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Abstract

The evaluation of drug safety is critically important in clinical trials. The first part

of this dissertation explores new statistical methods for drug safety signal detection

in two-arm clinical trials. Current statistical methods for safety signal detection in

two-arm clinical trials are typically based on comparing only the incidence rates of

adverse events (AEs) using frequentist p values or Bayesian posterior probabilities,

regardless of AE severity. To enhance the safety signal detection, chapter 2 of this

dissertation describes a frequentist test for evaluating both the AE incidence rate and

AE severity in two-arm clinical trials. The frequentist test is based on the Fisher’s

exact test for AE incidence rate and a proposed conditional test for AE severity that

adjusts for potential selection bias. Moreover, in chapter 3 of this dissertation, from

the Bayesian perspective, we further proposed a Bayesian three-level hierarchical non-

proportional odds version of the cumulative logit model for detecting safety signal with

respect to both the incidence rate and severity when all the AEs reported from a two-

arm clinical trial are classified into different body system. The three-level hierarchical

prior structure takes advantage of the classification of AEs and adjusts for multiplicity

because information is borrowed across AEs, especially across the AEs within the

same body system. The second part of this dissertation explores statistical applications

for safety monitoring in two-arm clinical trials. A few statistical methods for blinded

safety monitoring have been proposed. The complex nature of these methods makes

the applications challenging. In chapter 4 of this dissertation, we developed two user-

friendly R Shiny interactive tools to accelerate, facilitate and improve the process of

blinded safety monitoring and reporting in two-arm clinical trials. The interactive tools

are based on two blinded safety monitoring methods proposed by Gould & Wang

(2017) and Ball (2011) respectively. The dissertation concludes with summary and

future studies in chapter 5.
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Chapter 1

Introduction
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1.1 Clinical trial safety evaluation

Clinical trials are prospective biomedical or behavioral studies designed on human participants to

answer questions about new treatments and known interventions that warrant further study and

comparison. In clinical trials, the evaluation of drug efficacy and drug safety are two major goals.

The purpose of drug efficacy evaluation is to study whether the experimental drug is efficacious in

disease treatment and it requires a well designed trial and the trial must be identified unambigu-

ously before it starts to support the efficacy of the experimental drug (Gould, 2018).

The evaluation of safety aims at characterizing the safety profile of the experimental drug and

ensuring timely alteration or termination of the trial to protect trial participants from potentially

harmful treatment. Drug safety evaluation is quite different from the evaluation of efficacy. As

pointed out by Wang et al. (2017), the efficacy evaluation tends to be linear, targeted and hypothesis

driven while the safety evaluation tends to be iterative, holistic and dynamic.

Some defining characteristics of safety monitoring and reporting from the sponsor’s perspective

are described by Wang et al. (2017):

“Safety monitoring is a process and involves a wide range of stakeholders.

It assesses side effects across a spectrum of frequencies and magnitudes...

It serves to lay the foundation for an integrated analysis of safety and benefit-risk

analysis in regulatory submissions, such as a new drug application (NDA), or for a

possible advisory committee meeting...”

Safety evaluation is critically important in drug development. Only treatments that are con-

cluded as reasonably safe will be approved by regulatory authorities. In recent years, the US Food

and Drug Administration (FDA) has issued guidance regarding safety monitoring and reporting

for an investigational new drug (IND) to assist fuller development of safety profiles, as shown in

the FDA guidance, see FDA (2010, 2012, 2015). The FDA guidance states that sponsors should

develop a safety assessment committee and a safety surveillance plan as key elements of a system-

atic approach to safety surveillance. The evolving safety profile of the IND should be evaluated
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based on cumulative AEs from all of the trials in the development program. In addition, the Safety

Planning, Evaluation and Reporting Team (SPERT) was formed in 2006 by the Pharmaceutical

Research and Manufacturers of America (PhRMA) to recommend a pharmaceutical industry stan-

dard for safety planning, data collection, evaluation and reporting, see Crowe et al. (2009) and Xia

et al. (2011).

Drug safety is evaluated on the basis of adverse events (AE). For example, a new experimental

drug might cause physical signs (rash), symptoms (fever), laboratory tests (serum albumin) and

other relevant assessments (blood glucose). These adverse effects exist when patients’ body func-

tions, such as liver function, renal function, hematology, neurologic function, are affected by the

experimental treatments. Close analysis of the safety data containing incidence and severity infor-

mation of adverse events is important in order to improve the timing of identifying risks and justify

the safety of the treatment that warrant a next stage clinical trial or regulatory agency approval.

Adverse events are typically classified into three tiers (Crowe et al., 2009; Gould, 2002): Tier 1

AEs are those associated with specific hypotheses being tested formally in the clinical trial and they

are empty in many trials. Tier 2 AEs are those routinely collected in clinical trials but about which

no specific hypotheses have been formulated in advance. The goal is to identify any unexpected

deleterious effects of the drug and to quantify their rates. Tier 3 AEs are rare spontaneous reports

of serious events that require specific clinical evaluation. See also Berry & Berry (2004).

Statistics play an important role in evaluating the drug’s safety profile. An American Statistical

Association (ASA) safety working group was established to take advantage of the leading role of

the statistician and better enable the quantification in drug safety monitoring.

Statistical literatures on drug safety evaluation include two major areas of drug safety eval-

uation: “safety signal detection” and “safety monitoring” (Zhu et al., 2016). They are different

regarding the number of AEs included in the analysis. In the following sections, we provide a

comprehensive review of statistical methods of safety evaluation in clinical trials.

3



1.1.1 Safety monitoring

The first type of safety evaluation is the safety monitoring. It aims at monitoring an adverse event

of special interest (AESI) in an ongoing trial. Some Bayesian methods for dynamically monitoring

the AESI in the ongoing single-arm trials have been proposed. One feature of these methods

is that the Bayesian framework allows for the inclusion of prior information and the dynamic

updates of the posterior distribution of the parameters as data accrue. The decision rule is that

if the posterior probability of exceeding a certain rate is greater than a threshold, it indicates a

safety signal with respect to the AESI. For example, Yao et al. (2013) adapted a Bayesian decision

criterion for monitoring AESIs. This Bayesian decision criterion was first proposed by Thall &

Simon (1994) for the evaluation of drug efficacy in a Phase IIb single-arm oncology study. Chen &

Chaloner (2006) proposed another Bayesian approach for continuous monitoring the AESI. Unlike

Thall & Simon (1994), they only consider the distribution of treatment group event rate. For safety

monitoring of an AESI in a two-arm trial, see Bayesian Beta-Binomial model and Poisson-Gamma

model in Yao et al. (2013) and Zhu et al. (2016).

In addition, frequentist monitoring of clinical safety could be performed under the group se-

quential paradigm. For example, sequential probability ratio test (SPRT) (Wald, 1945) can be used

for monitoring the AESI in a single-arm trial. However, A limitation of the test is the need to spec-

ify the single alternative hypothesis (Li & Kulldorff, 2010). Several other sequential tests were

proposed. See Kulldorff et al. (2011), Goldman & Hannan (2001), Bolland & Whitehead (2000),

Li & Kulldorff (2010), Shih et al. (2010).

The above methods were developed for unblinded safety monitoring, where treatment infor-

mation is known. Unblinded safety monitoring is often conducted by an external data monitoring

committee (DMC) periodically. As sponsors develop novel drugs and biological agents in new

diseases or therapeutic areas, there is an increasing need for sponsors to monitor patient safety to

detect potential safety signals as soon as possible, regardless of DMC schedule, while maintaining

study blinding to minimize bias and protect the integrity of the blinded studies. The trial sponsors

review blinded reports and listings of safety data on a regular basis and make determinations on

4



whether there is a change in the risk profile of the drug based on clinical judgment without preset

decision rules or criteria. Although blinded data analysis is less informative and does not provide a

definitive treatment effect estimate using blinded data alone, blinded safety data monitoring could

identify potential safety issues before the data is unblinded and prompt decisions regarding an un-

blinded analysis. There are a few methods in the literature about blinded safety data monitoring.

Ball (2011) described an approach using adverse event rate as an example based on pooled event

rate from a two-arm randomized trial. The decision rule is that if there is a high posterior prob-

ability given cumulative data that the observed pooled rate is higher than control or background

rate in the literature, then there is a potential safety signal with respect to the AE. Gould & Wang

(2017) proposed a Bayesian approach for safety monitoring of the two-arm randomized trial where

the potential adverse event risk levels can be estimated with different treatment effect metrics such

as relative risk, absolute risk difference, or odds ratio. Schnell & Ball (2016) introduced a safety

monitoring procedure for two-arm blinded clinical trials that incorporates a Bayesian hierarchical

exposure-time model to make inferences on the rate of AESI in the test treatment arm. Mukhopad-

hyay et al. (2018) proposed a two-step Bayesian method for monitoring and detecting safety signals

from blinded safety data for AESI. Lin et al. (2019) proposed a two-stage framework incorporating

periodic analyses of blinded safety data to detect AEs that may have potential treatment effect on

the treatment group incidence rate, as well as planned unblinded analyses to quantify associations

between the drug and AEs.

1.1.2 Safety signal detection

More often, the analysis of safety data involves many types of tier 2 AEs that may not be antici-

pated (Mehrotra & Heyse, 2004). The second type of safety evaluation in clinical trials is safety

signal detection, where all AEs instead of just an AESI are included in the analysis. In a two-

arm clinical trial, the aim of the safety signal detection is to compare the incidence rates of all

the AEs between two groups. If the incidence rates of some of the AEs in the treatment group

are significantly greater than those in the control group (or vice versa), these AEs will be flagged
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and further investigation is needed about the safety of the drug. Simultaneously comparing the

incidence rates of many AEs causes multiplicity issues. This is a common challenge that faces

statisticians. Bayesians and frequentists alike. Failure to adjust for multiplicity will give excess

false positive findings, thus needlessly complicating the interpretation of the safety profile of the

experimental drug.

One frequentist adjustment for multiplicities is to control for overall type I error rate by using a

lower nominal significance level. This is the idea of Bonferroni adjustment. However, such adjust-

ments are conservative as the power of the test will be very low. Other more suitable frequentist

adjustments are preferred. In the clinical adverse event context, Mehrotra & Heyse (2004) pro-

posed a double false discover rate procedure (DFDR), a novel method for addressing multiplicity

by controlling the false discovery rate (FDR) to a desired level in the evaluation of adverse event

data. The method was a two-step application of adjusted p values based on the false discovery rate

procedure of Benjamini & Hochberg (1995). Furthermore, Mehrotra & Adewale (2012) proposed

another DFDR procedure, which is an enhancement of the DFDR, that significantly lowers the

FDR without materially compromising the power for detecting true signals. The DFDR procedure

and the new DFDR procedure can be used to adjust p values of any individual tests. The p value of

individual test can be for testing the inequality of incidence rate, inequality of exposure adjusted

incidence rate, or inequality of severity between the control group and the treatment group. Diao

et al. (2019) developed Monte-Carlo-based methods for the safety signal detection in clinical trials.

The proposed methods account for the rare events and arbitrary correlation structures among AEs

within and/or between body system.

Moreover, some Bayesian methods have been proposed for safety signal detection and ad-

justment of multiplicity issues. The Bayesian approach is less tied to type I error. It focuses on

assessing the probability that the treatment causes an adverse event on the basis of all available

information (Berry & Berry, 2004). McEvoy et al. (2013) introduced a Bayesian approach for

modeling the risk differentials of the AEs between the treatment and comparator arms. The pro-

posed procedure uses an Ising prior to unite medically related AEs. Berry & Berry (2004) proposed
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a three-level Bayesian hierarchical model to monitor the incidence rate differences of many adverse

events between two groups. The hierarchical model accounts for multiplicities in adverse event as-

sessment. It provides an explicit method for borrowing information across types of adverse events.

The posterior probability that the odds ratio of the the adverse event incidence rate between the

control group and treatment group is obtained for each adverse event. Xia et al. (2011) expanded

Berry & Berry (2004)’s method into a hierarchical Poisson mixture model which accounts for the

length of the observation of subjects and improves the characteristics of the analysis for rare events.

Gould (2008), Gould (2013), Gould (2018) proposed an alternative Bayesian screening ap-

proach to detect potential safety issues when event counts arise from binomial or Poisson distri-

butions. The method assumes that the adverse event incidences are realizations from a mixture of

distributions and seeks to identify the element of the mixture corresponding to each adverse event.

DuMouchel (2012) described a multivariate Bayesian logistic regression (MBLR) method for

model-based analysis of safety data when there are rare events and sparse data from a pool of clin-

ical trials. As with Berry’s method, MBLR allows information from the different AEs to "borrow

strength" from each other. The logistic regression model also examines the relationship between

AE frequencies to multiple covariates and to treatment by covariate interactions, which enables a

search for vulnerable subgroups.

Safety signal detection is usually conducted after the clinical trial is finished. When it is con-

ducted in the ongoing clinical trial, in addition to the multiplicity issue of multiple events at each

look, there is a second dimension of multiplicity issue: multiple looks during the course of a clini-

cal trial. Chen et al. (2013) applied a Bayesian hierarchical model in a group sequential manner for

multiple interim analyses of safety events. A decision-theoretic approach is employed to determine

threshold values in the process of safety signal detection.

1.2 Post-marketing safety evaluation

Safety evaluation continues to play an important role in the post-marketing phase when the drug

gets approved by regulatory authority. The goal of safety evaluation in the post-marketing phase is

7



to study the association between the specific drug and AE and identify the AEs with high reporting

rates compared to other AEs associated with a particular drug or identify drugs associated with

high reporting rate of an AE compared to the other drugs (Huang et al., 2011).

Compare to the safety data collected in clinical trials, more data sources become available as a

drug moves into the post-approval phase and questions that require larger exposures or longer treat-

ment duration can be answered. Therefore, safety data in the post-approval phase fill an informa-

tion gap of clinical trials. Safety data in the post-marketing phase is collected through spontaneous

reporting (SR). In spontaneous reporting, health care professionals or patients report suspected

AEs from a drug to the local or national drug administration. SR data is usually stored in some

databases. For example, the Adverse Event Reporting System (AERS) was established in 1968 by

US Food and Drug Administration to collect AEs associated with drugs on the market through a

spontaneous reporting system. The data in AERS is made available quarterly online.

Various methods have been developed for safety signal detection in SR data. For example,

proportional reporting ratios (Evans et al., 2001), the likelihood ratio tests (Huang et al., 2011,

2013, 2014), Bayesian methods (DuMouchel, 1999; Bate et al., 1998; Hu et al., 2015).

1.3 Research motivation and current studies

The statistical methods for safety signal detection discussed in the last section are typically based

on comparing only the incidence of AEs between two groups, regardless of the severity. It is

possible that two treatments might have same incidence rate for an AE but the severity of the AE

may be greater for one treatment versus the other. For example, suppose the severity of an AE has

three levels: mild, moderate or severe. The probabilities that the severity of the AE is moderate or

severe are both higher for one treatment versus the other even if the incidence rates of the AE are

the same in both groups. In this case, it would be unappealing for the AE not to be flagged. This

motivates us to develop new statistical methods to enhance the safety signal detection in clinical

trials.

In the first part of this dissertation, we have developed statistical methods to enhance safety

8



signal detection in two-arm clinical trials by comparing both the incidence and severity of the

AEs. Thus, AEs with higher incidence rate or greater severity in the treatment group will be

flagged. Interest lies in testing the following composite null hypothesis for each of the AEs

H0 : θ1 = θ2 and πππ1 = πππ2 (1.1)

versus the alternative hypothesis that θ1 < θ2 and/or treatment group has greater severity of the AE

than the control group. θ1,θ2 are the incidence rate of the AE in the control group and treatment

group respectively. πππ1 = (π11,π12,π13)
T ,πππ2 = (π21,π22,π23)

T are two vectors of probabilities of

three different severity levels of the AE in control and treatment group respectively if we categorize

the severity of an adverse event as mild, moderate and severe.

Greater severity of an adverse event in treatment group is defined as that the AE severity score

in the treatment group is stochastically greater than that in the control group, i.e.,

π13 ≤ π23

π12 +π13 ≤ π22 +π23

where at least one inequality is strict. We use this to define greater severity of an AE because among

several formally defined notions, the least stringent is stochastic order. See Cohen & Sackrowitz

(2000) and Cohen et al. (2000).

We first developed a method from the frequentist point of view in Chapter 2. The composite

null hypothesis in (1.1) is an intersection of two null hypotheses: H0 : H(1)
0 ∩H(2)

0 where H(1)
0 :

θ1 = θ2 and H(2)
0 : πππ1 = πππ2. Thus testing the composite null hypothesis in (1.1) is equivalent to

testing the individual hypotheses H(1)
0 and H(2)

0 and then combine the p-values of the individual

test.

Denote p1, p2 as the p values for one-tailed tests of H(1)
0 versus H(1)

1 : θ1 < θ2, and H(2)
0 versus

H(2)
1 : πππ2 is stochastically larger than πππ1, respectively. p1 is the p value of the Fisher’s exact

test for the equality of AE incidence rate. Since the test for the AE severity is based on the
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subjects selected who are selected based on a post-randomization event (AE occurrence), it does

not assess a causal treatment effect. To adjust for potential selection bias, we further propose a

biased sampling model, which is an extension of the work by Gilbert et al. (2003) that is based

on the principal stratification framework developed by Frangakis & Rubin (2002), and a procedure

for testing causal treatment effect on the AE severity. p2 is the p value of the proposed test for

AE severity. Simes’ test (Simes, 1986) and Fisher’s test (Fisher, 1932) are introduced to combine

the p-values p1 and p2. Once we obtained the combined p value for testing the composite null

hypothesis for each of the AEs, multiple testing procedure such as DFDR (Mehrotra & Adewale,

2012) can be applied in order to adjust for multiplicity.

In addition to the frequentist method, we can also evaluate the incidence rate and severity of

AEs from the Bayesian perspective. As reviewed in the last section, Berry & Berry (2004) proposed

a three-level Bayesian hierarchical model to detect safety signal with respect to the incidence rate

of AEs. This method accounts for multiplicities in adverse event assessment. It provides an explicit

method for borrowing information across types of adverse events. The posterior probability that

the odds ratio of the the adverse event incidence rate between the control group and treatment

group is obtained for each AE.

In Chapter 3, we extend the hierarchical model of Berry & Berry (2004) for comparing both

the incidence rate and severity of all AEs between the control group and treatment group. We pro-

posed a three-level Bayesian hierarchical non-proportional version of the cumulative logit model.

The primary drug safety outcome is a four level ordinal categorical variable, representing four AE

severity levels from none, mild, moderate to severe. Our model allows for testing the equivalence

of incidence rate and severity for all the AEs simultaneously between the control group and the

treatment group. Similar to the feature of the model in Berry & Berry (2004), the method self-

adjusts for the multiplicity issue with the help of the hierarchical nature as it borrows information

across types of AEs, especially across the AEs within the same body system. We conduct simula-

tion study to investigate the power and false discovery rate of the proposed hierarchical model and

compare it to a non-hierarchical cumulative logit model with only the first level of prior structure.
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The simulation results show that, in general, the proposed method not only controls for false dis-

covery rate but also performs well in detecting safety signals when either the incidence rate or the

severity is greater in the treatment group.

Furthermore, as can be seen in literature introduced in the last section, the complex nature

of the current methods make the blinded safety monitoring and reporting challenging. In order

to accelerate, facilitate and improve the process of safety monitoring and reporting, it is neces-

sary to develop ready-to-use tools based on the existing safety monitoring and reporting methods.

In Chapter 4, we develop two R Shiny interactive tools for blinded safety data monitoring. The

blinded data monitoring function of the Shiny interactive tools are based on the method proposed

by Gould & Wang (2017) and Ball (2011) respectively. The tool can be used to perform computa-

tions for posterior probability of the pooled event rate or treatment effect metrics and dynamically

output the monitoring result about whether the data suggest a safety signal.

The rest of this dissertation is organized as follows. In chapter 2, we introduce the frequentist

method for evaluating the causal treatment effect on the incidence and severity of adverse events

in clinical trials. In chapter 3, we describe the three-level Bayesian hierarchical non-proportional

version of the cumulative logit model for assessing the incidence and severity of AEs. In chapter 4,

two R-Shiny interactive tools for blinded safety monitoring of AESI are developed. We conclude

this dissertation with summary and future research in chapter 5.
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Chapter 2

Statistical Evaluation of Causal Treatment Effect on the Incidence and

Severity of Adverse Events in Clinical Trials
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Abstract

Clinical safety data in two-arm trials are routinely evaluated using between group p values for ev-

ery reported adverse event (AE), with multiple testing procedure applied to the p values to adjust

for multiplicity. However, the p value generated for each AE is often based on comparing only

the AE incidence rate between two randomized groups, regardless of AE severity. To enhance

the evaluation of drug safety, for each AE, we propose to use AE occurrence and severity as co-

primary endpoints and to perform a statistical test of the composite null hypothesis that both the

incidence rate and severity are equivalent in two groups. The p-value of the test for the composite

null hypothesis is obtained by combining the p-values of the Fisher’s exact test for AE incidence

and a proposed test for AE severity, respectively. The proposed test for AE severity is based on

an extension of a biased sampling model initially developed by Gilbert et al. (2003, Biometrics

59, 531-541) for continuous outcome. We conduct a simulation study to investigate the power and

type I error rate of the proposed test compared to the usual test for AE incidence. The simulation

results show that, with large enough sample size, the proposed method performs as well or better

than the test for AE incidence in detecting a safety signal. The proposed method is demonstrated

via an application in cancer.

Key words: Adverse events; Causal inference; Composite null hypothesis; Posttreatment selection

bias; Principal stratification; Safety signal detection; Severity.

2.1 Introduction

Drug safety evaluation is critically important in clinical trials. In recent years, the US Food and

Drug Administration (FDA) has issued guidance regarding safety monitoring and reporting for an

investigational new drug (IND) to assist fuller development of safety profiles, as shown in the US

FDA guidance (FDA, 2010, 2012, 2015). Drug safety is evaluated on the basis of adverse events

(AE) reported in the clinical trials. AEs are typically classified into body systems. Each body

system contains AEs that are biologically related. Close analysis of the safety data containing
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incidence and severity information of AEs characterizes the safety profile of the experimental drug

to determine if it warrants a next stage trial or regulatory agency approval.

Drug safety evaluation includes two major areas: “safety monitoring” and “safety signal detec-

tion” (Zhu et al., 2016). Safety monitoring aims at monitoring an adverse event of special interest

(AESI) in an ongoing trial, while in safety signal detection, all AEs instead of just an AESI are

included in the analysis. The goal of safety signal detection in a two-arm clinical trial is to com-

pare the incidence rates of all AEs between a control group and a treatment group. If the incidence

rates of some of the AEs in the treatment group are significantly larger than those in the control

group (or vice versa), these AEs will be “flagged” and further investigation is needed about the

safety of the drug. Simultaneously comparing the incidence rates of many AEs leads to multiplic-

ity issues. This is a common challenge that faces statisticians. Bayesians and frequentists alike.

Ignoring multiplicities will give excess false positive findings, thus needlessly complicating the

interpretation of the safety profile of the experimental drug.

From the frequentist perspective, to assess the equality of incidence rate of every AE encoun-

tered in the clinical trial and detect safety signal while adjusting for multiplicity issues, p value

for testing the equality of incidence rate is generated for every AE and is adjusted and evaluated

by the multiple testing procedure. Among several multiplicity adjustment methods, a double false

discover rate (DFDR) procedure proposed by Mehrotra & Heyse (2004) is a novel method for con-

trolling the false discovery rate (FDR) to a desired level. It is a two-step application of the false

discovery rate procedure proposed by Benjamini & Hochberg (1995). Mehrotra & Adewale (2012)

improved DFDR procedure that significantly lowers the FDR without materially compromising the

power for detecting true signals.

In addition, some Bayesian methods have also been proposed for safety signal detection and

adjustment of multiplicity issues. Berry & Berry (2004) proposed a three-level Bayesian hierar-

chical model to account for multiplicities in adverse event assessment. The hierarchical model

provides an explicit method for borrowing information across types of adverse events. Xia et al.

(2011) expanded Berry’s method into a hierarchical Poisson mixture model which accounts for
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the length of the observation of subjects and improves the characteristics of the analysis for rare

events. DuMouchel (2012) described a multivariate Bayesian logistic regression (MBLR) method

for model-based analysis of safety data when there are rare events and sparse data from a pool of

clinical trials. The logistic regression model examines the relationship between AE frequencies to

multiple covariates and to treatment by covariate interactions, which enables a search for vulnera-

ble subgroups. Gould (2008, 2013, 2018) proposed an alternative Bayesian screening approach to

detect potential safety signals when event count follows binomial or Poisson distribution.

As we can see from the literature, safety signal detection is often based on comparing only the

incidence of adverse events between two groups, regardless of the AE severity. It is possible that

for some AEs, the incidence rate might be the same in both groups but the severity is “greater” for

one group versus the other. In this case, it would be unappealing for the AE not to be flagged.

To fully capture the presence and severity of adverse events, it is important to incorporate an

endpoint that describes the severity of each AE. Klingenberg et al. (2009) proposed a method for

investigating the toxicity effect of a chemical compound on animals in an environmental study.

They introduced a single primary endpoint to represent the presence and severity of every type of

toxicity effect of the chemical compound. They used permutation test and a bootstrap method for

testing the simultaneous marginal homogeneity for all the toxicity effect of the chemical compound

and adjusted the p values to control for family wise error rate (FWER). The method can be readily

carried over to safety analysis in clinical trials. However, power of the test based upon single end-

point for each type of AE is low for detecting certain alternatives of interest, for instance, when the

AE incidence rate is the same but the severity is different. Recently, Duan et al. (2019b) proposed

a three-level Bayesian hierarchical non-proportional version of the cumulative logit model for as-

sessing the incidence and severity of drug AEs in two-arm clinical trials. Their method not only

controls for false discovery rate but also performs well in detecting safety signals when either the

incidence rate or the severity is greater in the treatment group.

In this article, we seek to enhance the p value for evaluating each AE. We propose to use AE

occurrence and severity as co-primary endpoints and to perform a statistical test of the compos-
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ite null hypothesis that the incidence rate and severity are equivalent between groups. The first

endpoint, AE occurrence, is a binary variable. The second endpoint, AE severity, is a 3-level or-

dinal categorical variable. For more information about the severity level used in clinical trial, see

“Common Terminology Criteria for Adverse Events” published in the National Cancer Institute.

The p value of the test of the composite null hypothesis is obtained by combining the p value of

the Fisher?s exact test for AE incidence and the p value of the test for AE severity using Simes’

method (Simes, 1986) and Fisher’s method (Fisher, 1932). See Shih & Quan (1997) and Mehrotra

et al. (2006) for a discussion of the statistical testing of the composite hypothesis.

The test for AE severity is restricted to subjects who are selected based on a post-randomization

event (AE occurrence). This poses a major challenge to making an unbiased inference of the treat-

ment effect on AE severity. Gilbert et al. (2003) proposed methods for adjusting post-randomization

selection bias in the context of HIV vaccine trials. Their methods are based on the principal strat-

ification framework developed by Frangakis & Rubin (2002). However, the second endpoint they

considered is the viral load set point of a subject infected by HIV, which is a continuous variable

but the second endpoint in our problem is an ordinal categorical variable. We extend the method

of Gilbert et al. (2003) to adjust for selection bias. Simulation studies are conducted to investigate

the power and type I error rate of different tests and to investigate the power of the combined tests

after adjusting for potential selection bias.

The rest of the paper is organized as follows. In Section 2.2, we introduce notation and define

the composite null hypothesis. In Section 2.3, we describe the combined test for testing the com-

posite null hypothesis. In Section 2.4, we introduce a proposed method for adjusting for selection

bias. In Section 2.5, we compare the power of different tests in a comprehensive simulation study

and then in Section 2.6 we apply the proposed method in a clinical trial. We conclude the article

in Section 2.7.
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2.2 Notations and composite null

Suppose the drug safety evaluation is performed in a two-group clinical trial that consists of a

control group and a treatment group. Our goal is to detect AEs with safety signals. An AE has a

safety signal if it has greater incidence rate or greater severity in the treatment group.

We proposed to use two co-primary endpoints for each AE: AE occurrence and AE severity.

AE occurrence is a binary outcome, indicating whether the AE occurs or not. AE severity is an

ordinal categorical outcome, representing the severity of the AE. Without loss of generality, we

assume there are three AE severity levels: mild, moderate and severe (or 1,2 and 3). This can be

easily extended to more severity levels, for example, grade 1 to 4 severity level. See “Common

Terminology Criteria for Adverse Events” published by the National Cancer Institute.

Suppose there are a total of N subjects in two groups and the number of subjects in the control

group and treatment group are N1 and N2 respectively. For a specific AE, let y1i = 1 if the ith subject

in the control group experiences the AE and 0 if he or she does not experience the AE. i = 1, ...,N1.

Let y2i = 1 if the ith subject in the treatment group experiences the AE and 0 if he or she does

not experience the AE. Denote θ1 = P(y1i = 1),θ2 = P(y2i = 1) as the incidence rates of the AE

in control and treatment group respectively. Denote x1 = ∑
N1
i=1 y1i,x2 = ∑

N2
i=1 y2i as the number

of subjects with the AE in control and treatment group respectively. Thus x1 ∼ Bin(N1,θ1),x2 ∼

Bin(N2,θ2).

Let z1i and z2i be the severity score (1,2 or 3) of the ith subject in the control group and treatment

group respectively. Of course z1i(z2i) exists only if y1i = 1(y2i = 1). Denote zzz1 and zzz2 as two vectors

of severity scores of the subjects with the AE in the control and treatment group respectively. For

subjects with the AE, let nnn1 = (n11,n12,n13) be a vector of the number of subjects whose AE

severity level is 1,2,3 respectively in the control arm, where

n11 =
N1

∑
i=1

I{z1i = 1},n12 =
N1

∑
i=1

I{z1i = 2},n13 =
N1

∑
i=1

I{z1i = 3}

And let nnn2 = (n21,n22,n23) be a vector of the number of subjects whose AE severity level is 1,2,3
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respectively in the treatment arm, where

n21 =
N2

∑
i=1

I{z2i = 1},n22 =
N2

∑
i=1

I{z2i = 2},n23 =
N2

∑
i=1

I{z2i = 3}

Let πππ1 = (π11,π12,π13)
T ,πππ2 = (π21,π22,π23)

T be two vectors of probabilities that the AE severity

is 1, 2 or 3 respectively in control and treatment groups, where

π11 = P(z1i = 1|y1i = 1),π12 = P(z1i = 2|y1i = 1),π13 = P(z1i = 3|y1i = 1)

π21 = P(z2i = 1|y2i = 1),π22 = P(z2i = 2|y2i = 1),π23 = P(z2i = 3|y2i = 1)

We assume that nnn1 ∼ multi(x1,πππ1),nnn2 ∼ multi(x2,πππ2).

In addition to the use of two co-primary endpoints, it is also reasonable to use one primary

endpoint. Let w1i and w2i be the severity of the ith subject in the control group and treatment group

respectively. The value of w1i and w2i can be 0,1,2,3. w1i = 0(w2i = 0) if subject i in the control

group (treatment group) does not experience the AE. w1i = 1(w1i = 1) if subject i in the control

group (treatment group) experience the AE and the severity score is 1, etc. Also denote www1 and

www2 as two vectors of severity of the subjects who experience the AE in the control and treatment

group respectively.

Let mmm1 = (m11,m12,m13,m14) be a vector of the number of subjects whose AE severity is

0,1,2,3 respectively in the control arm, where

m11 =
N1

∑
i=1

I{w1i = 0},m12 =
N1

∑
i=1

I{w1i = 1},m13 =
N1

∑
i=1

I{w1i = 2},m14 =
N1

∑
i=1

I{w1i = 3}

And let mmm2 = (m21,m22,m23,m24) be a vector of the number of patients whose AE severity is

0,1,2,3 respectively in the treatment arm, where

m21 =
N2

∑
i=1

I{w2i = 0},m22 =
N2

∑
i=1

I{w2i = 1},m23 =
N2

∑
i=1

I{w2i = 2},m24 =
N2

∑
i=1

I{w2i = 3}
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Let φφφ 1 = (φ11,φ12,φ13,φ14)
T ,φφφ 2 = (φ21,φ22,φ23,φ14)

T be two vectors of probabilities that

the AE severity is 0, 1, 2 or 3 respectively in control and treatment groups. We assume mmm1 ∼

multi(N1,φφφ 1),mmm2 ∼ multi(N2,φφφ 2).

Denote Fc(z) and Ft(z) (z = 1,2,3) as the cumulative density functions of the severity score of

the subjects who experience the AE in the control group and treatment group respectively.

The research goal is to test the composite null hypothesis

H0 : H(1)
0 ∩H(2)

0

where H(1)
0 : θ1 = θ2 and H(2)

0 : Fc(z)=Ft(z) versus the one-sided composite alternative hypothesis:

H1 : H(1)
1 ∪H(2)

1

where H(1)
1 is θ1 < θ2, and H(2)

1 is the AE severity is greater in the treatment group than that in the

control group.

The AE severity is greater in the treatment group than that in the control group if Fc(z) >

Ft(z),z = 1,2. This means that

π13 ≤ π23,π12 +π13 ≤ π22 +π23

where at least one inequality is strict. We use this definition as the greater severity of an adverse

event because among several formally defined notions, the least stringent is stochastic order. See

Cohen & Sackrowitz (2000) and Cohen et al. (2000). Thus H(2)
1 is π13 ≤ π23,π12+π13 ≤ π22+π23

where at least one inequality is strict.

2.3 Combining Separate Tests for Testing the Composite Null

To test the composite null hypothesis, we conduct the individual test of H(1)
0 and H(2)

0 separately

and combine the p values of the tests using Simes method or Fisher’s method. In this section we
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introduce the methods for testing H(1)
0 and H(2)

0 and then introduce methods for combining the p

values.

2.3.1 Testing H(1)
0 : θ1 = θ2 and H(2)

0 : Fc(z) = Ft(z)

We use one-sided Fisher’s exact test for testing H(1)
0 . Denote p1 as the p value for the test of

H(1)
0 versus H(1)

1

The test for the second individual hypothesis H(2)
0 : Fc(z) = Ft(z) is restricted to subjects who

are selected based on a post-randomization event (AE occurrence) and it is possible that the severity

outcomes of subjects in control group and the treatment group are not from a completely random-

ization procedure and thus may not be comparable.

To test H(2)
0 , we propose a test for comparing the severity score zzz1,zzz2 of the subjects who

experience the AE. The test is based on an extension of a biased sampling model proposed by

Gilbert et al. (2003). Details about the test are introduced in Section 2.4. Denote p2 as the p value

of the test for:

H(2)
0 versus H(2)

1

2.3.2 Methods for Combining Separate Tests

We consider the following two combination methods for testing the composite null hypothesis of

an AE at level α . Note that p1 and p2 derived from Fisher’ exact test for AE incidence and the

proposed test for AE severity respectively are stochastically independent under H0. This result has

been proved by Shih & Quan (1997) in an unrelated context and it establishes the validity of the

combination tests.

1. Simes’ method Simes (1986): Reject H0 if max(p1, p2)< α or min(p1, p2)< α/2

2. Fisher’s method Fisher (1932): Reject H0 if p < α where p = P(χ2
4 >−4log(

√
p1 p2))
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The performances of the above two methods have been studied by Shih & Quan (1997). No method

is uniformly superior to the other. The choice between Simes’ method and Fisher’s method requires

prior knowledge of the alternative hypothesis H1. As Shih & Quan (1997) pointed out, unless the

AE severity is stochastically greater in the treatment group but the AE incidence rate is similar in

both groups (or the opposite), we would expect the Fisher’s test to be superior than Simes test.

2.4 Test for Causal Treatment Effect on AE Severity

In this section we introduce a biased sampling model and how we use it to test the causal treatment

effect on the severity of an AE, i.e., to test H(2)
0 : Fc(z) = Ft(z) unbiasedly. The biased sampling

model originally proposed by Gilbert et al. (2003) is based on the principal stratification framework

developed by Frangakis & Rubin (2002) for causal inference.

2.4.1 Biased sampling model

Following Gilbert et al. (2003), theoretically, each subject has two potential outcomes of adverse

event occurrence: one under the assignment to the control group Yi(c) and one under assignment

to the treatment group Yi(t). Yi(c) = 1(Yi(t) = 1) if the subject has the adverse event under the

assignment to the control group (treatment group) and Yi(c) = 0(Yi(t) = 0) if the subject does not

have the adverse event under the assignment to the control group (treatment group). In addition,

each subject with the adverse event under assignment to control group has a potential severity

outcome Zi(c) and under assignment to treatment group has a potential severity outcome Zi(t).

For each subject, only one of Yi(c) or Yi(v) is observed and Zi(c)(Zi(v)) is defined only if Yi(c) =

1(Yi(v) = 1).

By property 2 of Frangakis & Rubin (2002), a causal treatment effect on the severity of the

adverse event can be defined based on the comparison between the sets {Zi(c) : Yi(c) = Yi(t) = 1}

and {Zi(t) : Yi(c) = Yi(t) = 1} because the comparison is made within the principal stratum of

subjects who would always experience the AE regardless of randomization to control or treatment

drug.
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For subjects in the set {Zi(c) : Yi(c) = Yi(t) = 1}, suppose Zi(c) are identically distributed

as Falw.
(c) (z) and for subjects in the set {Zi(t) : Yi(c) = Yi(t) = 1}, suppose Zi(t) are identically

distributed as Falw.
(t) (z), also denote f alw.

(c) (z) and f alw.
(t) (z) as the probability mass function that cor-

responds to Falw.
(c) (z) and Falw.

(t) (z) respectively. Then any functional that measures a contrast of the

distributions

Falw.
(c) (z) = Pr(Zi(c)≤ z|Yi(c) = Yi(t) = 1) and

Falw.
(t) (z) = Pr(Zi(t)≤ z|Yi(c) = Yi(t) = 1)

is a causal estimand (Gilbert et al., 2003). Thus to test the second null hypothesis that there is no

causal treatment effect on the severity of adverse event (H(2)
0 : Fc(z) = Ft(z)), we compare Falw.

(c) (z)

and Falw.
(t) (z). Or equivalently, to compare f alw.

(c) (z) and f alw.
(t) (z). The second null hypothesis can

thus be rewritten as H(2)
0 : Falw.

(c) (z) = Falw.
(t) (z).

Unfortunately, because neither distribution in is readily identifiable for us to make comparisons

(because Yi(c) and Yi(t) are not both observed). To test the causal effect of treatment on severity of

AE, we need to make the following assumptions:

1. The potential AE occurrence outcomes for each subject are independent of the treatment

assignments of other subjects

2. The treatment assignment for each patient is independent of his or her potential outcomes

3. The intervention used in the control group does not increase the risk of experiencing the AE

compare to the treatment group, or the experimental treatment does not purposely cure the

AE. Thus the incidence rate of the AE in the control group is less than or equal to that in the

treatment group

Assumption 1 is actually implied by Rubin’s (1978) stable unit treatment value assumption

(SUTVA) (Gilbert et al., 2003). With this assumption, the potential AE occurrence outcome of

a subject can be written as a function of the treatment assignment of the subject instead of being
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written as a function of the treatment assignment of the subject and all other subjects, i.e., it can

be written as Yi(c) and Yi(t). Assumption 2 holds due to randomization and blinding of the clinical

trial.

Assumption 3 means that for a subject, if he/she experience the AE after being administered

the intervention of the control group, he/she will experience the AE after being administered the

intervention of the treatment group, given all the other experimental conditions are the same. The

assumption is reasonable as the control group is usually a group of subjects who are administered

the lower dose of the treatment (or placebo) and the treatment group is usually a group of subjects

who are administered the higher dose of the treatment. The incidence rate of the adverse event in

the group with lower dose is likely to be less than that in the group with higher dose. Assumption 3

can be checked by testing if the AE incidence rate is higher in control group than treatment group

recipients for any participant subgroup.

These three assumptions are very important because only based on these assumptions are we

able to make the following statistical inferences.

Denote f(c)(z) and f(t)(z) as the probability mass function (pmf) of the AE severity level in

subjects with AE under randomization to control group and the pmf of the AE severity level in

subjects with adverse event under randomization to treatment group, respectively. F(c)(z) and

F(t)(z) are the corresponding cumulative density function. Under assumption 2, f(c)(z) and f(t)(z)

are also the pmf of the AE severity level outcome of subjects with AE from control group and

treatment group respectively.

Table 2.1 shows the principal stratum or strata to which a subject with AE must belong, and

lists the information available on potential severity level outcome. The tables makes clear that the

set of subjects {Yi(c) = 1,Yi(t) = 1} is the natural subpopulation for causal inference on severity

level since it is the only stratum in which severity level outcome is observable from the data.

From Table 2.1 we know Falw.
(c) (z) = F(c)(z), or equivalently, f alw.

(c) (z) = f(c)(z). Thus Falw.
(c) (z)

is identified from the observed data. Falw.
(t) (z) cannot be identified by the above assumptions. How-

ever, from Table 2.1 we know the subjects who have the AE in the treatment group consists of the
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Table 2.1: The basic principal stratum or strata to which the subjects who experience the AE
belong, and the information available on Zi(t) and Zi(c)

Randomized Is AE Principal Stratum {Yi(c),Yi(t)}
assignment present

Control group Yes {Yi(c) = 1,Yi(t) = 0} {Yi(c) = 1,Yi(t) = 1}
(empty set by assumption 3) Zi(c) observed, Zi(t) unobserved

Treatment group Yes {Yi(c) = 0,Yi(t) = 1} {Yi(c) = 1,Yi(t) = 1}
Zi(c) undefined, Zi(t) observed Zi(t) observed, Zi(c) unobserved

subjects who will always have the AE regardless of randomization to control or treatment group

and the subjects who will not have the AE if he/she is administered control group treatment. For

subjects in the set {Zi(c) : Yi(c) = 1,Yi(t) = 0}, denote f prot.
(t) (z) as the pmf of Zi(c). Thus f(t)(z)

can be written as a mixture of f prot.
(t) (z) and f alw.

(t) (z) (Gilbert et al., 2003):

f(t)(z) = P(Yi(c) = 0|Yi(t) = 1) f prot.
(t) (z)+P(Yi(c) = 1|Yi(t) = 1) f alw.

(t) (z)

Next we prove that P(Yi(c) = 0|Yi(t) = 1) = 1−RR−1 so that

f(t)(z) = (1−RR−1) f prot.
(t) (z)+RR−1 f alw.

(t) (z)

where RR = θ2
θ1

= Yi(t)=1
Yi(c)=1 is the relative risk of of the AE between treatment group and control
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group. Note that

1−RR−1

= 1− Pr(Yi(c) = 1)
Pr(Yi(t) = 1)

=
Pr(Yi(t) = 1)−Pr(Yi(c) = 1)

Pr(Yi(t) = 1)

=
Pr(Yi(t) = 1,Yi(c) = 1)+Pr(Yi(t) = 1,Yi(c) = 0)−Pr(Yi(c) = 1,Yi(t) = 1)−Pr(Yi(c) = 1,Yi(t) = 0)

Pr(Yi(t) = 1)

=
Pr(Yi(t) = 1,Yi(c) = 0)−Pr(Yi(c) = 1,Yi(t) = 0)

Pr(Yi(t) = 1)

=
Pr(Yi(t) = 1,Yi(c) = 0))

Pr(Yi(t) = 1)

= P(Yi(c) = 0|Yi(t) = 1)

Thus

f(t)(z) = P(Yi(c) = 0|Yi(t) = 1) f prot.
(t) (z)+P(Yi(c) = 1|Yi(t) = 1) f alw.

(t) (z)

= (1−RR−1) f prot.
(t) (z)+RR−1 f alw.

(t) (z)

With some calculations , the above mixture can be re-expressed as a biased sampling model

(Gilbert et al., 2003):

f alw.
(t) (z) =W−1w(z) f(t)(z)

where w(z) = Pr(Yi(c) = 1|Zi(t) = z,Yi(t) = 1) and W−1 = (∑3
z=1 w(z) f(t)(z))−1 is a normalizing

constant equal to RR. The weight function w(z) is the probability that a subject who is randomized

to treatment group and has the adverse event with severity level z would have the adverse event if

randomized to control group.

If w(z) were known then f alw.
(t) (z) would be identified. However, w(z) is unknown and it is

not possible to test whether a particular w is correctly specified. The approach to this problem
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by Gilbert et al. (2003) is to assume w() is known. They proposed a logistic function for w(z).

In their context, the response variable is a continuous variable. However, the severity endpoint

in our context is an ordinal categorical variable. Thus, the logistic function may not be used

here. Instead, we set value for each w(z),z = 1,2,3, guided by our beliefs about plausible degrees

of selection bias. We propose the following measure of weight: w(1) = w(1|γ,r) = γ,w(2) =

w(2|γ,r) = rγ,w(3) = w(3|γ,r) = r2γ , r(> 0) is the relative risk of the occurrence of adverse event

under randomization to control group given the occurrence of adverse event under randomization

to treatment group with severity level z versus with severity level z− 1, z = 2,3. In this way,

the unidentified sensitivity function w() is interpretable, which makes the approach fruitful and is

important (Gilbert et al., 2003). Thus,

f alw.
(t) (z) = RR×w(z|γ,r) f(t)(z) = f(t)(z|r)

Falw.
(t) (z) =

z

∑
d=1

RR×w(d|γ,r) f(t)(d) = F(t)(z|r)

Given fixed r, γ is determined as the solution to the equation F(t)(3|r) = 1.

If RR = 1, i.e., W = 1 and thus w(z) = Pr(Yi(c) = 1|Zi(t) = z,Yi(t) = 1) = 1, then there is no

selection bias and f alw.
(t) (z) = f(t)(z). If RR > 1, then whether there is selection bias depends on the

value of w(z) and thus depends on r.

Fixing r = 1 specifies a constant weight, i.e., γ = RR−1 and the weights will be w(1) = w(2) =

w(3) = RR−1 and reflects an assumption of no selection bias. Thus when RR = 1 and/or we fix

r = 1, there will be no selection bias and the second null hypothesis H(2)
0 : Falw.

(c) (z) = Falw.
(t) (z) can

be tested by simply comparing the severity of the subjects with the adverse event in both groups.

Fixing r > 1 makes w(z|γ,r) an increasing function of z and it means some factors other than

treatment make the severity levels of the subjects in treatment group small, then to be fair for con-

trol group, we should adjust the distribution of the treatment group so that its severity is stochas-

tically larger. The larger r is from 1, the higher degree of bias we believe. Similarly, r < 1 makes

w(z|γ,r) an decreasing function of z and it means some factors other than control group treatment
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make the severity levels of the subjects in control group small, then to be fair for treatment group,

we should adjust the distribution of the treatment group so that its severity is stochastically smaller.

The smaller r is from 1, the higher degree of bias we believe.

We estimate RR with R̂R = x2/x1. We estimate f(c)(z),F(c)(z) and f(t)(z),F(t)(z) with the max-

imum likelihood estimator.

f̂(c)(1) = n11/x1, f̂(c)(2) = n12/x1, f̂(c)(3) = n13/x1, π̂ππ1 = (n11/x1,n12/x1,n13/x1)

F̂(c)(z) =
z

∑
d=1

f̂(c)(d),z = 1,2,3

f̂(t)(1) = n21/x2, f̂(t)(2) = n22/x2, f̂(t)(3) = n23/x2, π̂ππ1 = (n21/x2,n22/x2,n23/x2)

F̂(t)(z) =
z

∑
d=1

f̂(t)(d),z = 1,2,3

Thus the estimator of f alw.
(t) (z) and Falw.

(t) (z) are

f̂ alw.
(t) (z) = f̂(t)(z|r) = R̂R×w(z|γ,r) f̂(t)(z)

F̂alw.
(t) (z) = F̂(t)(z|r) =

z

∑
d=1

R̂R×w(d|γ,r) f̂(t)(d),z = 1,2,3

Given fixed value of r, γ in w(z|γ,r) can be obtained by solving F̂(t)(3|r) = 1.

2.4.2 Hypothesis Testing of Causal Effect

If selection bias is presumed to follow the selection bias model, then the causal null hypothesis of

interest for the severity of adverse event is H(2)
0 : Falw.

(c) (z) = Falw.
(t) (z), the corresponding alternative

hypothesis of interest is: H(2)
0 : Falw.

(c) (z) > Falw.
(t) (z). This means that the severity endpoint of the

subjects in the treatment group is stochastically larger than that in the control group.

To test the second null hypothesis H(2)
0 : Falw.

(c) (z) = Falw.
(t) (z), we propose a test statistic, denote

as Tr, that is the Wilcoxon rank sum test statistic calculated using the adjusted and observed AE

severity of subjects in the control and treatment groups, respectively. (zzz1,zzz2,r). The adjustment of
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the AE severity of the subjects in the treatment group is: we replace the vector nnn2 with

nnn2,r = (x2 f̂(t)(1|r),x2 f̂(t)(2|r),x2 f̂(t)(3|r))

which is the mean vector of the estimated distribution Falw.
(t) (z). (nnn2,r) thus indicates the number

of subjects with severity level 1,2,3 in zzz2,r. We reject the null if the p value is less than the

significance level α .

2.4.3 Bootstrap resampling

Because the data we obtained (zzz1,zzz2,r) are not exactly from the distributions Falw.
(c) (z) and Falw.

(t) (z)

(zzz2,r is the estimated data from Falw.
(t) (z)), we cannot use the p value we obtained from the usual

Wilcoxon rank sum test. Thus the null distribution of Tr is intractable under H(2)
0 : Falw.

(c) (z) =

Falw.
(t) (z). The p-value based on Tr, denoted by p2 is obtained using the following modification of

the parametric bootstrap procedure developed by Hudgens et al. (2003).

Suppose N1 = N2 (that is, there are an equal number of trial participants in each arm) and we

estimate RR with R̂R= x2/x1 if x1 < x2 and we estimate RR with 1 if x1≥ x2. Then for R̂R> 1, gen-

erate bootstrap sample nnn∗2 from multinomial distribution with parameter x2 and π̂ππ2. Generate boot-

strap sample nnn∗1 from multinomial distribution with parameter x1 and ( f̂(t)(1|r), f̂(t)(2|r), f̂(t)(3|r)).

For R̂R = 1, generate bootstrap sample nnn∗1 from multinomial distribution with parameter x1, π̂ππ and

nnn∗2 from multinomial distribution with parameter x2, π̂ππ , where π̂ππ = (nnn1 +nnn2)/(x1 + x2) is the esti-

mated probabilities of three severity levels.

The bootstrap test statistic T ∗r is the Wilcoxon rank sum test statistic calculated using the

bootstrap sample and adjusted bootstrap sample in the control and treatment groups, respectively

(zzz∗1,zzz
∗
2,r). The adjustment of bootstrap sample in the treatment group is the same as that in Sec-

tion 2.4.2. We generate 500 bootstrap test statistic T ∗r and the p-value is obtained by calculating

proportion of the 500 bootstrap test statistic that is smaller than the observed test statistic Tr.
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2.5 Simulation study

We conduct simulation study to compare the empirical power and type I error rate of different

tests, including traditional Fisher’s exact test for AE incidence rate (FET), Wilcoxon rank sum test

for stochastic order of 4 level AE toxicity endpoint (WT), proposed test for AE severity (SEV),

proposed test for the composite null using Simes’ method (PS) and Fisher’s method (PF). Note

that the null hypotheses that correspond to FET and SEV are the equality of AE incidence rate and

the equality of AE severity respectively. The null hypothesis that corresponds to PS, PF or WT is

the composite null hypothesis. WT is actually the Wilcoxon rank sum test applied to the 4 level

severity score www1,www2.

We assume equal sample size in both the control group and treatment group. Data is generated

in two steps: in the first step, the number of subjects who experience the AE in each group (x1,x2)

is generated and then the number of subjects who experience the AE with severity outcomes classi-

fied into each severity level in each group (nnn1,nnn2) is generated. In the first step, given the incidence

rate of the AE in the control group and treatment group respectively (θ1,θ2), we generate a random

variable from Bernoulli distribution with parameter θ1 for the control group, and then we gener-

ate a random variable from Bernoulli distribution with parameter θ2 for the treatment group. We

continue generating Bernoulli random variable like this for each group until the summation of the

Bernoulli random variables generated in the control group and the treatment group is at least x. x

is given in advance. The reason we fix x is to investigate how the power changes as we increase x,

which can be directly observed from the data. In the second step, nnn1 is generated from a multino-

mial distribution with parameter x1 and ( f(c)(1), f(c)(2), f(c)(3)) and nnn2 is generated from a multi-

nomial distribution with parameter x2 and ( f(t)(1), f(t)(2), f(t)(3)). Note that f(c)(z) and f(t)(z)

are determined by f alw.
(c) (z) and f alw.

(t) (z) and the true degree of selection bias rtrue. Thus we set true

values for f alw.
(c) (z) and f alw.

(t) (z) respectively and obtain the true values of f(c)(z) and f(t)(z) by trans-

forming f alw.
(c) and f alw.

(t) according to the equations introduced in Section 2.4 as follows, f(t)(z) =
f alw.
(t) (z)

RR×w(z|γ,rtrue)
,z = 1,2,3. RR = θ2/θ1,w(1|γ,rtrue) = γ,w(2|γ,rtrue) = γrtrue,w(3|γ,rtrue) = γr2

true.

γ is determined by solving the equation of f(t)(1)+ f(t)(2)+ f(t)(3) = 1. Besides, by assumption 2,
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( f(c)(1), f(c)(2), f(c)(3)) is equivalent to ( f alw.
(c) (1), f alw.

(c) (2), f alw.
(c) (3)). We consider three possible

values of the true amount of selection bias rtrue (1.25, 1, 0.8), representing moderate selection bias

that is in favor of not flagging the AE, no selection bias and moderate selection bias that is in favor

of flagging the AE. With data generated in this way, we can investigate the power and type I error

rate of PS, PF and SEV when the prior knowledge of the degree of selection bias is correctly set

(r = rtrue) and when it is not (r 6= rtrue).

Different parameter configurations include θ1 = 0.05, θ2 = 0.05 or 0.1, f alw.
(c) = (0.6,0.3,0.1)T

and f alw.
(t) = (0.5,0.3,0.2)T , (0.4,0.2,0.4)T or (0.3,0.2,0.5)T . To measure the true difference

between f alw.
(c) and f alw.

(t) (or equivalently πππ1 and πππ2), we use an ordinal effect size measure g =

P(z1i < z2i)+0.5P(z1i = z2i) (Ryu & Agresti, 2008; Agresti, 2010). This measure summarizes the

probability that an outcome from one distribution falls above an outcome from the other, adjusted

for ties. Vargha & Delaney (1998) called g a measure of stochastic superiority of z2i over z1i. The

measure can be written as: g = πππT
2 Aπππ1 where

A =


0.5 0 0

1 0.5 0

1 1 0.5


g has range [0,1]. If z1i and z2i are identically distributed, then g = 0.5. If z2i is stochastically

larger than z1i, then g > 0.5. We finally obtain the following scenarios for simulation study.

Table 2.2: Six scenarios for simulation study

Scenario θ1 πππ1( f alw.
(c) (z)) θ2 πππ2( f alw.

(t) (z)) RR g
1 0.05 (0.6,0.3,0.1)T 0.05 (0.6,0.3,0.1)T 1 0.5
2 0.05 (0.6,0.3,0.1)T 0.05 (0.5,0.3,0.2)T 1 0.565
3 0.05 (0.6,0.3,0.1)T 0.05 (0.4,0.2,0.4)T 1 0.65
4 0.05 (0.6,0.3,0.1)T 0.1 (0.6,0.3,0.1)T 2 0.5
5 0.05 (0.6,0.3,0.1)T 0.1 (0.5,0.3,0.2)T 2 0.565
6 0.05 (0.6,0.3,0.1)T 0.1 (0.4,0.2,0.4)T 2 0.65

For each of 5000 datasets simulated under each parameter configuration, p values for the pro-

posed test for severity and the proposed tests for the composite null are determined using 500
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bootstrap replications.

Using a nominal 5% type I error level, Table 2.3 shows the estimated type I error rate and power

of the proposed test for AE severity (SEV) and the proposed test for the composite null hypothesis

based on Simes’ method (PS) and Fisher’s method (PF) with different presumed degree of selection

bias (r) when the number of subjects who experience the AE in both groups is either 50 or 100 and

when RR = 1 with θ1 = 0.05 and g = 0.5,0.565,0.65 with πππ1 = (0.6,0.3,0.1)T (Scenario 1-3).

Since RR = 1, i.e., θ1 = θ2, according to Section 2.4, there is no selection bias, so rtrue always

has to be 1. The estimated type I error rate and power of the traditionally used Fisher’s exact test

for incidence rate (FET) and the Wilcoxon rank sum test for stochastic order of 4 level toxicity

endpoint (WT) under corresponding parameter configurations are also included in the table. The

estimated type I error rates (4th and 5th column) that correspond to PS and PF are controlled at the

desired significance level of 0.05 if r is presumed to be 1. When one conservatively presume r to

be less than 1, the estimated type I error rates are deflated and when r is set to be greater than 1, the

estimated type I error rates are inflated. As long as the true amount of selection bias is specified

(r is set to 1), PS and PF perform well in detecting the safety signal (rejecting the composite null

hypothesis) when the total number of subjects who experience the AE in both groups and/or the

ordinal effect size g is large enough. In addition, PS has larger power than PF. This is because the

control group and the treatment group differ in one aspect (AE severity) but not in the other (AE

incidence rate). This is consistent with the conclusion made by Shih & Quan (1997). In contrast,

FET and WT did not effectively detect safety signal. When one conservatively presume r to be

less than 1 or greater than 1, the estimated power is deflated or inflated accordingly.

Table 2.4 shows the estimated power of SEV, PS and PF with different presumed degree of

selection bias (r) when the true degree of selection bias is determined by rtrue = 1.25,1,0.8 and

the number of subjects who experience the AE in both groups is either 50 or 100 and when RR = 2

with θ1 = 0.05 and g = 0.5,0.565,0.65 with πππ1 = (0.6,0.3,0.1)T (Scenario 4-6). The estimated

power of FET for incidence rate and WT under different parameter configurations are also included

in the table. As long as the true amount of selection bias is specified, PS and PF perform well in
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Table 2.3: Type I error rate ×100% and power ×100% of the five tests under scenario 1 to 3

Method True Presumed
RR = 1,g = 0.5 RR = 1,g = 0.565 RR = 1,g = 0.65

r r x = 50 x = 100 x = 50 x = 100 x = 50 x = 100
FET n/a n/a 3.1 4.3 3.0 4.4 2.8 4.2
WT 1 n/a 5.9 5.3 5.6 6.3 5.5 6.2

SEV
1 1.25 8.7 11.3 31.5 49.7 75.8 93.8
1 1 5.4 5.2 22.4 35.0 65.1 89.3
1 0.8 3.2 3.0 15.9 23.1 50.0 72.0

PS
1 1.25 6.5 7.6 20.0 35.4 62.1 86.8
1 1 5.0 4.7 14.0 22.5 48.9 78.5
1 0.8 4.3 4.1 10.1 15.1 36.4 58.8

PF
1 1.25 7.9 10.8 23.5 38.7 61.6 84.8
1 1 4.6 4.9 15.5 25.2 51.2 79.6
1 0.8 2.8 2.6 9.2 14.6 37.6 62.7

detecting the safety signal (rejecting the composite null hypothesis) when the total number of

subjects who experience the AE in both groups and/or the ordinal effect size g is large enough. In

addition, PF has larger power than PS. This is because the control group and the treatment group

differ consistently in both aspect of the composite null hypothesis (AE incidence rate and AE

severity) (Shih & Quan, 1997). In contrast, the power of FET and WT are as good as or better than

PS and PF when the total number of subjects who experience the AE in both groups is small, but as

the ordinal effect size g increases, especially with large value of g(≥ 0.65), the powers of PS and

PF are both greater than FET and WT, meaning they can detect the safety signal more effectively.

However, in scenarios when the AE severity is the same in both groups but the AE incidence rate

is greater in the treatment group compare to that in the control group, FET and WT perform better

than PS and PF when the sample size (x1 + x2) is small. This is not surprising because we tend to

lose some power to gain the ability to detect the safety signal with respect to AE severity.

We next illustrate the power of the proposed tests when an incorrect amount of selection bias

is presumed. When there is actually no selection bias (rtrue = 1), but one conservatively presumes

r = 0.8, the power is deflated. For larger presumed amount of selection bias, larger price will be

paid (we lose more power). When there is actually no selection bias, but one presumes r = 1.25,

the power is inflated. Thus making an incorrect assumption of selection bias can cause certain

degree of power loss or power gain. If zero selection bias is presumed (r = 1) but in truth there is
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moderate selection bias that is in favor of flagging the AE (rtrue = 0.8), the power is inflated. Since

we are concerned about the composite null hypothesis, incorrectly presume the degree of selection

bias when the true value of r < 1 does not cost us much and we might even gain some power. If

zero bias is presumed (r = 1) but in truth there is moderate selection bias that is in favor of not

flagging the AE (rtrue = 1.25), we are losing power. We will lose more power to detect safety

signal if in reality the selection bias is even larger (rtrue > 1.25). This illustrates the importance of

accounting for the possibility of selection bias to avoid missing potential safety signal.

2.6 Application

We apply the proposed method in the analysis of safety data obtained from a randomized, double-

blinded phase III clinical trial conducted by National Cancer Institute (NCI). The safety data were

published and analyzed by L.G. Leon-Novelo & Muller (2010). The purpose of this trial is to

verify the efficacy of isotretinoin that may help control second primary tumors and mortality for

stage I non-small-cell lung cancer (NSCLC) patients. One thousand, one hundred and sixty-six

patients with stage I NSCLC were randomly assigned to receive either placebo or isotretinoin

(30 mg/day) for 3 years. There were 589 patients who received isotretinoin while the remaining

patients received placebo.

The safety data collected from the trial (shown in Table 2.5) consists of the number of patients

who experienced each of the 7 AEs of interest and the corresponding number of patients within

each severity level. The severity of AEs was graded using Common Toxicity Criteria for Adverse

Events used by the NCI. We combine the last two severity levels into one in our analysis.

We first conduct one sided Fisher’s exact test of θ1≤ θ2 versus θ1 > θ2 to verify the assumption

that placebo does not increase the risk of experiencing the AE compare to the intervention used

in the treatment group. The two columns under “Fisher’s exact test of θ1 ≤ θ2 vs θ1 > θ2” in

Table 2.6 show the p values and adjusted p values of the Fisher’s exact test for incidence for each

adverse event. The adjusted p values were obtained by Hochberg procedure. We can see that it is

statistically significant to conclude that the incidence rate of “Headache” is greater in the control
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Table 2.4: Power ×100% of the five tests under scenario 4 to 6

Method True Presumed
RR = 2,g = 0.5 RR = 2,g = 0.565 RR = 2,g = 0.65

r r x = 50 x = 100 x = 50 x = 100 x = 50 x = 100
FET n/a n/a 73.2 96.3 73.1 96.3 72.2 96.4

WT
1.25 n/a 81.8 96.9 81.6 97.6 81.4 97.6

1 n/a 81.9 97.3 80.7 97.8 82.2 97.8
0.8 n/a 81.3 97.3 80.3 97.8 81.7 98.1

SEV

1.25 1.25 4.3 4.5 18.7 30.2 60.5 85.7
1.25 1 2.0 1.2 7.9 9.7 31.1 50.8
1.25 0.8 0.5 0.1 1.9 2.0 10.0 13.9

1 1.25 11.7 16.2 38.3 64.5 85.2 98.9
1 1 5.4 5.1 18.7 32.1 60.1 86.5
1 0.8 1.6 0.9 6.0 8.8 28.2 49.6

0.8 1.25 24.1 40.9 65.5 89.3 96.1 100
0.8 1 12.6 16.8 41.5 64.4 84.8 98.4
0.8 0.8 4.5 3.9 18.8 29.1 58.1 85.3

PS

1.25 1.25 73.4 94.2 75.1 95.4 85.8 98.8
1.25 1 72.9 94.2 73.4 94.7 78.0 96.9
1.25 0.8 72.8 94.1 72.6 94.3 73.1 94.8

1 1.25 74.0 95.2 78.7 97.7 94.1 99.9
1 1 73.1 94.5 74.4 95.8 85.6 99.0
1 0.8 72.4 94.4 72.0 94.9 77.3 96.9

0.8 1.25 76.5 95.7 86.2 99.4 98.4 100
0.8 1 74.2 94.2 79.6 97.7 94.1 99.9
0.8 0.8 72.5 93.6 73.6 95.5 85.0 99.0

PF

1.25 1.25 62.7 91.7 74.7 96.4 91.8 99.6
1.25 1 57.7 89.1 66.9 93.2 81.6 97.9
1.25 0.8 54.2 87.6 59.8 90.2 68.9 94.7

1 1.25 69.3 94.5 83.7 99.0 97.5 100
1 1 63.2 91.9 75.4 97.1 91.7 99.8
1 0.8 57.0 89.5 66.1 93.5 80.4 98.2

0.8 1.25 78.0 97.6 92.0 99.9 99.4 100
0.8 1 70.1 94.3 84.4 99.0 97.4 100
0.8 0.8 62.6 91.1 74.6 96.7 90.9 99.8

group compare to that in the treatment group. Thus the assumption that placebo does not increase

the risk of experiencing the AE compare to the intervention used in the treatment group does not

hold for this adverse event. So our method is inappropriate for the analysis of AE “Headache” and

we exclude it from our safety analysis.

Figure 2.1 shows how p values of the following tests change as we change the degree of se-

lection bias (either in favor of flagging the AE or of not flagging the AE) for each adverse event:
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Table 2.5: Toxicity frequency and corresponding proportion for randomized eligible patients by
study arms in L.G. Leon-Novelo & Muller (2010)

Toxic effect No tox G1 G2 G3 G4
Placebo

Abnormal vision 565 (0.979) 9 (0.016) 0 (0) 2 (0.003) 1 (0.002)
Arthralgia 548 (0.95) 19 (0.033) 10 (0.017) 0 (0) -
Cheilitis 493 (0.854) 76 (0.132) 8 (0.014) 0 (0) -

Conjunctivitis 530 (0.919) 43 (0.075) 3 (0.005) 1 (0.002) -
Fatigue 558 (0.967) 12 (0.021) 5 (0.009) 2 (0.003) -

Headache 554 (0.96) 16 (0.028) 3 (0.005) 4 (0.007) -
Hyper-triglyceride 551 (0.955) 22 (0.038) 4 (0.007) 0 (0) -

Isotretinoin
Abnormal vision 579 (0.983) 8 (0.014) 1 (0.002) 1 (0.002) 0 (0)

Arthralgia 544 (0.924) 30 (0.051) 10 (0.017) 5 (0.008) -
Cheilitis 212 (0.36) 245 (0.416) 122 (0.207) 10 (0.017) -

Conjunctivitis 449 (0.762) 98 (0.166) 31 (0.053) 11 (0.019) -
Fatigue 572 (0.971) 14 (0.024) 3 (0.005) 0 (0) -

Headache 580 (0.985) 9 (0.015) 0 (0) 0 (0) -
Hyper-triglyceride 514 (0.873) 64 (0.109) 10 (0.017) 1 (0.002) -

Table 2.6: P values of the Fisher’s exact test of θ1 ≤ θ2 vs θ1 > θ2 for each AE and the correspond-
ing adjusted p values using Hochberg procedure

Fisher’s Exact Test
of θ1 ≤ θ2 vs θ1 > θ2

Toxic effect Raw Adj.
Abnormal vision 0.396 1

Arthralgia 0.975 1
Cheilitis 1 1

Conjunctivitis 1 1
Fatigue 0.408 1

Headache 0.008 0.056
Hyper-triglyceride 1 1

Fisher’s exact test, the proposed test for severity, the proposed test for incidence and severity using

Fisher’s method. In each plot, the red dotted line shows how the p value of the proposed test for

incidence and severity using Fisher’s method changes with degree of selection bias. The black

solid line shows how the p value of the proposed test for severity changes with degree of selection

bias. The blue dashed line represents the p value of the Fisher’s exact test of θ1≥ θ2 vs θ1 < θ2 and

it does not change with the degree of selection bias. To analyze each adverse event individually,
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as for AE incidence rate, “Abnormal vision” and ‘Fatigue” both have same incidence rate in the

control and treatment group. All other AEs have greater incidence rate in the treatment group.

As for AE severity, “Abnormal vision” and “Fatigue” both have similar overall AE severity

in the control and treatment group. Note here that severity for these two AEs does not change

dramatically as we change the degree of selection bias, this is because both AEs seem to have

same incidence rate in the control and treatment group and there will be no selection bias according

to our model, no matter what degree of selection bias we set. “Conjunctivitis” has great overall

severity in the treatment group. “Arthralgia” and “Hyper-triglyceride” may have greater overall

severity in the treatment group if we believe that the selection bias is in favor of not flagging the

AE (r > 1).

If we were to evaluate all the AEs simultaneously, p value of the proposed test for incidence and

severity for each AE can be reported with multiple testing procedure such as Holmes, Hochberg

and Benjamini-Hochberg procedure being used to adjust for multiplicity.

Figure 2.1: Plot of p-values versus the degree of selection bias for each adverse event in the safety
data of isotretinoin trial
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2.7 Discussion

Traditional analysis of safety data for AEs in clinical trials simply groups the toxicities levels into

no toxicity and some toxicity and compares only the AE incidence rate between two randomized

groups using a Chi-squared test or Fisher’s exact test. In this article, we improve the traditional

evaluation of safety data by proposing to test a composite null hypothesis for each AE that both the

AE incidence rate and severity are the same in two groups. The test for the composite null involves

the combination of the traditional Fisher’s exact test for the AE incidence rate and a proposed

conditional testing procedure for AE severity. The proposed test for AE severity is based on an

extension of a bias sampling model originally developed for continues HIV viral load outcome

in a vaccine trial by Gilbert et al. (2003). It is an innovative applications of causal inference

method to safety signal detection area that has not been previously employed. The bias sampling

model provides us a way of adjusting for severity scores of subjects in the treatment group in

order to control for selection bias. The Wilcoxon rank sum test statistic is calculated to compare

the adjusted severity scores of subjects in the treatment and the unadjusted severity of scores of

subjects in the control group. The test does not reply on large sample theory and is applicable to

rare event.

In addition to the Wilcoxon rank sum test statistic, different test statistic can also be used,

for example, if we believe the distribution is skewed, Anderson-Darling type and Kolmogorov-

Smirnov-type statistic may also be considered. It is worthy to note that the test statistic introduced

by Lu et al. (2013) can be treated as the mean difference statistic being used on our proposed

adjusted severity scores in the treatment group and the unadjusted severity scores of subjects in the

control group.

The proposed method can also be applied to general randomized clinical trials, for testing

causal treatment effects in the subpopulation of subjects who would experience a postrandomiza-

tion event and the outcome is a ordinal categorical variable.

Some limitations remain. With only a p value of the test for the composite null reported for

each AE, we may not be able to identify whether the AE has greater incidence rate or greater
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severity in the treatment group. One solution to this problem is to report both the p value of the

Fisher’s exact test for AE incidence rate and the p value of the proposed test for AE severity.

The metric (r) that describes the degree of selection bias is determined after we review the

subjects’ characteristic information, thus the determination of r is subjective. We may further

develop methods (for example Bayesian method) to more accurately and objectively estimate r or

w(z) from the data. In addition, we can assign values to each weight w(z),z = 1,2,3 to incorporate

our prior knowledge about the potential selection bias instead of assuming that two consecutive

weights (w(z)) have same ratio r, and thus making the proposed method more flexible.
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Chapter 3

Assessing the Incidence and Severity of Drug Adverse Events: a Bayesian

Hierarchical Cumulative Logit Model

39



Abstract

Detection of safety signals from many types of adverse events (AEs) that are reported in a two-

arm clinical trial involves difficult multiplicity problems. A Bayesian hierarchical mixture model

proposed by Berry and Berry in 2004 is a good solution to this problem as it borrows informa-

tion across subgroups and moderates extremes due merely to chance. However, it compares only

the incidence rates of AEs between the control and treatment group, regardless of the severity of

AEs. In this article, we propose a three-level Bayesian hierarchical non-proportional version of the

cumulative logit model. The primary drug safety outcome is a four level ordinal categorical vari-

able, representing four AE severity levels from none, mild, moderate to severe. Our model allows

for testing the equivalence of incidence rate and severity for all the AEs simultaneously between

the control group and the treatment group while addressing multiplicities. We conduct simulation

study to investigate the operating characteristics of the proposed hierarchical model. The simula-

tion results show that, in general, the proposed method not only controls for false discovery rate

but also performs well in detecting safety signals when either the incidence rate or the severity is

greater in the treatment group. The proposed method is demonstrated via a simulated dataset from

a vaccine trial.

Key words: Adverse events; Bayesian hierarchical model; Mixture model; Multiplicity; Safety

signal detection; Severity.

3.1 Introduction

In clinical trials, the evaluation of drug efficacy and drug safety are two major goals. Drug safety is

evaluated on the basis of adverse events periodically by data monitoring committee. The analysis

of safety data typically involves many types of tier 2 AEs, which are routinely collected in clinical

trials but about which no specific hypotheses have been formulated in advance (Berry & Berry,

2004). In a two-arm randomized clinical trial where participants are randomly allocated to a treat-

ment group and a control group, interest often lies in comparing the incidence rate of many AEs
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between the two randomized groups. If the incidence rates of some of the AEs in the treatment

group are significantly greater than that in the control group, these AEs will be flagged and further

investigation on the safety of the drug might be conducted.

However, simultaneously comparing the incidence rate of many AEs causes multiplicity issues.

This is a very common challenge that face statisticians, frequentists and Bayesians alike. Failure

to adjust for multiplicity increases the risk of false positives, thereby needlessly complicating the

interpretation of the safety profile of the experimental treatment(s).

In the literature, some frequentist and Bayesian methods have been proposed for detecting

potential inequivalence of AE incidence rate between two randomized groups and for addressing

multiplicity issue in the context of clinical AE analyses.

From the frequentist perspective, to assess the equality of incidence rate of all the AEs en-

countered within each of several body systems while adjusting for multiplicity issues, p value for

testing the equality of incidence rate is generated for every AE and is adjusted by the multiple

testing procedure. Among several multiplicity adjustment methods, a double false discover rate

(DFDR) procedure proposed by Mehrotra & Heyse (2004) is a novel method for controlling the

false discovery rate (FDR) to a desired level. It is a two-step application of the false discovery rate

procedure proposed by Benjamini & Hochberg (1995). Mehrotra & Adewale (2012) improved

DFDR procedure that significantly lowers the FDR without materially compromising the power

for detecting true signals.

In addition, some Bayesian methods have been developed to evaluate AEs simultaneously

while controlling for overall type I error rate. Berry & Berry (2004) proposed a three-level

Bayesian hierarchical mixture model to test the equivalence of incidence rate of many AEs be-

tween the control and treatment group. The hierarchical structure accounts for multiplicities in AE

assessment. It provides an explicit method for borrowing information across types of AEs. The

posterior probability that the odds ratio of the AE incidence rate between the treatment group and

the control group is larger than a cutoff point is obtained for each adverse event.

Gould (2008, 2013, 2018) proposed an alternative Bayesian screening approach to detect po-
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tential safety issues when event counts arise from binomial or Poisson distributions. The method

assumes that the adverse event incidences are realizations from a mixture of distributions and seeks

to identify the element of the mixture corresponding to each adverse event.

DuMouchel (2012) described a multivariate Bayesian logistic regression (MBLR) method for

model-based analysis of safety data when there are rare events and sparse data from a pool of clin-

ical trials. As with Berry’s method, MBLR allows information from the different AEs to "borrow

strength" from each other. The logistic regression model also examines the relationship between

AE frequencies to multiple covariates and to treatment by covariate interactions, which enables a

search for vulnerable subgroups.

One limitation with these methods is that they are based on comparing only the AE incidence

between two groups, regardless of the severity of adverse event. It is probably of great interest for

us to also compare the severity of the AEs, especially when two treatments have similar incidence

for a given AE but the severity of the AE is consistently greater for one treatment versus the other.

In this case it would be unappealing for the AE not to be flagged.

To fully capture the presence and severity of adverse events, it is important to incorporate an

endpoint that describes the severity of each AE. Klingenberg et al. (2009) proposed a method for

investigating the toxicity effect of a chemical compound on animals in an environmental study.

They introduced a single primary endpoint to represent the presence and severity of every type of

toxicity effect of the chemical compound. Each primary endpoint is an ordinal categorical variable

that consists of four levels, representing the severity of none, mild, moderate and severe. They

used permutation test and a bootstrap method for testing the simultaneous marginal homogeneity

for all the toxicity effect of the chemical compound and adjusted the p values to control for family

wise error rate (FWER). The method can be readily carry over to safety analysis in clinical trials.

However, power of using one endpoint for each type of adverse effect is low for detecting certain

alternatives of interest, for instance, when the AE incidence rate is the same but the severity is

different. L.G. Leon-Novelo & Muller (2010) introduced an approach for flexible, model-based

inference for the incidence and severity of AEs reported in a phase III clinical trial. The approach
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is based on a mixture of normal distributions for latent variables associated with the ordinal AE

severity data and it takes into account possible dependence among the outcomes in different AE

severity categories. But little is known about the FDR and power properties associated with the

method.

In this article, from the Bayesian perspective, we extend the hierarchical model of Berry &

Berry (2004) for assessing both the incidence rate and severity of several AEs in a two-arm ran-

domized clinical trial. The primary drug safety outcome is a four level ordinal categorical variable,

representing four AE severity levels from none, mild, moderate to severe. The non-proportional

odds cumulative logit model is used to model the relationship between the safety outcome and the

treatment effect. A three-level hierarchical structure is proposed for the prior distribution of the

model parameters. The method adjusts for the multiplicity issue with the help of the hierarchical

nature as it borrows information across types of AEs, especially across the adverse events within

the same body system. Simulation study is performed to investigate the FDR and power of the

method.

The rest of the paper is organized as follows. In Section 3.2, we briefly review a Bayesian

hierarchical logit model proposed by Berry & Berry (2004) for assessing the incidence rate of

AEs in a two-arm randomized trial. In Section 3.3, we introduce a new Bayesian hierarchical

cumulative logit model for simultaneously testing the equivalence of incidence rate and severity

of all the AEs between the control group and the treatment group while addressing multiplicities.

In Section 3.4, we conduct a comprehensive simulation study to investigate the power and FDR

of the proposed Bayesian hierarchical method and compare it with a Bayesian non-hierarchical

method and Berry & Berry (2004)’s Bayesian hierarchical logit model. In Section 3.5 we applied

the proposed method to a simulated safety dataset. We conclude the article in Section 3.6.

3.2 Bayesian hierarchical logit model: a review of Berry’s method

In this section, we briefly review a Bayesian hierarchical logit model proposed by Berry & Berry

(2004) for simultaneously testing the equivalence of incidence rate between a control group and
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a treatment group for all the AEs in a two-arm randomized trial while addressing multiplicities.

AE(s) with significantly higher incidence rate in the treatment group will be flagged. We first

introduce the structure of the safety data. We then review the logit model, the hierarchical prior

structure of the model parameters and the decision rule for conducting the simultaneous Bayesian

test.

3.2.1 Safety data structure

Suppose we were to compare the incidence rates of many AEs between a control group and a

treatment group in a two-arm randomized trial. All the AEs are classified into B body systems.

Body system is made in advance of and separate from the data from the trial (Berry & Berry,

2004). Within body system b there are kb types of AEs. Denote the jth AE within the bth body

system as Ab j, b = 1, ...,B; j = 1, ...,kb. Of the N1 subjects in the control group, x1,b j experience

Ab j. Of the N2 subjects in the treatment group, x2,b j experience Ab j. Table 3.1 shows the layout of

of the safety data.

Table 3.1: Safety data structure with only AE incidence information

Control(N1) Treatment(N2)

b j x1,b j N1− x1,b j x2,b j N2− x2,b j
1 1 x1,11 N1− x1,11 x2,11 N2− x2,11
1 2 x1,12 N1− x1,12 x2,12 N2− x2,12
...

...
...

...
...

...
2 1 x1,21 N1− x1,21 x2,21 N2− x2,21
...

...
...

...
...

...
B kB x1,BkB N1− x1,BkB x2,BkB N2− x2,BkB

3.2.2 Likelihood functions and priors

Let Yb j be a binary outcome, indicating whether a subject experiences Ab j. Yb j = 1 if a subject

experiences the AE Ab j and Yb j = 0 if the subject does not experience the AE Ab j. Let T be the

group indicator of a subject. T = 1 if the subject is from the treatment group and T = 0 if the
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subject is from the control treatment. Denote cb j = P(Yb j = 1|T = 0), tb j = P(Yb j = 1|T = 1). The

model Berry & Berry (2004) proposed is equivalent to the following logit model:

log
( P(Yb j = 1|T )

1−P(Yb j = 1|T )

)
= γb j +θb jT,b = 1, ...,B; j = 1, ...,kb

In fact,

γb j = log
( P(Yb j = 1|T = 0)

1−P(Yb j = 1|T = 0)

)
= log

cb j

1− cb j

θb j = log
( P(Yb j = 1|T = 1)

1−P(Yb j = 1|T = 1)

)
− γb j = log

tb j

1− tb j
− γb j

Our interest focuses on θb j, which is the log-odds ratio of the incidence rate of Ab j between the

treatment group and the control group. If θb j = 0 then the probability that a subject experience Ab j

is the same in the control and the treatment group. If θb j > 0 then the probability that a subject

experience Ab j is greater in the treatment group compare to that in the control group.

From the Bayesian perspective, Berry & Berry (2004) proposed a three-level hierarchical prior

structure for the model parameters γb j and θb j in order to address multiplicities. Figure 3.1 shows

an overview of this hierarchical prior structure.

In the first stage of the prior structure:

γb j ∼ N(µγb,σ
2
γ )

θb j ∼ πbI[0]+(1−πb)N(µθb,σ
2
θb),b = 1, ...,B; j = 1, ...,kb

where the prior distribution for θb j is a mixture of a point mass at 0 and a normal distribution. Xia

et al. (2011) set a different prior distribution for γb j, which is N(µγb,σ
2
γb). We will use this prior
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Figure 3.1: Overview of the Bayesian hierarchical prior structure of Berry & Berry (2004)’s model

distribution instead. In the second stage of the prior structure:

µγb ∼ N(µγ0,τ
2
γ0),σ

2
γb ∼ IG(ασγ ,βσγ) (ασγ = 3,βσγ = 1)

µθb ∼ N(µθ0,τ
2
θ0),σ

2
θb ∼ IG(ασθ ,βσθ ) (ασθ = 3,βσθ = 1)

πb ∼ Beta(απ ,βπ)

where IG represents the inverse gamma distribution. In the third stage of the prior structure:

µγ0 ∼ N(µγ00,τ
2
γ00),τ

2
γ0 ∼ IG(ατγ ,βτγ) (µγ00 = 0,τ2

γ00 = 10,ατγ = 3,βτγ = 1)

µθ0 ∼ N(µθ00,τ
2
θ00),τ

2
θ0 ∼ IG(αθ0,βθ0) (µθ00 = 0,τ2

θ00 = 10,αθ0 = 3,βθ0 = 1)

απ ∼
λα exp(−αλα)

exp(−λα)
I[α>1],βπ ∼

λβ exp(−βλβ )

exp(−λβ )
I[β>1] (λα = λβ = 0.1)

Independent left-truncated exponential prior distribution is assigned to απ and βπ because restrict-
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ing the parameters to greater than 1 prevents the posterior density of π from becoming too heavily

concentrated at one of its edges (Berry & Berry, 2004). This model provides an explicit method

for borrowing information across types of AEs. The hierarchical nature of the model gives rise to a

regression effect, which is appealing in the context of multiplicities because it modulates extremes

(Berry & Berry, 2004). The calculation for the posterior distribution of the model parameters are

carried out using Markov Chain Monte Carlo (MCMC) methods. This can be done in WinBUGS

or JAGS.

3.2.3 Hypothesis test and decision rule

The goal of simultaneously testing the equivalence of incidence rates of all the AEs between the

control and treatment group is equivalent to testing the null hypothesis that θb j = 0 versus the

alternative hypothesis that θb j > 0 for Ab j,b = 1, ...,B; j = 1, ...,kb.

After obtaining the posterior distribution random sample of θb j from MCMC, we can calculate

the posterior probability that θb j > 0. The decision rule is that if P(θb j > 0) > p0, Ab j will be

flagged, where p0 is a cutoff point that is usually set to 0.6,0.7 or 0.8. Xia et al. (2011) investigated

the performance of using a cutoff point of 0.6, 0.7 and 0.8 and they suggested that 0.7 be used in

the model.

3.3 Cumulative logit model for safety signal detection

The Bayesian hierarchical logit model introduced in Section 3.2 compares only the incidence rates

of all the AEs between the control and treatment group, regardless of the severity of AEs. In this

section, we introduce a new Bayesian hierarchical cumulative logit model for simultaneously test-

ing the equivalence of incidence rate and severity of all the AEs between the control group and the

treatment group while addressing multiplicities. AE(s) with greater incidence rate or severity in the

treatment group compare to that in the control group will be flagged. Greater severity is defined in

terms of stochastic order. The primary drug safety outcome is a four-level ordinal categorical vari-

able, representing four AE severity levels of none, mild, moderate and severe. We first introduce
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some basic notations, the hypotheses we will be testing and the structure of the safety data. The

safety data consists of the number of subjects with outcomes classified into each of the severity

levels in the control group and the treatment group. We then describe a cumulative logit model,

the hierarchical prior structure of the model parameters and the decision rule for conducting the

simultaneous Bayesian test. A cumulative logit model with non-hierarchical prior (solo Bayesian

model) is also introduced for comparison purpose. Note that some notations introduced in the last

section continue to be used in this section.

3.3.1 Data structure and notations

It is probably of great interest for us to compare both the incidence rates and severity of many AEs

between a control group and a treatment group in a two-arm randomized trial. This motivates the

collection of safety data that is more complicated than Table 3.1. Table 3.2 shows the safety data

that consists of the number of subjects with outcomes classified into each of the severity levels in

the control group and the treatment group. All the AEs are classified into B body systems. Within

body system b there are kb types of AEs. Of the N1 subjects in the control group, m11,b j does not

experience Ab j, m12,b j experience Ab j and the severity level is mild, m13,b j experience Ab j and the

severity level is moderate, m14,b j experience Ab j and the severity level is severe. Of the N2 subjects

in the treatment group, m21,b j does not experience Ab j, m22,b j experience Ab j and the severity level

is mild, m23,b j experience Ab j and the severity level is moderate, m24,b j experience Ab j and the

severity level is severe.

Let Zb j be a four level severity outcome variable that corresponds to adverse event Ab j for any

subject. Without loss of generality, we assume that there are four AE severity levels: none, mild,

moderate and severe. This can be easily extended to five severity levels, eg, Common Terminology

Criteria for Adverse Events (CTCAE) by NCI. Let Zb j = 1 if the subject does not experience Ab j.

Zb j = 2 if the subject experience Ab j and the severity of the AE is mild. Zb j = 3 if the subject

experience Ab j and the severity of the AE is moderate. Zb j = 4 if a subject experience Ab j and

the severity is severe. Different from that in Section 3.2, we set T = 0.5 if the subject is from the
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Table 3.2: Safety data structure with AE incidence and AE severity information

Control(N1) Treatment(N2)

m11,b j m12,b j m13,b j m14,b j m21,b j m22,b j m23,b j m24,b j
b j (No AE) (Mild) (Moderate) (Severe) (No AE) (Mild) (Moderate) (Severe)
1 1 m11,11 m12,11 m13,11 m14,11 m21,11 m22,11 m23,11 m24,11
1 2 m11,12 m12,12 m13,12 m14,12 m21,12 m22,12 m23,12 m24,12
...

...
...

...
...

...
...

...
...

...
2 1 m11,21 m12,21 m13,21 m14,21 m21,21 m22,21 m23,21 m24,21
...

...
...

...
...

...
...

...
...

...
B kB m11,BkB m12,BkB m13,BkB m14,BkB m21,BkB m22,BkB m23,BkB m24,BkB

treatment group and T = −0.5 if the subject is from the control treatment. The prior distribution

is then symmetric in the sense that the logits in each treatment have the same prior variability as

well as the same prior means, yet θb j still has the usual interpretation of a log odds ratio (Agresti,

2010).

Denote P(Zb j = 1|T =−0.5) = φ11,b j,P(Zb j = 2|T =−0.5) = φ12,b j,P(Zb j = 3|T =−0.5) =

φ13,b j,P(Zb j = 4|T =−0.5)= φ14,b j P(Zb j = 1|T = 0.5)= φ21,b j,P(Zb j = 2|T = 0.5)= φ22,b j,P(Zb j =

3|T = 0.5) = φ23,b j,P(Zb j = 4|T = 0.5) = φ24,b j. We make the following assumptions about the

distributions of mmm1,b j and mmm2,b j.

mmm1,b j = (m11,b j,m12,b j,m13,b j,m14,b j)∼Multinomial(N1,(φ11,b j,φ12,b j,φ13,b j,φ14,b j))

mmm2,b j = (m21,b j,m22,b j,m23,b j,m24,b j)∼Multinomial(N2,(φ21,b j,φ22,b j,φ23,b j,φ24,b j))

Ab j is said to have a safety signal if its incidence rate or the severity is greater in the treatment

group compare to that in the control group. This definition of safety signal is an enhancement of

that in Berry & Berry (2004) as it takes into consideration not only the increase of incidence rate

but also the increase of severity. The severity of Ab j is greater in the treatment group compare to

that in the control group if Fc(z) > Ft(z),z = 1,2,3 (i.e., stochastically greater), or equivalently,

if 1−Fc(z) < 1−Ft(z),z = 1,2,3, where Fc(z) and Ft(z) are cumulative density functions of the

severity outcome in the control group and the treatment group respectively. Hence, Ab j has a safety
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signal if its corresponding probabilities (φ1l,b j,φ2l,b j, l = 1,2,3,4) in each severity level under two

groups belong to the set:

{φ14,b j ≤ φ24,b j,

φ13,b j +φ14,b j ≤ φ23,b j +φ24,b j,

φ12,b j +φ13,b j +φ14,b j ≤ φ22,b j +φ23,b j +φ24,b j, at least one inequality is strict}

∪{φ12,b j +φ13,b j +φ14,b j < φ22,b j +φ23,b j +φ24,b j}

Greater severity of an AE is defined in terms of stochastic order because among several for-

mally defined notions, it is the least stringent. See Cohen & Sackrowitz (2000) and Cohen et al.

(2000).

3.3.2 Bayesian hierarchical non-proportional odds version of cumulative logit model

We propose a cumulative logit model to quantify the relationship between the ordinal severity

outcome Zb j and the treatment. The simplest cumulative logit model is the proportional odds

version of the cumulative logit model (Agresti, 2010):

log
( P(Zb j ≤ k|T )

1−P(Yb j ≤ k|T )

)
= ηb j,k−ωb jT,b = 1, ...,B; j = 1, ...,kb,k = 1,2,3

Note that

ηb j,k = log
( P(Zb j ≤ k|T =−0.5)

1−P(Zb j ≤ k|T =−0.5)

)
,k = 1,2,3

ωb j = log

P(Zb j≤1|T=0.5)
1−P(Zb j≤1|T=0.5)
P(Zb j≤1|T=−0.5)

1−P(Zb j≤1|T=−0.5)

= log

P(Zb j≤2|T=0.5)
1−P(Zb j≤2|T=0.5)
P(Zb j≤2|T=−0.5)

1−P(Zb j≤2|T=−0.5)

= log

P(Zb j≤3|T=0.5)
1−P(Zb j≤3|T=0.5)
P(Zb j≤3|T=−0.5)

1−P(Zb j≤3|T=−0.5)

Parameters ωb j, the log odds ratios of cumulative probabilities between the treatment group

and the control group, are of main interest. If ωb j = 0 then the incidence rate and the severity of
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Ab j are the same for the control and treatment group. If ωb j > 0 then the incidence rate and the

severity of Ab j are both greater in the treatment group compare to those in the control group. It

is simple with the same parameter ωb j for each severity level. However, with only one parameter,

we cannot identify whether a safety signal is due to the increase in incidence rate or severity. In

addition, the proportional odds assumption is unrealistic to hold for all AEs in reality. Thus, we

propose to use the following non-proportional odds version of the cumulative logit model (Agresti,

2010) instead:

log
( P(Zb j ≤ k|T )

1−P(Yb j ≤ k|T )

)
= ηb j,k−ωb j,kT,b = 1, ...,B; j = 1, ...,kb,k = 1,2,3

Compare to the proportional odds version of the cumulative logit model, the parameter that is

associated with the treatment covariate is allowed to vary with severity level. Note that

ηb j,k = log
( P(Zb j ≤ k|T =−0.5)

1−P(Zb j ≤ k|T =−0.5)

)

ωb j,k = log

P(Zb j≤k|T=0.5)
1−P(Zb j≤k|T=0.5)
P(Zb j≤k|T=−0.5)

1−P(Zb j≤k|T=−0.5)

= log

1−P(Zb j≤k|T=0.5)
P(Zb j≤k|T=0.5)

1−P(Zb j≤k|T=−0.5)
P(Zb j≤k|T=−0.5)

,k = 1,2,3

Parameters ωb j,k,k = 1,2,3 are the log odds ratios of the probability that the severity of Ab j is at

least mild, moderate or severe between the treatment group and the control group. If ωb j,1 = 0

then the incidence rate of Ab j is the same for the control and treatment group. If ωb j,1 > 0 then

the incidence rate of Ab j is greater in the treatment group compare to that in the control group.

If ωb j,2 = 0 then the probability that a subject experience Ab j and the severity level is at least

moderate is the same for the control and treatment group. If ωb j,2 > 0 then the probability that a

subject experience Ab j and the severity level is at least moderate is greater in the treatment group
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compare to that in the control group. If ωb j,3 = 0 then the probability that a subject experience Ab j

and the severity level is at least severe is the same for the control and treatment group. If ωb j,3 > 0

then the probability that a subject experience Ab j and the severity level is at least severe is greater

in the treatment group compare to that in the control group.

The key challenge for the non-proportional odds version of the cumulative logit model is that

in order for stochastic ordering to hold, it is necessary that

−∞ < ηb j,1−ωb j,1T < ηb j,2−ωb j,2T < ηb j,3−ωb j,3T < ∞

for T =−0.5 or 0.5. This can be rewritten as (McKinley et al., 2015):

ηb j,l−ηb j,l+1 < ωb j,lT −ωb j,l+1T, l = 1,2

=⇒ ηb j,l−ηb j,l+1 < min{−0.5(ωb j,l−ωb j,l+1),0.5(ωb j,l−ωb j,l+1)}, l = 1,2

Denote Cb j,l = min{−0.5(ωb j,l−ωb j,l+1),0.5(ωb j,l−ωb j,l+1)}, l = 1,2, then we have

ηb j,l−ηb j,l+1 <Cb j,l, l = 1,2

In light of this fact, we can therefore specify prior distributions with three-level hierarchies.

Figure 3.2 shows the three-level prior structure of the model parameters.

In the first stage of the prior structure, the joint prior distribution of ηb j,1,ηb j,2,ηb j,3,ωb j,1,ωb j,2,ωb j,3

is:

f (ηb j,1,ηb j,2,ηb j,3,ωb j,1,ωb j,2,ωb j,3)

= f (ηb j,1,ηb j,2,ηb j,3|ωb j,1,ωb j,2,ωb j,3) f (ωb j,1,ωb j,2,ωb j,3)

= f (ηb j,1,ηb j,2,ηb j,3|ωb j,1,ωb j,2,ωb j,3) f (ωb j,1) f (ωb j,2) f (ωb j,3)

= f (ηb j,1) f (ηb j,2|ηb j,1,ωb j,1,ωb j,2) f (ηb j,3|ηb j,2,ωb j,2,ωb j,3) f (ωb j,1) f (ωb j,2) f (ωb j,3)

52



Figure 3.2: Overview of the Bayesian hierarchical prior structure of the non-proportional odds
version of the cumulative logit model

where f (ηb j,1), f (ηb j,2|ηb j,1,ωb j,1,ωb j,2) and f (ηb j,3|ηb j,2,ωb j,2,ωb j,3) are the probability den-

sity functions of random variables defined as follows:

ηb j,1 ∼ N(µηb,1,σ
2
ηb)

ηb j,2|ηb j,1,ωb j,1,ωb j,2 ∼ N(µηb,2,σ
2
ηb)I[ηb j,1−Cb j,1,∞]

Cb j,1 = min{−0.5(ωb j,1−ωb j,2),0.5(ωb j,1−ωb j,2)}

ηb j,3|ηb j,2,ωb j,2,ωb j,3 ∼ N(µηb,3,σ
2
ηb)I[ηb j,2−Cb j,2,∞]

Cb j,2 = min{−0.5(ωb j,2−ωb j,3),0.5(ωb j,2−ωb j,3)}

f (ηb j,1) is a normal distribution defined in (−∞,∞). f (ηb j,2|ηb j,1,ωb j,1,ωb j,2) is a truncated

normal distribution defined in the range (ηb j,1−Cb j,1,∞) and f (ηb j,3|ηb j,2,ωb j,2,ωb j,3) is a trun-

cated normal distribution defined in the range (ηb j,2−Cb j,2,∞). f (ωb j,1), f (ωb j,2), f (ωb j,3) are
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the probability density functions of random variables ωb j,1,ωb j,2,ωb j,3. Each of them is defined as

a mixture of a distribution having unit point mass at 0 and a normal distribution:

ωb j,1 ∼ πb,1I[0]+(1−πb,1)N(µωb,1,σ
2
ωb)

ωb j,2 ∼ πb,2I[0]+(1−πb,2)N(µωb,2,σ
2
ωb)

ωb j,3 ∼ πb,3I[0]+(1−πb,3)N(µωb,3,σ
2
ωb)

In the second stage of the prior structure:

µηb,1 ∼ N(µη0,b1,τ
2
η0),µηb,2 ∼ N(µη0,b2,τ

2
η0),µηb,3 ∼ N(µη0,b3,τ

2
η0)

µωb,1 ∼ N(µω0,b1,τ
2
ω0),µωb,2 ∼ N(µω0,b2,τ

2
ω0),µωb,3 ∼ N(µω0,b3,τ

2
ω0)

σ
2
ηb ∼ IG(αση ,βση),σ

2
ωb ∼ IG(ασω ,βσω)(αση = 3,βση = 1,ασω = 0.55,βσω = 1)

πb,1 ∼ Beta(απ,1,βπ,1),πb,2 ∼ Beta(απ,2,βπ,2),πb,3 ∼ Beta(απ,3,βπ,3)

Specifically, the hyper parameters of the prior distribution for σ2
ωb are set to 0.55 and 1 after

doing experiments on some values. Other hyper parameter values may be (0.1,1). Parameter values

like (0.001,1) may be too conservative that will lead to low power. In the third stage of the prior
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structure:

µη0,b1 ∼ N(µη00,1,τ
2
η00) (µη00,1 = 0,τ2

η00 = 10)

µη0,b2 ∼ N(µη00,2,τ
2
η00) (µη00,2 = 0,τ2

η00 = 10)

µη0,b3 ∼ N(µη00,3,τ
2
η00) (µη00,3 = 0,τ2

η00 = 10)

µω0,b1 ∼ N(µω00,1,τ
2
ω00) (µω00,1 = 0,τ2

ω00 = 10)

µω0,b2 ∼ N(µω00,2,τ
2
ω00) (µω00,2 = 0,τ2

ω00 = 10)

µω0,b3 ∼ N(µω00,3,τ
2
ω00) (µω00,2 = 0,τ2

ω00 = 10)

τ
2
η0 ∼ IG(ατη ,βτη),τ

2
ω0 ∼ IG(αω0,βω0) (ατη = 3,βτη = 1,αω0 = 3,βω0 = 1)

απ,1 ∼
λα exp(−αλα)

exp(−λα)
I[α>1],βπ,1 ∼

λβ exp(−βλβ )

exp(−λβ )
I[β>1] (λα = λβ = 0.1)

απ,2 ∼
λα exp(−αλα)

exp(−λα)
I[α>1],βπ,2 ∼

λβ exp(−βλβ )

exp(−λβ )
I[β>1]

απ,3 ∼
λα exp(−αλα)

exp(−λα)
I[α>1],βπ,2 ∼

λβ exp(−βλβ )

exp(−λβ )
I[β>1]

3.3.3 Solo Bayesian non-proportional odds cumulative logit model

To show how the three-stage hierarchical prior structure affects the conclusions, we further con-

sider a Solo Bayesian model. This is simply a Bayesian model with priors being set as the first

stage of the three-stage hierarchical prior structure introduced above (Figure 3.3). The parameters

of the distribution in the first stage of the prior structure are considered fixed. No information

is borrowed across different AEs within the same body system and the individual types of AEs

are considered in isolation. With vague prior information, hypothesis test based on this model

should have results similar to the frequentist approach without multiplicity adjustment.The param-

eters of the distribution in the first stage of prior structure are set as: πb,1 = πb,2 = πb,3 = 0.5 ,

µωb,1 = µωb,2 = µωb,3 = 0,σ2
ωb = 1 µηb,1 = µηb,2 = µηb,3 =−1,σ2

ηb = 10.
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Figure 3.3: Priors of the solo Bayesian non-proportional odds version of the cumulative logit model

3.3.4 Hypothesis test and decision rule

Our goal of simultaneously comparing the equivalence of incidence rate and severity of all the

AEs between the control group and the treatment group is hence equivalent to testing the following

hypotheses:

H(b j)
0 : ωb j,1 = ωb j,2 = ωb j,3 = 0

H(b j)
1 : ωb j,1 ≥ 0,ωb j,2 ≥ 0,ωb j,3 ≥ 0,at least one inequality is strict OR ωb j,1 > 0

From Bayesian perspective, the decision rule is based on the posterior probability of the alternative

hypothesis, i.e., P(H(b j)
1 ). The calculations for the posterior distribution of the parameters are

carried out using Markov Chain Monte Carlo (MCMC) methods in JAGS. We simulate 10000

observations from the posterior distribution after a burn-in of 2000 observations. From the MCMC

posterior sample, we can calculate the posterior probability of H(b j)
1 . The decision rule is that if

P(H(b j)
1 )> p0, Ab j will be flagged, where p0 is a cutoff point that is set to 0.6,0.7 or 0.8. We will

investigate how the choice of p0 affect the decision in the next section.

3.4 Simulation study

In this section we describe a simulation study that evaluates the operating characteristics (FDR and

power) of the Bayesian hierarchical cumulative logit model and the solo Bayesian cumulative logit

model under different scenarios. Comparisons are also made between the two cumulative logit
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models and Berry & Berry (2004)’s Bayesian hierarchical logit model.

3.4.1 Simulation setup

The goal of this simulation study is to investigate the FDR and power of the above methods in

detecting safety signals in a two-arm phase III randomized clinical trial under 7 data generation

scenarios. Suppose there are 800 subjects in the control group and 800 subjects in the treatment

group. We consider 26 types of AEs distributed across 3 body systems, with 10,6,10 AE types in

body system 1 through 3.

Power and FDR are estimated by simulation. The estimation accuracy is 500 simulated tri-

als. In each simulated trial, for the control group, we generate the number of subjects who ex-

perience the AE Ab j,b = 1, ...,B; j = 1, ...,kb with severity being classified into different severity

levels (i.e., m11,b j,m12,b j,m13,b j,m14,b j) from the multinomial distribution with probability vector

(φ11,b j,φ12,b j,φ13,b j,φ14,b j). Similarly, for the treatment group, we generate m21,b j,m22,b j,m23,b j,m24,b j

from the multinomial distribution with probability vector (φ21,b j,φ22,b j,φ23,b j,φ24,b j).

We consider 7 scenarios of data generation. Probability vector (φ11,b j,φ12,b j,φ13,b j,φ14,b j) is

the same in all scenarios and is given in Table 3.3. Probability vector (φ21,b j,φ22,b j,φ23,b j,φ24,b j)

varies among different scenarios. Details are given as follows.

Scenario 1 Global null-no true signal in any body system and probability vector for treatment

group (φ21,b j,φ22,b j,φ23,b j,φ24,b j) is the same as that for control group.

Scenario 2 We signal within specific AE and within the first two severity levels. The first

two AEs in body system 1 and 3 and the first AE in body system 2 in the treat-

ment group have true signal. φ21,11 = φ21,12 = 0.85,φ22,11 = φ22,12 = 0.13, φ21,21 =

0.75,φ22,21 = 0.21, φ21,31 = φ21,32 = 0.65,φ22,31 = φ22,32 = 0.29. All other proba-

bilities remain to be the same as the control group.

Scenario 3 We signal within specific body system. All AEs in body system 1 have true signal.

φ21,11 = ... = φ21,1,10 = 0.85,φ22,11 = ... = φ22,1,10 = 0.13. All other probabilities
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Table 3.3: Probability vectors of AEs in the control group for simulation study

Control(N1 = 800)

φ11,b j φ12,b j φ13,b j φ14,b j
b j (No AE) (Mild) (Moderate) (Severe)
1 1 0.95 0.03 0.015 0.005
1 2 0.95 0.03 0.015 0.005
1 3 0.95 0.03 0.015 0.005
1 4 0.95 0.03 0.015 0.005
1 5 0.95 0.03 0.015 0.005
1 6 0.95 0.03 0.015 0.005
1 7 0.95 0.03 0.015 0.005
1 8 0.95 0.03 0.015 0.005
1 9 0.95 0.03 0.015 0.005
1 10 0.95 0.03 0.015 0.005
2 1 0.9 0.06 0.03 0.01
2 2 0.9 0.06 0.03 0.01
2 3 0.9 0.06 0.03 0.01
2 4 0.9 0.06 0.03 0.01
2 5 0.9 0.06 0.03 0.01
2 6 0.9 0.06 0.03 0.01
3 1 0.85 0.09 0.045 0.015
3 2 0.85 0.09 0.045 0.015
3 3 0.85 0.09 0.045 0.015
3 4 0.85 0.09 0.045 0.015
3 5 0.85 0.09 0.045 0.015
3 6 0.85 0.09 0.045 0.015
3 7 0.85 0.09 0.045 0.015
3 8 0.85 0.09 0.045 0.015
3 9 0.85 0.09 0.045 0.015
3 10 0.85 0.09 0.045 0.015

remain to be the same as the control group.

Scenario 4 We signal within specific AE and within the first two severity levels. The first two

AEs in body system 1 and 3 and the first AE in body system 2 in the treatment

group have true signal. φ22,11 = φ22,12 = 0.01,φ23,11 = φ23,12 = 0.035, φ22,21 =

0.02,φ23,21 = 0.07, φ22,31 = φ22,32 = 0.04,φ23,31 = φ23,32 = 0.095. All other proba-

bilities remain to be the same as the control group.

Scenario 5 We signal within specific body system. All AEs in body system 1 have true signal.

φ22,11 = ...= φ22,1,10 = 0.01,φ23,11 = ...= φ23,1,10 = 0.035. All other probabilities
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remain to be the same as the control group.

Scenario 6 We signal within specific AE and within the first two severity levels. The first two

AEs in body system 1 and 3 and the first AE in body system 2 in the treatment

group have true signal. φ23,11 = φ23,12 = 0.005,φ24,11 = φ24,12 = 0.015, φ23,21 =

0.01,φ24,21 = 0.03, φ23,31 = φ23,32 = 0.015,φ24,31 = φ24,32 = 0.045. All other prob-

abilities remain to be the same as the control group.

Scenario 7 We signal within specific body system. All AEs in body system 1 have true signal.

φ23,11 = ...= φ23,1,10 = 0.005,φ24,11 = ...= φ24,1,10 = 0.015. All other probabilities

remain to be the same as the control group.

As introduced in the last section, the decision rule for comparing the incidence rate and severity

between two groups for Ab j is based on the posterior probabilities. If cumulative logit model is

used, Ab j will be flagged if P(H(b j)
1 ) > p0. If logit model is used, Ab j will be flagged if P(θb j >

0)> p0. p0 is a cutoff point that is set to 0.6,0.7 or 0.8 respectively.

For each simulated trial, we calculate the following posterior probabilities for each AE under

Solo Bayesian cumulative logit model and Bayesian hierarchical cumulative logit model respec-

tively: the posterior probability of H(b j)
1 and the posterior probability that ωb j,k ≥ 0,k = 1,2,3.

Hence for each simulated trial we will obtain a Table 3.4 of posterior probabilities. In addition,

we calculate the posterior probabilities P(θb j > 0) for each AE under Bayesian hierarchical logit

model proposed by Berry & Berry (2004).

We estimate the FDR using the average value of F/S, where S is the number of AE types that

are flagged in a simulated trial and F is the corresponding number of AE types that are incorrectly

flagged. Power is estimated with the average value of C/T , where C is the number of AE types

that are correctly flagged in a simulated trial and T is the corresponding number of AE types with

underlying true signals. If no AE types are flagged in a simulated trial, the FDR is defined as

0. Under scenario 1, the global null, where there is no true signal, power is not defined. False

discovery rate (FDR) and power are then estimated. Specifically for scenario 1, the global null,
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Table 3.4: The posterior probability that H(b j)
1 is true and the posterior probability that ωb j,k >

0,k = 1,2,3 for each adverse event Ab j

b j P(H(b j)
1 |Data) P(ωb j,1 > 0|Data) P(ωb j,2 > 0|Data) P(ωb j,3 > 0|Data)

1 1 P(H(11)
1 |Data) P(ω11,1 > 0|Data) P(ω11,2 > 0|Data) P(ω11,3 > 0|Data)

...
...

...
...

...
...

1 10 P(H(1,10)
1 |Data) P(ω1,10,1 > 0|Data) P(ω1,10,2 > 0|Data) P(ω1,10,3 > 0|Data)

2 1 P(H(21)
1 |Data) P(ω21,1 > 0|Data) P(ω21,2 > 0|Data) P(ω21,3 > 0|Data)

...
...

...
...

...
...

2 6 P(H(26)
1 |Data) P(ω26,1 > 0|Data) P(ω26,2 > 0|Data) P(ω26,3 > 0|Data)

3 1 P(H(31)
1 |Data) P(ω31,1 > 0|Data) P(ω31,2 > 0|Data) P(ω31,3 > 0|Data)

...
...

...
...

...
...

3 10 P(H(3,10)
1 |Data) P(ω3,10,1 > 0|Data) P(ω3,10,2 > 0|Data) P(ω3,10,3 > 0|Data)

family wise error rate (FWER) is equal to FDR.

3.4.2 Simulation results

In Table 3.5, we summarize the results of the simulation study by presenting the FDR of the

methods based on Solo Bayesian cumulative logit model, Bayesian hierarchical cumulative logit

model and Bayesian hierarchical logit model under the global null scenario where there is no true

safety signal. Both the Bayesian hierarchical cumulative logit model and Bayesian hierarchical

logit model outperform the Solo Bayesian model in the sense that they have lower FDR.

Table 3.5: FDRs of the two Bayesian cumulative logit models and the Bayesian logit model under
scenario 1, the global null

Cumulative logit model Cumulative logit model Logit model
(Solo Bayesian) (Bayesian hierarchical) (Bayesian hierarchical)

Scenario p0 FDR(FWER) FDR(FWER) FDR(FWER)
1 0.6 0.713 0.020 0.018
1 0.7 0.327 0.007 0.01
1 0.8 0.113 0.000 0.001

Table 3.6 shows the power and FDRs of the three methods under scenario 2 and 3 where the

incidence rates of some of the AEs are greater in the treatment group but the severities are the
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same for all AEs in both groups. As we expect, the FDRs of the methods based on Bayesian

hierarchical cumulative logit model and Bayesian hierarchical logit model are controlled at a low

level. However, the FDR of the method based on Solo Bayesian cumulative logit model is greater,

especially when there are more AEs with true safety signal (scenario 2) and/or the cut-off value

p0 is set to 0.6. The power of the methods based on two hierarchical models is greater, showing

their ability to detect true safety signal. On the other hand, the power of the method based on

Solo Bayesian cumulative logit model for detecting the true safety signal is comparatively low.

This is because the decision rule is based on the posterior probability that H(b j)
0 is true, which is

affected not only by P(ωb j,k > 0) (k = 1,2,3) but also by P(ωb j,k < 0) (k = 1,2,3). If any of the

P(ωb j,k < 0) is large due to the randomness of sampling, P(H(b j)
0 ) will decrease to some extent,

leading to low power of rejecting the null hypothesis.

Table 3.6: Powers and FDRs of the two Bayesian cumulative logit models and the Bayesian logit
model under scenarios 2 to 3

Cumulative logit model Logit model Cumulative logit model
(Solo Bayesian) (Bayesian hierarchical) (Bayesian hierarchical)

Scenario p0 FDR Power FDR Power FDR Power
2 0.6 0.179 0.749 0.016 1 0.015 0.996
2 0.7 0.083 0.535 0.008 1 0.009 0.992
2 0.8 0.027 0.263 0.002 1 0.006 0.989
3 0.6 0.087 0.641 0.006 1 0.002 0.993
3 0.7 0.053 0.408 0.005 1 0.002 0.987
3 0.8 0.033 0.136 0.003 1 0.001 0.977

Table 3.7 shows the power and FDRs of the three methods under scenario 4 to 7 where the

incidence rates of all the AEs are the same in both groups but the severities of some of the AEs

are greater in the treatment group. As we expect, the FDRs of the methods based on Bayesian

hierarchical cumulative logit model and Bayesian hierarchical logit model are controlled at a low

level while the FDR of the method based on Solo Bayesian cumulative logit model is greater,

especially when there are more AEs with true safety signal (scenario 4, 6) and/or the cut-off value

p0 is set to 0.6. The power of the proposed method based on the Bayesian hierarchical cumulative

logit model is greater, showing its ability to detect true safety signal with respect to AE severity.
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However, the power of the method based on the Bayesian hierarchical logit model is very low,

which is not surprising as the method is developed for detecting the inequivalence with respect

to AE incidence rate only. On the other hand, the power of the method based on Solo Bayesian

cumulative logit model for detecting the true safety signal is comparatively low.

Table 3.7: Powers and FDRs of the two Bayesian cumulative logit models and the Bayesian logit
model under scenarios 4 to 7

Cumulative logit model Logit model Cumulative logit model
(Solo Bayesian) (Bayesian hierarchical) (Bayesian hierarchical)

Scenario p0 FDR Power FDR Power FDR Power
4 0.6 0.192 0.663 0.013 0 0.031 0.917
4 0.7 0.118 0.501 0 0 0.020 0.891
4 0.8 0.045 0.270 0 0 0.015 0.861
5 0.6 0.109 0.540 0.007 0 0.004 0.986
5 0.7 0.084 0.327 0.003 0 0.002 0.977
5 0.8 0.051 0.120 0 0 0.001 0.953
6 0.6 0.164 0.727 0.003 0 0.055 0.872
6 0.7 0.071 0.598 0 0 0.032 0.834
6 0.8 0.020 0.394 0 0 0.016 0.794
7 0.6 0.101 0.538 0.003 0 0.010 0.969
7 0.7 0.051 0.354 0.003 0 0.008 0.939
7 0.8 0.032 0.143 0.003 0 0.006 0.887

3.5 Application

We use a simulated dataset to validate the proposed method. The generation of the simulated

dataset is based on a safety dataset collected from a vaccine trial involved a quadrivalent vaccine

containing measles, mumps, rubella and varicella (MMRV)(Mehrotra & Heyse, 2004). Participants

were 296 healthy toddlers ages 12-18 months who were randomly assigned to two groups. Group

1 received MMRV on day 0 and group 2 received MMR on day 0 followed by V on day 42. Safety

follow-up used standard AE reporting. The primary purpose is to compare the AE incidence rates

between Group 1, days 0 to 42, and Group 2, days 42 to 84 in order to compare the safety profile

of MMRV to that of V alone for the varicella component.

To generate the simulated dataset, we assume that the true control incidence rates of AEs are
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the same as the observed proportion of control events (except that for those with 0 events, we

assume a proportion of 1/132). The ratios of the probability that the AE severity is mild, moderate

and severe is 6:3:1.

We signal within specific AEs: A53 has true safety signal with respect to the first and second

severity levels, the probability vector of the AE in the treatment group is (0.49,0.3796,0.0978,0.0326).

A68 has true safety signal with respect to the second and third severity levels, the probability vector

of the AE in the treatment group is (0.9,0.03,0.06,0.01). A15 have true safety signal with respect

to the third and fourth severity levels, the probability vector of the AE in the treatment group is

(0.85,0.09,0.015,0.045). All other AEs have same probability vectors in the control group.

A total of 1000 subjects were assigned into two groups of equal size. The simulated dataset

shows in Table 3.8, which consists of the number of subjects who experience Ab j with AE severity

being classified into different severity level in the control and treatment groups respectively.

We apply the proposed Bayesian hierarchical non-proportional odds version of the cumulative

logit model to analyze the simulated dataset. For comparison purpose, we also apply the Solo

Bayesian model. Table 3.9 gives the posterior probability that H(b j)
1 is true and the posterior prob-

abilities that ωb j,1 > 0,ωb j,2 > 0,ωb j,3 > 0, respectively under Bayesian hierarchical cumulative

logit model and Solo Bayesian cumulative logit model.

We are specifically interested in the three AEs with true safety signal: A53, A68, A15. Based on

the Bayesian hierarchical model, we obtain the posterior probability that H(b j)
1 is true for A53, A68,

A15. P(H(53)
1 ) = 0.893,P(H(68)

1 ) = 0.757,P(H(15)
1 ) = 0.988. Based on the Solo Bayesian model,

P(H(53)
1 ) = 0.551,P(H(68)

1 ) = 0.905,P(H(15)
1 ) = 0.816. The reason why P(H(68)

1 ) is smaller under

Bayesian hierarchical model compare to Solo Bayesian model is because A68 is part of the largest

body system (6), one in which there is not consistent evidence of a safety signal with respect to

the second and third severity levels, thus the estimated treatment effect for A68 is “shrunk” toward

0. However, despite this shrinkage, the estimated P(H(68)
1 ) is moderately large. Therefore the

difference is likely due to a treatment effect.

Also note that the method based on solo Bayesian model cannot detect the safety signal that is
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Table 3.8: Simulated safety dataset for data analysis

Control (N1 = 500) Treatment (N2 = 500)

b j m11,b j m12,b j m13,b j m14,b j m21,b j m22,b j m23,b j m24,b j

1 1 355 93 39 13 348 91 49 12
1 2 391 64 33 12 392 66 33 9
1 3 496 3 1 0 498 2 0 0
1 4 497 2 1 0 498 2 0 0
1 5 420 46 30 4 424 45 12 19
2 1 494 3 2 1 490 5 3 2
2 2 493 5 2 0 493 5 1 1
2 3 498 0 2 0 496 0 3 1
2 4 451 28 16 5 457 28 13 2
2 5 498 2 0 0 498 2 0 0
2 6 477 15 7 1 470 18 9 3
2 7 421 53 21 5 445 30 19 6
3 1 492 4 1 3 492 5 2 1
4 1 490 8 1 1 496 1 2 1
5 1 494 3 2 1 496 1 3 0
5 2 494 4 2 0 496 2 2 0
5 3 335 100 53 12 249 199 34 18
6 1 491 7 1 1 497 2 0 1
6 2 496 3 1 0 497 2 1 0
6 3 496 1 2 1 494 4 2 0
6 4 468 19 8 5 468 19 11 2
6 5 432 46 17 5 420 45 25 10
6 6 498 1 1 0 496 3 1 0
6 7 476 13 8 3 464 23 10 3
6 8 456 26 15 3 440 14 37 9
6 9 494 4 1 1 494 4 1 1
6 10 499 1 0 0 497 1 1 1
6 11 494 5 0 1 498 2 0 0
7 1 495 1 2 2 493 5 2 0
7 2 497 0 1 2 498 1 1 0
7 3 497 2 1 0 499 0 1 0
7 4 490 6 3 1 490 4 4 2
7 5 494 3 3 0 490 5 4 1
7 6 496 2 2 0 494 6 0 0
7 7 494 4 2 0 493 5 2 0
7 8 496 1 2 1 491 7 1 1
7 9 488 7 3 2 492 5 3 0
8 1 494 3 2 1 495 5 0 0
8 2 444 33 15 8 453 22 17 8
8 3 494 3 0 3 496 4 0 0

64



Table 3.9: The posterior probability that H(b j)
1 is true and the posterior probability that ωb j,k >

0,k = 1,2,3 for Ab j based on two Bayesian cumulative logit models

Solo Bayesian cumulative logit model Bayesian hierarchical cumulative logit model

b j P(H(b j)
1 ) P(ωb j,1 > 0) P(ωb j,2 > 0) P(ωb j,3 > 0) P(H(b j)

1 ) P(ωb j,1 > 0) P(ωb j,2 > 0) P(ωb j,3 > 0)
1 1 0.216 0.058 0.174 0.075 0.036 0.003 0.014 0.02
1 2 0.158 0.06 0.068 0.086 0.029 0.003 0.005 0.022
1 3 0.228 0.138 0.157 0.304 0.288 0.007 0.025 0.345
1 4 0.236 0.186 0.144 0.299 0.272 0.012 0.02 0.331
1 5 0.816 0.053 0.056 0.997 0.988 0.002 0.004 0.996
2 1 0.383 0.255 0.187 0.249 0.115 0.016 0.02 0.09
2 2 0.356 0.154 0.144 0.4 0.313 0.012 0.023 0.306
2 3 0.383 0.128 0.167 0.337 0.23 0.006 0.009 0.221
2 4 0.151 0.072 0.069 0.108 0.04 0.004 0.008 0.029
2 5 0.298 0.217 0.269 0.25 0.254 0.023 0.131 0.175
2 6 0.429 0.168 0.173 0.344 0.152 0.01 0.016 0.133
2 7 0.078 0.005 0.13 0.236 0.073 0 0.027 0.059
3 1 0.232 0.189 0.183 0.089 0.069 0.014 0.047 0.018
4 1 0.141 0.014 0.41 0.204 0.544 0.002 0.612 0.056
5 1 0.256 0.089 0.329 0.157 0.106 0.013 0.081 0.044
5 2 0.28 0.095 0.274 0.266 0.175 0.016 0.068 0.13
5 3 0.551 1 0.02 0.514 0.893 1 0.002 0.194
6 1 0.134 0.037 0.152 0.285 0.13 0.002 0.071 0.095
6 2 0.29 0.127 0.272 0.255 0.215 0.01 0.137 0.121
6 3 0.292 0.407 0.13 0.165 0.108 0.046 0.04 0.055
6 4 0.173 0.087 0.167 0.069 0.061 0.005 0.049 0.019
6 5 0.437 0.087 0.291 0.279 0.123 0.003 0.067 0.066
6 6 0.344 0.368 0.185 0.272 0.163 0.038 0.059 0.112
6 7 0.418 0.446 0.126 0.179 0.094 0.041 0.023 0.047
6 8 0.905 0.26 0.994 0.44 0.757 0.015 0.765 0.122
6 9 0.319 0.162 0.191 0.236 0.129 0.011 0.07 0.069
6 10 0.412 0.205 0.359 0.27 0.241 0.016 0.174 0.104
6 11 0.177 0.076 0.251 0.153 0.144 0.006 0.127 0.048
7 1 0.272 0.498 0.116 0.1 0.063 0.057 0.01 0.018
7 2 0.215 0.259 0.123 0.108 0.038 0.017 0.015 0.018
7 3 0.242 0.076 0.327 0.254 0.15 0.007 0.104 0.068
7 4 0.356 0.084 0.265 0.271 0.093 0.006 0.032 0.063
7 5 0.415 0.252 0.176 0.323 0.1 0.014 0.02 0.073
7 6 0.191 0.405 0.05 0.316 0.076 0.04 0.006 0.097
7 7 0.318 0.194 0.201 0.272 0.09 0.011 0.026 0.064
7 8 0.42 0.672 0.094 0.257 0.174 0.154 0.012 0.052
7 9 0.188 0.088 0.194 0.112 0.044 0.007 0.026 0.021
8 1 0.172 0.237 0.061 0.21 0.039 0.02 0.004 0.043
8 2 0.244 0.025 0.222 0.148 0.046 0 0.034 0.014
8 3 0.202 0.208 0.12 0.072 0.02 0.014 0.01 0.005

associated with A53 as P(H(53)
1 ) = 0.551. The reason for this has been explained in the simulation

study.

Our hierarchical model addresses multiplicities. For all other AEs without true safety signal,

the estimated P(H(b j)
1 ) are generally smaller under Bayesian hierarchical model than under solo
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Bayesian model because P(H(b j)
1 ) tend to be “shrunk” toward 0.

If we set the cut-off point p0 as 0.7, it is feasible to draw the conclusion that A53, A68, A15 have

safety signal.

3.6 Discussion

Traditional safety analysis focuses on comparing only the AE incidence between two groups, re-

gardless of the AE severity. It is probably of great interest for us to also compare the severities

of the AEs, especially when the severities of some AEs are consistently greater for one treatment

versus the other. In this article, we present a three-stage Bayesian hierarchical non-proportional

odds version of the cumulative logit model for comparing both the incidence and severity of AEs

reported in the two-arm randomized clinical trial. The proposed Bayesian cumulative logit model

is a novel extension of a Bayesian hierarchical logit model proposed by Berry & Berry (2004).

There are a few advantages of our Bayesian approach. First, the proposed model can handle the

four level ordinal categorical safety outcome that contains information about AE occurrence and

severity. Non-proportional odds assumption allows the treatment effect to vary with severity level.

Second, the use of a point-mass mixture prior is important because many of the AEs may have

same incidence and severity in both the control and treatment group. In addition, it is straight-

forward to assess the incidence and severity of all the AEs based on the posterior probability that

the incidence rate or the overall severity is greater in the treatment group. Finally, in contrast to

considering each type of AE independently in the solo Bayesian model, our Bayesian hierarchical

model addresses multiplicity because it borrows information across types of AEs, especially across

the AEs that are classified into the same group (for example, body system). Our simulation study

shows that the proposed method has low FDR and high power for detecting safety signal.

Body system allows us to exploit information across types of AEs that are related. Assignment

of AEs to different body systems may lead to different conclusions. This is the negative aspect of

the method. So it is important that we only assign types of AEs that are biologically related into a

body system. This requires the help from biological or clinical experts.
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Another limitation with the proposed method is that with small sample size, the number of

subjects under different severity level can be small, especially the number of subjects under the

severity level of severe. Some types of AEs without safety signals with respect to the third and

fourth severity level may be affected by the AE with safety signal in the same body system and

thus lead to the potential increase in the false positive rate.

Our model is based on summary (marginal) data regarding the number of subjects under each

of the severity level. In the future research, with data that contains patient level information, we can

fit a cumulative logit model with a random effect to account for dependencies among the various

AEs at the subject level. Conclusions based on the random effect model could be more precise.

The current application of our method is in a single trial setting. However, multiple clinical

trials are usually conducted on an experimental drug. The second future direction of our research

is to incorporate individual subject data from multiple studies into the model. In addition, the

proposed method is applied once to the safety data when the trial is completed. It is of great

interest to extend the proposed method to a continuous monitoring framework. Thus another future

direction is that the proposed Bayesian hierarchical cumulative logit model can be applied in a

group sequential manner for multiple interim analyses of safety events.
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Chapter 4

Interactive Tools for Blinded Safety Monitoring in Clinical Trials using

Bayesian Methods
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Abstract

Safety monitoring is critical for ongoing clinical trials and it is often conducted by an Independent

Data Monitoring Committee (IDMC) periodically based on unblinded data. As sponsors develop

novel drugs, there is an increasing need for sponsors to detect potential safety signals as soon as

possible ahead of IDMC schedule and prompt decisions regarding an unblinded analysis. A few

quantitative methods for blinded safety monitoring have been developed. The complex nature of

these methods makes the safety monitoring and reporting challenging. In this article, we develop

two interactive tools to accelerate and facilitate the process of blinded safety monitoring and re-

porting using RShiny Dashboard package in R Studio. These two interactive tools are user-friendly

and convenient for users to conduct blinded safety monitoring during the ongoing trial.

Key words: Adverse events; Bayesian model; Beta-Binomial model; Blinded safety monitoring;

Poisson-Gamma model; R-Shiny.

4.1 Introduction

Safety evaluation is one of the most important goals in clinical trials. Appropriate evaluation of

safety data during the conduct of a clinical trial ensures timely alteration or termination of the trial

to protect the trial participants from being exposed to harmful treatment and save development

costs and time.

The recent FDA draft guidance on safety assessment for Investigational New Drug (IND)

Safety Reporting (FDA, 2012, 2015) states that sponsors should develop a safety assessment com-

mittee and a safety surveillance plan as key elements of a systematic approach to safety surveil-

lance. In addition, the sponsors should oversee the evolving safety profile of the investigational

drug by evaluating, at appropriate intervals, the cumulative serious adverse events from all of the

trials in the development program and other available important safety information (e.g., findings

from epidemiological studies and from animal or in vitro testing). They should also perform un-

blinded comparisons of event rates in investigational drug and control groups, as needed.
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As summarized in Zhu et al. (2016), safety evaluation in clinical trials includes two major

areas generally referred as “safety signal detection” and “safety monitoring”. In the area of safety

signal detection, all adverse events (AEs) reported from the clinical trial are to be included in the

analysis. In a two arm clinical trial, the goal of safety signal detection is to compare the incidence

rates of many AEs between two groups and identify a potential subset of AEs with significantly

greater incidence rate in the treatment group. Simultaneously comparing the incidence rate of

many AEs causes multiplicity issues. So the major challenge is the multiplicity adjustment. Some

frequentist and Bayesian methods have been proposed for signal detection in clinical trial AE data.

See Mehrotra & Heyse (2004), Mehrotra & Adewale (2012), Berry & Berry (2004), Xia et al.

(2011), Diao et al. (2019). Some authors also have considered detecting safety signals with respect

to both the incidence and severity, for example, Klingenberg et al. (2009), L.G. Leon-Novelo &

Muller (2010), Duan et al. (2019a), Duan et al. (2019b).

The second area of drug safety evaluation in clinical trials is the examination of accumulating

data, which we refer as safety monitoring. In this area, we aims at continuously monitoring an

adverse event of special interest (AESI) that is specified upfront in the ongoing study. Zhu et al.

(2016) reviewed frequentist and Bayesian methods for safety monitoring, including Sequential

Probability Ratio Test (SPRT), a continuous sequential stopping rule by Goldman & Hannan (2001)

and a decision criterion by Thall & Simon (1994) for single arm trial monitoring. Zhu et al. (2016)

also proposed two Bayesian methods for two-arm trial safety monitoring based on the work by Yao

et al. (2013).

Safety monitoring in clinical trials is often conducted by an Independent Data Monitoring

Committee (IDMC) periodically based on unblinded data or solely by the sponsors. As sponsors

develop novel drugs and biological agents in new diseases or therapeutic areas, there is an increas-

ing need for them to monitor patient safety to detect potential safety signals as soon as possible

ahead of IDMC schedule and prompt decisions regarding an unblinded analysis, while maintaining

study blinding to minimize bias and protect the integrity of the blinded studies. For example, in

some pharmaceutical companies, a Safety Monitoring Teams (SMT) is established for reviewing
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blinded reports and listings of safety data on a regular basis and making determinations on whether

there is a change in the risk profile of the drug based on clinical judgment without preset decision

rules or criteria.

Bayesian approaches provide a natural framework to identify early safety signal for further

action without unblinding ongoing studies by incorporating prior knowledge about safety profile

of control group or background rate of events and by updating knowledge using cumulative data

from the ongoing trial. Assumptions on the safety profile of control group or background rate must

be made utilizing historical information or epidemiology data.

A few Bayesian approaches have been proposed for blinded monitoring of adverse events in

two-arm clinical trials. Ball (2011) described an approach based on pooled adverse event rate

from a two-arm randomized trial. The decision rule is that if there is a high posterior probability

given cumulative data that the pooled event rate is greater than a background rate in the literature,

then there is a potential safety signal with respect to the AE. Gould & Wang (2017) proposed a

Bayesian approach for blinded safety monitoring of two-arm randomized trials where the potential

adverse event risk levels can be estimated with different treatment effect metrics such as relative

risk, absolute risk difference, or odds ratio. Their Bayesian approach allows explicit specification

of prior beliefs (i.e., prior distributions) about the control group event rate and the treatment effect

metrics. Schnell & Ball (2016) introduced a Bayesian hierarchical exposure-time model for two-

arm blinded safety monitoring. Mukhopadhyay et al. (2018) proposed a two-step Bayesian method

for monitoring and detecting safety signals from blinded safety data for AESI.

The complex nature of these methods makes the application challenging. In order to acceler-

ate, facilitate and improve the process of blinded safety monitoring and reporting, it is necessary

to develop ready-to-use tools based on the existing safety monitoring and reporting methods. In

this article, among all the blinded safety monitoring methods, we focus on the methods proposed

by Ball (2011) and Gould & Wang (2017). We first describe the details of these two methods. In

addition, during interim monitoring of safety data, subjects with more exposure to study drug and

longer observation time may have higher risk of having an adverse event. This is not considered
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by these authors. Therefore, we further describe the extensions of these two methods by consid-

ering the exposure adjusted incidence rate. Based on these two methods and their extensions, we

develop two interactive tools for blinded safety monitoring by using RShiny Dashboard package in

R Studio. These two interactive tools are user-friendly and convenient for users to conduct blinded

safety monitoring during the ongoing trial.

The rest of the article is organized as follows. We review two Bayesian approaches for blinded

safety monitoring in Section 4.2 and Section 4.3. In Section 4.4, we describe the two interactive

tools and we provide a summary of the two interactive tools and some thoughts on future enhance-

ment of the interactive tools in Section 4.5.

4.2 Bayesian approach based on pooled rate

We briefly describe the method proposed by Ball (2011) as well as its extension with Poisson

model.

4.2.1 Binary event data - Beta-binomial model

In a two-arm randomized trial, consider an AESI, denote xn as the number of subjects who experi-

ence the AE in the pooled data at the time of interim monitoring, denote N as the total number of

subjects in the trial and θ as the pooled event rate. Ball (2011) assumed that xn follows binomial

distribution, i.e., xn ∼ Bin(N,θ). The likelihood function of the pooled event rate θ given xn is

L(θ ;xn) =

(
N
xn

)
θ

xn(1−θ)N−xn

From the Bayesian perspective, Ball (2011) assumed beta conjugate prior for the pooled event

rate θ . θ ∼ Beta(α0,β0), where α0 can be interpreted as prior number of successes and β0 as prior

number of failures. The larger the α0 +β0, the more informative the prior distribution.

The posterior distribution of θ given xn is θ |xn∼Beta(α0+xn,β0+n−xn). From the historical

information, let an event rate for control group be c1. The decision rule is that if P(θn > c1|xn)≥ P,
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where P is a high probability defined a priori, e.g., 80% or 90%, then the data may suggest a

potential safety signal that needs further investigation to determine if there is a safety signal that

warrants further action. Otherwise, we may continue the study as is. The prior is kept weakly

informative to avoid too much influence of prior information on the decision, i.e., α0+β0 is small.

4.2.2 Exposure adjusted incidence rate - Poisson gamma model

During interim monitoring of safety data, the exposure and observation time for each subject are

often different. Subjects with more exposure to study drug and longer observation time may have

higher risk of having an AE than subjects with shorter exposure and observation time. In such

situation, it is more appropriate to consider exposure adjusted incidence rate of event instead of a

simple binary event rate.

Denote λ as the pooled incidence rate per 100 subject years and E as the total follow up time

of the subjects in the trial in subject-years, or total exposure time at the time of analysis. Let γ be

the incidence rate of the pooled data during the exposure time E, which is equal to λE
100 .

We assume the number of subjects who experience the AE in the pooled data during the total

observation period of E follows Poisson distribution, i.e., xn ∼ Poi(γ). The likelihood function of

the parameter γ , the pooled incidence rate during the exposure time E is

L(γ;xn) =
γxn

xn!
e−γ

The prior distribution of the pooled incidence rate per 100 subject-years is a gamma distri-

bution, λ ∼ Gamma(α1,β1), where the parameters can be interpreted as α1 events in β1 in-

terval of time. Thus, the pooled incidence rate during the exposure time E is γ = λE/100 ∼

Gamma(α1,
100β1

E ).

Since Gamma prior distribution is a conjugate prior, the posterior probability distribution

function has a closed form. The posterior distribution for the pooled incidence rate given the

observed number of subjects who experience the AESI is thus a Gamma distribution, γ|xn ∼
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Gamma(α1 + xn,
100β1

E +1).

The decision rule is that if P(γ > c2|xn) ≥ P, there may be a potential signal alert where c2 =

α1E
100β1

and P are critical values. Further investigation is needed if the approach suggests a potential

signal before taking action with the study.

4.3 Bayesian approach based on treatment effect metrics

We briefly describe the method proposed by Gould & Wang (2017) and its extension in this section.

4.3.1 Binary event data - Beta-binomial model

In a two-arm randomized clinical trial, denote pC and pT as the incidence rate of the AESI in

the control group and treatment group respectively. Denote xC and xT as the number of subjects

who experience the AESI in the control group and treatment group respectively. Let N be the

total number of subjects in the trial and τ be the fraction of the total sample size allocated to

the treatment group. Gould & Wang (2017) assumed that xT ∼ Bin(Nτ,θT ) and xC ∼ Bin(N(1−

τ),θC). So the likelihood function of pC and pT given xC, xT , N is the product of two probability

mass functions of binomial distribution.

After reparameterization, the likelihood function can be re-expressed as a function of a treat-

ment metric M and pC given the pooled number of subjects who experience the AE (X), the number

of subjects who experience the AE in the treatment group (xT ) and the number of subjects enrolled

in the trial (N) (Gould & Wang, 2017). The treatment metric M can be risk ratio R = pT
pC

or risk

difference D = pT − pC. If the treatment metric M is risk ratio R = pT
pC

, the likelihood function of

R and pC is

L(R, pC) = fbinom(X ;N, pC)
(1−RpC

1− pC

)τN
C(xT ,X ,N,τ)

(R(1− pC)

1−RpC

)xT

where fbinom is the binomial probability mass function, and C(xT ,X ,N,τ) =
(

τN
xT

)((1−τ)N
X−xT

)
/
(N

X

)
is

a hypergeometric distribution term. If the treatment metric M is risk difference D = pT − pC, the

74



likelihood functions of the D and pC is

L(D, pC) = fbinom(X ;N, pC)
(1− pC−D

1− pC

)τN
C(xT ,X ,N,τ)

((pC +D)(1− pC)

pC(1− pC−D)

)xT

See the Appendix A.1 for the derivations of the above likelihood functions. xT is an unobserved

value. Its value ranges from 0 to X . Summing the likelihood function L over the range of xT gives

the likelihood function of M and pC given X , L(M, pC|X).

A beta distribution is used to characterize the prior belief on the control group event rate pC

(Gould & Wang, 2017). Parameters for the prior beta distributions can be selected based on his-

torical knowledge about the control group event rate from meta-analyses of previous trials or large

electronic health record databases.

If treatment effect metric is risk difference D, a uniform prior distribution defined on the interval

[−1,1] is a convenient prior. If treatment effect metric is relative risk R, lognormal distribution may

be considered for the prior, with its parameters being selected to satisfy that the mean of R equals

to 1 (i.e., no elevated AE risk associated with the test drug) and most of the probability density

lies within a wide interval, e.g., (0.1,10) if control group event rate is 5%. It is advisable to use

weakly informative prior for treatment effect so that the posterior distribution is primarily driven

by the observed event rate in the current trial under monitoring (Gould & Wang, 2017).

The joint posterior density of M given X is proportional to the product of L(M, pC|X) and the

prior density functions for M and pC. Integrating the joint posterior density of M and pC with

respect to pC yields the marginal posterior density of M, which then can be used to calculate the

posterior probability. Since the posterior probability distribution function does not have a closed

form, Gould & Wang (2017) used the grid approximation to calculate the posterior probability.

They set up a grid with a range that covers most of the density of M and pC and then sum it up by

row or column to get the marginal probability of M or pC.

The decision rule is that if P(M > Mcrit |X)≥ γcrit , there is a potential signal alert with critical

values Mcrit and γcrit . This is equivalent to that if X > Xcrit , there may be a potential signal alert
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where Xcrit is the minimum X s.t. P(M > Mcrit |X)≥ γcrit .

Implementing Bayesian approach requires complicated statistical computation and calls for

tangible presentation of the decision rules to guide regulatory and clinical in monitoring safety

events in blinded trials. Gould & Wang (2017) recommended using control charts as a monitoring

tool. In the control chart, Xcrit
N is plotted against N (the number of subjects enrolled in the trial).

If the observed X is greater than Xcrit at a given N, a potential signal for elevated risk of AE is

identified and further investigation including unblinding treatment assignment information on the

AE cases (by an internal independent team or an external DMC) may be warranted. The translation

from the decision rules to the control charts is a result of the fact that the posterior probability that

M > Mcrit is a monotone increasing function of Xcrit .

After we have obtained the critical value Xcrit , further investigation of the likelihood of observ-

ing such critical value is needed, as the model assumption may not be consistent with the truth.

(Gould & Wang, 2017) recommended that we investigate the plot of probability of observing the

critical value Xcrit given the assumptions about the control group event rate and the metric R or D.

The y axis of the plot is P(X > Xcrit |M, pC). The x axis is the critical value Xcrit . The probability

curve in the plot is a non-increasing smoothing curve.

4.3.2 Exposure adjusted incidence rate - Poisson gamma model

If the total sample size is large and the event incidence is low, Gould & Wang (2017) considered

using Poisson model. However, they assumed the exposure and observation time for each subject

are the same, which is unrealistic and may lead to biased monitoring results. Subjects with more

exposure to study drug and longer observation time may have higher risk of having an adverse

event than subjects with shorter exposure and observation time. To more accurately account for

difference in exposure time, we consider exposure adjusted incidence rate.

Denote the AE incidence rate with exposure index being 100 subject year in the control group

and treatment group as λC and λT respectively. Denote E as the total follow up time of the subjects

in the trial, or total exposure time. Thus the exposure adjusted incidence rate of control group and
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the treatment group are θC = λCE(1−τ)
100 and θT = λT Eτ

100 respectively. Assumed that xT ∼ Poi(θT )

and xC ∼ Poi(θC) (Gould & Wang, 2017). So the likelihood function of θC and θT given xC, xT is:

L(θC,θT ;xC,xT ) = fpoiss(xC;θC) fpoiss(xT ;θT )

where fpoiss is the binomial probability mass function. After reparameterization, the above like-

lihood function can be re-expressed as a function of a treatment metric M and the control group

exposure adjusted incidence rate θC given the pooled number of subjects who experience the AE

(X), the number of subjects who experience the AE in the treatment group (xT ) and the number of

subjects enrolled in the trial (N) (Gould & Wang, 2017).

If the treatment metric M is risk ratio R = θT
θC

, the likelihood function of R and θC is

L(R,θC;X ,xT ) = fpoiss(X ;(1+ξ R)θC)

(
X
xT

)(
ξ R

1+ξ R

)xT
( 1

1+ξ R

)X−xT

where ξ = τ

1−τ
and R = λT

λC
.

Gould & Wang (2017) also mentioned using risk difference, but they did not give details about

the derivation. If the treatment effect metric M is risk difference D = λT − λC, the likelihood

function of D and θC given X , xT is

L(D,θC;X ,xT ) =
θ

xT
T

xT !
e−θT

θ
xC
C

xC!
e−θC

=

(
θC +D0.5E

100

)xT

xT !
e−(θC+D 0.5E

100 ) θ
X−xT
C

(X− xT )!
e−θC

We found that τ has to be 0.5, otherwise the likelihood function cannot be reparameterized

in terms of D and θC. xT is an unobserved value. Its value ranges from 0 to X . Summing the

above likelihood function over the range of xT gives the likelihood function of M and θC given X ,

L(M,θC|X).

Assume that our prior knowledge of the control group incidence rate per 100 subject-years has
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a Gamma distribution with parameters α1,β1. λC ∼ Gamma(α1,β1). Parameters for the gamma

distribution can be selected based on historical knowledge about the control group event rate from

meta-analyses of previous trials or large electronic health record databases. Hence, the prior dis-

tribution of the incidence rate of the control group θC during the total exposure in control group is

gamma distribution with parameters α1,
100β1

E(1−τ) .

The prior distribution of R is assumed to be log-normal with its parameters selected to satisfy

that the mean of R equals to 1 (i.e., no elevated AE risk associated with the test drug) and most

of the probability density lies within a wide interval, e.g., (0.1,10). The prior distribution of

D is assumed to be normally distributed with large variance to represent non-informative prior

knowledge.

The posterior density of R can be obtained following the same steps as outlined for the preced-

ing binomial model. If we use ratio as the metric, the posterior probability distribution function

has a closed form, i.e., gamma distribution. However, if we use the difference as the metric, the

posterior pdf does not have a closed form. Same as how get the posterior probability under beta-

binomial model, we use the grid approximation to calculate the posterior probability.

The decision rule is that if P(M > Mcrit |X) ≥ γcrit , there may be a potential signal alert for

further investigation where Mcrit and γcrit are critical values. This is equivalent to that if X > Xcrit ,

there may be a potential signal alert where Xcrit is the minimum X s.t. P(M > Mcrit |X)≥ γcrit .

Same as that in beta-binomial model, we can investigate the plot of probability that the observed

X is greater than the critical value Xcrit given the assumptions about the control group incidence

rate and the metric R or D.

4.4 Interactive tools

In this section we introduce two tools developed by using R-Shiny Dashboard package in R Studio.
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4.4.1 An interactive tool based on pooled rate

The first interactive tool is developed based on the method proposed by Ball (2011). It can be used

to perform computations for posterior probability associated with the pooled event rate or pooled

exposure adjusted incidence rate of an AESI and dynamically output the conclusion about whether

the data suggest a safety signal. The tool has a side bar menu that consists of four tabs: About,

Prior visualization, Binary event rate beta binomial model and Exposure adjusted incidence rate

Poisson gamma model. See Figure 4.1. The “About” tab contains short instructions about how to

Figure 4.1: “About” tab of the first interactive tool

use the tool and descriptions about two model assumptions.

The “Prior visualization” tab is used for the overview of the prior distributions of Beta and

Gamma distribution. (Figure 4.2 and Figure 4.3). It can be used to visualize how different param-

eter values of the prior distribution affect the shape of the density and how informative the prior

is. There are two sub-tabs: “Beta distribution” and “Gamma distribution”. Each of them contains

the parameter value input boxes and the probability density function plot. For Gamma distribution,

there are two additional input boxes for determining the minimum and maximum of the x-axis. The
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probability density function plot changes dynamically as the user changes the parameter values in

the input box.

Figure 4.2: Beta distribution density plot in the “Prior Visualization” tab

Figure 4.3: Gamma distribution density plot in the “Prior Visualization” tab

The “Binary event rate - beta-binomial model” tab and “Incidence rate - Poisson-Gamma

model” tab are the main functions of the tool for safety monitoring under two different model

assumptions.

The “Binary event rate - beta-binomial model” tab is developed for safety monitoring when the

pooled number of subjects who experience the AESI is assumed to follow a binomial distribution.

80



Figure 4.4: “Binary event rate - beta-binomial model” tab in the first tool

There are two panels under this tab. See Figure 4.4. The panel with blue header is the informa-

tion input panel. There are three columns of input boxes for users to input values, including the

parameter values of the prior distribution of the pooled event rate θ , the total number of subjects

in the trial, the pooled number of subjects who experience the AESI and the critical values. After

entering the parameter values of the prior distribution, the prior pooled event rate will be calculated

and shown. To start conducting safety monitoring, click on “start computing” button. The analysis

results then show in the second panel, the graphical display panel with red header. The results

consist of a posterior density plot box and an explanation box. In the posterior density plot box,

there is a plot of the posterior probability density function of pooled event rate. The green shaded

area is the posterior probability that the pooled event rate is larger or equal to its critical value.
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The box on the right side of the panel shows the explanations of the analysis result. The

tool dynamically compares the calculated posterior probability with the posterior probability cut

point. If the calculated posterior probability is larger than the posterior cut off probability, the tool

outputs the conclusion that there may be a potential safety signal and recommend further action.

Otherwise, it outputs the conclusion that there may not be a signal alert.

The “Poisson gamma model” tab is developed to conduct safety monitoring when the pooled

number of subjects who experience the AESI is assumed to follow a Poisson distribution. There

are two panels under this tab. See Figure 4.5.

Figure 4.5: “Incidence rate - Poisson-Gamma model” tab in the first tool

The first panel with blue header is the information input panel. There are three columns of
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input boxes for the users to input values, including the parameter values of the prior distribution

of the pooled data incidence rate λ , the observed data, and the cut points. After entering the

parameter values of the prior distribution, the prior pooled incidence rate will be calculated. The

prior incidence rate and the cut point for incidence rate are both expressed in rate per 100 subject

years exposure. The tool automatically adjusts the incidence rate to account for the total exposure

E (in subject-years). The user can enter the calculated prior pooled incidence rate or twice the prior

pooled incidence rate as the cut point after discussing with clinicians. To start conducting safety

monitoring, click on “start computing” button.

The analysis results show in the second panel, the graphical display panel with red header.

The results consist of a graphical display box and an explanation box. In the graphical display

box, there is a plot of the posterior probability density function of pooled incidence rate. The

green shaded area is the posterior probability that the pooled incidence rate is larger or equal to

its critical value. The box on the right side of the panel shows the explanations of the analysis

result. The tool dynamically compares the calculated posterior probability with the posterior cut

off probability. If the posterior probability is larger than the posterior cut off probability, the

tool outputs the conclusion that there is a potential safety signal and recommend further action.

Otherwise, it outputs the conclusion that there is not a signal alert.

4.4.2 An interactive tool based on treatment effect metrics

The second interactive tool is developed based on the method proposed by Gould & Wang (2017).

It can be used to perform computations for posterior probability of the treatment effect metric of

an AESI and dynamically output the result about whether the data suggest a safety signal. The

tool has a side bar menu that consists of four tabs: About, Prior visualization, Single trial, Multiple

trials. See Figure 4.6.

The “About” tab contains short instructions about how to use the tool and descriptions about

two model assumptions. The “Prior visualization” tab is used for the overview of the prior distri-

butions of Beta and Gamma distribution, same as that in the first interactive tool.
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Figure 4.6: “About” tab of the second interactive tool

Under “single trial” tab, there are two sub-tabs: “Binary event rate - beta-binomial model” and

“Incidence rate - Poisson-Gamma model”, each of which consists of another two sub-tabs: “risk

ratio” and “risk difference”.

The tab “Binary event rate - beta-binomial model” tab is developed for safety monitoring when

the number of subjects who experience the AESI in each group (treatment, control group) is as-

sumed to follow Binomial distribution. This tab consists of two sub-tabs “risk ratio” (Figure 4.7),

for safety monitoring when risk ratio is used as the treatment effect metric and “risk difference”

(Figure 4.8), for safety monitoring when risk difference is used as the treatment effect metric.

Under each of these two sub-tabs, there are three panels.

The first panel with blue header is the information input panel. There are five columns of in-

put boxes for users to input values, including the parameter values of the prior distribution of the

risk ratio R or risk difference D, the control group event rate pC, allocation rate of treatment group,

number of subjects in the trial, pooled number of subjects who experience the AESI, some assump-

tions about the value of the parameters and the cut points. To start conducting safety monitoring,

click on “start computing” button.
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The second panel with red header is the monitoring records panel. In this panel, there is table

that shows the records of the historical monitoring conclusions that correspond to each input of the

prior information, number of subjects in the trial, critical values of the metric R or D and γ .

The analysis results of the current safety monitoring is shown in the third panel, the graphical

display panel with orange header. There are two analysis plots in this panel: control chart bound-

aries plot and the plot of the probability of observing certain number of AESI. The control chart

boundaries plot on the left side of the panel shows the plot of critical pooled event rate (critical

value of X divided by the number of subjects in the trial) versus number of the subjects in the trial.

The black dots are the corresponding critical pooled event rate. The dots are connected to illustrate

the overall trend. The red dot represents the observed pooled event rate of the current trial. If the

observed events rate is larger than the critical event rate, a label “potential signal alert” will show

next to the red dot. Otherwise, a “may not be signal alert” label will show next to the red dot.

On the right side of the panel, there is a plot that shows the probability that the observed pooled

number of subjects with the AE is greater than a certain number x under three assumptions about

the value of control group event rate and the metric R or D. There are three smoothing curves. Each

curve corresponds to one of the three assumptions about the values of R or D the user input. The

red dashed line represents the critical value of X for the current monitoring and the intersections

between the red dashed line and three smoothing curves are the corresponding probabilities of

observing a pooled number of subjects with the AE that is greater than the critical value of X under

three assumptions. These probabilities can be found in the second panel, the monitoring records

panel. Under each of the above two plots, there is a corresponding short paragraph of explanation.

The tab “Incidence rate - Poisson-Gamma model” is developed when the number of subjects

who experience the AESI in each group (treatment, control group) is assumed to follow Poisson

distribution. Similarly, this tab consists of two sub-tabs: “risk ratio”, for safety monitoring when

risk ratio is used as the treatment effect metric (Figure 4.9) and “risk difference”, for safety mon-

itoring when risk difference is used as the treatment effect metric (Figure 4.10). There are three

panels under each of the sub-tabs.
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Figure 4.7: “Risk Ratio” sub-tab under “Binary event rate - beta-binomial model” tab in the second
tool

The first panel with blue header is the information input panel. There are five columns of input

boxes for users to input values, including the parameter values of the prior distribution of the risk
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Figure 4.8: “Risk Difference” sub-tab under “Binary event rate - beta-binomial model” tab in the
second tool

ratio R or risk difference D, the control group incidence rate, observed data, true values of the

parameters and the cut points. Once we click on “start computing” button, the second panel shows
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the monitoring conclusion that correspond to the input of the prior information, number of subjects

in the trial, critical values of the metric R or D and γ .

Figure 4.9: “Risk Ratio” sub-tab under “Incidence rate - Poisson-Gamma model” tab in the second
tool

The analysis results of the current safety monitoring is shown in the third panel, the graphical

display panel with orange header. There is a plot that shows the probability that the observed
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Figure 4.10: “Risk Difference” sub-tab under “Incidence rate - Poisson-Gamma model” tab in the
second tool

pooled number of subjects with the AE is greater than a certain number x under three assumptions

about the value of control group incidence rate and the metric R or D.

4.5 Discussion

As sponsors develop novel drugs, there is an increasing need for sponsors to detect potential safety

signals as soon as possible ahead of IDMC schedule and prompt decisions regarding an unblinded

analysis. A few quantitative methods for blinded safety monitoring have been developed. The com-

plex nature of these methods makes the safety monitoring and reporting challenging. This paper

describes two interactive tools to accelerate and facilitate the process of blinded safety monitoring

and reporting. These two tools were developed using RShiny Dashboard package in R Studio and

they are convenient for users to conduct safety monitoring during the ongoing blinded trial.

The interactive tools are only to alert trial sponsors and mangers to a potential safety issue in a

principled way without compromising the blinding or integrity of the trial. Unblinding a trial has
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many consequences and it would be inadvisable to do so without substantial evidence suggesting

that it was necessary. In fact, it may not be necessary to unblind an ongoing trial to satisfy the

spirit of the recently issued FDA guidance regarding safety reporting requirements for products

still under development FDA (2015).

The performances of the interactive tools rely on two blinded safety monitoring methods. Both

methods rely heavily on the assumptions of the prior distribution of event rate or incidence rate

of the control group. They may provide biased information for interim safety decisions when the

prior distribution is mis-specified.

For the method proposed by Ball (2011), it relies heavily on the assumption that the control rate

in the study is similar to the assumed rate based on historical information. It performed reasonably

well when the rate in standard therapy is similar to or lower than the assumed rate. But if the actual

rate in the standard therapy is higher than the assumed rate, there is high chance to signal an alert

even when the experimental group rate is similar or lower than standard therapy. A more stringent

decision criterion could reduce the false positive signal, but will also reduce the sensitivity to detect

a signal. As a future research, to improve the robustness of the method to departures from control

rate assumption, one could consider imposing a prior on the control rate instead of using a fixed

number.

Similarly, for the method proposed by Gould & Wang (2017), a finding that would justify

unblinding the trial is unlikely unless the prior information provides a very precise estimate of

the control group events rate, the trial to which the method would be applied is fairly large or the

increase in risk from the test agent is substantial.

It is recommended that the study statisticians engage clinical and safety physicians early to

obtain historical information on the safety profile of the control group and discuss how to determine

other parameters for decision rules, e.g., parameters for the prior distribution, the cut point for

potential safety signals. The team will need to discuss further actions together if the tools suggest

potential safety signals.
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Chapter 5

Summary and Future Directions
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In this dissertation, we have developed two statistical methods to enhance the safety signal

detection and an R-Shiny application to accelerate and facilitate the process of blinded drug safety

monitoring in a two-arm clinical trial.

Traditional safety analysis focuses on comparing only the AE incidence between two groups,

regardless of the severity of adverse event. It is probably of great interest for us to also compare

the severity of the AEs, especially when the severities of some AEs are consistently greater for one

treatment versus the other. In chapter 2 of this dissertation, from the frequentist perspective, for

each AE we propose to use AE occurrence and severity as co-primary endpoints and to perform a

statistical test of the composite null hypothesis that the incidence rate and severity are equivalent

in the control group and treatment group. The p value of the test of the composite null hypothesis

is obtained by combining the p value of the Fisher’s exact test for AE incidence and the p value

of our proposed test for AE severity. Our test for AE severity is a novel extension of a biased

sampling model originally developed for continuous outcome by Gilbert et al. (2003). We con-

duct simulation studies to investigate the power and type I error rate of the proposed tests of the

composite null hypothesis and compare them with the test of equality of AE incidence rate. The

simulation results show that, in general, the proposed method performs as well or outperforms the

test of equality of AE incidence rate in detecting a safety signal. After obtaining p values for each

of the AEs, safety signal detection can be performed by applying a multiple testing procedure to

all the p values of to adjust for multiplicity.

Moreover, in chapter 3 of this dissertation, from the Bayesian perspective, we propose a three-

level Bayesian hierarchical non-proportional version of the cumulative logit model for detecting

safety signal with respect to AE incidence rate and AE severity. Our model allows for testing

the equivalence of incidence rate and severity for all the AEs simultaneously between the control

group and the treatment group while addressing multiplicities. The simulation results show that,

in general, the proposed method not only controls for false discovery rate but also performs well

in detecting safety signals when either the incidence rate or the severity is greater in the treatment

group.
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Finally, due to the complex nature of the current methods for blinded safety monitoring and

reporting, we have developed two R Shiny interactive tools to accelerate, facilitate and improve the

process of blinded safety monitoring and reporting in chapter 4. The interactive tool can be used

to perform computations for posterior probability of the pooled rate or treatment effect metrics and

dynamically output the monitoring result about whether the data suggest a safety signal.

There are several topics that attract our attention for future studies.

1. For the proposed frequentist method, The metric r that describes the degree of se-

lection bias is determined after we review the subjects’ characteristic information,

thus the determination of r is subjective. We may further develop methods (for ex-

ample Bayesian method) to more accurately and objectively estimate r or w(z) from

the data.

2. The proposed Bayesian hierarchical cumulative logit model is based on summary

(marginal) data regarding the number of subjects under each of the severity level.

In the future research, with data that contains patient level information, we can fit

a cumulative logit model with a random effect to account for dependencies among

the various AEs at the subject level. Conclusions based on the random effect model

could be more precise.

3. In addition, the proposed Bayesian hierarchical approach is applied once to the

safety data when the trial is completed. It is of great interest to extend the proposed

method to a continuous monitoring framework. Thus another future direction is

that the proposed Bayesian hierarchical cumulative logit model can be applied in a

group sequential manner for multiple interim analyses of safety events.

4. To accelerate and facilitate the process of safety signal detection, it would also be

interest to develop R-Shiny interactive tools based on the methods proposed in this

dissertation.
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Appendix A

Some Derivations for Chapter 4

A.1 Single binomial trial

The likelihood of the single binomial trial:

L = fbinom(xT ;Nθ , pT ) fbinom(xC;N(1−θ), pC)

=

(
Nθ

xT

)
pxT

T (1− pT )
Nθ−xT

(
N(1−θ)

xC

)
pxC

C (1− pC)
N(1−θ)−xC

=

(
Nθ

xT

)
pxT

T (1− pT )
Nθ (1− pT )

−xT

(
N(1−θ)

xC

)
pxC

C (1− pC)
N(1−θ)(1− pC)

−xC

=

(
Nθ

xT

)(
N(1−θ)

X− xT

)(1− pT

1− pC

)Nθ( pT

1− pT

)xT
pX−xT

C (1− pC)
N(1− pC)

xT−X

=

(
Nθ

xT

)(
N(1−θ)

X− xT

)(1− pT

1− pC

)Nθ( pT

1− pT

)xT
pX−xT

C (1− pC)
xT (1− pC)

N−X

=

(
Nθ

xT

)(
N(1−θ)

X− xT

)(1− pT

1− pC

)Nθ( pT/(1− pT )

pC/(1− pC)

)xT
pX

C(1− pC)
N−X

=

(
N
X

)
pX

C(1− pC)
N−X 1(N

X

)(Nθ

xT

)(
N(1−θ)

X− xT

)(1− pT

1− pC

)Nθ( pT/(1− pT )

pC/(1− pC)

)xT

= fbinom(X ;N, pC)C()
(1− pT

1− pC

)Nθ( pT/(1− pT )

pC/(1− pC)

)xT

Three reparameterizations:

pT = RpC

pT = D+ pC

Q =
pT (1− pC)

(1− pT )pC

By plugging into the above likelihood with pT represented by pC, we can get three likelihoods.
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A.2 Single Poisson trial

If the total sample size is large and the event incidence is low, then the number of adverse events ap-

proximately follows Poisson distribution with exposure rates Nθ pT and (N−Nθ)pC respectively

in treatment group and control group. Thus:

λT

λC
=

Nθ pT

(N−Nθ)pC
=

θ

1−θ

pT

pC
= ξ R

The likelihood of single Poisson trial:

L = fPoiss(xT ;λT ) fPoiss(xC;λC)

=
λ

xT
T

xT !
e−λT

λ
xC
C

xC!
e−λC

=
(λCξ R)X−xC

(X− xC)!
e−λCξ R λ

xC
C

xC!
e−λC

=
λ X

C λ
−xC
C (ξ R)X(ξ R)−xC

(X− xC)!
e−λCξ R λ

xC
C

xC!
e−λC

=
λ X

C
X!

X!
λ
−xC
C (ξ R)X(ξ R)−xC

(X− xC)!
e−λCξ R λ

xC
C

xC!
e−λC

=
λ X

C (1+ξ R)X

X!
1

(1+ξ R)X
X!

(X− xC)!xC!
λ
−xC
C (ξ R)X(ξ R)−xCe−λC(1+ξ R)

λ
xC
C

=
[λC(1+ξ R)]X

X!
e−λC(1+ξ R)

(
X
xT

)
1

(1+ξ R)X λ
−xC
C (ξ R)X(ξ R)−xCλ

xC
C

=
[λC(1+ξ R)]X

X!
e−λC(1+ξ R)

(
X
xT

)
1

(1+ξ R)X (ξ R)X−xC

= fPoiss(X ;λC(1+ξ R))
(

X
xT

)
1

(1+ξ R)X (ξ R)X−xC

= fPoiss(X ;λC(1+ξ R))
(

X
xT

)
1

(1+ξ R)X−xC

1
(1+ξ R)xC

(ξ R)X−xC

= fPoiss(X ;λC(1+ξ R))
(

X
xT

)(
ξ R

1+ξ R

)X−xC
( 1

1+ξ R

)xC

= fPoiss(X ;λC(1+ξ R))
(

X
xT

)
qX−xC(1−q)xC

= fPoiss(X ;λC(1+ξ R))
(

X
xT

)
qxT (1−q)X−xT
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