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Abstract

There is no phenomenal method practitioners can use as an appropriate tool

for model validation when sparse data are presented in multiple logistic regres-

sion models. The characteristics of sparsity, i.e. very few number of observa-

tions falling in either grouped or individual covariate patterns, will invalidate

the asymptotic chi-square distribution which requires large expected frequencies

in each group or bin. Among those tests, the Hosmer-Lemeshow (HL) is the

most well-known and widely used as the standard test in assessing logistic re-

gression models since its being introduced. However the ine�ciencies of Hosmer-

Lemeshow test has been pointed out for years, there is no dominant alternative

one emerged yet by far, and the research in assessing logistic regression model

�t when sparse data are presented is still very active. Two common methods

among a few other proposed methods, namely Copas's unweighted residual sum

of squares (RSS) and Su and Wei's & Lin's cumulative sums of residuals (CUM-

SUM), perform seemly better than the HL in some scenarios, however the limi-

tation of those studies are obvious when those alternatives were introduced: (1)

the sample size of the simulation is small (up to 500 observations), (2) the design

matrix is relatively simple (usually one continuous and one categorical predictor

variables), (3) the number of scenarios considered in their studies are limited, (4)

the simulation setups are quite subjective. Due to these reasons, there is no well-

established guideline on model validation available for statistical practitioners'

daily use when �tting a multiple logistic regression model to sparse data. A com-

mon approach is suggested to check model validation by investigating all those
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existing goodness-of-�t tests to see if they provide similar evidence of lack-of-�t.

Therefore, it is crucial to assess the performance of each method through a com-

prehensive comparative study. We designed the comparison di�erently in at least

four directions as we mentioned above: varied and expanded sample size, rela-

tively complicated design matrix, more scenarios including adding (over-�tting)

continuous/categorical predictor variables and omitting (under-�tting) main ef-

fect and /or interaction terms, and a more �exible or robust simulation setting

in terms of many randomly sampled models rather than very few pre-speci�ed

models were investigated. Furthermore, we proposed a goodness-of-�t test by

introducing a new method to partition the �tted values based on the commonly

known rules for the limiting distribution of chi-square type statistics for grouped

data, which to some extend would overcome the disadvantage of the HL test

when the expected counts in some bins are small (usually the cut-o� is set as less

than �ve). We also conducted the comparative study by including our proposed

method. We summarized the varied goodness-of-�t results in terms of empirical

level of signi�cance and power and o�ered recommendations based on our more

generalized simulation studies.
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Chapter 1

Introduction

1.1 Generalized linear models

The generalized linear model (GLM) generalizes ordinary linear regression by allowing for

response variables that have distributions in the exponential family (including simply normal

distributions), and for an function of the response variable (the link function) to vary linearly

with the predicted values (rather than assuming that the response itself must vary linearly).

The class of generalized linear models consists of three common components:

1. Random component: the probability distribution of the response variables Y1, . . . , YN ,

or Y , are assumed to be independent and to share the same distribution from the

exponential family, having means µ = (µ1, . . . , µN).

2. Systematic component: speci�es the explanatory variables (X1, X2, . . . , Xp) in the

model, more speci�cally their linear combination in creating the linear predictor,

η = Xβ, where η = (η1, . . . , ηN)T , β is the vector of unknown parameters, and

X is the design matrix.

X =



XT
1

XT
2

...

XT
N


=



x11 . . . x1p

x21 . . . x2p
... . . .

...

xN1 . . . xNp


3. Link Function, η = g(µ), such that E(Y |X) = µ = g−1(η) = g−1(Xβ), is monotonic
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and di�erentiable, which speci�es the relationship or link between the random and the

systematic components.

The outcomes modeled by generalized linear models are assumed to have distributions

in the exponential family. The generalized linear models were formulated by Nelder and

Wedderburn (1972)[1] as a way of unifying various other statistical models, including linear

regression, logistic regression and Poisson regression. Extensive treatment of generalized

linear models can be found in McCullagh and Nelder (1989) [2], Dobson and Barnett (2008)

[3], and Agresti (2012) [4].

A distribution falls into the exponential family if its distribution function of the outcome

random variable, Y , can be written in the form

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
(1.1)

where θ is the canonical parameter, which depends on the expected value of y, φ is a scale

parameter for dispersion, and b(θ) is the cumulant function, and c(y, φ) is a normalizing

term. When the chosen link function of the GLM is the same function as the canonical

parameter θ, then θ = µ and the link function is referred to as the canonical link.

The joint density function of an exponential family distribution for a set of outcomes y,

is given by

f(y|θ, φ) =
N∏
i=1

exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
(1.2)

Assuming that the observations yi's are i.i.d., the joint log likelihood for members of the

exponential family can be expressed as

l =
N∑
i=1

(
yiθi − b(θi)

φ
+ c(yi, φ)

)
(1.3)

2



1.2 Logistic regression model in the framework of GLMs

Logistic regression is just similar to multiple linear regression, which is considered as part

of GLMs, with the exception that the response variable is binomial (each individual has

two outcomes, for example, success or failure, event or non-event, usually numerically coded

as 1 or 0, in this case the response variable can be referred to Bernoulli random variable

(n = 1 in binomial distribution)). A binomial distribution is also be used to describe

aggregated data, in case of n > 1, for example when the predictor variable is categorical.

Logistic regression or a logit model is commonly used to �t binomial data and to explain

the relationship between one dependent binomial variable and one or more nominal, ordinal,

interval, ratio-level independent variables, or a mixture of them.

Logistic regression is widely used in analyzing binary responses in biomedical research

�eld for many reasons such as ease of interpretation of parameters, possibility of calculating

prognoses for the event of interest, and availability of standard software. It has been intro-

duced by many textbooks (Hosmer and Lemeshow, 1989 [5]; Neter et al, 1990 [6]; Glantz

and Slinker, 1990 [7]; Montgomery and Peck, 1992 [8]; Woolson and Clarke, 2002 [9]).

At the center of the logistic regression analysis is the task estimating the log odds of

success or an event. In logistic regression model, the dependent variable Yi for the ith

observation is often coded as 1 with a probability of success πi or 0 with a probability of

failure 1−πi, whereas the independent variablesXi = (Xi1, . . . , Xip) can take any data type

and the relationship between the predictors and the outcome variable is linear through the

3



logit link function of πi:

ηi = g(πi)

= logit(πi)

= ln

(
πi

1− πi

)

= β0 + β1xi1 + . . .+ βpxip

= Xi
Tβ (1.4)

or equivalently,

πi ≡ πi(β,Xi)

= g−1(ηi)

= E[Yi|β,Xi]

=
exp

{
Xi

Tβ
}

1 + exp
{
Xi

Tβ
} (1.5)

where Xi = [1, xi1, xi2, . . . , xip]
T denote the (p+ 1)× 1 covariate vector for the ith individual

in the sample, β = [β0, β1, . . . , βp]
T is the (p+ 1)× 1 vector of regression parameter, i.e., an

intercept and p explanatory variables.

It is straight forward to show that the binomial distribution is an exponential family

member. The probability mass function of the binomial distribution is given by

f(y|n, π) =

(
n

x

)
πy(1− π)n−y, (1.6)

and it can be rewritten in the form of exponential function as below:

f(y|n, π) = exp

{
yln

(
π

1− π

)
+ nln(1− π) + ln

(
n

x

)}
(1.7)
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with the canonical parameter θ = ln

(
π

1−π

)
, the cumulant function b(θ) = −nln(1− π), the

dispersion parameter φ = 1, the normalizing term c(y, φ) = 0. When n = 1, it becomes the

special case of the binomial distribution, i.e. the Bernoulli distribution.

Two important requirements for logistic regression are that the observations are indepen-

dent and binary, and that the logit of unknown binomial probabilities is linearly related to

the explanatory variables.

Therefore the outcome variable should be dichotomous in nature such as presence/absence

or success/failure, and there should be no high correlations (multicollinearity) among the

predictors, this can be assessed by a correlation matrix among the predictors. Tabachnick

and Fidell (2013)[10] suggest that as long as the correlation coe�cients among independent

variables are less than 0.90 the assumption is met.

1.3 The goodness-of-�t test for logistic regression model

The goal of any statistical model processing is to obtain a mathematical model that describes

the relationship between observations of the outcome or dependent variable and a collection of

independent variables. Hosmer et al. (1991) [11] describe a convenient way to conceptualize

the model is to think of the value of the dependent variable as being composed of two

parts: (1) the systematic component and (2) the error component. Then, the process of

"building" the regression model concentrates on the systematic component, attention turns

to the error component after completion of the systematic component, and the process of

examining the values of the error component is the so-called assessing the goodness-of-�t of

the model. Therefore the goodness-of-�t of a statistical model describes how well it �ts a set

of observations. Measures of goodness-of-�t typically summarize the discrepancy between

observed values and the values expected under the model in question.

Generally a goodness-of-�t statistic tests the following pair of hypotheses:

H0: the model M0 exhibits no lack-of-�t to the observed data.
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vs.

HA: the model M0 exhibits some lack-of-�t to the observed data, should seek alternative

model MA for a better �t.

Most often the observed data represent the �t of the saturated model, the most com-

plex model possible with the given data. Thus, most often the alternative hypothesis HA

will represent the saturated model MA which �ts perfectly because each observation has a

separate parameter.

The assessment of model �t is a very important component in any model processing, and

this once di�cult task of using goodness-of-�t test to assess the adequacy of �tted logistic

regression model has become a routine step in model building process after a lot of goodness-

of-�t tests being introduced and implemented to statistical software packages. Nowadays any

analysis should incorporate a thorough examination of logistic regression diagnostics before

reaching a �nal decision on model adequacy.

There are a number of ways in which a �tted model can be inadequate. For example,

the linear systemic component of the model may be incorrectly speci�ed; that is, important

covariates that should be included in the model may be omitted. or the function form of

the liner predictor may be inappropriate. The transformation of the response probability

may not have the desired relationship with the liner predictor: for instance, it may be

more appropriate to relate the linear predictor to the complementary log-log of the response

probability rather than to the logit of that probability. The assumption that the observed

response data come from a particular probability distribution may be wrong. Goodness-of-�t

tests try to evaluate how well model-based predicted outcomes coincide with the observed

data.

Similarly as when �tting a liner regression model, �tting a logistic regression model

requires one to identify potential covariates that will be included in the model. Estimation

of the coe�cients is usually achieved utilizing the maximum likelihood method (Bickel and

Doksum, 1977[12]; Edwards, 1992[13]), followed by formulating and testing a hypothesis to
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assess the signi�cance of the covariates in the �tted model.

Maximizing the likelihood of regular exponential family for a linear model (e.g. linear or

logistic regression) is equivalent to obtaining solutions to their score equations.

0 =
n∑
i=1

Si(α, β) =
∂

∂β
logL(β, α,X, Y ) = XT (Y − g−1(Xβ)). (1.8)

Where Yi has expected value g−1(η) = g−1(Xiβ). In GLM estimation, g−1() is the inverse of

a link function. A generalized estimating equation approach would specify linear models in

the following way:

0 =
∂

∂β
V −1(Y − g−1(Xβ)) (1.9)

With V a matrix of variances based on the �tted value (mean) given by µ = g−1(η) =

g−1(Xβ). In logistic regression g() would be the logit link function, and Vii would be given

by πi(1−πi) = g−1(X iβ)(1−g−1(X iβ)). The solutions to this estimating equation, obtained

by Newton-Raphson, will yield the β̂ for the logistic regression.

There are many asymptotically equivalent methods for performing the signi�cance test

on the estimated parameter β̂i, among which the likelihood ratio test, Wald test and the

score test are the most popular (Cox and Snell, 1989[14]).

One should distinguish the signi�cance test for each coe�cient from the goodness-of-�t

test. The test of β parameters provides information about covariate signi�cance in the model,

relative to overall variability seen in the dependent variable, whereas the latter provides evi-

dence to answer the question of whether the predicted values are an accurate representation

of the observed value.

Both signi�cance test and the goodness-of-�t test should also be distinguished from model

selection procedure where di�erent �tted models that are provided or explored by inverstiga-

tors are compared. While model selection procedure selects one most �tted model among a

group of potential models, the goodness-of-�t tests answer to the question: does this model

�t? In practice both of these methods should be used for model checking and model se-
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lection, because (1) even the best �tted model among the potential models may not �t the

data well; (2) even the goodness-of-�t test concludes that no evidence of the speci�ed model

lacking of �t, there may be better models available for exploration.

For example, in general, adding independent variables to a logistic regression model will

increase the amount of variance explained in the log odds, typically denoted by pseudo R2.

Hemmert et al. con�rm that an increasing number of independent variables increases the

values of all type of pseudo-R2 [15], and Allison (2014, [16]) addresses that it is possible that

adding a variable to the model could reduce the Tjur R2, note this type of R2 is recommended

by the author but it is not included in Hemmert's study. However, adding more variables to

the model can result in over�tting, which would reduce the generalizability of the assumed

model. If one claims a good model purely based on the pseudo-R2, the risks are over-�tting

issues and also the model may not be a good �t to data. In addition, since pseudo-R2 is

not a statistical test, how large is the pseudo-R2 must be to ensure a good �t is not easy to

determine (Cox and Wermuth, 1992 [17]).

Furthermore, it is worth noting that Hosmer and Lemeshow [5] argued that R2-type

measures are based on various comparisons of the predicted values from the �tted model to

those from the base model (intercept only model) and, as a result, do not assess goodness-of-

�t, and a true measure of �t should be one based on a comparison of observed to predicted

values from the �tted model. They do not recommend routine publishing of pseudo-R2 values

with results from �tted logistic models.

Unfortunately, pseudo-R2 serving as a versatile goodness-of-�t indicator for logit models

can be widely founded in empirical researches. Hoetker (2007, [18]) asserts that almost all

papers published after 2000 reporting pseudo-R2 as a measure of model �t.

A better approach is to present any of the goodness-of-�t tests available, and the measures

of goodness of �t is strictly for summarizing the discrepancy between observed values and

the values expected under the model in question. Classical goodness-of-�t tests are readily

available for logistic regression when the data can be aggregated or grouped into unique
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�pro�les�. Pro�les are groups of cases that have exactly the same values on the predictors.

For example, based on UCLA tutorial (Example 2, [19]), suppose we are interested in how the

factors, GPA and the tier of prestige of the undergraduate institution, a�ect admission into

graduate school. The response variable ADMIT, is a binary variable with values admit/don't

admit. The predictor variable GPA is a dummy variable, i.e. 1/0 for undergraduate GPA

greater than 3.5/not greater than 3.5, while the other predictor variable TIER takes on the

values 1 through 4. Institutions with a TIER of 1 have the highest prestige, while those

with a TIER of 4 have the lowest. There are then eight pro�les, corresponding to the eight

cells in the two-way cross-classi�cation of GPA by TIER. After �tting the model, we can

get an observed number of success (admit) and an expected number of success (admit) for

each pro�le. There are two well-known statistics for comparing the observed number with

the expected number: the deviance and Pearson's chi-square.

The widely used chi-square statistic was introduced by Pearson in 1900 [20] and its theory

and applications were subsequently expended by Fisher, Yates and others (Agresti, 1990[21]).

The following calculation of a statistic X2 called a "chi-square statistic" is used as a measure

of how far observed sample data deviate from a theoretical model.

Suppose the observed data are classi�ed into G exhaustive and unique bins, and the

counts whithin each bin are tabulated, the chi-square statistic has the form:

X2 =
G∑
g=1

(Og − Eg)2

Eg
(1.10)

Here, Og is the frequency of observed cases in gth bin, Eg is the frequency of expected cases

in gth bin. If the theoretical model is correct and the summation is performed over all G

bins of the data, under suitable regularity conditions and under the null hypothesis of no

lack of �t, X2 is asymptotically distributed as central chi-square with (G − k − 1) degrees

of freedom, where k is the number of predictors in the model (not counting the intercept).

The more discrepant the proposed model is from the truth (i.e. lack of �t of the proposed
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model), the larger the absolute di�erence (Og − Eg), and the larger the value of X2.

The deviance statistic stems from an examination of the likelihood ratio test. The likeli-

hood function summarizes the information that the data provide about the unknown param-

eters in a model of interest. Under the assumption of a particular form of the underlying dis-

tribution, the deviance of the model is a measure of the di�erence between the log-likelihood

of the �tted model (LLf ) and the log likelihood of the saturated model that �ts the data

perfectly (LLs), The deviance is de�ned to be

D = 2 ∗ [LLs − LLf ] = 2
G∑
g=1

Oglog

(
Og

Eg

)
. (1.11)

The deviance statistic has the same form as the likelihood ratio statistic from the logistic

regression model. Therefore, the null distribution of the deviance follows directly from a

result about likelihood ratio test. According to this result, under suitable regularity condi-

tions, the deviance has approximately a chi-square distribution when the model holds. The

degrees of freedom are J−k−1, where J is the number of distinct covariate patterns (a term

used to describe a single set of values for the covariates in a model) and k is the number of

parameters (not counting the intercept) in the model. Smaller deviance indicates better �t.

Pearson's chi-square and the deviance statistics are appropriate for grouped data. Al-

though the deviance and Pearson's chi-square statistics are routinely provided in most sta-

tistical packages, one has to be aware that their chi-square limiting null distribution is only

valid when the number of observations in each covariate pattern is large. This condition

is often unrealistic when there are a large number of categorical covariates or when the

continuous covariates are present in the model.

Hosmer and Lemeshow develop a series of goodness-of-�t test statistics to overcome

the issue when continuous covariates are present in the model. The Hosmer-Lemeshow

statistics (Hosmer and Lemeshow, 1980 [22]; Hosmer and Lemeshow, 1989 [5]) are practical

goodness-of-�t measures for general situations, including those with continuous predictors.
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The procedure is performed as follows. First,the probability of the event for each subject is

calculated based on the �tted model and the estimated probabilities are sorted in ascending

order. Second, the predictions are grouped into G bins according to the percentiles of the

estimated probabilities. Finally, the Hosmer-Lemeshow goodness-of-�t statistic is calculated

using the model's average predicted value in each bin. Either �xed cut points or data-driven

cut points (to achieve equally-sized bins) can be used, and the statistic is denoted by Ĥ, Ĉ

respectively.

Through intensive simulation studies, Hosmer and Lemeshow [22] and Hosmer et al. [23]

showed that when the logistic regression model is correct and the estimated expected values

are "large" in all bins, the distribution of both Ĥ and Ĉ with G groups or bins is well

approximated by a chi-square distribution with G− 2 degrees of freedom.

The Hosmer-Lemeshow test has become the standard test for assessing goodness-of-�t in

logistic regression and is implementated in all majoy statistical packages. Its popularity is

due to its properties: (1) it is intuitively appearling and easy to compute; (2) it has sound

support from simulation studies; (3) it is widely available in computer packages. Additionally

lack of a better approach also contributes to its popularity. In spite of being used widely for

goodness-of-�t measure in binary data situations, however the Hosmer-Lemeshow statistic

has substantial de�ciencies. It has been shown by many researchers that the test statistic

is sensitive to the choice of grouping results. A su�cient demonstration could be found in

Allison (2014) [16].

The RSS (residual sum of squares) test introduced by Copas (1989)[24] considers only

the numerator of the Pearson's Statistics, where the summation is again over the individual

observations as follows:

RSS =
M∑
i=1

(yi − π̂i)2. (1.12)

Hosmer et al. (1997) [23] show how to calculate asymptotic moments of RSS and to perform

a statistical test. Copas's RSS test is also a special case of the class of statistics considered

by le Cessie and van Houwelingen [25].
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Osius and Rojek [26] derived asymptotic moments for a general class of goodness-of-�t

statistics in logistic regression.This class, the so-called "power-divergence family" of Cressie

and Read [27], incorporates X2 and D, however, moments in closed form can only be cal-

culated for X2, A statistical test can be performed by standardizing X2 with tese moments

and computing the resulting test statistic (X2
o ) to the standard normal distribution.

Royston (1992 [28], 1993 [29]) proposed two procedures designed to detect departure

from linearity in the logit, that is the tests are designed to be sensitive to departures in

monotonicity in the logit or to detect a quadratic logit, that use partial sums of residuals.

Royston did not speci�cally advocate the use of these tests for overall assessment of goodness-

of-�t. In the case of a single covariate the Royston monotone test is identical to a test

proposed by Su and Wei (1991) [30]. Su and Wei proposed using a computationally intensive

simulation to calculate the p-value. The computations for model based on a sample size n

containing p main e�ect terms for continuous covariates are of order npR, where R is the

number of simulations performed. The accuracy of the estimated p-values is a function of R.

For example, 500 simulations are needed to estimate signi�cance at the 5% level to within

2% with 95% con�dence. In preliminary simulations the performance of Su and Wei method

of obtaining the p-value was superior to Royston's analytic approach for models containing

a single covariate.

Note how the prescribed tests di�er in their constructing principles. To our knowledge,

up to now there have only been three major simulation studies designed to investigate the

global goodness-of-�t tests in logistic regression when continuous covariates are presented,

namely Hosmer et al. (1997) [23], Hosmer and Hjort (2002) [31] and Kuss (2002) [32], and

they shared same limitation in two aspects, i.e. small sample size (N =100 and/or 500) and

simple design matrix.

In the present study we will include the Hosmer-Lemeshow, Copas's RSS and Su and

Wei and Lin's cumulative sum of residuals methods and investigate their performance under

varied sample size with expanded number of parameters in the design matrix. Further, we
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propose a new partitioning method to group the observations based on their �tted values for

logistic regression model when continuous covariates are presented. The proposed methodol-

ogy uses a straight forward partition strategy in the dependent variable space to avoid small

of estimated expected values within each bin. Speci�cally we use data-driven method to

partition groups with large enough sample size under the rule that every bin should contain

estimated expected values exceeding the benchmark value of 5. The new proposal attempts

to overcome some of the de�ciencies demonstrated in Hosmer-Lemeshow test, yet still main-

tain its applicability for a wide range of covariate con�gurations (discrete, continuous or a

mixture of them).

This thesis is organized as follows: In chapter two, an extensive literature review is

presented. Chapter three describes the proposal of a new partitioning method for goodness-

of-�t test in logistic regression modeling. Chapter four presents comparisons of empirical size

and power of lack-of-�t of the proposed test and three alternative tests under similar settings

of three published studies. In chapter �ve, we further compare test size and power of four

tests under a more generalizable set of simulation experiments. Detailed simulation plans are

deployed and simulation results are analyzed. Chapter six addresses our considerations about

computation through out this study. Chapter seven o�ers overall summary and discussion,

future work directions are included as well.
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Chapter 2

Literature Review

When all the predictions in a logistic regression model are categorical and the number of

covariate patterns is small relative to the sample size, the Pearson chi-square statistic and

deviance statistic are appropriate to use for assessing goodness-of-�t of a logistic regression

model. However, when the number of covariate patterns is large, as in the case when con-

tinuous predictors are present, di�culties arise. Extensive studies have been done on how to

assess the logistic regression model �t when sparse data are present. This chapter reviews

the literature on this topic. We include some important and popular goodness-of-�t tests

for logistic regression and the generalized linear model here, these goodness-of-�t tests are

proposed mainly for the overall measure of �t.

2.1 Introduction

In general, there are two di�erent approaches to assessing goodness-of-�t in logistic regres-

sion models. The �rst, known as residual analysis, investigates the model on the level of

individuals and looks for those observations which are not adequately described by the model

or which are highly in�uential on the model �t [33]. The second approach seeks to combine

the information on the amount of lack-of-�t in a single number. Statistical tests, so-called

goodness-of-�t tests, are then calculated to judge if this lack-of-�t is signi�cant or due to

random chance.

We can distinguish two types of goodness-of-�t tests: speci�c and global, or individual

and collective. Speci�c tests embed the logistic model in a wider class of models, say, with
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a more general link function, and check if the data at hand can be better described by the

enhanced model. If not, we stay with our �tted model. Opposed to this, global tests do not

evaluate speci�c alternatives, rather test unspeci�c hypotheses of the form "the model �ts"

versus the alternative "the model does not �t" as we addressed in Section 1.2.

On the one hand, a global test in the case of a bad model �t does not o�er any insights

on how to improve the model. On the other hand, it is dangerous to expect this from

speci�c tests. In general, a speci�c test is derived under the assumption of a single isolated

mis-speci�cation (for example, mis-speci�ed link function) that is checked in the alternative

hypothesis, but is only valid when all other aspects of the model speci�cation are correct [34].

Only in this special case will a rejection of the null hypothesis lead to an indication of how

to improve the model. A second disadvantage of speci�c goodness-of-�t tests is that they

require, at least if we consider likelihood ratio or Wald tests, the estimation of the parameters

from the enlarged model which in most cases is unfeasible with standard software [5].

Suppose we have N independent observations of the pair (yi,Xi), where yi is the di-

chotomous outcome and Xi = (1, x1i, . . . , xpi)
T is the (p + 1) × 1 covariate vector, i =

1, . . . , N. Under the logistic regession model we assume that P (Yi = 1|Xi) = π(Xi),where

π(Xi) = eg(Xi)/(1 + eg(Xi)), and g(Xi) = Xi
Tβ. Parameter estimates are usually obtained

by maximum likelihood and are donated by β̂
T

= (β̂0, . . . , β̂p). We denote the �tted values

as π̂i = π(Xi, β̂), which is the estimated probability of positive response (yi = 1) for the ith

observation. We conclude that a model �ts if

• summary measures of the distance between yi and π̂i is small

• the contribution of each pair (yi, π̂i) to these summary measures is unsystematic and

is small relative to the error structure of the model.

Hosmer et al. (1997) [23] discussed the portfolio of goodness-of-�t process in the way

forming three assumptions. They argued that the task as in examining a model's goodness-

of-�t are to determine whether the �tted model's residual variation is small, whether the
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model displays no systemic tendency and whether it follows the variability postulated by

the mode. Evidence of lack-of-�t may come from a violation of one or more of these three

characteristics. They further formed three essential components of �t in the context of a

logistic regression model as follows:

1. the logit transformation is the correct function linking the covariates with the condi-

tional mean, logit[π(X)] = Xβ

2. the linear predictor,Xβ, is correct (we do not need to include or exclude additional

variables, transformations of variables, or interaction of variables).

3. the variance is Bernoulli, var(Yi|Xi) = π(Xi)[1− π(Xi)]

The practical problem is that assumptions 1 through 3 are not mutually exclusive, which

means they may be confounded with each other. In the case of a logistic regression model,

a global goodness-of-�t test is actually checking three assumptions simultaneously.

2.2 Pearson's chi-square and deviance tests revisited

Now we consider the general case of g independent random variable Y1, Y2, . . . , Yg correspond-

ing to the number of success in g di�erent subgroups or strata, i.e. aggregated data as shown

in Table 2.1 and Yi ∼ Bin(ni, πi), i = 1, . . . , g. Then, by equation (1.7), the log-likelihood

function is given by

l(π1, . . . , πg; y1, . . . , yg) =

g∑
i=1

[
yilog

( πi
1− πi

)
+ nilog(1− πi) + log

(
ni
yi

)]
(2.1)

Under this framework of a 2 × g table, it can be shown that, when X2 is evaluated at
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Table 2.1: Frequencies for g Binomial Distributions

Subgroups
1 2 . . . g

Success Y1 Y2 . . . Yg
Failure n1 − Y1 n2 − Y2 . . . ng − Yg
Total n1 n2 . . . ng

the estimated expected frequencies, the Pearson statistic in equation (1.10) becomes

X2 =
G∑
i=1

(Oi − Ei)2

Ei
(where G = 2g)

=

g∑
i=1

2∑
j=1

(Oi − Ei)2

Ei
(here j is for success and failure groups)

=

g∑
i=1

(yi − niπ̂i)2

niπ̂i
+

g∑
i=1

((ni − yi)− ni(1− π̂i))2

ni(1− π̂i)

=

g∑
i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)
(1− π̂i + π̂i)

=

g∑
i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)
. (2.2)

which can be viewed as the weighted residual sum of squares (WRSS) and the (residual)

deviance in equation (1.11) becomes

D = 2

g∑
i=1

(
yilog

( yi
niπ̂i

)
+ (ni − yi)log

( ni − yi
ni(1− π̂i)

))
. (2.3)

One can refer to lots of textbooks for the derivative of the above formula, among those say

Dobson & Barnett (2008) [3] outlined the steps well. It can be shown these two statistics

are asymptotically equivalent (See proof in Appendix A).

More generally, we can change the g subgroups to J covariate patterns to form a J × 2

table as illustrated below without changing the conclusion.
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Table 2.2: Data classi�cation by covariate pattern for J Binomial Distributions

Covariate pattern y=0 y=1 Total

x1 O10 O11 n1

x2 O20 O21 n2
...

...
...

...
xJ OJ0 OJ1 nJ

Both Pearson statistic and residual deviance rely on the principle of comparing observed

Yi to predicted niπ̂i values and should be large if the model does not �t the data well. To

judge statistical signi�cance they are usually compared to a χ2 distribution with g − p − 1

degrees of freedom. The validity of this distribution, however, relies on the assumption of

large niπ̂i and ni(1 − π̂i), both tests show unsatisfactory behavior with sparse data, here

sparse data can be sparse group data or continuous covariates. McCullagh et al. (1989) [2]

showed that D degenerates to

D = 2

g∑
i=1

(
π̂ilog

( π̂i
1− π̂i

)
+ log(1− π̂i)

)
(2.4)

in the extreme case when every individual observation has its own covariate pattern (ni = 1),

ThenD is completely independent of the observations and contains absolutely no information

about the model �t. The Pearson statistic performs not that much better in this situation,

for it can also be shown that X2 ≈ N , and the sample size is not a sensible measure of �t

[2].

From the view of the contingency table, we know that both of the two tests require that

the number of columns in Table 2.1 must be �xed and the sample size should be large enough

such that the counts (observed and expected) in each cell all exceed some minimum number,

such as �ve, for the p value to be a valid measure of model �t. As a result, these two

test statistics may not be appropriate for continuous covariates. Kuss (2002) [32] con�rmed

existing knowledge that X2 and D are not valid goodness-of-�t tests in logistic regression

with sparse data through simulation.
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2.3 The Hosmer and Lemeshow tests

Hosmer and Lemeshow (1980, 1989 [5], [22]) developed two goodness-of-�t test statistics

for binary logistic regression model when the model contains continuous covariates. These

statistics are similar to X2 statistic, by grouping observations. One of two grouping methods

for binning group boundary cut points was applied when calculating the statistics. The group

boundary cut points are either random as driven by data or �xed as pre-speci�ed. Speci�cally

they proposed two grouping strategies based on the values of the estimated probabilities:

(1) collapse the data table based on percentile of the estimated probabilities into a pre-

determined number of bins, and (2) collapse the data table based on pre-determined �xed

values of the estimated probability. After binning data, the Hosmer-Lemeshow statistic is

de�ned as:

H =

g∑
k=1

1∑
y=0

(Oyk − Eyk)2

Eyk

=

g∑
k=1

(
(O1k − E1k)

2

E1k

+
(O0k − E0k)

2

E0k

)

=

g∑
k=1

(
(O1k − E1k)

2

n
′
kπk

+
(Nk −O1k − (Nk − E1k)))

2

n
′
k(1− πk)

)

=

g∑
k=1

(O1k − E1k)
2

n
′
kπk(1− πk)

(2.5)

Here O1k, E1k, O0k, E0k, Nk, and πk denote the observed y = 1 events, expected y = 1 events,

observed y = 0 events, expected y = 0 events, total observations, predicted risk for the kth

risk decile group. And g is the total number of groups, k is the number of collapsed groups

or bins, n
′

k is the total number of subjects in the kth group, and y is the binary responses.

With the �rst grouping method, the Hosmer-Lemeshow procedure is as follows:

1. Use the derived model to estimate the probability of the event for each subject.

19



2. Sort the estimated probabilities in ascending order.

3. Group the data into g bins based on percentiles of the estimated probabilities. For ex-

ample, if g = 10, the kth group would contain the subjects whose estimated probabilities

were between the (k−1)th and the kth deciles of the whole estimated probabilities. The

Hosmer-Lemeshow goodness of �t statistic, Ĉ, is obtained by calculating the Pearson

chi-square statistic from the g×2 table of observed and estimated expected frequencies.

4. Construct the Hosmer-Lemeshow statistic Ĉ. Let n
′

k be the total number of observa-

tions in the kth group, Ok =
∑ck

j=1 yj be the total number of observed positive responses

among all subjects who fall within the ck covariate patterns represented in the kth bin,

and π̄k =
∑ck

j=1
mj π̂j

n
′
k

be the average estimated probability of all subjects falling within

the kth bin, ck denotes the number of covariate pattterns in the kth bin and mj denotes

the number of subjetcs of covariate pattern j in the kth bin. Then with similar algebra

for H, the Hosmer-Lemeshow statistic is computed as Ĉ by using the following formula:

Ĉ =

g∑
k=1

(
(O1k − Ê1k)

2

Ê1k

+
(O0k − Ê0k)

2

Ê0k

)
=

g∑
k=1

(Ok − n
′

kπ̄k)
2

n
′
kπ̄k(1− π̄k)

(2.6)

With the second method, use of g groups results in cutpoints de�ned as the values h/g,

where h = 1, . . . , g − 1, and the groups contain all subjects with the estimated probabilities

between adjacent cutpoints. For example, the �rst group contains all subjects whose esti-

mated probability is less than or equal to 1/g, while the gth group contains those subjects

whose estimated probability is greater than (g − 1)/g. The Hosmer-Lemeshow statistic us-

ing this second approach is then calculated the same way as is with the �rst approach and

denoted as Ĥ. It is obvious that the second approach does not guarantee balanced numbers

of observations in each of the g bins.

The distribution of Hosmer-Lemeshow test statistic is a�ected by two conditions. The

�rst is that the estimates of the regression parameters are determined using likelihood func-

tions for un-grouped data. The second is that the boundaries for any group are dependent on
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the estimated parameters, and thus the groups are random (Hosmer, et al. 1980 [22]). Ap-

plying the work of Moore and Spruill (1975, [35]), Hosmer et al. showed that the asymptotic

distribution of Hosmer-Lemeshow test statistic is

χ2(2G−G− (k + 1)) +
K+1∑
k=1

λkχ
2
k(1)

where K is the number of covariates, and λk is the k
th non-zero or 1 eigenvalue of the kth

covariance matrix of the HL statistic, 0 < λk < 1, and k = 1, . . . , K.

If the hypothesized model is correct, in large samples, both Ĉ and Ĥ have approximately

a chi-square distribution with g − 2 degrees of freedom. Hosmer and Lemeshow's extensive

simulation results have shown to support this statement. The test is carried out at approx-

imate size α by rejecting the assumed model if Ĉ or Ĥ exceeds the 100(1− α) quantile of a

chi-square distribution, χ2(g − 2).

It's worth noting that some authors (for example, Yu et al. (2017, [36])) address that

the g−2 degrees of freedom of the Hosmer-Lemeshow test could be proved just according to

Theorem 5.1 in Moore and Spruill (1975) [35]. We justify that this may not be a must result

as addressed by the authors. We will investigate the degrees of freedom problem related to

the Pearson chi-square type statistics with details in chapter three.

Further research by Hosmer, Lemeshow, and Klar (1988) [38] has indicated that the

grouping method based on percentiles of the estimated probabilities is preferable to the one

based on �xed cut points in the sense of better adherence to the χ2(g − 2) distribution,

especially when many of the estimated probabilities are small. In fact if the deciles-of-risk

partitioning method is used, and the predicted probabilities in a group are either all near 0

or all near 1, the expected frequency of an event (i.e. the sum of the predicted probabilities

in that group) or of a non-event may be less than 1. This would invalidate the chi-square

approximation for the distribution of HL. Based on these results, they have subsequently

recommended grouping method one over method two. In this study we utilize method one,
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i.e. the Ĉ statistic.

An alternative to the denominator shown in equation (2.6) is obtained if we consider Ok

to the sum of independent nonidentically distributed random variables. This suggests that

we should standardize the squared di�erence between the observed and estimated expected

frequency by
ck∑
j=1

mjπ̂j(1− π̂j).

In a series of simulations Xu (1996) [39] showed that use of this alternative results in a

trivial increase in the value of the test statistic. We proved (see Appendix A.2. for the

proof) mathematically
ck∑
j=1

mjπ̂j(1− π̂j) < n
′

kπ̄k(1− π̄k). (2.7)

The establish of Hosmer-Lemeshow test is a milestone in logistic regression modeling

process and it has served as a standard method in model validation ever since its introduce.

Unfortunately, Hosmer-Lemeshow test for the goodness-of-�t in logistic regression model

have obtained criticism since its emerge on its de�ciencies. Hosmer-Lemeshow's Ĉ test

clearly has structural problems with highly granular data, the opposite of sparsity, which

contains only a relatively small number of distinct covariates. Bertolini et al. (2000) [40]

pointed out that in such cases software packages can report di�erent p values for the same

data set because of using di�erent conventions in forming the groups. Hosmer et al. (1997)

illustrated this variation in results using low birth weight data that resulted in six p values

from 0.02 to 0.16 using six di�erent statistical software packages. An even more extreme

example was reported by Pigeon and Heyse (1999) [41] who obtained p values ranging from

0.02 to 0.45 for a single data set. Bertolini et al. [40] also pointed out that Hosmer-

Lemeshow's test results may be inaccurate when the number of covariate patterns is much

less than number of subjects. The power of Hosmer-Lemeshow's Ĥ test is also limited in

cases when the estimated probabilities only span a small sub-interval of (0, 1). The degrees

of freedom would be 0, if, for example, the range of estimated probabilities is small (< 0.2).
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Hosmer and Hjort (2002) [31] and Kuss(2002) [32] have summarized further the de�-

ciencies of the Hosmer-Leleshow test: (1) its limiting distributions has not been rigorously

derived; (2) it is a conservative test and has low power to detect speci�c types of lack of �t

(such as nonlinearity in an explanatory variable); (3) it is highly dependent on how the ob-

servations are grouped; (4) if too few groups are used to calculate the statistic (for example,

�ve or less groups), it will almost always indicate that the model �ts the data.

Although these de�ciencies have been reported, the Hosmer-Lemeshow statistic is the

most widely used goodness-of-�t test for logistic regression modeling in practice (SAS In-

stitute Inc. 1995, SPSS Inc. 2003, and a good number of R packages). The availability in

statistical software packages may be one reason why the Hosmer-Lemeshow is popular. Its

popularity may also due to its properties such as: (1) it is intuitively appealing and easy to

compute; (2) it has sound support from simulation studies. Additionally, lack of a better ap-

proach also contributes to its popularity since no other methods have been put forward that

do not also have di�culties. In consequence, the Hosmer-Lemeshow test statistic remains

the standard goodness-of-�t test when evaluating the �t of a logistic regression model with

continuous covariates.

2.4 Unweighted residual sum of squares test

In 1989, Copas [24] proposed an unweighted residual sum of squares (RSS) test for testing

proportions. Here, we simplify Copas's original test statistic and provide its asymptotic

distribution under the strict binary situation.

The test statistic is:

S =
n∑
i=1

(yi − π̂i)2 (2.8)

where π̂i is the estimated probability of the positive response.

Hosmer et al. (1997) [23] show that the asymptotic moments of Ŝ can be calculated and

used to perform a statistical test. In detail, under the null hypothesis that the �tted logistic
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regression is correct in all aspects, the �rst two asymptotic moments are:

E

[
Ŝ − trace(V )

]
= E

[
Ŝ −

n∑
i=1

πi(1− πi)
]
u 0, (2.9)

and

V ar

{
Ŝ − trace(V )

}
= V ar

{
Ŝ −

n∑
i=1

πi(1− πi)
}

u dT (I −M )V d

= (1− 2π)T (W −WQW )(1− 2π), (2.10)

where d is the vector with general element di = (1 − 2πi) and V = diag(πi(1 − πi)) is the

n × n covariance matrix, M = V X(XTV X)−1XT is the logistic regression version of the

hat matrix, where X is the design matrix. Then Q = X(XTWX)−1XT , and W is the

diagonal matrix with diagonal elements as πi(1 − πi). Therefore, after substituting πi with

its estimate, i.e. π̂i, one can formulate a standardized statistic

ZCopas =
Ŝ − trace(V̂ )√

ˆV ar
{
Ŝ − trace(V̂ )

} (2.11)

to assess the signi�cance using the standard normal distribution.

If yi is the number of positive response within the ith covariate pattern rather than at

the individual level, then the test statistics S becomes
∑n

i=1(yj −miπ̂i)
2, and accordingly V

can be replaced with diag(miπi(1− πi)).

The RSS statistic is also a special case of the class of statistics considered by le Cessie

and van Houwelingen [25].

Simulation results of Kuss (2002) [32] suggested that this approach may have comparable

power to the Hosmer-Lemeshow test, but further studies of this method on a variety of model

scenarios are needed.
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2.5 Cumulative sums of residuals test

In 1991 Su and Wei [30] proposed a goodness-of-�t test for the generalized linear model based

on the cumulative sums of residuals (CUSUM). The cumulative sums of residuals is built

on partitions of �some space�, which means the ordering of yi may be determined by that of

the �tted ŷi or of the values of a covariate is required. The central idea is that under the

null hypothesis that the �tted model is correct in all aspects, then the process of summing

the residuals, yi − ŷi, should yield a function that varies, over the partition de�ning the

cumulative sums of residuals in an unsystematic manner about zero. If at any point the sum

is large in absolute value then we may have evidence of the lack-of-�t.

First the residuals under the GLM framework is de�ned as Ri = yi − g−1(XT
i β̂). With

logistic regression, g−1(XT
i β̂) = π̂i =

exp{Xi
T β̂}

1+exp{Xi
T β̂} . The cumulative sums of residuals may

be de�ned by:

d(j) =

(j)∑
i=1

(yi − π̂i) (2.12)

where i = 1, . . . , j, and j = 1, . . . , n. Note that d(n) = 0 since
∑(n)

i=1 yi =
∑(n)

i=1 π̂i = mn.

Under the assumption there is no association between the residuals Ri and the �tted

values, π̂i, or a given covariate, the d(j) will �uctuate around zero. A cumulative measure of

the distance between the observed data and the model assumed under the null hypothesis is

the discrete Kolmogorov-Smirnov statistic (recommended by Horn (1997) [42]), namely,

d = max
1≤j≤n

∣∣∣∣∣
j∑

k=1

Rσk

∣∣∣∣∣ (2.13)

where the ordering σ is a permutation of the integers 1, . . . , n.

Su and Wei consider the following statistics as an alternative version of residuals process:

Wn(t) =
1√
n

n∑
i=1

RiI(X i ≤ t), (2.14)
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where t = (1, t1, . . . , tp)
T , and I(.) is the indicator function. AndWn(t) is a function of t and

a multi-parameter stochastic process. Under the null hypothesis, we would expect that this

cumulative-sum process, based on residuals, �uctuates about 0 in a non-systematic manner.

Thus, a large value of the Kolmogorov-Smirnov type test statistic, Gn = sup
t∈1×Rp

∣∣∣Wn(t)
∣∣∣, leads

to the conclusion of model misspeci�cation.

Under mild conditions, Su and Wei proved (Section 8 Appendix) [30] that Gn has the

same asymptotic distribution as

G̃n = sup
t∈1×Rp

∣∣∣W̃n(t;β)
∣∣∣, (2.15)

where

W̃n(t;β) =
1√
n

n∑
i=1

ZiRi

{
I(X i ≤ t) + ηT (t;β)I−1(β)Xiu(XT

i β)
}
, (2.16)

and

η(t;β) = − 1

n

n∑
i=1

∂g−1(XT
i β)

∂β
X iI(X i ≤ t), (2.17)

I(β) = −∂U(β)

∂βT
, (2.18)

u(XT
i β) =

∂g−1(XT
i β)

∂β
, (2.19)

and Zi is a random sample from N(0, 1), independent of (yi,X i), i = 1, . . . , n, and U(β) is

the likelihood score function as de�ned as follows

U(β) =
n∑
i=1

u(XT
i β)X i(yi − g−1(XT

i β)). (2.20)

The proposed test based on Gn is consistent against the alternative hypothesis [30]. One

advantage of the cumulative sums of residuals test is that this procedure is asymptotically

distribution free. That is, the asymptotic null distribution of our test statistic is independent

of the underlying error distribution function. But this goodness-of-�t test is computationally
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intensive so it might not be feasible when there are many covariates.

Since Gn has the same asymptotic distribution as G̃n, the p-value of Gn, should be the

same as the p-value of G̃n, i.e.

Pr(Gn ≥ gn) = Pr(G̃n ≥ gn).

Su and Wei presented a simulation method for computing the p-value, Pr(G̃n ≥ gn),

through replacing the β, and I in W̃n with β̂ and Î, which are obtained from the observed

data respectively, then generating random samples Z1, . . . , Zn from N(0, 1) independently

and computing W̃n repeatedly to estimate Pr(G̃n ≥ gn). Based on their simulation studies,

Su and Wei claim that this large sample approximation to the null distribution of Gn is fairly

satisfactory for moderate sample sizes.

The computation of goodness-of-�t tests based on the cumulative sums of residuals is

time consuming. The reason is that, to compute I(Xi ≤ t), the indicator function in Wn(t),

we need to consider all the possible combinations of t = (t1, . . . , tp)
T in multidimensional

space. Therefore, one e�cient way to compute the p-value of Wn(t) is using Monte Carlo

optimization. The p-value is de�ned as the proportion of Monte-Carlo simulations for which

Monte Carlo optimization is a computational algorithm that relies on repeated random

sampling to compute the results. It maybe due to the reason that the algorithm of calculating

the p value for the CUSUM test is not as straight forward as alternative tests, the CUSUM

test is not applied and investigated as widely as other goodness-of-�t tests.

Pan and Lin (2002) [43] proposed two new cumulative sums of residuals goodness-of-�t

tests based on Su and Wei's work [30]. We introduce them as follows.

Let xk =∞ for all k 6= j, then Wn(t) can be simpli�ed as

Wj(t) =
1√
n

n∑
i=1

RiI(xij ≤ t) (2.21)
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where xij is the j
th component of Xi, t ∈ R. The corresponding test statistic is

Gj = sup
t∈R
|Wj(t)|. (2.22)

Letting the indicator function I(.) be I((XT
i β̂i) ≤ t), t ∈ R. Then, we have

Wg(t) =
1√
n

n∑
i=1

RiI((XT
i β̂i) ≤ t) (2.23)

and the corresponding test statistic is

Gg = sup
t∈R
|Wg(t)|. (2.24)

The p-values of Gj and Gg are still computed based on G̃n in (2.15), but with the original

indicator function replaced by I(xij ≤ t) and I((Xiβ̂i) ≤ t), respectively. The �rst Wj(t) is

designed to test the functional form of one particular covariate xi, i = 1, . . . , p. The second

Wg(t) is more informative about the link function, but in fact this procedure is sensitive to

any alternative that leads to incorrect speci�cation of the marginal mean, including the link

function, the functional form of the response variable, the linear predictor in GLM and the

conditional linear predictor in GLMM (generalized linear mixed models) [43] [44].

One advantage of the cumulative sums of residuals test is that this procedure is asymp-

totically distribution free, that is, the asymptotic null distribution of the test statistic is

independent of the underlying error distribution function, but this goodness-of-�t test is

computationally intensive, so it might take very long time or even not be feasible to run the

test when there are many covariates.

In our work, we will focus primarily on the performance of the supremum test statistic

Gg since it can accesses the overall lack of �t of the �tted model. Simulation studies suggest

that Gg has reasonable power against model misspeci�cation such as the functional forms of

covariates and omitted interaction terms [44].
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2.6 Other goodness-of-�t tests

2.6.1 Stukel's generalized logistic regression method

A class of generalized logistic regression models proposed by Stukel (1988) [45] provides a

convenient model amenable to testing the adequacy of the �tted logistic model. The Stukel

model uses a logit function with two additional parameters α1 and α2, thereby allowing

either for asymmetry in the curve or for a di�erent rate of approach to the (0,1) bounds.

The usual linear logistic model results when α1 = 0 and α2 = 0. The logistic model can be

tested against this more general model by a simple procedure.

Let η̂i be the linear predictor from the �tted model with the link function g() as shown

in equation (1.4), that is, η̂i = g(π̂i|xi) = xi
T β̂ where xi is the vector of covariate values for

individual i and β̂ is the vector of estimated coe�cients. Then de�ne two new variables z1

and z2 based on η̂ as follows:

z1 =
1

2
η̂2 if η̂ ≥ 0, otherwise z1 = 0 (2.25)

z2 = −1

2
η̂2 if η̂ ≤ 0, otherwise z2 = 0 (2.26)

Add these two variables to the logistic regression model and test the null hypothesis that

both of their corresponding coe�cients α1 and α2 are equal to 0.

It is noticeable that the proposed generalization separates the standard logistic curve, in

sigmoid shape, at the point of π = 0.5, which is equivalent to η = 0. Two shape parameters

α1 and α2 govern the behavior of two tails of the curve respectively. When α1 = α2,

the corresponding probability curve π(η) is symmetric, when α1 6= α2, the two tails are

asymmetrical. The larger absolute value of α1 and α2 indicates the larger deviation from the

standard sigmoid curve as illustrated in Figure 1b of Stukel [45].

Under the proposed generalization, the ordinary logistic model has α1 = α2 = 0. Stukel

[45] further noted that α1 = 0.62, α2 = −0.037 gives the log-log and complementary log-log
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model; α1 = α2 = 0.165 gives the probit model. Therefore, these two parameters allow the

generalized logistic model to be either symmetric or asymmetric with tails either lighter or

heavier than the case with the ordinary logistic model.

To investigate the characteristic of the test statistic, let β be the vector of coe�cients

of the original logistic regression model and l(β, α1, α2) be the log-likelihood function from

n observations for the newly generalized logistic regression model. Then sT = (s1, s2) =

(∂l/∂α1, ∂l/∂α2) is the score function evaluated at (β̂, 0, 0). Under the null hypothesis, the

test statistics sTV ar(s)−1s has an asymptotic χ2(2) distribution. Therefore Stukel proposed

a two-degree-of-freedom score test that assesses the tails of the logistic regression model.

Hosmer and Lemeshow (1997) [23] argued that it's not a real goodness-of-�t since the test

statistics are not based on residuals, However, they do agree that this method in general is

more powerful in detecting lack-of-�t than the known methods in many situations. However,

the performance of Stukel's score test with more complicated models is not clear.

Hosmer and Lemeshow (2000) [5] recommended the partial likelihood ratio test statistic

can be used instead of the score test. The test statistic is in the following form:

ST = −2l(X)− (−2l(X,Z)),

where l(X) and l(X,Z) are the maximum log-likelihoods from the assumed model and

generalized model, respectively. ST has an asymptotic chi-square distribution with two

degrees of freedom under null hypothesis.

It's worth noting that in 1982, Brown [46] developed a di�erent two-parameter score test,

which is so-called Brown's score test, based on an extended logistic regression model proposed

by Prentice (1976) [47]. A comparison of the Prentice model to the Stukel model [45] showed

that both o�er the same level of �exibility in terms of generating alternative models, but

Stukel's generalized logistic model is analytically easier to use. The latter does not need

the integration work, whereas it's required with the Prentice model. Stukel's approach also
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provides the expressions for the variables that are needed to carry out Brown's score test.

2.6.2 Smoothed residual based test

The idea of smoothed residuals is to compare a `smoothed' value of the outcome variable

for each subject (which is a weighted average of the y values for other subjects `near' the

subject) to a similarly smoothed estimate of the logistic probabilities. The idea of `nearness'

is de�ned as a distance measure in the x space as suggested by le Cessie and van Houwelingen

(1995) [25], or it can be in the y space, and the bandwidth determines the size of the region

over which the residuals are averaged. The weight function is de�ned using the uniform

kernel for the x space by le Cessie and van Houwelingen (1991) [48], another common weight

is a cubic weight in the y space introduced by Hosmer and Lemeshow (1997) [23].

1. The x space weight:

• wij = the distance between subject i and j = Πp
k=1u(xik, xjk), where

u(xik, xjk) = 1 if |xik − xjk|/sk ≤ cu or equals to zero otherwise. sk is the sample

standard deviation of xik, i = 1, ..., n, and xi = (xi1, . . . , xip)
T is the ith observed

covariate vector.

• le Cessie and van Houwelingen recommend setting cu so that about
√
n subjects

have non-zero weights. One recommended value of cu by the authors is given by

cu = 1
2
(4/n1/(2p)).

2. The cubic weights in the y space:

• wij = 1− (|π̂i − π̂j|/cci)3 if |π̂i − π̂j| ≤ cci and wij = 0 otherwise.

• The constant cci depends on i and is chosen such that
√
n weights are non-zero

for each subject.

Then the smoothed standardized residuals are given by r̂si =
∑n

j=1wij r̂j, here r̂j =

(yi − π̂j)/
√
π̂j(1− π̂j), the wij's are de�ned as previously. The test statistic is given by:
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T̂r =
n∑
i=1

r̂2si
ˆvar(r̂2si)

(2.27)

Then the p-value of the statistic can be evaluated using either a normal approximation

or an easily computed scaled chi-square distribution.

Although the method, based on sums of squares of smoothed residuals, avoids the prob-

lems of the various grouping methods, it does have the disadvantage that results can depend

on the choice of the bandwidth. Its performance was found by Hosmer, et al. (1997) [23]

to be similar to that of the Hosmer-Lemeshow test at detecting departures from the true

model. However, its Type I error rate was higher than expected in some settings.

2.6.3 Scaled Pearson's chi-square test

Osius and Rojek's (1992) [26] derived a large-sample normal approximation to the Pearson

chi-square test statistic, which is usually referred to the scaled Pearson chi-square. They

derived asymptotic moments for a general class of goodness-of-�t statistics under sparseness

assumptions. A statistical test can be performed by standardizing X2 with these moments

and comparing the resulting test statistic to standard normal. This class incorporates both

Pearson's chi-square X2 and the residual deviance D, but moments in closed form can only

be calculated for Pearson's chi-square X2. Osius and Rojek describe the major steps to

construct the scaled Pearson's chi-square statistic as follows:

1. Let J denote the number of possible distinct values of covariate vector X. Denote the

number of subjects with the jth covariate pattern X = xj by mj, j = 1, . . . , J .

2. Denote the �tted values from the model as π̂j, create a random variable w with its jth

value as wj = mjπ̂j(1− π̂j).

3. create a random variable u with its jth value as uj =
1−2π̂j
wj

.

4. Compute the Pearson chi-square statisticX2 as in equation (2.2), i.e.,X2 =
∑J

j=1
yj−mj π̂j

wj
.
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5. Conduct a weighted linear regression of u on X, the model covariates, with weight

w. Let WRSS denote the weighted residual sum-of-square from this regression in J

dimensions.

6. Let A denote the correction factor for the variance, and A = 2(J −
∑J

j=1
1
mj

), let p

denote the number of unknown parameters. Construct the standardized test statistic

as

z =
X2 − (J − p− 1)√

A+WRSS
. (2.28)

This �nishes the construction of the scaled Pearson's chi-square statistic, and the test sig-

ni�cance can be obtained against the standard normal distribution.

Two more goodness-of-�t tests are derived similarly by �nding the asymptotic moments

for Pearson's chi-square statistic X2. One is proposed by McCullagh (1985, [49]), the other

is proposed by Farrington (1996, [50]). We introduce them brie�y below.

McCullagh [49] followed the same idea as Osius and Rojek considered to derive asymp-

totic moments for X2, but he argued for using conditional asymptotic moments for X2 given

the parameter estimates β̂. This approach conditioning on a su�cient statistic of the pa-

rameter estimates removes the dependency of X2 from β̂, and accounts for the fact that

the parameters from the logistic regression model have been estimated and were not �xed in

advance. McCullagh also formed a standardized statistic and the p value can be obtained

by comparing the standardized X2 to the standard normal distribution.

Farrington [50] also based his approach on the conditioning principle as McCullagh pro-

posed, but he further investigated a family of generalized Pearson statistics which extend

X2 by an additive constant. The modi�ed X2 statistic is as follows:

X2
F =

N∑
i=1

(yi −miπ̂i)
2

miπ̂i(1− π̂i)
+

N∑
i=1

−(1− 2π̂i)

miπ̂i(1− π̂i)
(yi −miπ̂i) (2.29)

Farrington claimed that it has minimal variance in this family and has the property of
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local orthogonality to β̂. Since the Farrington statistic removes the dependence of the distri-

bution of the test statistic on the bias of the parameter estimates and thus can be considered

as an improvement of the McCullagh method. Farrington addressed the advantage of the

modi�ed Pearson statistic X2 is the simplicity of its �rst three moments after incorporating

a degrees-of-freedom correction, and all moment tend to those of the χ2 distribution on n−p

degrees of freedom in the limit as µi →∞ or mi →∞. Therefore the approximate moments

for X2
F can be calculated in closed form and the standardized statistic can be compared to

the standard normal distribution. However, the Farrington test has its structural de�ciency

in the case of extreme sparseness. For example, in the case of continuous covariate presented

in the model, when mi = 1 for all i, X2
F = N , and the test will never reject the null hypoth-

esis of a good �t. Thus, under the situation with continuous covariates included in logistic

regression models, Farrington's test won't be an appropriate choice for the lack of �t test in

general.

2.6.4 Two-stage Hosmer and Lemeshow tests

Pulkstenis and Robinson (2002) [51] proposed a two-stage modi�cation of the Hosmer�Lemeshow

test. At the �rst stage the individual observations are grouped according to a cross-classi�cation

of all categorical covariates in the model, and at second stage they are split according to

the median estimated probability of the within the newly de�ned groups. Analogous to the

Hosmer-Lemeshow test, an ordinary Pearson test or the deviance is then calculated to com-

pare expected and observed counts in the resulting contingency table. This model requires

sorting all responses by model-based �tted probabilities within each unique covariate pattern,

and then creating two subcategories within each covariate pattern, by splitting the category

to two based on the median of �tted probabilities. Based on such de�ned sub-grouping, the

proposed test statistics, X∗2 and D∗, are given by
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X∗2 =
G∑
i=1

2∑
h=1

2∑
j=1

(Oihj − Eihj)2

Eihj
(2.30)

D∗ = 2
G∑
i=1

2∑
h=1

2∑
j=1

Oihjlog
Oihj

Eihj
(2.31)

where i indexes covariate patterns, h indexes the substrati�cation due to ordering by �tted

probabilities, and j indexes columns. The degrees of freedom for these statistics are obtained

by modifying the degrees of freedom for the regular Pearson and deviance chi-square statistics

given by G − k − 1, where G is the number of rows in the cross-classi�cation of Table 2.2,

where the notation is J instead, and k is the number of covariates in the model. The degrees

of freedom for X∗2 and D∗ are given by 2G− k − 2, where 2G refers to the number of rows

in the new strati�cation splitting each row of Table 2.1 and k is the number of categorical

variables in the model. The degrees of freedom are also analagous to the G− 2 suggested by

the Hosmer-Lemeshow test, but subtract k additional degrees of freedom due to the modeled

covariates de�ning the groups.

This approach is proposed to detect omitted interaction between a continuous vari-

able and categorical variable, but also to incorporate the full design structure into the

process. The authors showed by simulation that their tests are superior to the standard

Hosmer�Lemeshow test. However, the requirement of both categorical and continuous co-

variates in the model, due to the construction principle of the proposed test statistics, is

considered a weakness of this method.

2.6.5 Di�erent partition methods

2.6.5.1 Tsiatis's score test

Tsiatis (1980) [52] introduced a score test statistic that can be used to evaluate the �t of

a binary logistic regression model with continuous covariates by partitioning the covariate

space for grouping. First, the covariate space is partitioned into G distinct regions without
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reference to the estimated parameters or observed data, then an augmented logistic model is

introduced that gives the conditional probability of a successful outcome, given the observed

values of the covariates, as

π(x, I) =

exp

{
xβ +

∑G
g=1 γgI

(g)

}
1 + exp

{
xβ +

∑G
g=1 γgI

(g)

} (2.32)

where
{
I(1), . . . , I(g)

}
are a set of indicator functions that are de�ned as I(g) = 1 when

covariates lie in it the gth region, and I(g) = 0 otherwise, and
{
γ1, . . . , γG

}
is the set of

additional coe�cients associated with each of the G indicator functions. Tsiatis's goodness-

of-�t statistic tests the null hypothesis that γ = (γ1, . . . , γG) = 0, which means the null

model is

π(x) =
exp{xβ}

1 + exp{xβ}
(2.33)

is the best �t to the data out of all of the possible instances of the augmented model. Here,

the γ are considered the parameters of interest and the β are considered nuisance parameters.

The Tsiatis statistic is T = STV −S, where S is a G-dimensional column vector, with

general elements Sg = ∂l
∂γg

, g = 1, . . . , G. l notates for the log likelihood, and V − is any

generalized inverse of the G × G covariance matrix, here V is not full rank (Tsiatis 1980)

[52].

Although partitioning in the covariate space overcomes some of the shortcomings of

grouping methods that only look for discrepancies in the direction of the logit, it also su�ers

from some de�ciencies. Tsiatis did not indicate how the partitioning of the covariate space

should be accomplished. No methods are speci�ed for determining what number of partitions

to use, nor how they should be chosen. Su,et al. (1991) [30] point out that tests that partition

the covariate space, including the Tsiatis test, can draw di�erent conclusions when di�erent

partitions are applied. They give several speci�c examples, one of which shows the Tsiatis

statistic, given two choices of partitioning, resulting in p values of 0.04 and 0.38. Lin et al.
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(2002) [43] also point out that �the partition of the covariate space is arbitrary and di�erent

partitions may result in con�icting conclusions�.

An alternative goodness-of-�t test statistic developed by Pigeon and Heyse [41] by com-

bining characteristics of the Hosmer-Lemeshow and Tsiatis test statistics is a chi-square test

denoted by J2. To account for the heterogeneity of the predicted probabilities within par-

titioned groups they multiply the Hosmer-Lemeshow Ĉ by a �correction term�. Canary et

al. (2017) [53] compare it with the Hosmer-Lemeshow test and the Tsiatis's score test, and

found it did not outperform over the Hosmer-Lemeshow test.

2.6.5.2 Clustering-based partition methods

Xie et al. (2008) [54] apply a partitioning strategy based on clustering in the covariate space

to both a Pearson chi-square type statistic and a score statistic. The clustering method

identi�es regions within the covariate space where observations are close, as de�ned using

a criterion such as Euclidean or Mahalanobis distance. They point out that this method

has the advantage that observations within these groups will have similar covariate pro�les.

They state that both of their statistics should have asymptotic distributions that are between

χ2(G−k− 1) and χ2(G− 1), where k is the number of covariate values. They use the rubric

G = 10 if k < 5 , and G = k + 5 if k ≥ 5, applied to df = g − k/2− 1 for the Pearson chi-

square type statistic, and df = g− 1, which is the rank of the conditional covariance matrix

of the scores. They compare the performance of their statistics to that of the original HL ,

which uses the deciles-of-risk grouping method. Both HL and their Tsiatis-like score statistic

maintained the test size more consistently, while their Pearson chi-square type statistic was

conservative. Both of their test statistics had more power than HL to detect departures from

a true underlying model.

Dreiseitl, et al. (2012) [55] propose a strategy to overcome the problem of detecting lack

of �t in a region in the covariate space by using the Pigeon-Heyse statistic (Pigeon, et al.

[41]), which is reported to have an asymptotic chi-square with G − 1 degrees of freedom,
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and applied a grouping method based on clustering. Three strategies they tested were

based on (1) clustering with self-organizing maps; (2) clustering with a k Hmeans algorithm;

and (3) random assignment of data points to groups. In their simulations, they varied the

dimensionality of the data. The simulation study was small with data limited to 20 data

sets. They report that their approach does aid in locating regions of poor calibration in the

data space, although with such small samples this result is not very strong.

White (1982) [56] develop a test from a very di�erent perspective to address the problem

of lack of �t test. The test statistic involves the information matrix, thus it's called the

information matrix test. This method is proposed as a general approach to testing for

model misspeci�cation by comparing two di�erent estimates of the covariance matrix of

the parameter estimates (the negative inverse of the information matrix), one constructed

from the hessian of the log likelihood function, the other constructed using the mean (�rst

derivatives of the log-likelihood function) of the contributions to the outer products of the

gradient (second derivatives) of the log likelihood function, but the limiting distribution of

the test statistic presents departure from the asymptotic χ2 approximation to it. Kennan

and Neumann (1988) and others ([57], [58]) suggest that the χ2 approximation can be poor

even in what are normally thought of as quite large samples.

We list out a great number of the existing goodness-of-�t tests designed to be suit for

assessing the logistic regression model when sparse data are presented in the assumed model

from the literature. This review presents a dynamic research �eld where various strategies

have been proposed to detect the lack of �t in logistic regression, an important modeling

approach in medical research. We can see those tests address the model validation from

di�erent angles and they all have their own merits and demerits. It seems no one method is

phenomenal or outperformed over others in all scenarios. In consequence, when considering

model validation strategy after �tting a proposed model, practitioners are often to some

extend being confused by the various choices.
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Chapter 3

Asymptotic Theorem Guided New Partitioning Method

for Goodness-of-�t Test

3.1 Introduction

In this research project, we propose a well-acceptable strategy to partition the observations

based on expected frequencies and to form a goodness-of-�t test based on this partition

strategy. We proposed to use the Pearson chi-square for the test statistic. This method

is very general and allows for the assessment of the goodness-of-�t for logistic regression

models with all kinds of covariate con�gurations. Since ordinary Pearson chi-square tests

work well when all the covariates are categorical and when the number of cross-classi�cations

of categorical covariates is not too large relative to the sample size. Our research project

will only focus on the situation when continuous predictor variables are presented.

Our grouping strategy is motivated by at least two considerations. One is the preferable

rule about grouped frequency data, i.e. the expected frequencies should be greater than 5

to make the null chi-square distribution valid, the other is related to the drawbacks of the

Hosmer-Lemeshow test, which can possibly break the rule, especially when there are rare of

either events or non-events.

3.2 Asymptotic theorem: Pearson chi-square goodness of �t test

When we conduct Pearson chi-square goodness-of-�t test using X2 similar as shown in (1.10)

for mutually exclusive G grouped frequency data, i.e. frequency data in one categorical vari-
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able with G levels, we actually form a series of G dependent Z2-type statistics. Dependency

here means that once the frequencies of the �rst G − 1 groups are speci�ed, the frequency

of the last G group is �xed due to the sum of all frequencies is N.

The term �goodness-of-�t� is used to determine whether sample data are consistent with a

hypothesized distribution, in other words, to determine whether observed sample frequencies

di�er signi�cantly from expected frequencies speci�ed in the null hypothesis. X2 is formu-

lated to the goodness-of-�t test statistic, intuitively the limiting distribution of X2 can be

approximated by χ2(G − 1). We form the following proposition to address the asymptotic

distribution of X2 mathematically.

Proposition: Let X2 be the random variable as
∑k

i=1
(ni−nπi)2

nπi
for k mutually exclusive

classes, we have that X2 converges in distribution to χ2 distribution with k − 1 degrees of

freedom. i.e.

X2 =
k∑
i=1

(ni − nπi)2

nπi

d→ χ2(k − 1) as n→∞. (3.1)

where ni is a random variable which denotes the number of sample Y 's falling in to class i,

i = 1, · · · , k, and πi is a constant parameter which denotes the probability of a sample Yl

falling in to class i, l = 1, · · · , n, such that π1 + · · ·+ πk = 1.

Proof : Let's de�ne random variables I(Y1 ∈ class i), . . . , I(Yn ∈ class i) that indicates

whether each sample Yl is in class i or not be coded as 1 or 0 respectively, and the random

variable has Bernoulli distribution B(πi) with probability of success (i.e., in class i). Then

E[I(Yl ∈ i)] = P(Yl ∈ i) = πi

and variance

V ar(I(Yl ∈ i)) = πi(1− πi).
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By the Central Limit Theorem, the random variable

ni − nπi√
nπi(1− πi)

=

∑n
l=1 I(Yl ∈ i)− nπi√

nπi(1− πi)

=

∑n
l=1 I(Yl ∈ i)− nE[I(Yl ∈ i)]√

nV ar(I(Yl ∈ i))
d→ N(0, 1) as n→∞. (3.2)

i.e. converges in distribution to N(0, 1). Therefore the random variable

ni − nπi√
nπi

d→
√

1− πiN(0, 1) = N(0, 1− πi) as n→∞. (3.3)

Let Zi stand for the random variable, i.e. Zi = ni−nπi√
nπi

=
√
n (ni/n)−πi√

πi
, the Central Limit

Theorem states that the vector Z converges in distribution to N(0,Ω), a multivariate normal

distribution. We will �nd the covariance matrix Ω next.

To compute the covariance between Zi and Zj is equivalent to compute the covariance

between ni−nπi√
nπi

and
nj−nπj√

nπj
, which is

Cov(Zi, Zj) = E[(Zi − E(Zi))(Zj − E(Zj))]

= E[ZiZj] (since E(Zi) = E(Zj) = 0)

= E

[
ni − nπi√

nπi
× nj − nπj√

nπj

]
=

1

n
√
πiπj

{
E[ninj]− E[ninπj]− E[njnπi] + n2πiπj

}
=

1

n
√
πiπj

{
E[ninj]− nπjE[ni]− nπiE[nj] + n2πiπj

}
=

1

n
√
πiπj

{
E[ninj]− nπjnπi − nπinπj + n2πiπj

}
=

1

n
√
πiπj

{
E[ninj]− n2πiπj

}
. (3.4)
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Since one sample can only be included in one class, we have

I(Yl ∈ i)I(Yl ∈ j) = 0 (3.5)

Thus,

E[ninj] = E

[
(
n∑
l=1

I(Yl ∈ i))(
n∑
l′=1

I(Yl′ ∈ j))
]

= E

[ n∑
l,l′

I(Yl ∈ i)I(Yl′ ∈ j)
]

= E

[∑
l=l′

I(Yl ∈ i)I(Yl′ ∈ j)
]

+ E

[∑
l 6=l′

I(Yl ∈ i)I(Yl′ ∈ j)
]

= 0 + E

[∑
l 6=l′

I(Yl ∈ i)I(Yl′ ∈ j)
]

(by (3.5))

= n(n− 1)E[I(Yl ∈ i)]E[I(Yl′ ∈ j)]

= n(n− 1)πiπj. (3.6)

Plug (3.6) to (3.4), we have

Cov(Zi, Zj) =
1

n
√
πiπj

[
n(n− 1)πiπj − n2πiπj

]
=

1

n
√
πiπj

(−nπiπj)

= −√πiπj. (3.7)

Therefore, the covariance matrix of the vector Z is given by
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Ω = Cov(Z) =



1− π1 −√π1π2 ... −√π1πk

−√π1π2 1− π2 ... −√π2πk
...

... ...
...

−√π1πk −
√
π2πk ... 1− πk


(3.8)

Let π = (
√
π1, . . . ,

√
πk)

T be the k dimensional probability (column) vector, then Ω can

be rewritten as:

Ω = Ik − ππT . (3.9)

where I is the k dimensional identity matrix.

From equation (3.8) we can easily �nd the trace of Ω, i.e.

trace(Ω) = 1− π1 + . . .+ 1− πk = k −
k∑
i=1

πi = k − 1. (3.10)

We can also get it by using the linearity and the commutativity property of the trace as

follows.

trace(Ω) = trace(Ik − ππT ) = trace(Ik)− trace(ππT ) = k − trace(ππT ).

Noticing that trace(ππT ) =
∑k

i=1 πi = 1, then we have trace(Ω) = k − 1.

It can also be shown that Ik − ππT is an idempotent matrix.

(Ik − ππT )2 = (Ik − ππT )(Ik − ππT )

= Ik − ππT − ππT + ππTππT

= Ik − 2ππT + ππT (since πTπ =
k∑
i=1

πi = 1)

= Ik − ππT . (3.11)

Therefore, Ω is a projection matrix of rank equal to its trace k − 1. Immediately we get
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that Ω has k − 1 eigenvalues equal to 1, one eigenvalue equals to 0, which also implies that

the vector Z converges in distribution to N(0,Ω∗), a k− 1 dimensional multivariate normal

distribution.

Furthermore, there exists a rotation matrix A that makes

AΩAT =



1 0 ... 0 0

0 1 ... 0 0

...
... ...

...
...

0 0 ... 1 0

0 0 ... 0 0


=

 Ik−1 0(k−1)×1

01×(k−1) 01×1

 (3.12)

where 0i×j is the i rows by j columns matrix �lled with 0, particularly 01×1 = 0.

Denote W = AZ ∼ Nk(0,AΩAT ). Then W is a vector (W1, . . . ,Wk−1, 0) of i.i.d.

N(0, 1) Gaussians with only k − 1 non null coordinates (the �rst k − 1 coordinates). The

function f(Z) = Z2
1 + Z2

2 + . . . + Z2
k is the norm square, i.e. ||Z||2, and it is invariant if

we rotate its argument. This means f(Z) = f(AZ) = f(W ) = W 2
1 + W 2

2 + . . . + W 2
k−1 is

chi-square distributed with k − 1 degrees of freedom. This completes the proof.

In the above proposition, n → ∞ is a required condition by applying the Central Limit

Theorem appropriately (refer to (3.2), (3.15)), but it is hard to justify in reality. A more

practical and general rule of thumb is that the sample size n is "su�ciently large" if

nπi ≥ 5, and n(1− πi) ≥ 5. (3.13)

If the requirements are satis�ed, then when the null hypothesis is true, the CDF of X2 is

closely approximated by χ2(G− 1).

It is noticeable that this rule of thumb is the same as that for the approximation of the

binomial distribution by the normal distribution [59], which is often suggested as:
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Fn,π(k) u Φ

(
k + 0.5− nπ√
nπ(1− π)

)
, (3.14)

where Fn,π(·) denotes the distribution function of a binomial distribution with parameters

n and π, and Φ(·) denotes the distribution function of the standard normal distribution,

k ∈ {0, 1, . . . , n} denotes the number of event or success out of n Bernoulli trials, the value

of 0.5 is a continuity correction term. The rule of thumb shown in (3.13) for the domain of

application of the approximation are given by many text books, for example, Agresti's book

[4].

We illustrate the above rule of thumb for the general chi-square goodness-of-�t test

statistic. Suppose that the possible outcomes of an experiment are 1, . . . , G, with proba-

bilities π1, . . . , πG, respectively. The experiment is carried out n times independently. Let

O1, . . . , OG be the number of observations in group 1, . . ., group G respectively in the n

outcomes. Note that
∑G

i Oi = n and
∑G

i πi = 1. The chi-square statistic is de�ned as

X2 =
G∑
i=1

(Oi − nπi)2

nπi
. (3.15)

here Oi is called the observed frequency of cell i and nπi is the expected frequency. When

the null hypothesis is true and all expected frequencies nπi are greater than 5, the CDF of

X2 is closely approximated by the chi-square distribution of G − 1 degrees of freedom, i.e.

χ2(G− 1).

Suppose we get G = 6 groups. Figure 3.1 shows the true CDF of X2 when all nπi's are 5

(the staircases) and χ2(5) (the smooth curve), so the sample size is n = 30. The two CDF's

are close to each other.

Figure 3.2 shows the staircases and the curve when all nπi's are 2, that is the sample size

is n = 12 only. In this graph, the curve deviates noticeably from the staircases. The jumps

are quite bigger than that in case of all nπi's are 5.
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Figure 3.1: The CDFs of X2 and their approximations, χ2(5)
(G=6, n=30, all πi = 1/6)
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Figure 3.2: The CDFs of X2 and their approximations, χ2(5)
(G=6, n=12, all πi = 1/6)

The two empirical cumulative distribution functions of X2 under di�erent situations are

both based on 10, 000 simulations. These visualizations illustrate that to ensure the CDF
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can be closely approximated by the chi-square distribution, the chi-square goodness-of-�t

test requires all expected frequencies be at least 5.

Cochran (1952) [60] suggested to use enough cells to keep the expectations down to

the levels recommended by Williams (1950) [61], for example, let the expected cell number

be 12 per cell for n = 200, 20 per cell for n = 400, 30 per cell for n = 1, 000. but his

recommendations are not explicit and requires more detailed study.

Based on our experience, it is not rare that when performing the Hosmer-Lemeshow test,

the expected cell number in one or even more bins/groups among G = 10 groups is less than

5. It is possible to illustrate that, for example, Hosmer and Hjort (2002) [31] reported that

the Hosmer-Lemeshow goodness-of-�t test will result in an uninterpretable p value when

applied to relatively small data sets or when applied to data with low expected decile cell

frequencies.

Our proposal of the new partitioning method is guided by the asymptotic theorem and

attempted to obey the general rule of thumb in term of non-small expected frequencies for

the chi-square type of goodness-of-�t test. We describe our proposal with details nextly.

3.3 New partitioning method for chi-square goodness-of-�t test

The procedure to build the proposed test statistic is as follows:

1. Use the derived model to estimate the probability of the event for each of N subjects.

2. Sort the estimated probabilities in ascending order, we get π̂(1), . . . , π̂(N).

3. Form N intervals based on these ordered estimated probabilities. The N intervals can

be demonstrated in Table 3.1.

4. Group the data into G intervals/bins based on the preferable rule that each estimated

frequency in a interval in both outcome classes (i.e., success/failure, yes/no, 1/0) should

be at least greater than 5. The estimated frequency is actually the cumulative sum
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Table 3.1: Form N intervals with frequency of 1 for each interval

i interval i observed y �tted ŷ
Number of obs.
in interval i

1 (0, π̂(1)] 0 π̂(1) 1
2 (π̂(1), π̂(2)] 0 π̂(2) 1
...

...
...

...
...

N (π̂(N−1), π̂(N)] 1 π̂(N) 1

of the �tted values of subjects falling in to this speci�c interval. The resulting G × 2

frequency table is formed as demonstrated in Table 3.2.

Table 3.2: Form G intervals with observed and estimated expected frequencies

k interval k
Number of observed Number of expected
y = 0 y = 1 y = 0 y = 1

1 [π̂(1), π̂(n′
1)

] O01 O11 Ê01 Ê11

2 (π̂(n′
1)
, π̂(n′

1+n
′
2)

] O02 O12 Ê02 Ê12

...
...

...
...

...
...

G (π̂(N−n′
G), π̂(N)] O0G O1G Ê0G Ê1G

The goodness of �t test statistic, TG, is obtained by calculating the Pearson chi-square

statistic from the resulting G×2 table of observed and estimated expected frequencies.

5. Construct the test statistic TG. Let n
′

k be the total number of observations in the kth

group, Ok =
∑ck

j=1 yj be the total number of observed positive responses among all

subjects who fall within the ck covariate patterns represented in the kth bin, and π̄k be

the average estimated probability of all subjects falling within the kth bin, ck denotes

the number of covariate pattterns in the kth bin and mj denotes the number of subjetcs

of covariate pattern j in the kth bin. Then after partitioning data yields G distinct

bins, we can readily construct a Pearson chi-square statistic (similar to Hosmer and

Lemeshow, 1989) as follows:

TG =
G∑
k=1

(
(O1k − Ê1k)

2

Ê1k

+
(O0k − Ê0k)

2

Ê0k

)
=

G∑
k=1

(Ok − n
′

kπ̄k)
2

n
′
kπ̄k(1− π̄k)

(3.16)
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where n
′

k is the total number of subjects in the kth bin, i.e., n
′

k = O0k + O1k. Ok is the

number of positive responses in the kth bin, i.e., Ok = O1k. And

π̄k =

ck∑
j=1

mjπ̂j
n

′
k

(3.17)

is the average estimated probability in the kth bin and ck denotes the number of covariate

patterns in the kth bin, mj denotes the number of subject of covariate pattern j in the kth

bin.

3.4 More theoretical considerations of the new partitioning method

We proposed to apply the rule for valid asymptotic null distribution to partition the obser-

vations into G groups, we will examine the statistic TG computed based on these groups.

3.4.1 Pearson chi-square type statistic

Pearson chi-square type statistics are usually de�ned in terms of cells which are �xed prior

to taking observations. The standard theorem on the asymptotic distribution of the chi-

square test is given by Cramer (1946, [62]) and Rao (1973, [63]). The asymptotic chi-square

distribution rests on several assumptions about the true distribution of the observations and

the estimated any unknown parameters. These assumptions may not be satis�ed in practice

due to the following reasons:

1. Estimators are obtained from the ungrouped data rather than from the grouped ob-

servations,

2. The groupings/bins may be driven by the data. For example, percentile splits,

3. The method of estimation is not e�cient.

Chemro� and Lehmann (1954, [64]) and Watson (1958 [65], 1959 [37]) investigate the

49



above cases and conclude that when the estimates are not based on grouped data, the

asymptotic χ2
G−p−1 distribution does not hold anymore.

Let TG? be this chi-square type statistic. In fact, it would have the following limiting

distribution (with the condition of G > p, here p is the number of parameters involved in

model �tting and outcome estimation) by Theorem 1 of Chemro� and Lehmann:

TG?
d→

G−p−1∑
j=1

y2j +
G−1∑
j=G−p

λjy
2
j , (3.18)

where yj
i.i.d.∼ N(0, 1), 0 ≤ λj ≤ 1, λG−p, . . . , λG−1 are the roots of the characteristic equation:

|Ĩ− (1− λ)Î| = 0, (3.19)

where Ĩ is the information matrix estimated from the frequency data, and Î is the information

matrix estimated from the original data. As a consequence of their Lemma 1, the values of

the p roots λG−p, . . . , λG−1 are between 0 and 1 (Watson, 1958 [65]).

Moore and Spruill's (1975, [35]) Theorem 4.2 facilitates a uni�ed derivation of the lim-

iting distribution of three version of statistics. They denote Chemro�-Lehmann's version of

statistic Tn as T2n (i.e., they used di�erent notations for the same statistic). By Theorem

5.1 in Moore and Spruill's paper, when some regularity assumptions hold, T2n has limiting

distribution (under (θ0, η0))

T2n = ||Vn(θ̂n, φn)||2 d→ χ2
M−m−1 +

M−1∑
j=M−m

λjχ
2
1j. (3.20)

By the remark after Lemma 1, Chemro� and Lehmann con�rmed that the roots would

determine the distribution of the test statistic TG? . Without known weights λj, the null

distribution of TG? is not well speci�ed.

Since the model parameters in logistic regression with continuous covariates are estimated

using maximum likelihood (as addressed in chapter 1) based on non-grouped data, our
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proposed test statistic TG is a Chemro�-Lehmann version statistic and would be labeled as

T2n by using Moore and Spruill's notation, its limiting distribution follows (3.18). Speci�cally

under the null hypothesis, TG in (3.16) obeys a central chi-square distribution χ2, while under

the alternative hypothesis, it obeys a non-central chi-square distribution χ2
λ with λ being a

non-central parameter. We will justify its degrees of freedom next.

3.4.2 Degrees of freedom

As we mentioned previously, the Pearson chi-square type statistics are de�ned in terms of

cells which are �xed prior to taking observations. Moreover if parameters are to be es-

timated from the data, they must be estimated by asymptotically good estimators based

on the observed cell frequencies, for example, the maximum likelihood estimators. Both

Chemro� and Lehmann, and Moore and Spruill showed that if MLE's based on full sam-

ples are used, the asymptotic distribution of the statistic need to no longer be chi-square.

Instead, stochastically the distribution of the test statistic is bounded by known chi-square

distributions,

χ2
G−p−1 ≤ TG? ≤ χ2

G−1, (3.21)

here the range is based on the roots of the characteristic equation (3.19). We justify the

situations when these boundaries hold.

Let's look into the asymptotic distribution of (3.18) (same as (3.20)). The �rst term

has a χ2 distribution with d.f. of (G − p − 1) since yi's are independent standard normal.

The degrees of freedom of the second term would depend on those p λ's. Molinari (1977,

[66]) again points out that those λ's are the eigenvalues of the determine equation (3.19)

involving unknown information matrix and are possibly di�erent from 0 and 1. We consider

two extreme cases.

• Suppose all those p eigenvalues are close to 1, then the second term will have degrees

of freedom being close to p. Put two terms together, TG? will have degrees of freedom
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of (G− p− 1) + p = G− 1.

• Suppose all those p eigenvalues are close to 0, then the second term could be ignored.

As a result, TG? will have degrees of freedom of G− p− 1.

Molinari (1977, [66]) suggests that it would be safe (conservative) to consider TG? as

having a χ2 distribution with G − 1 degrees of freedom. Based on their rather extensive

simulation studies, Hosmer and Lemeshow suggest using G− 2 as the degrees of freedom for

their two Pearson type statistics, Ĉ and Ĥ. Based on our previous justi�cation, G− 2 falls

to the wide range and is thus a valid number to approximate the true distribution, but not

a necessary result from Theorem 5.1 in Moore and Spruill (1975, [35]) as claimed by Yu et

al. (2017) [36]. Watson (1959) [37] mentioned that further work would be needed to develop

a procedure to �nd estimates of the λj weights in the characteristic equation (3.19) directly,

which would lead to an improved approximation to the null distribution.

Note that the weights are all between 0 and 1, and the larger the value p, the number of

coe�cients in the β matrix, the more terms in the weighted sum. For the chi-square type of

test statistic resulting in the number of partitioned groups G and with an aim of �nding a

representative approximation to the null distribution, given the bounded limiting distribution

of TG? in (3.21), we proposed the following degrees of freedom for its corresponding null, i.e.,

the central chi-square distribution, with which we compare test statistic TG? to get p−values.

d.f. =


G− 1 if G < p

G− [p
2
]− 1 if p ≤ G < p+ 10

G− p− 1 otherwise

(3.22)

where p is the number of parameters involved in estimating the outcome variable, [p/2]

denotes the �ooring value, i.e. the integer part, of p/2.

Note that it is in lack of theoretical guidance on how to choose an accurate degrees of

freedom for chi-square type of goodness-of-�t tests, our choice of these values are ruled purely
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by the bounded limiting distribution of TG? in (3.21) with an aim of �nding representative

degrees of freedom. Our simulation and real data analysis result using this method show at

least not as worse as the original Hosmer-Lemeshow test under many scenarios as shown in

later chapters.

3.5 Example study

A disadvantage in the use of the chi-square like goodness-of-�t tests for the logistic regression

model with continuous predictor variables proposed by Hosmer and Lemeshow that use �xed

groups of the estimated probabilities has shown in recent work. It is possible to demonstrate

situations where one set of �xed groups shows the model �ts while the test rejects �t using

another set of �xed group. We concern that if the estimated cell frequency is not large

enough, say at least 5, which would make the required conditions unsatis�ed and return

misleading p values. The proposed new partition method leads to a chi-square type statistic

similarly as the Hosmer-Lemeshow test, however our approach is di�erent from the Hosmer-

Lemeshow test in three aspects:

1. The proposed partitioning strategy is driven by asymptotic theorem and the number of

partitions is determined by expected cell counts, whereas the Hosmer-Lemeshow test

uses arbitrary and �xed decile bins.

2. We obey strictly the general rule, that is non-small expected frequency is allowed

in each and every cell, the Hosmer-Lemeshow test can not avoid the issue of small

expected cell frequency.

3. The degrees of freedom in our method is varied and involved with the number of

unknown parameters, which is di�erent from the �xed G− 2 employed by Hosmer and

Lemeshow.

We compare the proposed method to the Hosmer-Lemeshow test by analyzing the ICU data

set next.
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3.5.1 Analysis of ICU data set

The intensive care unit (ICU) study is included in Hosmer and Lemeshow's text book [5].

It is part of a large study on survival of patients following admission to an adult intensive

care unit. The aim of this study is to develop a logistic regression model to describe the

probability of survival to hospital discharge of these patients. The data set is available from

R package aplore3.

In total 200 patients were included in the study, of which 160 patients lived and were

discharged from the hospital, the rest 40 patients died. The outcome variable �sta� is a two-

level factor for the patient status (lived/died). The independent variables are: age of the

patient at ICU admission (range from 16 to 92, �age�), gender at two levels (male/female),

systolic blood pressure at ICU admission (integers between 36 and 256, �sys�), heart rate at

ICU admission (integers between 39 and 192, �hra�), cancer part of present problem (yes/no

with coding 1/0, �cpr�), previous admission to an ICU (yes/no with coding 1/0, �pre�), type

of admission (Emergency/Elective with coding 1/0, �type�), PH from initial blood gases (two

levels with 1 ≤ 7.25 and 0 ≥ 7.25, �ph�), PCO2 from initial blood gases (two levels with 1

≥ 45 and 0 ≤ 45, �pco�), level of consciousness at ICU admission (three levels with 0 = No

coma/Deep Stupor, 1 = Deep stupor and 2 = Coma, �loc�).

The study has been analyzed by many researchers, for example, by Lemeshow et al. (1993,

[67]) and by Lemeshow and Le Gall (1994, [68]). We remain �age� be the continuous predictor

variable in our analyses and convert other continuous variables to categorical variables based

on some clinical thresholds. For example, �hra� is grouped into greater than 150 beats/min

or less (1/0), and �sys� is grouped into less than 90 mmHg or greater (1/0). We combine

level 2 and level 3 to one level in �loc�, then �loc� becomes a two-level factor, i.e. 1 is for �no

coma or deep stupor� and 2 for �coma or deep stupor�, due to small number of patients in

the original levels 2 and 3.

Based on the literature references and our modeling results, we presented two �nal models

here. The �rst model includes seven predictor variables and the second one includes six. Both
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models perform well in terms of goodness of �t. Table 3.3 shows the �tting results of Model

1, and Table 3.4 shows its corresponding goodness of �t result.

Table 3.3: Estimation result for �nal model 1

var Estimate Standard Error Z Value p-value

Intercept -5.963 1.235 -4.829 < 0.001
age 0.037 0.013 2.771 0.006
sys1 2.239 0.819 2.735 0.006
cpr1 1.178 0.829 1.421 0.155
Type1 2.038 0.843 2.419 0.016
ph(< 7.25) 1.644 0.880 1.868 0.062
pco(> 45) -2.556 1.022 -2.50 0.012
loc1 3.749 0.931 4.026 < 0.001

Table 3.4: Goodness-of-�t testing result for �nal model 1

Method Statistic p-value

HL Ĉ 0.540
NP TG 0.843
RSS Z 0.857

CUSUM Ŵ 0.934

All the results from four goodness-of-�t tests, namely the Hosmer-Lemeshow (HL), our

new partitioning method(NP), the unweighted residual sum of squares (RSS), and the cumu-

lative sums of residuals (CUSUM), support that the �tted model 1 �ts adequately, even it's

noticeable that variable �cpr� doesn't have a signi�cant e�ect on the outcome, the patients'

binary outcome. And the p-value of the proposed new partition method is close to the p-

values of RSS and CUSUM methods. The interest here is to compare our new partitioning

method with the Hosmer-Lemeshow's �xed grouping method. Let's look into the partitioned

tables which are generated based on these two methods.

Table 3.5 presents the grouping results from the Hosmer-Lemeshow and Table 3.6 presents

the grouping results from the proposed partitioning method after �tting Model 1 to the ISU

data set.

Both Tables 3.5 and 3.6 show clearly that 80% of the observation has the estimated values
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Table 3.5: Partitioning result from the HL test for �nal model 1

Observed Estimated
y = 0 y = 1 ŷ = 0 ŷ = 1

[0.00232,0.0195] 22 0 21.732812 0.2671876
(0.0195,0.0344] 18 0 17.468205 0.5317948
(0.0344,0.0401] 18 2 19.250780 0.7492203
(0.0401,0.0557] 18 2 19.103605 0.8963954
(0.0557,0.102] 21 0 19.310318 1.6896822
(0.102,0.164] 16 3 16.378229 2.6217712
(0.164,0.219] 17 3 16.180418 3.8195820
(0.219,0.28] 14 6 14.991926 5.0080737
(0.28,0.63] 12 8 12.256788 7.7432116
(0.63,0.997] 4 16 3.326919 16.6730810

Table 3.6: Partitioning result from the proposed test for �nal model 1

Observed Estimated
y = 0 y = 1 ŷ = 0 ŷ = 1

[0.00232,0.135] 104 6 104.78736 5.212638
(0.135,0.22] 26 4 24.63700 5.362995
(0.22,0.28] 14 6 14.99193 5.008074
(0.28,1] 16 24 15.58371 24.416293

below 0.28. The pattern of the cumulative sums of residuals can be shown as below in Figure

3.3.
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Figure 3.3: The cumulative sums of residuals process: �nal model 1

Final model 2 removes the predictor variable �cpr� for the purpose to pursuing a simpler

model, so model 2 remains �ve variables. Its estimating results are shown in Table 3.7.

Table 3.7: Estimation result for �nal model 2

var Estimate Standard Error Z Value p-value

Intercept -5.878 1.217 -4.828 < 0.001
age 0.036 0.013 2.727 0.006
sys1 2.067 0.796 2.598 0.009
Type1 2.141 0.844 2.536 0.011
ph(< 7.25) 1.597 0.871 1.833 0.067
pco(> 45) -2.291 0.981 -2.335 0.020
loc1 3.868 0.928 4.167 < 0.001

Table 3.8 shows its corresponding goodness of �t result.
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Table 3.8: Goodness-of-�t testing result for �nal model 2

Method Statistic p-value

HL Ĉ 0.906
NP TG 0.798
RSS Z 0.730

CUSUM Ŵ 0.924

Let's look into the grouping results of the HL test and the proposed test for model 2.

Table 3.9 presents the grouping results from the Hosmer-Lemeshow and Table 3.10 presents

the grouping results from the proposed partitioning method after �tting Model 1 to the ISU

data set.

Table 3.9: Partitioning result from the HL test for �nal model 2

Observed Estimated
y = 0 y = 1 ŷ = 0 ŷ = 1

[0.00297,0.0211] 20 0 19.752157 0.2478426
(0.0211,0.0338] 20 0 19.433410 0.5665905
(0.0338,0.0443] 19 1 19.205330 0.7946697
(0.0443,0.0599] 18 2 19.023688 0.9763122
(0.0599,0.114] 19 1 18.270899 1.7291012
(0.114,0.168] 20 3 19.751302 3.2486984
(0.168,0.218] 16 3 15.253959 3.7460413
(0.218,0.281] 12 6 13.460896 4.5391040
(0.281,0.62] 12 8 12.524025 7.4759746
(0.62,0.991] 4 16 3.324335 16.6756655

Table 3.10: Partitioning result from the proposed test for �nal model 2

Observed Estimated
y = 0 y = 1 ŷ = 0 ŷ = 1

[0.00297,0.125] 101 6 101.852767 5.147233
(0.125,0.215] 27 3 24.928123 5.071877
(0.215,0.28] 16 7 17.370750 5.629250
(0.28,0.39] 11 5 10.630391 5.369609
(0.39,1] 5 19 5.217969 18.782031

Similarly as the partitioning results from model 1, Tables 3.9 and 3.10 show almost the

same that 80% of the observation has the estimated values below 0.28 from model 2. But
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the pattern of the cumulative sums of residuals in Figure is not exactly the same as shown

in Figure 3.4.
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Figure 3.4: The cumulative sums of residuals process: �nal model 2

We list two �nal models here just to remind the fact that a model without detecting the

lack of �t does not imply it is the best one, goodness of �t tests just provide information

on the adequacy of the �tted model, or on how well the theoretical distribution �ts the

empirical distribution of the observed data, it is not aimed for model comparison or model

selection. However, a model with merits passing some speci�c criteria does not guarantee

that the model �t the data well. That's why it is important for practitioners to conduct

model validation after model selection. Speci�cally, back to the �tting results of two �nal

models, their AIC values are very close to each other, and model 2 holds a bit smaller

AIC (δ = 0.02), so model 2 could be recommended due to its parsimony, i.e. with one less

predictor variables than model 1. However, just as Homer and Lemeshow point out, the

choice of model should always depend on biological or clinical considerations in addition to
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statistical results.

To further assess the performance of these models, for example the empirical size and

power of each test, it's hard to get insights from real data. We conduct our simulation study

in the followed chapters .
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Chapter 4

Comparison of Empirical Size and Power of

Goodness-of-�t Tests

4.1 Introduction

When sparse data, say continuous covariates or small number of observations within some co-

variate patterns, are presented in the logistic regression framework, the Pearson's chi-square

and deviance tests for goodness-of-�t purpose are not appropriate anymore. Alternative test

statistics have been developed to be suit for the situations. In 1980's Hosmer and Lemeshow

develop two test statistics, namely Ĉ and Ĥ, to meet the challenging situation, and their

methods serve as a standard to follow since they're introduced. Other tests have been in-

troduced as well to tackle the goodness-of-�t through various aspects of model validation

processing, but it seems no one test is dominant enough. As discussed in chapter 2, each

test has its own merits and demerits. It's hard for users to choose.

Even though the Hosmer-Lemeshow tests have been criticized in many aspects in terms

of model validation as discussed in the previous chapters, they are still standing out as one

of the best known methods with some great properties. For example, it is concordant with

many situations in medical research that the population are divided into equal risk deciles

(e.g. 0% to 10%, 11% to 20%, etc.), the grouping method is pre-de�ned and �xed, it is easy

to implemented in software packages, a lot more features to list here.

Due to its serious de�ciencies, Hosmer and Lemeshow suggest to make statistical decision

by using other model evaluation merits together with their method, and also to perform

61



goodness-of-�t test with other available methods. More importantly, clinical factors and

practical considerations should be taken into account when building a good model.

Empirical size and power are two major measures of the performance of goodness-of-�t

tests. The empirical rejection rate of the null hypothesis under the null hypothesis is the size

of a test, the empirical rejection rate of the null hypothesis under an alternative hypothesis

is the power of a test. Therefore size of a test is the type I error rate of a test when the

speci�ed model is correct, power of a test is the probability of a test to detect deviation from

the speci�ed model when the model is incorrect in simulation studies. The pair of hypotheses

for goodness-of-�t tests are stated as in section 3 of chapter 1.

As we introduced in chapter 1, three major simulation studies have been published to

assess the power of goodness-of-�t tests for logistic regression with sparse data, which are

performed by Hosmer et al. (1997, [23]), Hosmer and Hjort (2002, [31]) and Kuss (2002, [32])

respectively. Recently Liu et al. (2012, [69]) performed a power comparison as well when

introducing her omnibus test method. All the �rst three studies use only sample size of 100

and 500, the latter one uses 100, 500 and 1000. And the test statistics under consideration

are di�erent. Table 4.1 lists these studies with goodness-of-�t tests considered individually.

It is worth noting that recently two more simulation studies extended the power com-

parison to large data under the frame of Hosmer-Lemeshow test. Paul et al. (2013) [58]

increase the sample size of their simulated study up to 25,000. Yu et al. (2017) [36] increase

the sample size of their simulated study beyond 25,000 and up to 50, 000. They share the

same goal, that is to force the power of the Hosmer-Lemeshow test as stable as possible in

case of large data is under model �tting. Those two studies focus on optimizing the power of

the Hosmer-Lemeshow test under the situation with large sample size rather than comparing

power of di�erent tests.

As we discuss in the previous chapter, it's hard to know which test(s) should perform

better in a speci�c situation since we do not know the features of each test. Through

simulation, we can empirically assess the performance of our proposed new partition methods
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Table 4.1: Simulation study designed to compare the power of various goodness-of-�t tests

Study Sample size Statistics for power comparison

Hosmer et al (1997) 100, 500

Hosmer-Lemeshow Ĉ

Hosmer-Lemeshow Ĥ
Pearson X2

RSS
smoothed residuals

Royston
Stukel's score

Hosmer & Hjort (2002) 100, 500

Hosmer-Lemeshow Ĉ

Hosmer-Lemeshow Ĥ
Pearson X2

RSS
Partial sums of residuals

Kuss (2002) 100, 500

Hosmer-Lemeshow Ĉ
Pearson X2

Deviance
RSS

Information Matrix
Farrington's X2

Liu et al. (2012) 100, 500, 1000

Hosmer-Lemeshow Ĉ

Hosmer-Lemeshow Ĥ
Stukel's score

Xie

with other three tests under some common situations we could encounter every day, the

performance of a test includes evaluating the type I error rate (size) and the power. In this

chapter, we present our simulation study with similar setup as described in the published

studies. We compare three tests, namely the Hosmer-Lemeshow, the unweighted residual sum

of squares and the cumulative sums of residuals. The �rst two tests have been investigated

in many studies, the third one is introduced not speci�cally for logistic regression models,

instead it's for all classes of generalized linear models, in that it is worth investigating, it

seems like a more general tool to us. To the best of our knowledge, no studies have been

presented in the literature that compare these statistics with either small or large simulated

samples. We assess both the empirical size and power of these goodness-of-�t tests.
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4.2 Simulation setup

4.2.1 Independent variables

The simulation setting is similar to the existing comparative studies. We consider two

aspects of the model, i.e., the distribution of the covariates and the coe�cient values of

the parameters in the model. One of the most commonly studied model is: one continuous

variable with normal distribution, one dummy-coded categorical variable, i.e. a dichotomous

term, and the interaction term between the two. We denote x as the continuous variables

from normal distributions (and other distributions for a continuous random variable are

considered as well later), denote z as the dummy variables at two levels, i.e., a dichotomous

variable, and let X be the design matrix, i.e. it includes all independent variables plus a

constant intercept term.

4.2.2 Dependent variable

We consider a binary outcome yi here. πi = π(X i) is denoted as the probability of a positive

response yi, say, yi = 1, and η(X i) = g(π(X i)) = XT
i β as the linear predictor, where g() is

the link function, β is the vector of unknown parameters. π̂(X i) is denoted as the estimated

probability of a positive response yi, obtained from the estimated parameters β̂.

The mechanism of generating the outcome variable y is based on the de�nition of the

Bernoulli variable. Let π(X) = exp{η(X)}
1+exp{η(X)} , we generate Bern(p) random variable y = 1

with p = π(X).

4.2.3 Model setting

The simulation study contains two scenarios. Scenario 1 is designed to investigate the power

when non-linear terms, i.e. the quadratic term of a continuous variable, the interaction term

between a continuous covariate and a dichotomous variable, are omitted, scenario 2 is used
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to investigate the power when a quadratic term is added to the �tted model or when an

interaction term is added to the model.

For scenario 1, the settings of the null models and the �tted models are presented in

Table 4.2.

Table 4.2: Scenario 1: Settings for null models and �tted models

Setting Null Model Fitted Model

1 η = g(π) = −2 + x+ 0.2x2 + z − 2xz η = g(π) = β0 + β1x+ β2x
2 + β3z + β4xz

2

η = g(π) = −2 + x+ β2x
2 + z − 2xz

η = g(π) = β0 + β1x+ β2z + β3xz
β2 =



0.2

0.3

0.4

0.5

0.8

1.0

3

η = g(π) = −2 + x+ 0.2x2 + z + β4xz

η = g(π) = β0 + β1x+ β2x
2 + β3z

β4 =



−2

−1.5

−1.2

−1.0

−0.5

−0.2

Table 4.3 presents the settings of the null models and the �tted models for scenario 2.

Table 4.3: Scenario 2: Settings for null models and �tted models

Setting Null Model Fitted Model

1 η = g(π) = −2 + x+ z η = g(π) = β0 + β1x+ β2z
2 η = g(π) = −2 + x+ z η = g(π) = β0 + β1x+ β2z + β3x

2

3 η = g(π) = −2 + x+ z η = g(π) = β0 + β1x+ β2z + β3xz

4 η = g(π) = −2 + x+ z

η = g(π) = β0 + β1x+ β2z + β3u

u ∼


N(0, 1)

Unif(−3, 3)

Beta(2, 4)

In the above tables, the null model is the model used to generate data sets, the �tted
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model is the speci�ed model assumed to �t the data sets. Thus the �tted model in setting

1 of two scenarios are correct since they specify exactly the same covariate forms as in the

null models, i.e. the underlying models. When we apply di�erent goodness of �t tests to

the data, the p value should be small which would lead to a conclusion of accepting the null

hypothesis, that is the speci�ed model is correct. The p value in this setting is referred as

the probability of rejecting the null hypothesis under null, that is the type I error or size

of test. Whereas in other settings the p values are expected to be big, which would lead

to a conclusion of rejecting the null hypothesis, that is the speci�ed model is incorrect. In

these cases the p values are referred as the probability of rejecting the null hypothesis under

alternative hypothesis, that is the power of the tests. We exam the size and power of the

four goodness of �t tests through these two scenarios in this chapter.

Speci�cally, setting 2 and 3 of scenario 1 are assessing the performance of those tests

when the quadratic term and interaction term are omitted, setting 2 and 3 of scenario 2 are

assessing the performance of those tests when adding a quadratic form of the continuous

variable or an interaction term to the speci�ed model. These settings are the the mostly

discussed situations in literature.

In Table 4.2 two coe�cient values in null model are varied, i.e. β4 in scenario 4 and β2 in

scenario 5 are not �xed, instead they vary from −2 to −0.2, speci�cally we choose β2 and β4

equal −2,−1.5,−1.2,−1,−0.5,−0.2 respectively. These settings di�erentiate scenario 4 to

scenario 2, and scenario 5 to scenario 3, and they are expected to examine how the weights of

parameter coe�cients a�ect the performance of those goodness of �t tests by strictly holding

other coe�cient values �xed.

4.2.4 Sample size

The sample size of simulated data are set as N = 200, 500, 1000, 2000, 5000, 10000, 15000,

25000 to represent a �xed but with a big range of coverage. Just as any hypothesis tests

with a p value as a major result, it's well-known that p value decreases as the sample size
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increase, consequently the power will be a�ected. And it has been reported from all the

previous simulation studies that sample size matters for all goodness of �t tests in logistic

regression models when continuous covariates are presented.

In all simulation scenarios we run 200 replications to compute the proportion of p values

less than a conventional signi�cant level α = 0.05 for all hypothesis tests. This gives us the

empirical size and power of those tests under each scenario as described previously. The

reason we chose 200 replications is because it ensures the maximum margin of error of the

rejection rate below 7% (the maximum standard error of the rejection rate is 0.5), and it is

also reasonably enough to retain stable results through some practical trials with an aim in

minimizing the computing time.

4.3 Test size: rejection rate under the null hypothesis

As discussed previously, setting 1 under two scenarios are for assessing the size of a test

since they re�ect the probability of rejecting the null hypothesis given the null is true. We

refer this as the empirical size comparison, in fact it tells us how likely a goodness-of-�t test

rejects a correct model, the smaller value is desired, which means the test can maintain the

type I error well, say at the conventional level of 5%.

Table 4.4 shows the proportion of times each of the goodness-of-�t test rejects the null

hypothesis given the null hypothesis is true at the signi�cance level α = 5%, based on 200

rounds of model �tting trials, under scenario 1. That is, given the speci�ed model is true

and based on the nominal p value of each test on the same single simulated data by �tting

the same model, the rejection rate (rejection of the null hypothesis if the nominal p value is

less than the signi�cance level α = 5%, non-rejection otherwise) would be calculated as the

empirical size of a test.
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Table 4.4: Setting 1 under scenario 1: Rejection rate of four goodness-of-�t tests

N HL1 USS 2 CUSUM 3 NP 4

200 0.015 0.055 0.05 0.085
500 0.02 0.02 0.08 0.065
1000 0.03 0.055 0.06 0.06
2000 0.035 0.02 0.06 0.075
5000 0.03 0.065 0.06 0.065
10000 0.035 0.065 0.055 0.04
15000 0.03 0.065 0.055 0.04
25000 0.02 0.045 0.065 0.035

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test

Overall, the Hosmer-Lemeshow test maintains the empirical rejection rate below 5%

across all sample size settings, that is the HL test controls type I error better than other

three tests. USS test controls type I error a bit better than the CUSUM and the proposed

NP test when sample size is below 2000, the proposed NP test present a higher rejection

rate than all other three existing test when sample size is below 5000. In contrast, when

sample size is greater than 10000, the NP controls the type I error better than the USS and

CUSUM tests, it maintains type I error below 5%.

We conduct an inferential statistical test to compare these rejection rates by treating the

number of rejection/non-rejection as aggregated binary outcome variable, treating �sample

size� as a categorical variable with eight levels, and letting the proposed NP test be the base

level of a categorical variable named �test�, the analysis of deviance table in Table 4.5 shows

that factor �test� has signi�cant e�ect on the outcome rejection rate.

Table 4.5: Analysis of deviance for individual variables in setting 1 under scenario 1

DF Chisq Pr(>Chisq)

sample size 7 2.026 0.958
test 3 23.427 <0.001

Then we look into the �tted model summary table related to the �test� variable, Table
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4.6 shows that the NP test is more likely to reject the null hypothesis than the HL test and

its rejection rate is signi�cantly di�erent than that of the HL test. The rejection rate of

the NP test is not signi�cantly di�erent than that of other two tests, namely the Copas's

residual sum of squares test and the cumulative sums of residual test.

Table 4.6: Logistic regression model �tting result for predictor variable �test� with the �NP�
test as baseline level after adjustment of �sample size� e�ect

Estimate S.E. Z Pr(>|z|)

test: CUSUM 0.045 0.15 0.299 0.765
test: HL -0.804 0.188 -4.279 < 0.001
test: RSS -0.186 0.158 -1.178 0.239

Table 4.7 shows the proportion of times each of the goodness of �t test rejects the null

hypothesis given the null hypothesis is true at the signi�cance level α = 0.05, based on 200

rounds of model �tting trials, under scenario 2.

Table 4.7: Setting 1 under scenario 2: Empirical size of four goodness-of-�t tests

N HL 1 USS 2 CUSUM 3 NP 4

200 0.04 0.065 0.04 0.025
500 0.035 0.055 0.045 0.075
1000 0.035 0.065 0.05 0.045
2000 0.035 0.05 0.035 0.065
5000 0.04 0.055 0.065 0.045
10000 0.055 0.03 0.075 0.04
15000 0.05 0.035 0.05 0.025
25000 0.05 0.035 0.065 0.035

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test

From Table 4.7 we can see that the HL test maintains the empirical rejection rate below

5% almost for all sample size settings, but it is clear that the HL can control type I error

rate better when sample size is below 5000 than that when the sample size is above 10000.

All other three testes do not control type I error as well as the HL test at the signi�cant

level at α = 5%. The USS test and the NP test perform very similar, and they control type
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I error better when sample size is large, say greater than 5000. The CUSUM test relatively

control type I error rate worse than other three tests at this scenario.

Similarly, we conduct an inferential statistical test to compare those rejection rates by

�tting a logistic regression model to binary rejection outcomes, the analysis of deviance table

in Table 4.8 shows that factor �test� has no signi�cant e�ect on the outcome rejection rate.

Table 4.8: Analysis of deviance for individual variables in setting 1 under scenario 2

DF Chisq Pr(>Chisq)

sample size 7 3.573 0.828
test 3 3.437 0.329

4.4 Test power: rejection rate under the alternative hypothesis

We examine the power of these test under two scenarios. Under scenario 1, setting 2 is

to investigate the rejection rate of the null hypothesis when the speci�ed model does not

include the quadratic term of a continuous covariate. Setting 3 is to investigate the rejection

rate of the null hypothesis when the speci�ed model does not include the interaction term

of a continuous covariate. Under scenario 2, setting 2 is to investigate the rejection rate of

the null hypothesis when the speci�ed model includes an additional quadratic term for the

continuous variable x. Setting 3 is to investigate the rejection rate of the null hypothesis

when the speci�ed model includes an additional interaction term. Setting 4 is to investigate

the rejection rate of the null hypothesis when the speci�ed model includes an unrelated

continuous variable with normal, uniform and beta distributions respectively.

4.4.1 Omission of the quadratic form of continuous variable, x2

Table 4.9 shows the proportion of times each of the goodness of �t test rejects the null

hypothesis based on 200 rounds of model �tting trials, in case of setting 2 under scenario 1

(See Table 4.2).
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In this case, the correct model includes quadratic form of continuous variable x2 with

coe�cient of β2, whereas the wrong model is the one that drops the quadratic term x2. Thus

the rejection rate re�ects the empirical power of each test under speci�c settings. We can

see that the empirical power goes higher as the sample size increases for each test, also the

parameter coe�cient a�ects the power. Under a �xed sample size, as β2 increased from 0.2 to

1.0, the power of each test increases. This trend is true across di�erent sample size settings.

It is noticeable that the proposed new partition test is relatively conservative to detect

the missing quadratic term across di�erent sample sizes. Table 4.9 shows it has smaller

power/rejection rate than other three tests with a speci�c parameter coe�cient across all

sample size.
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Table 4.9: Setting 2 under scenario 1: Rejection rate of the omission of a quadratic term

N β2 HL 1 RSS 2 CUSUM 3 NP 4

200

0.2 0.085 0.225 0.09 0.09
0.3 0.175 0.37 0.15 0.14
0.4 0.23 0.545 0.21 0.16
0.5 0.33 0.735 0.31 0.31
0.8 0.715 0.925 0.72 0.575
1.0 0.8 0.99 0.86 0.72

500

0.2 0.125 0.37 0.2 0.145
0.3 0.33 0.715 0.28 0.29
0.4 0.535 0.89 0.545 0.49
0.5 0.795 0.98 0.79 0.65
0.8 1 1 0.99 0.98
1.0 1 1 1 1

1000

0.2 0.225 0.655 0.25 0.145
0.3 0.575 0.935 0.59 0.325
0.4 0.945 0.99 0.885 0.575
0.5 0.98 1 0.985 0.875
0.8 1 1 1 1
1.0 1 1 1 1

2000

0.2 0.51 0.925 0.45 0.175
0.3 0.915 1 0.88 0.58
0.4 1 1 1 0.85
0.5 1 1 1 0.975
0.8 1 1 1 1
1.0 1 1 1 1

5000

0.2 0.915 1 0.91 0.31
0.3 1 1 1 0.83
0.4 1 1 1 0.995
0.5 1 1 1 1
0.8 1 1 1 1
1.0 1 1 1 1

10000

0.2 1 1 1 0.495
0.3 1 1 1 0.985
0.4 1 1 1 1
0.5 1 1 1 1
0.8 1 1 1 1
1.0 1 1 1 1

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test
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4.4.2 Omission of the interaction term, xz

Table 4.10 shows the proportion of times each of the goodness of �t test rejects the null

hypothesis based on 200 rounds of model �tting trials, in case of setting 3 under scenario 1

(See Table 4.2).

In this case, the correct model includes an interaction term xz with coe�cient of β4,

whereas the wrong model is the one excluding the interaction term xz. We can see that the

empirical power goes higher as the sample size increases for each test, also the parameter

coe�cient a�ects the power. For sample size of 2000, 5000, and 10000, when β4 varies from

-2.0 to -1.2, the power of each test increases; when β4 varies from -1.0 to -0.2, the power of

each test decreases. For sample size less than or at 1000, this pattern does not hold for the

varied β4.

The proposed NP test achieves higher power than other three alternative tests, that is

the NP test would reject the wrong model (with missing interaction term) more often than

other three test for sample size less than or at 1000. And most of the tests achieve its highest

power when β4 equals -2 or -1.2.

We expect all the tests achieve its highest power when β4 equals -2, which is at the largest

magnitude of coe�cient value for the interaction term, however the result table shows that

almost all tests achieve their highest power at -1.2 or -1.0 rather than -2.0. We will discuss

more on why this happens in chapter 5.
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Table 4.10: Setting 3 under scenario 1: Rejection rate of the omission of an interaction term

N β4 HL1 RSS2 CUSUM3 NP 4

200

-2.0 0.23 0.405 0.335 0.345
-1.5 0.2 0.385 0.23 0.19
-1.2 0.12 0.415 0.19 0.21
-1.0 0.115 0.355 0.175 0.225
-0.5 0.075 0.155 0.06 0.095
-0.2 0.07 0.055 0.06 0.075

500

-2.0 0.295 0.4 0.415 0.395
-1.5 0.225 0.475 0.36 0.325
-1.2 0.36 0.745 0.51 0.405
-1.0 0.27 0.73 0.455 0.39
-0.5 0.105 0.22 0.135 0.14
-0.2 0.035 0.085 0.085 0.135

1000

-2.0 0.355 0.485 0.45 0.355
-1.5 0.36 0.68 0.515 0.32
-1.2 0.67 0.95 0.855 0.55
-1.0 0.675 0.965 0.815 0.53
-0.5 0.18 0.575 0.24 0.155
-0.2 0.05 0.095 0.045 0.13

2000

-2.0 0.5 0.57 0.615 0.32
-1.5 0.6 0.925 0.735 0.42
-1.2 0.93 0.99 1 0.705
-1.0 0.93 1 1 0.645
-0.5 0.385 0.845 0.595 0.245
-0.2 0.085 0.15 0.125 0.1

5000

-2.0 0.79 0.735 0.895 0.33
-1.5 0.955 1 0.985 0.625
-1.2 1 1 1 0.92
-1.0 1 1 1 0.965
-0.5 1 0.99 0.98 0.315
-0.2 0.125 0.12 0.135 0.115

10000

-2.0 0.965 0.925 0.985 0.45
-1.5 0.9955 1 1 0.865
-1.2 1 1 1 0.995
-1.0 1 1 1 1
-0.5 1 0.99 1 0.505
-0.2 0.28 0.42 0.335 0.115

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test
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Figure 4.1 through Figure 4.4 illustrates all test achieve their highest power not at the

largest magnitude of the beta coe�cient of the interaction term, i.e. not at β4 = −2.
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Figure 4.1: Power of HL test against beta coe�cient under di�erent sample size
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Figure 4.2: Power of NP test against beta coe�cient under di�erent sample size
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Figure 4.3: Power of RSS test against beta coe�cient under di�erent sample size
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Figure 4.4: Power of CUSUM test against beta coe�cient under di�erent sample size
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4.4.3 Addition of an interaction term, xz

Table 4.11 shows the proportion of times each of the goodness of �t test rejects the null

hypothesis based on 200 rounds of model �tting trials, in the case of setting 3 under scenario

2, i.e. adding an interaction term to the �tted model. We get very similar results as the

case that adding a quadratic term of a continuous variable to the speci�ed model, that is, all

these tests have quite low power to detect any lack of �t by adding an interaction term of a

continuous covariate and a categorical variable (their main e�ect are included in the model),

for the case in either large or small sample size.

Table 4.11: Setting 3 under scenario 2: Rejection rate of the addition of an interaction term

N HL 1 USS 2 CUSUM 3 NP 4

200 0.035 0.085 0.1 0.105
500 0.04 0.095 0.05 0.095
1000 0.03 0.05 0.045 0.09
2000 0.05 0.035 0.05 0.055
5000 0.04 0.04 0.06 0.075
10000 0.065 0.05 0.06 0.065
15000 0.04 0.07 0.07 0.045
25000 0.06 0.075 0.065 0.07

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test

4.4.4 Addition of a quadratic form of continuous variable, x2

Table 4.12 shows the proportion of times each of the goodness of �t test rejects the null

hypothesis based on 200 rounds of model �tting trials, in the case of setting 2 under scenario

2, i.e. adding a quadratic term of continuous predictor variable to the �tted model.

Unlike the situation of the omission of a quadratic term in the �tted model, it is noticeable

that all these tests have low power to detect any lack of �t when adding a quadratic term of

a continuous covariate, which exists (is included already) in the model, to the �tted model,
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Table 4.12: Setting 2 under scenario 2: Rejection rate of the addition of a quadratic term

N HL 1 USS 2 CUSUM 3 NP 4

200 0.065 0.055 0.03 0.06
500 0.025 0.035 0.07 0.13
1000 0.025 0.045 0.05 0.095
2000 0.045 0.06 0.065 0.1
5000 0.025 0.065 0.065 0.035
10000 0.06 0.055 0.055 0.055
15000 0.04 0.05 0.035 0.035
25000 0.025 0.07 0.055 0.035

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test

no matter how large or small the sample size is.

4.4.5 Addition of an unrelated continuous predictor variable, u

Table 4.13 shows the proportion of times each of the goodness of �t test rejects the null

hypothesis based on 200 rounds of model �tting trials, in the case of setting 4 under scenario

2, i.e. adding an unrelated continuous predictor variable, u, to the �tted model.

Similarly as in the previous two cases of the addition of terms to the systematic component

of the model, when adding an unrelated continuous predictor variable to the systematic

component of the speci�ed model, all goodness-of-�t tests reject the wrong model at a very

low rate across di�erent distributions from which the additional continuous predictor variable

is sampled, under di�erent sample size. The highest power in this case is 12.5% achieved by

the NP test.

The above results (Table 4.11 through Table 4.13) suggest that even when sample size

increases up to 5,000, the test powers don't increase under the over-�tting (by adding more

predictor variable to the �tted model) scenarios.
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Table 4.13: Setting 4 under scenario 2: Rejection rate of the addition of an unrelated
continuous predictor variable

Setting N HL 1 USS 2 CUSUM 3 NP 4

u ∼ N(0, 1)

200 0.055 0.035 0.06 0.075
500 0.035 0.05 0.04 0.125
1000 0.06 0.055 0.08 0.09
2000 0.045 0.025 0.045 0.075
5000 0.04 0.065 0.07 0.065

u ∼ Unif(−3, 3)

200 0.055 0.025 0.07 0.08
500 0.045 0.05 0.065 0.11
1000 0.04 0.055 0.035 0.085
2000 0.06 0.05 0.055 0.085
5000 0.035 0.025 0.055 0.085

u ∼ Beta(1, 2)

200 0.025 0.035 0.055 0.07
500 0.045 0.02 0.05 0.105
1000 0.055 0.05 0.045 0.08
2000 0.04 0.055 0.045 0.05
5000 0.045 0.025 0.05 0.06

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test

4.5 Summary

We observed that when adding either a quadratic term of a continuous predictor variable

or an interaction term, or an unrelated continuous predictor variable to the assumed model,

which can be referred to the case of over-�tted model, the power is very low, almost the

same as the low rate as the type I error rate. The result implies that all goodness-of-�t tests

are not sensitive to models of over-�tting.

In cases of omission of a non-linear covariate term, i.e. an interaction term or a quadratic

term of a continuous covariate, the power of all goodness-of-�t tests is a�ected by the mag-

nitude of the associated parameter coe�cient, the smaller the magnitude of the associated

beta, the lower the test power to detect the missing of a non-linear covariate term. In these

cases the test power increases along with the increasing sample size when holding all other
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beta coe�cients �xed.

We also observed that the performance of test power for detecting the omission of an

interaction term is more complicated than that for detecting the omission of a quadratic term

of a continuous covariate, one possible reason is that the former case has more variable(s)

involved than the latter case. For instance, Table 4.10 shows a complicated pattern of test

power. In this case, by holding other β coe�cients �xed, when β4 = −1 or β4 = −1.2, all

tests hold the highest power across all sample size settings. The test power does not achieve

the highest lever when β4 = −2, the case of the largest magnitude of β4. On the other

hand, even with sample size of 10000, the maximum power among all four tests is 42% when

β4 = −0.2, which is well below the typical desirable nominal power level, 80%.

In general we can see that the test power of detecting the omission of a quadratic term is

higher than that of detecting the omission of an interaction term. Based on the simulation

results, we can see that all goodness-of-�t tests can detect the missing of a quadratic term

more robustly than the missing of an interaction term.
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Chapter 5

Further Comparison of Empirical Size and Power of

Goodness-of-�t Tests under Generalized Simulation

Settings

5.1 Introduction

As we discussed in the previous chapters, even though so many tests have been published

for many years to assess model �tting when sparse data is presented in logistic regression

models, unfortunately it still lacks of a clear guidance for users to follow under various

circumstances. At the early stage when we started our study in this �eld, we thought it

maybe due to reasons like:

1. the published studies are too speci�c or relatively simple

2. under di�erent or even slightly di�erent scenarios, one test may perform quite di�er-

ently, it is not easy to generalize the features of a speci�c test

3. di�erent results from di�erent tests is not convincing, and would confuse users

4. lack of systemic comparison studies under varied scenarios

5. It is hard to optimize a test as one-size-�ts-all

We design and deploy a generalized comparative study to advance our knowledge in this

�eld. In this chapter, we continue our comparative study through a more robust simulation

framework. The di�erence between this study and the study in chapter 4 is the simulation
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setting, i.e. we consider a relatively wide variety of situations in terms of sample size, design

matrix or systematic component, parameter coe�cient, under-�tting and over-�tting, and

di�erent combinations of them. Another di�erence lies in the strategy of simulation. In

chapter 4 we randomly sample multiple data sets under one setting, in this chapter, we only

draw one sample under a randomly selected situation. We describe it next.

5.2 Design of simulation study

We set up the goal of the new simulation study the same as that of chapter 4, that is to

empirically assess the performance of three existing goodness-of-�t tests and the proposed

chi-square test in terms of size and power. However the simulation settings of this chapter is

proposed to overcome the limitations of those settings of chapter 4 and the published studies

in many aspects, such as we increase the sample size of simulated data, we do not intend to

�x the number of samples (e.g. N = 100, 500, 1000, . . .) rather than to randomly simulate

data set with sample size varying between 200 to 30, 000.

We do not �x the weight of each coe�cient of the unknown parameters, in stead the

design matrix is randomly sampled from continuous and categorical predictor variables.

Two correlated continuous covariates are also randomly sampled with di�erent correlation

coe�cients. It is possible there is no correlated covariates in the null model as well (i.e. when

the correlation coe�cient equals zero).

Once the above aspects of the simulation situations are randomly selected and combined

together, we are ready to simulate data set(s) under this randomly pre-determined setting.

As we mentioned previously, only one data set would be randomly generated under one

setting. We describe the settings in detail below.
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5.3 Simulation setup

The setup for dependent variable are the same as in chapter 4, i.e., a binary outcome. The

independent variables are set up as follows.

• continuous covariates: from distributions such as N(0, 1), N(0, 4), Unif(−1, 1), and

Beta(2, 2)

• dichotomous variables: 0 or 1 samples from Bernoulli distributions

(with π ∈ {0.1, 0.3, 0.5, 0.7, 0.9})

• interaction terms: the interaction between existing continuous and dichotomous vari-

ables

• quadratic terms: quadratic form of existing continuous covariates

• two correlated continuous covariates: with correlation coe�cient ρ ∈ {0.1, 0.2, . . . , 0.9}

• parameter coe�cients (β's):

(−4,−2,−1.5,−1,−0.75,−0.5,−0.2,−0.1, 0.1, 0.2, 0.5, 0.75, 1, 1.5, 2, 4)

• intercept (β0): 2 or -2

• sample size N : varied between 200 and 30,000.

A simulated data set was formed/combined by nc continuous covariates, here nc is ran-

domly sampled from {3, 4, 5}, nd dichotomous variables and nd is randomly sampled from

{2, 3, 4, 5}, ni interaction terms and ni ∈ {0, 1, 2}, if ni = 0, then there is no interaction

term in the model used to simulate data, nq quadratic terms and nq ∈ {0, 1, 2}, similarly

as ni, nq = 0 implies there is no quadratic from of any continuous covariate in the model,

with a randomly sampled size N , here N ∈ {200, 201, . . . , 30000}, either with or without

two correlated covariates. For a given design matrix (the number of predictor variables are

determined), the parameter coe�cients are samples from β, the parameter coe�cient for

intercept will be a sample from {−2, 2}.
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We arbitrarily divide the sample size N into �ve classes, speci�cally small class for sample

size between 200 and 500, moderate for sample size between 500 and 2,000, large for sample

size between 2,000 and 5,000, extra large for sample size between 5,000 and 15,000 and

super large for sample size between 15,000 and 30,000. Around 2,000 data sets are simulated

in each class (not exactly 2,000 is because in some cases the speci�ed logistic regression

model failed in converge and would be dropped in a batch simulation, this can be improved

by writing a more e�ective program module in the future), therefore the total number of

simulated data sets or models is over 10,000.

There were a number of di�erent pro�le design matrices or systematic components avail-

able. For example, suppose the model contains 5 continuous covariates (then the number

of di�erent combination of continuous covariates is 45 = 1024), 5 categorical variables (the

number of di�erent combinations of categorical variables is 55 = 3125), even without con-

sidering interaction terms and quadratic terms, 3, 200, 000 di�erent combinations would be

available. Therefore the data sets or models we simulated is just a very small sample from

the possible models under our simulation setting.

5.4 Experiment: multiple scenarios

We assess the performance of goodness-of-�t tests just as the same as in chapter 4, i.e.

investigating the tests on correct model and wrong models. By investigating the tests on

correct model, we can get the estimated size of each test, by investigating the tests on

wrongly speci�ed models, we can get the estimated power of each test.

Table 5.1 lists the scenarios we investigate to assess the size and power of each of the four

goodness-of-�t tests we compared in chapter 4 before. Speci�cally we will examine the power

under six scenarios, i.e. scenario 1: omission of interaction term, scenario 2: omission of

quadratic term, scenario 3: omission of a correlated covariate, scenario 4: omission of a main

e�ect, scenario 5: addition of an interaction term, and scenario 6: addition of one unrelated

continuous covariate, here �unrelated� means having nothing to do with the outcome variable.
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Table 5.1: Scenarios for size and power comparison of four goodness-of-�t tests

Scenario Assumed/Speci�ed model

Size (correctly speci�ed model) 1 exactly the same as the underlying model
Power (wrongly speci�ed model) 1 omission of interaction terms

2 omission of quadratic terms
3 omission of one correlated term
4 omission of one main e�ect
5 addition of one interaction term
6 addition of one unrelated continuous covariate

5.5 Simulation Results

In this section we present all the simulation results under various scenarios.

5.5.1 Size

Table 5.2 shows the empirical size of each test under di�erent classes of sample size of

simulated data sets.

Table 5.2: Rejection rate of four goodness-of-�t tests on correctly speci�ed models under
di�erent classes of sample size

HL 1 NP 2 RSS 3 CUSUM 4

small 0.075 0.072 0.078 0.088
moderate 0.071 0.098 0.07 0.076
large 0.074 0.099 0.065 0.069
extra large 0.131 0.162 0.114 0.147
super large 0.181 0.211 0.134 0.182

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

All tests cannot retain the type I error rate at the conventional desirable level of 5%. For

small through large sample size (N is between 200 and 5,000), the HL test retains the type I

error rate at 7.5%. The RSS test retains smaller error rate among four goodness-of-�t tests

across di�erent sample sizes except for the case of small sample size (N < 500), but at about

10% level on average. Similarly as we observed in chapter 4, the new partition test holds
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higher type I error rate than other three tests. It is noticeable that all goodness-of-�t tests

in�ated type I error rates across all classes of sample size with over 10,000 di�erent models.

What would the type I error rate look like if we go back to the traditional simulation

way as introduced in chapter 4 by using the simulation method in this chapter? To make

the simulation similar to the setting as introduced in the previous chapter, we modi�ed the

setting as follows:

• one continuous covariate: from distributions such as N(0, 1), N(0, 4), Unif(−1, 1),

and Beta(2, 2)

• one dichotomous variable: 0 or 1 samples from Bernoulli distributions

• one interaction term: interaction between continuous and dichotomous variables

• one quadratic term: quadratic form of the continuous covariate

• the pool of parameter coe�cients (β's):

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

• �xed intercept (β0): -2

• sample size N : varied between 200 and 30,000.

Based on the above settings, the model we simulated was

η = g(π) = −2 + x+ x2 + z + xz. (5.1)

We �t the correct model as η = g(π) = β0 +β1x+β2x
2 +β3z+β4xz. Table 5.3 shows the

empirical size of each test under each class of sample size of B = 500 simulated data sets.
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Table 5.3: Rejection rate of four goodness-of-�t tests on correctly speci�ed model (5.1) under
di�erent classes of sample size

HL 1 NP 2 RSS 3 CUSUM 4

small 0.034 0.104 0.008 0.104
moderate 0.034 0.068 0.042 0.042
large 0.02 0.05 0.046 0.036
extra large 0.038 0.04 0.062 0.046
super large 0.04 0.054 0.052 0.058

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

We can see from Table 5.3 that in most cases the four tests retained type I error rate

reasonably well just as what we have seen before in chapter 4. It is also noticeable that

only the Hosmer-Lemeshow test controlled the type I error rate at 5% level across di�erent

classes of sample size. When sample size was between 200 and 500 (i.e. �small� class), the

type I error rates of both the proposed new partition and the CUSUM tests are above 10%.

Due to the limitation of time, we did not explore more about the in�ated type I error rate

under the settings of the generalized simulation study, but it is worth of further investigation.

A possible way to investigate what factors, among the sample size N , the number of

continuous covariates nc, the number of categorical variables nd, the number of interaction

terms ni, the number of quadratic terms nq, correlation coe�cient ccoef of collinearity

terms, drives the in�ated type I error rate (probability of rejecting the null hypothesis when

correct models are speci�ed), we de�ne a binary dependent variable as 1/0 for rejection/non-

rejection (the rejection rule is determined by p-value of each test for every simulated data

set, that is y = 1 if p < 0.05 and y = 0 otherwise) and �t a logistic regression model with

those factors. All four goodness-of-�t tests show three factors, namely the sample size N ,

the number of categorical variables nd and correlation coe�cient ccoef of collinearity terms,

are signi�cantly associated with the rejection probability. The individual analytical results

are shown in Table 5.4 through Table 5.7.
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Table 5.4: logit model �tting result with HL test on rejection data (size)

Estimate S.E. Z Pr(>|z|)

Intercept -2.544 0.2023 -12.576 < 0.0001
N 0.00004 0.000003 13.319 < 0.0001
nc -0.0413 0.03997 -1.033 0.3014
nd 0.2504 0.02931 8.546 < 0.0001
ni 0.04791 0.03936 1.217 0.2236
nq -0.07304 0.04033 -1.811 0.0701
ccoef -2.364 0.1234 -19.163 < 0.0001

Table 5.5: logit model �tting result with NP test on rejection data (size)

Estimate S.E. Z Pr(>|z|)

Intercept -2.769 0.1872 -14.791 < 0.0001
N 0.00004 0.000003 14.09 < 0.0001
nc 0.053 0.03672 1.444 0.149
nd 0.2307 0.02681 8.605 < 0.0001
ni 0.0086 0.03614 0.239 0.811
nq -0.00084 0.03681 -0.023 0.982
ccoef -1.836 0.1059 -17.334 < 0.0001

Table 5.6: logit model �tting result with RSS test on rejection data (size)

Estimate S.E. Z Pr(>|z|)

Intercept -2.533 0.2092 -12.108 < 0.0001
N 0.00003 0.000004 9.547 < 0.0001
nc -0.04475 0.04142 -1.08 0.28
nd 0.2228 0.03031 7.531 < 0.0001
ni -0.02219 0.04089 -0.543 0.587
nq -0.01801 0.04166 -0.432 0.666
ccoef -1.961 0.1232 -15.919 < 0.0001

Table 5.7: logit model �tting result with CUSUM test on rejection data (size)

Estimate S.E. Z Pr(>|z|)

Intercept -2.376 0.1963 -12.108 < 0.0001
N 0.00004 0.000003 12.643 < 0.0001
nc -0.00086 0.03889 -0.022 0.982
nd 0.1975 0.02836 6.962 < 0.0001
ni 0.03066 0.03839 -0.799 0.425
nq -0.01539 0.03907 -0.394 0.694
ccoef -2.415 0.1205 -20.038 < 0.0001
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5.5.2 Power

5.5.2.1 Scenario 1: omission of interaction terms

Table 5.8 shows the empirical power of each test to detect the missing of interaction terms

under di�erent classes of sample size. This pooled result table (by pooling over 10,000

model �tting results together) shows that each test does not hold desirable power at the

nominal level 80% when interaction terms are omitted from the model (the null model, or

the underlying model used to generate the data set includes interaction terms). For sample

size varying between 500 and 15,000, the new partition method of goodness-of-�t test achieves

slightly higher power than the rest of the three tests.

Table 5.8: Rejection rate of four goodness-of-�t tests: omission of interaction terms

HL 1 NP 2 RSS 3 CUSUM 4

small 0.093 0.065 0.099 0.092
moderate 0.1222 0.2104 0.1126 0.1156
large 0.1479 0.2516 0.1409 0.1386
extra large 0.2158 0.2559 0.2201 0.2315
super large 0.2892 0.2831 0.2816 0.2914

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

The reason why the empirical power is below the nominal power at 80% level might be

due to the following possible reasons:

• the test power would depend on the magnitude of the associated parameter coe�cient

β's.

• the test power would also depend on what else remains in the model, especially when

those remaining terms are correlated with that which is missing.

• when model changes at all aspects, in terms of number of covariates, collinearity,

nonlinear parameter pattern, the associated beta coe�cients, and sample size of data
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sets, the test power will be a�ected (jointly) by many of these factors in the case of

missing interaction terms.

For each of the pooled model �ttings, the interaction term has its own characteristics

based on its speci�c design matrix. As shown in Table 4.10, for some design matrices the

test powers would be high, for other design matrices the test powers would be low, when

di�erent models are pooled together, the average power becomes low. Even in case of large

sample size, the test power of each method would be diluted. That's the reason why the

test powers are smaller than those in chapter 4, for example we keep the model (design

matrix) �xed but just increase sample size, or under the same (�xed) sample size, we only

change the beta coe�cient of the interaction term for simulated data set. In those cases, for

one speci�c model, the changing pattern of test power maybe easily caught, but for another

model it maybe not easy to �nd the characteristics of the test power. We will illustrate with

an example later.

Therefore if model changes at all aspects as mentioned above, when we collect evidence

from pooled model �tting results (p-values), we need a much larger sample size to detect

the missing of interaction term to achieve a desirable power level. In other words, the

conventional power level of 80% is hard to achieve, instead we maybe interested in simply

comparing the test power of di�erent tests.

Similar as we did before, to investigate what factors, among the sample size N , the

number of interaction terms ni, the number of categorical variables nd, a�ect the probability

of rejecting the null hypothesis across all models, we de�ne a binary dependent variable as

1/0 for rejection/non-rejection, then we �t logistic regression model with those factors, i.e.

regressing on N , ni, and nd. All four goodness-of-�t tests show those factors are signi�cantly

associated with the rejection probability when interaction terms are missed. The individual

analytical results are shown in Table 5.9 through Table 5.12 below.

Let's go back to chapter 4 for the test power of missing interaction term. In chapter 4, we

found the test power for detecting the mission of interaction term did not change as expected
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Table 5.9: Scenario 1: logit model �tting result with HL test

Estimate S.E. Z Pr(>|z|)

Intercept -3.014 0.1521 -19.814 < 0.0001
N 0.00005 0.0000034 15.302 < 0.0001
nd 0.1052 0.0291 3.619 0.0003
ni 0.4129 0.0655 6.308 < 0.0001

Table 5.10: Scenario 1: logit model �tting result with NP test

Estimate S.E. Z Pr(>|z|)

Intercept -2.332 0.1369 -17.033 < 0.0001
N 0.00004 0.0000033 10.977 < 0.0001
nd 0.1457 0.02673 5.451 < 0.0001
ni 0.1309 0.5977 2.19 0.0286

Table 5.11: Scenario 1: logit model �tting result with RSS test

Estimate S.E. Z Pr(>|z|)

Intercept -2.93 0.152 -19.277 < 0.0001
N 0.00005 0.0000034 14.526 < 0.0001
nd 0.09363 0.02915 3.212 0.00132
ni 0.3877 0.06562 5.909 < 0.0001

Table 5.12: Scenario 1: logit model �tting result with CUSUM test

Estimate S.E. Z Pr(>|z|)

Intercept -2.75 0.15 -18.334 < 0.0001
N 0.00005 0.0000034 15.87 < 0.0001
nd 0.09653 0.02902 3.326 0.0009
ni 0.2516 0.0651 3.864 0.0001

with varied beta coe�cient (see Table 4.10). Here we conduct two more simulations to reveal

what factors a�ect test power except for the beta coe�cient for the interaction term. We

follow the same simulation strategy as in chapter 4 for these two more simulations, i.e. 200

samples under one speci�ed simulation setting.

Firstly, we set all the coe�cients of parameter xz, the interaction term, as positive values

rather than all are negative values as in setting 3 scenario 1 in chapter 4. Table 5.13 presents

the new setting of β4 and new rejection rates.

As we can see from Table 5.13, under the same sample size, when β4 increases from 0.2 to
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2.0 (speci�cally β4 taking values as 0.2, 0.5, 1.0, 1.2, 1.5, 2.0), the power of each test increases

and the highest power obtained when β4 equals 2, the largest magnitude of beta coe�cient,

as expected. This trend holds under di�erent settings of sample size. This changing pattern

of rejection rate become di�erent than that as shown in Table 4.10 in chapter 4. In chapter

4, β4 decreases from -2.0 to -0.2 (i.e. β4 taking values as -2, -1.5, -1.2, -1.0, -0.5, -0.2), and its

sign is di�erent than the sign of coe�cients for both x and z. These two tables (Table 4.10

& Table 5.13) suggest that not only the magnitude but also the sign of parameter coe�cient

of the interaction term would a�ect the power of goodness-of-�t tests.
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Table 5.13: Setting 3 under scenario 1 of chapter 4: Rejection rate of detecting the omission
of interaction term with a set of di�erent values of β4

N β4 HL1 RSS 2 CUSUM 3 NP 4

200

0.2 0.035 0.035 0.03 0.11
0.5 0.065 0.165 0.075 0.09
1.0 0.165 0.265 0.145 0.085
1.2 0.175 0.355 0.14 0.06
1.5 0.25 0.45 0.15 0.12
2.0 0.45 0.58 0.215 0.19

500

0.2 0.07 0.06 0.08 0.1
0.5 0.085 0.26 0.1 0.12
1.0 0.285 0.525 0.23 0.22
1.2 0.36 0.685 0.305 0.24
1.5 0.595 0.78 0.41 0.345
2.0 0.8 0.915 0.57 0.475

1000

0.2 0.035 0.135 0.075 0.095
0.5 0.115 0.445 0.175 0.14
1.0 0.55 0.875 0.37 0.335
1.2 0.665 0.91 0.525 0.33
1.5 0.845 0.995 0.66 0.42
2.0 0.975 0.995 0.905 0.655

2000

0.2 0.05 0.185 0.09 0.08
0.5 0.325 0.665 0.24 0.09
1.0 0.83 0.975 0.68 0.37
1.2 0.965 1 0.855 0.515
1.5 0.99 1 0.97 0.76
2.0 1 1 1 0.935

5000

0.2 0.09 0.335 0.14 0.095
0.5 0.705 0.98 0.67 0.12
1.0 1 1 0.985 0.665
1.2 1 1 1 0.865
1.5 1 1 1 0.98
2.0 1 1 1 1

10000

0.2 0.225 0.645 0.2 0.045
0.5 0.97 1 0.935 0.22
1.0 1 1 1 0.9
1.2 1 1 1 0.99
1.5 1 1 1 1
2.0 1 1 1 1

1 Hosmer-Lemeshow's Ĉ Test
2 Copas's Unweighted Residual Sum of Squares Test
3 Cumulative Sums of Residuals Test
4 New Partition Chi-square Test
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Secondly we conduct another simulation with β4 increases from -1.5 to 1.5 by 0.5, here

β4 is the coe�cient parameter for the interaction term as before, but we change other beta

coe�cients meanwhile, speci�cally we use three di�erent models for this simulation study

and we focused on the change of rejection rate under di�erent sample size using the HL test.

The three models are under the same form of design matrix but with di�erent beta

coe�cients. The design matrix is also the same as in the �rst additional simulation. Thus

the systematic component is in the form as follows.

η = Xβ =

(
1 x x2 z xz

)


β0

β1

β2

β3

β4


Then we de�ne three di�erent models by di�erent settings of β respectively. For model

1, we set β = (−2, 1, 0.2, 1, β4)
T , for model 2, we set β = (1, 1, 1, 1, β4)

T , and for model 3,

we set β = (1,−2, 1,−2, β4)
T , and for all three models we set six di�erent values for β4 as

previously described β4 ∈ {−1.5,−1,−0.5, 0.5, 1, 1.5}, i.e. β4 takes three pairs of values with

opposite signs.

Bearing in mind the purpose of this simulation is to investigate how di�erent systematic

component would change the rejection rate when an interaction term is missed under varied

sample sizes. Table 5.14 shows the rejection rate of the HL test based on three di�erent

simulation models.
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Table 5.14: Setting 3 under scenario 1: Rejection rate of detecting the omission of interaction
term with a set of di�erent values of β4

N β4 Model 1 1 Model 22 Model 3 3

200

-1.5 0.2 0.05 0.11
-1.0 0.115 0.07 0.08
-0.5 0.075 0.065 0.05
0.5 0.065 0.03 0.01
1.0 0.165 0.06 0.075
1.5 0.25 0.045 0.05

500

-1.5 0.225 0.07 0.27
-1.0 0.27 0.1 0.16
-0.5 0.105 0.045 0.085
0.5 0.085 0.045 0.05
1.0 0.285 0.075 0.06
1.5 0.595 0.08 0.08

1000

-1.5 0.36 0.14 0.58
-1.0 0.675 0.13 0.275
-0.5 0.18 0.015 0.115
0.5 0.115 0.035 0.04
1.0 0.55 0.03 0.14
1.5 0.845 0.12 0.13

2000

-1.5 0.6 0.22 0.935
-1.0 0.93 0.085 0.675
-0.5 0.385 0.07 0.175
0.5 0.325 0.01 0.105
1.0 0.83 0.055 0.235
1.5 0.99 0.235 0.295

5000

-1.5 0.955 0.575 0.995
-1.0 1 0.21 0.985
-0.5 1 0.06 0.455
0.5 0.705 0.02 0.26
1.0 1 0.205 0.71
1.5 1 0.68 0.795

10000

-1.5 0.9955 0.955 1
-1.0 1 0.49 1
-0.5 1 0.09 0.79
0.5 0.97 0.1 0.62
1.0 1 0.435 0.965
1.5 1 0.955 0.985

1 In Model 1, β = (−2, 1, 0.2, 1, β4)
T

2 In Model 2, β = (1, 1, 1, 1, β4)
T

3 In Model 3, β = (1,−2, 1,−2, β4)
T
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It is noticeable that smaller magnitude of beta coe�cient (β4) of the missing interaction

term achieves lower test power for a same model under a �xed sample size. For the largest

magnitude of β4, Model 1 achieves its largest power only when β4 = 1.5, Model 3 achieves

its largest power only when β4 = −1.5, whereas Model 2 presents a di�erent pattern. For

model 2 with sample size of 200 and 500 , the test power achieves its largest when β4 equals

-1.0, for the rest cases of sample size, Model 1 achieves its largest power when β4 = 1.5 or

β4 = −1.5.

For a a speci�c β4, all the test powers increase as sample size increases within a model,

this is true for all three models. This result con�rmed that sample size a�ects test power

regardless the model components.

Another noticeable result is the test power of model 2 is well below that of other two

models, it's almost always true across di�erent sample size scenarios. Even when sample

size increases to 10,000, the test power of model 2 is less than 10% whereas the test power

for model 1 is 100% and model 3 is 79% when β4 is -0.5, which suggests that systematic

component a�ects the rejection rate more than sample size does. This simulation study helps

us understand why the test powers in the studies of this chapter are much lower than those

in chapter 4, that is we mix test powers from di�erent systematic components and the test

powers get diluted.

Thus far, we revealed that not only the beta coe�cient (including both magnitude and

sign) and sample size a�ect the rejection rate of the HL test for missing interaction term,

but also di�erent systematic component a�ects the rejection rate through simulations. In

addition, our study suggests that the beta coe�cients for other related components remained

in the model a�ect the test power as well. All those aspects of data characteristics or

underlying model pro�les a�ect the performance of goodness-of-�t tests in terms of the

power of detecting inadequate models.
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5.5.2.2 Scenario 2: omission of quadratic terms

Table 5.15 shows the empirical power of each test to detect the missing quadratic terms under

di�erent classes of sample size. Similarly as the result shown in Table 5.8, the rejection rate

shows that each test does not hold desirable power at the nominal level 80% when quadratic

terms are omitted from the model from our simulation study. For sample size less than

5,000, the new partition method of goodness-of-�t test achieves higher power than other

three tests. For sample size greater than 5,000, the cumulative sums of residual test achieves

higher power than other tests.

Table 5.15: Rejection rate of four goodness-of-�t tests: omission of quadratic terms

HL 1 NP 2 RSS3 CUSUM 4

small 0.1376 0.166 0.1635 0.1585
moderate 0.2747 0.4025 0.2656 0.2995
large 0.4237 0.4687 0.3618 0.4164
extra large 0.5282 0.5453 0.4733 0.5475
super large 0.6081 0.5763 0.5318 0.6328

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

We also investigate what factors a�ect the test powers by conducting logistic regression

model �tting as in scenario 1, all four goodness-of-�t tests suggest sample size N and the

number of quadratic terms nq are the signi�cant factors. To save pages we summarize the

analytical results in the sign of estimated beta's (indicating the e�ect direction of predictor

variables) and signi�cant indication (the symbol ? within parenthesis indicates statistical

signi�cance).

Table 5.16: Scenario 2: logit model �tting results

N nq

HL + (?) + (?)
NP + (?) + (?)
RSS + (?) + (?)
CUSUM + (?) + (?)
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5.5.2.3 Scenario 3: omission of one correlated term

Table 5.17 shows the empirical power of each test to detect the missing correlated continuous

covariate under di�erent classes of sample size. For sample size less than 500, the CUSUM

test has higher power than all other three tests, for sample size between 500 and 5000, the

proposed NP test has high power than others, and the RSS test has higher power than other

three test when sample size is larger than 5,000. Just as when dropping the interaction

terms, all test powers in this scenario are lower than that when dropping quadratic terms.

Table 5.17: Rejection rate of four goodness-of-�t tests: omission of one correlated term

HL 1 NP 2 RSS 3 CUSUM 4

small 0.0476 0.0422 0.0529 0.0743
moderate 0.0393 0.195 0.0658 0.0646
large 0.0482 0.177 0.0923 0.0615
extra large 0.0765 0.1984 0.2201 0.1356
super large 0.1556 0.1729 0.3354 0.2376

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

We also investigate which factor(s) would a�ect the test power similarly as �tting logistic

regression model as before. The analytical results show that the sample N and the beta

coe�cient of the correlated term are positively associated with rejection rate, and ρ, the

correlation coe�cient between two correlated predictor variables, is negatively associated

with rejection rate, but there is an exception, the correlation coe�cient is not signi�cantly

associated with rejection rate for the new partition test. The summary table for four tests

is followed. Note that the results in Table 5.18 holds no matter missing which one among

the two correlated covariates.
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Table 5.18: Scenario 3: logit model �tting results

N ρ β

HL + (?) - (?) + (?)
NP + (?) - + (?)
RSS + (?) - (?) + (?)
CUSUM + (?) - (?) + (?)

5.5.2.4 Scenario 4: omission of one main e�ect

Table 5.19 shows the empirical power of each test to detect the missing main e�ect from the

model under di�erent classes of sample size. For sample size less than 15,000, the NP test

has higher power than other three tests, for sample size greater than 15,000, the RSS and

CUSUM test perform better to detect the missing term of the model.

Table 5.19: Rejection rate of four goodness-of-�t tests: omission of one main e�ect

HL 1 NP 2 RSS 3 CUSUM 4

small 0.0595 0.0864 0.06 0.0785
moderate 0.0653 0.1973 0.0828 0.0938
large 0.0918 0.2109 0.1349 0.1173
extra large 0.1695 0.2622 0.2492 0.2307
super large 0.2668 0.2723 0.3351 0.3223

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

In a similar approach as before, the analytical results show that the sample N and the

beta coe�cient of the main e�ect are positively associated with rejection rate for three test,

namely the HL, NP and CUSUM test, but not the RSS test. The summary table for four

tests is followed.

Table 5.20: Scenario 4: logit model �tting results

N β

HL + (?) + (?)
NP + (?) + (?)
RSS + +
CUSUM + (?) + (?)
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5.5.2.5 Scenario 5: addition of one interaction term

Table 5.21 shows the empirical power of each test to detect the addition of an interaction

term to the model under di�erent classes of sample size. For sample size less than 500, all

test powers are low. For sample size greater than 500, the NP test has higher power than

other three tests, which suggest the NP test can detect the additional interaction term more

often than other three tests.

Table 5.21: Rejection rate of four goodness-of-�t tests: addition of one interaction term

HL 1 NP 2 RSS 3 CUSUM 4

small 0.0672 0.0755 0.0826 0.087
moderate 0.0701 0.1745 0.0728 0.0797
large 0.0751 0.2646 0.0682 0.0682
extra large 0.1275 0.2399 0.1179 0.1418
super large 0.1764 0.2231 0.1415 0.1803

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

5.5.2.6 Scenario 6: addition of one unrelated continuous covariate

Table 5.22 shows the empirical power of each test to detect the addition of an unrelated

continuous covariate to the model under di�erent classes of sample size. Similarly as in

scenario 5, for sample size greater than 500, the NP test has higher power than other three

tests, which suggest the NP test can detect the additional continuous covariate more often

than other three tests.

5.5.3 Summary

Scenarios 1 through 4 are under-�tting cases, which means the assumed model misses some

terms while they are included in the model used to generate the simulated data set. Whereas

scenarios 5 through 6 are over-�tting cases, which means the assumed model contains some

100



Table 5.22: Rejection rate of four goodness-of-�t tests: addition of one unrelated continuous
covariate

HL 1 NP 2 RSS 3 CUSUM 4

small 0.0704 0.0731 0.083 0.0747
moderate 0.06822 0.1818 0.0691 0.0751
large 0.0761 0.2683 0.065 0.0701
extra large 0.1321 0.2445 0.1156 0.1436
super large 0.1794 0.2314 0.1445 0.1857

1 Hosmer-Lemeshow's Ĉ Test
2 New Partition Chi-square Test
3 Copas's Unweighted Residual Sum of Squares Test
4 Cumulative Sums of Residuals Test

terms while they are not included in the model used for data simulation. Overall the powers of

all four tests for under-�tting cases are higher than that for over-�tting cases. The proposed

NP test has higher power than other three tests for over-�tting cases, which means the NP

test can detect the additional terms to the model more often than the alternatives.

All four goodness-of-�t tests achieve the highest power or rejection rate in the case of

missing quadratic terms (scenario 2). The highest power is over 63% by the CUSUM test.

This suggests that the goodness-of-�t test tend to detect the missing of quadratic terms easier

than the missing of other terms, for example, the missing of interaction terms, the missing

of a main e�ect term, and/or the missing of a correlated term for a continuous covariate.

The sample size plays an important role in rejection rate, the reason is that the outcome

from all goodness-of-�t tests are p-values. Just as the general issue with p-value outcome

from a hypothesis test, a test is able to detect even very small variation from the null

model when increasing sample size to large enough. It is notable that for the proposed new

partition method, its rejection rate does not always strictly increase as sample size increases,

the potential reason is that the degrees of freedom of this test are varied for di�erent data

sets, as a consequence, the p-value of this test is determined di�erently for di�erent models.

However, the trend of increasing rejection rate still remains if all situations are kept the same

with sample size as the only one changing factor as shown in the chapter 4.
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Both the magnitude and the sign of a parameter coe�cient a�ect the rejection rate of

the lack-of-�t test for detecting the omission of interaction terms. This feature makes the

usefulness of goodness-of-�t test to detect the missing interaction terms not powerful in real

data analysis.
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Chapter 6

Computing Considerations

6.1 Introduction

It is always a good idea to simulate data to investigate some important characteristics of a

new statistic. On the one hand, we can simulate data from some known distribution and

make it close to the observed data set, on the other hand, simulation can be computationally

intensive in case a model �tting or some speci�c test processing is needed. In the comput-

ing process of the present research, the model �tting process is time consuming for large

sample size, for example, when the sample size is beyond 10,000. It is a challenging task to

ensure software program can run e�ciently and can shorten the computing time su�ciently.

Nowadays, the parallel computing system can help us reduce the computer time. Many

computers have multiple processors, making it possible to split a simulation task in many

smaller, and hence faster, sub-simulations parallelly. Based on our experience in working on

this research project, R o�ers a great computing environment to speed up our computing

needs. Fortunately, R possesses the potentiality to speed up the program process by parallel

computing.

6.2 An example: The need of speeding up computation

Let's look into the real computing time through the simpli�ed model as shown in setting 2

under scenario 2 in chapter 4. We need to repeat the program 200 times, which means we

simulate 200 di�erent data sets from the same distribution speci�ed within R program.
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N Elapsed Time

200 01s
500 01m20s
1000 02m35s
2000 05m52s
5000 20m14s
10000 57m52s
15000 01h51m27s
25000 05h12m45s

Obviously it is not a linear relationship between the elapsed time and the sample size.

If we increase the number of replications or if the model becomes complicated, i.e. with

more complicated design matrix or more predictor variables are involved, the computing

time becomes much longer than the illustration here. It is possible that the computer would

be out of memory when a complicated model �ts to data with large sample size. Thus

when doing simulation with large sample size, we need to consider speeding up the software

package and writing e�ciently fast programming code.

Not only is the long time computation due to large sample size, but also due to the

algorithm here utilized to calculate the p value for the CUSUM test. As we discussed in

chapter 2, the computation of goodness-of-�t tests based on the cumulative sums of residuals

is time consuming.

As introduced in chapter 2, the cumulative sums of residuals is built on partitions of

�some space�, which means the ordering of yi may be determined by that of the �tted ŷi

or of the values of a covariate is required. For example, if the partition space is based on

covariate patterns, say X, to compute I(Xi ≤ t), the indicator function in Wn(t), we need

to consider all the possible combinations of t = (t1, . . . , tp)
T in multidimensional space. For

overall assessment of goodness-of-�t test, the ordering of observations with outcome values

y would be based on that of the predicted values ŷ, in which case the space dimensionality

of t is much higher when n � p, especially when n is large. An estimated p-value for the

supremum test Gg in (2.24) can be estimated by generating a large number of realizations

from Wg(t) through Monte-Carlo simulation [30] [43] [44].
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Next, we illustrate why the SUCUM test takes much longer time to calculate a p-value

than alternatives with R software.

Figure 6.1: The SUCUM test process: observed W
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Figure 6.2: The SUCUM test process: observed W with simulated W
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To investigate the algorithm of the CUSUM test to estimate an empirical p value, Figure

6.1 shows the observed distribution of Wn and the observed supremum of Wn, gn = 0.5569,

in one (simulation) case as shown in Table 4.9 with (β2 = 0.5, N = 500) in setting 2 under

scenario 1 in chapter 4. The goal of this setting is to assessing the performance of four

goodness-of-�t tests to detect the omission of a quadratic form of a continuous covariate

with a coe�cient value of 0.5 in the null model.

To compute Pr(G̃n ≥ gn), let β and I in (2.16) and (2.17) be replaced with their observed

values, β̂ and Î, respectively. then based on B = 1000 randomly repeated sets of samples

{Z1, . . . , Zn} from N(0, 1), the distribution of G̃n can be estimated, further the p-value can

be estimated by the proportion of the number of cases with G̃n ≥ gn out of B = 1000

replications. After one simulation in this way, we obtain the estimated p-value from the

Kolmogorov-Smirnov type of test as p = 0.002, i.e. two cases among these 1000 simulations

have their G̃n's greater than gn. This is shown in Figure 6.2, where the 1000 sampling

distributions of Wn are shown by grey curves, and the observed distribution of Wn is shown

by black curve, the p = 0 from the Cramer-von Mises type test is also shown there.

Due to the indirect and simulation way to calculating p value, we would expect that the

computing time for the CUSUM test should be longer than the alternatives, especially when

the assumed model is more complicated than this simpli�ed one. Based on our experience,

it is not a rare issue that the Windows operation system would be crashed when we run R

program for the above tests with complex design matrix in the model and with large sample

size simulations.

In R, we can check which two simulations return the largest G̃n's with the example code

below.
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The resulting p-value of 0.002 suggests an alternative model should be considered. By

running this module repeatedly, we can estimate the power of the CUSUM test in this case,

based on how likely in proportion the resulting p values are less than 0.05, the nominal

signi�cant level of a hypothesis test.

6.3 Monitoring the progress of computation

There are two modes to program in R. One mode is interactive programming, the other is

batch processing. For batch processing, a series of programs or only one task on a computer

environment is executed without manual intervention, whereas an interactive session accepts

input from human. Interactive session are usually used so that we can test our program code

before attempting a long production run as a batch job. It is straight forward to monitor the

progress by adding a �cat()� function to track the replicates if an index of the replications

are setup, or by displaying the progress bar as the screenshot shows below (Figure 6.3), or

by adding �Sys.time()� function directly before and after some complex computing tasks, or

use �system.time()� function outside of an appropriate chunk of R program to simply just

check the processing time. We will show an example later.
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Figure 6.3: R computing progress shown in percentage completed and computing time left

The bene�t of monitoring the program progress is that we can estimate the total com-

puting time for some speci�c tasks. Then at the time when we need to submit a batch job,

we can request a relatively precise and reasonable wall-clock time duration of a computer or

high performance clusters.

6.4 High performance computing

In theory, it is not di�cult to copy your R simulation code into as many �les as necessary

to run parallel processing manually, but as the number of repetitions becomes larger, this

task becomes increasingly tedious. On the other hand, R is single-threaded program rather

than parallel, which means no matter how many CPU cores are available, R can only use

one of them by default. High performance computing clusters are usually equipped with a

great amount of cores (Note: cluster=multiple nodes (or servers) × multiple cores per node).

Fortunately we can run R program using multiple cores with the help of packages such as

multicore and snow (now they are integrated into parallel package) to process parallel

computing.
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The present research project utilities the parallel package to perform parallel computing

through �mclapply()� function. This package is designed to use multiple cores in an unix

environment. The advantage of using parallel remains in at least two folds: (1) parallel

computing rather than linearity or consequence computing, (2) overcoming the limitation of

memory size, it usually exists in Windows operation systems. Users can use it in Windows

systems by setting the option parameter �mc.cores� equals 1, but it loses its advantage of

processing program with multiple cores simultaneously. However, the �mclapply()� function

can not use cores on multiple nodes, instead it can only use multiple or all CPU cores on

one node. To enhance th computing with R, the package doParallel is built on top of

packages parallel, foreach, and iterator, and it can run one multiple nodes by functions

�makeCluster() → registerDoParallel() → %dopar% → stopCluster()�.

There are also two ways to submit batch jobs to a computer or a cluster. One way is to

type in command line as below. The outcome will be saved in the user speci�ed �le. For

example, �result.txt� is the output �le when the job is done.

However this batch method is also a trial version to some extend. If the processing time

is longer than the allowed grace period of time, or if the program requests a good amount of

facility cores, the job will be stopped by the facility system automatically. A safer and better

way to do batch submission is to submit a job request to the high performance computing

cluster with a script. An example .slurm script is shown below.
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As a conclusion, to secure simulation work as in our study cases, utilizing the high

performance computing facility is necessary.

6.5 R package

It is a very common task to simulate binary outcomes based on some speci�ed model forms

in practice. We design our computing programs for very general purpose so that they are

�exible enough for future reproducible research work. For instance, it is straight forward

to simulate binary outcomes for a logistic regression with customized parameter coe�cients

and speci�c distributions for predict variables by using our simulation function as shown in

Appendix A. Eventually we can extend our programs as a R package for public use in the

future.
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Chapter 7

Overall Summary and Discussion

7.1 Overview of chapters

We introduce the logistic regression under the framework of generalized linear regression

models and the background of goodness-of-�t testing for logistic regression model in chapter

1.

In chapter 2, we conduct a literature review of existing goodness-of-�t tests developed

for logistic regression model speci�cally when sparse data presented, we introduce di�erent

ideas to formulate di�erent test statistics, and we also address the advantages and drawbacks

of those tests.

Chapter 3 proposes a new partition based chi-square type goodness-of-�t test as an

alternative to the Hosmer-Lemeshow test. It is motivated by the necessary conditions for

applying asymptotic theorem to the limiting distribution of the grouped goodness-of-�t test.

The proposed new partition test is intend to tackle the issue of small expected cell frequency

(commonly the threshold value is 5) within some bins, which can occur in the Hosmer-

Lemeshow test. The limiting distribution of the proposed chi-square type test statistic,

including its degrees of freedom, is addressed in detail.

Chapter 4 compares the new partition test to the alternative three tests, namely the

Hosmer-Lemeshow (HL) test, the unweighted residual sum of squares (RSS) test and the cu-

mulative sums of residuals (CUSUM) test. The results of test size suggest that the HL retain

the type I error rate better than three alternatives in general. The other three goodness-of-�t

tests perform closely to each other. The proposed NP test holds slightly high type I error
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rate when sample size is less than 2,000, however when sample size is greater than 5000, it

controls type I error rate at the desired level of 5% level, and it holds slightly lower type I

error rate than the RSS and the CUSUM tests. The test power for detecting the missing

quadratic term is a�ected by both the magnitude and the sign of corresponding beta coe�-

cient, but other related components in the model would a�ect the test power as well. The

proposed NP test achieves higher power than other three tests for sample size less than 1000

under our study settings, however, the proposed new partition test is relatively conserva-

tive to detect the missing quadratic term(s). it has smaller power/rejection rate than other

three tests with a speci�c parameter coe�cient across all sample size. Comparing to the

under-�tting situations, all tests are not sensitive to detect the over-�tting situations under

simulation settings of our study.

Chapter 5 further compares the performance of four goodness-of-�t tests under general-

ized simulation settings. Due to the complicated combined form of systematic components

in logistic regression models, both the type I error rate and power of four tests shifted to

undesired direction, i.e. the type I error rates increased and the test powers decreased among

four goodness-of-�t tests. This generalized simulation study shows under some scenarios the

power of the HL test for detecting the missing interaction term is less than 10% even when

sample size is up to 10,000. The study also shows that all test achieve higher power to detect

the omission of quadratic terms than the omission of other terms, such as the omission of

interaction terms, correlation term, and a main e�ect term even. The over-�tting situations,

such as adding a main e�ect, adding a quadratic term, adding interaction term(s), are not

detected as often as the under-�tting cases by four tests.

Chapter 6 addresses the computing consideration. Practically when conducting the as-

sessment of the lack-of-�t by using the CUSUM test, we need to calculate p-values by sim-

ulation or sampling, this type of algorithm (using a proportion value as p-value) set up a

challenging situation for R program. It is often the case a R session would be aborted due

to using up the computer memory. This requires the use of a high performance cluster com-
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puting facility to overcome this barrier, especially when data with large sample size needs

to be simulated.

7.2 Discussion

Just as Royle et al. (2014) pointed out, conducting a goodness-of-�t test is not always

easy to do. And, moreover, it is never really easy (or especially convenient) to decide if a

goodness-of-�t test is worth anything [70]. Despite this we try to �nd some insights of this

research �eld.

7.2.1 Contribution of this research

The Hosmer-Lemeshow goodness-of-�t statistic is widely used for evaluating the �t of lo-

gistic regression models when continuous covariates are presented. Usually, the HL test

statistic is calculated using the deciles-of-risk grouping method by forming groups based on

the predicted probabilities. Under this method, the group boundaries are determined by

referencing the random outcome data; therefore these boundaries are random. Even though

the HL test has been criticized by many others regarding its obvious disadvantages, it still

serves as a standard test nowadays. Not many studies are designed for the investigation of

the performance of the other two tests, namely the RSS and the CUSUM tests, as we focus

on in this research.

Kuss (2002) addresses that the RSS may have potential higher power than the HL test,

but more simulation study under di�erent scenarios is needed, this research project is a part of

our e�ort following the author's suggestion. We believe the CUSUM has a broad application

in the goodness-of-�t tests in generalized linear models, and it deserves more investigation.

Unfortunately due to its considerably long computing time than other two methods, very few

studies consider applying the CUSUM test. This research study brought it to researchers'

attention. In this sense, this research is the �rst one to assess the performance of those three
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goodness-of-�t tests.

Th previous publications conduct simulation study with very few covariates included in

the model. To make our knowledge of the characteristics of each test more applicable to real

world data sets, we conduct our simulation in both the traditional way and a generalized way.

This research is more complex than the published studies in two folds: more complicated

systematic component (by expanding the model design matrix) and larger sample size (by

increasing sample size up to 30,000).

We propose a new partition method for binning data di�erently than the HL test, which

would present an issue of small expected frequency within a bin, to ensure the expected

frequency within each bin/cell is at least �ve. To the best of our knowledge this research is

the �rst one motivated by the conditions required by the asymptotic theorem for the limiting

distribution of a chi-square type statistics.

7.2.2 Limitation of this research

The simulation results under varied scenarios show that the proposed NP test achieves higher

power than three alternatives, but in many cases it is more conservative than others to reject

the wrong model. The proposed NP test possesses some disadvantages:

1. The number of bins/groups increases when sample size increases, which is also a po-

tential issue for the chi-square type tests statistic with random boundaries of bins.

2. We use three di�erent degrees of freedom for di�erent data/model(s). Even it represents

a range of limiting distributions of the chi-square type statistic, it is still arbitrary and

lacks of theoretical guidance on how to determine the appropriate one.

3. The proposed NP tests did adjust for number of estimated parameters in the logistic

regression model, but not fully consider penalty for extreme over-�tting of the model.

4. It does not possess great power to detect missing quadratic terms. Even it achieves

higher power than other studied tests with sample size less than 5,000 under the general
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simulation setting as shown in chapter 5, it did show more conservative than other tests

under the speci�c setting in chapter 4. These brought up some concerns of its consistent

power performance.

The simulation settings has limitations too.

1. Even though beta coe�cients including the intercept coe�cient is randomly sampled,

but the pool of beta coe�cients were pre-speci�ed and the values in the pool was quite

arbitrary.

2. The number of replication was set up to 200, it can be a larger number so that the

simulation results could be more stable and reliable.

3. The sample size class was quite arbitrary too, and the distance between each class is

uneven, consequentially more models with smaller sample size were sampled.

7.2.3 Some guidelines of using goodness-of-�t test

We would like to o�er some guidelines of how to use di�erent goodness-of-�t tests in logistic

regression when continuous covariates are presented based on our simulation study.

• We agree with the suggestion provided by Hosmer et al. that practitioners can consider

using multiple goodness-of-�t tests together to ensure the speci�ed model describe the

data adequately.

• All goodness-of-�t tests perform better to detect under-�tted models than to detect

over-�tted models, i.e. the goodness-of-�t tests reject models with missing terms more

often than to reject models with additional terms. This suggests that goodness-of-�t

tests are not sensitive to over-�tted models.

• It's easier for a test to detect omission of a quadratic term than to detect omission of

an interaction term, i.e. all goodness-of-�t tests achieve higher power for the missing

quadratic term than the missing interaction term.
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• If keeping all other factors �xed and only with varied sample size and beta coe�cient,

The new partition test achieves higher power than the HL test to detect the omission

of an interaction term for sample size smaller than 500 across varied beta settings. For

sample size greater than 1,000, the NP test performs conservative than the rest three

tests, i.e. not often to reject the wrong model, when sample size is less than 10,000 in

most cases of varied beta settings to detect the omission of an interaction term.

• The NP test has higher power to detect the addition of an unrelated continuous co-

variate than three alternatives across varied sample size, and it is true no matter what

distribution is the continuous covariate from (we investigate three distributions only,

i.e. standard normal, Uniform(−3, 3) and Beta(1, 2)).

• The NP test has higher power to detect the omission of a main e�ect than three

alternatives when sample size is less than 15,000, when sample size is larger than

15,000, both the RSS and the CUSUM tests perform better than the HL and the NP

tests.

• For some speci�c models, the test power could be very lower even when sample size is

greater than 10,000.

• Sample size, the corresponding beta coe�cient of the missing or additional term and the

beta coe�cients of related terms remaining in the model would a�ect the performance

of all test powers. In general, larger sample size, larger magnitude of beta coe�cient

of the missing or additional term and smaller magnitude of beta coe�cient of related

terms remained in the model would increase test powers.

7.3 Future work

The directions we can consider for future work to advance this research exists in at least

three areas:
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1. Alternative simulation setting could be designed as increasing the complicity of the

systematic components of the speci�ed logistic regression model, that is we can grow

the model by adding predictor variables step-by-step, to ensure more meaningful com-

parison, we can keep the existing terms �xed in the model when growing the systematic

components. This way we may �nd more characteristics of the existing goodness-of-�t

tests.

2. We may try di�erent criteria, for example 10, for the expected cell frequency to par-

tition data. We use 5 as the threshold in this research, we may search for optimal

criteria for the combination of di�erent systematic components and di�erent scenarios.

3. Further more work is needed to see if there is potential to �nd an optimized degrees of

freedom for the asymptotic distribution of the chi-square type of test statistic, TG? , to

replace the currently one proposed in (3.21).
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Appendix A

A.1 Proof 1: D statistic in (2.3) is asymptotically equivalent to X2

statistic in (2.2)

Th chi-square in (2.2) and deviance (2.3) statistics are asymptotically equivalent. We prove

this use the Taylor series expansion of OlogO
E
about O = E, namely,

Olog
O

E
= (O − E) +

1

2

(O − E)2

E
+ · · ·

by ignoring the e�ect of the remaining higher-order terms, then

D = 2

g∑
i=1

(
yilog

( yi
niπ̂i

)
+ (ni − yi)log

( ni − yi
ni(1− π̂i)

))

= 2

g∑
i=1

(
(yi − niπ̂i) +

1

2

(yi − niπ̂i)2

niπ̂i
+ [(ni − yy)− ni(1− π̂i)] +

1

2

[(ni − yi)− (ni − niπ̂i)]2

ni(1− π̂i)
+ · · ·

)

= 2

g∑
i=1

(
1

2

(yi − niπ̂i)2

niπ̂i
+

1

2

[(ni − yi)− (ni − niπ̂i)]2

ni(1− π̂i)
+ · · ·

)

=

g∑
i=1

(
(yi − niπ̂i)2

niπ̂i
+

(yi − niπ̂i)2

ni(1− π̂i)
+ · · ·

)

u
g∑
i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)

= X2.
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A.2 Proof 2: Inequality (2.7)

Some notations:

k = 1, . . . , g: the kth bin/group

j = 1, . . . , ck: the k
th unique covariate pattern in the kth bin

n
′

k: the total number of observations in the kth bin

π̄k =
∑ck

j=1
mj π̂j

n
′
k

: the average estimated probability of all subjects falling in the kth bin

ck: the number of covariate pattterns in the kth bin

mj: the number of subjetcs of covariate pattern j in the kth bin

ck∑
j=1

mjπ̂j(1− π̂j) =

ck∑
j=1

mjπ̂j −
ck∑
j=1

mjπ̂
2
j

= n
′

kπ̄k −
ck∑
j=1

mjπ̂
2
j . (A.1)

ck∑
j=1

mj(π̂j − π̄k)2 =

ck∑
j=1

mjπ̂
2
j − 2π̄k

ck∑
j=1

mjπ̂j + π̄2
k

ck∑
j=1

mj

=

ck∑
j=1

mjπ̂
2
j − 2π̄kn

′

kπ̄k + n
′

kπ̄
2
k (since

ck∑
j=1

mj = n
′

k)

=

ck∑
j=1

mjπ̂
2
j − n

′

kπ̄
2
k (A.2)

Add (A.1) and (A.2), we have

ck∑
j=1

mjπ̂j(1− π̂j) +

ck∑
j=1

mj(π̂j − π̄k)2 = n
′

kπ̄k − n
′

kπ̄
2
k = n

′

kπ̄k(1− π̄k). (A.3)
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Therefore, from (A.3) we obtain inequality (2.7)

ck∑
j=1

mjπ̂j(1− π̂j) = n
′

kπ̄k(1− π̄k)−
ck∑
j=1

mj(π̂j − π̄k)2

< n
′

kπ̄k(1− π̄k) (since mj > 0 and (π̂j − π̄k)2 > 0 ∀ j ∈ {1, . . . , ck}).
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Appendix B

B.1 R function for data simulation in the study

s imulate . Data<− f unc t i on ( beta , i n t e r c ep t , s s ) {

beta<−sample ( beta , 20 , r ep l a c e = TRUE)

in t e r c ep t<−sample ( i n t e r c ep t , 1)

i f ( s s == " smal l ") {

N <− nobs <− sample (200 :500 , 1)

} e l s e i f ( s s == "moderate ") {

N <− nobs <− sample (500 :2000 , 1)

} e l s e i f ( s s == " l a r g e ") {

N <− nobs <− sample (2000 :5000 , 1)

} e l s e i f ( s s == " ex t r a l a r g e ") {

N <− nobs <− sample (5000 :15000 , 1)

} e l s e { N <− nobs <− sample (15000 :30000 , 1) }

nc<−sample ( 3 : 5 , 1)

nd<−sample ( 2 : 5 , 1)

ni<−sample ( 0 : 2 , 1)

nq<−sample ( 0 : 2 , 1)

c o l l i n e a r i t y=sample ( c (" nu l l " , " low " , "moderate " , " high ") , 1)

continuous<−data . frame ( x1=rnorm (N) , x2=rnorm (N, 0 , 4) ,
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x3=run i f (N, −1, 1) , x4=rbeta (N, 2 , 2) , x5=rnorm (N) )

sqX<−cont inuous^2

colnames ( sqX)<−paste0 ( names ( cont inuous ) , "Sqr ")

continuousX<−cont inuous [ , 1 : 5 ]

Xsq<−sqX [ , 1 : 5 ]

d ichots<−data . frame ( z1=rbinom (N, 1 , 0 . 1 ) , z2=rbinom (N, 1 , 0 . 3 ) ,

z3=rbinom (N, 1 , 0 . 5 ) , z4=rbinom (N, 1 , 0 . 7 ) , z5=rbinom (N, 1 ,

0 . 9 ) )

i n t e r a c t s <−data . frame ( x1z1=continuousX [ , 1 ]∗ d i cho t s [ , 1 ] ,

x1z2=continuousX [ , 1 ]∗ d i cho t s [ , 2 ] , x1z3=continuousX [ ,

1 ]∗ d i cho t s [ , 3 ] , x1z4=continuousX [ , 1 ]∗ d i cho t s [ , 4 ] ,

x1z5=continuousX [ , 1 ]∗ d i cho t s [ , 5 ] , x2z1=continuousX [ ,

2 ]∗ d i cho t s [ , 1 ] , x2z2=continuousX [ , 2 ]∗ d i cho t s [ , 2 ] ,

x2z3=continuousX [ , 2 ]∗ d i cho t s [ , 3 ] , x2z4=continuousX [ ,

2 ]∗ d i cho t s [ , 4 ] , x2z5=continuousX [ , 2 ]∗ d i cho t s [ , 5 ] ,

x3z1=continuousX [ , 3 ]∗ d i cho t s [ , 1 ] , x3z2=continuousX [ ,

3 ]∗ d i cho t s [ , 2 ] , x3z3=continuousX [ , 3 ]∗ d i cho t s [ , 3 ] ,

x3z4=continuousX [ , 3 ]∗ d i cho t s [ , 4 ] , x3z5=continuousX [ ,

3 ]∗ d i cho t s [ , 5 ] , x4z1=continuousX [ , 4 ]∗ d i cho t s [ , 1 ] ,

x4z2=continuousX [ , 4 ]∗ d i cho t s [ , 2 ] , x4z3=continuousX [ ,

4 ]∗ d i cho t s [ , 3 ] , x4z4=continuousX [ , 4 ]∗ d i cho t s [ , 4 ] ,

x4z5=continuousX [ , 4 ]∗ d i cho t s [ , 5 ] , x5z1=continuousX [ ,

5 ]∗ d i cho t s [ , 1 ] , x5z2=continuousX [ , 5 ]∗ d i cho t s [ , 2 ] ,

x5z3=continuousX [ , 5 ]∗ d i cho t s [ , 3 ] , x5z4=continuousX [ ,

5 ]∗ d i cho t s [ , 4 ] , x5z5=continuousX [ , 5 ]∗ d i cho t s [ , 5 ] )

ccoe f<−seq ( 0 . 1 , 0 . 9 , 0 . 1 )

cc . nu l l <−0
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cc . low<−sample ( c c o e f [ 1 : 3 ] , 1)

cc .mod<−sample ( c c o e f [ 4 : 6 ] , 1)

cc . high<−sample ( c c o e f [ 7 : 9 ] , 1)

corrX1 <− rmvnorm(N, mean=c (0 , 0) , sigma=matrix ( c (1 ,

cc . low∗ s q r t (2 ) , cc . low∗ s q r t (2 ) , 2) , 2 , 2 ) , method = " cho l ")

corrX2 <− rmvnorm(N, mean=c (0 , 0) , sigma=matrix ( c (1 ,

cc .mod∗ s q r t (2 ) , cc .mod∗ s q r t (2 ) , 2) , 2 , 2 ) , method = " cho l ")

corrX3 <− rmvnorm(N, mean=c (0 , 0) , sigma=matrix ( c (1 ,

cc . high∗ s q r t (2 ) , cc . high∗ s q r t (2 ) , 2) , 2 , 2 ) , method = " cho l ")

corrX<−data . frame ( corrX1 , corrX2 , corrX3 )

names ( corrX )<−c (" corr low " , " corr low2 " , "corrmod " , "corrmod2 " ,

" corh igh " , " corh igh2 ")

colcont inX<−colnames ( continuousX )

colcontinXSamp<−sample ( colcont inX , nc )

continX<−continuousX [ , colcontinXSamp , drop=FALSE]

nameXs<−colnames ( continuousX )

nameX<−colnames ( continX )

nameXsq<−colnames (Xsq )

nameXsqs<−subs t r (nameXsq , 1 , 2)

i f ( l ength (nameX)==length (nameXsqs ) ) {

Xsq2<−Xsq

} e l s e {Xsq2<−Xsq [ , −which ( ! nameXsqs%in%nameX) ] }

missX<−s e t d i f f (nameXs , nameX)

co ld i cho t s <−colnames ( d i cho t s )

coldichotsSamp<−sample ( co ld i cho t s , nd )

dichot<−d i cho t s [ , coldichotsSamp , drop=FALSE]
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nameds<−colnames ( d i cho t s )

named<−colnames ( d i chot )

missd<−s e t d i f f ( nameds , named)

nameint<−colnames ( i n t e r a c t s )

i f ( l ength ( missd )==0) { nameint1<−nameint

} e l s e {

miss int1<−NULL

f o r ( i in 1 : l ength ( missd ) ) {

index1<−which ( g r ep l ( missd [ i ] , nameint ) )

miss int1<−c ( miss int1 , index1 ) }

nameint1<−nameint [−mis s in t1 ]

}

i f ( l ength (missX )==0) {nameint2<−nameint1

} e l s e {

miss int2<−NULL

f o r ( i in 1 : l ength (missX ) ) {

index2<−which ( g r ep l (missX [ i ] , nameint1 ) )

miss int2<−c ( miss int2 , index2 ) }

nameint2<−nameint1 [−mis s in t2 ]

}

int<−i n t e r a c t s [ , nameint2 , drop=FALSE]

c o l i n t <−colnames ( i n t )

colintSamp<−sample ( c o l i n t , n i )

interX<−i n t [ , colintSamp , drop=FALSE]

colXsq<−colnames (Xsq2 )
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colXsqSamp<−sample ( colXsq , nq )

Xsqs<−Xsq2 [ , colXsqSamp , drop=FALSE]

i f ( c o l l i n e a r i t y=="nu l l ") {

covars<−data . frame ( continX , dichot , interX , Xsqs )

L<−sample ( beta , dim( covars ) [ 2 ] , r e p l a c e=TRUE)

df = data . frame ( matrix ( i n t e r c ep t , nrow=N) , t ( t ( covars ) ∗ L) )

s=rowSums( df )

pr = 1/(1+exp(−s ) )

y = i f e l s e ( r un i f (N) < pr , 1 , 0)

data<−data . frame (y , covars )

nSuccess<−sum(y )

ldt<− l i s t (N, nSuccess , nc , nd , ni , nq , c o l l i n e a r i t y , cc . high ,

data , L)

} e l s e i f ( c o l l i n e a r i t y=="low ") {

covars<−data . frame ( continX , dichot , interX , Xsqs , corrX [ , 1 : 2 ] )

L<−sample ( beta , dim( covars ) [ 2 ] , r e p l a c e=TRUE)

df = data . frame ( matrix ( i n t e r c ep t , nrow=N) , t ( t ( covars ) ∗ L) )

s=rowSums( df )

pr = 1/(1+exp(−s ) )

y = i f e l s e ( r un i f (N) < pr , 1 , 0)

data<−data . frame (y , covars )

nSuccess<−sum(y )

ldt<− l i s t (N, nSuccess , nc , nd , ni , nq , c o l l i n e a r i t y , cc . high ,

data , L)

} e l s e i f ( c o l l i n e a r i t y=="moderate ") {
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covars<−data . frame ( continX , dichot , interX , Xsqs , corrX [ , 3 : 4 ] )

L<−sample ( beta , dim( covars ) [ 2 ] , r e p l a c e=TRUE)

df = data . frame ( matrix ( i n t e r c ep t , nrow=N) , t ( t ( covars ) ∗ L) )

s=rowSums( df )

pr = 1/(1+exp(−s ) )

y = i f e l s e ( r un i f (N) < pr , 1 , 0)

data<−data . frame (y , covars )

nSuccess<−sum(y )

ldt<− l i s t (N, nSuccess , nc , nd , ni , nq , c o l l i n e a r i t y , cc . high ,

data , L)

} e l s e i f ( c o l l i n e a r i t y=="high ") {

covars<−data . frame ( continX , dichot , interX , Xsqs , corrX [ , 5 : 6 ] )

L<−sample ( beta , dim( covars ) [ 2 ] , r e p l a c e=TRUE)

df = data . frame ( matrix ( i n t e r c ep t 1 [ 1 ] , nrow=N) , t ( t ( covars ) ∗ L) )

s=rowSums( df )

pr = 1/(1+exp(−s ) )

y = i f e l s e ( r un i f (N) < pr , 1 , 0)

data<−data . frame (y , covars )

nSuccess<−sum(y )

ldt<− l i s t (N, nSuccess , nc , nd , ni , nq , c o l l i n e a r i t y , cc . high ,

data , L)

}

re turn ( l d t )

}

# This func t i on can be e a s i l y extended by in c l ud ing s e t . seed ( )

method f o r r ep roduc ib l e r e s ea r ch purpose .
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# usage :

beta<−c (−4 , −2, −1.5 , −1, −0.75 , −0.5 , −0.2 , −0.1 , 0 . 1 , 0 . 2 , 0 . 5 ,

0 . 75 , 1 , 1 . 5 , 2 , 4) ;

i n t e r c ep t<−c (−2 , 2) ;

ldt<−s imulate . Data ( beta , i n t e r c ep t , " smal l ") ;

# not run
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