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Abstract

In longitudinal data analysis, the introduction of random effects provides statisticians with
a convenient tool for modeling repeated measurements. Mixed effects linear models extend linear
and generalized linear models for non-repeated measures to repeated measures or longitudinal
data. One important assumption of these models is that the random effects are normally distributed.
In this dissertation, we investigated via simulations the impact of violations of this assumption on
the prediction of the random effects, by comparing the prediction accuracy and robustness of two
methods: the empirical Bayes method and a semi-parametric method based on quadratic inference
functions. Chapter 1 explores this impact for continuous responses modeled with the random
effects linear model and Chapter 2 explore this impact for the random-effects logistic regression
model. Finally, Chapter 3 proposes and examines a graphical method to examine this assumption
in the context of two-dimensional time-dependent personalized medicine models with continuous
responses that track the trajectories of patients’ disease severities and individual treatment benefits
when the patients are under medical or behavioral treatments. One important conclusion of these
investigations is that the empirical Bayes approach is very robust to violations of the normality
assumption. The EB approach has non-inferior but usually higher accuracy in random effects
prediction, and is computational, numerical and algebraic simply. Thus, it is more recommendable
for random-effects prediction than the method based on quadratic inference functions in statistical
practice. Finally, our graphical approach successfully detected departures from the normality

assumption and worked efficiently even with small and moderate sample sizes.
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Chapter I: Introduction



Repeated measurements over time within individuals often occur in longitudinal studies in
medicine, public health, social science, economy, education and agriculture. Two commonly used
approaches to dealing with the repeated measurements are marginal models and mixed effects
models. Marginal models are useful when the research is focused on average population effects
and the mean responses depend on the fixed effects of the covariates of interest. In contrast, in
regression models with mixed effects, the individual responses are modeled not only with the fixed
effects but also with the random effects that constitute the unique individual regression parameters.
The two approaches differ in how model parameters are estimated and, also important, how they
are interpreted. In applications, these approaches allow statisticians to study the temporal changes
of the responses within individuals and the relationships of the covariates with the responses, and
to make inferences on the population and individual effects of the covariates and predictions of
future responses (Diaz, 2016; Gillies et al., 2006; Have et al., 1998; Hedeker, 2003; Horrocks and
van Den Heuvel, 2009; Kleinman et al., 2004; Lin and Breslow, 1996; D. Liu et al., 2008; Mann
et al., 2018; Sashegyi et al., 2000; Skrondal and Rabe-Hesketh, 2003; VVan Den Noortgate et al.,

2003).

In mixed effects models, the random effects are usually assumed to follow a normal
distribution with zero mean. In theory, any other distribution could be used in this assumption, but
the normal distribution is widely used due to its ease in implementation and well-known and
convenient theoretical properties. The estimation of the fixed effects is implemented by
maximizing the marginal likelihood, which is the likelihood function of responses obtained by
integrating over the distribution of the random effects. This process usually involves high-
dimensional integration if approximation methods such as Gauss-Hermite quadrature is used. An

alternative to maximum likelihood is the quasi-likelihood method. Marginal quasi-likelihood



(MQL) and penalized quasi-likelihood (PQL) are variants of this method (Breslow and Clayton,

1993).

In mixed effects models, the prediction of the random effects is frequently made via an
empirical Bayes approach (Fitzmaurice et al., 2011, 2009; Frees, 2004; Hedeker and Gibbons,
2006). In linear mixed effects models the empirical Bayes predictor of random effects is an
estimator of the best linear unbiased predictor, which, as suggested by previous research
(McCulloch and Neuhaus, 2011a, 2011b) and confirmed in this dissertation, is relatively robust to
violations of the normality assumption of the random effects. For the logistic model with random
effects it is not possible to obtain a closed-form formula for the empirical Bayes predictor of the
random effects. The robustness of this predictor to violations of the normality assumption of the

random effects is also explored in this dissertation.

Using linear and logistic mixed effects models, Verbeke and Lesaffre (1996), McCulloch
and Neuhaus (2011a, 2011b) found that histograms of the empirical Bayes predictors of the
random effects may not reflect the true shape of the distribution of the random effects and thus
they are not a convincing tool in evaluating the normality assumption. But prediction accuracy
measured by mean square errors of prediction are less affected by violations of the normality
assumption of the random effects. Agresti et al. (2004) found that in logistic models with random
effects the estimates of the variance components are not severely affected by this violation except
for very extreme cases. Marquart and Haynes (2019) showed that in the logistic model with only
a random intercept, if the true random effects are from a three-components mixture of normal

distributions, the bias of the estimator of the random intercept variance is large.



Some methods have been proposed to check the goodness-of-fit of mixed effects models
(Abad et al., 2010; Alonso et al., 2008; Drikvandi et al., 2017; Efendi et al., 2017; Pan and Lin,
2005; Tchetgen and Coull, 2006; Verbeke and Molenberghs, 2013; Waagepetersen, 2006). In
statistical practice, however, the normality assumption for the random effects is often hard to
validate. Due to this limitation and the desire of incorporating population heterogeneity in a more
realistic way, estimation methods robust to violations of the normality assumption have been
proposed (Chen et al., 2002; Cho et al., 2017; Ghidey et al., 2004; Jiang, 1999; Shen and Louis,
1999; Ten Have et al., 1999; Ten Have and Localio, 1999; Wang et al., 2012; Zhang and Davidian,

2001; Zhu and Qu, 2016).

In addition to the empirical Bayesian approach, this dissertation examines the approach
proposed by Wang et al. (2012), which is a semi-parametric method based on quadratic inference
functions (QIFs), which in turn are an extension of generalized estimation equations (GEES). An
important concept of GEESs is the utilization a working correlation matrix. In the QIF approach,
the inverse of this matrix is approximated by linear combinations of known basis matrices (Qu et
al. 2000). The fixed and random effects are obtained by iteratively minimizing the quadratic

inference functions based on the extended score equations of both fixed and random effects.

Little research has been done to compare random effects predictors and it is unclear to what
extent the violations of normality for random effects affects these predations of random effects.
This dissertation compares the prediction performance and the robustness to violations of the
normality assumption of two approaches: the common empirical Bayes approach and the approach
based on quadratic inference functions. Predictors in the context of linear mixed effects models

and logistic mixed effects models are examined in Chapters Il and 111, respectively.



Random effects models have useful applications to the prediction of individual effects of
medical treatments (Diaz, 2017, 2016), drug dose individualization (Diaz, Cogollo, et al., 2012;
Diaz & de Leon, 2013; Diaz, Yeh, & de Leon, 2012; Zhu & Qu, 2016), and treatment
individualization (Cho et al., 2017; Diaz, 2018). In Chapter IV, we propose a method to examine
the normality assumption for the random effects when the goal of using a random effects model is
to predict individual treatment benefits in severely ill patients. The essential idea of our graphical
approach is to plot the quantiles of the empirical Bayes estimates of individual treatment benefits
against the theoretical quantiles of the distribution of individual benefits which are derived under
a normality assumption for the random effects. We used Monte Carlo simulations to study the
performance of the proposed graphical approach assuming a variety of non-normal distributions

for the random effects.

In Chapter V, the dissertation is concluded with a summary and a discussion of potential

future research directions.



Chapter Il: Prediction accuracy and robustness to non-normality of two methods of
predicting random effects in linear mixed effects models for longitudinal data:
empirical Bayes versus quadratic inference functions

Zhiwen Wang, John Keighley, Jianghua He, Jo Wick, Francisco J. Diaz*



ABSTRACT

Several methods for predicting random effects in linear mixed effects models have been
proposed. The performances of these methods have not been thoroughly investigated when the
normality assumption for the random effects is violated, except for the empirical Bayes (EB)
approach, and comparisons of the methods have not been made. This simulation study compared
the prediction accuracy of the EB approach with that of an approach based on quadratic inference
functions (QIFs) under different distributional assumptions for the random effects, using a
longitudinal linear model that included a random intercept and a random slope for time. The
simulations revealed that the EB approach was generally superior to the QIF approach in predicting
the random effects, even under non-normal distributions for the random effects, except in some
scenarios with very large error variances. In addition, the EB approach is mathematically and
computationally less complex. Thus, our study suggests that the EB approach is more
recommendable as the first choice in statistical practice, even if non-normal random effects are
suspected. An application to the prediction of individual benefits of an anti-depressant drug was

considered.

KEYWORDS: Best linear unbiased predictors (BLUPS); Bivariate t distribution; Cross-

validation; Distribution misspecification; Estimating equations; Mixtures of normal distributions.



1. Introduction

Linear mixed effects models are widely used in biostatistics applications (Cho et al., 2017;
Diaz, 2018, 2017, 2016; Dimova et al., 2011; Fitzmaurice et al., 2011; Hooks et al., 2009; Laird
and Ware, 1982; Verbeke and Molenberghs, 2000; Yau et al., 2003; Zhu and Qu, 2016). In
particular, in the analysis of longitudinal data, they are used to model continuous responses
measured over time from subjects under study. A basic assumption is the normality of both random
effects and measurement error terms (Cho et al., 2017; Fitzmaurice, 2009; Frees, 2004; Laird and
Ware, 1982; Verbeke and Molenberghs, 2009). Failure to include a subject-specific covariate,
however, could result in a violation of the normality assumption for the random effects (Frees,
2001; Verbeke and Lesaffre, 1996). The assumption is also violated if the random effects follow
heavy tailed distributions or mixtures of different distributions determined by unidentified
different groups of subjects under study (Verbeke and Lesaffre, 1997, 1996). These assumption
violations usually do not have a large impact on fixed effects estimation but may affect the
estimation of variance components, which in turn may affect the prediction of individual random
effects (Agresti et al., 2004; Alonso et al., 2008; Heagerty and Kurland, 2001; Mcculloch and
Neuhaus, 2011a, 2011b; Verbeke and Lesaffre, 1997, 1996). Thus, inaccuracies in random effects
prediction may be possible if the true random effects follow non-Gaussian distributions. This
limitation of the normality assumption suggests the need for robust methods to estimate (or

“predict”) random effects in linear mixed effects models.

The goal of this paper is to compare two methods of predicting random effects: a method
based on quadratic inference functions (Wang et al., 2012) versus the classic empirical Bayes

approach that is based on best linear unbiased predictors (BLUPs) (Fitzmaurice et al., 2011; Lopez



et al., 2007; Skrondal and Rabe-Hesketh, 2004; Verbeke and Molenberghs, 2000). Comparisons

under Gaussian and non-Gaussian random-effect distributions were made.

There are situations in which an accurate prediction of random effects is necessary. For
instance, in personalized medicine applications, a precise prediction of random effects is important
for medical or behavioral treatment individualization, assessment of individual treatment benefits,
and drug dosage individualization (Andrews and Cho, 2018; Cho et al., 2017; Diaz, 2017, 2016;
Diaz et al., 2012a, 2012b, 2007; Diaz and de Leon, 2013; Zhu and Qu, 2016). In particular, a
precise measurement of individual benefits requires an accurate prediction of both random slopes
and random intercepts (Diaz, 2017, 2016). In these applications, one is not always convinced that
the random intercepts and slopes that model patients’ heterogeneity follow a Gaussian distribution.
Thus, robust methods to estimate (or “predict”) random effects in linear mixed effects models may

be useful in personalized medicine.

The most common approach to predicting random effects is the empirical Bayesian (EB)
method (Carlin and Louis, 2009; Efron and Morris, 1972; Fitzmaurice et al., 2011; Frees, 2004;
Liu et al., 2008; Martinez et al., 2012; Morris, 1983; Robinson, 1991). The EB approach is
implemented in popular statistical packages, such as the MIXED procedure in SAS (SAS Institute
Inc, Cary, NC) or the meglm command in STATA (StataCorp LLC2, College Station, TX). An
EB predictor can be justified as an estimator of the mean of the conditional distribution of the
random effects given the data, assuming that the random effects follow a Gaussian distribution.
Under this point of view, the distribution of the random effects is interpreted as an empirical prior

distribution in the sense that it is objectively estimated with data (Robinson, 1991).



In the context of linear mixed effects models, however, EB predictors are also estimators
of the Best Linear Unbiased Predictors (BLUPS) of the random effects (Frees, 2004; Rabe-Hesketh
and Skrondal, 2012). This suggests that EB predictors must enjoy some robustness to non-
normality because the BLUP property does not require any distributional assumption for the
random effects, except for the existence of second moments (Frees, 2004). The estimation of the
BLUPs, however, requires using estimates of variance components that are usually obtained under
normality assumptions (Harville and Jeske, 1992). Thus, further research is needed to examine the

accuracy and robustness of EB predictors and to compare them with alternative approaches.

Shen and Louis (1999) proposed a recursive smoothing-by-roughening approach to
estimate random effects. Verbeke and Lesaffre (1996) proposed a heterogeneity model that can
identify subgroups of random effects that come from a mixture of distributions. Zhang and
Davidian (2001) proposed a semi-nonparametric representation to approximate random effects
densities, which requires a user-chosen tuning parameter. Ghidey et al. (2004) proposed a
penalized estimation of the marginal likelihood to estimate the random effects. These methods
have been compared in cases in which the basic assumptions of linear mixed effects models are

violated (Ghidey et al., 2010).

Qu et al. (2000) proposed a robust estimation method for marginal models. The method is
based on quadratic inference functions (QIFs) with extended scores, which do not require
estimating correlation parameters using the repeated measurements. This method represents the
inverse of the conditional correlation matrix of responses given the random effects, using a linear
combination of basis matrices. The improvement in estimation efficiency and robustness becomes
most apparent when the working correlation is miss-specified. This common issue is usually

handled with generalized estimation equations, which are widely used in longitudinal data
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analysis. Building on this approach, Wang et al. (2012) proposed an efficient and robust estimation
method applicable to generalized linear mixed models. The method is based on conditional
extended scores that require only first and second conditional moments. Therefore, the method
does not require a closed form likelihood function. It is robust in that neither normality distribution
assumptions on the random effects nor independence assumptions on measurement errors are
required. This method is implemented by iteratively minimizing fixed effect and random effect
quadratic inference functions, utilizing an optimal tuning parameter. The asymptotic properties of
the obtained fixed effects estimates have been extensively studied (Cho et al., 2017; Wang et al.,
2012). The QIF approach has been proven useful in the prediction of personalized treatments by
applying random forest algorithms on the estimated subject-specific treatment random effects (Cho
et al., 2017). It has also been proposed as a tool for individualized dosage computations via a
procedure that accounts for the patient-specific random effects that determine patients’

heterogeneity (Zhu and Qu, 2016).

Since the QIF approach to the prediction of random effects does not assume normality, we
can hypothesize that this approach is a robust alternative to the EB approach. To our knowledge,
however, there are no published studies comparing the two approaches. The main purpose of this
study was to elucidate via simulations the conditions under which the QIF approach predicts
random effects more accurately in comparison with the traditional and more widely used EB

approach.

This paper focuses on linear mixed effects models. Thus, we applied the QIF and EB
approaches to continuous responses. The computational formulas of the QIF approach are usually
presented under a very general modelling setting that encompasses these and other types of

responses and model structures (Cho et al., 2017; Wang et al., 2012; Zhu and Qu, 2016). So, a
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secondary aim of this paper was to translate this published work to the context of the linear mixed

effects model and clarify the equations for computational purposes.

The article is organized as follows. Section 2 reviews the notation and assumptions of linear
mixed effects models. Section 3 reviews the QIF and EB approaches, placing emphasis on
computational aspects. Sections 4 describes the simulation scenarios which include Gaussian and
non-Gaussian distributions. Simulation results are in Section 5. In Section 6, we apply the two
approaches to the prediction of random effects and individual treatment benefits using data from
a clinical trial of patients with depression (Diaz, 2017; Reisby et al., 1977). Discussion and

conclusions are in Section 7.

2. The linear mixed effects model

For a subjecti, i =1,..., N, we consider the linear mixed effects model, Y¥; = X;8 +
Z:b; + €;,where Y; = (yl-l, ...,yl-,ni)T is the subject’s response vector, f§ = (,81, ...,Bp)T is a fixed

effects vector, b; = (b;y, b, ...,bl-q)T is a random effects vector, g; = (g1, £, ...,ei,ni)T is a
measurement error vector assumed to be normally distributed with mean 0, and X; and Z; are
design matrices. N is the number of subjects. We assume that €;~N (0, H;) and b; is independent
of g;. To estimate parameters through maximum likelihood or restricted maximum likelihood, it
is usually assumed that b;~N (0, D) (Frees, 2004). Thus, the marginal distribution of the response
is Y,;~N(X;B8,Z;DZ! + H;). Here, we will consider two cases: independent errors (H; = o2l
with I, the identity matrix) and first order autocorrelated errors [the (j, k)-th and (k,j)-th

elements of matrix H; is a2p/=*I, where p is the autocorrelation coefficient].
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3. Prediction methods for random effects
3.1. Empirical Bayesian approach
Under the assumption that b; and g; are Gaussian, the conditional mean of b; givenY; is
Elb|Y]=DZ[V,"" (Y; — X;B) €Y

where V; = Z;DZT + H;. If the distribution of b; is viewed as an empirical prior distribution,
E[b;|Y;] is the mean of the posterior distribution of b; given the subject’s responses. From this
perspective, E[b;|Y;] is a Bayesian estimator of b; (Frees, 2004). When B is replaced with its
generalized least squares estimator in Equation (1), and D and H; are known, E[b;|Y;] can be
shown to be the BLUP of b; (Frees, 2004). If, in addition to this replacement, D and H; are
replaced by their maximum or restricted maximum likelihood estimators, E[b;|Y;] is called the
empirical Bayesian (EB) predictor of b; (Fitzmaurice et al., 2009; Frees, 2004; Laird and Ware,

1982).

For the purposes of this study, it is important to keep in mind that the assumption of
normality is not needed to demonstrate that Equation (1) gives the BLUP of b; after replacing
with its estimator (Frees, 2004). This suggests that the EB predictor can be robust to violations of

the normality assumption (McCulloch and Neuhaus, 2011b).

3.2. Approach based on quadratic inference functions

The random effects b; may not be normally distributed. The QIF approach has been

proposed as an estimation method robust to violations of this assumption or to misspecifications
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of the structure of the variance covariance matrix D (Wang et al., 2012). Here, we review the
computational aspects of the method in the context of linear mixed effects models. Let K be the
total number of unique time points recorded in the dataset. Every subject was observed on at least
one of these points. Thus, 1 < n; < K. We assume first that n; = K for all i, that is, balanced

data with respect to time. Unbalanced data handling is explained in Section 3.2.1.

The estimating equations for the fixed and random effects are respectively
N
ZXL'TWL'_I(YL' —u)=0 and
i=1

ZTW (Y, —pu) =0, i=1,..,N

where p; = w;(BIb;) = X;B + Z;b; is the mean response for subject i , and W, ! =
A._l/ZR‘lAi_l/z, with A; = diag(H;) . Here, R is the conditional correlation matrix of the

L

responses given the random effects which is assumed to be the same for all subjects.

The QIF approach utilizes the fact that R~ can usually be expressed as a linear
combination of known basis matrices, that is, R=* = Y%, a;M;. The M;’s depend on the assumed
structure for R and the a;’s are unknown constants that do not enter in the estimation process (Qu
et al., 2000). For instance, for independent errors, m = 1 and M, is the identity matrix. For AR(1)
errors, m = 2, M, is the identity matrix, and M, is a matrix whose entries directly above and

directly below the main diagonal are all 1’s and all other entries including those on the main

diagonal are 0’s (Qu et al., 2000).

Following Wang et al. (2012), we denote
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1 1
/XiTAi ZMlAi Z(Yi _I“li)\
ge= | and gl = ZTA7(Y - )

1
\XiTAi ZMmAi Z(Yi - ”i)

mpx1

and simultaneously estimate the fixed and random effects by iteratively minimizing two objective

functions, namely the fixed-effects QIF (Wang et al., 2012)
v (BIb) = N(6]) ()6l
and the random-effects QIF
L'(b|p) = llG"(B)II?

where b = (b7, ..., b%)7,

= Zl 191 (B)

Zg ® (sl ®)

and

67 ) = (D), ()", b, Ay(p)'}

The matrix P; is computed as follows. Denote the design matrix X = (X7, ...,X{)™ with
X; = («F, ...,x{ni)T , and the block diagonal matrix Z = diag(Z,,...,Zy) with Z; =

(2%, ...,z{ni)T. Compute the Q-R decomposition of A = ((I — P)Z)' such that 4 = Q X R,

where Py = X(XTX)~1XT, and obtain r = rank(A4). Let ] be the matrix whose columns are the
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columns of Q beyond the rth column (Boyd and Vandenberghe, 2004). Thus, J has Nq —r

columns. Then, P, = J(J"))7J".

The iterative process starts with an initial value for B, denoted B(?, obtained through linear
regression. Then L"(b|B(®) is minimized with respect to b to obtain b . Next L/ (B|b™) is
minimized with respect to B to obtain B, and so on. The process stops when [B¢*D — Bs | +

|BG+D — b | < 1075 with b = 0.

For homoscedastic errors, A; = a*1I,, where I, is an identity matrix. Therefore, L7 (B|b)
does not depend on o2 because it cancels out. Also, since A, and A, can be written as proportional
to o2, L (b|B) is proportional to 2. Thus, the value of o2 does not need to be known for the
minimization of L”(b|B). Therefore, in practice, we use A; = I, for the minimization of these

objective functions.

Finally, note that the QIF approach does not make distributional assumptions about the
random effects and, therefore, about D. Instead, the approach works directly with the conditional
variance-covariance matrix W;. Also note that, in contrast to the default estimation methods
implemented in the most common statistical packages, H; may differ among subjects. This

provides additional generality and gives flexibility for handling unbalanced data.

3.2.1. Handling of unbalanced data
The assumption that the subjects have the same number of responses is needed to ensure

that the dimension of gif (B) does not change with i (the M;s are the same for all subjects). Thus,

a transformation of the response vectors is necessary for unbalanced data. For subject i with
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unbalanced responses such that n; < K, let A; be a transformation matrix of dimension K X n;
obtained by removing the columns of the K X K identity matrix corresponding to the time points
with missing observations. In the iterative algorithm, we use Y; = A;Y;, X[ = AjX;, Z; = N Z,,
A; = AT, and (A))71 = A ATIAT, respectively in place of Yy, X;, Z;, A; and A7 (Wang et
al., 2012). This approach provides matrices of equal sizes by assigning zeros to the missing
responses, inserting rows with zeros to the corresponding rows of X; and Z;, and inserting zeros to
the corresponding elements of the diagonals of A; and A; . In this way, missing responses are both
replaced with zeros and predicted as zeros without affecting parameter estimation and random

effects prediction.

3.2.2. Penalization parameters
The penalization parameter 4, is usually fixed to log(N) (Cho et al., 2017; Wang et al.,

2012; Zhu and Qu, 2016). Since A, controls the variability of random-effect predictors, we chose
A, using cross-validation as in Cho et al. (2017). Given a value of 1, let E,{f and B{lk‘i be

respectively the fixed-effects estimate and the random effects predictor for subject i, computed

after excluding all observations at the k" time point. The cross-validation error is

K N
—~ ~—k.i 2
V), =K1 Z Z (yik — (B + Zikahk,l))

k=11i=1

We chose the value of 4, that minimized CV, .
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4. Simulation scenarios for comparing the QIF and EB approaches
The simulation study is based on the model:
Yij = ﬁl + ﬁztij + bil + biZtij + El']', i = 1, o, N; ] =1,..,n

where Y;; is the continuous response of the ith subject at time ¢;;. This model and parameter values

were motivated by an analysis of the Framingham Study data (Zhang and Davidian, 2001).

For a given number of subjects N, we examined 3 different values of n, making sure the

range of values for the time variable is the same. Thus, forn =3, ¢;; = 0, 5 or 10. Forn = 6,
tij=0,2,4,6,80r10. Andforn =11,¢; =0, 1,2,3,4,5,6, 7, 8,9 or 10. Thus, for instance,

1 0
s

1 10

f0rn=3, Xi=Zi=

Table 1 describes the simulation scenarios. For non-Gaussian random effects, we used
B, = 2.35and B, = 0.28 and, as a variance-covariance matrix for b; = (b;1, b;;), we used D* =

[0.15 0.02

002 00 4]. This gives a correlation coefficient between the random intercept and random slope

of 0.258. Variations about these values were used for Gaussian random effects. All random errors
were simulated as Gaussian either independently or correlated with AR(1) structure, with o2 = 1,

10, or 30.
Three general cases for the random effects {b;,i = 1, ..., N} were used:
1. Bivariate Gaussian with correlated or uncorrelated random effects.

2. A mixture of two bivariate Gaussian distributions:
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b~ % N{ —0.35]’ 0.028 —0.015]}+% N{[O.BS]’[ 0.028 —0.015

1 =1,..,N
—-0.11"1-0.015 0.03 0.11'1-0.015 0.03 }'l e

so that the mean is 0 and the variance-covariance matrix is D*

3. A bivariate t-distribution (d.f.=3) with mean 0 and variance-covariance matrix D*. This

distribution allows examining prediction performance in the presence of heavy tails.

Since QIFs computations are time consuming, only thirty datasets were simulated for each
scenario. Mean square prediction errors (MSPEs) were used to compare the prediction
performances of the two approaches. The ratio of the average MSPE for the QIF approach to the
average MSPE for the EB approach was calculated for each simulation scenario. For the [-th
dataset, the MSPE for the random intercept was

ZIL'V=1(BL'1,I - bil,l )2

MSPE®" = -

where Bu,z is a predictor of the random intercept and b;, ; is the true (simulated) value. The MSPE
for the random slope is defined analogously, replacing subscript 1 with 2. Ratios comparing QIF

30 )]
22, MSPE;
30

with EB were calculated as MSPEqr j/MSPEgp ;, Where MSPEq j = when the

random effects were predicted using the QIF approach, and analogously for MSPEgg ;,j = 1, 2.
Thus, a ratio smaller than 1 indicates that the QIF approach is more accurate in predicting the
random effect. Boxplots of ratios were also used to compare the two approaches (Figure 1).
Simulations were programmed in SAS IML and EB predictors were computed with SAS PROC

MIXED (SAS Institute Inc, Cary, NC). The computer code is available as Supplementary Material.
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5. Simulation results

5.1. Random effects with a bivariate Gaussian distribution and Gaussian independent

errors

Results for true random effects simulated from a bivariate Gaussian distribution,
independent errors, large error variance, and independent random intercept and slope are shown in
Tables 2A (random intercept) and 2B (random slope). QIF predictions on the random intercept
were substantially more accurate than EB predictions (Table 2A). In contrast, EB predictions on
the random slope tended to be more accurate than QIF predictions, although the two approaches

performed similarly for large N and n (Table 2B).

When the error variance was small, the average MSPEs obtained with the QIF approach
were always larger than those for the EB approach for both the random intercept (Table 3A) and
slope (Table 3B), suggesting a better accuracy for the EB approach. When predicting intercepts
with relatively large numbers of subjects and repeated measures, MSPE ratios were close to 1
(Table 3A); thus, the accuracy of the QIF tended to be similar to that of the EB approach. In
contrast, when predicting slopes, larger values of N and n improved the accuracy of the EB
approach faster, which is suggested by the considerably larger ratios for n = 11 in Table 3B. The
EB approach thus seems to be more responsive to increases in the number of observations than the
QIF approach. Interestingly, the accuracies of the QIF and EB approaches did not depend

substantially on the coefficient of variation C,, of the last measure.
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5.2. Bivariate Gaussian distributions for the random effects and AR (1) Gaussian errors

Tables 4-5 show simulation results when the random effects followed a bivariate Gaussian
distribution and the Gaussian measurement errors were correlated with an AR(1) structure. The
random intercept and slope were correlated in Table 4 and uncorrelated in Table 5. For the random
intercept (Tables 4A and 5A), MSPE ratios were smaller than 1 only for n = 3. This suggests that
the QIF approach is more accurate than the EB approach only when there is a relatively small
number of repeated measures. For larger numbers of repeated measures, the EB approach

performed substantially better in intercept predictions.

Tables 4B and 5B, which compare slope predictors, reveal that, in the presence of
autocorrelated errors, the EB approach produces more accurate predictions on the random slope,

except perhaps under small sample sizes and small numbers of repeated measures.

5.3. Mixtures of bivariate Gaussian distributions for the random effects

Table 6A shows ratios of average MSPEs for the random intercepts comparing the QIF to
the EB approach, when the random intercept and slope were simulated from a mixture of bivariate
Gaussian distributions. Except for relatively small error variances o2, the ratios were < 1. Thus,
when predicting intercepts under relatively large error variances, the prediction accuracy of the
QIF approach was less deteriorated than that of the EB approach by the violation of the normality

assumption, regardless of sample size and number of repeated measures.

In contrast, Table 6B shows that ratios for the random slopes tended to be close or higher

than 1 regardless of error variance, sample size and number of repeated measures. This suggests
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that the accuracy of the EB approach was better than that of the QIF approach when predicting
slopes under the violation of the normality assumption for the random effects. However, for large
numbers of subjects and repeated measures, the QIF and EB approaches had similar accuracies,
except for small error variances in which case the EB approach was superior. For fixed N and n,

an increased error variance o2 tended to make the accuracy of the two approaches more similar.

5.4. Bivariate t(3) distribution for the random effects

When the random effects were simulated from a bivariate t distribution, the results (Table
7) were very similar to those corresponding to bivariate Gaussian distributions in Section 5.1. If
error variances are relatively large, the QIF approach tended to be more accurate than the EB
approach to predict intercepts, but less accurate to predict slopes. For small error variances, the
EB approach was always better. The important point that the EB approach tended to be more

accurate and robust in the presence of small error variances emerges from these simulations.

6. Application: prediction of random effects in patients with depression.

As an illustration, we use clinical trial data consisting of a sample of 66 patients with two
types of depression diagnosis: endogenous (N=37) and nonendogenous (N=29) (Reisby et al.,
1977). The data is available in Hedeker and Gibbons (2006). Here, the response variable is the
Hamilton Rating Scale (HRS) for depression. Data collection started two weeks before initiation
of imipramine treatment and continued for four weeks during treatment. We fitted the same

polynomial model as in Diaz (2017), which, as covariates, included diagnosis, time t (weeks on
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treatment) and ¢t2. The model had random effects for the intercept and time covariates. The SAS
procedure MIXED, which assumes Gaussian random effects, was used to obtain maximum
likelihood estimates (MLEs) of the fixed effects and EB predictors of the random effects (SAS
Institute Inc. Cary, NC). An unstructured covariance matrix for the random effects was assumed

in this case.

The predictions on the intercept by the EB and QIF approaches correlated very strongly
(Table 8), and similarly for the predictions on the slope of time. Predictions for the slope of t2
were only moderately correlated. Figure 2 shows scatterplots comparing the predictions of the
random effects by the QIF and EB approaches under homoscedastic independent errors.
Scatterplots for exchangeable and AR(1) errors are in the Supplementary Material (Figures S1,
S2). Overall, the two prediction methods agreed strongly, except perhaps for the predictions on
the random intercept. Specifically, scatterplots for the intercept were slightly tilted with respect to
the y=x line, suggesting that QIF intercept predictions tended to be larger in absolute value than
EB predictions (Figure 2A). This deviation was more pronounced in the AR(1) structure (Figure
S2C in the Supplementary Material). The histograms for the random intercepts from the two
approaches exhibited similar shapes, and similarly for the random slopes (Figure S3 in

Supplementary Material).

As additional illustration, we use the approach in Diaz (2017) to explore the individual
benefits of imipramine treatment for the 66 subjects after 4 weeks of treatment, using an HRS
score < 7 as the therapeutic target. Since the model is a 2-dimensional personalized medicine
model, predictions of both random intercepts and slopes are needed for these computations (Diaz,
2017, 2016). Diaz (2017) calculated individual benefits for these subjects by predicting the random

effects using the EB approach. Here, we additionally use the QIF approach. Percentiles of
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individual benefits by diagnosis are shown in Table 9. Both approaches suggest that, after 4 weeks
of treatment, nonendogenous patients tended to achieve greater imipramine benefits than
endogenous patients. However, on average, the EB approach predicted greater benefits than the

QIF approach for both endogenous and nonendogenous patients.

7. Discussion and conclusions

Two methods of predicting random effects in the linear mixed effects model were
compared under various assumptions for the random effects and measurement errors: the classical
empirical Bayes approach and an alternative approach based on QIFs (Wang et al., 2012). An
important conclusion of this study is that, under the investigated non-Gaussian random effects and
small to moderate error variances, the EB approach was more accurate than the QIF approach for
predicting both slopes and intercepts. For larger error variances, QIF was a better predictor for the
random intercept but not for the random slope. This latter observation is consistent with the
findings presented in Verbeke and Lesaffre (1996) who investigated mixtures of bivariate
Gaussian distributions and found that the EB approach does not capture accurately the shape of
the random effects distribution when the error variance is large. Our results are also consistent
with the findings of other studies suggesting that prediction accuracy of EB predictors is not
significantly affected by mild to moderate violations of the normality assumption (Mcculloch and
Neuhaus, 2011a, 2011b). This robustness is probably due to the fact that EB predictors inherit the
optimality properties of the BLUPs, which do not depend on the normality assumption (see Frees,

2004).
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In general, in the presence of Gaussian random effects, the EB approach outperformed the
QIF approach for predicting random slopes; and the QIF approach was superior to the EB approach
only under relatively large error variances and, in some scenarios, under a relatively small number
of repeated measures. The box-plots in Figures 1A and 1B illustrate some of the situations in which
very large error variances were associated with a higher prediction accuracy for the QIF approach
when the normality assumption was violated. In contrast, Figures 1C and 1D illustrate situations
in which the EB approach performed relatively better than the QIF approach under the Gaussian

assumption for the random effects.

For relatively large sample sizes, QIF computations are time consuming. For instance,
using a high-performance computation cluster, for N = 150, n = 11 and Gaussian random
effects, the average computation time was about 240 hours, regardless of the magnitude of the
error variance. In light of this limitation and considering the fact that the EB approach is
mathematically and computationally less complex, our simulations suggest the EB approach is
more recommendable in most practical situations, even if non-Gaussian random effects are

suspected.

The QIF approach ignores the serial correlation of repeated measures in the prediction of
random effects, although it takes it into account in the estimation of the fixed effects (Wang et al.,
2012). It is possible to circumvent this limitation by incorporating an empirical correlation matrix
into the random-effects QIF. This approach was followed in applications to personalized medicine
(Cho et al., 2017; Zhu and Qu, 2016). Further research is needed to compare these modifications

of the QIF with the EB approach.
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Table 2. Ratios of the average MSPE from the QIF approach to the average MSPE from
the EB approach, when the true random effects were simulated from a bivariate Gaussian
distribution, and the independent errors had a large error variance. Averages summarized

30 simulated datasets.

(A) Random Intercept

corr(b;y, b;;) =0
02 =30 Sample Size (N)

n C, 60 90 120 150

3 10% 0.4164 0.4588 0.1674 0.2800
40% 0.3343 0.3708 0.2049 0.2539
80% 0.3190 0.5253 0.3091 0.2118

6 10% 0.7229 0.8787 0.6589 0.3998
40% 0.5716 0.7112 0.7512 0.4471
80% 0.4854 0.8231 0.9512 0.4758

11 10% 0.4143 0.7864 0.7556 0.7267
40% 0.3622 0.6298 0.8955 0.7650
80% 0.4773 0.8345 0.8135 0.8474

(B) Random Slope
corr(b;y, b;;) =0
g% =30 Sample Size N

n C, 60 90 120 150

3 10% 1.403 1.373 1.118 1.097
40% 1.342 1.980 0.9664 1.074
80% 1.778 1.237 1.177 1.095

6 10% 1.049 1.094 1.031 0.9508
40% 1.085 1.059 0.9989 0.9648
80% 1.069 1.080 1.057 0.9518

11 10% 0.8021 0.9818 1.024 0.9849
40% 0.8790 0.9732 1.014 0.9979
80% 0.9247 1.000 0.9746 0.9990

o?: Variance of the measurement
N: Number of simulated subjects.

error.

n: Number of repeated measures for each subject.
C,: Coefficient of variation at the last measure.
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Table 3. Ratios of the average MSPE from the QIF approach to the average MSPE from
the EB approach, when the true random effects were simulated from a bivariate Gaussian
distribution, small error variance and independent random effects and errors. Averages
summarized 30 simulated datasets.

(A) Random Intercept

corr(b;y, b;;) =0
0?2 =1 Sample Size N

n C, 60 90 120 150

3 10% 1.035 1.082 1.103 1.087
40% 1.005 1.042 1.118 1.069
80% 1.032 1.078 1.059 1.119

6 10% 1.263 1.270 1.228 1.270
40% 1.168 1.180 1.211 1.219
80% 1.178 1.164 1.213 1.233

11 10% 1.517 1.494 1.090 1.067
40% 1.496 1.305 1.058 1.066
80% 1.290 1.489 1.048 1.059

(B) Random Slope

corr(b;;, b)) =0 Sample Size N
o =1

n C, 60 90 120 150

3 10% 1.171 1.166 1.159 1.139
40% 1.162 1.118 1.157 1.141
80% 1.197 1.157 1.175 1.164

6 10% 1.169 1.170 1.133 1.156
40% 1.134 1.098 1.106 1.113
80% 1.118 1.085 1.109 1.141

11 10% 441.4 404.3 1.138 12.73
40% 381.1 255.1 1.140 14,12
80% 282.0 384.2 1.128 13.01

o?: Variance of the measurement error.

N: Number of simulated subjects.

n: Number of repeated measures for each subject.
C,: Coefficient of variation at the last measure.
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Table 4. Ratios from the average MSPE from the QIF approach to the average MSPE
from the EB approach, when the true random effects were simulated from a bivariate
Gaussian distribution and the error terms had an AR(1) correlation matrix. The random
intercept and slope were correlated. Averages summarized 30 simulated datasets.

(A) Random Intercept
corr(b;y, b;;) = 0.5
o =1 Sample Size N

n p 60 90 120 150

3 0.1 0.6523 0.6933 0.4813 0.5760
0.4 0.4766 0.5679 0.5387 0.7356
0.7 0.3647 0.3604 0.3225 0.5666

6 0.1 1.193 1.441 1.335 1.472
0.4 3.007 4.021 4.226 4.290
0.7 3.495 3.960 4.072 3.661

11 0.1 1.508 1.316 1.386 1.612
0.4 2.923 2.861 3.084 3.167
0.7 4.349 1.035 1.023 1.033

(B) Random Slope
corr(b;y, biz) = 0.5
o =1 Sample Size N

n p 60 90 120 150

3 0.1 1.084 1.130 0.1883 1.108
0.4 1.267 1.332 1.388 1.505
0.7 0.2766 1.951 0.2798 1.967

6 0.1 1.129 1.299 1.235 1.274
0.4 1.750 2.060 2.094 2.030
0.7 1.724 1.713 1.689 1.672

11 0.1 1.413 1.305 1.350 1.461
0.4 1.941 1.783 1.900 1.960
0.7 2.266 1.085 1.074 1.089

o?: Variance of the measurement
N: Number of simulated subjects.

error.

n: Number of repeated measures for each subject.
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Table 5. Ratios from the average MSPE from the QIF approach to the average MSPE
from the EB approach, when the true random effects were simulated from a bivariate
Gaussian distribution and the error terms had an AR(1) correlation matrix. The random
intercept and slope were uncorrelated. Averages summarized 30 simulated datasets.

(A) Random Intercept

corr(byy, bz) =0

0?2 =1 Sample Size N
n p 60 90 120 150
3 0.1 0.6189 0.5694 0.5820 0.8422
0.4 0.4796 0.5274 0.3958 0.6191
0.7 0.4075 0.6029 0.3991 0.7015
6 0.1 1.189 1.238 1.124 1.194
0.4 2.477 2.843 2.969 3.516
0.7 2.726 3.215 3.326 3.371
11 0.1 1.049 1.123 1.052 1.107
0.4 1.903 2.325 2.236 2.309
0.7 3.774 1.003 1.003 1.000
(B) Random Slope
corr(b;y, b)) =0
o =1 Sample Size N
n p 60 90 120 150
3 0.1 0.3935 0.5339 1.001 1.129
0.4 0.9899 1.275 0.2371 1.290
0.7 0.2181 1.787 1.931 1.954
6 0.1 1.101 1.163 1.130 1.141
0.4 1.547 1.656 1.726 1.745
0.7 1.441 1.555 1.554 1.496
11 0.1 1.106 1.112 1.091 1.109
0.4 1.408 1.573 1.569 1.612
0.7 1.769 1.045 1.043 1.000

o?: Variance of the measurement error.

N: Number of simulated subjects.

n: Number of repeated measures for each subject.
p: Correlation coefficient of errors within a subject.
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Table 6. Ratios of the average MSPE from the QIF approach to the average MSPE from
the EB approach, when the true random effects were simulated from a mixture of

bivariate Gaussian distributions. Averages summarized 30 simulated datasets.

(A) Random Intercept
Sample Size N

n a? 60 90 120 150

3 30 0.1174 0.2715 0.2732 0.3989
10 0.4624 0.4042 0.4235 0.5421
1 0.9435 1.037 1.018 1.138

6 30 0.2969 0.2724 0.3962 0.4800
10 0.5453 0.6740 0.7236 0.6142
1 1.252 1.218 1.312 1.291

11 30 0.3734 0.5247 0.4441 0.6250
10 0.6729 0.8064 0.8960 0.9452
1 1.327 1.339 1.131 1.151

(B) Random Slope
Sample Size N

n o? 60 90 120 150

3 30 1.090 1.558 1.057 1.044
10 1.414 1.342 1.348 1.222
1 1.584 1.682 1.664 1.712

6 30 0.9573 0.8363 0.9980 0.9323
10 0.9444 1.028 1.058 0.9905
1 1.223 1.185 1.278 1.292

11 30 0.9637 0.9720 0.9128 0.9511
10 0.8943 1.119 0.9996 1.077
1 199.9 274.5 1.194 11.56

o?: Variance of the measurement error.
N: Number of simulated subjects.
n: Number of repeated measures for each subject.
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Table 7. Ratios of the average MSPE from the QIF approach to the average MSPE from
the EB approach, when the true random effects were simulated from a bivariate t(3)
distribution. Averages summarized 30 simulated datasets.

(A) Random Intercept
Sample Size N

n a? 60 90 120 150

3 30 0.4433 0.5014 0.5791 0.4581
10 0.4631 0.6332 0.7834 0.9097
1 1.484 1.424 1.819 1.525

6 30 0.5919 0.6715 0.5876 0.6047
10 0.8593 0.9498 0.9586 1.048
1 1.242 1.385 1.286 1.270

11 30 0.6210 0.8303 0.8661 0.9197
10 1.040 1.052 1.075 1.172
1 1.483 1.230 1.148 1.151

(B) Random Slope
Sample Size N

n o? 60 90 120 150

3 30 1.207 1.314 1.242 1.187
10 1.269 1.260 1.288 1.358
1 1.325 1.296 1.398 1.319

6 30 1.109 1.034 1.007 0.9689
10 0.9942 1.015 1.057 1.120
1 1.164 1.215 1.203 1.181

11 30 0.8940 1.321 1.020 1.005
10 4.624 2.682 1.036 1.191
1 302.7 169.7 1.166 12.60

o?: Variance of the measurement error.
N: Number of simulated subjects.
n: Number of repeated measures for each subject.
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for the depression data.

Table 8. Correlations between QIF and EB predictors by error covariance structure

Predicted Random Effect

Error covariance structure

Independent | Exchangeable | AR(1)

Intercept 0.9900 0.9902 0.9969
Time 0.8951 0.8951 0.8914
Time square 0.6258 0.6259 0.6587

EB: Empirical Bayes approach.
OIF: Quadratic inference function approach.

Table 9. Percentiles of individual imipramine benefits after 4 weeks of treatment. The
therapeutic target was an HRS score < 7. Individual benefits were multiplied by 100. An
independent error structure was used.

QIF EB
Percentiles Percentiles
10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90%
Endogenous 0.00 | 0.00 | 3.67 | 52.31|98.29 | 0.00 | 0.05 | 5.77 | 38.59 | 63.49
Nonendogenous | 0.00 | 0.09 | 6.32 | 58.89 | 98.80 | 0.00 | 2.03 | 10.15 | 47.70 | 88.19

EB: Empirical Bayes approach.

QIF: Quadratic inference function approach.
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Figure 1. Boxplots of ratios comparing MSPEs of QIF versus EB. Each boxplot
corresponds to 30 simulated datasets, N = 120, n = 11. Red boxplots are for random
intercepts, and blue ones are for random slopes. (A) The true random effects were
simulated from mixtures of bivariate Gaussian distributions (Table 6). (B) The true
random effects were simulated from a bivariate t(3) distribution (Table 7). (C) The
independent true random effects were simulated from bivariate Gaussian distributions
with independent errors (Table 3). (D) The independent true random effects were
simulated from bivariate Gaussian distributions with AR(1) error structure (Table 5).
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Figure 2. Scatterplots of random effects for depression data, predicted by QIF versus
EB approaches under homoscedastic independent measurement errors. (A) Random
intercept predictors. (B) Predictors of random coefficient of time. (C) Predictors of

random coefficient of time square. The solid line is the y=x line.
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Chapter I11: The impact of violations of the normality assumption for the random
effects in the logistic mixed effects model for longitudinal data on two methods of
random-effect prediction: empirical Bayes versus quadratic inference functions
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ABSTRACT

For the logistic mixed effects model in longitudinal data analysis, research on the accuracy
and robustness to violations of the normality assumption of predictors of random effects is scarce.
In this paper we use the mean square prediction error to assess the performance of predictors of
random effects and compared the random effects prediction accuracy and robustness of two
approaches: the empirical Bayes (EB) and a robust approach based on quadratic inference
functions (QIFs). Our simulation study showed that in logistic models with random intercepts only,
more accurate predictions were generated using the EB approach when the true random intercept
variance was large. For logistic models with both random intercept and slope, the performances of
the EB and QIF approaches were comparable, but the EB approach outperformed the QIF approach
when the random effects were independent, and the sample size was relatively large. Our
conclusion holds regardless of whether the true distribution of random effects is normal or non-
normal. A consequence for statistical practice is that in logistic mixed effects models the EB
approach from random effects prediction is relatively robust to violations of the normality
assumption. Considering that the EB approach is easier to implement computationally, this
approach is more recommendable for predicting random effects than the QIF approach. An
application to a schizophrenia study using both approaches to predict random effects was

illustrated.

KEY WORDS: Logistic model, prediction, random effects, BIC, distribution misspecification

43



1. Introduction

Mixed effects models are widely used when modeling repeatedly measured outcomes. In
this family, linear mixed effects models, generalized linear mixed effects models and nonlinear
mixed effects models are the three most commonly used models for continuous or discrete types
of responses. Among generalized linear mixed effects models, the logistic mixed effects models
are one of the most useful tools in modeling binary repeated outcomes for cluster data via logit
link function. Logistic mixed effects models are widely used in biomedical research (Diaz, 2016;
Have et al., 1998; Hedeker, 2003; Horrocks & van Den Heuvel, 2009; Lin & Breslow, 1996; Liu
et al., 2008), epidemiology (Kleinman et al., 2004; Sashegyi et al., 2000; Skrondal & Rabe-
Hesketh, 2003), social science (Mann et al., 2018), psychometrics (Van Den Noortgate et al., 2003)
and animal ecology (Gillies et al., 2006). Statistical procedures, such as PROC GLIMMIX, PROC

NLMIXED in SAS, or packages such as Ime4 or nlme in R, are widely used for statistical practice.

One of the basic assumptions for estimation and inference in mixed effects models is that
the random effects are assumed to follow normal distribution for simplicity and ease of
computation. This assumption may be too restricted to follow in practice. For instance, when a
categorical covariate is omitted, a multimodal distribution could be the best description for the

distribution of random effects.

Research is heavily focused on estimation accuracy of the fixed effects parameters and
their robustness to the violation of normality assumption of the random effects. There are some
conflicting conclusions about whether the fixed effects estimates are affected by the distribution
misspecification of the random effects. It has been shown that for logistic random intercept

models, the estimates for fixed effects parameters are relatively robust with respect to the
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distribution misspecification due to small biases occurring in the estimates (Neuhaus et al., 1992).
This conclusion is also validated by presenting the conditions for obtaining consistent fixed effects
parameter estimates under misspecification of the random effect distribution (Neuhaus et al.,
1994). Agresti et al. (2004) showed that generally the fixed effects and variance components have
small biases when the true random effects distribution was mis-specified, except in cases where
the true random effects were simulated from an extreme two-point distribution with relatively large
variance. On the contrary, Heagerty and Kurland (2001) illustrated that significantly biased
estimates result for random intercept in logistic models, when the variance of the random effects
depends on a between-cluster covariate. Heagerty and Zeger (2000) showed that in modeling
longitudinal binary responses, for conditional logistic model with random intercept only, the
estimated coefficients for between-cluster covariates could be severely biased; while small biases
result for marginal logistic models. Using logistic models with random intercept and slope, and
assuming a wide variety of true distributions for the random effects, Litiére et al. (2008) illustrated
that the misspecification of the random effects distribution has a severe effect on the fixed effects
and variance components parameters estimates. Furthermore, the bias is more severe when there
is more than one random effect included in the model. In Litiere et al. (2007) they also showed
that the type I error rate and statistical power of Wald tests on the mean structure, which are the

fixed effects, are affected.

As important as the fixed effects and variance components, random effects play an essential
role for inference, especially in personalized medicine, since the individual disease severity and
treatment benefits are calculated based on individual random effects (Diaz, 2017, 2016). By
comparing the mean square prediction errors under different distributions of the random effects, it

is indicated that the prediction accuracy was little to mildly affected (Mcculloch & Neuhaus,
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2011a). In McCulloch and Neuhaus (2011b) the authors validated their conclusion and stated that
although the prediction accuracy was mildly affected, the exact shape of the distribution of random
effects predictors could be severely biased. Agresti et al. (2004) showed that when the true random
effects were distributed from an extreme 2-point mixture distribution with a large variance, severe
prediction bias occurred on the random effects. A recent study showed that by using random
intercept logistic models, and simulating the true random effects from a three-components mixture
of normal distributions, the random intercept variance was biasedly estimated and this bias was

relatively large when the true random intercept variance was large (Marquart and Haynes, 2019).

Thus, some authors have proposed robust methods for parameter estimation or prediction
in generalized linear mixed effects models. For random effects in logistic models, Ten Have and
Localio (1999) proposed two extensions of the empirical Bayes approach; one is based on Kass
and Steffey (1989), and the other is based on Breslow and Clayton (1993). The performance of the
two approaches were shown in terms of different cluster sizes, number of clusters and covariance
of random effects. Shen and Louis (1999) proposed an empirical Bayes method based on
smoothing by roughening estimate of the prior. The simulation studies in which the true prior was
distributed from a mixture of Gaussian distribution and Poisson distribution showed its robustness
to the violation and efficiency in estimation of prior distribution. Their methods could be applied
in mixed effects models as a robust method for predicting the random effects. Requiring only that
the random effects distribution be smooth, Chen et al. (2002) proposed a method which was based
on a Monte Carlo EM algorithm with rejection sampling to estimate the fixed effects, variance
components and to predict random effects. Wang et al. (2012) proposed an inference method by
iteratively minimizing the extended score equations of both fixed and random effects. And their

approach based on quadratic inference functions (QIF) was widely applied in treatment
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personalization (Cho et al., 2017) and dosage individualization (Zhu and Qu, 2016) for

longitudinal data via mixed effects models.

Since in logistic mixed effects model, little research has been done for evaluating the
prediction performance of random effects, especially comparing the empirical Bayes approach
with the modern robust approach, this paper focuses on comparing the prediction accuracy to the
violation of the normality assumption of random effects, using the common empirical Bayes

approach and the robust approach based on quadratic inference functions (Wang et al., 2012).

The paper is organized as follows. Section 2 presents the formulas and notations of logistic
mixed effects models. Sections 3 reviews the empirical Bayes method of predicting random effects
in mixed effects models and derives the formula of QIFs in the context of logistic models. Section
4 describes the simulation scenarios used in this paper and section 5 presents the simulation results
and discussions. A clinical trial dataset was applied to both approaches for predicting random

effects, and the results are shown in section 6. Conclusion and discussion are given in section 7.

2. Logistic mixed effects model

We present a logistic mixed effects model in the following. The total number of subjects

is N. For subject i at time point j there are n; number of repeated binary measurements y;;. We
assume the probabilities p;; = P(y;; = 1|x;;,z;;), and build the model via logit link function such

that

log<#> = xl-Tjﬁ + zl-ijl-, i=1,.,N;j=1,..,n
Dij
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where Y; = (yil,...,yi’nl.)T is n; x 1 vector of responses such that ¥ = (Yq,..,¥y)T is
(XN, n;) x 1 vector of responses of all subjects; B = (B, ...,ﬁp)T is p x 1 vector of fixed
effects; x;; = (xijl,...,xijp)T iIs p X 1 vector of covariates for subject i at time j, X; =
(xiTl,...,xiTni)T iIs n; X p matrix of fixed effects covariates for subject i, such that X =
&xT, .., X7 is N, n) xp matrix for all subjects; b; = (bl,...,bq)T is g x 1 vector of
random effects for subject i and b = (b1, ..., b})T. Similarly, z;; = (z;4, ...,zijq)T is g x 1

. . . T . .
vector of covariates for subject i attime j, Z; = (ZiTp ) ZiTni) is n; X g matrix of random effects

Z, 0 .. 0
covariates for subject i, such that Z = 0 Z:Z is (XN, ny) x (N x q) block-diagonal
0 0 0 Zy

matrix for all subjects. The random effects b; follow a distribution ¢ with mean of zero and
variance covariance matrix G; most commonly it is normal distribution, but violation is possible.
In this paper we assume that conditional on the random effects, the binary responses are

independent.

3. Prediction methods for random effects

3.1. Empirical Bayes (EB)

Empirical Bayes method of predicting random effects are widely used in biostatistics and
medical research (Albert, 2012; Candel, 2009; Diaz, 2016; Feng et al., 2006; Mikulich-Gilbertson
etal., 2019; Parzen et al., 2011; Sammel et al., 1997). The empirical Bayes predictor of the random

effects is the posterior expectation of the distribution of random effects while treating the fixed
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effects and variance components as fixed and replaced by their maximum likelihood estimates

(MLE). The random effects predictor can be obtained by

o I'bio(b;,G) H?ilf(yl'j|bi;xij;zij;E)dbi
l f‘P(bi» G) H;L f(Yij|binijJZijJﬁ)dbi

where f(y;;|b;, i, z;, B) is the probability distribution function of the responses given the MLE
of fixed effects B, and (p(bi, C) is the assumed probability distribution function of random effects

given the MLE of variance components G (Fitzmaurice et al., 2009). In logistic mixed effects
models, there is no closed form expression for it. This predictor is also called the best predicted
values (best predictor), since it is the one that has the minimum overall mean square prediction
errors (McCulloch et al., 2008), which is the conditional mean of the random effects given the
distribution of random effects. From Bayesian perspective, the empirical Bayes predictor is the
Bayes rule that minimizes the expected posterior loss using quadratic loss function (Carlin and
Louis, 2009; Skrondal and Rabe-Hesketh, 2004). It is shown in Carlin and Louis (2009) that using
a Gaussian/Gaussian model, empirical Bayes point estimator has smaller empirical Bayes risk,
compared with frequentist (MLE), pure Bayesian and hierarchical Bayesian estimators in most
cases. And this superior performance naturally extends to the empirical Bayes coverage of the

nominal 95% intervals of the parameter estimate.

3.2. An approach based on quadratic inference function (QIF)

Proposed by Wang et al. (2012) the approach based on quadratic inference functions is
robust to the distributional assumption on the random effects when it is mis-specified from the

default normal distribution. The fixed and random effects are obtained by iteratively minimizing
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the fixed and random effects QIFs, and normality assumption is not required for the random
effects. Denoting K as the total number of unique time points observed for all subjects, we assume
that for each subject there is at least one measurement on at least one of the time points, such that,
1 < n; < K. Section 3.2.1 illustrates an implementation strategy for unbalanced data. We show

the derivation of the QIFs for logistic mixed effects models in the following.

For the previously defined logistic mixed effects model, for response y;;, we have the

conditional mean

exp(x];B + z[;b;) _ 1
1+ exp(x’il}ﬂ + Ziiji) 1+ exp (—(xiTjﬁ + ziiji))

li?ji = E(yij|xij, 25, b;) =

and the conditional variance

exp (xiTjﬁ+ziiji)

(1+exp(xiTjﬂ+ziiji))2.

Vij = Var(yijlxiszij,bi) = uf’j"(l — yf’}?) =

T
. . - - b; b; b; . . T
For subject i its mean vector is ;" = (#if» '"'“h;i) and variance vector is v; = (vil, ...,vini) .
Thus, we have

Ai = diag(Var(Yile-,Zl-, bl)) = diag(vl-)

pi(1 - ) 0 0
-0 (o) - 0

0 0 0wl (1-utt)

nixXn;

Then,
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M g,,bi b; b; 7
du;  dpy di;
g, dp; apy
b; b; b;
du?" dug,  dpg, di;,
d[)) - d.ﬁl d.ﬁz d.ﬁp
.bi .bi .bi
d'uini d'ul"l’l.i dl'l'l'ni
ERRT T
exp(xiTlﬁ + ZiT1bi) .
(1 +exp(x, B + 2z, b))2 "t
exp(xiTzﬁ + Ziszi) .
=| (1 +exp(xLB +2z0b))? "
exp(x’{niﬂ + Z’Lrnibi)
T T 2 xinil
-(1 + exp(xiniﬂ + Zinibi))
r,,Di b;
Hiq (1 - :“i1) 0
b; b;
— 0 Hiz (1 - “iz)
0 0
= AiX;
b.
Similarly, = A;Z;.

Thus, the fixed effects QIF is

exp(x?lﬂ + Z?1bi)

x
(1 +exp(x, B + z1,b))2 1P

exp(xjB + zjb;)

x
(1 + exp(xLB + 2z, b;))? tzp

exp (x?niﬁ + Z?nibi)

(1+ exp(xl-Tniﬁ + ziTnibi))Z
0 Xi11  Xi12

Xi21

@b = NG (c)) 6l

where ¢, = 23, g/ (g/) and g/ =

And the random effects QIF is

1
T N
XTAA M, A, Z(YL- — )

x{ (Yi - ui"')

1

2px1
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I (bIB) = G¥ (GR)"

b;
where the extended score for random effects b is g} = <‘Z’Z> A;l(Yi — P‘?i) = ZiT(Yi - uf’i)
L

T

and G (B) = {(gD)", .. (gh)", M, 2,(Pyb)'}

Tuning parameter A1, is chosen to be log(N) which works fine from numerical studies (Cho
etal., 2017; Wang et al., 2012; Zhu and Qu, 2016). It is known that the magnitude of the variance
of random effects predictors is controlled by parameter A, and thus should be selected by the value

that gives the smallest BIC, in which
T -1 T
BIC = N(G}) (¢}) G} + (og(W))(P;b) £-2(P,b), where = = cov(P;b).

We compute the projection matrix P, as follows. Apply Q-R decomposition to A =

(= PX)Z)Tsuch that A = Q x R, where Py = X(X"X)~1XT, and obtain r = rank(4). We will
obtain a matrix J whose columns are the columns of Q beyond the rth column (Boyd and

Vandenberghe, 2004). Thus, J has Nq — r columns. The projection matrix is P, = J(J7))7J.

To start the iteration process, logistic regression was used to obtain an initial estimate for
B, denoted B®. After the initial estimate, L™ (b|B®) is minimized with respect to b to obtain
b®. Then, L (B|b™) is minimized with respect to B to obtain . And we repeat this iterative

process until [BC*D — B5 | + [bS*D — b | < 1075 with B© = 0.

52



3.2.1. Strategy for unbalanced data
The approach of handling unbalanced data was the same with Cho et al. (2017) and Wang

et al. (2012). Assuming for subject i with unbalanced responses such that n; < K, a transformation
matrix A; of dimension K X n; was defined by removing the columns of the K X K identity matrix

corresponding to the time points with missing observations. In the iterative algorithm, we use

* * ‘% . . dp; * *) — —
Yi =AYy, p=MNw, p= Ay, where i = d—’;;, A; = NAAT, and (A7) 71 = AATTAT,

respectively in place of Y;, p;, ui, A; and A7 (Wang et al., 2012). Both the missing responses and

their predicted values are replaced with zeros.

4. Simulation scenarios for comparison of EB and QIF

Simulations were carried out to examine the prediction performance of both approaches
under different distributions of random effects. We used two models that were motivated by NIMH
schizophrenia collaborative study (Hedeker and Gibbons, 2006). The normal and non-normal
distributions shared the same mean and variance-covariance in each model. For simplicity we
assumed n; = n for all i, for all scenario in both models, so that all subjects have the same number

of repeated measures, thus were of the same size.

Model 1: logistic random intercept model:

log<1 pi; ) = Bo + frdrug; + B, |week;; + f; (drugi X Weekij) +b;,i=1,..,N;j
— Dy / /

Sample size N = {50,100, 200}, and the total number of repeated measurements for time

covariate “week” was chosen to be either 4 or 7. For a subject i, when n = 4, week;; € {0,1,3,6};
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whenn =7, week;; € {0,1,2,3,4,5, 6}. The binary “drug” covariate indicated whether a subject
i was under treatment (drug=1) or placebo (drug=0) and was simulated from a Bernoulli

distribution such that drug;~Bernoulli(0.5),i = 1, ..., N.

The true fixed effects vector was 8 = (B, B1, 82, 83)" = (5.5,—0.025,—1.5,—1)".

Random effects were simulated from 5 different normal and non-normal distributions with the
same mean 0 and variance o2 € {2,4,8,10}. Necessary transformations were used when the
distributions were chi-square and exponential to make sure that they all share the same mean and

variance. We summarize the scenarios in the following: for subject i, i =1, ..., N,

1. Normal distribution: b;~Normal (0, 52).

202
o2-1

2. tdistribution: b;~t with degree of freedom df =
3. Exponential distribution: b;~exponential (Va2).
4. Chi-square distribution: b;~y, (072)
5. Symmetric  mixture of normal distributions: bi~%Normal(—1,a2 -1+
%Normal(l,a2 —-1).
Similarly, we used the following bivariate random effects logistic model:

Model 2: logistic random intercept and slope model:

log(1 gl]p ) = Lo + frdrug; + S, ’Weekl-j + B3 (drugl- X /Weekij) + by; + by; /Weekij,
ij

i=1,.,N;j=1,..,n
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The binary “drug” covariate for subject i was simulated from a Bernoulli distribution such

that drug;~Bernoulli(0.75).
The true fixed effects vector was B = (Bo, B1, B2, B3)" = (6,0.3,—1.5,—1.6)".

We assume the random effects were distributed from a distribution ¢ such that, for subject

i, l = 1)""N’
unro(Br-[f %)
b; = (by;, b)) ~¢ ([0],V B [d12 d,

In detail, we used the following distributions for ¢:

1. Normal distribution:
b,~N ([8],Vk),k -1,2,3

[2.7 0

1 6] such that the correlation between random effects is zero, i.e.

where V; =

2.7 —0.8

corr(by;, by)) =0 ; Vo = [_o 8 1.6

] such that corr(by;, by) =04 ; V3=

2. Symmetric mixture of normal distributions:

0.45

biN%N (u, D) +%N(—ﬂ, D),k =1,2,3 where p = 0.45

] and Dk = Vk _HHT
3. tdistribution with 3 degrees of freedom: df = 3:
df-2

bi~tys ([8] %)k =1,2,3 where 5, = =2y,

For each scenario, 100 datasets were simulated and both EB and QIF approaches were used

to predict the individual random effects assuming a normal distribution for the random effects.
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Mean square prediction error (MSPE) were used to compare the prediction performance of the two

approaches. For the [ — th dataset, the MSPE for the random intercept was

SN (byy —buyy)’
N

MSPE, =

where Bu,z was a predictor of the random intercept and b, ; ; was the true simulated one. Similarly,
MSPE was defined for the random slope by replacing 1 with 2. The ratio R of average MSPE for

the QIF approach to the average MSPE for the EB approach was calculated for random intercept

4y
and random slope for each scenario. R = MSPEq;r/MSPEgp, where MSPEpp = w and
zAl MSPEqF, )
MSPEyr = % and A< 100. A is the number of converged datasets A;,l = 1, ...,A. The

SAS procedure GLIMMIX was used to obtain the empirical Bayes predictor of random effects.
Adaptive quadrature was used for maximization of the likelihood functions; hence, not all datasets
were converged. Thus, the comparisons of MSPEs were based on the converged datasets from the
EB approach. If the ratio was smaller than 1, the QIF approach outperformed the EB approach

with respect to the prediction accuracy, and vice versa.

5. Simulation results

5.1. Model 1: logistic random intercept model

The MSPEs of the two approaches and the ratios comparing the two approaches are shown
in Table 1 and Table 2. Generally, regardless of the true distribution of the random intercept, the
MSPEs obtained using the EB approach were always smaller than those obtained using the QIF

approach. Therefore, the ratios of MSPEs were all larger than 1. This indicated that for the
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prediction accuracy of the random intercept, the EB approach was better compared with the QIF

approach, no matter whether the true distribution of random intercept was normal or non-normal.

For a fixed sample size, as the random intercept variance increased, the MSPEs and the
ratios of the MSPEs increased as well, maybe except for the t scenarios, in which the ratios
decreased slightly. This illustrated that although the performance of both approaches worsened
due to the larger MSPEs in scenarios with large random intercept variance, the EB approach was
still superior to the QIF approach. Although for the t scenarios, the performance of two approaches
were becoming similar with each other as the variance of random intercepts increased. The MSPEs
obtained when n = 7 are generally smaller compared with those from the same scenario when n =
4, and the ratios were generally larger when n = 7. The more information we have, either by
increasing the number of subjects or increasing the number of repeated measurements, the smaller
the MSPE values were, and the larger the ratios were. These conclusions were true not only when
the random intercept was simulated from normal distributions, but also the non-normal
distributions. This observation proved that the EB method for random effects was sufficiently
accurate when compared with the relatively robust QIF approach. The larger the sample size, the
larger the number of repeated measurements, the more accurate the prediction of both approaches.
As the variance of random effects increased, the EB approach outperformed the QIF approach

greatly.

5.2. Model 2: logistic random intercept and slope model

The MSPEs of the two approaches and the ratios comparing the two approaches are shown

in Table 3 and 4 forn =7 and Table 5 and 6 for n = 4. Generally, for a fixed correlation
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coefficient between random intercept and random slope, the larger the sample size, the smaller the
MSPEs obtained for the EB approach, not for the QIF approach, and the larger the ratios R. For a
fixed sample size, the larger the correlation coefficient between random intercept and random
slope, the larger the MSPEs obtained for both approaches, and the smaller the ratios R. For a
scenario in which the true random effects distribution was known and the sample size was fixed,
the larger the number of repeated measurements, the smaller the MSPEs. Generally, when there
exists strong correlation between random effects, the QIF approach is more accurate in predicting
random effects, and this was especially true when true random effects were from bivariate t
distributions with 3 degrees of freedom. But when the sample size was sufficiently large, more
accurate predictors were obtained by the EB approach, and this is especially true when the true
random effects were from bivariate normal distributions and a symmetric mixture of bivariate

normal distributions.

In conclusion, when the sample size was sufficiently large, and a weak correlation existed
between random intercept and random slope, generally, the EB approach outperformed the QIF
approach. But when the correlations between random effects were relatively strong, the QIF
approach outperformed the EB approach even when the sample size was not relatively large. This

was especially true for random intercept prediction.

6. Application to a schizophrenia study

As an illustration, to check agreement on random effects prediction two approaches, we
applied both prediction methods to a NIMH schizophrenia collaborative study (Hedeker and

Gibbons, 2006), in which the binary scores of “Item 79 of Inpatient Multidimensional Psychiatric
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Scale(IMPS)” were measured for 4 treatment periods, for 108 patients from placebo arm and 329
patients from treatment arm. We denote y;; = 1 if a patient i is mildly ill based on this score at
treatment duration j, and y;; = 0 if the patient is moderately ill. The treatment arm is a
combination of treatments chlorpromazine, fluphenazine and thioridazine. We fit the same model
as in Hedeker and Gibbons (2006), where the random effects were intercept and square root of
treatment duration, in which drug is an binary indicator of patient i being in either treatment or

placebo group.

log<1 ﬁ”p ) = Lo + frdrug; + B2 ’Weekl-j + B (drugl- X ’Weekij) + by; + by; ’Weekij,
ij

i=1.,N;j=1,..n

The maximum number of repeated measurements n = 4, such that for subject i, week;; €

{0,1, 3, 6}. Missing responses were observed in all time points, thus missing handling method was
used in the QIF approach. The SAS procedure GLIMMIX, which assumes random effects follow
normal distribution, was used to obtain maximum likelihood estimates of the fixed effects and EB
predictors of the random effects (SAS Institute Inc. Cary, NC). An unstructured covariance matrix

for the random effects was assumed in this application.

The predictions on the random slope by the EB and QIF approaches correlated relatively
strongly, with correlation of 0.78, while the correlation for random intercept is 0.71. Figure 1
shows scatterplots comparing the predictions of the random effects by the QIF and EB approaches
under homoscedastic independent errors. Overall, the two prediction methods agreed moderately,
except for the prediction on the random slope. Specifically, predictors for the intercept were

scattered around mean zero, suggesting that EB intercept predictions tended to be larger in absolute
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value than QIF predictions. The random slope predictors were scattered more evenly around the

diagonal line.

7. Discussion and conclusion

In this paper we compared the random effects prediction performance of two approaches,
i.e. the EB approach and the QIF approach. The EB approach requires that the random effects
follow a parametric distribution, usually normal distribution. The QIF approach does not require

the random effects to follow any specific parametric distribution, thus it is a robust method.

In the simulation study, the true random effects were distributed from both normal and
non-normal distributions, such as t distribution, mixture of normal distributions, chi-square
distribution, etc. To obtain the empirical Bayes predictors, SAS procedure GLIMMIX was used
assuming independent working correlation assumption for responses. The comparison of the
MSPEs was based on the converged datasets only. Out of the 100 simulations, for model 1, the
proportion of converged simulated datasets was no smaller than 91% when n = 7, and no less than
71% when n = 4. And the smallest proportion was observed when the true random effects were
from an exponential distribution. The proportions were relatively smaller for the bivariate logistic
models. When n = 7, it was as small as 30% when the true random effects were from normal
distribution and a mixture of normal distributions. When n = 4, this proportion was only 25%
when the true random effects were from a t distribution with 3 degrees of freedom. Our results

were consistent with the findings reported in the simulation study in Wang et al. (2012).

From the simulation study we conclude that in logistic models with random intercept only,

the EB approach generates more accurate random intercept predictors compared with the QIF
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approach. This conclusion is unrelated with the true distribution of random effects, number of
subjects, and number of repeated measurements. Generally, the larger the sample size, and the
larger the true variance of random intercept, the performance of the EB approach is superior
compared with the QIF approach. The exception occurs when the true distribution of the random
effects is t distribution: the smaller the variance, the greater accuracy of the EB approach. For
logistic models with more than one random effect, we observe that in most cases, the performance
of the two approaches are comparable. Generally, the EB approach performs slightly better than
the robust QIF approach, when the random effects are independent, and the sample size is
relatively large. And this observation is especially true when the true random effects are from
normal or a mixture of normal distributions. When the random effects were from bivariate t
distribution, and the random effects were strongly correlated, the QIF approach has greater

accuracy in random effects prediction.

Generally, in logistic models with random intercept only, the MSPEs from exponential
distributions are relatively larger than those from other distributions. This is because the
exponential distribution has limited support, while the assumed true normal distribution does not.
This is observed regardless of the number of repeated measures, and our findings are consistent
with the ones reported in Mcculloch and Neuhaus (2011a). An important message stated in
McCulloch and Neuhaus (2011a) is that the prediction performance of the EB approach was less
affected by the misspecification of the distribution of random effects. Their conclusion was also
validated in Mcculloch and Neuhaus (2011a) in which they derived the formulas for the MSPE of
the random intercept for both linear and logistic models. The authors concluded that although the
shape of the distribution of the EB predictors may not match the true underlining distribution, the

performance measured by MSPE was not affected significantly by the misspecification. The
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excellent prediction performance of the EB approach is not a surprise to us. As shown in Searle et
al. (1992) for linear models, the EB predictor is the best predictor which minimized the mean
square error of prediction given the sampling distribution of the response and all parameters are
known. The well-known optimal property of BLUP for linear models further illustrated the
robustness of EB predictor of random effects. Although there is no closed form of EB predictor
for logistic model, the optimality from the linear case shed some light on understanding its

robustness in the binary case. And we also proved this property through simulations in the paper.

Thus, for statistical practice, when focus is on prediction of random effects, even when one
has doubts about the normal assumption of the random effects distribution, the empirical Bayes
approach is still recommended, due to its noninferior performance in predicting random effects
compared with a more robust method, i.e. the QIF approach, its robustness to violations of the
normality assumption of predictors of random effects and its easy implementation with existing

statistical packages.

62



References

Agresti, A., Caffo, B., Ohman-Strickland, P., 2004. Examples in which misspecification of a
random effects distribution reduces efficiency, and possible remedies. Comput. Stat. Data

Anal. 47, 639-653.

Albert, P.S., 2012. A linear mixed model for predicting a binary event from longitudinal data

under random effects misspecification. Stat. Med. 31, 143-154.

Boyd, S.P., Vandenberghe, L., 2004. Convex optimization. Cambridge University Press,

Cambridge, UK ; New York.

Breslow, N.E., Clayton, D.G., 1993. Approximate Inference in Generalized Linear Mixed

Models. J. Am. Stat. Assoc. 88, 9-25.

Candel, M.J.J.M., 2009. Optimal designs for empirical bayes estimators of individual linear and

quadratic growth curves in linear mixed models. Stat. Methods Med. Res. 18, 397-419.

Carlin, B.P., Louis, T.A., 2009. Bayesian methods for data analysis, 3rd ed, Chapman &

Hall/CRC texts in statistical science series. CRC Press, Boca Raton.

Chen, J., Zhang, D., Davidian, M., 2002. A Monte Carlo EM algorithm for generalized linear

mixed models with flexible random effects distribution. Biostatistics 3, . 347—360.

Cho, H., Wang, P., Qu, A., 2017. Personalize Treatment for Longitudinal Data Using

Unspecified Random-Effects Model. Stat. Sin. 27, 187-205.

Diaz, F.J., 2017. Estimating individual benefits of medical or behavioral treatments in severely

ill patients. Stat. Methods Med. Res. 962280217739033.

63



Diaz, F.J., 2016. Measuring the individual benefit of a medical or behavioral treatment using

generalized linear mixed-effects models. Stat. Med. 35, 4077—-4092.

Feng, S., Wolfinger, R.D., Chu, T.M., Gibson, G.C., McGraw, L.A., 2006. Empirical Bayes
analysis of variance component models for microarray data. J. Agric. Biol. Environ. Stat.

11, 197-209.

Fitzmaurice, G.M., Davidian, M., Verbeke, G., Molenberghs, G., 2009. Longitudinal data
analysis, Chapman & Hall/CRC handbooks of modern statistical methods. CRC Press, Boca

Raton.

Gillies, C.S., Hebblewhite, M., Nielsen, S.E., Krawchuk, M.A., Aldridge, C.L., Frair, J.L., Saher,
D.J., Stevens, C.E., Jerde, C.L., 2006. Application of random effects to the study of

resource selection by animals. J. Anim. Ecol.

Have, T.R. Ten, Kunselman, A.R., Pulkstenis, E.P., Landis, J.R., 1998. Mixed Effects Logistic
Regression Models for Longitudinal Binary Response Data with Informative Drop-Out.

Biometrics 54, 367—383.

Heagerty, P.J., Kurland, B.F., 2001. Misspecified maximum likelihood estimates and generalised

linear mixed models. Biometrika 88, 973—985.

Heagerty, P.J., Zeger, S.L., 2000. Marginalized multilevel models and likelihood inference. Stat.

Sci. 15, 1-19.

Hedeker, D., 2003. A mixed-effects multinomial logistic regression model. Stat. Med. 22, 1433—

1446.

Hedeker, D., Gibbons, R.D., 2006. Longitudinal Data Analysis. Wiley-Interscience, Hoboken,

64



N.J.

Horrocks, J., van Den Heuvel, M.J., 2009. Prediction of pregnancy: A joint model for

longitudinal and binary data. Bayesian Anal. 4, 523-538.

Kass, R.E., Steffey, D., 1989. Approximate bayesian inference in conditionally independent

hierarchical models (Parametric empirical bayes models). J. Am. Stat. Assoc. 84, 717—726.

Kleinman, K., Lazarus, R., Platt, R., 2004. A Generalized Linear Mixed Models Approach for
Detecting Incident Clusters of Disease in Small Areas, with an Application to Biological

Terrorism. Am. J. Epidemiol. 159, 217-224.

Lin, X., Breslow, N.E., 1996. Bias correction in generalized linear mixed models with multiple

components of dispersion. J. Am. Stat. Assoc. 91, 1007-1016.

Litiere, S., Alonso, A., Molenberghs, G., 2008. The impact of a misspecified random-effects
distribution on the estimation and the performance of inferential procedures in generalized

linear mixed models. Stat. Med. 27, 3125-3144.

Litiere, S., Alonso, A., Molenberghs, G., 2007. Type | and type Il error unde random-effects

misspecification in generalized linear mixed models. Biometrics 63, 1038-1044.

Liu, D., Ghosh, D., Lin, X., 2008. Estimation and testing for the effect of a genetic pathway on a
disease outcome using logistic kernel machine regression via logistic mixed models. BMC

Bioinformatics.

Mann, R.P., Spaiser, V., Hedman, L., Sumpter, D.J.T., 2018. Choice modelling with Gaussian
processes in the social sciences: A case study of neighbourhood choice in stockholm. PLoS

One.

65



Marquart, L., Haynes, M., 2019. Misspecification of multimodal random-effect distributions in

logistic mixed models for panel survey data. J. R. Stat. Soc. Ser. A Stat. Soc. 182, 305-321.

McCulloch, C., Searle, S., Neuhaus, J., 2008. Generalized, Linear, and Mixed Models, 2nd ed.

Wiley Series in Probability and Statistics, Hoboken, N.J.

Mcculloch, C.E., Neuhaus, J.M., 2011. Prediction of Random Effects in Linear and Generalized

Linear Models under Model Misspecification. Biometrics 67, 270-279.

McCulloch, C.E., Neuhaus, J.M., 2011. Misspecifying the Shape of a Random Effects

Distribution: Why Getting It Wrong May Not Matter. Stat. Sci. 26, 388—402.

Mikulich-Gilbertson, S.K., Wagner, B.D., Grunwald, G.K., Riggs, P.D., Zerbe, G.O., 2019.
Using empirical Bayes predictors from generalized linear mixed models to test and visualize

associations among longitudinal outcomes. Stat. Methods Med. Res. 28, 1399-1411.

Neuhaus, J.M., Hauck, W.W., Kalbfleisch, J.D., 1992. The effects of mixture distribution

misspecification when fitting mixed-effects logistic models. Biometrika 79, 755-762.

Neuhaus, J.M., Kalbfleisch, J.D., Hauck, W.W., 1994. Conditions for consistent estimation in

mixed-effects models for binary matched-pairs data. Can. J. Stat. 22, 139-148.

Parzen, M., Ghosh, S., Lipsitz, S., Sinha, D., Fitzmaurice, G.M., Mallick, B.K., lbrahim, J.G.,
2011. A generalized linear mixed model for longitudinal binary data with a marginal logit

link function. Ann. Appl. Stat. 5, 449-467.

Sammel, M.D., Ryan, L.M., Legler, J.M., 1997. Latent variable models for mixed discrete and

continuous outcomes. J. R. Stat. Soc. Ser. B Stat. Methodol. 59, 667—678.

66



Sashegyi, A.l., Brown, K.S., Farrell, P.J., 2000. Application of a generalized random effects
regression model for cluster-correlated longitudinal data to a school-based smoking

prevention trial. Am. J. Epidemiol. 152, 1192—-1200.

Searle, S.R., Casella, G., McCulloch, C.E., 1992. Variance Components, 1st ed, Book. Wiley-

Interscience.

Shen, W., Louis, T.A., 1999. Empirical Bayes estimation via the smoothing by roughening

approach. J. Comput. Graph. Stat. 8, 800—823.

Skrondal, A., Rabe-Hesketh, S., 2004. Generalized latent variable modeling : multilevel,
longitudinal, and structural equation models, Chapman & Hall/CRC interdisciplinary

statistics series. Chapman & Hall/CRC, Boca Raton.

Skrondal, A., Rabe-Hesketh, S., 2003. Some Applications of Generalized Linear Latent and

Mixed Models in Epidemiology. Nor. Epidemiol. 13, 265-278.

Ten Have, T.R., Localio, A.R., 1999. Empirical Bayes estimation of random effects parameters

in mixed effects logistic regression models. Biometrics 55, 1022-1029.

Van Den Noortgate, W., De Boeck, P., Meulders, M., 2003. Cross-Classification Multilevel

Logistic Models in Psychometrics. J. Educ. Behav. Stat. 28, 369-386.

Wang, P., Tsai, G.F., Qu, A.N., 2012. Conditional Inference Functions for Mixed-Effects Models

With Unspecified Random-Effects Distribution. J. Am. Stat. Assoc. 107, 725-736.

Zhu, X.L., Qu, A.N., 2016. Individualizing drug dosage with longitudinal data. Stat. Med. 35,

4474-4488.

67



Table 1. Average MSPE (MSPEgg, MSPE ), and ratio of the average MSPEs comparing QIF
approach to EB approach (R = MSPEy;r/MSPEgg) for random intercept prediction in Model 1,
when the true random effects were simulated from normal, symmetric mixture of normal, t,
exponential and chi-square distributions with difference variances, and the independent working
correlation assumption. Averages summarized 100 simulated datasets. n = 7.

MSPEgp | MSPEy;r | R
Normal distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.02 | 0.974 | 0.936 | 145 1.45 1.54 1.42 1.49 1.64
4 1.61 1.56 1.52 2.72 2.80 2.54 1.69 1.79 1.67
8 2.71 2.59 2.45 5.40 5.24 5.14 199 | 2.02 2.09

16 5.34 4.97 4.51 10.9 11.5 11.6 2.05 2.32 2.58
Symmetric mixture of normal distributions
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.02 | 0.975 | 0.962 | 145 1.54 1.51 1.42 1.58 1.57
4 1.67 1.53 1.47 2.88 2.57 241 1.73 1.68 1.64
8 2.76 2.51 2.39 555 | 4.93 495 | 2.01 1.96 2.07

16 5.21 4.64 4.73 10.6 11.1 11.6 2.04 2.38 2.45
t distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.14 1.09 1.09 1.59 1.49 1.52 140 | 1.36 1.40
4 2.20 2.07 2.13 2.86 2.81 276 | 1.30 | 1.36 1.30
8 6.90 3.38 411 798 | 4.23 5.02 116 | 1.25 1.22

16 7.47 7.20 757 | 881 | 8.23 872 | 118 | 1.14 1.15
Shifted exponential distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.47 1.42 1.46 1.77 1.77 183 | 121 | 1.24 1.25
4 2.65 2.50 2.56 3.32 3.34 320 | 1.25 | 1.33 1.25
8 4.49 4.80 4.50 6.24 6.52 5.92 139 | 136 1.32

16 9.67 8.38 854 | 142 | 135 144 | 147 | 161 1.69
Shifted Chi-square distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.57 1.64 1.53 1.93 1.93 1.87 1.23 | 118 1.22
4 2.70 2.55 2.58 3.39 3.26 335 | 1.26 | 1.28 1.30
8 3.93 3.75 3.75 6.22 5.77 5.37 158 | 154 1.43

16 6.63 6.17 6.10 12.0 12.3 128 | 1.81 | 1.99 2.09
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Table 2. Average MSPE (MSPEgg, MSPE ), and ratio of the average MSPEs comparing QIF
approach to EB approach (R = MSPEy;r/MSPEgg) for random intercept prediction in Model 1,
when the true random effects were simulated from normal, symmetric mixture of normal, t,
exponential and chi-square distributions with difference variances, and the independent working
correlation assumption. Averages summarized 100 simulated datasets. n = 4.

MSPEgpg | MSPEy;r | R
Normal distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.50 1.37 1.32 1.80 1.71 169 | 120 | 1.25 1.28
4 2.50 2.17 2.05 3.20 3.34 3.05 | 1.28 | 1.53 1.48
8 3.84 3.38 3.36 6.48 6.26 6.10 | 1.69 | 1.85 1.82

16 6.85 6.06 561 | 128 | 129 13.0 | 1.88 | 2.12 2.31
Symmetric mixture of normal distributions
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.51 1.36 1.32 1.74 1.68 1.69 1.15 1.24 1.28
4 2.36 2.12 2.02 3.27 3.12 3.13 | 1.39 1.47 1.55
8 3.85 3.49 3.29 6.31 6.55 6.05 | 1.64 1.88 1.84

16 6.76 5.86 5.72 13.3 125 13.1 1.96 2.13 2.29
t distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.56 1.42 1.38 1.73 1.63 168 | 1.11 | 115 1.22
4 2.75 2.62 2.43 3.36 3.20 295 | 1.22 1.22 1.22
8 5.91 5.88 5.96 7.15 7.01 6.71 | 1.21 | 119 1.13

16 12.1 7.36 6.65 | 13.3 | 8.59 763 | 1.09 | 1.17 1.15
Shifted exponential distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.82 1.68 1.64 1.99 1.90 1.86 | 1.10 | 1.13 1.14
4 3.13 3.14 2.96 3.54 3.46 322 | 113 | 110 1.09
8 5.06 5.62 5.47 6.73 6.58 6.19 | 133 | 117 1.13

16 10.4 10.1 9.74 | 137 13.3 127 | 133 | 132 1.31
Shifted Chi-square distribution
Variance | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

2 1.77 1.81 1.76 1.95 1.99 197 | 110 | 1.10 1.12
4 3.16 3.08 3.11 3.51 3.36 346 | 1.11 | 1.09 1.11
8 5.06 4.93 4.92 6.73 6.53 6.20 | 1.33 | 1.32 1.26

16 8.16 7.77 7.56 13.2 13.5 133 | 161 | 173 1.76
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Table 3. Average MSPE (MSPEgg, MSPEr), and ratio of the average MSPEs comparing QIF
approach to EB approach (R = MSPEy;r/MSPEgg) for random intercept prediction in Model 2,
when the true random effects were simulated from bivariate normal, symmetric mixture of normal
and t distributions with difference correlations, and the independent working correlation
assumption. Averages summarized 100 simulated datasets. n = 7.

MSPEgp | MSPEy;r | R
Normal distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 3.79 2.28 217 | 236 | 2.40 244 10.623 | 1.05 1.12
0.4 2.65 2.67 253 | 253 | 2.62 2.58 [0.955| 0.98 1.02
0.8 3.36 2.97 287 | 283 | 2.75 2.74 |0.841 | 0.926 | 0.955

Symmetric mixture of normal distributions
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 2.60 2.21 2.15 | 248 | 2.39 2.49 |0.956| 1.08 1.16
0.4 3.43 2.53 251 | 255 | 252 259 [0.745| 0.993 | 1.03
0.8 3.06 2.83 277 | 2.78 | 2.67 2.71 |0.908| 0.946 | 0.979
t distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200
0 2.54 2.09 255 | 248 | 2.25 2.75 |0.978 | 1.07 1.08
0.4 4,73 2.55 251 | 4.27 | 247 2.46 | 0.903| 0.971 | 0.981
0.8 3.00 3.62 2.85 | 2.90 | 3.43 2.83 |0.968 | 0.948 | 0.993
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Table 4. Average MSPE (MSPEgg, MSPE ), and ratio of the average MSPEs comparing QIF
approach to EB approach (R = MSPEy;-/MSPEgg) for random slope prediction in Model 2,
when the true random effects were simulated from bivariate normal, symmetric mixture of normal
and t distributions with difference correlations, and the independent working correlation
assumption. Averages summarized 100 simulated datasets. n = 7.

=

MSPE; | MSPEq;x
Normal distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 196 | 0.938 | 0.862 | 1.01 | 1.08 1.07 [ 0512 | 1.10 1.24
0.4 1.02 1.04 | 0969 | 1.06 | 1.14 1.18 | 1.04 | 1.10 1.22
0.8 1.25 1.16 115 | 118 | 1.17 1.28 [ 0941 ] 1.01 1.11

Symmetric mixture of normal distributions
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 1.02 | 0.904 | 0.865 | 0.988 | 1.05 1.09 [0971| 1.16 1.26
0.4 1.82 1.02 | 0.989 | 1.08 | 1.12 1.18 [0.597 | 1.09 1.19
0.8 1.66 1.18 111 | 113 | 121 1.25 |0.680| 1.03 1.13

t distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 1.41 1.41 156 | 124 | 136 159 |[0.878] 0.965 | 1.02
0.4 1.48 1.30 133 | 121 | 125 1.32 [ 0.819 | 0.961 | 0.991
0.8 1.61 1.60 159 [ 123 | 1.28 1.30 | 0.765| 0.803 | 0.819
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Table 5. Average MSPE (MSPEgg, MSPE,, ), and ratio of the average MSPE comparing EB
approach to QIF approach (R = MSPEgp /MSPE,,r) for random intercept prediction in Model
2, when the true random effects were simulated from bivariate normal, symmetric mixture of
normal and t distributions with difference correlations, and the independent working correlation
assumption. Averages summarized 100 simulated datasets. n = 4.

MSPEgp | MSPEy;r | R
Normal distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 359 | 241 232 | 252 | 250 252 10700 | 1.04 1.09
0.4 3.69 | 2.68 268 | 260 | 258 2.66 | 0.703 | 0.963 | 0.993
0.8 335 | 3.14 3.00 | 270 | 2.81 2.79 ]10.806 | 0.895 | 0.928

Symmetric mixture of normal distributions
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 2.82 2.72 230 | 245 | 2.48 257 |0.871| 0912 | 1.12
0.4 3.84 2.83 258 | 271 | 271 2.61 |0.706 | 0.959 | 1.01
0.8 2.96 3.08 2.89 | 2.69 | 291 2.81 |0.908 | 0.944 | 0.972
t distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200
0 3.73 2.50 340 | 3.13 | 2.25 2.35 |0.839 | 0.901 | 0.691
0.4 4.45 3.51 253 | 265 | 2.73 245 |0.596 | 0.777 | 0.969
0.8 3.33 2.65 3.58 | 238 | 2.52 3.52 | 0.716 | 0.954 | 0.981
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Table 6. Average MSPE (MSPEgg, MSPE,,r), and ratio of the average MSPE comparing EB
approach to QIF approach (R = MSPEgg /MSPE,,r) for random slope prediction in Model 2,
when the true random effects were simulated from bivariate normal, symmetric mixture of normal
and t distributions with difference correlations, and the independent working correlation
assumption. Averages summarized 100 simulated datasets. n = 4.

MSPEgp | MSPEy;r | R
Normal distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 1.95 1.02 1.02 | 118 | 1.19 1.26 | 0.606 | 1.16 1.23
0.4 1.50 1.20 115 | 126 | 132 1.34 10843 | 1.10 1.16
0.8 1.41 1.28 131 | 133 | 1.27 1.28 ]0.943 | 0.985 | 0.976

Symmetric mixture of normal distributions

Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200

0 1.18 1.27 | 0998 | 1.20 | 1.22 1.27 | 1.02 | 0963 | 1.27
0.4 1.86 1.19 1.14 | 1.24 | 1.26 1.30 | 0.666 | 1.06 1.14
0.8 1.61 1.41 1.30 | 1.27 | 1.37 1.30 | 0.786 | 0.969 | 0.999
t distribution
Correlation | N=50 | N=100 | N=200 | N=50 | N=100 | N=200 | N=50 | N=100 | N=200
0 1.65 1.36 1.28 | 1.33 | 1.19 1.19 | 0.803 | 0.871 | 0.934
0.4 1.71 1.81 1.31 | 1.34 | 1.44 1.29 |0.785| 0.794 | 0.985
0.8 1.42 1.62 162 | 1.18 | 1.39 1.62 | 0.831| 0.855 | 0.999
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Figure 1. Scatterplots of random effects for schizophrenia study, random effects were predicted by
QIF versus EB approaches under independent working correlation assumption. (A) Random
intercept predictors. (B) Predictors of random coefficient of time. The solid line is the y=x line.
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Chapter IV: A Graphical Approach to Assess the Goodness-of-Fit of Random
Effects Linear Models When the Goal is to Measure Individual Benefits of
Medical Treatments in Severely 11l Patients

Zhiwen Wang and Francisco J. Diaz*
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ABSTRACT

Two-dimensional personalized medicine (2-PM) models are tools for measuring patients’
individual benefits of medical treatments for chronic diseases that have potential applications in
personalized medicine. These models assume normality for the distribution of random effects. It
IS necessary to examine the appropriateness of these assumption. We propose a graphical approach
to assessing the goodness-of-fit of 2-PM models. Our approach plots the empirical quantiles of
individual benefits predicted through an empirical Bayes approach versus the quantiles of the
theoretical distribution of individual benefits derived under the assumption of normality for the
random effects. We examine the performance of the proposed approach by computing Cramer-
von Mises discrepancies between the empirical and theoretical distributions of individual benefits.
Simulations showed that the proposed approach is sensitive to violations of the normality
assumption and suggest that the approach is a useful tool to examine the goodness of the fit of 2-

PM models.

KEY WORDS: Empirical Bayes, goodness-of-fit, personalized medicine models, quantiles,

severity, treatment benefits
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1. Introduction

Two-dimensional personalized medicine (2-PM) models are tools for measuring the
severity of a patient’s chronic disease and the individual benefits of medical or behavioral
treatments (Diaz, 2019, 2016). The patient’s disease severity at a specific time point is defined as
the probability of missing the therapeutic target, and the individual benefit is therefore measured
as the reduction in disease severity produced by the treatment. The severity and individual benefits
are functions of known and unknown patient’s characteristics. In practice, 2-PM models are built
using linear models with random coefficients and severities and benefits are calculated with the

random coefficients (Diaz, 2019, 2016).

Mixed effects models are efficient tools to build 2-PM models for understanding the
individual time trajectory of treatment effects (Diaz et al., 2007, 2012a, 2012b; Diaz and de Leon,
2013; Diaz, 2016, 2019). In mixed effects models the distributional assumption of the unobserved
random effects is important for estimation and inference, since the marginal likelihood function,
which can be obtained by integrating out the random effects, depends on the assumed distribution
of the random effects. Classically empirical Bayes (EB) approach is used to predict the random
effects. In linear mixed effects models the EB predictors of the random effects are estimates of the
best linear unbiased predictor (BLUP), which do not require the normality assumption for the
random effects. Thus, a BLUP is robust to violations of the normality assumption. The prediction
accuracy of BLUP for random effects was little affected by the distribution misspecification, as
shown from both theoretical and numerical perspectives (Mcculloch and Neuhaus, 2011a).
Traditionally, in mixed models, the unobserved random effects are assumed to follow normal
distributions, for ease of computation. Violation of this normality assumption is possible. For

example, a between-individual binary characteristic that is associated with the individual mean
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profiles could be omitted. And a bimodal distribution may describe the induced variance. Although
violation of this normality assumption has little to mild effect on maximum likelihood estimates
(MLE) of the fixed effects, it may affect the random effects prediction by increasing bias of the
variance components estimates, especially in generalized linear mixed effects models (Verbeke
and Lesaffre, 1996, 1997; Verbeke and Molenberghs, 2000; Agresti et al., 2004; Litiere et al.,
2007, 2008). Therefore, for a particular dataset, it is crucial to assess the goodness-of-fit of the 2-

PM models with respect to the distribution misspecification of the random effects.

Several graphical methods have been proposed for examining the goodness-of-fit of mixed
models for longitudinal data. The most well-known graphical approach is based on conditional
residuals which are computed with estimates of the BLUPs of the random effects (Gregoire et al.,
1995). Verbeke and Molenberghs (2013) proposed a graphical diagnostic tool using gradient
functions which checks the appropriateness of the random effects distribution assumption. Pan and
Lin (2005) proposed graphical and numerical techniques to check the link function and functional
forms of covariates through cumulative sums of residuals. Grady and Helms (1995) assess the fit
of the assumed covariance structure, by plotting lagged covariances or correlations. Diaz et al.
(2008) assessed goodness-of-fit of a random intercept model by plotting random-effect-adjusted
observations based on EB predictors of random intercepts versus expected observations. Formal
statistical tests have also been proposed. To check the normality assumption for the random effects,
Efendi et al. (2017) used a bootstrap test based on gradient functions. Drikvandi et al. (2017)
proposed a diagnostic test based on Cramer-von Mises discrepancies. Alonso et al. (2008)
proposed test that use the eigenvalues of the variance-covariance matrices of fixed effects

estimates obtained from robust inference methods. Similarly, for generalized linear mixed effects
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models, two versions of diagnostic tests using information matrices were proposed in Abad et al.

(2010).

This article proposes a graphical approach to assessing the goodness-of-fit of 2-PM models
for continuous responses of severely ill patients. The approach compares the quantiles of the
empirical Bayes estimates of individual treatment benefits of the patient sample against the
theoretical quantiles of the distribution of individual benefits derived under the normality
assumption for the random effects. We conducted a Monte Carlo simulation study that showed
that the approach is sensitive to deviations from the normality assumption for the random effects.
Specifically, the graphical approach captures the discrepancy between multivariate non-normal
distributions for the random effects and normal distributions with the same mean and variance-

covariance matrix.

This paper is organized as follows. The introduction of the conceptual and theoretical idea
of the 2-PM models presents the functions of individual treatment benefits for continuous
responses of severely ill patients. Then we present a motivation for the graphical approach and
describe it in detail. Next, the approach is illustrated using data from a clinical trial of the
antidepressant imipramine. An extensity simulation study was conducted with the presence of
multivariate normal and non-normal distributions to evaluate the performance of the proposed
graphical approach. Then we describe how Cramer-von Mises discrepancies are used to quantify

deviations from the normality. The paper ends with a discussion and conclusions.

2. Methods

2.1. Individual severity and treatment benefits using time dependent 2-PM models
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Time dependent 2-PM models allow understanding the evolution of individual treatment
benefits over time (Diaz, 2019). Let Y be a continuous measure reflecting the patient’s disease.

Before a treatment Q is initiated, the responses for patient w are measured k ,, times and modeled

by

Yoo = Ao + €00, J=1..kou
and after the treatment is initiated, the responses are measured k;, ,, times and modeled by
YQ'w:j = ACU + ﬁQ,O),]’ + E(’U}j) ] = 1 "'kl,(l)l

where A, = a, + 27X, and By ; = O1ptw ) + O20ts j + 4 B uts ;. Here, X, is a vector
of subject characteristics that do not change during the trial. For patient w, A, isa constant number
that reflects the patient’s disease state before treatment initiation and 3, ,, ; is the individual (time-
dependent) treatment effect after t,, ; time units of treatment. We write 3, ,, (t) in place of By, ;
to express the treatment effect at a generic time point t. We view 4, and S, ., (t) as individual
realizations of population-level random variables A* and S, (t), respectively (Diaz, 2019). Also,

Eo,0,j ANd &, ; represent measurement errors or within-subject variability due to patient’s internal

or external factors, assumed to be N(0,52) and N(O, ag’z), respectively.

Here, we assume that the therapeutic target is to achieve Y < y, where y is a prespecified

value. Thus, a patient w has baseline disease severity (Diaz, 2019, 2016)
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where @ is the cumulative distribution function of a standard normal distribution, and the patient’s

severity after a treatment duration ¢ is

5y =1— (y — Ao — ﬁo,w(t)>_

O¢

The patient’s individual benefit from treatment Q at time point t is the reduction in disease

severity
bw (t) = SO,O) - Sz}w (t)

Here, we assume that all patients are severely ill, thatis s, ,, = 1 for all . Thus, it is shown
in Diaz (2019) that under the reasonable assumption that o; = 0., the patient’s benefit can be

computed as

b, () ~ @ (y ~Lo b Q""(t)> )

O¢

In the following, we assume o} = g, which is usually clinically reasonable. Here, «,, and
01, -, 04, are characteristic constants of patient w that are viewed as realizations of random
coefficients o™ and 65, ..., 8 that do not necessarily have mean 0. In the terminology of mixed
effects models, E(a*), 4 and E(67), ..., E(6}) are the fixed effects, and a* — E(a*) and 6; —
E(6;),i=1,..,d, are the random effects which are usually assumed to be normally distributed.

Here, we propose a graphical method to examine the assumption of normality.
2.2. Quantiles of individual benefits under the normality assumption
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Under the assumption of normality for the random effects, since the patients are severely
ill, the cumulative distribution function of individual benefits for patients with covariate value X =

x at time t is (Diaz, 2019)

d1(2) —
F(Z)=F(Z;x,t)=d><¥>, 0<z<1, (2)
y—E(4"+B5(0) 5 5 var(a*+B5 (1)) )
where u = u(x, t) = — and y* = y*(t) = ——z—=. Further, the p-th quantile of
& O¢

the probability distribution function of individual treatment benefits is (Diaz, 2019)

Bp,x,t) = (y® '(p)+w), 0<p<l (3)

The quantities in (2) and (3) are functions of treatment duration t, since u and y are. They
are also functions of the fixed effects and the variance components (i.e., the variances and

covariances of the random effects and the error variance).

2.3. A motivation for the proposed graphical approach

Here, we estimate (predict) the individual treatment benefits using the EB approach
described in Diaz (2019, 2016). The EB predictors of individual treatment benefits are obtained
by replacing the fixed effects, error variance and individual random effects in Equation (1) with
their estimates or predictors. The fixed effects and variance components are usually estimated
through maximum or restricted maximum likelihood (Verbeke and Molenberghs, 2000; Hedeker
and Gibbons, 2006; McCulloch et al., 2008; Fitzmaurice et al., 2011). We predict the random
effects following an EB approach (Diaz, 2019, 2016; Diaz et al., 2012b; Frees, 2004; Verbeke and

Lesaffre, 1996; Verbeke and Molenberghs, 2000). Importantly, the EB predictors of random
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effects are estimates of the best linear unbiased predictors (BLUPs) which do not assume normality
for the random effects (Frees, 2004). Moreover, the EB predictors of random effects are relatively
robust to violations of the normality assumption (McCulloch and Neuhaus, 2011a; 2011b).
Because of this, the sample quantiles of the estimated individual benefits can be viewed as robust
estimates of the quantiles of the probability distribution of individual benefits. Alternatively, the
quantiles can be directly estimated by replacing the fixed effects and variance components in
Equation (3) with their corresponding estimates. Therefore, if the normality assumption is violated,
we expect the quantiles estimated with Equation (3) to be substantially different from the sample
quantiles based on the BLUPs because Equation (3) was derived under the assumption of
normality. Thus, we propose to compare the sample quantiles based on the BLUPs with the
quantiles calculated with Equation (3) in order to evaluate the assumption of normality for the

random effects.

2.4. Goodness-of-fit plot

Suppose the sample of patients can be divided into G subgroups. This is possible, for
instance, when the subject characteristics are categorical or, if a characteristic is continuous when
it is split into categories based on published cut-off values or percentiles. Therefore, we assume
that X, includes only binary (dummy) covariates and that X, has G distinct possible values

X1, ..., Xg. Let Ny be the number of patients in the subpopulation of patients for whom X, = x,,

and let N = Z§=1Ng be the total number of patients. Let Bg,l,...,Bg,Ng be the EB predicted

~

individual benefits for the N, patients in group g, and Bg,(l) < by << Bg,(Ng) be the
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corresponding order statistics. For a particular time t, a benefit quantile-quantile (BQQ) plot

consists of plotting in an x-y plane the N points

~ ~ [w—0.5
bg’(w),B N—g,xg,t ,w =1, ...,Ng,g =1,..,G.

where B is obtained by replacing fixed effects and variance components in Equation (3) with their
maximum likelihood or restricted maximum likelihood estimators (RMLES). Thus, a BQQ plot
compares the sample quantiles of individual benefits predicted with the EB approach versus
estimates of the theoretical quantiles derived under the normality assumption for the random

effects. In practice, we use the maximum time point available in the dataset as a value for ¢.

If the points on the BQQ plot do not deviate asymmetrically much about the y = x line,
then we conclude that the normality assumption for the random effects of the 2-PM model is
appropriate. If, in addition, the usual conditional residuals for the model suggest normality for the
errors and do not show apparent outliers, we can have reasonable confidence in the EB predictors

of the individual benefits computed with Equation (1).

3. Application to depression study

As an illustration, clinical trial data of 66 patients under imipramine treatment with two
types of depression diagnosis were used (Reisby et al., 1977). The diagnosis was endogenous
(N=37) and non-endogenous (N=29). The data is available in Hedeker and Gibbons (2006) and
was also analyzed by Diaz (2019). The response variable, the Hamilton Rating Scale (HRS) for

depression, was recorded at the beginning and end of the week before imipramine treatment
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initiation and at the end of each of the next four weeks during treatment. Diaz (2019) fitted a
random effects linear model of the HRS scores in order to predict individual treatment benefits but
did not provide evidence for the model’s goodness-of-fit. As covariates, the model included a
polynomial time trend and diagnosis (1=endogenous, 0=nonendogenous). The intercept and the
linear and quadratic terms had random effects in addition to the fixed effects. The SAS procedure
MIXED, which assumes normally distributed random effects, was used to obtain MLE of the fixed
effects and EB predictors of the random effects for all patients (SAS Institute Inc. Cary, NC).
Similar to Diaz (2019), an unstructured covariance matrix for the random effects and
homoscedastic independent errors were assumed. Parameter estimates are shown in Table 1 in
Diaz (2019). The Figure S1 in the Supplementary Material indicates that for the depression data,

the normality assumption on the random errors of the linear mixed effects models are satisfied.

Histograms and kernel densities of EB predictors of the random effects are shown in
Supplementary Figure S2. The shapes of the histograms seem to suggest approximate normality
for the distribution of the random effects. However, Verbeke and Lesaffre (1997) and Mcculloch
and Neuhaus (2011b) have found that the shape of the histograms for EB predictors may be
misleading and may not reflect the true distribution of the random effects. Equation (3) was used
to calculate some p x 100% percentiles of the individual benefits of imipramine as functions of
treatment duration. Figure 1 shows estimated p x 100% theoretical percentiles computed from
Equation (3) for the individual benefits of nonendogenous patients (A) and the corresponding
sample percentiles of the EB predicted benefits (B) for some values of p, as functions of treatment
duration. Analogous figures for endogenous patients are Figure S3 in the Supplementary Material.
In general, the sample percentiles seem to match the estimated theoretical percentiles. However,

a better comparison of the theoretical and sample percentile functions is provided by the BQQ plot,
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which is shown in Figure 2. The points in the plot are scattered around close to the y = x line,
without exhibiting any asymmetric deviations. Thus, the sample percentiles of individual benefits
match closely the theoretical percentiles derived under the normality assumption, suggesting the

adequacy of this assumption and the goodness-of-fit of the 2-PM model for the imipramine data.

We also applied the diagnostic tests proposed by Alonso et al. (2008) on this dataset. The
null hypothesis is that the normality assumption for the random effects is reasonable. The two
determinant tests and the determinant-trace test yielded the test statistics 64, = 2.9, §4, = 1.19
and 6,43 = 1.28, with corresponding p-values of 0.085, 0.276 and 0.258. All three p-values were
larger than the chosen 0.05 significant level. These tests suggest that the normality assumption for
the random effects was appropriate and further validate the conclusions from our proposed

graphical approach.

4. Simulation study

We conducted a simulation study to assess the performance of BQQ plots under violations
of the normality assumption for the random effects. Motivated by the application study in Diaz

(2019), data from the following two models were simulated:

Model 1: (Random intercept and random slope for time).

Yy, i =Po +P1Xy + oty +stl i +Tow + Towte) + Ea )

w=1.,N, j=1,..,n, 4)

such that A, =y + 7o, + P1x, and o, (t) = (1/)2 + rz,a,)t + P5t?, N is the number of

patients and n is the number of observations per patient. Here, ¥ = (¥, ¥4, ¥,, ¥3)Tare the fixed
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effects and 7,, = (74,0, rz,w)T are the random effects with mean 0. Moreover, x,,~Bernoulli(0.6)
represents a patient’s time-independent characteristic (for instance, gender, smoking, etc.) and the

€w,; s are mutually independent with ¢, ;~N(0, 07 = 10).
Model 2: (Random intercept and random slopes for time and time square):

Yy, i =Po +P1Xy +Pote; + st i+ 10w + Tawte) T Tauts + ) (5)

SUCh that Aw = ll)o + TO,(O + gblxw a.nd :BQ,w (t) = (11[)2 + Tz’w)t + (lp?, + T3‘w)t2 . In thIS case,

T . ..
T, = (To,w; Tow) 13@) are the random effects with mean 0. No missing responses were assumed.
An unstructured variance-covariance matrix for the random effects was assumed for both models

(Fitzmaurice et al., 2011, 2009).

Varying values for N were used and n = 4 or 6. For either model, we simulated 2 baseline
measurements and 2 or 4 measurements under medical treatment. Thus, for all models, k, ,, = 2,
andt,, =t,, =0 . Whenn=4,k;,=2,t,3=1 andt,, =4; and whenn = 6, k; , = 4,
twz=1,tusa=2,t,s=3 andt,s=4. For all models, Y,,; =Y, for j=1,2, and

YQ,w,j = Y(.:),j+2 fOI’j = 1, ey kl,w-

The therapeutic target was to achieve Y <y with y = 7. The MLEs of ¥ and o2 are
denoted by ¢ = (1/30,1/31,1/32,1/33)T and 62; and the EB predictor of T, by T, = (fojw,fzjw)T for

Model 1 orz, = (folw,lew, f3,a,)T for Model 2. Here, we will investigate BQQ plots computed

at the last time point, namely t = 4. We used Equation (1) to predict the individual benefits after
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replacing o, A, and B, () with their estimates 6;, A, = P + £o0 + P1X, aNd fo o, (8) =

(P + 15, )t + Pst? for Model 1 or By, (8) = (Pg + T5,6)t + (Y5 + £3,,)t? for Model 2.

Let X; ; be the (i,j)-th entry of the variance covariance matrix of z, and ii_j be its

maximum likelihood estimator. Thus, Z; ; is of dimension 2 x 2 for Model 1, and 3 x 3 for Model
2. The p in Equation (3) is estimated with i = (y — (Po + P1x, + Vot + 1,[73t2)) /6. for both
models, whereas y is estimated with 72 = (£, ; + t28,, + 2t£,,)/62 for Model 1, and 7% =

(11 + 628, +t*855 + 2t8, , + 2628, 5 + 2t3%, 3) /62 for Model 2.

Table 1 shows the “true” fixed effects employed in simulations. These were chosen so that

the majority of the patients were severely ill under all examined non-normal and normal

distributions for the random effects, i.e., P(sq,, > 0.9) > 0.95.

4.1. Simulation of random effects

We implemented four simulation scenarios to represent situations in which the normality
assumption for the random effects is violated (Table 1). For comparison purposes, in each scenario,
T, Was simulated from both a non-normal distribution and a reference normal distribution with

the same mean and variance-covariance matrix.

4.1.1. Scenario 1: Model 1 with a symmetric mixture of two bivariate normal distributions
Here, we explore the effect on the BQQ plot of the distance between the means of the two

components of a mixture of normal distributions for N € {50,100,150,200,300,500}. The true

T, was distributed as
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1
‘rw~§N(m§ =ws*xmy,V) +§N(m§ =ws*m,,V)

0.9

1 ] The distance between the mean

where m; = (0,—1)T, m, =(0,1)T and V = [019

vectors is w\/(m1 —m,)T X (m; —m,). Weexamined w € {1, 2,3, 4,5}. The reference normal
distribution with the same mean and covariance matrix was N(m, D*), where m = (0,0)T and
D* = %m;miT + %mZmZT + V. Here, a greater distance between the means of the two

component distributions represents a greater deviation from normality. Thus, we expect the BQQ

plot to show greater departures from the diagonal line (Figures 3, 7; Table S1).

4.1.2. Scenario 2: Model 1 with an asymmetric mixture of two bivariate normal distributions for
the random effects
Here, we explore how the variance of the components of a mixture of normal distributions

affects the BQQ plot, for sample sizes N € {60,100,160,200,300,500}. The true random effects

vector t,, was distributed as
3 1
Tw~ZN(m1) V) + ZN(mZJ V)

g2 09

where m; = (0,—1)T , m, =(0,3)T and V = [ 5
09 o,

] . We examined ¢ =o? €

{1,2,3,4,5}. In this case, the overall mean and variance are m = (0,0)T and D* = Zmlm{ +

1 . . . .
Zmzmg + V. Thus, for comparison purposes, t,, was also simulated from the reference bivariate

N(m, D*). Here, since the mean vectors are fixed, a greater variance for the components of the

mixture imply a “less bimodal” distribution. Therefore, we expect BQQ plots for the non-normal
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cases to be more like their corresponding reference normal cases when the variance of the

components is large (Figures 4, 8; Table S2).

4.1.3. Scenario 3: Model 2 with a trivariate t distribution for the random effects
Here, the true random effects were simulated from a trivariate t distribution with degrees

of freedom v € {3,5,7,9,11,13}, location parameters m = (0,0,0)T, and shape parameter T

given in Table 1. The purpose was to study how BQQ plots are affected by the heaviness of the

tails of the t distribution, using N € {50,100,150,200,300,500}. The reference normal
v

distribution with the same mean and variance-covariance matrix was N (m,D* ==X F)

(Anderson, 2003). In this scenario, smaller degrees of freedom are associated with heavier tails for
the distribution of random effects. Thus, we expect BQQ plots for non-normal cases to resemble

more the reference normal plots when v is large (Figures 5, 9; Table S3).

4.1.4. Scenario 4: Model 2 with a symmetric mixture of two trivariate normal distributions
This scenario is analogous to Scenario 1, except that we used trivariate normal distributions

for the components of the mixture. The goal was also to examine the effect of the distance between
the means of the two normal components on BQQ plots. Since a greater distance represents a
greater deviation from normality, we expect the BQQ plots to show greater departures from the

diagonal line (Figures 6, 10; Table S4).

4.2. Cramer von Mises discrepancy statistic
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We used Cramer-von Mises discrepancy statistic (CVM) to quantify the deviation of the
BQQ plot from the y=x line under violations of the normality assumption (Anderson, 1962;

Darling, 1957). Let Fy (x) be the empirical distribution function of by, ..., byy, and denote

Ugy = F(bgs), -, Ugn, = F (b ) The CVM discrepancy between Fy_(z) and F(z; x,) was

computed as

0= [ (ru - Fn i = e+ Y (1= 21

9i=1

(Anderson, 1962; CS6Rg6é and Faraway, 1996; Darling, 1957). The overall discrepancy was

computed as the weighted average

Q= Zg=1 Ng ‘Qg
—N .

Larger values of Q reflect more severe violations of the normality assumption for the

random effects.

Five hundred datasets were simulated for each combination of values of N, n and random-
effects distribution parameters. For illustration purposes, selected BQQ plots are presented for

N = 100 and n = 6 (Figures 3-6). These plots corresponded to the datasets producing the closest

Q0 to O, where Q is the average of the 500 values of Q.

To examine the sensitivity of BQQ plots to detect deviations from normality, each

simulated non-normal case was compared with its corresponding reference normal distribution by

using the ratio R = Onon-normal (Figures 7-10). On average, we expect the Q obtained from a non-

normal

=]

normal case to be larger than that from its reference normal case and, therefore, R > 1. This is
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because the Q, measures the discrepancy between the empirical distribution of the sample
individual benefits and the theoretical distribution obtained under the normality assumption for the
random effects. We expect larger values of R to be associated with greater deviations from
normality. The SAS procedures MIXED and IML were used to implement the simulations (SAS

Institute Inc. Cary, NC).

5. Simulation results
5.1. Scenario 1: symmetric mixtures of bivariate normal distributions

As expected, larger distances between the two components of the mixture distribution
determined more apparent asymmetric departures of the points on the BQQ plot from the y=x line
(Figure 3). By comparison, the BQQ plots for data simulated from the corresponding reference
normal distributions did not show any asymmetric deviations from the diagonal line. Figure 7
shows that the R ratios comparing CVM discrepancies between no-normal versus comparable
normal distributions were always > 1 and increased with the distance between the components of
the mixture. In general, R increased with both the number of patients N and the number of repeated
measures n, suggesting that the sample size contributes positively to the sensitivity of BQQ plots.
Table S1 in the Supplementary Material shows the average CVM discrepancies Q for all cases of

Scenario 1.

5.2. Scenario 2: asymmetric mixtures of two bivariate normal distributions
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For the investigated mixtures of normal distributions, quantiles of EB benefits from a
patient sample tended to be larger than their corresponding theoretical quantiles that assume
normality for the random effects (Figure 4). Moreover, this pattern was more apparent with smaller
variances for the components of the mixture. The pattern was not observed in the BQQ plots
corresponding to the reference normal distributions. Figure 8 shows that the ratios comparing
CVM discrepancies of non-normal to reference normal distributions decreased with the variance
of the mixture components, suggesting that BQQ plots are sensitive to deviations from normality.
The ratios also increased with sample size N and the number of repeated measures n, suggesting
that larger sample sizes increase the likelihood that BQQ plots capture normality violations. Table
S2 in the Supplementary Material shows average CVM discrepancies for the non-normal and

normal cases.

5.3. Scenario 3: trivariate t distribution

As the degrees of freedom increased, the BQQ plots for data simulated with the t
distribution became more similar to the BQQ plots for data simulated with a comparable normal
distribution (Figure 5). The theoretical quantiles of individual benefits under the normality
assumption tended to be larger than the quantiles for EB sample benefits when the tails of the t
distribution became heavier. Figure 9 shows that the ratios R comparing CVM discrepancies under
the t distribution versus the reference normal distribution increased as the degrees of freedom
decreased, suggesting that BQQ plots can reliably capture the heaviness of the tails of the t
distribution. The ratios tended to increase as both N and n increased, implying that the larger the

sample size is the more powerful the proposed graphical approach is for detecting tail heaviness.
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Table S3 in the Supplementary Material shows average CVM discrepancies Q for the non-normal

and normal cases.

5.4. Scenario 4: symmetric mixture of two trivariate normal distributions

Analogous to scenario 1, marked departures in the appearance of BQQ plots from what is
expected under comparable normal distributions are observed when the random effects are
distributed as a mixture of normal distributions (Figure 6). Greater distances between the two mean
vectors of the mixture components tended to be associated with larger asymmetric deviations from
the y = x line. This trend can also be inferred from Figure 10, which shows that, compared with
the reference normal distribution, CVM discrepancies under a mixture of normal distributions
increased as the distance between the mixture components increased. Table S4 in Supplementary

Material shows average CVM discrepancies for the non-normal and normal cases.

6. Discussion and conclusions

This paper proposes a graphical approach to evaluate the goodness-of-fit of random effects
models for continuous responses when the purpose of the model is to estimated individual benefits
of medical treatments. In our approach, empirical quantiles of individual benefits estimated with
an empirical Bayes approach are plotted against the quantiles of the distribution of individual
benefits calculated under a normality assumption on the random effects. The rationale underlying

our approach is that EB estimates of the random effects are robust to violations of the normality
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assumption (McCulloch and Neuhaus, 2011a; 2011Db). In fact, they are also estimates of the BLUPs

whose optimality properties do not require the normality assumption (Frees, 2004).

If the normality assumption is valid, we expect empirical quantiles to be close to the
theoretical quantiles. Thus, we can infer the goodness-of-fit of the 2-PM model if the BQQ plot
does not show obvious asymmetric deviations from the y = x diagonal line. We evaluated the
performance of this approach using CVM discrepancies which measure the discrepancy between
an empirical and a theoretical probability distribution. CVM discrepancies confirmed that our

graphical approach captures accurately deviations from the normality assumption. Importantly, we

found that the ratios R of average CVM discrepancies (), which compared non-normal
distributions with closely comparable normal distributions, were not smaller than 1 in all
simulations. This suggests that BQQ plots are powerful tools to detect deviations from normality
for the distribution of the random effects in 2-PM models. Our simulations also showed that larger
sample sizes give greater sensitivity to BQQ plots for detecting non-normality. Relatively

moderate sample sizes, however, were enough to detect moderate deviations from normality.

Normal quantile-quantile (QQ) plots are routinely used in statistical practice to examine
the assumption of normality for a variety of models (Aldor-Noiman et al., 2013; Garcia Ben and
Yohai, 2004; Stine, 2017). For mixed models, it is frequent practice to explore the normality
assumption for the random effects by plotting separate normal QQ plots for each random effect in
the model. In this alternative approach, the EB predictors of the random effects are used to compute
both the empirical distribution of the random effects and the mean and variance of the normal
distribution used to obtain the theoretical quantiles. This circularity limits the interpretation of the
resultant plots because the EB predictors estimates themselves. Moreover, research shows that the

shape of the empirical distribution of the EB predictors of the random effects does not necessarily
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reflect the random-effects distribution (Verbeke and Lesaffre, 1997; Mcculloch and Neuhaus,
2011b). Thus, direct normal QQ plots calculated with only EB predictors of the random effects
may be misleading as a tool to examine normality. In contrast, in our proposed approach, the
theoretical quantiles given in Eq. (3) are estimated directly using the MLEs or RMLEs of model
parameters without the mediation of the EB predictors. In addition, our simulations show that BQQ
plots are reliable. Thus, if the model will be used to make decisions related with personalized
medicine, BQQ plots are recommendable as a complementary tool for the exploration of the

normality assumption for the random effects.

A limitation of our approach is that it requires that continuous or ordinal covariates be
categorized before implementing Eq (3). Future research must examine how to incorporate
continuous covariates to BQQ plots. The extension of BQQ plots to 2-PM models with non-

continuous responses also needs further research.
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Figure 1. Selected p x 100% percentiles of the probability distribution of individual benefits of
imipramine treatment as functions of treatment duration in weeks, for patients with non-
endogenous diagnosis with p =0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.90, 0.95. (A) Percentiles
from Eqg. (3) which assumes normality for the random effects. (B) Sample percentiles of EB
predictors of individual benefits.
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Figure 2. BQQ plot of individual treatment benefits after 4 weeks of imipramine treatment for
patients with depression.
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Figure 3 (Scenario 1). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at t =
4 for N = 100 patients with n = 6 measures per patient. The plots on the right panel correspond
to random effects simulated from mixtures of two bivariate normal distributions whose mean
vectors were separated by distances of 2, 4, 6, 8 or 10. The left panels correspond to random
effects simulated from bivariate normal distributions with the same mean and variance-covariance
matrix as the distribution for the right panel on the same row.
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Figure 4 (Scenario 2). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at t =
4 for N = 100 patients with n = 6 measures per patient. The plots on the right panel correspond
to random effects simulated from mixtures of two bivariate normal distributions. Either bivariate
component had variances a2 = a2 with values 1, 2, 3, 4 or 5. The left panels correspond to random
effects simulated from bivariate normal distributions with the same mean and variance-covariance
matrix as the distribution for the right panel on the same row.
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Figure 5 (Scenario 3). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at t =
4 for N = 100 patients with n = 6 measures per patient. The plots on the right panel correspond
to random effects simulated from trivariate t distributions with degrees of freedom (df) of 3, 5, 7,
9, 11 or 13. The left panels correspond to random effects simulated from trivariate normal
distributions with the same mean and variance-covariance matrix as the distribution for the right
panel on the same row.
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Figure 6 (Scenario 4). Benefit quantile-quantile (BQQ) plots of simulated treatment benefits at t =
4 for N = 100 patients with n = 6 measures per patient. The plots on the right panel correspond
to random effects simulated from mixtures of two trivariate normal distributions whose mean
vectors were separated by distances of 1.4, 2.8, 4.2, 5.7, 7.1 or 8.5. The left panels correspond to
random effects simulated from trivariate normal distributions with the same mean and variance-
covariance matrix as the distribution for the right panel on the same row.
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Figure 7 (Scenario 1). Ratios R comparing averages of CVM discrepancies under mixtures of two
bivariate normal distributions versus comparable normal distributions with the same mean and
variance-covariance matrix for N =50, 100, 150, 200, 300 and 500 as a function of distance
between mean vectors of the mixture components. (A)n = 6. (B) n = 4.
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Figure 8 (Scenario 2). Ratios R comparing averages of CVM discrepancies under mixtures of two
bivariate normal distributions versus comparable normal distributions with the same mean and
variance-covariance matrix for N = 50, 100, 150, 200, 300 and 500 as a function of the variance
ot =0f. (A)n=6.(B)n = 4.
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Figure 9 (Scenario 3). Ratios R comparing averages of CVM discrepancies under mixtures of two
trivariate normal distributions versus comparable normal distributions with the same mean and
variance-covariance matrix for N =50, 100, 150, 200, 300 and 500 as a function of the degrees
of freedomv. (A)n =6.(B)n = 4.
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Figure 10 (Scenario 4). Ratios R comparing averages of CVM discrepancies under mixtures of
two trivariate normal distributions versus comparable normal distributions with the same mean
and variance-covariance matrix for N = 50, 100, 150, 200, 300 and 500 as a function of distance
between mean vectors of the mixture components. (A) n = 6. (B) n = 4.
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Chapter V: Summary and future directions
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In this dissertation, mixed effects models for continuous and binary responses were
investigated in terms of random effects prediction accuracy and robustness to the normality
assumption of the random effects, via the well-known empirical Bayes approach and an alternative
approach based on quadratic inference functions (QIFs) (Chapters 11 and I11). We used mean square
prediction errors as the comparison criteria and the performance was explored for a variety of non-
normal distributions for the random effects. In linear mixed effects models, we concluded that the
empirical Bayes approach generates more accurate predictors of random effects when the random
effects follow a non-normal distribution and when the error variances are relatively not large (say
less than 10). The approach based on QIFs outperforms the empirical Bayes approach in the
presence of extremely large error variances. For logistic mixed effects models, when there is only
a random intercept, the empirical Bayes approach is superior to the QIF approach with respect to
the prediction accuracy not only when the random effects follow a normal distribution, but also
when this assumption is violated. In general, in the presence of a random intercept and a random
slope, the prediction performances of the two approaches are comparable. However, the QIF
approach produces slightly more accurate predictors of random effects when the random effects

follow a mixture of normal distributions and this is especially true for the random slope.

A message from the first two chapters is that the empirical Bayes approach is relatively
robust to misspecifications of the normality assumption of the random effects. The approach based
on QIFs is mathematically more complicated and can be very time consuming in both
implementation and computation. Thus, the empirical Bayes approach is more recommendable in
statistical practice, even when the normality assumption is questionable. Future research should
explore the predictive performance of these approaches for repeated count data using Poisson

mixed effects models or negative binomial mixed effects models. Comparisons can also be made
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in the presence of missing data or with other approaches proposed in the literature (Ghidey et al.,

2004; Ten Have and Localio, 1999; Zhang and Davidian, 2001).

Finally, in Chapter 1V, we proposed a graphical approach to examine the goodness-of-fit
of linear mixed effects models with emphasis in the normality assumption for the random effects,
when the goal is to estimate or predict individual benefits from medical or behavioral treatments
for severely ill patients. Simulation studies in which the random effects were assumed to follow a
variety of non-normal distributions show that our approach successfully captures violations of the
normality assumption. The approach is more powerful when the sample size is large, but still
provides valid conclusions under relatively small sample sizes. As future research, our method
may be extended to logistic mixed effects models for binary responses. The sensitivity of the
graphical approach to violations of the normality assumption other than the ones investigated in
this dissertation can also be explored; for instance, under mixtures of normal distributions whose

variances and covariances depend on some of the model covariates.
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Figure S1. Scatterplots of random effects for the depression data, predicted by QIF versus EB
approaches under an exchangeable error correlation structure. (A) Random intercept predictors.
(B) Predictors of the random coefficient of time. (C) Predictors of the random coefficient of time
square. The solid line is the y=x line.
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Figure S2. Scatterplots of random effects for the depression data, predicted by QIF versus EB
approaches under an AR(1) error correlation structure. (A) Random intercept predictors. (B)
Predictors of the random coefficient of time. (C) Predictors of the random coefficient of time
square. The solid line is the y=x line.
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Figure S3. Histograms of predictors of random effects for the depression data using QIF and EB
approaches under homoscedastic independent errors. (A1-A2) Random intercept predictors.
(B1-B2) Predictors of the random slope of time. (C1-C2) Predictors of the random slope of time

square.
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SAS/IML code implementing the QIF approach.

/*

Programmers:

Zhiwen Wang, Francisco J. Diaz

Department of Biostatistics,

The University of Kansas Medical Center,

Mail Stop 1026, 3901 Rainbow Blvd.,

Kansas City, KS 66160, United States.

Emails: zwang3@kumc.edu (Z. Wang), fdiaz@kumc.edu (F.J. Diaz).

This code implements the QIF approach used for the application and simulations in the paper:

Wang, Z., Keighley, J., He, J., Wick, J., Diaz, F.J. “Comparison of the accuracy and robustness to non-normality
of two methods of random effects prediction for linear mixed effects models of longitudinal data:

empirical Bayes versus quadratic inference functions”.

*/
/*********************************************************************************************

****************/

/*********************************************************************************************

****************/

/* Definition of global parameters:*/

/*n: the total number of unique time points recorded in the dataset, this is K in the paper; */

/*SampSize: total number of subjects; */

/*nfe: number of fixed-effect parameters; */

/*nre: number of random-effect parameters; */

[*lambdal: tuning parameter lambdal;*/

[*lambda2: tuning parameter lambda2;*/

/*maxiter: maximum number of iterations for the dataset, it needs to be large enough, say 10°5;*/
/*loc_missing: location vector of missing responses in Y (this can be obtained using the “loc” function in
SAS/IML);*/

/*obs_ind: vector of observation indicator for all subjects. It has the same dimension as Y it is 1 if the response if
non-missing, O if it is missing (this vector can be obtained using the “missing” function in SAS/IML).*/
/*Y: the response matrix with dimension SampSize*n by 1;*/

/*X: the design matrix for the fixed effects, it’s dimension is SampSize*n by nfe;*/

/*Z: the block diagonal design matrix for the random effects, it’s dimension is SampSize*n by nre;*/

/*CorrStruc = 1 : Independent structure;*/

/*CorrStruc = 2 : Exchangeable (EX) correlation structure;*/
[*CorrStruc = 3 : AR1 correlation structure;*/

[*CorrStruc = other numbers : WRONG INDEX;*/

/

proc iml;
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/ Part 1. Calculate projection matrix

P 1 ***********************************/

/*This module is used to calculate the projection matrix Pj for a given dataset*/

[*Input: design matrix X, and design matrix Z;*/
/*Output: Projection Matrix Pj;*/

start projection(Pj, X,2);

/* find generalized inverse */

Xinv = ginv(X);

/* form projection matrix onto (left) column space */
Px = X*Xinv;

A = (I(ncol(Px))-Px)*Z;

/*using QR decomposition to obtain null space of A*/
CALL QR(Q,R,PIV,LINDEP,t(A));

/*rank of matrix A*/

ranka = round(trace(ginv(A)*A));

/* obtain the basis of the null space of A*/

Jnull = Q[ , (ranka+1):ncol(Q)];

/* calculate projection matrix Pj on Jnull */
Pj = Jnull*ginv(Inull);

finish projection;

/********************************************************************************************/

/******************************************Part 2 Calculate Basis matrix M

******** /
/*This module is used to calculate the second basis matrix M2 for an assumed correlation structure. */
/*Note that the first basis matrix M1 is always the identity matrix of dimension n by n;*/

[*Input: */

1* CorrStruc: correlation structure indicator (1, 2 or 3);*/

1* n: the total number of unique time points recorded in the dataset;*/
/*Output: */

I* M2: The second basis matrix*/

start BaseM (M2, n, CorrStruc);

/* independent structure needs just one M matrix */
if CorrStruc = 1 then do;

M2 = diag(j(1,n)); /* create diagonal matrix M2*/
end;
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/* EX structure */
if CorrStruc = 2 then do;

M2 = j(n,n,1); [* create matrix M2*/
/* create diagonal matrix of M2 to be 0*/
start SetDiag(A, V);
diagldx = do(1,nrow(A)*ncol(A), ncol(A)+1);
Aldiagldx] = V;
finish;
run SetDiag(M2, 0);

end;

/* AR(1) structure */
if CorrStruc = 3 then do;

M2 = j(n,n,0); [* create matrix M2*/
supDiag = T(1:ncol(M2)-1) || T(2:ncol(M2)); /* subscripts for superdiagonal */
subDiag = T(2:ncol(M2)) || T(1:ncol(M2)-1); /* subscripts for subdiagonal */

dim = dimension(M2); /* find index of all super- and subdiagonal elements */
idxM2 = sub2ndx(dim, supDiag//subDiag);
M2[idxM2] = 1; /* assign 1 to sub- and superdiagonal */

end;

/* Message for unsupported structures*/

if CorrStruc ~= {1 2 3} then do;

print "not defined, wrong correlation index"; M2=0;
end;

finish BaseM;

liskaiaisiaiaiaisiaiaisiaiaisiaiaisiaiaiaiiaiasiaiaiaiaiasiaiaioia Part 3: Fixed effect QIF (given

b) /

/*This module is used to define and minimize the fixed effects QIF for a given */

/*random-effect estimates “b” and a given initial vector of fixed effects “beta” that needs to be updated. This "beta"
can be obtained from previous iteration.*/

[*Input: */

I* b: a given random effects estimates for all subjects, this is a vector of dimension (SampSize*nre) by 1;*/
I* beta: initial fixed effects estimates( to be updated), this is a vector of dimension nfe by 1;*/

/*Output:*/

I* beta_new: updated fixed effects estimates; this is a vector of dimension nfe by 1;*/
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start betafunction (beta_new, b, beta)
global (CorrStruc, M2, n, SampSize, nfe, nre, maxiter, loc_missing, obs_ind, Y, X, 2);

M_large = I(SampSize) @ M2;

vu2 = I(SampSize*n);
diagldxvu2 = do(1,nrow(vu2)*ncol(vu2), ncol(vu2)+1);
vu2[diagldxvu2] = obs_ind; /* set diagonal elements to 1 or 0*/

if CorrStruc = 1 then do;

gi_f = j(nfe,SampSize,0);
end;
else do;

gi_f = j(2*nfe,SampSize,0);
end;

do i = 2 to maxiter until (diff < 0.00001);
beta_old = beta;
/*Normal mean response*/
mu = X*beta + Z*Db;
mu[loc_missing,] = 0;
residual =Y - mu;
/* Independent structure */
if CorrStruc = 1 then do;

do i=1to SampSize;
gi_f[,i] = t(X[(1+(i-1)*n):(i*n),])*(residual [(1+(i-1)*n): (i*n),]);

end;
sum_g_first = -t(X)*X;
end;
/* EX/ARL1 structure */

if CorrStruc ~= 1 then do;
do i=1to SampSize;
gi_f[1:nfe,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]);
gi_f[(nfe+1) : (2*nfe),i] = t(X[(1+(i-1)*n):(i*n),])*M2*(residual[(1+(i-1)*n):(i*n),]);
end;
sum_g_firstl = -t(X)*X;
sum_g_first2 = -t(X)*vu2*M_large*vu2*X;
sum_g_first = sum_g_firstl//sum_g_first2;
end;
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C2 =gi_f*t(gi_f);
sum_g_score = gi_f[,+];
invC = ginv(C2);

/*QIF for beta*/

QIF beta  =t(sum_g_score)*invC*sum_g_score;
QIF_first_dev =t(sum_g_first)*invC*sum_g_score;
QIF_second_dev = t(sum_g_first)*invC*sum_g_first;

delta = ginv(QIF_second_dev)*QIF_first_dev;
1* delta = solve(QIF_second_dev, QIF_first_dev);*/

beta = beta - delta;
diff = sum(abs(beta_old - beta));
end;

/* Return missing if does not converge */

if i = maxiter then do;

beta_new = j(nfe,1,.); cov2=j(nfe,nfe,.);

end;

else do;

beta_new = beta; cov2=inv(QIF_second_dev);
end;

finish betafunction;

/*********************************************************************************************

skiaisiaiaiaisiaiaiaiaiaidaiaisiaiaisieissiaiaiaiaiddiaiaisiaie Part 4. Random effects QIF (given

beta) /

/*This module is used to define and minimize the random effects QIF for a given */

/*fixed effects estimate “beta” and a given initial vector of random effects “b” that needs to be updated. This "b" can
be obtained from previous iteration.*/

[*Input: */

I* beta: a given fixed effects estimates; this is a vector of dimension nfe by 1;*/

I* b: initial random effects estimates (to be updated) for all subjects; this is a vector of dimension
(SampSize*nre) by 1;*/

/*Output:*/

I* b_new: updated random effects estimates for all subjects; this is a vector of dimension (SampSize*nre) by
1;*/
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start bfunction(b_new, b, beta)
global(n, SampSize, nfe, nre, Pj, lambdal, lambda2, maxiter, loc_missing, Y, X, 2);
do j = 2 to maxiter until (diff < 0.00001);
b old =b;
/*normal mean*/
mu = X*beta + Z*b;
mu[loc_missing,] = 0;
residual =Y - mu;
Gr =t(Z)*residual;
Grl = -t(2)*Z;
[*Extended score, the QIF for b*/
extend_score = Gr // lambdal*b // lambda2*Pj*b;
extend_first_deriv = Grl // lambdal*I(SampSize*nre) // lambda2*Pj;
/*QIF for b*/
QIF_b = t(extend_score)*extend_score;
dh = t(extend_first_deriv)*extend_score;

ddh=t(extend_first_deriv)*extend_first_deriv;

delta = ginv(ddh)*dh;
1* delta = solve(ddh,dh);*/

b="b - delta;
diff = sum(abs(b_old - b));
end;
/*b_new = shape(b, SampSize,nre);*/
/* return missing if not converge */
if j = maxiter then b_new = j(SampSize*nre,1,.);

else b_new =b;

finish bfunction;
/

/ Part 5. Iterative module to minimize fixed and random effects QIFs defined in parts
4 and 5 /
/*This module implements the iterative minimization process of the fixed and random effects QIFs.*/
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[*The iteration gives the optimal fixed and random effects estimates when the stopping criteria (see the detail in the
paper) is satisfied.*/
[*The initial vector of random effects is set to be a vector of zeros.*/

[*Input: */

1* beta_initial: initial vector of fixed effects; this vector can be obtained with the GLM procedure in SAS;*/
[*Output:*/

1* QIlFbeta: optimal fixed effects estimates; this is a vector of dimension nfe by 1;*/

I* QIFb: optimal random effects estimates for all subjects; this is of dimension (SampSize*nre) by 1*/

I* k: number of iterations required for this minimization;*/

start Robust (QIFbeta,QIFb,k, beta_initial)
global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambdal, lambda2, loc_missing, obs_ind, Y, X,
2);

beta_new = beta_initial;

[*initial random effects is set to be a zero vector*/
b_initial = j(SampSize*nre,1,0);
b_new = b_initial;

do k = 2 to maxiter until (diff_sum < 0.00001);
beta_old = beta_new;
b_old =b_new;

call bfunction (b_new, b_new,beta_new);
call betafunction (beta_new, b_new,beta_new);

diff_sum = sum(abs(beta_new-beta_old)) + sum(abs(b_new-b_old));
end;

QIFb = shape(b_new, SampSize, nre);
QIlFbeta = beta_new;
QIFVarCov = covZ;

finish Robust;
/

/ Part 6. Cross-validation module used to choose the optimal tuning
parameter Iambdal**-k*-k-k*-k*-k**-k**********************/

/*This module selects the optimal tuning parameter lambdal that gives the smallest cross-validation error for a range
of */

[*pre-specified candidates. The candidates are specified by an interval [mini, maxi], with an increment
"increment™.*/

[**/
[*Input:*/
I* n_measure: the total number of unique time points recorded in the dataset, this is K in the paper;*/
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I* mini: lower bound of the tuning parameter candidates interval;*/

I* maxi: upper bound of the tuning parameter candidates interval; */

I* increment: increment of the tuning parameter candidates interval [mini, maxi];*/

I* Y _design: the response matrix of dimension (SampSize*n) by 1;*/

1* X_design: the design matrix for the fixed effects; it is of dimension (SampSize*n) by nfe;*/

I* Z_design: the block diagonal design matrix for the random effects; it is of dimension (SampSize*n) by
nre;*/

I* beta_initial: initial vector of fixed effects; this can be obtained with the GLM procedure in SAS;*/
[*Output:*/

1* CVE: a matrix of cross-validation errors for all lambdal candidates; */

I* the first column contains all lambdal candidates; the second column contains the cross-validation
errors corresponding to a specified candidate in the same row;*/

1* lambdal optimal: optimal tuning parameter lambdal;*/

start CV (CVE,lambdal_optimal, n_measure, mini,maxi,increment, Y_design,X_design,Z_design, beta_initial)
global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambdal, lambda2, loc_missing, obs_ind, Y, X, Z);

n =n_measure-1;
call BaseM (M2, n, CorrStruc);

PE = j(n_measure,1,0);
lamdbalvalue = do(mini,maxi,increment);

CVE = j(ncol(lamdbalvalue),2,0);
CVE[,1] = t(lamdbalvalue);

do | = 1 to ncol(lamdbalvalue) until (stop = 1);

lambdal = lamdbalvalue[,I];

dor=1ton_measure;

i=1:SampSize;
cvk = r+(i-1)*n_measure;

/*Split the response vector for training and testing */
Y _cvk = Y_design[setdif(1:SampSize*n_measure, cvk)];
Y _pred =Y_design[cvk];

/*Split the design matrix X for training and testing */
X_cvk = X_design[setdif(1:SampSize*n_measure, cvk),];
X_pred = X_design[cvk,];

/*Split the design matrix Z for training and testing */

Z_cvk = Z_design[setdif(1:SampSize*n_measure, cvk),];
Z pred = Z_design[cvk,];
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obs_ind = 1-missing(Y_cvk);
loc_missing = loc(Y_cvk=.);
Y _cvk[loc_missing] = 0;

loc_missing_pred = loc(Y_pred=.);
Y _pred[loc_missing_pred] = 0;

call projection(Pj, X_cvk,Z_cvk);

call Robust (QIFbeta,QIFb,k, beta initial);
Pred_Ran_Efft = QIFb;
Pred_Fixed_Efft = QIFbeta;

mu_pred = X_pred*Pred_Fixed Efft + Z pred*shape(Pred_Ran_Efft, nre*SampSize, 1);
mu_pred[loc_missing_pred] = 0;
PE[r] = t(Y_pred - mu_pred)*(Y_pred - mu_pred);

end;

/*Cross-validation error*/
CVE[L,2] = sum(PE)/(n_measure*SampSize);

if 1 = 1 then do;
diff = 1; stop = 0;
end;
else do;
diff = abs(CVE[I,2]-CVE[(I-1),2]);
if (diff <= 0.00001) then stop = 1, else stop = 0;
end;

end;

if I = ncol(lamdbalvalue)+1 then Il = ncol(lamdbalvalue); else Il = I;
/*Choose the optimal lambdal*/

idx = loc( CVE = min(CVEJ1:11,2]) );

lambdal_optimal = CVE[idx-1];

finish CV;

/ /
I’ |_|t the depI'ESSIOH data*******************************/
/ * /

/*See Diaz (2017) for description of the 2-PM model fitted to the depression data and the way the time variable was
built.*/
/*The dataset is available in Hedeker and Gibbons (2006).*/
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/*In this last part of the code, the data is handled to make n equal for all subjects,*/
/*and then the Parts 1 through 6 of this file are called to estimate the fixed effects and predict the random effects.*/

/*R3 is the dataset*/

/*hamd: Hamilton score*/
/*EDG: Diagnosis (1=endogenous, 0=nonendogenous)*/
[*time: Weeks under treatment*/

use R3;
read all var {hamd} into Y_design;
read all var {EDG} into EDG;
read all var {time} into TIME;

n=6; SampSize = 66;

CorrStruc = 1;
[*CorrStruc = 2;*/
[*CorrStruc = 3;*/

nfe = 4;
nre =3;

maxiter = 1000000;

lambda2 = log(SampSize);
/*cs/ind=1, ar1=0.9 */
/*lambdal = 0.9;*/
lambdal = 1;

beta_initialvalue = {21.50012019, 1.86645495, -3.97668046, 0.33981694};

[*design matrix X*/

intcp = j(n*SampSize,1,1);

TIMESQR = TIME##2;

week = TIME;

X_design = intcp || EDG || TIME || TIMESQR;

/* create block diagonal design matrix Z */
Z old = X_design[,{1,3,4}];
Z_design = Z_old[1:n,];
do i = 2 to SampSize;
Z_design = block(Z_design, Z_old[1+(i-1)*n:i*n, ]);
end;

/*Insert zero to replace missing observations in design matrices and response vector*/
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loc_missing_all = loc(Y_design=.);
loc_missing = loc_missing_all;
obs_ind = 1-missing(Y_design);

X_design[loc_missing_all

J1=0;
Z_design[loc_missing_all,] = 0;
Y _design[loc_missing_all,] = 0;

X = X_design;
Z =Z_design;
Y =Y_design;

call projection(Pj, X,Z); /* This calls Part 1 of this file*/

call BaseM (M2, n, CorrStruc); /*This calls Part 2 of this file*/

call Robust (QIFbeta,QIFb,k, beta_initialvalue); /*This calls Part 5 of this file; this routine calls Parts 3 and 4*/
print QlFbeta,QIFb,k;

quit;
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SAS/IML code implementing the QIF approach.

proc import datafile =
'Ipanfs/pfs.local/home/zwang3/paper3/Simulations/né/intsipmodel2/N100rho4/t/true_response_y.csv'  out =
work.true_response_y  dbms = CSV; run;

proc import datafile = '/panfs/pfs.local/home/zwang3/paper3/Simulations/n6/intslpmodel2/N100rh o4/t/trtdata.csv'
out = work.true_trt dbms = CSV; run;

proc iml;

/******************************CalCuIate prOjECtIOﬂ matI’IX A***********************************/

start projection(Pj, X,2);

/* find (generalized) inverse */

Xinv = ginv(X);

/* form projection matrix onto (left) column space */
Px = X*Xinv;

A = (I(ncol(Px))-Px)*Z;

/*using QR decomp to obtain null space of A*/

CALL QR(Q,R,PIV,LINDEP,t(A));

/*rank of matrix A*/

ranka = round(trace(ginv(A)*A));

/*OBTAIN THE BASIS OF NULL SPACE OF MATRIX a: m-r columns of Q*/
Jnull = Q[ , (ranka+1):ncol(Q)];

/* dimJ=dimension(Jnull); print dimJ;*/

/* calculate projection matrix Pj on J */

Pj = Jnull*ginv(Jnull);

finish projection;

/********************************************************************************************/

/ Base M
matrtix /

start BaseM (M2, n, CorrStruc);

/*CorrStruc = 1 : Independent structure;*/
[*CorrStruc = 2 : EX;*/

[*CorrStruc = 3 : AR1;*/

[*CorrStruc = others : WRONG INDEX;*/
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/* independent structure needs 1 M matrix */
if CorrStruc = 1 then do;

M2 =diag(j(1,n)); [* create diagnol matrix of M2*/
end;

/* exchangeble structure */
if CorrStruc = 2 then do;

M2 = j(n,n,1); [* create matrix of M2*/
/* create diagnol matrix of M2 to be 0*/
start SetDiag(A, V);
diagldx = do(1,nrow(A)*ncol(A), ncol(A)+1);
Aldiagldx] = V;
finish;
run SetDiag(M2, 0);

end;

/* AR(1) structure */
if CorrStruc = 3 then do;

M2 = j(n,n,0); [* create matrix of M2*/
supDiag = T(1:ncol(M2)-1) || T(2:ncol(M2)); /* subscripts for superdiagonal */
subDiag = T(2:ncol(M2)) || T(1:ncol(M2)-1); /* subscripts for subdiagonal */

dim = dimension(M2); /* find index of all super- and subdiagonal elements */
idxM2 = sub2ndx(dim, supDiag//subDiag);
M2[idxM2] = 1; [* assign sub- and superdiagonal to 1 */

end;

/* other structure not defined*/
if CorrStruc ~= {1 2 3} then do;
print "not defined, wrong correlation index"; M2=0;

end;

finish BaseM;

/*********************************************************************************************
/

/ Part 2: module to define random effect QIF function(given

beta) /

start bfunction(b_new,}j, b, beta)
global(n, SampSize, nfe, nre, Pj, lambdal, lambda2, maxiter, Y, X, Z);

do j = 2 to maxiter until (diff < 0.00001);
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b old=b;
[*vector of mean*/
mu = 1/(1+exp(-(X*beta + Z*h)));

[*vector of residual*/
residual =Y - mu;

/*vector of variance*/
varu = mu#(1-mu);

Gr =t(Z)*residual;

Grl = -t(Z2)*diag(varu)*Z;

[*extended score*/
extend_score = Gr // lambdal*b // lambda2*Pj*b;

extend_first_deriv = Grl // lambdal*I(SampSize*nre) // lambda2*Pj;

dh = t(extend_first_deriv)*extend_score;
ddh= t(extend_first_deriv)*extend_first_deriv;

delta = ginv(ddh)*dh;
1* delta = solve(ddh,dh);*/
b="b - delta;
diff = sum(abs(b_old - b));
end;
/*b_new = shape(b, SampSize,nre);*/
/* return missing if no convergence */
if j = maxiter then b_new = j(SampSize*nre,1,.);
else b_new =b;

finish bfunction;

/

******************/

[*test */

/*beta0 = beta_initialvalue;*/

/*b0 = j(SampSize*nre,1,1.5); */
/*call bfunction (b_new,j,b0,beta0) ;*/
[*print b_new, j;*/

nnnnnnn

/
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lAskieishaiaiaisiaishaiaiaisiiaisiaiaiaiaiaiaiiaiahaiaiaiiaiaiaiel Part 3: module to define fixed effect QIF (given
b) /

start betafunction (beta_new,cov2, i, b, beta)
global (CorrStruc, M2, n, SampSize, nfe, nre, maxiter, Y, X, Z2);

M_large = I(SampSize) @ M2;

if CorrStruc = 1 then do;

gi_f = j(nfe,SampSize,0);
end;
else do;

gi_f = j(2*nfe,SampSize,0);
end;

do i = 2 to maxiter until (diff < 0.00001);

beta_old = beta;

[*vector of mean*/
mu = 1/(1+exp(-(X*beta + Z*h)));

[*vector of residual*/
residual =Y - mu;

[*vector of variance*/
varu = mu#(1-mu);

[*A_i matrix*/

vul = diag(mu#(1-mu));
[*A_i™(-1/2) matrix*/

vu2 = diag(1/sqrt(mu#(1-mu)));

/* independent structure */
if CorrStruc = 1 then do;
do i=1to SampSize;
gi_f[,i] = t(X[(21+(i-1)*n):(i*n),])*(residual [(1+(i-1)*n):(i*n),]);

end;

sum_g_first = -t(X)*diag(varu)*X;
end;

/* EX/ARL1 structure */

if CorrStruc *= 1 then do;
do i=1 to SampSize;
gi_f[1:nfe,i] = tOX[(L+(i-1)*n):(i*n),])*(residual [(1+(i-1)*n):(i*n),]);
gi_f[(nfe+1) : (2*nfe),i] = t(X[(1+(i-1)*n):(i*n),])*vul[(1+(i-1)*n):(i*n),(1+(i-
1)*n):(i*n)*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n): (i(*n)]*M2*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n):(i*n) ]*(residual [(1+(i-
1)*n):(@i*n).1);
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end,;
sum_g_firstl = -t(X)*diag(varu)*X;

sum_g_first2 = -t(X)*diag(varu)*vu2*M_large*vu2*diag(varu)*X;

sum_g_first = sum_g_firstl//sum_g_first2;
end;

C2 = gi_f*t(gi_f);

sum_g_score = gi_f[,+];

invC = ginv(C2);

QIF beta  =t(sum_g_score)*invC*sum_g_score;

QIF_first_dev =t(sum_g_first)*invC*sum_g_score;
QIF_second_dev = t(sum_g_first)*invC*sum_g_first;

delta = ginv(QIF_second_dev)*QIF_first_dev;
1* delta = solve(QIF_second_dev, QIF_first_dev);*/

beta = beta - delta;
diff = sum(abs(beta_old - beta));
end;

/* return missing if no convergence */

if i = maxiter then do;

beta_new = j(nfe,1,.); cov2=j(nfe,nfe,.);

end;

else do;

beta_new = beta; cov2=ginv(QIF_second_dev);
end;

finish betafunction;

/

[*test*/

/*b0 = j(SampSize*nre,1,0.1);*/

/*beta0 = beta_initialvalue;*/

/*call betafunction (beta_new,cov2, i, b0, betaQ);*/
[*print beta_new,cov2,i;*/

nnnnnnn

/

/

/ New Part 4. module iterative minimization to calculate fixed and random effects based on

Robust QIF /
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start Robust (QIFbeta,QIFVarCov,QIFb,k, beta_initial)
global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambdal, lambda2, Y, X, Z);

beta_new = beta_initial,

/*initial randox effect 0*/
b_initial = j(SampSize*nre,1,0);
b_new = b_initial;

do k = 2 to maxiter until (diff_sum < 0.00001);
beta_old = beta_new;
b_old =b_new;

call bfunction (b_new,j, b_new,beta_new);
call betafunction (beta_new,cov2,i, b_new,beta_new);

diff_sum = sum(abs(beta_new-beta_old)) + sum(abs(b_new-b_old));
end;

QIFb = shape(b_new, SampSize, nre);
QIlFbeta = beta_new;
QIFVarCov = covz;

finish Robust;

/*********************************************************************************************

***************************/

/*********************************************************************************************
****************/

start BIC_Cal (BIC,PART _beta,PART _b, b,beta)
global(CorrStruc, n, SampSize, nfe, nre, maxiter, Pj, M2, lambdal, lambda2, Y, X, 2);

M_large = I(SampSize) @ M2;

[*vector of mean*/
mu = 1/(1+exp(-(X*beta + Z*h)));

[*vector of residual™*/
residual =Y - mu;

[*vector of variance*/
varu = mu#(1-mu);

[*A_i matrix*/

vul = diag(mu#(1-mu));
/*A_iN(-1/2) matrix*/

vu2 = diag(1/sqrt(mu#(1-mu)));

/* independent structure */
if CorrStruc = 1 then do;
gi_f = j(nfe,SampSize,0);
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do i=1 to SampSize;
gi_f[,i] = tOX[(A+(i-2)*n):(i*n),])*(residual [(1+(i-1)*n):(i*n),]);
end;
end;
/* EX/ARL1 structure */
if CorrStruc ~= 1 then do;
gi_f = j(2*nfe,SampSize,0);
do i=1 to SampSize;
gi_f[L:nfe,i] = t(X[(1+(i-1)*n):(i*n),])*(residual[(1+(i-1)*n):(i*n),]);
gi_f[(nfe+1) : (2*nfe),i] = t(X[(1+(i-1)*n):(i*n),])*vul[(1+(i-1)*n):(i*n),(1+(i-
D)*n):(i*n)*vu2[(1+(i-1)*n):(i*n),(1+(i-1)*n): (i*n)]*M2*vu2[(1+(i-1)*n): (i*n),(1+(i-1)*n):(i*n) ]* (residual [(1+(i-
1)*n):(i*n).]);
end;
end;

C2 =gi_f*t(gi_f);

sum_g_score = gi_f[,+];

invC = ginv(C2);

PART beta = t(sum_g_score)*invC*sum_g_score;
/*PJB = Pj*b; print PJB; print CovPjb;*/

CovPjb = cov(Pj*b);
PART _b = lambda2*( t(Pj*b)*ginv(CovPjb)*(Pj*b) );

BIC = PART beta + PART_b;

[*print BIC, PART _beta, PART _b;*/

finish BIC_Cal;

I' -I"—ItQIF nnnnnnnnnnnnnnnnnnn /

use true_response_y;
read all var _ALL_into Y_design_all;

use true_trt;
read all var _ALL_into true_trt;

n=7,

SampSize=100;
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[*total simulation number*/
w=ncol(Y_design_all);

1*2. fit QIF*/
CorrStruc = 1;

nfe = 4;
nre =2;

maxiter = 1000000;

lambda2 = log(SampSize);

/*form dataset and fit logistic fixed models for initial values of beta*/

[*time and sqrt_time*/
time = {0,1,2,3,4,5,6};
time_vec = shape(repeat(time,SampSize),SampSize*n,1);

sgrt_time = sqrt(time);
sgrt_time_vec = shape(repeat(sgrt_time,SampSize),SampSize*n,1);;

ID = shape(t(repeat(1:SampSize,n)),SampSize*n,1);

datasetl = ID||time_vec||sqrt_time_vec;
[*print dataset1;*/

dataset2 = repeat(datasetl,w);
[*print dataset2;*/

sim = shape(t(repeat(1:w,SampSize*n)),SampSize*n*w,1);
[*print sim;*/

Y _vec = colvec(t(Y_design_all));
trt_vec = colvec(t(true_trt));

dataset = sim||Y_vec||trt_vec||dataset2;
[*print dataset;*/

[** create data set **/

varNames = {"sim","Y","trt","ID","time","sqrt_time"};
create MyData from dataset [colname=varNames];
append from dataset;

close MyData;

/* 1. fixed-effects logistic regression model for initial value of beta*/
submit MyData;

ods output ParameterEstimates=GLM _fit;

PROC LOGISTIC DATA=MyData DESCENDING;

BY sim;
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MODEL Y = trt sqrt_time trt*sqrt_time ;
RUN;
endsubmit;

[*output fiexed effects as initial beta*/
use GLM _fit;
read all var {Estimate} into beta_initial;

beta_initial_vec = t(shape(t(beta_initial),w,nfe));

print beta_initial, beta_initial_vec;

/****************************************************************************/

[*simulation index*/
[*sim_idx=1;*/

[*store optimal lambdal*/
lambdal_optimal_vec = j(w,1);
[*store random effects*/

QIF_itp = j(SampSize,w,1);
QIF_slp = j(SampSize,w,1);

do sim_idx=1tow;

/*************************************/

/*design matrix X*/
intcp = j(n*SampSize,1,1);
trt_col = true_trt[,sim_idx];
txswk = trt_col#sqrt_time_vec;
X_design = intcp || trt_col || sqrt_time_vec || txswk;
/*design matrix Z*/
Zi = repeat(1,n)|jsqrt_time;
Z_design = I(SampSize) @Zi;
beta_initialvalue = beta_initial_vec[,sim_idx];

Y _design = Y_design_all[,sim_idx];
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/*

/*

/*

[*print X_design, Z_design, Y_design, beta_initialvalue;*/

X = X_design;
Z = Z_design;
Y =Y_design;

[FrExxFxxRselect lambdal by the BIC****x**xx/

[*candidate lambdal values*/
lambdal values = do(0.1,lambda2,0.3);*/

lambdal values = log(n)|| (log(n)+lambda2)/2 ||lambda2;

BIC_MATRIX = j(ncol(lambdal_values),2,0);

do | = 1 to ncol(lambdal_values);
lambdal = lambdal_values[,I];
call projection(Pj, X,2);
call BaseM (M2, n, CorrStruc);
call Robust (QIFbeta,QIFVarCov,QIFb,k, beta_initialvalue);
b_test = shape(QIFb, SampSize*nre,1);

beta_test = QIFbeta;
call BIC_Cal(BIC,PART beta,PART b, b_test,beta_test);

BIC_MATRIX[I,1] = lambdal,;
BIC_MATRIX[I,2] = BIC;

print QlFbeta,QIFVarCov,QIFb,k,BIC;*/

end;

print BIC_MATRIX;

/*choose the optimal lambdal*/

idx = loc( BIC_MATRIX = min(BIC_MATRIX[,2]) );
lambdal optimal = BIC_MATRIX[idx-1];

print lambdal optimal;*/
lambdal_optimal_vec[sim_idx] = lambdal_optimal;
/*fit QIF with the optimal lambdal*/

lambdal = lambdal_optimal;

call projection(Pj, X,2);

call BaseM (M2, n, CorrStruc);
call Robust (QIFbeta,QIFVarCov,QIFb,k, beta_initialvalue);
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I* b_test = shape(QIFb, SampSize*nre,1);*/

1* beta_test = QIFbeta;*/
I* call BIC_Cal(BIC,PART beta,PART _b, b_test,beta_test);*/
I* print QlFbeta,QIFVarCov,QIFb,k,BIC;*/

[*output QIF_random effects*/
QIF_itp[,sim_idx] = QIFb[,1];
QIF_slp[,sim_idx] = QIFb[,2];

end;

[*print QIF _itp,QIF_slp;*/
print lambdal_optimal_vec;

/***********************************************/

create QIF_itp from QIF _itp;
append from QIF_itp;
close QIF_itp;

create QIF_slp from QIF_slp;
append from QIF_slp;
close QIF_slp;

proc export data=QIF _itp
outfile="/panfs/pfs.local/home/zwang3/paper3/Simulations/né/intslpmodel2/N100rho4/t/qif_rnd_intercept.csv"
dbms=csv replace; run;

proc export data=QIF_slp

outfile="/panfs/pfs.local/home/zwang3/paper3/Simulations/né/intslpmodel2/N100rho4/t/qif _rnd_slope.csv"
dbms=csv replace; run;
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Figure S1. Scatterplot, histogram and normal Q-Q plot of conditional residuals from the random
effects linear model for the depression data.
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Figure S2. Histograms and kernel densities of EB predictors of random effects for 66 patients with
depression under imipramine treatment. (A) Random intercept predictors. (B) Predictors of the
random slope of time. (C) Predictors of the random slope of time square.
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Figure S3. Selected p x 100% percentiles of the probability distribution of individual benefits of
imipramine treatment as functions of treatment duration in weeks, for patients with endogenous
diagnosis with p =0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.90, 0.95. (A) Percentiles from Eq. (3)
which assumes normality for the random effects. (B) Sample percentiles of EB predictors of
individual benefits.
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SAS/IML code implementing the graphical approach and calculating Cramer-von Mises statistic

for simulation scenario 3.

proc iml;
start cal (CvM,Y ,EDG, SampSize);
/*1. simulate data*/

[*SampSize = 100; */
n=6; target =7; nfe =4; nre=3; TIMEPOINT = 4; df=13;

[*binary x_i*/
x_EDG = randfun(SampSize, "Bernoulli*, 0.6);
[*print x_EDG;*/

EDG = colvec(repeat(x_EDG,1,n));
[*print EDG;*/

[*fixed effect™/
beta = {21.4,1.92,-3.97,0.35};
[*beta = {21.4,1.92,-6.97,0.35}; */

[*Mixture*/
/*beta = {22.4,1.92,-3.97,0.35}; */

time_i = {0,0,1,2,3,4};
timesqr_i = time_i##2;
[*print timesqr_i;*/

time = shape(repeat(time_i,SampSize),SampSize*n,1);
timesqr = shape(repeat(timesqr_i,SampSize),SampSize*n,1) ;

/*design matrix X*/

intcp = j(SampSize*n,1,1);

X =intcp || EDG || time || timesqr;
X_design = X;

[*print X;*/

/*design matrix Z*/

Zi =repeat(1,n)||time_i|jtimesqr_i;
/*Zi = repeat(1,n)||time_i; */

Z = |(SampSize)@Zi;
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Z_design = Z;
[*print Z;*/

[*error term*/
ve = 10*1(n);
[*print vc;*/

Mean= repeat(0,n);

eps = RandNormal(SampSize, Mean, vc);
eps = shape(eps,SampSize*n,1);

[*print eps;*/

/*************************************************5i m

1*******************************************************/

*MVN/T*/

mu={0 0 0};*/

/*cov = {10.4 0.279 -0.341,0.279 13.06 -2.466, -0.341 -2.466 0.581}; */
/*rnd = RANDNORMAL (SampSize, mu, cov);*/

[*cov_t = ((df-2)/df)*cov;*/
/*rnd = RandMVT(SampSize, df, mu, cov_t);*/
[*print cov_t;*/

/*********************************************************************************************

***********/

/*************************************************Si m

2*******************************************************/

[*MVN/T*/

mu={0 0 0};

cov ={10.4 0.279 -0.341, 0.279 13.06 -2.466, -0.341 -2.466 0.581};
cov_t = (df/(df-2))*cov;

[*print cov_t;*/

/*rnd = RandMVT(SampSize, df, mu, cov_t);*/

rnd = RANDNORMAL (SampSize, mu, cov_t);

JFFFFFF S dedededdedededededededededkdokdededededededeodedeokdekdedededededekdedeodedekededede ek ke dedekdedekdokdekdedekdekdokekdekdekededekdokdeokdede ke keodekeokokok

***********/

rndA = shape(rnd, SampSize*nre,1);

Y = X*beta+Z*rndA+eps;
[*print Y;*/

158



[*Create 1D vectors*/
ID = colvec(repeat(T(1:SampSize),1,n)) ;
[*print ID;*/

dataset = ID||Y|[EDG]||time;
[*print dataset;*/

create MyData from dataset [colname={"id", "Y", "EDG", "time"}];
append from dataset;
close MyData;

/********************************************************/

/*2. fit mixed*/
submit MyData;
ods listing close;
ods output SolutionF = fixed SolutionR =rnds CovParms=CovP;
proc mixed data=MyData method=m| COVTEST;
class id;
model Y = EDG time time*time / solution cl covb;
random intercept time time*time / SUB=id TYPE=un SOLUTION G GCORR V;
run;
ods listing;
endsubmit;

/********************************************************/

/*3. calculate CvM statistic*/

use rnds;
read all into rnds[colname=varNames];
close;

intercept_idx= do(1,SampSize*nre,nre);
[*print intercept_idx;*/

time_idx = do(2,SampSize*nre,nre);
[*print time_idx;*/

timesqgr_idx = do(3,SampSize*nre,nre);
[*print timesqr_idx;*/

EB_intercept= rnds[intercept_idx,"Estimate"];
EB time =rnds[time_idx,"Estimate"];
EB timesqgr = rnds[timesqgr_idx,"Estimate"];
[*print EB_intercept,EB_time,EB_timesqr;*/
use Fixed;

read all var {Estimate} into EB_FIXED;
close;

use CovP;
read all var {Estimate} into CovPars;
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close;

resid_var = CovPars[nrow(CovPars)];
[*print resid_var;*/

EB_RND = EB_intercept||[EB_time||[EB_timesqr;

shape_EB_RND = shape(EB_RND,SampSize*nre,1);

mu = X_design*EB_FIXED + Z_design*shape_EB_RND;

[*print mu;*/

Benefit = probnorm( (target - (X_design*EB_FIXED + Z_design*shape_EB_RND)) / sqrt(resid_var) ) ;
Benefit_all = id || EDG || time || Benefit;

[*print Benefit_all;*/

/*********************************************************************************************
*************************/

/**********************************GROUP THE BENEFITS by X i and at

T I M E PO I NT******************************************/

edg_rows_t = loc((Benefit_all[,2]=1) & (Benefit_all[,3]=TIMEPOINT));
noedg_rows_t = loc((Benefit_all[,2]=0) & (Benefit_all[,3]=TIMEPOINT));

e _ct =countn(edg_rows t);
NOe_ct = countn(noedg_rows_t) ;
[*print e_ct, NOe_ct;*/

/*obtain EB benefits at TIMEPOINT*/

edg_t = Benefit_all[edg_rows_t,ncol(Benefit_all)];
noedg_t = Benefit_all[noedg_rows_t,ncol(Benefit_all)];
[*print edg_t;*/

[*print noedg_t;*/

/ exclude benefits 0 and
1 /

smallCutoff = 1e-10;
LargeCutoff = 1 - smallCutoff;

idx_e = loc((edg_t < smallCutoff ) | (edg_t > LargeCutoff));
idx_ne = loc((noedg_t < smallCutoff ) | (noedg_t > LargeCutoff));

[*print idx_e,idx_ne ;*/
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if ncol(idx_e)>0 then do;
edg_t = edg_t[setdif(1:nrow(edg_t), idx_e)];
e_ct =countn(edg_t) ;

end;

else print "There are no positive values";

if ncol(idx_ne)>0 then do;
noedg_t = noedg_t[setdif(1:nrow(noedg_t),idx_ne)];
NOe_ct = countn(noedg_t) ;

end;

else print "There are no positive values";

[*print e_ct, NOe_ct;*/
[*print edg_t, noedg_t;*/

/*********************************************************************************************

*************************/

/*mean function of time and binary covariates*/
start Mut (LB, x_EDG, t, Fixed_Efft);

tsgr = t*t;
X _LB=1]|x EDG | t| tsqr;
LB = X_LB*Fixed_Efft;

finish Mut;

[*variance function of time and binary covariates*/
start Vart (LB_VAR, t, Varparms);

tsqr = t*t;

tcub = t*t*t;

tfor = t*t*t*t;

Xvar_LB =1 2*t| tsqr || 2*tsqr || 2*tcub || tfor;
LB_VAR = Xvar_LB*Varparms[1:(nrow(Varparms)-1)];

finish Vart;

/*CDF of benefits*/
start CDF_b (F_z_cdf, x_EDG,Fixed_Efft,Varparms, t, z, target);
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call Mut (LB, x_EDG, t, Fixed_Efft);

sigma_sqgr = Varparms[nrow(Varparms)];

mean_t = (target - LB)/sqrt(sigma_sqr);
I* print mean_t;*/

call Vart (LB_VAR, t,Varparms);
I* print LB_VAR;*/

gamma_sqr = LB_VAR/sigma_sqr;
I* print gamma_sqr;*/

F_z = quantile(NORMAL',2);
F_z_t=(F_z - mean_t)/sqrt(gamma_sqr);
F_z_cdf = cdf(NORMAL',F_z_t);

I* printF_z, F_z_t, F_z_cdf;*/

finish CDF _b;

[*Cramer-von Mises statistic*/
start CRM_stat (CRM, dataset);

/*obtain order statistics by sorting the CDFs*/
call sort(dataset, 1);

cons = j(nrow(dataset),1,0);
do i = 1 to nrow(dataset);
cons[i] = (2*i-1)/ (2*nrow(dataset));

end;
I* consl = dataset - cons;*/
I* cons2 = (dataset - cons)##2;*/
I* cons3 = sum((dataset - cons)##2);*/

CRM = 1/(12*nrow(dataset)*nrow(dataset)) + 1/(nrow(dataset)) * sum((dataset - cons)##2);
I* print cons, consl, cons2, cons3, CRM;*/

finish CRM_stat;

edg_t_cdf = j(nrow(edg_t), 1, 0);

do i =1 to nrow(edg_t);
call CDF_b (F_z_cdf, 1,EB_FIXED,CovPars, TIMEPOINT, edg_t[i],target);
edg_t_cdffi] =F_z_cdf;
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end;

noedg_t_cdf = j(nrow(noedg_t), 1, 0);

do i =1tonrow(noedg_t);
call CDF_b (F_z_cdf, 0,EB_FIXED,CovPars, TIMEPOINT, noedg_t[i],target);
noedg_t_cdffi] = F_z_cdf;

end;

[*print edg_t_cdf, noedg_t_cdf;*/

/*********************************************************************************************

*************************/

/*Cramer-von Mises statistic*/
call CRM_stat (edg_ CRM, edg_t_cdf);

call CRM_stat (noedg_ CRM, noedg_t_cdf);
[*print edg_ CRM, noedg_CRM;*/

CvM = (e_ct*edg_CRM + NOe_ct*noedg_CRM)/(e_ct+NOe_ct);
[*print CvM;*/

finish cal;

/*********************************************************************************************

*************************/
sim=500;
store = j(sim,1);
Y_matrix = j(100*6,sim);
EDG_matrix = j(100*6,sim);
do j=1 to sim;
call cal(CvM,Y ,EDG,100);
store[j]=CvM;
Y_matrix[,j]=Y;
EDG_matrix[,j]=EDG;
end;
mean_t = mean(store);

print store,mean_t;

[*print Y_matrix;*/
[*print EDG_matrix;*/
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/*choose the row/column of Y that has the smallest CvM*/
dd = abs(store-mean_t);

lo =loc (dd = min(dd));

if ncol(lo)>1 then do;
location = lo[1];

end;

else location = lo;

diff = dd[location];

CvM_diff = store[location];
print CvM_diff;

Y =Y_matrix[,location];
EDG = EDG_matrix[,location];

/*********************************************************************************************
*************************/
/*********************************************************************************************
*************************/

/************************************************* P I Ot QQ pI Ot
********************************************************/
/*********************************************************************************************
*************************/
/*********************************************************************************************

*************************/

/*1. formulate data*/

SampSize = 100; n=6; target =7; nfe = 4; nre =3; TIMEPOINT = 4;

time_i = {0,0,1,2,3,4};
timesqr_i = time_i##2;
[*print timesqr_i;*/

time = shape(repeat(time_i,SampSize),SampSize*n, 1);
timesqr = shape(repeat(timesqgr_i,SampSize),SampSize*n,1) ;

/*design matrix X*/

intcp = j(SampSize*n,1,1);

X =intcp || EDG || time || timesqr;
X_design = X;

[*print X;*/
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/*design matrix Z*/

Zi =repeat(1,n)|[time_i|jtimesqr_i;
[*Zi = repeat(1,n)||time_i; */

Z = |(SampSize)@Zi;

Z_design =Z;

[*print Z;*/

[*Create ID vectors™/
ID = colvec(repeat(T(1:SampSize),1,n)) ;
[*print ID;*/

dataset = ID||Y||EDG]||time;
[*print dataset;*/

create MyData from dataset [colname={"id", "Y", "EDG", "time"}];
append from dataset;
close MyData;

/********************************************************/

/*2. fit mixed*/
submit MyData;
ods listing close;
ods output SolutionF = fixed SolutionR =rnds CovParms=CovP;
proc mixed data=MyData method=ml| COVTEST;
class id;
model Y = EDG time time*time / solution cl covb;
random intercept time time*time / SUB=id TYPE=un SOLUTION G GCORR V;
run;
ods listing;
endsubmit;

/********************************************************/

/*3. calculate CvM statistic*/

use rnds;
read all into rnds[colname=varNames];
close;

intercept_idx= do(1,SampSize*nre,nre);
[*print intercept_idx;*/

time_idx = do(2,SampSize*nre,nre);
[*print time_idx;*/

timesqr_idx = do(3,SampSize*nre,nre);
[*print timesqgr_idx;*/

EB_intercept= rnds[intercept_idx,"Estimate"];

EB time =rnds[time_idx,"Estimate"];
EB_timesqr = rnds[timesgr_idx,"Estimate"];
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[*print EB_intercept,EB_time,EB_timesqr;*/
use Fixed;
read all var {Estimate} into EB_FIXED,;
close;
use CovP;

read all var {Estimate} into CovPars;
close;

resid_var = CovPars[nrow(CovPars)];

[*print resid_var;*/

EB_RND = EB_intercept||[EB_time||EB_timesqr;

shape_EB_RND = shape(EB_RND,SampSize*nre,1);

mu = X_design*EB_FIXED + Z_design*shape_EB_RND;

[*print mu;*/

Benefit = probnorm( (target - (X_design*EB_FIXED + Z_design*shape_EB_RND)) / sqrt(resid_var) ) ;
Benefit_all = id || EDG || time || Benefit;

[*print Benefit_all;*/

JERFFFFIkFddddkdekddkdkdedkdkodokdkddokdokdokkdoddeokdedokdokdekdeddedededokdokdkdedededkdedokdokdekdedededekodokokkdededededededokode ke deokedededeodeokok

*************************/

/*mean function of time and binary covariates*/
start Mut (LB, x_EDG, t, Fixed_Efft);

tsqr = t*t;
X _LB=1]|x EDG | t|l tsqr;
LB = X_LB*Fixed_Efft;

finish Mut;

[*variance function of time and binary covariates*/
start Vart (LB_VAR, t, Varparms);
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tsqr = t*t;

tcub = t*t*t;

tfor = t*t*t*t;

Xvar_LB =1 | 2*t || tsqr || 2*tsqr || 2*tcub || tfor;
LB_VAR = Xvar_LB*Varparms[1:(nrow(Varparms)-1)];

finish Vart;

[*CDF of benefits*/
start CDF_b (F_z_cdf, x EDG,Fixed_Efft,Varparms, t, z, target);

call Mut (LB, x_EDG, t, Fixed_Efft);

sigma_sqgr = Varparms[nrow(Varparms)];

mean_t = (target - LB)/sqrt(sigma_sqr);
1* print mean_t;*/

call Vart (LB_VAR, t,Varparms);
I* print LB_VAR;*/

gamma_sqr = LB_VAR/sigma_sqr;
I* print gamma_sqr;*/

F_z = quantile(NORMAL',2);
F z t=(F_z-mean_t)/sqrt(gamma_sqr);
F_z cdf = cdf(NORMAL',F_z t);

1* printF z, F z t,F z cdf;*/

finish CDF _b;

[*Cramer-von Mises statistic*/
start CRM_stat (CRM, dataset);

[*obtain order statistics by sorting the CDFs*/
call sort(dataset, 1);

cons = j(nrow(dataset),1,0);
do i = 1 to nrow(dataset);
cons[i] = (2*i-1)/ (2*nrow(dataset));

end;
* consl = dataset - cons;*/
I* cons2 = (dataset - cons)##2;*/
I* cons3 = sum((dataset - cons)##2);*/

CRM = 1/(12*nrow(dataset)*nrow(dataset)) + 1/(nrow(dataset)) * sum((dataset - cons)##2);
I* print cons, consl, cons2, cons3, CRM;*/

finish CRM_stat;
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/*quantile function of benefits*/
start quantile_B (B_p_t, x_EDG,Fixed_Efft,Varparms, t, p, target);

call Mut (LB, x_EDG, t, Fixed_Efft);
sigma_sqgr = Varparms[nrow(Varparms)];

mean_t = (target - LB)/sqrt(sigma_sqr);
1* print mean_t;*/

call Vart (LB_VAR, t,Varparms);
I* print LB_VAR;*/

gamma_sqr = LB_VAR/sigma_sq;
1* print gamma_sqr;*/

g_p =quantile(NORMAL', p);
g_p_t =sgrt(gamma_sqr)*q_p + mean_t;
B_p_t = cdf(NORMAL',g_p_t);

I* print g_p, q_p_t, B_p_t;*/
finish quantile_B;

/*********************************************************************************************

*************************/

/**********************************GROUP THE BEN EF I TS by X i and at

T I M E PO I NT******************************************/

edg_rows_t = loc((Benefit_all[,2]=1) & (Benefit_all[,3]=TIMEPOINT));
noedg_rows_t = loc((Benefit_all[,2]=0) & (Benefit_all[,3]=TIMEPOINT));

e _ct =countn(edg_rows t) ;
NOe_ct = countn(noedg_rows_t) ;
[*print e_ct, NOe_ct;*/

/*obtain EB benefits at TIMEPOINT*/

edg t = Benefit_all[edg_rows_t,ncol(Benefit_all)];
noedg_t = Benefit_all[noedg_rows_t,ncol(Benefit_all)];
[*print edg_t;*/

[*print noedg_t;*/

| ikaiaieiaiaiaisiahaisaisaisakaisaisaisisaiaiaiaisisaiaiaiaisiaisiais exclude benefits 0 and
1 /

smallCutoff = 1e-10;
LargeCutoff = 1 - smallCutoff;

idx_e = loc((edg_t < smallCutoff ) | (edg_t > LargeCutoff));
idx_ne = loc((noedg_t < smallCutoff ) | (noedg_t > LargeCutoff));
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[*print idx_e,idx_ne ;*/

if ncol(idx_e)>0 then do;
edg_t = edg_t[setdif(1:nrow(edg_t), idx_e)];
e_ct =countn(edg_t) ;

end;

else print "There are no positive values™;

if ncol(idx_ne)>0 then do;
noedg_t = noedg_t[setdif(1:nrow(noedg_t),idx_ne)];
NOe_ct = countn(noedg_t) ;

end;

else print "There are no positive values™;

[*print e_ct, NOe_ct;*/
[*print edg_t, noedg_t;*/

edg_t cdf = j(nrow(edg_t), 1, 0);

do i =1tonrow(edg_t);
call CDF_b (F_z_cdf, 1,EB_FIXED,CovPars, TIMEPOINT, edg_t[i],target);
edg_t cdffi] =F_z_cdf;

end;

noedg_t cdf = j(hrow(noedg_t), 1, 0);

do i =1to nrow(noedg_t);
call CDF_b (F_z_cdf, 0,EB_FIXED,CovPars, TIMEPOINT, noedg_t[i],target);
noedg_t cdfi] = F_z_cdf;

end;

[*print edg_t_cdf, noedg_t_cdf;*/

/

/
[*Cramer-von Mises statistic*/

call CRM_stat (edg_ CRM, edg_t_cdf);
call CRM_stat (noedg_ CRM, noedg_t_cdf);
/*print edg_ CRM, noedg_CRM;*/

CvM = (e_ct*edg_CRM + NOe_ct*noedg_CRM)/(e_ct+NOe_ct);
print CvM;

/
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***************************/

[*Part 2. QQplot of benefits at TIMEPOINT*/
/ GROUP THE BENEFITS by
x_i xxxxxxxxxxxxxxxx /

e_rows = loc((Benefit_all[,2]=1));
NOe_rows = loc((Benefit_all[,2]=0));

[*count # of subjects in each subgroups*/
e ctl =countn(e_rows)/n;

NOe_ctl = countn(NOe_rows)/n;

[*print e_ctl, NOe_ctl1;*/

edg_pt =Benefit_all[e_rows,];
nonedg_pt = Benefit_all[NOe_rows,];
[*print edg_pt,nonedg_pt;*/

/*********************************************************************************************

*************************/

[FFFFFIF I A I KK I K A AR R x R AR xF**calculate empirical quantiles of the
beneﬁt***************************************/
start cal_quant (q_EB, data,samp);

week = {0,0,1,2,3,4};
p = t(do((1-0.5)/Samp,(Samp-0.5)/Samp,1/Samp));

data_g EB = j(hrow(week),nrow(p),0);
nrowdata = nrow(data);

do i = 1 to nrow(week);
time_index = do(i,nrowdata,nrow(week));
1* obtain benefits for time "time_index"*/

temp_EB = data[time_index,ncol(data)];

call gntl(templ, temp_EB, p);
data_q_EBJ[i,] = t(templ);

g_EB = week || data_q_EB;
end;

finish cal_quant;
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[*1*/
call cal_quant (edg_pt_EB, edg_pt,e_ctl);
[*print edg_pt_EB;*/

Iisisiasisisinisisisisiisiiniinisisdissdssinisiniisdsisininissisdssiiisinisisdsssiainissisiaissisiisininisiaississiaiaieiie /
[*2*]

call cal_quant (honedg_pt_EB, nonedg_pt,NOe_ct1);

[*print nonedg_pt_EB;*/

/**********************************************************************************/

/**********************************************************************************/

[*empirical quantiles at TIMEPOINT?*/

edg pt EBq =t(edg_pt EB[TIMEPOINT+2,2:ncol(edg_pt EB)]);
nonedg_pt EBqg = t(nonedg_pt_EB[TIMEPOINT+2,2:ncol(nonedg_pt_EB)]);
[*print edg_pt_EBq, nonedg_pt_EBq;*/

[FFEFFIF I A I AR AR F AR xR xR xR**calculate theoretical quantiles of the benefit using quantile

1 *hhhhkhkhkhkhhhhkhhkhhhhkhhhhhkhhhhhhhhhhhkhkikk
function /

[FFFFFIF I A IR AT R HFxFF*theoretical benefit quantiles for combinations of
SChIZ Canna percentlle time****************************/

tii = t(do(1,4,1));

/*combinations for EDG_percentile_time*/

percent EDG = t(do((1-0.5)/e_ctl,(e_ct1-0.5)/e_ctl,1/e ctl));
combo_infor_ EDG = expandGrid(1, percent_EDG, tii);
B_q_EDG = j(nrow(combo_infor_EDG),1,0);

/*combinations for NOEDG_percentile_time*/
percent. NOEDG = t(do((1-0.5)/NOe_ct1,(NOe_ct1-0.5)/NOe_ct1,1/NOe_ctl));

combo_infor NOEDG = expandGrid(0, percent_ NOEDG, tii);
B_q_NOEDG = j(nrow(combo_infor NOEDG),1,0);

do i=1to nrow(combo_infor_EDG);
EDG_point = combo_infor_EDG]i,1];
time_pointl= combo_infor_EDG]i,3];
p_pointl =combo_infor_EDGJi,2];

call quantile_B(B_p_t E, EDG_point,EB_FIXED,CovPars,time_pointl,p_pointl,target);
B q EDG[i]=B_p_t E;

end;
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do j=1 to nrow(combo_infor_NOEDG);

NOEDG_point = combo_infor_NOEDGj,1];
time_point2 = combo_infor NOEDGj,3];
p_point2 = combo_infor NOEDGj,2];

call quantile_B(B_p_t_ NOE, NOEDG_point,EB_FIXED,CovPars,time_point2,p_point2,target);
B_g_NOEDG[j] = B_p_t_NOE;

end;

quan_df_E =combo_infor_EDG | B_g_EDG,;

quan_df_NOE = combo_infor_NOEDG || B_q_NOEDG;

[*theoretical quantiles for each subgroup AT TIME POINT TIMEPOINT*/

EDG_tgrow = loc(quan_df E[,3]=TIMEPOINT);
noEDG_tgrow = loc(quan_df_NOE[,3]=TIMEPOINT);

EDG_tq =quan_df E[EDG_tgrow,ncol(quan_df _E)];
noEDG_tq = quan_df_NOE[noEDG_tgrow,ncol(quan_df_NOE)];

/****************************************************************************************/

/****************************************QQ pI Ot******************************************/

/*******************************Combine a" into [0]0]-Sekalalalalalaiataiatel /

df=13;

EDG_quantile = repeat(0,nrow(EDG_tq)) || repeat(df,nrow(EDG_tq)) || repeat(1,nrow(EDG _tq)) || EDG_tq ||
edg_pt EBq;

noEDG_quantile = repeat(0,nrow(noEDG_tQq))|| repeat(df,nrow(noEDG_tQq))| repeat(2,nrow(noEDG_tq))||
noEDG_tq || nonedg_pt_EBq;

all_quantile = EDG_quantile // noEDG_quantile;
[*print all_quantile ;*/

create all_quantile from all_quantile[colname={"t", "df", "group", "Theoretical", "EB"}];
append from all_quantile;
close all_quantile;

submit all_quantile;
proc sgplot data=all_quantile;
scatter x=Theoretical y=EB/
group=group groupdisplay=cluster clusterwidth=0.5;
lineparm x=0 y=0 slope=1; /** intercept, slope **/
XAXIS LABEL = Theoretical quantile’;
YAXIS LABEL = 'EB quantile’;
run;
endsubmit;
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proc export data=all_quantile outfile="C:\Users\zwang3\Desktop\PAPER2\no_trt\Simulation\plot
QQ\mtmvn\mvn13.csv" dbms=csv replace; run;
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