were simulated from normal, symmetric mixture of normal, t, 

exponential and chi-square distributions with difference variances, and the independent working 

correlation assumption. Averages summarized 100 simulated datasets. 𝑛 = 4. 

 𝑀𝑆𝑃𝐸𝐸𝐵  𝑀𝑆𝑃𝐸𝑄𝐼𝐹  𝑅 
 Normal distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.50 1.37 1.32 1.80 1.71 1.69 1.20 1.25 1.28 

4 2.50 2.17 2.05 3.20 3.34 3.05 1.28 1.53 1.48 

8 3.84 3.38 3.36 6.48 6.26 6.10 1.69 1.85 1.82 

16 6.85 6.06 5.61 12.8 12.9 13.0 1.88 2.12 2.31 
 Symmetric mixture of normal distributions 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.51 1.36 1.32 1.74 1.68 1.69 1.15 1.24 1.28 

4 2.36 2.12 2.02 3.27 3.12 3.13 1.39 1.47 1.55 

8 3.85 3.49 3.29 6.31 6.55 6.05 1.64 1.88 1.84 

16 6.76 5.86 5.72 13.3 12.5 13.1 1.96 2.13 2.29 
 t distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.56 1.42 1.38 1.73 1.63 1.68 1.11 1.15 1.22 

4 2.75 2.62 2.43 3.36 3.20 2.95 1.22 1.22 1.22 

8 5.91 5.88 5.96 7.15 7.01 6.71 1.21 1.19 1.13 

16 12.1 7.36 6.65 13.3 8.59 7.63 1.09 1.17 1.15 
 Shifted exponential distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.82 1.68 1.64 1.99 1.90 1.86 1.10 1.13 1.14 

4 3.13 3.14 2.96 3.54 3.46 3.22 1.13 1.10 1.09 

8 5.06 5.62 5.47 6.73 6.58 6.19 1.33 1.17 1.13 

16 10.4 10.1 9.74 13.7 13.3 12.7 1.33 1.32 1.31 
 Shifted Chi-square distribution 

Variance N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

2 1.77 1.81 1.76 1.95 1.99 1.97 1.10 1.10 1.12 

4 3.16 3.08 3.11 3.51 3.36 3.46 1.11 1.09 1.11 

8 5.06 4.93 4.92 6.73 6.53 6.20 1.33 1.32 1.26 

16 8.16 7.77 7.56 13.2 13.5 13.3 1.61 1.73 1.76 

 

 

 

69



 

70 

Table 3. Average MSPE (𝑀𝑆𝑃𝐸𝐸𝐵 , 𝑀𝑆𝑃𝐸𝑄𝐼𝐹 ), and ratio of the average MSPEs comparing QIF 

approach to EB approach (𝑅 = 𝑀𝑆𝑃𝐸𝑄𝐼𝐹/𝑀𝑆𝑃𝐸𝐸𝐵) for random intercept prediction in Model 2, 

when the true random effects were simulated from bivariate normal, symmetric mixture of normal 

and t distributions with difference correlations, and the independent working correlation 

assumption. Averages summarized 100 simulated datasets.  𝑛 = 7. 

 𝑀𝑆𝑃𝐸𝐸𝐵  𝑀𝑆𝑃𝐸𝑄𝐼𝐹  𝑅 
 Normal distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 3.79 2.28 2.17 2.36 2.40 2.44 0.623 1.05 1.12 

0.4 2.65 2.67 2.53 2.53 2.62 2.58 0.955 0.98 1.02 

0.8 3.36 2.97 2.87 2.83 2.75 2.74 0.841 0.926 0.955 
 Symmetric mixture of normal distributions 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 2.60 2.21 2.15 2.48 2.39 2.49 0.956 1.08 1.16 

0.4 3.43 2.53 2.51 2.55 2.52 2.59 0.745 0.993 1.03 

0.8 3.06 2.83 2.77 2.78 2.67 2.71 0.908 0.946 0.979 
 t distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 2.54 2.09 2.55 2.48 2.25 2.75 0.978 1.07 1.08 

0.4 4.73 2.55 2.51 4.27 2.47 2.46 0.903 0.971 0.981 

0.8 3.00 3.62 2.85 2.90 3.43 2.83 0.968 0.948 0.993 
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Table 4. Average MSPE (𝑀𝑆𝑃𝐸𝐸𝐵 , 𝑀𝑆𝑃𝐸𝑄𝐼𝐹 ), and ratio of the average MSPEs comparing QIF 

approach to EB approach (𝑅 = 𝑀𝑆𝑃𝐸𝑄𝐼𝐹/𝑀𝑆𝑃𝐸𝐸𝐵) for random slope prediction in Model 2, 

when the true random effects were simulated from bivariate normal, symmetric mixture of normal 

and t distributions with difference correlations, and the independent working correlation 

assumption. Averages summarized 100 simulated datasets.  𝑛 = 7. 

 𝑀𝑆𝑃𝐸𝐸𝐵 𝑀𝑆𝑃𝐸𝑄𝐼𝐹  𝑅 
 Normal distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 1.96 0.938 0.862 1.01 1.03 1.07 0.512 1.10 1.24 

0.4 1.02 1.04 0.969 1.06 1.14 1.18 1.04 1.10 1.22 

0.8 1.25 1.16 1.15 1.18 1.17 1.28 0.941 1.01 1.11 
 Symmetric mixture of normal distributions 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 1.02 0.904 0.865 0.988 1.05 1.09 0.971 1.16 1.26 

0.4 1.82 1.02 0.989 1.08 1.12 1.18 0.597 1.09 1.19 

0.8 1.66 1.18 1.11 1.13 1.21 1.25 0.680 1.03 1.13 
 t distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 1.41 1.41 1.56 1.24 1.36 1.59 0.878 0.965 1.02 

0.4 1.48 1.30 1.33 1.21 1.25 1.32 0.819 0.961 0.991 

0.8 1.61 1.60 1.59 1.23 1.28 1.30 0.765 0.803 0.819 
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Table 5. Average MSPE (𝑀𝑆𝑃𝐸𝐸𝐵 , 𝑀𝑆𝑃𝐸𝑄𝐼𝐹 ), and ratio of the average MSPE comparing EB 

approach to QIF approach (𝑅 = 𝑀𝑆𝑃𝐸𝐸𝐵/𝑀𝑆𝑃𝐸𝑄𝐼𝐹)  for random intercept prediction in Model 

2, when the true random effects were simulated from bivariate normal, symmetric mixture of 

normal and t distributions with difference correlations, and the independent working correlation 

assumption. Averages summarized 100 simulated datasets.  𝑛 = 4. 

 𝑀𝑆𝑃𝐸𝐸𝐵 𝑀𝑆𝑃𝐸𝑄𝐼𝐹  𝑅 
 Normal distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 3.59 2.41 2.32 2.52 2.50 2.52 0.700 1.04 1.09 

0.4 3.69 2.68 2.68 2.60 2.58 2.66 0.703 0.963 0.993 

0.8 3.35 3.14 3.00 2.70 2.81 2.79 0.806 0.895 0.928 
 Symmetric mixture of normal distributions 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 2.82 2.72 2.30 2.45 2.48 2.57 0.871 0.912 1.12 

0.4 3.84 2.83 2.58 2.71 2.71 2.61 0.706 0.959 1.01 

0.8 2.96 3.08 2.89 2.69 2.91 2.81 0.908 0.944 0.972 
 t distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 3.73 2.50 3.40 3.13 2.25 2.35 0.839 0.901 0.691 

0.4 4.45 3.51 2.53 2.65 2.73 2.45 0.596 0.777 0.969 

0.8 3.33 2.65 3.58 2.38 2.52 3.52 0.716 0.954 0.981 
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Table 6. Average MSPE (𝑀𝑆𝑃𝐸𝐸𝐵 , 𝑀𝑆𝑃𝐸𝑄𝐼𝐹 ), and ratio of the average MSPE comparing EB 

approach to QIF approach (𝑅 = 𝑀𝑆𝑃𝐸𝐸𝐵/𝑀𝑆𝑃𝐸𝑄𝐼𝐹) for random slope prediction in Model 2, 

when the true random effects were simulated from bivariate normal, symmetric mixture of normal 

and t distributions with difference correlations, and the independent working correlation 

assumption. Averages summarized 100 simulated datasets.  𝑛 = 4. 

 𝑀𝑆𝑃𝐸𝐸𝐵  𝑀𝑆𝑃𝐸𝑄𝐼𝐹  𝑅 
 Normal distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 1.95 1.02 1.02 1.18 1.19 1.26 0.606 1.16 1.23 

0.4 1.50 1.20 1.15 1.26 1.32 1.34 0.843 1.10 1.16 

0.8 1.41 1.28 1.31 1.33 1.27 1.28 0.943 0.985 0.976 

 Symmetric mixture of normal distributions 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 1.18 1.27 0.998 1.20 1.22 1.27 1.02 0.963 1.27 

0.4 1.86 1.19 1.14 1.24 1.26 1.30 0.666 1.06 1.14 

0.8 1.61 1.41 1.30 1.27 1.37 1.30 0.786 0.969 0.999 

 t distribution 

Correlation N=50 N=100 N=200 N=50 N=100 N=200 N=50 N=100 N=200 

0 1.65 1.36 1.28 1.33 1.19 1.19 0.803 0.871 0.934 

0.4 1.71 1.81 1.31 1.34 1.44 1.29 0.785 0.794 0.985 

0.8 1.42 1.62 1.62 1.18 1.39 1.62 0.831 0.855 0.999 
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Figure 1. Scatterplots of random effects for schizophrenia study, random effects were predicted by 

QIF versus EB approaches under independent working correlation assumption.  (A) Random 

intercept predictors. (B) Predictors of random coefficient of time. The solid line is the y=x line.  
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ABSTRACT 

Two-dimensional personalized medicine (2-PM) models are tools for measuring patients’ 

individual benefits of medical treatments for chronic diseases that have potential applications in 

personalized medicine. These models assume normality for the distribution of random effects. It 

is necessary to examine the appropriateness of these assumption. We propose a graphical approach 

to assessing the goodness-of-fit of 2-PM models. Our approach plots the empirical quantiles of 

individual benefits predicted through an empirical Bayes approach versus the quantiles of the 

theoretical distribution of individual benefits derived under the assumption of normality for the 

random effects. We examine the performance of the proposed approach by computing Cramer-

von Mises discrepancies between the empirical and theoretical distributions of individual benefits. 

Simulations showed that the proposed approach is sensitive to violations of the normality 

assumption and suggest that the approach is a useful tool to examine the goodness of the fit of 2-

PM models.  

 

KEY WORDS: Empirical Bayes, goodness-of-fit, personalized medicine models, quantiles, 

severity, treatment benefits 
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1. Introduction 

Two-dimensional personalized medicine (2-PM) models are tools for measuring the 

severity of a patient’s chronic disease and the individual benefits of medical or behavioral 

treatments (Diaz, 2019, 2016).  The patient’s disease severity at a specific time point is defined as 

the probability of missing the therapeutic target, and the individual benefit is therefore measured 

as the reduction in disease severity produced by the treatment. The severity and individual benefits 

are functions of known and unknown patient’s characteristics. In practice, 2-PM models are built 

using linear models with random coefficients and severities and benefits are calculated with the 

random coefficients (Diaz, 2019, 2016).  

Mixed effects models are efficient tools to build 2-PM models for understanding the 

individual time trajectory of treatment effects (Diaz et al., 2007, 2012a, 2012b; Diaz and de Leon, 

2013; Diaz, 2016, 2019).  In mixed effects models the distributional assumption of the unobserved 

random effects is important for estimation and inference, since the marginal likelihood function, 

which can be obtained by integrating out the random effects, depends on the assumed distribution 

of the random effects. Classically empirical Bayes (EB) approach is used to predict the random 

effects. In linear mixed effects models the EB predictors of the random effects are estimates of the 

best linear unbiased predictor (BLUP), which do not require the normality assumption for the 

random effects. Thus, a BLUP is robust to violations of the normality assumption. The prediction 

accuracy of BLUP for random effects was little affected by the distribution misspecification, as 

shown from both theoretical and numerical perspectives (Mcculloch and Neuhaus, 2011a). 

Traditionally, in mixed models, the unobserved random effects are assumed to follow normal 

distributions, for ease of computation. Violation of this normality assumption is possible. For 

example, a between-individual binary characteristic that is associated with the individual mean 
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profiles could be omitted. And a bimodal distribution may describe the induced variance. Although 

violation of this normality assumption has little to mild effect on maximum likelihood estimates 

(MLE) of the fixed effects, it may affect the random effects prediction by increasing bias of the 

variance components estimates, especially in generalized linear mixed effects models (Verbeke 

and Lesaffre, 1996, 1997; Verbeke and Molenberghs, 2000; Agresti et al., 2004; Litière et al., 

2007, 2008).  Therefore, for a particular dataset, it is crucial to assess the goodness-of-fit of the 2-

PM models with respect to the distribution misspecification of the random effects.  

Several graphical methods have been proposed for examining the goodness-of-fit of mixed 

models for longitudinal data. The most well-known graphical approach is based on conditional 

residuals which are computed with estimates of the BLUPs of the random effects (Gregoire et al., 

1995). Verbeke and Molenberghs (2013) proposed a graphical diagnostic tool using gradient 

functions which checks the appropriateness of the random effects distribution assumption. Pan and 

Lin (2005) proposed graphical and numerical techniques to check the link function and functional 

forms of covariates through cumulative sums of residuals. Grady and Helms (1995) assess the fit 

of the assumed covariance structure, by plotting lagged covariances or correlations. Diaz et al. 

(2008) assessed goodness-of-fit of a random intercept model by plotting random-effect-adjusted 

observations based on EB predictors of random intercepts versus expected observations. Formal 

statistical tests have also been proposed. To check the normality assumption for the random effects, 

Efendi et al. (2017) used a bootstrap test based on gradient functions. Drikvandi et al. (2017) 

proposed a diagnostic test based on Cramer-von Mises discrepancies. Alonso et al. (2008) 

proposed test that use the eigenvalues of the variance-covariance matrices of fixed effects 

estimates obtained from robust inference methods. Similarly, for generalized linear mixed effects 
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models, two versions of diagnostic tests using information matrices were proposed in Abad et al. 

(2010). 

This article proposes a graphical approach to assessing the goodness-of-fit of 2-PM models 

for continuous responses of severely ill patients. The approach compares the quantiles of the 

empirical Bayes estimates of individual treatment benefits of the patient sample against the 

theoretical quantiles of the distribution of individual benefits derived under the normality 

assumption for the random effects. We conducted a Monte Carlo simulation study that showed 

that the approach is sensitive to deviations from the normality assumption for the random effects. 

Specifically, the graphical approach captures the discrepancy between multivariate non-normal 

distributions for the random effects and normal distributions with the same mean and variance-

covariance matrix. 

This paper is organized as follows. The introduction of the conceptual and theoretical idea 

of the 2-PM models presents the functions of individual treatment benefits for continuous 

responses of severely ill patients. Then we present a motivation for the graphical approach and 

describe it in detail. Next, the approach is illustrated using data from a clinical trial of the 

antidepressant imipramine. An extensity simulation study was conducted with the presence of 

multivariate normal and non-normal distributions to evaluate the performance of the proposed 

graphical approach.  Then we describe how Cramer-von Mises discrepancies are used to quantify 

deviations from the normality. The paper ends with a discussion and conclusions. 

 

2. Methods 

2.1. Individual severity and treatment benefits using time dependent 2-PM models 
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Time dependent 2-PM models allow understanding the evolution of individual treatment 

benefits over time (Diaz, 2019). Let 𝑌 be a continuous measure reflecting the patient’s disease. 

Before a treatment 𝑄 is initiated, the responses for patient 𝜔 are measured 𝑘0,𝜔 times and modeled 

by 

𝑌0,𝜔,𝑗 = Λ𝜔 + 𝜀0,𝜔,𝑗 ,  𝑗 = 1…𝑘0,𝜔, 

and after the treatment is initiated, the responses are measured 𝑘1,𝜔 times and modeled by 

𝑌𝑄,𝜔,𝑗 = Λ𝜔 + 𝛽𝑄,𝜔,𝑗 + 𝜀𝜔,𝑗
′ ,  𝑗 = 1…𝑘1,𝜔 , 

where Λ𝜔 = 𝛼𝜔 + 𝝀𝑇𝑿𝜔  and 𝛽𝑄,𝜔,𝑗 = 𝜃1,𝜔𝑡𝜔,𝑗 + 𝜃2,𝜔𝑡𝜔,𝑗
2 + ⋯+ 𝜃𝑑,𝜔𝑡𝜔,𝑗

𝑑 . Here, 𝑿𝜔  is a vector 

of subject characteristics that do not change during the trial. For patient 𝜔, Λ𝜔 is a constant number 

that reflects the patient’s disease state before treatment initiation and 𝛽𝑄,𝜔,𝑗  is the individual (time-

dependent) treatment effect after 𝑡𝜔,𝑗 time units of treatment. We write 𝛽𝑄,𝜔(𝑡) in place of 𝛽𝑄,𝜔,𝑗 

to express the treatment effect at a generic time point 𝑡. We view 𝛬𝜔 and 𝛽𝑄,𝜔(𝑡) as individual 

realizations of population-level random variables 𝛬∗ and 𝛽𝑄
∗(𝑡), respectively (Diaz, 2019). Also, 

𝜀0,𝜔,𝑗 and 𝜀𝜔,𝑗
′  represent measurement errors or within-subject variability due to patient’s internal 

or external factors, assumed to be 𝑁(0, 𝜎𝜀
2) and  𝑁(0, 𝜎𝜀

′2), respectively.  

Here, we assume that the therapeutic target is to achieve 𝑌 ≤ 𝑦, where 𝑦 is a prespecified 

value.  Thus, a patient 𝜔 has baseline disease severity (Diaz, 2019, 2016) 

𝑠0,𝜔 = 1 − Φ(
𝑦 − 𝛬𝜔

𝜎𝜀
) 
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where Φ is the cumulative distribution function of a standard normal distribution, and the patient’s 

severity after a treatment duration 𝑡 is 

𝑠2,𝜔(𝑡) = 1 − Φ(
𝑦 − 𝛬𝜔 − 𝛽𝑄,𝜔(𝑡)

𝜎𝜀
′

). 

The patient’s individual benefit from treatment 𝑄 at time point 𝑡 is the reduction in disease 

severity  

𝑏𝜔(𝑡) = 𝑠0,𝜔 − 𝑠2,𝜔(𝑡). 

Here, we assume that all patients are severely ill, that is 𝑠0,𝜔 ≈ 1 for all 𝜔. Thus, it is shown 

in Diaz (2019) that under the reasonable assumption that 𝜎𝜀
′ ≥ 𝜎𝜀,  the patient’s benefit can be 

computed as 

𝑏𝜔(𝑡) ≈ Φ(
𝑦 − 𝛬𝜔 − 𝛽𝑄,𝜔(𝑡)

𝜎𝜀
′

)        (1) 

In the following, we assume 𝜎𝜀
′ = 𝜎𝜀 which is usually clinically reasonable. Here, 𝛼𝜔 and 

𝜃1,𝜔 , … , 𝜃𝑑,𝜔 are characteristic constants of patient 𝜔 that are viewed as realizations of random 

coefficients 𝛼∗ and 𝜃1
∗, … , 𝜃𝑑

∗  that do not necessarily have mean 0. In the terminology of mixed 

effects models, 𝐸(𝛼∗), 𝝀  and 𝐸(𝜃1
∗),… , 𝐸(𝜃𝑑

∗) are the fixed effects, and 𝛼∗ − 𝐸(𝛼∗) and 𝜃𝑖
∗ −

𝐸(𝜃𝑖
∗), 𝑖 = 1,… , 𝑑, are the random effects which are usually assumed to be normally distributed. 

Here, we propose a graphical method to examine the assumption of normality. 

 

2.2. Quantiles of individual benefits under the normality assumption  
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Under the assumption of normality for the random effects, since the patients are severely 

ill, the cumulative distribution function of individual benefits for patients with covariate value 𝑿 =

𝒙 at time 𝑡 is (Diaz, 2019)  

𝐹(𝑧) = 𝐹(𝑧; 𝒙, 𝑡) = Φ(
Φ−1(𝑧) − 𝜇

𝛾
) ,       0 < 𝑧 < 1,        (2) 

where 𝜇 = 𝜇(𝒙, 𝑡) =
𝑦−𝐸(𝛬∗+𝛽𝑄

∗ (𝑡))

𝜎𝜀
′   and 𝛾2 = 𝛾2(𝑡) =

Var(𝛬∗+𝛽𝑄
∗ (𝑡))

𝜎𝜀
′2

. Further, the 𝑝-th quantile of 

the probability distribution function of individual treatment benefits is (Diaz, 2019) 

𝐵(𝑝, 𝒙, 𝑡) = Φ(𝛾Φ−1(𝑝) + 𝜇), 0 < 𝑝 < 1.         (3) 

The quantities in (2) and (3) are functions of treatment duration 𝑡, since 𝜇  and 𝛾 are. They 

are also functions of the fixed effects and the variance components (i.e., the variances and 

covariances of the random effects and the error variance).  

 

2.3. A motivation for the proposed graphical approach 

Here, we estimate (predict) the individual treatment benefits using the EB approach 

described in Diaz  (2019, 2016). The EB predictors of individual treatment benefits are obtained 

by replacing the fixed effects, error variance and individual random effects in Equation (1) with 

their estimates or predictors. The fixed effects and variance components are usually estimated 

through maximum or restricted maximum likelihood (Verbeke and Molenberghs, 2000; Hedeker 

and Gibbons, 2006; McCulloch et al., 2008; Fitzmaurice et al., 2011). We predict the random 

effects following an EB approach (Diaz, 2019, 2016; Diaz et al., 2012b; Frees, 2004; Verbeke and 

Lesaffre, 1996; Verbeke and Molenberghs, 2000). Importantly, the EB predictors of random 
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effects are estimates of the best linear unbiased predictors (BLUPs) which do not assume normality 

for the random effects (Frees, 2004). Moreover, the EB predictors of random effects are relatively 

robust to violations of the normality assumption (McCulloch and Neuhaus, 2011a; 2011b). 

Because of this, the sample quantiles of the estimated individual benefits can be viewed as robust 

estimates of the quantiles of the probability distribution of individual benefits. Alternatively, the 

quantiles can be directly estimated by replacing the fixed effects and variance components in 

Equation (3) with their corresponding estimates. Therefore, if the normality assumption is violated, 

we expect the quantiles estimated with Equation (3) to be substantially different from the sample 

quantiles based on the BLUPs because Equation (3) was derived under the assumption of 

normality. Thus, we propose to compare the sample quantiles based on the BLUPs with the 

quantiles calculated with Equation (3) in order to evaluate the assumption of normality for the 

random effects. 

 

2.4. Goodness-of-fit plot   

Suppose the sample of patients can be divided into 𝐺  subgroups. This is possible, for 

instance, when the subject characteristics are categorical or, if a characteristic is continuous when 

it is split into categories based on published cut-off values or percentiles. Therefore, we assume 

that 𝑿𝜔  includes only binary (dummy) covariates and that 𝑿𝜔  has 𝐺  distinct possible values 

𝒙1, … , 𝒙𝐺 . Let 𝑁𝑔 be the number of patients in the subpopulation of patients for whom 𝑿𝜔 = 𝒙𝑔, 

and let 𝑁 = ∑ 𝑁𝑔
𝐺
𝑔=1  be the total number of patients. Let 𝑏̂𝑔,1, … , 𝑏̂𝑔,𝑁𝑔

 be the EB predicted 

individual benefits for the 𝑁𝑔  patients in group 𝑔 , and 𝑏̂𝑔,(1) < 𝑏̂𝑔,(2) < ⋯ < 𝑏̂𝑔,(𝑁𝑔)  be the 
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corresponding order statistics. For a particular time 𝑡 , a benefit quantile-quantile (BQQ) plot 

consists of plotting in an x-y plane the 𝑁 points  

(𝑏̂𝑔,(𝜔), 𝐵̂ (
𝜔 − 0.5

𝑁𝑔
, 𝒙𝑔, 𝑡)) , 𝜔 = 1,… , 𝑁𝑔, 𝑔 = 1, … , 𝐺. 

where 𝐵̂ is obtained by replacing fixed effects and variance components in Equation (3) with their 

maximum likelihood or restricted maximum likelihood estimators (RMLEs). Thus, a BQQ plot 

compares the sample quantiles of individual benefits predicted with the EB approach versus 

estimates of the theoretical quantiles derived under the normality assumption for the random 

effects. In practice, we use the maximum time point available in the dataset as a value for 𝑡.  

If the points on the BQQ plot do not deviate asymmetrically much about the 𝑦 = 𝑥 line, 

then we conclude that the normality assumption for the random effects of the 2-PM model is 

appropriate. If, in addition, the usual conditional residuals for the model suggest normality for the 

errors and do not show apparent outliers, we can have reasonable confidence in the EB predictors 

of the individual benefits computed with Equation (1). 

 

3. Application to depression study 

As an illustration, clinical trial data of 66 patients under imipramine treatment with two 

types of depression diagnosis were used (Reisby et al., 1977). The diagnosis was endogenous 

(N=37) and non-endogenous (N=29). The data is available in Hedeker and Gibbons (2006) and 

was also analyzed by Diaz (2019). The response variable, the Hamilton Rating Scale (HRS) for 

depression, was recorded at the beginning and end of the week before imipramine treatment 
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initiation and at the end of each of the next four weeks during treatment. Diaz (2019) fitted a 

random effects linear model of the HRS scores in order to predict individual treatment benefits but 

did not provide evidence for the model’s goodness-of-fit. As covariates, the model included a 

polynomial time trend and diagnosis (1=endogenous, 0=nonendogenous). The intercept and the 

linear and quadratic terms had random effects in addition to the fixed effects. The SAS procedure 

MIXED, which assumes normally distributed random effects, was used to obtain MLE of the fixed 

effects and EB predictors of the random effects for all patients (SAS Institute Inc. Cary, NC). 

Similar to Diaz (2019), an unstructured covariance matrix for the random effects and 

homoscedastic independent errors were assumed. Parameter estimates are shown in Table 1 in 

Diaz (2019). The Figure S1 in the Supplementary Material indicates that for the depression data, 

the normality assumption on the random errors of the linear mixed effects models are satisfied. 

Histograms and kernel densities of EB predictors of the random effects are shown in 

Supplementary Figure S2. The shapes of the histograms seem to suggest approximate normality 

for the distribution of the random effects. However, Verbeke and Lesaffre (1997) and Mcculloch 

and Neuhaus (2011b) have found that the shape of the histograms for EB predictors may be 

misleading and may not reflect the true distribution of the random effects. Equation (3) was used 

to calculate some 𝑝 × 100% percentiles of the individual benefits of imipramine as functions of 

treatment duration. Figure 1 shows estimated 𝑝 × 100% theoretical percentiles computed from 

Equation (3) for the individual benefits of nonendogenous patients (A) and the corresponding 

sample percentiles of the EB predicted benefits (B) for some values of 𝑝, as functions of treatment 

duration. Analogous figures for endogenous patients are Figure S3 in the Supplementary Material. 

In general, the sample percentiles seem to match the estimated theoretical percentiles.  However, 

a better comparison of the theoretical and sample percentile functions is provided by the BQQ plot, 
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which is shown in Figure 2.  The points in the plot are scattered around close to the 𝑦 = 𝑥 line, 

without exhibiting any asymmetric deviations. Thus, the sample percentiles of individual benefits 

match closely the theoretical percentiles derived under the normality assumption, suggesting the 

adequacy of this assumption and the goodness-of-fit of the 2-PM model for the imipramine data.  

We also applied the diagnostic tests proposed by Alonso et al. (2008) on this dataset. The 

null hypothesis is that the normality assumption for the random effects is reasonable. The two 

determinant tests and the determinant-trace test yielded the test statistics 𝛿𝑑1 = 2.9, 𝛿𝑑2 = 1.19 

and 𝛿𝑑3 = 1.28, with corresponding p-values of 0.085, 0.276 and 0.258. All three p-values were 

larger than the chosen 0.05 significant level. These tests suggest that the normality assumption for 

the random effects was appropriate and further validate the conclusions from our proposed 

graphical approach. 

 

4. Simulation study 

We conducted a simulation study to assess the performance of BQQ plots under violations 

of the normality assumption for the random effects. Motivated by the application study in Diaz 

(2019),  data from the following two models were simulated:  

Model 1: (Random intercept and random slope for time). 

𝑌𝜔,𝑗
′ = 𝜓0 + 𝜓1𝑥𝜔 + 𝜓2𝑡𝜔,𝑗 + 𝜓3𝑡𝜔,𝑗

2 + 𝜏0,𝜔 + 𝜏2,𝜔𝑡𝜔,𝑗 + 𝜀𝜔,𝑗 ,

𝜔 = 1,… , 𝑁,   𝑗 = 1,… , 𝑛,             (4) 

such that 𝛬𝜔 = 𝜓0 + 𝜏0,𝜔 + 𝜓1𝑥𝜔  and 𝛽𝑄,𝜔(𝑡) = (𝜓2 + 𝜏2,𝜔)𝑡 + 𝜓3𝑡
2 , 𝑁  is the number of 

patients and 𝑛 is the number of observations per patient. Here, 𝝍 = (𝜓0, 𝜓1, 𝜓2, 𝜓3)
𝑇are the fixed 
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effects and 𝝉𝜔 = (𝜏0,𝜔, 𝜏2,𝜔)
𝑇
 are the random effects with mean 0. Moreover, 𝑥𝜔~Bernoulli(0.6) 

represents a patient’s time-independent characteristic (for instance, gender, smoking, etc.) and the 

𝜀𝜔,𝑗’s are mutually independent with 𝜀𝜔,𝑗~𝑁(0, 𝜎𝜀
2 = 10). 

Model 2: (Random intercept and random slopes for time and time square): 

𝑌𝜔,𝑗
′ = 𝜓0 + 𝜓1𝑥𝜔 + 𝜓2𝑡𝜔,𝑗 + 𝜓3𝑡𝜔,𝑗

2 + 𝜏0,𝜔 + 𝜏2,𝜔𝑡𝜔,𝑗 + 𝜏3,𝜔𝑡𝜔,𝑗
2 + 𝜀𝜔,𝑗 ,                         (5) 

𝜔 = 1,… ,𝑁, 𝑗 = 1,… , 𝑛, 

such that 𝛬𝜔 = 𝜓0 + 𝜏0,𝜔 + 𝜓1𝑥𝜔  and 𝛽𝑄,𝜔(𝑡) = (𝜓2 + 𝜏2,𝜔)𝑡 + (𝜓3 + 𝜏3,𝜔)𝑡2 . In this case,  

𝝉𝜔 = (𝜏0,𝜔 , 𝜏2,𝜔 , 𝜏3,𝜔)
𝑇
 are the random effects with mean 0.  No missing responses were assumed. 

An unstructured variance-covariance matrix for the random effects was assumed for both models 

(Fitzmaurice et al., 2011, 2009).  

Varying values for 𝑁 were used and 𝑛 = 4 or 6. For either model, we simulated 2 baseline 

measurements and 2 or 4 measurements under medical treatment. Thus, for all models, 𝑘0,𝜔 = 2, 

and 𝑡𝜔,1 = 𝑡𝜔,2 = 0. When 𝑛 = 4, 𝑘1,𝜔 = 2, 𝑡𝜔,3 = 1  and 𝑡𝜔,4 = 4; and when 𝑛 = 6, 𝑘1,𝜔 = 4, 

𝑡𝜔,3 = 1 , 𝑡𝜔,4 = 2  , 𝑡𝜔,5 = 3   and 𝑡𝜔,6 = 4 .  For all models, 𝑌0,𝜔,𝑗 = 𝑌𝜔,𝑗
′  for 𝑗 = 1, 2 , and 

𝑌𝑄,𝜔,𝑗 = 𝑌𝜔,𝑗+2
′  for 𝑗 = 1,… , 𝑘1,𝜔.  

The therapeutic target was to achieve 𝑌 ≤ 𝑦  with 𝑦 = 7 . The MLEs of 𝝍  and 𝜎𝜀
2  are 

denoted by 𝝍̂ = (𝜓̂0, 𝜓̂1, 𝜓̂2, 𝜓̂3)
𝑇
 and 𝜎̂𝜀

2; and the EB predictor of 𝝉𝜔 by 𝝉̂𝜔 = (𝜏̂0,𝜔 , 𝜏̂2,𝜔)
𝑇
 for 

Model 1 or 𝝉̂𝜔 = (𝜏̂0,𝜔 , 𝜏̂2,𝜔, 𝜏̂3,𝜔)
𝑇
 for Model 2. Here, we will investigate BQQ plots computed 

at the last time point, namely 𝑡 = 4. We used Equation (1) to predict the individual benefits after 
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replacing 𝜎𝜀 ,  Λ𝜔  and 𝛽𝑄,𝜔(𝑡)  with their estimates 𝜎̂𝜀 , Λ̂𝜔 = 𝜓̂0 + 𝜏̂0,𝜔 + 𝜓̂1𝑥𝜔  and 𝛽̂𝑄,𝜔(𝑡) =

(𝜓̂2 + 𝜏̂2,𝜔)𝑡 + 𝜓̂3𝑡
2 for Model 1 or 𝛽̂𝑄,𝜔(𝑡) = (𝜓̂2 + 𝜏̂2,𝜔)𝑡 + (𝜓̂̂3 + 𝜏̂3,𝜔)𝑡2 for Model 2. 

Let Σ𝑖,𝑗  be the (𝑖, 𝑗) -th entry of the variance covariance matrix of 𝝉𝜔  and Σ̂𝑖,𝑗  be its 

maximum likelihood estimator. Thus, Σ𝑖,𝑗 is of dimension 2 × 2 for Model 1, and 3 × 3 for Model 

2. The 𝜇 in Equation (3) is estimated with 𝜇̂ = (𝑦 − (𝜓̂0 + 𝜓̂1𝑥𝜔 + 𝜓̂2𝑡 + 𝜓̂3𝑡
2)) /𝜎̂𝜀 for both 

models, whereas 𝛾 is estimated with 𝛾2 = (Σ̂1,1 + 𝑡2Σ̂2,2 + 2𝑡Σ̂1,2)/𝜎̂𝜀
2  for Model 1, and  𝛾2 =

(Σ̂1,1 + 𝑡2Σ̂2,2 + 𝑡4Σ̂3,3 + 2𝑡Σ̂1,2 + 2𝑡2Σ̂1,3 + 2𝑡3Σ̂2,3)/𝜎̂𝜀
2 for Model 2. 

Table 1 shows the “true” fixed effects employed in simulations. These were chosen so that 

the majority of the patients were severely ill under all examined non-normal and normal 

distributions for the random effects, i.e., 𝑃(𝑠0,𝜔 > 0.9) ≥ 0.95.  

 

4.1. Simulation of random effects 

We implemented four simulation scenarios to represent situations in which the normality 

assumption for the random effects is violated (Table 1). For comparison purposes, in each scenario,  

𝝉𝜔 was simulated from both a non-normal distribution and a reference normal distribution with 

the same mean and variance-covariance matrix.  

4.1.1. Scenario 1: Model 1 with a symmetric mixture of two bivariate normal distributions 

Here, we explore the effect on the BQQ plot of the distance between the means of the two 

components of a mixture of normal distributions for 𝑁 ∈ {50, 100,150, 200, 300,500}. The true 

𝝉𝜔was distributed as 
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𝝉𝜔~
1

2
𝑁(𝒎1

∗ = 𝑤 ∗ 𝒎1, 𝑉) +
1

2
𝑁(𝒎2

∗ = 𝑤 ∗ 𝒎2 , 𝑉) 

where 𝒎1 = (0,−1)T ,  𝒎2 = (0, 1)T  and 𝑉 = [
1 0.9

0.9 1
] . The distance between the mean 

vectors is 𝑤√(𝒎1 − 𝒎2)𝑇 × (𝒎1 − 𝒎2).  We examined 𝑤 ∈ {1, 2, 3, 4, 5}. The reference normal 

distribution with the same mean and covariance matrix was 𝑁(𝒎,𝐷∗), where 𝒎 = (0, 0)T and 

 𝐷∗ =
1

2
𝒎1

∗𝒎1
∗𝑇 +

1

2
𝒎2

∗𝒎2
∗ 𝑇 + 𝑉 . Here, a greater distance between the means of the two 

component distributions represents a greater deviation from normality. Thus, we expect the BQQ 

plot to show greater departures from the diagonal line (Figures 3, 7; Table S1).   

 

4.1.2. Scenario 2: Model 1 with an asymmetric mixture of two bivariate normal distributions for 

the random effects 

Here, we explore how the variance of the components of a mixture of normal distributions 

affects the BQQ plot, for sample sizes 𝑁 ∈ {60, 100, 160,200, 300,500}. The true random effects 

vector 𝝉𝜔  was distributed as 

𝝉𝜔~
3

4
𝑁(𝒎1, 𝑉) +

1

4
𝑁(𝒎2, 𝑉) 

where 𝒎1 = (0,−1)T , 𝒎2 = (0, 3)T  and 𝑉 = [
𝜎1

2 0.9

0.9 𝜎2
2 ] . We examined 𝜎1

2 = 𝜎2
2 ∈

{1, 2, 3, 4, 5}. In this case, the overall mean and variance are 𝒎 = (0, 0)T and 𝐷∗ =
3

4
𝒎1𝒎1

𝑇 +

1

4
𝒎2𝒎2

𝑇 + 𝑉. Thus, for comparison purposes, 𝝉𝜔 was also simulated from the reference bivariate 

𝑁(𝒎, 𝐷∗). Here, since the mean vectors are fixed, a greater variance for the components of the 

mixture imply a “less bimodal” distribution. Therefore, we expect BQQ plots for the non-normal 
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cases to be more like their corresponding reference normal cases when the variance of the 

components is large (Figures 4, 8; Table S2).  

 

4.1.3. Scenario 3: Model 2 with a trivariate t distribution for the random effects 

Here, the true random effects were simulated from a trivariate t distribution with degrees 

of freedom 𝑣 ∈ {3, 5, 7, 9, 11, 13}, location parameters 𝒎 = (0, 0, 0)T , and shape parameter Γ 

given in Table 1. The purpose was to study how BQQ plots are affected by the heaviness of the 

tails of the t distribution, using 𝑁 ∈ {50, 100, 150, 200,300, 500} .  The reference normal 

distribution with the same mean and variance-covariance matrix was 𝑁 (𝒎,𝐷∗ =
𝑣

𝑣−2
× Γ) 

(Anderson, 2003). In this scenario, smaller degrees of freedom are associated with heavier tails for 

the distribution of random effects. Thus, we expect BQQ plots for non-normal cases to resemble 

more the reference normal plots when 𝑣 is large (Figures 5, 9; Table S3).   

 

4.1.4. Scenario 4: Model 2 with a symmetric mixture of two trivariate normal distributions 

This scenario is analogous to Scenario 1, except that we used trivariate normal distributions 

for the components of the mixture. The goal was also to examine the effect of the distance between 

the means of the two normal components on BQQ plots. Since a greater distance represents a 

greater deviation from normality, we expect the BQQ plots to show greater departures from the 

diagonal line (Figures 6, 10; Table S4).  

 

4.2. Cramer von Mises discrepancy statistic 
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We used Cramer-von Mises discrepancy statistic (CVM) to quantify the deviation of the 

BQQ plot from the y=x line under violations of the normality assumption (Anderson, 1962; 

Darling, 1957). Let 𝐹𝑁𝑔
(𝑥) be the empirical distribution function of 𝑏̂𝑔,1, … , 𝑏̂𝑔,𝑁𝑔

 and denote 

𝑈𝑔,1 = 𝐹(𝑏̂𝑔,1),… , 𝑈𝑔,𝑁𝑔
= 𝐹 (𝑏̂𝑔,𝑁𝑔

). The CVM discrepancy between 𝐹𝑁𝑔
(𝑧) and 𝐹(𝑧; 𝒙𝑔) was 

computed as  

Ω𝑔 = ∫ {𝐹𝑁𝑔
(𝑧) − 𝐹(𝑧; 𝒙𝑔)}

2

𝑑𝐹(𝑧; 𝒙𝑔)
+∞

−∞

=
1

12𝑁𝑔
2
+

1

𝑁𝑔
∑ (𝑈𝑔,𝑘 −

2𝑘 − 1

2𝑁𝑔
)

2
𝑁𝑔

𝑘=1

 

(Anderson, 1962; CSöRgő and Faraway, 1996; Darling, 1957). The overall discrepancy was 

computed as the weighted average  

Ω̅  =
∑ 𝑁𝑔

𝐺
𝑔=1 Ω𝑔

𝑁
 . 

Larger values of Ω̅ reflect more severe violations of the normality assumption for the 

random effects.  

Five hundred datasets were simulated for each combination of values of 𝑁, 𝑛 and random-

effects distribution parameters. For illustration purposes, selected BQQ plots are presented for 

𝑁 = 100 and 𝑛 = 6 (Figures 3-6). These plots corresponded to the datasets producing the closest 

Ω̅ to Ω̅̅, where Ω̅̅ is the average of the 500 values of Ω̅.  

To examine the sensitivity of BQQ plots to detect deviations from normality, each 

simulated non-normal case was compared with its corresponding reference normal distribution by 

using the ratio 𝑅 =
Ω̅̅non−normal

Ω̅̅ normal
 (Figures 7-10). On average, we expect the Ω̅ obtained from a non-

normal case to be larger than that from its reference normal case and, therefore, 𝑅 > 1. This is 
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because the Ωg  measures the discrepancy between the empirical distribution of the sample 

individual benefits and the theoretical distribution obtained under the normality assumption for the 

random effects. We expect larger values of 𝑅  to be associated with greater deviations from 

normality. The SAS procedures MIXED and IML were used to implement the simulations (SAS 

Institute Inc. Cary, NC).  

 

5. Simulation results 

5.1. Scenario 1: symmetric mixtures of bivariate normal distributions 

As expected, larger distances between the two components of the mixture distribution 

determined more apparent asymmetric departures of the points on the BQQ plot from the y=x line 

(Figure 3). By comparison, the BQQ plots for data simulated from the corresponding reference 

normal distributions did not show any asymmetric deviations from the diagonal line. Figure 7 

shows that the 𝑅 ratios comparing CVM discrepancies between no-normal versus comparable 

normal distributions were always > 1 and increased with the distance between the components of 

the mixture. In general, 𝑅 increased with both the number of patients 𝑁 and the number of repeated 

measures 𝑛, suggesting that the sample size contributes positively to the sensitivity of BQQ plots. 

Table S1 in the Supplementary Material shows the average CVM discrepancies Ω̅̅ for all cases of 

Scenario 1.  

 

5.2. Scenario 2: asymmetric mixtures of two bivariate normal distributions 
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For the investigated mixtures of normal distributions, quantiles of EB benefits from a 

patient sample tended to be larger than their corresponding theoretical quantiles that assume 

normality for the random effects (Figure 4). Moreover, this pattern was more apparent with smaller 

variances for the components of the mixture. The pattern was not observed in the BQQ plots 

corresponding to the reference normal distributions.  Figure 8 shows that the ratios comparing 

CVM discrepancies of non-normal to reference normal distributions decreased with the variance 

of the mixture components, suggesting that BQQ plots are sensitive to deviations from normality. 

The ratios also increased with sample size 𝑁 and the number of repeated measures 𝑛, suggesting 

that larger sample sizes increase the likelihood that BQQ plots capture normality violations. Table 

S2 in the Supplementary Material shows average CVM discrepancies for the non-normal and 

normal cases. 

 

5.3. Scenario 3: trivariate t distribution 

As the degrees of freedom increased, the BQQ plots for data simulated with the t 

distribution became more similar to the BQQ plots for data simulated with a comparable normal 

distribution (Figure 5). The theoretical quantiles of individual benefits under the normality 

assumption tended to be larger than the quantiles for EB sample benefits when the tails of the t 

distribution became heavier. Figure 9 shows that the ratios 𝑅 comparing CVM discrepancies under 

the t distribution versus the reference normal distribution increased as the degrees of freedom 

decreased, suggesting that BQQ plots can reliably capture the heaviness of the tails of the t 

distribution. The ratios tended to increase as both 𝑁 and 𝑛 increased, implying that the larger the 

sample size is the more powerful the proposed graphical approach is for detecting tail heaviness. 
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Table S3 in the Supplementary Material shows average CVM discrepancies Ω̅̅ for the non-normal 

and normal cases. 

 

5.4. Scenario 4: symmetric mixture of two trivariate normal distributions 

Analogous to scenario 1, marked departures in the appearance of BQQ plots from what is 

expected under comparable normal distributions are observed when the random effects are 

distributed as a mixture of normal distributions (Figure 6). Greater distances between the two mean 

vectors of the mixture components tended to be associated with larger asymmetric deviations from 

the 𝑦 = 𝑥 line. This trend can also be inferred from Figure 10, which shows that, compared with 

the reference normal distribution, CVM discrepancies under a mixture of normal distributions 

increased as the distance between the mixture components increased. Table S4 in Supplementary 

Material shows average CVM discrepancies for the non-normal and normal cases. 

 

6. Discussion and conclusions 

This paper proposes a graphical approach to evaluate the goodness-of-fit of random effects 

models for continuous responses when the purpose of the model is to estimated individual benefits 

of medical treatments. In our approach, empirical quantiles of individual benefits estimated with 

an empirical Bayes approach are plotted against the quantiles of the distribution of individual 

benefits calculated under a normality assumption on the random effects.  The rationale underlying 

our approach is that EB estimates of the random effects are robust to violations of the normality 
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assumption (McCulloch and Neuhaus, 2011a; 2011b). In fact, they are also estimates of the BLUPs 

whose optimality properties do not require the normality assumption (Frees, 2004). 

If the normality assumption is valid, we expect empirical quantiles to be close to the 

theoretical quantiles. Thus, we can infer the goodness-of-fit of the 2-PM model if the BQQ plot 

does not show obvious asymmetric deviations from the 𝑦 = 𝑥 diagonal line. We evaluated the 

performance of this approach using CVM discrepancies which measure the discrepancy between 

an empirical and a theoretical probability distribution.  CVM discrepancies confirmed that our 

graphical approach captures accurately deviations from the normality assumption. Importantly, we 

found that the ratios 𝑅  of average CVM discrepancies ( Ω̅̅ ), which compared non-normal 

distributions with closely comparable normal distributions, were not smaller than 1 in all 

simulations. This suggests that BQQ plots are powerful tools to detect deviations from normality 

for the distribution of the random effects in 2-PM models. Our simulations also showed that larger 

sample sizes give greater sensitivity to BQQ plots for detecting non-normality. Relatively 

moderate sample sizes, however, were enough to detect moderate deviations from normality. 

Normal quantile-quantile (QQ) plots are routinely used in statistical practice to examine 

the assumption of normality for a variety of models (Aldor-Noiman et al., 2013; García Ben and 

Yohai, 2004; Stine, 2017). For mixed models, it is frequent practice to explore the normality 

assumption for the random effects by plotting separate normal QQ plots for each random effect in 

the model. In this alternative approach, the EB predictors of the random effects are used to compute 

both the empirical distribution of the random effects and the mean and variance of the normal 

distribution used to obtain the theoretical quantiles. This circularity limits the interpretation of the 

resultant plots because the EB predictors estimates themselves. Moreover, research shows that the 

shape of the empirical distribution of the EB predictors of the random effects does not necessarily 
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reflect the random-effects distribution (Verbeke and Lesaffre, 1997; Mcculloch and Neuhaus, 

2011b). Thus, direct normal QQ plots calculated with only EB predictors of the random effects 

may be misleading as a tool to examine normality. In contrast, in our proposed approach, the 

theoretical quantiles given in Eq. (3) are estimated directly using the MLEs or RMLEs of model 

parameters without the mediation of the EB predictors. In addition, our simulations show that BQQ 

plots are reliable. Thus, if the model will be used to make decisions related with personalized 

medicine, BQQ plots are recommendable as a complementary tool for the exploration of the 

normality assumption for the random effects.  

A limitation of our approach is that it requires that continuous or ordinal covariates be 

categorized before implementing Eq (3). Future research must examine how to incorporate 

continuous covariates to BQQ plots. The extension of BQQ plots to 2-PM models with non-

continuous responses also needs further research. 
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Figure 1. Selected 𝑝 × 100% percentiles of the probability distribution of individual benefits of 

imipramine treatment as functions of treatment duration in weeks, for patients with non-

endogenous diagnosis with 𝑝 =0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.90, 0.95. (A) Percentiles 

from Eq. (3) which assumes normality for the random effects. (B) Sample percentiles of EB 

predictors of individual benefits.  
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Figure 2. BQQ plot of individual treatment benefits after 4 weeks of imipramine treatment for 

patients with depression.  
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Figure 3 (Scenario 1). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at 𝑡 =

4 for  𝑁 = 100 patients with 𝑛 = 6  measures per patient. The plots on the right panel correspond 

to random effects simulated from mixtures of two bivariate normal distributions whose mean 

vectors were separated by distances of 2, 4, 6, 8 or 10.  The left panels correspond to random 

effects simulated from bivariate normal distributions with the same mean and variance-covariance 

matrix as the distribution for the right panel on the same row.  
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Figure 4 (Scenario 2). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at 𝑡 =

4 for  𝑁 = 100 patients with 𝑛 = 6  measures per patient. The plots on the right panel correspond 

to random effects simulated from mixtures of two bivariate normal distributions. Either bivariate 

component had variances 𝜎1
2 = 𝜎2

2 with values 1, 2, 3, 4 or 5. The left panels correspond to random 

effects simulated from bivariate normal distributions with the same mean and variance-covariance 

matrix as the distribution for the right panel on the same row.  
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Figure 5 (Scenario 3). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at 𝑡 =

4 for  𝑁 = 100 patients with 𝑛 = 6  measures per patient. The plots on the right panel correspond 

to random effects simulated from trivariate t distributions with degrees of freedom (df) of 3, 5, 7, 

9, 11 or 13.  The left panels correspond to random effects simulated from trivariate normal 

distributions with the same mean and variance-covariance matrix as the distribution for the right 

panel on the same row.  
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Figure 6 (Scenario 4). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at 𝑡 =

4 for  𝑁 = 100 patients with 𝑛 = 6  measures per patient. The plots on the right panel correspond 

to random effects simulated from mixtures of two trivariate normal distributions whose mean 

vectors were separated by distances of 1.4, 2.8, 4.2, 5.7, 7.1 or 8.5.  The left panels correspond to 

random effects simulated from trivariate normal distributions with the same mean and variance-

covariance matrix as the distribution for the right panel on the same row.  
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Figure 7 (Scenario 1). Ratios 𝑅 comparing averages of CVM discrepancies under mixtures of two 

bivariate normal distributions versus comparable normal distributions with the same mean and 

variance-covariance matrix for  𝑁 = 50, 100, 150, 200, 300 and 500 as a function of distance 

between mean vectors of the mixture components.  (A) 𝑛 = 6. (B) 𝑛 = 4. 
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Figure 8 (Scenario 2). Ratios 𝑅 comparing averages of CVM discrepancies under mixtures of two 

bivariate normal distributions versus comparable normal distributions with the same mean and 

variance-covariance matrix for 𝑁 = 50, 100, 150, 200, 300 and 500 as a function of the variance 

𝜎1
2 = 𝜎2

2.  (A) 𝑛 = 6. (B) 𝑛 = 4. 
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Figure 9 (Scenario 3). Ratios 𝑅 comparing averages of CVM discrepancies under mixtures of two 

trivariate normal distributions versus comparable normal distributions with the same mean and 

variance-covariance matrix for  𝑁 = 50, 100, 150, 200, 300 and 500 as a function of the degrees 

of freedom 𝑣.  (A) 𝑛 = 6. (B) 𝑛 = 4. 
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Figure 10 (Scenario 4). Ratios 𝑅 comparing averages of CVM discrepancies under mixtures of 

two trivariate normal distributions versus comparable normal distributions with the same mean 

and variance-covariance matrix for  𝑁 = 50, 100, 150, 200, 300 and 500 as a function of distance 

between mean vectors of the mixture components.  (A) 𝑛 = 6. (B) 𝑛 = 4. 
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Chapter V: Summary and future directions 
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In this dissertation, mixed effects models for continuous and binary responses were 

investigated in terms of random effects prediction accuracy and robustness to the normality 

assumption of the random effects, via the well-known empirical Bayes approach and an alternative 

approach based on quadratic inference functions (QIFs) (Chapters II and III). We used mean square 

prediction errors as the comparison criteria and the performance was explored for a variety of non-

normal distributions for the random effects. In linear mixed effects models, we concluded that the 

empirical Bayes approach generates more accurate predictors of random effects when the random 

effects follow a non-normal distribution and when the error variances are relatively not large (say 

less than 10). The approach based on QIFs outperforms the empirical Bayes approach in the 

presence of extremely large error variances. For logistic mixed effects models, when there is only 

a random intercept, the empirical Bayes approach is superior to the QIF approach with respect to 

the prediction accuracy not only when the random effects follow a normal distribution, but also 

when this assumption is violated. In general, in the presence of a random intercept and a random 

slope, the prediction performances of the two approaches are comparable. However, the QIF 

approach produces slightly more accurate predictors of random effects when the random effects 

follow a mixture of normal distributions and this is especially true for the random slope.   

A message from the first two chapters is that the empirical Bayes approach is relatively 

robust to misspecifications of the normality assumption of the random effects. The approach based 

on QIFs is mathematically more complicated and can be very time consuming in both 

implementation and computation. Thus, the empirical Bayes approach is more recommendable in 

statistical practice, even when the normality assumption is questionable. Future research should 

explore the predictive performance of these approaches for repeated count data using Poisson 

mixed effects models or negative binomial mixed effects models. Comparisons can also be made 
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in the presence of missing data or with other approaches proposed in the literature (Ghidey et al., 

2004; Ten Have and Localio, 1999; Zhang and Davidian, 2001). 

Finally, in Chapter IV, we proposed a graphical approach to examine the goodness-of-fit 

of linear mixed effects models with emphasis in the normality assumption for the random effects, 

when the goal is to estimate or predict individual benefits from medical or behavioral treatments 

for severely ill patients. Simulation studies in which the random effects were assumed to follow a 

variety of non-normal distributions show that our approach successfully captures violations of the 

normality assumption. The approach is more powerful when the sample size is large, but still 

provides valid conclusions under relatively small sample sizes. As future research, our method 

may be extended to logistic mixed effects models for binary responses. The sensitivity of the 

graphical approach to violations of the normality assumption other than the ones investigated in 

this dissertation can also be explored; for instance, under mixtures of normal distributions whose 

variances and covariances depend on some of the model covariates.  
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A. Chapter II: Prediction accuracy and robustness to non-normality of two methods 

of predicting random effects in linear mixed effects models for longitudinal data: 

empirical Bayes versus quadratic inference functions 

 

 

Zhiwen Wang, John Keighley, Jianghua He, Jo Wick, Francisco J. Diaz* 

 

 

 

Department of Biostatistics, The University of Kansas Medical Center, Mail Stop 1026, 3901 

Rainbow Blvd., Kansas City, KS 66160, United States.  

 

*Corresponding author: Tel: +1-913-945-7006. 

Email address: zwang3@kumc.edu (Z. Wang), Jkeighle@kumc.edu (J. Keighley), jhe@kumc.edu 

(J. He), jwick@kumc.edu (J. Wick), fdiaz@kumc.edu (F.J. Diaz). 

 

 

 

 

 

122

mailto:zwang3@kumc.edu
mailto:Jkeighle@kumc.edu
mailto:jhe@kumc.edu
mailto:jwick@kumc.edu
mailto:fdiaz@kumc.edu


 

123 

Figure S1. Scatterplots of random effects for the depression data, predicted by QIF versus EB 

approaches under an exchangeable error correlation structure.  (A) Random intercept predictors. 

(B) Predictors of the random coefficient of time. (C) Predictors of the random coefficient of time 

square. The solid line is the y=x line.  
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Figure S2. Scatterplots of random effects for the depression data, predicted by QIF versus EB 

approaches under an AR(1) error correlation structure. (A) Random intercept predictors. (B) 

Predictors of the random coefficient of time. (C) Predictors of the random coefficient of time 

square. The solid line is the y=x line. 
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Figure S3. Histograms of predictors of random effects for the depression data using QIF and EB 

approaches under homoscedastic independent errors.  (A1-A2) Random intercept predictors. 

(B1-B2) Predictors of the random slope of time. (C1-C2) Predictors of the random slope of time 

square. 
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SAS/IML code implementing the QIF approach.  

 
/* 

Programmers:  

Zhiwen Wang, Francisco J. Diaz 

Department of Biostatistics,  

The University of Kansas Medical Center,  

Mail Stop 1026, 3901 Rainbow Blvd.,  

Kansas City, KS 66160, United States.  

Emails: zwang3@kumc.edu (Z. Wang), fdiaz@kumc.edu (F.J. Diaz). 

 

 

This code implements the QIF approach used for the application and simulations in the paper:  

Wang, Z.,  Keighley, J., He,  J., Wick,  J.,  Diaz, F.J. “Comparison of the accuracy and robustness to non-normality  
of two methods of random effects prediction for linear mixed effects models of longitudinal data:  

empirical Bayes versus quadratic inference functions”.  

*/ 

/*********************************************************************************************

****************/ 

 

 

/*********************************************************************************************

****************/ 

 

/* Definition of global parameters:*/  
 

/*n: the total number of unique time points recorded in the dataset, this is K in the paper;  */ 

/*SampSize: total number of subjects; */ 

/*nfe: number of fixed-effect parameters; */ 

/*nre: number of random-effect parameters; */ 

/*lambda1: tuning parameter lambda1;*/ 

/*lambda2: tuning parameter lambda2;*/ 

/*maxiter: maximum number of iterations for the dataset, it needs to be large enough, say 10^5;*/ 

/*loc_missing: location vector of missing responses in Y (this can be obtained using the “loc” function in 

SAS/IML);*/ 

/*obs_ind: vector of observation indicator for all subjects. It has the same dimension as Y; it is 1 if the response if 

non-missing, 0 if it is missing (this vector can be obtained using the “missing” function in SAS/IML).*/ 
/*Y: the response matrix with dimension SampSize*n by 1;*/ 

/*X: the design matrix for the fixed effects, it’s dimension is SampSize*n by nfe;*/ 

/*Z: the block diagonal design matrix for the random effects, it’s dimension is SampSize*n by nre;*/ 

 

 

/*CorrStruc = 1 : Independent structure;*/ 

/*CorrStruc = 2 : Exchangeable (EX) correlation structure;*/ 

/*CorrStruc = 3 : AR1 correlation structure;*/ 

/*CorrStruc = other numbers : WRONG INDEX;*/ 

 

/*********************************************************************************************
****************/ 

 

 

 

 

proc iml; 

126



 

127 

 

 

 

/******************************Part 1. Calculate projection matrix 

Pj***********************************/ 
/*This module is used to calculate the projection matrix Pj for a given dataset*/ 

 

/*Input: design matrix X, and design matrix Z;*/ 

/*Output: Projection Matrix Pj;*/ 

 

start projection(Pj, X,Z); 

 

 /* find generalized inverse */ 

 Xinv = ginv(X);  

 /* form projection matrix onto (left) column space */ 

 Px = X*Xinv; 

 A = (I(ncol(Px))-Px)*Z; 
 

 /*using QR decomposition to obtain null space of A*/ 

 CALL QR(Q,R,PIV,LINDEP,t(A));  

 /*rank of matrix A*/ 

 ranka = round(trace(ginv(A)*A));  

 /* obtain the basis of the null space of A*/ 

 Jnull = Q[ , (ranka+1):ncol(Q)]; 

  

 /* calculate projection matrix Pj on Jnull */ 

 Pj = Jnull*ginv(Jnull); 

 
finish projection; 

 

/********************************************************************************************/ 

 

 

 

 

 

/******************************************Part 2. Calculate Basis matrix M 

************************************************/ 

/*This module is used to calculate the second basis matrix M2 for an assumed correlation structure. */ 

/*Note that the first basis matrix M1 is always the identity matrix of dimension n by n;*/ 
 

/*Input: */ 

/* CorrStruc: correlation structure indicator (1, 2 or 3);*/ 

/* n: the total number of unique time points recorded in the dataset;*/ 

/*Output: */ 

/* M2: The second basis matrix*/ 

 

 

start BaseM (M2, n, CorrStruc); 

 

 
/* independent structure needs just one M matrix */ 

if CorrStruc = 1 then do; 

 M2 = diag(j(1,n));                /* create diagonal matrix M2*/ 

end; 
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/* EX structure */ 

if CorrStruc = 2 then do; 

 

 M2 = j(n,n,1);           /* create matrix M2*/ 
 /* create diagonal matrix of M2 to be 0*/ 

 start SetDiag(A, V);   

     diagIdx = do(1,nrow(A)*ncol(A), ncol(A)+1); 

     A[diagIdx] = V;             

 finish; 

 run SetDiag(M2, 0);  

 

end; 

 

 

 

/* AR(1) structure */ 
if CorrStruc = 3 then do;                           

 

 M2 = j(n,n,0);                              /* create matrix M2*/ 

 supDiag = T(1:ncol(M2)-1) || T(2:ncol(M2)); /* subscripts for superdiagonal */ 

 subDiag = T(2:ncol(M2)) || T(1:ncol(M2)-1); /* subscripts for subdiagonal */ 

 dim = dimension(M2);                    /* find index of all super- and subdiagonal elements */ 

 idxM2 = sub2ndx(dim, supDiag//subDiag);   

 M2[idxM2] = 1;                              /* assign 1 to sub- and superdiagonal */ 

end; 

 

 
/* Message for unsupported structures*/ 

if CorrStruc ^= {1 2 3} then do; 

print "not defined, wrong correlation index";  M2=0; 

end; 

 

finish BaseM; 

 

/*********************************************************************************************

******************/ 

  

 

 
 

 

 

/**********************************Part 3: Fixed effect QIF (given 

b)**************************************/ 

/*This module is used to define and minimize the fixed effects QIF for a given */ 

/*random-effect estimates “b” and a given initial vector of fixed effects “beta” that needs to be updated. This "beta" 

can be obtained from previous iteration.*/ 

 

 

/*Input: */ 
/* b: a given random effects estimates for all subjects, this is a vector of dimension (SampSize*nre) by 1;*/ 

/* beta: initial fixed effects estimates( to be updated), this is a vector of dimension nfe by 1;*/ 

/*Output:*/ 

/* beta_new: updated fixed effects estimates; this is a vector of dimension nfe by 1;*/ 
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start betafunction (beta_new, b, beta)  

   global (CorrStruc, M2, n, SampSize, nfe, nre, maxiter, loc_missing, obs_ind, Y, X, Z);  

 

 
M_large = I(SampSize) @ M2; 

 

vu2 = I(SampSize*n);  

diagIdxvu2 = do(1,nrow(vu2)*ncol(vu2), ncol(vu2)+1); 

vu2[diagIdxvu2] = obs_ind;             /* set diagonal elements to 1 or 0*/ 

 

 

if CorrStruc = 1 then do;  

  gi_f = j(nfe,SampSize,0);  

end; 

else do; 

  gi_f = j(2*nfe,SampSize,0); 
end; 

 

 

do i = 2 to maxiter until (diff < 0.00001);         

 

 beta_old = beta; 

 

 

 /*Normal mean response*/ 

 mu = X*beta + Z*b;  

 
 mu[loc_missing,] = 0; 

 

 residual = Y - mu;                      

    

   

 /* Independent structure */ 

 if CorrStruc = 1 then do; 

 do i=1 to SampSize; 

    gi_f[,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]); 

 end; 

 sum_g_first = -t(X)*X; 

 end; 
 

 

 

    /* EX/AR1 structure */ 

 if CorrStruc ^= 1 then do; 

 do i=1 to SampSize; 

    gi_f[1:nfe,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]); 

    gi_f[(nfe+1) : (2*nfe),i] = t(X[(1+(i-1)*n):(i*n),])*M2*(residual[(1+(i-1)*n):(i*n),]); 

 end;   

  sum_g_first1 = -t(X)*X; 

 sum_g_first2 = -t(X)*vu2*M_large*vu2*X; 
 sum_g_first = sum_g_first1//sum_g_first2; 

 end; 
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 C2 = gi_f*t(gi_f); 

    

 sum_g_score = gi_f[,+]; 

 

 invC = ginv(C2); 
 

 /*QIF for beta*/ 

 QIF_beta       = t(sum_g_score)*invC*sum_g_score; 

 QIF_first_dev  = t(sum_g_first)*invC*sum_g_score; 

 QIF_second_dev = t(sum_g_first)*invC*sum_g_first; 

 

 

 delta = ginv(QIF_second_dev)*QIF_first_dev; 

/* delta = solve(QIF_second_dev, QIF_first_dev);*/ 

 

 beta = beta - delta; 

 
 diff = sum(abs(beta_old - beta)); 

 

end; 

 

/* Return missing if does not converge */ 

if i = maxiter  then  do;  

beta_new = j(nfe,1,.); cov2=j(nfe,nfe,.); 

end; 

else  do; 

beta_new = beta; cov2=inv(QIF_second_dev); 

end; 
 

 

 

finish betafunction; 

/*********************************************************************************************

******************/ 

 

 

/*********************************************************************************************

********************/ 

 

 
  

/***********************************Part 4: Random effects QIF (given 

beta)********************************/ 

/*This module is used to define and minimize the random effects QIF for a given */ 

/*fixed effects estimate “beta” and a given initial vector of random effects “b” that needs to be updated. This "b" can 

be obtained from previous iteration.*/ 

 

 

/*Input: */ 

/* beta: a given fixed effects estimates; this is a vector of dimension nfe by 1;*/ 

/* b: initial random effects estimates (to be updated) for all subjects; this is a vector of dimension 
(SampSize*nre) by 1;*/ 

/*Output:*/ 

/* b_new: updated random effects estimates for all subjects; this is a vector of dimension (SampSize*nre) by 

1;*/ 
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start bfunction(b_new, b, beta)  

   global(n, SampSize, nfe, nre, Pj, lambda1, lambda2, maxiter, loc_missing, Y, X, Z);  
 

 

do j = 2 to maxiter until (diff < 0.00001);         

 

 b_old = b; 

  

 

 /*normal mean*/ 

 mu = X*beta + Z*b; 

  

    mu[loc_missing,] = 0; 

 
 residual = Y - mu; 

   

 Gr = t(Z)*residual; 

 

 Gr1 = -t(Z)*Z; 

 

 /*Extended score, the QIF for b*/ 

 extend_score = Gr // lambda1*b // lambda2*Pj*b; 

 extend_first_deriv = Gr1 // lambda1*I(SampSize*nre) // lambda2*Pj; 

 /*QIF for b*/ 

 QIF_b = t(extend_score)*extend_score; 
 dh = t(extend_first_deriv)*extend_score; 

 ddh= t(extend_first_deriv)*extend_first_deriv; 

 

 delta = ginv(ddh)*dh; 

/* delta = solve(ddh,dh);*/ 

 

 b = b - delta; 

 

 diff = sum(abs(b_old - b));  

 

end; 

 
/*b_new = shape(b, SampSize,nre);*/ 

/* return missing if not converge */ 

if j = maxiter then  b_new = j(SampSize*nre,1,.);  

else  b_new = b;  

 

finish bfunction; 

/*********************************************************************************************

******************/ 

  

/*********************************************************************************************

******************/ 
 

 

/**************************Part 5. Iterative module to minimize fixed and random effects QIFs defined in parts 

4 and 5***************************/ 

/*This module implements the iterative minimization process of the fixed and random effects QIFs.*/ 
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/*The iteration gives the optimal fixed and random effects estimates when the stopping criteria (see the detail in the 

paper) is satisfied.*/ 

/*The initial vector of random effects is set to be a vector of zeros.*/ 

 

 
/*Input: */ 

/* beta_initial: initial vector of fixed effects; this vector can be obtained with the GLM procedure in SAS;*/ 

 

/*Output:*/ 

/* QIFbeta: optimal fixed effects estimates; this is a vector of dimension nfe by 1;*/ 

/* QIFb: optimal random effects estimates for all subjects; this is of dimension (SampSize*nre) by 1*/ 

/* k: number of iterations required for this minimization;*/ 

 

 

 

start Robust (QIFbeta,QIFb,k,  beta_initial)  

   global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambda1, lambda2, loc_missing, obs_ind, Y, X, 
Z);  

 

 

 beta_new = beta_initial; 

 

 /*initial random effects is set to be a zero vector*/ 

 b_initial = j(SampSize*nre,1,0); 

 b_new = b_initial; 

 

 do k = 2 to maxiter until (diff_sum < 0.00001); 

  beta_old = beta_new; 
  b_old = b_new; 

 

  call bfunction (b_new, b_new,beta_new); 

  call betafunction (beta_new, b_new,beta_new); 

  

  diff_sum = sum(abs(beta_new-beta_old)) + sum(abs(b_new-b_old)); 

 end; 

 

 QIFb = shape(b_new, SampSize, nre); 

 QIFbeta = beta_new; 

 QIFVarCov = cov2; 

 
 

finish Robust; 

/*********************************************************************************************

***************************/ 

 

 

/*********************************Part 6. Cross-validation module used to choose the optimal tuning 

parameter lambda1***********************************/ 

/*This module selects the optimal tuning parameter lambda1 that gives the smallest cross-validation error for a range 

of */ 

/*pre-specified candidates. The candidates are specified by an interval [mini, maxi], with an increment 
"increment".*/ 

 

/**/ 

/*Input:*/ 

/* n_measure: the total number of unique time points recorded in the dataset, this is K in the paper;*/ 
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/* mini: lower bound of the tuning parameter candidates interval;*/ 

/* maxi: upper bound of the tuning parameter candidates interval; */ 

/* increment: increment of the tuning parameter candidates interval [mini, maxi];*/ 

/* Y_design: the response matrix of dimension (SampSize*n) by 1;*/ 

/* X_design: the design matrix for the fixed effects; it is of dimension (SampSize*n) by nfe;*/ 
/* Z_design: the block diagonal design matrix for the random effects; it is of dimension (SampSize*n) by 

nre;*/ 

/* beta_initial: initial vector of fixed effects; this can be obtained with the GLM procedure in SAS;*/ 

 

/*Output:*/ 

/* CVE: a matrix of cross-validation errors for all lambda1 candidates; */ 

/*   the first column contains all lambda1 candidates; the second column contains the cross-validation 

errors corresponding to a specified candidate in the same row;*/ 

/* lambda1_optimal: optimal tuning parameter lambda1;*/ 

 

 

 
 

start CV (CVE,lambda1_optimal,  n_measure, mini,maxi,increment, Y_design,X_design,Z_design, beta_initial) 

       global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambda1, lambda2, loc_missing, obs_ind, Y, X, Z);  

 

 n = n_measure-1; 

 call BaseM (M2, n, CorrStruc); 

 

 PE = j(n_measure,1,0);  

 

 lamdba1value = do(mini,maxi,increment); 

  
 CVE = j(ncol(lamdba1value),2,0); 

 CVE[,1] = t(lamdba1value); 

 

  

 

 do l = 1 to ncol(lamdba1value) until  (stop = 1); 

 

  lambda1 = lamdba1value[,l]; 

  

     

  do r = 1 to n_measure; 

 
   i=1:SampSize; 

   cvk = r+(i-1)*n_measure; 

 

   /*Split the response vector for training and testing */ 

   Y_cvk = Y_design[setdif(1:SampSize*n_measure, cvk)]; 

   Y_pred = Y_design[cvk]; 

 

   /*Split the design matrix X for training and testing */ 

   X_cvk = X_design[setdif(1:SampSize*n_measure, cvk),]; 

   X_pred = X_design[cvk,]; 

 
   /*Split the design matrix Z for training and testing */ 

   Z_cvk = Z_design[setdif(1:SampSize*n_measure, cvk),]; 

   Z_pred = Z_design[cvk,]; 
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   obs_ind = 1-missing(Y_cvk); 

   loc_missing = loc(Y_cvk=.);  

   Y_cvk[loc_missing] = 0; 

 

   loc_missing_pred = loc(Y_pred=.);  
   Y_pred[loc_missing_pred] = 0;  

 

    

   Y = Y_cvk; 

   X = X_cvk; 

   Z = Z_cvk; 

 

   call projection(Pj, X_cvk,Z_cvk); 

 

   call Robust (QIFbeta,QIFb,k,  beta_initial); 

   Pred_Ran_Efft = QIFb; 

   Pred_Fixed_Efft = QIFbeta; 
 

   mu_pred = X_pred*Pred_Fixed_Efft + Z_pred*shape(Pred_Ran_Efft, nre*SampSize, 1); 

 

   mu_pred[loc_missing_pred] = 0; 

  

   PE[r] = t(Y_pred - mu_pred)*(Y_pred - mu_pred); 

 

  end; 

                   

/*Cross-validation error*/ 

  CVE[l,2] = sum(PE)/(n_measure*SampSize); 
 

  if l = 1 then do; 

   diff = 1; stop = 0; 

  end; 

  else do; 

   diff = abs(CVE[l,2]-CVE[(l-1),2]); 

   if (diff <= 0.00001)  then stop = 1; else stop = 0; 

  end; 

  

 end; 

  

if l = ncol(lamdba1value)+1 then ll = ncol(lamdba1value); else ll = l; 
/*Choose the optimal lambda1*/ 

idx = loc( CVE = min(CVE[1:ll,2]) );  

lambda1_optimal = CVE[idx-1];  

 

finish CV; 

 

 

 

/**********************************************************************************/ 

/********************************Fit the depression data*******************************/ 

/**********************************************************************************/ 
 

 

/*See Diaz (2017) for description of the 2-PM model fitted to the depression data and the way the time variable was 

built.*/ 

/*The dataset is available in Hedeker and Gibbons (2006).*/ 
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/*In this last part of the code, the data is handled to make n equal for all subjects,*/  

/*and then the Parts 1 through 6 of this file are called to estimate the fixed effects and predict the random effects.*/ 

 

/*R3 is the dataset*/ 
 

/*hamd: Hamilton score*/ 

/*EDG: Diagnosis (1=endogenous, 0=nonendogenous)*/ 

/*time: Weeks under treatment*/ 

 

 

 

use R3; 

   read all var {hamd} into Y_design; 

   read all var {EDG}  into EDG; 

   read all var {time} into TIME; 

 
 

n=6; SampSize = 66;   

  

CorrStruc = 1; 

/*CorrStruc = 2;*/ 

/*CorrStruc = 3;*/ 

 

nfe = 4;  

nre = 3; 

 

maxiter = 1000000; 
 

lambda2 = log(SampSize); 

/*cs/ind=1, ar1=0.9  */ 

/*lambda1 = 0.9;*/ 

lambda1 = 1; 

 

 

beta_initialvalue = {21.50012019, 1.86645495, -3.97668046, 0.33981694};  

 

 

/*design matrix X*/ 

intcp = j(n*SampSize,1,1); 
TIMESQR = TIME##2; 

week = TIME;  

X_design = intcp || EDG || TIME || TIMESQR;  

  

 

 

/* create block diagonal design matrix Z */ 

Z_old = X_design[,{1,3,4}]; 

Z_design = Z_old[1:n,];         

do i = 2 to SampSize;  

 Z_design = block(Z_design, Z_old[1+(i-1)*n:i*n ,  ]); 
end; 

 

 

 

/*Insert zero to replace missing observations in design matrices and response vector*/ 
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loc_missing_all = loc(Y_design=.);  

loc_missing = loc_missing_all; 

obs_ind = 1-missing(Y_design);  

 

X_design[loc_missing_all,] = 0; 
Z_design[loc_missing_all,] = 0; 

Y_design[loc_missing_all,] = 0; 

 

 

X = X_design; 

Z = Z_design; 

Y = Y_design; 

 

 

call projection(Pj, X,Z); /* This calls Part 1 of this file*/ 

call BaseM (M2, n, CorrStruc); /*This calls Part 2 of this file*/ 

call Robust (QIFbeta,QIFb,k, beta_initialvalue); /*This calls Part 5 of this file; this routine calls Parts 3 and 4*/ 
 

print QIFbeta,QIFb,k; 

 

quit; 
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SAS/IML code implementing the QIF approach.  

 

proc import datafile = 

'/panfs/pfs.local/home/zwang3/paper3/Simulations/n6/intslpmodel2/N100rho4/t/true_response_y.csv'     out = 

work.true_response_y     dbms = CSV; run; 

 

proc import datafile = '/panfs/pfs.local/home/zwang3/paper3/Simulations/n6/intslpmodel2/N100rho4/t/trtdata.csv'             

out = work.true_trt            dbms = CSV; run; 

 

 

 

 

proc iml; 

 
 

/******************************Calculate projection matrix A***********************************/ 

 

start projection(Pj, X,Z); 

 

 /* find (generalized) inverse */ 

 Xinv = ginv(X);  

 /* form projection matrix onto (left) column space */ 

 Px = X*Xinv; 

 A = (I(ncol(Px))-Px)*Z; 

 
 /*using QR decomp to obtain null space of A*/ 

 CALL QR(Q,R,PIV,LINDEP,t(A));  

 /*rank of matrix A*/ 

 ranka = round(trace(ginv(A)*A));  

 /*OBTAIN THE BASIS OF NULL SPACE OF MATRIX a: m-r columns of Q*/ 

 Jnull = Q[ , (ranka+1):ncol(Q)]; 

 /* dimJ=dimension(Jnull); print dimJ;*/ 

 /* calculate projection matrix Pj on J */ 

 Pj = Jnull*ginv(Jnull); 

 

finish projection; 

 
/********************************************************************************************/ 

 

 

 

 

 

/******************************************Base M 

matrtix************************************************/ 

 

start BaseM (M2, n, CorrStruc); 

 
/*CorrStruc = 1 : Independent structure;*/ 

/*CorrStruc = 2 : EX;*/ 

/*CorrStruc = 3 : AR1;*/ 

/*CorrStruc = others : WRONG INDEX;*/ 
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/* independent structure needs 1 M matrix */ 

if CorrStruc = 1 then do; 

 M2 = diag(j(1,n));                /* create diagnol matrix of M2*/ 

end; 

 
 

/* exchangeble structure */ 

if CorrStruc = 2 then do; 

 

 M2 = j(n,n,1);           /* create matrix of M2*/ 

 /* create diagnol matrix of M2 to be 0*/ 

 start SetDiag(A, V);   

     diagIdx = do(1,nrow(A)*ncol(A), ncol(A)+1); 

     A[diagIdx] = V;             

 finish; 

 run SetDiag(M2, 0);  

 
end; 

 

 

 

/* AR(1) structure */ 

if CorrStruc = 3 then do;                           

 

 M2 = j(n,n,0);                              /* create matrix of M2*/ 

 supDiag = T(1:ncol(M2)-1) || T(2:ncol(M2)); /* subscripts for superdiagonal */ 

 subDiag = T(2:ncol(M2)) || T(1:ncol(M2)-1); /* subscripts for subdiagonal */ 

 dim = dimension(M2);                    /* find index of all super- and subdiagonal elements */ 
 idxM2 = sub2ndx(dim, supDiag//subDiag);   

 M2[idxM2] = 1;                              /* assign sub- and superdiagonal to 1 */ 

end; 

 

 

/* other structure not defined*/ 

if CorrStruc ^= {1 2 3} then do; 

print "not defined, wrong correlation index";  M2=0; 

end; 

 

finish BaseM; 

 
/*********************************************************************************************

******************/ 

  

 

 

 

 

/*********************Part 2: module to define random effect QIF function(given 

beta)***************************/ 

 

 
start bfunction(b_new,j, b, beta)  

   global(n, SampSize, nfe, nre, Pj, lambda1, lambda2, maxiter, Y, X, Z);  

 

 

do j = 2 to maxiter until (diff < 0.00001);         
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 b_old = b; 

  

 

 /*vector of mean*/ 
 mu = 1/(1+exp(-(X*beta + Z*b))); 

  

    /*vector of residual*/ 

 residual = Y - mu;  

  

 /*vector of variance*/ 

 varu = mu#(1-mu); 

 

 

 Gr = t(Z)*residual; 

 

 Gr1 = -t(Z)*diag(varu)*Z; 
 

 /*extended score*/ 

 extend_score = Gr // lambda1*b // lambda2*Pj*b; 

 extend_first_deriv = Gr1 // lambda1*I(SampSize*nre) // lambda2*Pj; 

 

 dh = t(extend_first_deriv)*extend_score; 

 ddh= t(extend_first_deriv)*extend_first_deriv; 

 

 delta = ginv(ddh)*dh; 

/* delta = solve(ddh,dh);*/ 

 b = b - delta; 
 

 diff = sum(abs(b_old - b));  

 

end; 

 

/*b_new = shape(b, SampSize,nre);*/ 

/* return missing if no convergence */ 

if j = maxiter then  b_new = j(SampSize*nre,1,.);  

else  b_new = b;  

 

finish bfunction; 

/*********************************************************************************************
******************/ 

  

/*test */ 

/*beta0 = beta_initialvalue;*/ 

/*b0 = j(SampSize*nre,1,1.5); */ 

/*call  bfunction (b_new,j,b0,beta0) ;*/ 

/*print b_new, j;*/ 

/*********************************************************************************************

******************/ 

 

 
/*********************************************************************************************

******************/ 
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/**********************************Part 3: module to define fixed effect QIF (given 

b)**************************************/ 

 

start betafunction (beta_new,cov2, i, b, beta)  

   global (CorrStruc, M2, n, SampSize, nfe, nre, maxiter, Y, X, Z);  
 

 

M_large = I(SampSize) @ M2; 

 

if CorrStruc = 1 then do;  

  gi_f = j(nfe,SampSize,0);  

end; 

else do; 

  gi_f = j(2*nfe,SampSize,0); 

end; 

 

 
do i = 2 to maxiter until (diff < 0.00001);         

 

 beta_old = beta; 

 

 

 /*vector of mean*/ 

 mu = 1/(1+exp(-(X*beta + Z*b))); 

  

    /*vector of residual*/ 

 residual = Y - mu;  

  
 /*vector of variance*/ 

 varu = mu#(1-mu); 

 

 /*A_i matrix*/ 

 vu1 = diag(mu#(1-mu)); 

 /*A_i^(-1/2) matrix*/ 

 vu2 = diag(1/sqrt(mu#(1-mu))); 

 

 

 

 /* independent structure */ 

 if CorrStruc = 1 then do; 
 do i=1 to SampSize; 

    gi_f[,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]); 

 end; 

 sum_g_first = -t(X)*diag(varu)*X; 

 end; 

 

 

 

 

    /* EX/AR1 structure */ 

 if CorrStruc ^= 1 then do; 
 do i=1 to SampSize; 

    gi_f[1:nfe,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]); 

    gi_f[(nfe+1) : (2*nfe),i] = t(X[(1+(i-1)*n):(i*n),])*vu1[(1+(i-1)*n):(i*n),(1+(i-

1)*n):(i*n)]*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n):(i*n)]*M2*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n):(i*n)]*(residual[(1+(i-

1)*n):(i*n),]); 
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 end;   

  sum_g_first1 = -t(X)*diag(varu)*X; 

 sum_g_first2 = -t(X)*diag(varu)*vu2*M_large*vu2*diag(varu)*X; 

 sum_g_first = sum_g_first1//sum_g_first2; 

 end; 
 

 

 

 

 C2 = gi_f*t(gi_f); 

    

 sum_g_score = gi_f[,+]; 

 

 invC = ginv(C2); 

 

 QIF_beta       = t(sum_g_score)*invC*sum_g_score; 

 QIF_first_dev  = t(sum_g_first)*invC*sum_g_score; 
 QIF_second_dev = t(sum_g_first)*invC*sum_g_first; 

 

 

 delta = ginv(QIF_second_dev)*QIF_first_dev; 

/* delta = solve(QIF_second_dev, QIF_first_dev);*/ 

 

 beta = beta - delta; 

 

 diff = sum(abs(beta_old - beta)); 

 

end; 
 

/* return missing if no convergence */ 

if i = maxiter  then  do;  

beta_new = j(nfe,1,.); cov2=j(nfe,nfe,.); 

end; 

else  do; 

beta_new = beta; cov2=ginv(QIF_second_dev); 

end; 

 

 

 

finish betafunction; 
/*********************************************************************************************

******************/ 

 

/*test*/ 

/*b0 = j(SampSize*nre,1,0.1);*/ 

/*beta0 = beta_initialvalue;*/ 

/*call betafunction (beta_new,cov2, i, b0, beta0);*/ 

/*print beta_new,cov2,i;*/ 

/*********************************************************************************************

******************/ 

 
 

 

/********************New Part 4. module iterative minimization to calculate fixed and random effects based on 

Robust QIF***************************/ 
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start Robust (QIFbeta,QIFVarCov,QIFb,k,  beta_initial)  

   global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambda1, lambda2, Y, X, Z);  

 

 

 beta_new = beta_initial; 
 

 /*initial randox effect 0*/ 

 b_initial = j(SampSize*nre,1,0); 

 b_new = b_initial; 

 

 do k = 2 to maxiter until (diff_sum < 0.00001); 

  beta_old = beta_new; 

  b_old = b_new; 

 

  call bfunction (b_new,j, b_new,beta_new); 

  call betafunction (beta_new,cov2,i, b_new,beta_new); 

  
  diff_sum = sum(abs(beta_new-beta_old)) + sum(abs(b_new-b_old)); 

 end; 

 

 QIFb = shape(b_new, SampSize, nre); 

 QIFbeta = beta_new; 

 QIFVarCov = cov2; 

 

 

finish Robust; 

/*********************************************************************************************

***************************/ 
 

 

/*********************************************************************************************

****************/ 

start BIC_Cal (BIC,PART_beta,PART_b, b,beta)  

   global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambda1, lambda2, Y, X, Z);  

 

 

 M_large = I(SampSize) @ M2; 

 

 /*vector of mean*/ 

 mu = 1/(1+exp(-(X*beta + Z*b))); 
  

 /*vector of residual*/ 

 residual = Y - mu;  

  

 /*vector of variance*/ 

 varu = mu#(1-mu); 

 

 /*A_i matrix*/ 

 vu1 = diag(mu#(1-mu)); 

 /*A_i^(-1/2) matrix*/ 

 vu2 = diag(1/sqrt(mu#(1-mu))); 
 

 

 /* independent structure */ 

 if CorrStruc = 1 then do; 

 gi_f = j(nfe,SampSize,0);  
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 do i=1 to SampSize; 

    gi_f[,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]); 

 end; 

 end; 

 
 /* EX/AR1 structure */ 

 if CorrStruc ^= 1 then do; 

 gi_f = j(2*nfe,SampSize,0); 

 do i=1 to SampSize; 

    gi_f[1:nfe,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]); 

    gi_f[(nfe+1) : (2*nfe),i] = t(X[(1+(i-1)*n):(i*n),])*vu1[(1+(i-1)*n):(i*n),(1+(i-

1)*n):(i*n)]*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n):(i*n)]*M2*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n):(i*n)]*(residual[(1+(i-

1)*n):(i*n),]); 

 end;   

 end; 

 

 
 C2 = gi_f*t(gi_f); 

    

 sum_g_score = gi_f[,+]; 

 

 invC = ginv(C2); 

 

 PART_beta = t(sum_g_score)*invC*sum_g_score; 

 

 /*PJB = Pj*b; print PJB; print CovPjb;*/ 

 

 CovPjb = cov(Pj*b);  
 PART_b = lambda2*( t(Pj*b)*ginv(CovPjb)*(Pj*b) ); 

 

 BIC = PART_beta + PART_b; 

 

 /*print BIC, PART_beta, PART_b;*/ 

  

 

finish BIC_Cal; 

 

 

 

 
/***********************************fit QIF************************************/ 

 

use true_response_y; 

   read all var _ALL_ into Y_design_all; 

  

use true_trt; 

   read all var _ALL_ into true_trt; 

 

 

 

 
n=7;  

 

SampSize=100; 
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/*total simulation number*/ 

w=ncol(Y_design_all); 

 

/*2. fit QIF*/ 

 
CorrStruc = 1; 

 

nfe = 4;  

nre = 2; 

 

maxiter = 1000000; 

 

lambda2 = log(SampSize);  

 

 

 

 
/*form dataset and fit logistic fixed models for initial values of beta*/ 

 

/*time and sqrt_time*/ 

time = {0,1,2,3,4,5,6}; 

time_vec = shape(repeat(time,SampSize),SampSize*n,1); 

 

sqrt_time = sqrt(time); 

sqrt_time_vec = shape(repeat(sqrt_time,SampSize),SampSize*n,1);;  

  

ID = shape(t(repeat(1:SampSize,n)),SampSize*n,1); 

 
dataset1 = ID||time_vec||sqrt_time_vec; 

/*print dataset1;*/ 

 

dataset2 = repeat(dataset1,w); 

/*print dataset2;*/ 

 

sim = shape(t(repeat(1:w,SampSize*n)),SampSize*n*w,1); 

/*print sim;*/ 

 

Y_vec = colvec(t(Y_design_all)); 

 

trt_vec = colvec(t(true_trt)); 
 

dataset = sim||Y_vec||trt_vec||dataset2; 

/*print dataset;*/ 

 

/** create data set **/ 

varNames = {"sim","Y","trt","ID","time","sqrt_time"}; 

create MyData from dataset [colname=varNames];  

append from dataset;         

close MyData;  

 

 
/* 1. fixed-effects logistic regression model for initial value of beta*/ 

submit MyData; 

ods output ParameterEstimates=GLM_fit; 

PROC LOGISTIC DATA=MyData DESCENDING;  

BY sim; 
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MODEL Y = trt sqrt_time trt*sqrt_time ; 

RUN; 

endsubmit; 

 

 
/*output fiexed effects as initial beta*/ 

use GLM_fit; 

 read all var {Estimate} into beta_initial; 

 

 

 

beta_initial_vec = t(shape(t(beta_initial),w,nfe)); 

 

print beta_initial, beta_initial_vec; 

 

 

 
/****************************************************************************/ 

 

/*simulation index*/ 

/*sim_idx=1;*/ 

 

 

/*store optimal lambda1*/ 

lambda1_optimal_vec = j(w,1); 

 

/*store random effects*/ 

QIF_itp = j(SampSize,w,1); 
QIF_slp = j(SampSize,w,1); 

 

 

do sim_idx=1 to w; 

 

 

 

 /*************************************/ 

 /*design matrix X*/ 

 

 intcp = j(n*SampSize,1,1);  

  
 trt_col = true_trt[,sim_idx]; 

 

 txswk = trt_col#sqrt_time_vec; 

 

 X_design = intcp || trt_col || sqrt_time_vec || txswk;  

  

 

 /*design matrix Z*/ 

    Zi = repeat(1,n)||sqrt_time; 

 Z_design = I(SampSize)@Zi; 

 
 

 beta_initialvalue = beta_initial_vec[,sim_idx]; 

 

 Y_design = Y_design_all[,sim_idx]; 

 

146



 

147 

 /*print X_design, Z_design, Y_design, beta_initialvalue;*/ 

 

 

 X = X_design; 

 Z = Z_design; 
 Y = Y_design; 

 

 

 /*********select lambda1 by the BIC*********/ 

 

 /*candidate lambda1 values*/ 

/* lambda1_values = do(0.1,lambda2,0.3);*/ 

    lambda1_values = log(n)|| (log(n)+lambda2)/2 ||lambda2; 

 

 BIC_MATRIX = j(ncol(lambda1_values),2,0); 

 

 
 do l = 1 to ncol(lambda1_values); 

 

  lambda1 = lambda1_values[,l]; 

 

  call projection(Pj, X,Z); 

  call BaseM (M2, n, CorrStruc); 

  call Robust (QIFbeta,QIFVarCov,QIFb,k,  beta_initialvalue); 

 

  b_test = shape(QIFb, SampSize*nre,1); 

  beta_test = QIFbeta; 

  call BIC_Cal(BIC,PART_beta,PART_b, b_test,beta_test); 
 

 

  BIC_MATRIX[l,1] = lambda1; 

  BIC_MATRIX[l,2] = BIC; 

 

/*  print QIFbeta,QIFVarCov,QIFb,k,BIC;*/ 

 

 

 end; 

 

 print BIC_MATRIX; 

 
 /*choose the optimal lambda1*/ 

 idx = loc( BIC_MATRIX = min(BIC_MATRIX[,2]) );  

 lambda1_optimal = BIC_MATRIX[idx-1];  

 

/* print lambda1_optimal;*/ 

 

 lambda1_optimal_vec[sim_idx] = lambda1_optimal;  

 

 

 /*fit QIF with the optimal lambda1*/ 

 lambda1 = lambda1_optimal; 
 

 call projection(Pj, X,Z); 

 call BaseM (M2, n, CorrStruc); 

 call Robust (QIFbeta,QIFVarCov,QIFb,k,  beta_initialvalue); 
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/* b_test = shape(QIFb, SampSize*nre,1);*/ 

/* beta_test = QIFbeta;*/ 

/* call BIC_Cal(BIC,PART_beta,PART_b, b_test,beta_test);*/ 

 

/* print QIFbeta,QIFVarCov,QIFb,k,BIC;*/ 
 

 

 /*output QIF_random effects*/ 

 QIF_itp[,sim_idx] = QIFb[,1]; 

 QIF_slp[,sim_idx] = QIFb[,2]; 

 

  

 

 

end; 

 

 
 

/*print QIF_itp,QIF_slp;*/ 

print lambda1_optimal_vec; 

 

 

/***********************************************/ 

 

create QIF_itp from QIF_itp;  

append from QIF_itp;         

close QIF_itp;  

 
 

create QIF_slp from QIF_slp;  

append from QIF_slp;         

close QIF_slp;  

 

 

 

proc export data=QIF_itp  

outfile="/panfs/pfs.local/home/zwang3/paper3/Simulations/n6/intslpmodel2/N100rho4/t/qif_rnd_intercept.csv" 

dbms=csv replace; run; 

 

proc export data=QIF_slp  
outfile="/panfs/pfs.local/home/zwang3/paper3/Simulations/n6/intslpmodel2/N100rho4/t/qif_rnd_slope.csv" 

dbms=csv replace; run; 
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Figure S1. Scatterplot, histogram and normal Q-Q plot of conditional residuals from the random 

effects linear model for the depression data.  
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Figure S2. Histograms and kernel densities of EB predictors of random effects for 66 patients with 

depression under imipramine treatment. (A) Random intercept predictors. (B) Predictors of the 

random slope of time. (C) Predictors of the random slope of time square. 
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Figure S3. Selected 𝑝 × 100% percentiles of the probability distribution of individual benefits of 

imipramine treatment as functions of treatment duration in weeks, for patients with endogenous 

diagnosis with 𝑝 =0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.90, 0.95. (A) Percentiles from Eq. (3) 

which assumes normality for the random effects. (B) Sample percentiles of EB predictors of 

individual benefits. 
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SAS/IML code implementing the graphical approach and calculating Cramer-von Mises statistic 

for simulation scenario 3.  

 

proc iml; 

 

start cal (CvM,Y,EDG, SampSize); 

 

/*1. simulate data*/ 

 

/*SampSize = 100; */ 

n=6;  target = 7;  nfe = 4;  nre = 3;  TIMEPOINT = 4;  df=13; 

 

 

 

 
/*binary x_i*/ 

x_EDG = randfun(SampSize, "Bernoulli", 0.6);  

/*print x_EDG;*/ 

 

EDG = colvec(repeat(x_EDG,1,n)); 

/*print EDG;*/ 

 

 

 

 

/*fixed effect*/ 
beta = {21.4,1.92,-3.97,0.35};  

/*beta = {21.4,1.92,-6.97,0.35}; */ 

 

/*Mixture*/ 

/*beta = {22.4,1.92,-3.97,0.35}; */ 

 

 

 

 

time_i = {0,0,1,2,3,4}; 

timesqr_i = time_i##2;  

/*print timesqr_i;*/ 
 

time = shape(repeat(time_i,SampSize),SampSize*n,1); 

timesqr = shape(repeat(timesqr_i,SampSize),SampSize*n,1) ; 

 

/*design matrix X*/ 

intcp = j(SampSize*n,1,1);   

X = intcp || EDG || time || timesqr;  

X_design = X; 

/*print X;*/ 

 

/*design matrix Z*/ 
Zi = repeat(1,n)||time_i||timesqr_i; 

/*Zi = repeat(1,n)||time_i; */ 

Z = I(SampSize)@Zi; 
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Z_design = Z; 

/*print Z;*/ 

 

 

 
/*error term*/ 

vc = 10*I(n); 

/*print vc;*/ 

 

Mean= repeat(0,n); 

eps = RandNormal(SampSize, Mean, vc); 

eps = shape(eps,SampSize*n,1); 

/*print eps;*/ 

 

/*************************************************sim 

1*******************************************************/ 

 
/*MVN/T*/ 

/*mu = {0  0  0};*/ 

/*cov = {10.4  0.279  -0.341, 0.279  13.06  -2.466, -0.341  -2.466  0.581}; */ 

/*rnd = RANDNORMAL(SampSize, mu, cov);*/ 

  

/*cov_t = ((df-2)/df)*cov;*/ 

/*rnd = RandMVT(SampSize, df, mu, cov_t);*/ 

/*print cov_t;*/ 

 

 

/*********************************************************************************************
***********/ 

 

 

/*************************************************sim 

2*******************************************************/ 

 

/*MVN/T*/ 

mu = {0  0  0}; 

cov = {10.4  0.279  -0.341, 0.279  13.06  -2.466, -0.341  -2.466  0.581};   

cov_t = (df/(df-2))*cov; 

/*print cov_t;*/ 

 
/*rnd = RandMVT(SampSize, df, mu, cov_t);*/ 

 

rnd = RANDNORMAL(SampSize, mu, cov_t); 

 

 

 

/*********************************************************************************************

***********/ 

 

rndA = shape(rnd, SampSize*nre,1); 

 
  

Y = X*beta+Z*rndA+eps; 

/*print Y;*/ 
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/*Create ID vectors*/ 

ID = colvec(repeat(T(1:SampSize),1,n)) ; 

/*print ID;*/ 

 

 
dataset = ID||Y||EDG||time; 

/*print dataset;*/ 

 

 

 

create MyData from dataset [colname={"id", "Y", "EDG", "time"}]; 

append from dataset; 

close MyData; 

 

/********************************************************/ 

 

/*2. fit mixed*/ 
submit MyData; 

ods listing close; 

ods output SolutionF = fixed  SolutionR = rnds  CovParms=CovP; 

proc mixed data=MyData method=ml COVTEST; 

   class id; 

      model Y = EDG time time*time / solution cl covb; 

   random intercept time time*time / SUB=id TYPE=un SOLUTION G GCORR V; 

run; 

ods listing; 

endsubmit; 

/********************************************************/ 
 

 

 

/*3. calculate CvM statistic*/ 

 

use rnds; 

    read all into rnds[colname=varNames]; 

close; 

 

intercept_idx= do(1,SampSize*nre,nre);  

/*print intercept_idx;*/ 

time_idx     = do(2,SampSize*nre,nre);  
/*print time_idx;*/ 

timesqr_idx  = do(3,SampSize*nre,nre);  

/*print timesqr_idx;*/ 

 

EB_intercept= rnds[intercept_idx,"Estimate"]; 

EB_time     = rnds[time_idx,"Estimate"]; 

EB_timesqr  = rnds[timesqr_idx,"Estimate"]; 

 

/*print EB_intercept,EB_time,EB_timesqr;*/ 

 

use Fixed;  
 read all var {Estimate} into EB_FIXED; 

close; 

 

use CovP;   

 read all var {Estimate} into CovPars; 

159



 

160 

close; 

 

 

 

 
 

 

resid_var = CovPars[nrow(CovPars)]; 

/*print resid_var;*/ 

 

 

EB_RND = EB_intercept||EB_time||EB_timesqr; 

 

shape_EB_RND = shape(EB_RND,SampSize*nre,1); 

 

mu = X_design*EB_FIXED + Z_design*shape_EB_RND; 

 
/*print mu;*/ 

 

Benefit = probnorm( (target - (X_design*EB_FIXED + Z_design*shape_EB_RND)) / sqrt(resid_var) ) ;  

 

Benefit_all = id || EDG || time || Benefit; 

 

/*print Benefit_all;*/ 

 

/*********************************************************************************************

*************************/ 

/**********************************GROUP THE BENEFITS by x_i and at 
TIMEPOINT******************************************/ 

 

edg_rows_t   = loc((Benefit_all[,2]=1) & (Benefit_all[,3]=TIMEPOINT)); 

noedg_rows_t = loc((Benefit_all[,2]=0) & (Benefit_all[,3]=TIMEPOINT)); 

 

 

e_ct   = countn(edg_rows_t) ;   

NOe_ct = countn(noedg_rows_t) ;  

/*print e_ct, NOe_ct;*/ 

  

/*obtain EB benefits at TIMEPOINT*/ 

edg_t   = Benefit_all[edg_rows_t,ncol(Benefit_all)]; 
noedg_t = Benefit_all[noedg_rows_t,ncol(Benefit_all)]; 

/*print edg_t;*/ 

/*print noedg_t;*/ 

   

/****************************************exclude benefits 0 and 

1**********************************************/ 

 

smallCutoff = 1e-10; 

 

LargeCutoff = 1 - smallCutoff; 

 
idx_e =  loc((edg_t < smallCutoff ) | (edg_t > LargeCutoff)); 

idx_ne = loc((noedg_t < smallCutoff ) | (noedg_t > LargeCutoff)); 

 

/*print idx_e,idx_ne ;*/ 
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if ncol(idx_e)>0 then do; 

   edg_t = edg_t[setdif(1:nrow(edg_t), idx_e)]; 

   e_ct  = countn(edg_t) ;   

end; 
else print "There are no positive values"; 

 

 

if ncol(idx_ne)>0 then do; 

   noedg_t = noedg_t[setdif(1:nrow(noedg_t),idx_ne)]; 

   NOe_ct  = countn(noedg_t) ; 

end; 

else print "There are no positive values"; 

 

 

  

/*print e_ct, NOe_ct;*/ 
/*print edg_t, noedg_t;*/ 

 

 

/*********************************************************************************************

*************************/ 

 

 

 

/*mean function of time and binary covariates*/ 

start Mut (LB, x_EDG, t, Fixed_Efft); 

 
 tsqr = t*t; 

 X_LB = 1 || x_EDG || t || tsqr; 

 LB = X_LB*Fixed_Efft; 

 

finish Mut;  

 

 

  

 

 

 

/*variance function of time and binary covariates*/ 
start Vart (LB_VAR, t, Varparms); 

 

 tsqr = t*t; 

 tcub = t*t*t; 

 tfor = t*t*t*t; 

 Xvar_LB = 1 || 2*t || tsqr || 2*tsqr || 2*tcub || tfor; 

 LB_VAR = Xvar_LB*Varparms[1:(nrow(Varparms)-1)]; 

 

finish Vart; 

 

 
 

 

 

/*CDF of benefits*/ 

start CDF_b (F_z_cdf,  x_EDG,Fixed_Efft,Varparms, t, z, target); 
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 call Mut (LB, x_EDG, t, Fixed_Efft); 

 sigma_sqr = Varparms[nrow(Varparms)]; 

 mean_t = (target - LB)/sqrt(sigma_sqr); 
/* print mean_t;*/ 

 

 call Vart (LB_VAR, t,Varparms); 

/* print LB_VAR;*/ 

 

 gamma_sqr = LB_VAR/sigma_sqr; 

/* print gamma_sqr;*/ 

 

 F_z = quantile('NORMAL',z); 

 F_z_t = (F_z - mean_t)/sqrt(gamma_sqr); 

 F_z_cdf = cdf('NORMAL',F_z_t); 

/* print F_z, F_z_t, F_z_cdf;*/ 
 

finish CDF_b; 

 

 

 

 

 

/*Cramer-von Mises statistic*/ 

start CRM_stat (CRM, dataset); 

 

/*obtain order statistics by sorting the CDFs*/ 
 call sort(dataset, 1); 

 

 cons = j(nrow(dataset),1,0); 

 do i = 1 to nrow(dataset); 

  cons[i] = (2*i-1)/ (2*nrow(dataset)); 

 end; 

/* cons1 = dataset - cons;*/ 

/* cons2 = (dataset - cons)##2;*/ 

/* cons3 = sum((dataset - cons)##2);*/ 

 

 CRM = 1/(12*nrow(dataset)*nrow(dataset)) + 1/(nrow(dataset)) * sum((dataset - cons)##2); 

/* print cons, cons1, cons2, cons3, CRM;*/ 
 

finish CRM_stat; 

 

 

 

 

/*********************************************************************************************

*************************/ 

  

 

 
 

edg_t_cdf = j(nrow(edg_t), 1, 0); 

do i = 1 to nrow(edg_t); 

 call CDF_b (F_z_cdf,  1,EB_FIXED,CovPars, TIMEPOINT, edg_t[i],target); 

 edg_t_cdf[i] = F_z_cdf; 
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end; 

 

 

noedg_t_cdf = j(nrow(noedg_t), 1, 0); 

do i = 1 to nrow(noedg_t); 
 call CDF_b (F_z_cdf,  0,EB_FIXED,CovPars, TIMEPOINT, noedg_t[i],target); 

 noedg_t_cdf[i] = F_z_cdf; 

end; 

 

 

/*print edg_t_cdf, noedg_t_cdf;*/ 

  

 

 

/*********************************************************************************************

*************************/ 

/*Cramer-von Mises statistic*/ 
 

call CRM_stat (edg_CRM, edg_t_cdf); 

call CRM_stat (noedg_CRM, noedg_t_cdf); 

/*print edg_CRM, noedg_CRM;*/ 

 

 

CvM = (e_ct*edg_CRM + NOe_ct*noedg_CRM)/(e_ct+NOe_ct); 

/*print CvM;*/ 

 

finish cal; 

 
 

/*********************************************************************************************

*************************/ 

 

sim=500; 

 

store = j(sim,1); 

Y_matrix = j(100*6,sim); 

EDG_matrix = j(100*6,sim); 

 

 

do j=1 to sim; 
 

 call cal(CvM,Y,EDG,100); 

 

 store[j]=CvM; 

 Y_matrix[,j]=Y; 

 EDG_matrix[,j]=EDG; 

 

end; 

 

mean_t = mean(store); 

 
print store,mean_t; 

 

/*print Y_matrix;*/ 

/*print EDG_matrix;*/ 
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/*choose the row/column of Y that has the smallest CvM*/ 
dd = abs(store-mean_t); 

 

lo = loc (dd = min(dd)); 

 

if ncol(lo)>1 then do; 

   location = lo[1]; 

end; 

else location = lo; 

 

diff = dd[location];  

 

CvM_diff = store[location];  
print CvM_diff; 

 

Y = Y_matrix[,location]; 

EDG = EDG_matrix[,location]; 

 

 

/*********************************************************************************************

*************************/ 

/*********************************************************************************************

*************************/ 

/*************************************************Plot QQ plot 
********************************************************/ 

/*********************************************************************************************

*************************/ 

/*********************************************************************************************

*************************/ 

 

 

 

/*1. formulate data*/ 

 

SampSize = 100; n=6;  target = 7;  nfe = 4;  nre = 3;  TIMEPOINT = 4;    

 
 

 

 

time_i = {0,0,1,2,3,4}; 

timesqr_i = time_i##2;  

/*print timesqr_i;*/ 

 

time = shape(repeat(time_i,SampSize),SampSize*n,1); 

timesqr = shape(repeat(timesqr_i,SampSize),SampSize*n,1) ; 

 

/*design matrix X*/ 
intcp = j(SampSize*n,1,1);   

X = intcp || EDG || time || timesqr;  

X_design = X; 

/*print X;*/ 
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/*design matrix Z*/ 

Zi = repeat(1,n)||time_i||timesqr_i; 

/*Zi = repeat(1,n)||time_i; */ 

Z = I(SampSize)@Zi; 

Z_design = Z; 
/*print Z;*/ 

 

 

 

/*Create ID vectors*/ 

ID = colvec(repeat(T(1:SampSize),1,n)) ; 

/*print ID;*/ 

 

 

dataset = ID||Y||EDG||time; 

/*print dataset;*/ 

 
 

 

create MyData from dataset [colname={"id", "Y", "EDG", "time"}]; 

append from dataset; 

close MyData; 

 

/********************************************************/ 

 

/*2. fit mixed*/ 

submit MyData; 

ods listing close; 
ods output SolutionF = fixed  SolutionR = rnds  CovParms=CovP; 

proc mixed data=MyData method=ml COVTEST; 

   class id; 

      model Y = EDG time time*time / solution cl covb; 

   random intercept time time*time / SUB=id TYPE=un SOLUTION G GCORR V; 

run; 

ods listing; 

endsubmit; 

/********************************************************/ 

 

 

 
/*3. calculate CvM statistic*/ 

 

use rnds; 

    read all into rnds[colname=varNames]; 

close; 

 

intercept_idx= do(1,SampSize*nre,nre);  

/*print intercept_idx;*/ 

time_idx     = do(2,SampSize*nre,nre);  

/*print time_idx;*/ 

timesqr_idx  = do(3,SampSize*nre,nre);  
/*print timesqr_idx;*/ 

 

EB_intercept= rnds[intercept_idx,"Estimate"]; 

EB_time     = rnds[time_idx,"Estimate"]; 

EB_timesqr  = rnds[timesqr_idx,"Estimate"]; 
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/*print EB_intercept,EB_time,EB_timesqr;*/ 

 

use Fixed;  

 read all var {Estimate} into EB_FIXED; 
close; 

 

use CovP;   

 read all var {Estimate} into CovPars; 

close; 

 

 

 

 

 

 

resid_var = CovPars[nrow(CovPars)]; 
/*print resid_var;*/ 

 

 

EB_RND = EB_intercept||EB_time||EB_timesqr; 

 

shape_EB_RND = shape(EB_RND,SampSize*nre,1); 

 

mu = X_design*EB_FIXED + Z_design*shape_EB_RND; 

 

/*print mu;*/ 

 
Benefit = probnorm( (target - (X_design*EB_FIXED + Z_design*shape_EB_RND)) / sqrt(resid_var) ) ;  

 

Benefit_all = id || EDG || time || Benefit; 

 

/*print Benefit_all;*/ 

 

/*********************************************************************************************

*************************/ 

 

 

 

/*mean function of time and binary covariates*/ 
start Mut (LB, x_EDG, t, Fixed_Efft); 

 

 tsqr = t*t; 

 X_LB = 1 || x_EDG || t || tsqr; 

 LB = X_LB*Fixed_Efft; 

 

finish Mut;  

 

 

  

 
 

 

/*variance function of time and binary covariates*/ 

start Vart (LB_VAR, t, Varparms); 
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 tsqr = t*t; 

 tcub = t*t*t; 

 tfor = t*t*t*t; 

 Xvar_LB = 1 || 2*t || tsqr || 2*tsqr || 2*tcub || tfor; 

 LB_VAR = Xvar_LB*Varparms[1:(nrow(Varparms)-1)]; 
 

finish Vart; 

 

 

 

 

 

/*CDF of benefits*/ 

start CDF_b (F_z_cdf,  x_EDG,Fixed_Efft,Varparms, t, z, target); 

 

 

 call Mut (LB, x_EDG, t, Fixed_Efft); 
 sigma_sqr = Varparms[nrow(Varparms)]; 

 mean_t = (target - LB)/sqrt(sigma_sqr); 

/* print mean_t;*/ 

 

 call Vart (LB_VAR, t,Varparms); 

/* print LB_VAR;*/ 

 

 gamma_sqr = LB_VAR/sigma_sqr; 

/* print gamma_sqr;*/ 

 

 F_z = quantile('NORMAL',z); 
 F_z_t = (F_z - mean_t)/sqrt(gamma_sqr); 

 F_z_cdf = cdf('NORMAL',F_z_t); 

/* print F_z, F_z_t, F_z_cdf;*/ 

 

finish CDF_b; 

 

 

 

 

 

/*Cramer-von Mises statistic*/ 

start CRM_stat (CRM, dataset); 
 

/*obtain order statistics by sorting the CDFs*/ 

 call sort(dataset, 1); 

 

 cons = j(nrow(dataset),1,0); 

 do i = 1 to nrow(dataset); 

  cons[i] = (2*i-1)/ (2*nrow(dataset)); 

 end; 

/* cons1 = dataset - cons;*/ 

/* cons2 = (dataset - cons)##2;*/ 

/* cons3 = sum((dataset - cons)##2);*/ 
 

 CRM = 1/(12*nrow(dataset)*nrow(dataset)) + 1/(nrow(dataset)) * sum((dataset - cons)##2); 

/* print cons, cons1, cons2, cons3, CRM;*/ 

 

finish CRM_stat; 
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/*quantile function of benefits*/ 

start quantile_B (B_p_t,  x_EDG,Fixed_Efft,Varparms, t, p, target); 
 

 call Mut (LB, x_EDG, t, Fixed_Efft); 

   

 sigma_sqr = Varparms[nrow(Varparms)]; 

 

 mean_t = (target - LB)/sqrt(sigma_sqr); 

/* print mean_t;*/ 

 

 call Vart (LB_VAR, t,Varparms); 

/* print LB_VAR;*/ 

 

 gamma_sqr = LB_VAR/sigma_sqr; 
/* print gamma_sqr;*/ 

 

 q_p   = quantile('NORMAL', p); 

 q_p_t = sqrt(gamma_sqr)*q_p + mean_t; 

 B_p_t = cdf('NORMAL',q_p_t); 

 

/* print q_p, q_p_t, B_p_t;*/ 

 

finish quantile_B; 

 

/*********************************************************************************************
*************************/ 

  

/**********************************GROUP THE BENEFITS by x_i and at 

TIMEPOINT******************************************/ 

 

edg_rows_t   = loc((Benefit_all[,2]=1) & (Benefit_all[,3]=TIMEPOINT)); 

noedg_rows_t = loc((Benefit_all[,2]=0) & (Benefit_all[,3]=TIMEPOINT)); 

 

 

e_ct   = countn(edg_rows_t) ;   

NOe_ct = countn(noedg_rows_t) ;  

/*print e_ct, NOe_ct;*/ 
  

/*obtain EB benefits at TIMEPOINT*/ 

edg_t   = Benefit_all[edg_rows_t,ncol(Benefit_all)]; 

noedg_t = Benefit_all[noedg_rows_t,ncol(Benefit_all)]; 

/*print edg_t;*/ 

/*print noedg_t;*/ 

   

/****************************************exclude benefits 0 and 

1**********************************************/ 

 

smallCutoff = 1e-10; 
 

LargeCutoff = 1 - smallCutoff; 

 

idx_e =  loc((edg_t < smallCutoff ) | (edg_t > LargeCutoff)); 

idx_ne = loc((noedg_t < smallCutoff ) | (noedg_t > LargeCutoff)); 
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/*print idx_e,idx_ne ;*/ 

 

 

if ncol(idx_e)>0 then do; 
   edg_t = edg_t[setdif(1:nrow(edg_t), idx_e)]; 

   e_ct  = countn(edg_t) ;   

end; 

else print "There are no positive values"; 

 

 

if ncol(idx_ne)>0 then do; 

   noedg_t = noedg_t[setdif(1:nrow(noedg_t),idx_ne)]; 

   NOe_ct  = countn(noedg_t) ; 

end; 

else print "There are no positive values"; 

 
 

  

/*print e_ct, NOe_ct;*/ 

/*print edg_t, noedg_t;*/ 

 

 

edg_t_cdf = j(nrow(edg_t), 1, 0); 

do i = 1 to nrow(edg_t); 

 call CDF_b (F_z_cdf,  1,EB_FIXED,CovPars, TIMEPOINT, edg_t[i],target); 

 edg_t_cdf[i] = F_z_cdf; 

end; 
 

 

noedg_t_cdf = j(nrow(noedg_t), 1, 0); 

do i = 1 to nrow(noedg_t); 

 call CDF_b (F_z_cdf,  0,EB_FIXED,CovPars, TIMEPOINT, noedg_t[i],target); 

 noedg_t_cdf[i] = F_z_cdf; 

end; 

 

 

/*print edg_t_cdf, noedg_t_cdf;*/ 

  

 
 

/*********************************************************************************************

*************************/ 

/*Cramer-von Mises statistic*/ 

 

call CRM_stat (edg_CRM, edg_t_cdf); 

call CRM_stat (noedg_CRM, noedg_t_cdf); 

/*print edg_CRM, noedg_CRM;*/ 

 

 

CvM = (e_ct*edg_CRM + NOe_ct*noedg_CRM)/(e_ct+NOe_ct); 
print CvM; 

/*********************************************************************************************

*************************/ 
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/*********************************************************************************************

***************************/ 
/*Part 2. QQplot of benefits at TIMEPOINT*/ 

/*******************************************GROUP THE BENEFITS by 

x_i*********************************************/ 

 

 

e_rows   = loc((Benefit_all[,2]=1)); 

NOe_rows = loc((Benefit_all[,2]=0)); 

 

 

/*count # of subjects in each subgroups*/ 

e_ct1   = countn(e_rows)/n;   

NOe_ct1 = countn(NOe_rows)/n;  
/*print e_ct1, NOe_ct1;*/ 

  

 

edg_pt    = Benefit_all[e_rows,]; 

nonedg_pt = Benefit_all[NOe_rows,]; 

/*print edg_pt,nonedg_pt;*/ 

  

/*********************************************************************************************

*************************/ 

 

 
 

/******************************calculate empirical quantiles of the 

benefit***************************************/ 

 

 

start cal_quant (q_EB,  data,samp); 

 

 week = {0,0,1,2,3,4}; 

 p = t(do((1-0.5)/Samp,(Samp-0.5)/Samp,1/Samp)); 

 

 data_q_EB  = j(nrow(week),nrow(p),0); 

 nrowdata = nrow(data); 
 

 do i = 1 to nrow(week); 

 

  time_index = do(i,nrowdata,nrow(week)); 

/*  obtain benefits for time "time_index"*/ 

  temp_EB  = data[time_index,ncol(data)]; 

 

  call qntl(temp1, temp_EB, p); 

  data_q_EB[i,]  = t(temp1); 

   

  q_EB = week || data_q_EB; 
 

 end; 

 

finish cal_quant; 
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/**********************************************************************************/ 

/*1*/ 

call cal_quant (edg_pt_EB, edg_pt,e_ct1); 

/*print edg_pt_EB;*/ 
 

 

/**********************************************************************************/ 

/*2*/ 

call cal_quant (nonedg_pt_EB, nonedg_pt,NOe_ct1); 

/*print nonedg_pt_EB;*/ 

 

 

 

/**********************************************************************************/ 

/**********************************************************************************/ 

/*empirical quantiles at TIMEPOINT*/ 
 

edg_pt_EBq     = t(edg_pt_EB[TIMEPOINT+2,2:ncol(edg_pt_EB)]); 

 

nonedg_pt_EBq  = t(nonedg_pt_EB[TIMEPOINT+2,2:ncol(nonedg_pt_EB)]); 

 

/*print edg_pt_EBq, nonedg_pt_EBq;*/ 

  

 

/***************************calculate theoretical quantiles of the benefit using quantile 

function*************************************/ 

/***********************theoretical benefit quantiles for combinations of 
schiz_canna_percentile_time****************************/ 

 

 

 

tii = t(do(1,4,1));  

 

/*combinations for EDG_percentile_time*/ 

percent_EDG  = t(do((1-0.5)/e_ct1,(e_ct1-0.5)/e_ct1,1/e_ct1));   

combo_infor_EDG = expandGrid(1, percent_EDG, tii);  

B_q_EDG = j(nrow(combo_infor_EDG),1,0); 

 

/*combinations for NOEDG_percentile_time*/  
percent_NOEDG = t(do((1-0.5)/NOe_ct1,(NOe_ct1-0.5)/NOe_ct1,1/NOe_ct1));   

combo_infor_NOEDG = expandGrid(0, percent_NOEDG, tii);   

B_q_NOEDG = j(nrow(combo_infor_NOEDG),1,0); 

 

 

 

do i=1 to nrow(combo_infor_EDG); 

 

 EDG_point  = combo_infor_EDG[i,1]; 

 time_point1= combo_infor_EDG[i,3]; 

 p_point1   = combo_infor_EDG[i,2]; 
  

 call quantile_B(B_p_t_E,  EDG_point,EB_FIXED,CovPars,time_point1,p_point1,target); 

 B_q_EDG[i] = B_p_t_E; 

   

end; 
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do j=1 to nrow(combo_infor_NOEDG); 

 
 NOEDG_point = combo_infor_NOEDG[j,1]; 

 time_point2 = combo_infor_NOEDG[j,3]; 

 p_point2    = combo_infor_NOEDG[j,2]; 

  

 call quantile_B(B_p_t_NOE,  NOEDG_point,EB_FIXED,CovPars,time_point2,p_point2,target); 

 B_q_NOEDG[j] = B_p_t_NOE; 

   

end; 

 

 

quan_df_E   = combo_infor_EDG   || B_q_EDG;  

quan_df_NOE = combo_infor_NOEDG || B_q_NOEDG;  
 

/*theoretical quantiles for each subgroup AT TIME POINT TIMEPOINT*/ 

EDG_tqrow   = loc(quan_df_E[,3]=TIMEPOINT); 

noEDG_tqrow = loc(quan_df_NOE[,3]=TIMEPOINT); 

 

 

EDG_tq   = quan_df_E[EDG_tqrow,ncol(quan_df_E)]; 

noEDG_tq = quan_df_NOE[noEDG_tqrow,ncol(quan_df_NOE)]; 

  

 

/****************************************************************************************/ 
/****************************************QQplot******************************************/ 

/*******************************Combine all into one*************************************/ 

df=13; 

 

EDG_quantile   = repeat(0,nrow(EDG_tq))  || repeat(df,nrow(EDG_tq))  || repeat(1,nrow(EDG_tq))  || EDG_tq   || 

edg_pt_EBq; 

noEDG_quantile = repeat(0,nrow(noEDG_tq))|| repeat(df,nrow(noEDG_tq))|| repeat(2,nrow(noEDG_tq))|| 

noEDG_tq || nonedg_pt_EBq; 

  

all_quantile = EDG_quantile // noEDG_quantile; 

/*print all_quantile ;*/ 

  
create all_quantile from all_quantile[colname={"t", "df", "group", "Theoretical", "EB"}]; 

append from all_quantile; 

close all_quantile; 

 

submit all_quantile; 

proc sgplot data=all_quantile; 

  scatter x=Theoretical  y=EB /  

    group=group groupdisplay=cluster clusterwidth=0.5; 

    lineparm x=0 y=0 slope=1; /** intercept, slope **/ 

 XAXIS LABEL = 'Theoretical quantile'; 

 YAXIS LABEL = 'EB quantile'; 
run; 

endsubmit; 

 

 

 

172



 

173 

proc export data=all_quantile          outfile="C:\Users\zwang3\Desktop\PAPER2\no_trt\Simulation\plot 

QQ\mtmvn\mvn13.csv" dbms=csv replace; run; 
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