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ABSTRACT 
 
Background: As childhood obesity rates continue to rise, it is crucial to discover more effective 

prevention strategies. Most obesity prevention treatment strategies are implemented in school-

age children. However, it may be necessary to intervene during pregnancy to prevent offspring 

obesity.  Maternal docosahexaenoic acid (DHA) status throughout pregnancy may promote 

improved infant growth, thus helping prevent obesity. Furthermore, maternal DHA status may 

improve adiposity of infants born to mothers with excessive gestational weight gain (GWG).  

Objective: The purpose of this study was to determine if maternal DHA status influences infant 

percentage body fat (% fat), fat mass (FM), and fat-free mass (FFM). Furthermore, this study 

examined if maternal DHA status improves body composition of infants born to mothers with 

excessive GWG. 

Design: Pregnant women were randomized to receive 200 or 800 mg DHA per day from 12-20 

weeks gestation to birth. Maternal blood was collected at baseline and at delivery to determine 

maternal red blood cell phospholipid (RBC-PL) DHA status. Infant body composition was 

measured at 1 month and 4 months of age using two-compartment air-displacement 

plethysmography (ADP). Change in infant fat body weight, FM, FFM, and %fat was calculated. 

A median split was created to represent high vs. low for the change in DHA status from early 

pregnancy to late in pregnancy (32 weeks). Maternal GWG was categorized as excessive vs. not-

excessive based on clinical guidelines. ANCOVA examined the main effects for differences in 

infant body composition between groups based on the change in maternal DHA status (high vs. 

low) and GWG (excessive vs. not-excessive). An interaction between maternal DHA status and 

GWG category was assessed.   
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Results: Maternal DHA status was not associated with the change in infant body composition, 

regardless of GWG. However, infants born to mothers with excessive GWG had a smaller 

change in FFM compared to infants born to mothers who did not gain excessively (p=0.016).    

Conclusions: Maternal DHA status was not related to the change in infant body composition in 

mothers who gained excessive or not excessive during pregnancy. More studies are needed to 

demonstrate the effects maternal DHA status may have on offspring adiposity.   
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INTRODUCTION 

According to data collected from the National Health and Nutrition Examination Survey 

(NHANES), almost 20% of the nation’s youth were obese in 2015-2016, compared to 13.9% in 

1999-2000 (1). As childhood obesity rates continue to rise, it is crucial to discover more effective 

prevention strategies. Current strategies are targeted towards school-age children and adolescents 

(2). However, it may be necessary to implement prevention strategies starting before conception 

and during pregnancy. A clear relationship exists between pre-pregnancy body-mass index 

(BMI), GWG and offspring adiposity. Current statistics show that 26.5% of women are 

overweight and 40.4% of women are obese (1). Additionally, it is estimated that almost 50% of 

women gain excessive weight during pregnancy (3). Women who are overweight or obese before 

pregnancy are more likely to have infants with excess adiposity (4-9). Furthermore, excessive 

GWG is related to obesity of offspring (10-13). Infants with greater FM are at risk for 

developing obesity during childhood and children who are obese are more likely to become 

obese adults (14-20). Obesity is associated with numerous health complications such as impaired 

pulmonary, cardiac and pancreatic function (21-26). Obesity is also a risk factor for heart 

disease, cancer and type 2 diabetes (27, 28).  

DHA (DHA) may be a nutrient that can attenuate the effects of excessive GWG and 

promote favorable fat deposition in infants, thus decreasing risk of obesity in childhood and 

adulthood. DHA is thought to prevent excess fat deposition in utero by inhibiting adipogenesis 

(29). However, the majority of pregnant women do not consume the recommended amount of 

DHA, so it is unclear whether improved DHA status can promote favorable fat deposition during 

infancy (30). Therefore, the purpose of this study was to determine if maternal DHA status 

influences offspring body composition. Furthermore, this study examined if maternal DHA 

status improves body composition of infants born to mothers with excessive GWG.  
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Research Questions 

1. Does maternal DHA status impact FM, %fat and FFM of offspring at 1 and 4 months of 

age?  

2. Does maternal DHA status improve FM, %fat and FFM of 1 and 4 month old infants born 

to mothers who gained excessive weight during pregnancy? 
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REVIEW OF LITERATURE 

Recommendations for Gestational Weight Gain  

 GWG is important to monitor during pregnancy because it is related to maternal and 

offspring health during gestation and postnatally (10-13, 31-33). In 2009, the National Academy 

of Medicine (NAM: formerly the Institute of Medicine) published the current GWG guidelines, 

which are based on pre-pregnancy BMI (34). Women who are pregnant with one child and are 

underweight before pregnancy (BMI <18.5 kg/m2) are recommended to gain 28-40 pounds; 

women who are normal weight (BMI 18.5-24.9 kg/m2) should gain 25-35 pounds; women who 

are overweight (BMI 25.0-29.9 kg/m2) should gain 15-25 pounds; and women who are obese 

(BMI > 30.0 kg/m2) should gain 11-20 pounds (34).  

Pregnant women are encouraged to develop a plan to ensure appropriate weight gain. 

Strategies to promote appropriate GWG include tracking weight regularly, eating a nutrient-

dense diet, limiting foods with added sugars and solid fats, adhering to caloric needs, and 

following a regular exercise routine (34). Women who do not follow strategies for appropriate 

weight gain during pregnancy are at risk for excessive weight gain. Additional factors that 

predict excessive GWG are overweight and obesity at conception, lower maternal education 

level and poor diet and exercise habits (34-38). However, little is known about other variables 

that may contribute to excessive GWG.  

Rates of inadequate, appropriate and excessive GWG are well documented by the CDC. 

The National Vital Statistics System in 2015 indicated that 32% of pregnant women gained 

appropriately, 48% of women gained excessively, and 21% gained inadequately (3). This trend 

held true when GWG was categorized by pre-pregnancy weight status. Thirty-nine percent of 

women with a normal pre-pregnancy BMI gained appropriately, while only 26% of overweight 

women and 24% of obese women gained appropriately (3). Furthermore, 61% of overweight 
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women and 55% of obese women gained excessively during pregnancy compared to 37% of 

women with a normal pre-pregnancy BMI (3).   

Developmental Programming Hypothesis 

 The association between pre-pregnancy weight status and GWG in relation to offspring 

body composition and obesity is documented in numerous studies. Pre-pregnancy BMI largely 

predicts offspring adiposity in all life stages. Two cross-sectional studies (4, 5), three prospective 

cohort studies (6-8) and one longitudinal study (9) showed that offspring born to mothers who 

were overweight or obese before pregnancy were more likely to have greater total body fat and 

%fat with less FFM compared to offspring born to mothers with normal BMIs at conception. 

Only one prospective cohort study (39) found no association between pre-pregnancy BMI and 

offspring adiposity.  

 GWG also predicts offspring body composition at different life stages. Two prospective 

cohort studies (6, 7) and one cross-sectional study (40) found that infants born to mothers with 

excessive GWG had greater FM, %fat and birth weight compared to infants born to mothers who 

gained appropriately. Furthermore, four prospective cohort studies (8, 39, 41, 42) and two cross-

sectional studies (10, 43) showed that children born to mothers with excessive GWG had higher 

BMIs, FM, %fat, waist circumference and skinfold thickness compared to children born to 

mothers who gained appropriately. The same results were seen in adolescence and adulthood in 

two cross-sectional studies (44, 45) in that excessive GWG was positively associated with 

greater adiposity in adolescence and higher %fat, waist circumference and BMI in adulthood.  

 Because excessive GWG can predict offspring adiposity, it likely also determines risk of 

overweight and obesity in childhood and adulthood. Multiple studies found that mothers who 

experience excessive GWG are more likely to have children that are overweight or obese (10-

13). The associations between pre-pregnancy BMI and GWG with offspring adiposity and risk of 
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overweight and obesity is linked to the intrauterine environment. Epidemiological evidence from 

animal models shows that exposure to certain intrauterine stimuli, including altered maternal 

nutrition and metabolic inflammation associated with overweight and obesity genetically 

predisposes the offspring to obesity (46-48). When the developing fetus is exposed to these 

stimuli during critical periods of development, adaptations in metabolism occur (49-52). For 

example, maternal and fetal inflammation stimulate increased adipogenesis in the fetus, resulting 

in greater offspring adiposity leading to obesity (48, 53-55). These metabolic alterations also 

manifest later in life in the form of obesity and other metabolic diseases (51, 56).  

Childhood Obesity 

 Current data from NHANES indicates that 18.5% of youth age 2-19 years were obese in 

2015-2016, as defined by World Health Organization Standards (BMI>95th percentile) (1). There 

are numerous undesirable health outcomes related to pediatric obesity both in childhood and 

adulthood. Children who are obese experience metabolic problems such as high blood pressure, 

high cholesterol, impaired glucose tolerance, insulin resistance and type 2 diabetes (21-23). They 

also have impaired pulmonary function, joint pain, fatty liver disease, gastroesophageal reflux 

disease and gallstones (24-26). If obesity develops in childhood, it is likely to persist into 

adulthood, with greater severity of obesity related illnesses (20). This puts the child at an 

increased risk for heart disease, type 2 diabetes, and cancer in the future compared to children 

with healthy BMIs (27, 28).   

When compared to data from 1999-2000, obesity in youth increased from 13.9%, 

suggesting that current prevention strategies are not effective (1). The American Academy of 

Pediatrics provides evidence based prevention strategies that are targeted towards school-age and 

adolescent children (2). The recommendations do not address prevention strategies that could be 

implemented during pregnancy, infancy or early childhood, although certain prevention 
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strategies may be more effective when implemented early in life or even prenatally (57, 58). 

Maternal factors such as poor nutritional status, excessive GWG, and high blood sugar levels are 

known to predict childhood obesity (59, 60). Prevention programs that address these factors may 

contribute to decreasing rates of childhood obesity (57, 61, 62).  

Infant Adiposity and Risk of Obesity 

Infant adiposity is another risk factor for development of childhood obesity. Multiple 

studies have examined the relationship between infant growth and risk of obesity in childhood. 

Two longitudinal studies (14, 15) three prospective cohort studies (16-18) and one cross-

sectional study (19) found that greater weight gain and rapid growth in infancy were associated 

with an increased prevalence of obesity at different ages during childhood. Rapid growth in 

infancy is linked with obesity beyond childhood and into adolescence and adulthood, though few 

studies have examined the relationship between infant adiposity and adult obesity (63-66). 

Results from these studies were largely based on weight-for-length and growth rates during 

infancy and BMI in childhood and adulthood. It remains unknown whether other markers of 

infant adiposity such as location of FM, skinfold thickness, and abdominal circumference are 

associated with obesity in childhood and adulthood.    

 There are several methods available for measuring infant growth and adiposity. Dual X-

ray absorptiometry (DXA) assesses the location of fat as well as bone and muscle mass. Many 

studies have confirmed the reliability of DXA scans for assessing infant body composition (67-

70). However, the majority of these studies used animal models. Furthermore, no reference data 

exists for healthy infants (71, 72). Even so, DXA is validated for use in pediatric populations.  

Another method of body composition analysis in infants is ADP. The Pea Pod® is 

specifically designed to measure infant body composition by using body weight and volume to 

calculate body fat. Numerous studies have validated the precision of the Pea Pod® in calculating 
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infant body composition (73-76). The Pea Pod® cannot assess body composition of infants 

weighing more than 6 kilograms and like DXA, limited comparative standard data exist.  

Infant skinfolds of the thigh, triceps, bicep, suprailiac and subscapular regions can also 

provide valuable information regarding location of infant fat. Few studies have compared infant 

skinfold thickness with other validated measures of body composition, but findings suggest that 

analyzing skinfold thickness is a non-invasive and reliable way to measure infant adiposity (77). 

The World Health Organization (WHO) provides growth charts for plotting triceps skinfold-for-

age for boys and girls from 3 months to 5 years (78). Growth charts and reference ranges for 

other areas that skinfolds may be completed do not currently exist.  

Weight, length, weight-for-length, and head circumference are more commonly used 

techniques to measure infant growth. Clinicians use the WHO growth standards to track growth 

of infants and to compare plotted percentiles or z-scores to the general population. However, 

these methods do not indicate total body composition or FM location. 

Definition of Docosahexaenoic Acid and Status During Pregnancy 

DHA is an essential polyunsaturated n-3 fatty acid that cannot be synthesized by the body 

and must be obtained from the diet. The polyunsaturated fatty acids (PUFA) n-3 and n-6 work 

against each other to stimulate or prevent excess fat deposition in utero. Fetal n-6 exposure 

increases adipocyte maturation and fat deposition whereas fetal n-3 exposure inhibits adipocyte 

differentiation, thus preventing excess fat deposition (29, 79). Therefore, it is hypothesized that 

improved prenatal DHA status through DHA supplementation promotes favorable fat deposition 

in infancy. 

During pregnancy, women should consume 200 mg of DHA per day (80, 81). The 2015-

2020 Dietary Guidelines for Americans recommends pregnant women consume 8-12 ounces of 

seafood per week (82). Pregnant women are encouraged to choose varieties of fatty fish that are 
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low in mercury content but higher in DHA and EPA such as salmon, trout, herring and sardines 

(82). However, women are also counseled to avoid fish with high mercury content during 

pregnancy, which may contribute to a decreased intake for all fish types (83-85). Other food 

sources of DHA include DHA enriched eggs and DHA fortified foods and beverages. These 

foods are often deficient in the westernized diet, especially during pregnancy (30, 86). 

Furthermore, not all prenatal vitamins contain DHA and not all women take a prenatal vitamin 

consistently (83, 87, 88). For these reasons, it is estimated that pregnant women only consume an 

average of 60 mg DHA per day (30).  

A common method of assessing maternal and infant DHA status is by RBC-PL analysis. 

This method is validated and measures DHA as a percentage of total fatty acids in a controlled 

diet and comparing dietary DHA with RBC-PL DHA (89-91). Maternal and infant DHA status is 

also assessed by diet recalls or food frequency questionnaires, although these methods are less 

accurate as they are subject to bias and variability of food sources (92). Currently, it is difficult 

to classify maternal and infant DHA status. Although methods of assessing maternal and infant 

DHA exist, an optimal level of maternal and infant RBC-PL DHA is not established. In most 

studies that assessed maternal and infant DHA status, participants were categorized into high- 

and low- DHA groups based on the RBC-PL DHA group median. 

Maternal DHA Status and the Effect on Offspring Body Composition 

 Because of DHA’s proposed role in promoting appropriate fetal fat deposition, numerous 

studies assessed maternal PUFA status throughout different stages of pregnancy and the effects 

on offspring body composition in infancy, childhood and early adulthood. Only results specific 

to DHA will only be reported. Of 8 prospective cohort studies identified, RBC-PL DHA and 

dietary DHA intake measured maternal DHA status and methods such as DXA, ADP, skinfolds 

and BMI assessed offspring body composition. 
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Two studies found that maternal DHA status was negatively related to body composition 

in infancy. Specifically, Sanz et al. measured maternal and newborn DHA status in relation to 

total and abdominal fat assessed by DXA (93). Abdominal adiposity was negatively associated 

with newborn DHA status at 2 weeks, but not at 4 months of age. Similarly, O’Tierney-Ginn et 

al. also analyzed maternal and fetal PUFA status in relation to infant body composition (94). 

Length, weight, BMI, skinfold thickness and chest, abdominal, head and arm circumference were 

assessed at 1 day and 6 months of age. Maternal DHA status was not associated with infant body 

composition at either time point but infant DHA status was negatively related to skinfold 

thickness at birth and BMI z-score at 6 months of age. O’Tierney-Ginn et all did not use DXA or 

ADP to measure body fat so it was unknown whether maternal DHA status was associated with 

total infant body fat.  

In studies that measured offspring body composition during childhood, Donahue et al 

found that maternal DHA+EPA status mid-pregnancy was negatively related to triceps and 

subscapular skinfolds and risk of obesity of offspring at 3 years of age (95). However, maternal 

DHA status was only reported as DHA and eicosapentaenoic acid (EPA) concentrations 

combined so the role of DHA alone could not be confirmed. Furthermore, Vidakovic et al. 

measured maternal DHA status mid pregnancy and offspring BMI, FM percentage, and android: 

gynoid fat ratio between 5 and 9 years old (96). DXA indicated that better maternal DHA status 

was related to lower %fat and android:gynoid fat ratio of offspring. Android:gynoid fat ratio is of 

specific concern because a lower ratio suggests that there is less fat stored viscerally. Moon et al 

measured maternal DHA status in late pregnancy and found an that better maternal DHA status 

was associated with higher lean-mass of offspring at 4 and 6 years of age as assessed by DXA 

(97). However, maternal DHA status was not associated with weight or FM of offspring at either 

time point. Because maternal DHA status was only assessed in late pregnancy, this may be the 
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reason that no associations were found for other measures of body composition. The studies that 

observed positive effects of maternal DHA status on offspring body composition and adiposity 

only measured these variables in infancy and childhood. Therefore, it cannot be confirmed that 

maternal DHA status impacts offspring body composition into adolescence or adulthood.     

 Three other studies that were identified found no relationship between maternal DHA 

status and offspring adiposity. de Vries et al. measured maternal DHA status at 4 timepoints 

throughout pregnancy but did not find a relationship between weight, waist and hip 

circumference and skinfold measurements at 7 years of age (98). Other valid measures of 

adiposity such as DXA or ADP were not used to analyze body composition so it could not be 

determined if maternal DHA status protected against visceral fat accumulation. Bernard et al. 

measured offspring body composition from birth to 5 years in relation to maternal DHA status 

measured mid-pregnancy (99). Maternal DHA status was associated with offspring height from 

birth to 5 years but not with measures of adiposity as assessed by abdominal circumference and 

skinfolds. Again, fetal exposure to DHA was only measured in late pregnancy so it is unknown 

whether maternal DHA status at earlier time points impacted offspring adiposity. Lastly, 

Stratakis et al. analyzed offspring body composition from birth to early adulthood in relation to 

DHA status measured from blood taken from the umbilical vein at birth (100). Weight, height 

and BMI were measured at 9 time points from birth to 23 years of age but no associations 

between early DHA status and BMI were observed. The population in this study included 

mothers with lower BMIs at study entry, which may have impacted results due to the link 

between maternal and offspring BMI. Furthermore, location of FM was not measured so it is 

unknown whether early DHA status was related to offspring adiposity at the time points 

measured. Based on the conflicting results from these observational studies, it remains unclear 

whether maternal DHA status is related to offspring body composition.  
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Maternal High-Dose DHA Supplementation and Impact on Offspring Adiposity 

 In efforts to better understand whether maternal DHA status impacts offspring body 

composition, many studies have assessed the effects of high-dose prenatal DHA supplementation 

on markers of adiposity. The majority of these studies were randomized, blinded trials and their 

follow-up studies. Furthermore, the primary aim of many of pilot studies was not offspring 

adiposity. Even so, results from the follow-up studies provide valuable information on the impact 

of prenatal DHA supplementation on offspring body composition.  

Of 8 studies identified, 3 found that high-dose DHA supplementation was associated with 

offspring adiposity. In these trials, DHA dosage ranged from 200 mg/day to 800 mg/day. 

Bergmann et al. supplemented mothers with 200 mg DHA per day and analyzed maternal DHA 

status at 21 and 37 weeks during pregnancy (101). Offspring growth was measured at birth, 1 

month, 3 months and 21 months though weight, length, head circumference and BMI. Maternal 

DHA supplementation was associated with a lower BMI and weight of offspring at 21 months of 

age compared to offspring whose mothers did not receive supplementation. These results suggest 

that risk of childhood obesity was reduced in infants who were exposed to DHA prenatally. 

Foster et al. provided 800 mg DHA per day starting between 25-29 weeks gestation and 

measured weight, height, skinfolds, arm circumference and waist circumference of offspring at 2 

and 4 years of age (102). Children born to mothers who were supplemented with DHA had lower 

BMI z-scores compared to children whose mothers were not supplemented, again suggesting that 

prenatal DHA supplementation may lower risk of childhood obesity. Results from these studies 

would be more meaningful if other methods had been used to assess offspring body composition 

such as DXA or ADP. Only one study identified measured offspring adiposity through means of 

ADP. Hidaka et al. supplemented mothers with 600 mg DHA per day during pregnancy and 

measured offspring adiposity at 5 years of age with ADP (103). DHA supplementation was 
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associated with higher FFM of offspring but not with total FM, %fat or BMI. In each of these 

studies, maternal RBC-PL DHA levels were significantly higher in mothers who received 

supplementation.  

 In contrast, 5 of the studies identified did not find a relationship between maternal DHA 

supplementation and offspring adiposity. Two studies conducted follow-up measurements on 

offspring of participants in the Impact of Nutritional Fatty Acids During Pregnancy and 

Lactation on Early Adipose Tissue Development (INFAT) study (104, 105) and two articles 

published follow-up results from participants in the DHA to Optmise Maternal Infant Outcomes 

(DOMInO) study (54, 106, 107). One additional study conducted follow-up measurements on 

participants from a previous different study (108).  In studies that did not observe a relationship 

between prenatal DHA supplementation and offspring body composition, prenatal DHA dosage 

ranged from 200-1020 mg/day. One study did not report the specific DHA dose provided in the 

supplement (108).  

Hauner et al. and Brei et al. followed offspring of participants in the INFAT study in 

which mothers were supplemented with 1020 mg DHA starting at 15 weeks of gestation (104, 

105). Hauner et al. reported on measures of weight, length, BMI, skinfold thickness and 

abdominal and preperitoneal fat assessed with ultrasonography at different time points during the 

first year of life. Brei et al. followed the children from 2 to 5 years of age and assessed the same 

variables. Additionally, Brei et al measured abdominal adipose tissue through use of MRI in a 

subgroup of children at 5 years of age. Neither team observed differences in body composition of 

children born to mothers who received DHA supplementation compared to children born to 

mothers who were not supplemented. The average pre-pregnancy BMI of mothers who 

participated in the INFAT study was 22 kg/m2, which is classified as normal. This may have 

largely confounded results because the children were genetically less likely to have excess 
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adiposity. Furthermore, ultrasonography as a means to assess abdominal adiposity is not a 

validated method. Similarly, Muhlhausler et al and Wood et al. followed children whose mothers 

participated in the DOMInO study (106, 107). Pregnant mothers were supplemented with 800 

mg DHA per day starting in the second half of pregnancy. Mulhausler et al. assessed weight, 

height, BMI and waist, head and hip circumference of offspring as well as total FM and FFM 

with bioelectrical impedance spectroscopy (BIA) at 3 and 5 years of age. Wood et al. took the 

same measurements at 7 years of age. However, ADP was used to measure total FM and FFM 

instead of BIA. Again, neither group found differences in body composition of offspring born to 

mothers who were supplemented with DHA compared to offspring whose mothers were not 

supplemented. A major reason for these null findings could be that maternal DHA status may 

have already been adequate. The researchers reported that ~70% of pregnant women in the area 

the study was conducted consumed supplements that contained DHA. If this held true for women 

who were included in the DOMInO trial, it would be impractical to expect significant results. 

Additionally, few overweight and obese women were included in the trial, which could further 

confound results.  

Only one study identified assessed the effect maternal PUFA supplementation on 

offspring adiposity beyond childhood. Rytter et al. followed children born to mothers who were 

prenatally supplemented with 2.7 g fish-oil starting in the third trimester (108). The specific dose 

of DHA provided in the supplement was not defined. Height, weight, BMI and waist 

circumference of offspring were measured at 19 years of age in participants who chose to 

participate in the lab visit. However, fish oil supplementation during pregnancy did not appear to 

be associated with these variables. Because of the long follow-up time of this study, attrition rate 

was large, which may have impacted results. Furthermore, participants who did not participate in 
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the lab visit were allowed to self-report their height and weight, introducing the possibility of 

bias.  

Due to limitations in the studies presented, it cannot be established that prenatal DHA 

supplementation improves offspring body composition. Therefore, additional high-quality 

studies that address these limitations are needed to confirm the proposed relationship. 

Maternal DHA Status, Excessive GWG and the Impact on Infant Body Composition 

 It is evident that a positive relationship exists between excessive GWG and infant 

adiposity but strategies to attenuate these effects are not well-established. Prenatal DHA 

supplementation may promote desirable fat distribution in infancy and it is proposed that 

prenatal DHA supplementation could also improve adiposity of infants born to mothers with 

excessive GWG. However, few known studies have examined the relationship between maternal 

DHA status and infant adiposity specific to mothers with excessive GWG. Preliminary evidence 

from Hull et al. suggests that lower maternal DHA status is related to higher FM in infants born 

to mothers with excessive GWG. With data lacking, it is important that more studies be 

conducted to confirm these results.   
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METHODS 

Overview of Parent Study 

The Prenatal autonomic Neuro-Developmental Assessment (PANDA) Study is an 

ongoing double-blind, Phase III randomized controlled trial examining the effects of prenatal 

DHA supplementation on newborn DHA levels as well as fetal and infant growth and 

neurodevelopment. Women are enrolled when they are 12-20 weeks pregnant and are 

randomized to take 200 or 800 mg DHA per day throughout the remainder of the pregnancy. 

Prenatal visits occur at enrollment, 32 weeks, 36 weeks and birth. Maternal-Fetal 

magnetocardiography is measured at 32 and 36 weeks gestation. Postnatal visits happen when 

the infants are 1 month, 4 months, 6 months and 12 months. Infant electroencephalogram occurs 

when the infant is 1 month, 6 months and 12 months. Infant body composition is measured at 1 

month and 4 months. The higher dose of DHA is hypothesized to improve fetal and infant DHA 

levels and promote favorable growth and neurodevelopment.  

Recruitment 

 Pregnant women were recruited from the University of Kansas Medical Center (KUMC) 

Obstetrics and Gynecology clinic. PANDA flyers were also displayed in other OBGYN clinics in 

the Kansas City area.  Additionally, the PANDA website was shared with mother and baby 

groups online. Eligible women were required to be 18 years or older and English speaking. 

Participants must have agreed to take the DHA capsules throughout the remainder of the 

pregnancy to participate. Furthermore, participants were required to be available to reach by 

telephone to be included. Women were excluded if they were underweight (BMI <18.5) or 

weighed >250 lbs at enrollment. Women who had serious illness, type 1 diabetes or hypertension 

were also excluded. Women expecting multiple infants or infants with congenital cardiac defects 
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or brain malformations were not eligible to participate.  No minority groups were excluded from 

participating in this study.  

 Visits and procedures occurred at 6 time points from enrollment at 12-20 weeks until the 

infant turned 4 months. Pre-pregnancy visits were at enrollment, 32 weeks, 36 weeks and birth. 

Postnatal visits occurred when the infant was 1 month and 4 months.  

Population 

Eligible women were invited to enroll in the study during the second trimester when they 

were 12-20 weeks pregnant. Enrollment commenced in June 2016 and concluded in May 2018.    

Demographic information was collected including race, ethnicity, education level and household 

income. Women were also asked to report their maternal health history and pre-pregnancy and 

alcohol use and smoking habits during pregnancy. 102 women and their infants who had 

completed each prenatal visit and each postnatal visit to at least 4 months were included in this 

data set. 

Ethics 

This study was approved by the University of Kansas Medical Center Institutional 

Review Board and all study procedures were ethically conducted in accordance with the 

principles outlined in the Declaration of Helsinki. All subjects were given written informed 

consent before any study procedures were performed.  

Blood Sample Collection and Analysis 

 To analyze maternal and infant fatty acid status of participants, 8 mLs of maternal blood 

were collected by venipuncture at enrollment, 32 weeks and delivery. 8 mLs of cord blood were 

also collected from the infant at delivery. Samples were immediately placed on ice, centrifuged 

and then stored at -80 degrees until processing. Maternal and fetal red blood cells (RBC) were 

analyzed for fatty acid content through gas chromatography. Individual peaks were identified by 
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comparing to standards (PUFA 1 and PUFA 2; Sigma Aldrich). A weighed standard mixture 

(Supelco 37 Component FAME mix; Sigma Aldrich) was used to adjust fatty acids for 

area/weight to calculate a final percentage weight of total fatty acids. RBC-PL DHA was 

reported as a weight percentage of total fatty acids present in the blood (109).  

Gestational Weight Gain 

 Maternal pre-pregnancy weight was self-reported at the enrollment visit. GWG was 

calculated by subtracting the maternal pre-pregnancy weight from the last prenatal appointment 

weight. Excessive GWG was classified according to the mother’s pre-pregnancy weight status as 

determined by her BMI. Excessive GWG was considered weight gain >35 lbs in normal weight 

women, >25 lbs in overweight women and >20 lbs in obese women.  

Infant Body Composition 

 Infant body composition was assessed at the 1 month and 4 month visits using two-

compartment ADP. Specifically, the Pea Pod® (COSMED) was used to measure body volume 

and density. The Pea Pod® was calibrated before each test using a phantom calibration cylinder 

with a known volume. The Pea Pod® scale was calibrated at least once every two weeks using a 

5000 gram weight.  

 Prior to testing, infants were undressed to the diaper and length was measured from 

crown to heel with a length board. The infant was laid on the board with the head touching the 

head piece and the foot board was placed flush against the child’s flexed foot at least twice. A 

third measurement was performed if first two measurements were not within 10% of each other. 

Length was recorded to the nearest 0.1 centimeter. The infant was then undressed and a wig cap 

was fitted on the infant’s head. The infant was placed on the Pea Pod® scale to measure body 

weight to the nearest 0.0001 kilogram. The infant’s gender, date of birth, gestational age at birth, 
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study ID and average length were entered into the Pea Pod® computer system for the two-step 

calibration to occur before body volume testing.  

 Once the two-step calibration was complete, the infant was placed inside the Pea Pod® 

chamber for measurement of body volume. Parents were instructed to not touch the machine 

during the measurement, which took approximately 2 minutes. After the body volume 

measurement was complete, body density was converted to percentage of fat (%fat) using gender 

specific equations so that FM and FFM could be calculated.  

 Head circumference and abdominal circumference were measured in centimeters at 1 and 

4 month visits using a flexible measuring tape. Head circumference was measured by placing the 

tape smoothly across the frontal bones of the skull and over the occipital prominence, 

perpendicular to the long axis of the face and above the ears. The tape was tightened around the 

head at the maximal circumference and two measurements were recorded. If the first two 

measurements were not within 10% of each other, a third measurement was taken. Abdominal 

circumference was measured while the infant was in the supine position. The tape was wrapped 

around the infant’s waist at the level of the umbilicus. A second measurement was taken for 

accuracy and if the first two measurements were not within 10% of each other, a third 

measurement was taken.   

Statistics 

Group means and standard deviations were calculated for all maternal and infant 

descriptive characteristics. ANOVA and Pearson Chi-Square analyzed differences between 

maternal and infant variables. The change in infant % fat, FM and FFM between the 1 and 4 

month visits was also calculated. The change in maternal DHA status was quantified by 

subtracting the baseline RBC-PL DHA from the 32-week RBC-PL DHA. Groups were then 

calculated by creating a median split to determine high (>50th percentile) vs. low DHA (≤50th 
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percentile) status during pregnancy. Four groups were created based on the median split for 

DHA status and weight gain status (excessive vs. not excessive): prenatal high DHA status with 

either excessive or not-excessive GWG and prenatal low DHA status with either excessive or not 

excessive GWG. Analysis of covariance (ANCOVA) examined mean differences in body 

composition between these four groups. The analysis assessed the main effects of prenatal DHA 

status (low vs. high) and maternal weight gain (excessive vs. not-excessive) on the change in 

offspring body composition between 1 and 4 months. The analyses were controlled for the 

following covariates: GWG, pre-pregnancy BMI, maternal race, maternal alcohol intake, 

maternal smoking status, infant gender, gestational age at birth, change in maternal n-6:n-3 ratio 

from baseline to postpartum, and the infant characteristic at 1 month (e.g., % fat, FM, or FFM). 

An interaction was also assessed between the change in maternal DHA status and GWG 

category. Microsoft SPSS version 24 was used for all statistical analysis and p = 0.05 was 

considered significant.	 
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RESULTS 

 Maternal characteristics of participants with data on fatty acids, GWG, and infant body 

composition at 1 and 4 months are described in table 1a. Characteristics are listed in the tables 

based on maternal DHA status. One-hundred and one maternal and infant groups had all 

variables of interest measured.  Fifty women had low change in DHA during pregnancy (change 

<3.34 %DHA) and 51 women had a high change in DHA status during pregnancy (change ≥ 3.35 

%DHA). Of the total sample, 83.3% were white, 8.8% were African American, 2.9% were Asian 

and 4.9% identified as another race. Approximately ten percent of the sample was Hispanic. The 

average maternal age at enrollment was 29.7 ± 4.4 years.  In women with a low change in DHA 

status, the average pre-pregnancy BMI was 28.7 ± 5.5 kg/m2, with 33.3% classified as and 

39.2% classified as obese. The average pre-pregnancy BMI of women with a high change in 

DHA status was 24.9 ± 4.7 kg/m2, with 25.5% classified as overweight and 17.6% classified as 

obese. Of the total cohort, 62.4% of women gained excessively during pregnancy, which is 

above the national average of 48%.  In women with a low change in DHA status, 68.6% gained 

excessive weight during pregnancy compared to 54.9% of women with a high change in DHA 

status. Significant differences were found between groups for pre-pregnancy weight, pre-

pregnancy BMI and BMI categories, and last prenatal weight (p<0.05). Baseline RBC-PL DHA 

in women with a low change in DHA status was 6.95 ± 1.6%, which increased by a mean of 1.4 

± 1.2%, compared to a baseline RBC-PL DHA of 6.6 ± 1.5% in women with a high change in 

DHA status, which increased by a mean of 5.6 ± 1.7%. Postpartum RBC-PL DHA in women 

with a low change in DHA status was 8.4 ± 1.7%, compared to postpartum RBC-PL DHA of 

12.2 ± 2.0% in women with a high change in DHA status. Significant differences were found 

between groups for 32-week RBC-PL DHA, postpartum RBC-PL DHA, postpartum RBC-PL 

omega-6, postpartum RBC-PL omega-3, and change in n-3 n-6:n-3 ratio (p<0.05).  
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 Infant characteristics divided by maternal DHA status are included in tables 1b-d. The 

average gestational age of the total sample was 39.2 ± 1.1 weeks. Forty-nine percent of the total 

sample was male. Infants born to mothers with a low DHA status during pregnancy had a RBC-

PL DHA of 9.6 ± 1.7% measured in cord blood, which was significantly lower compared to 11.6 

± 2.0 % in infants born to mothers with a high DHA status during pregnancy (p<0.001). No other 

differences were found between groups for unadjusted infant characteristics.  

 Table 2 lists the differences for the change in infant body mass and body composition 

based on maternal DHA status. No differences were found by maternal DHA status for the 

change in infant body mass or body composition. Table 3 lists the differences for the change in 

infant body mass and body composition based on maternal GWG status. A difference was found 

for the change in infant FFM (p=0.016). Infants exposed to excessive GWG gained 289 g less of 

FFM. Confounding variables included for both models were GWG, pre-pregnancy BMI, 

maternal race, maternal alcohol intake, maternal smoking status, infant gender, gestational age at 

birth, change in maternal DHA status from baseline to postpartum, maternal baseline DHA, 

change in maternal n-6:n-3 ratio from baseline to postpartum, infant weight at 1 month 

(baseline).  

 Table 4 presents the model to understand the main effects and interactions of maternal 

DHA status and GWG status on the changes in infant body mass and infant body composition. 

No significant interactions were detected. Confounding variables included for both models were 

GWG, pre-pregnancy BMI, maternal race, maternal alcohol intake, maternal smoking status, 

infant gender, gestational age at birth, change in maternal DHA status from baseline to 

postpartum, maternal baseline DHA, change in maternal n-6:n-3 ratio from baseline to 

postpartum, infant weight at 1 month (baseline).  
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DISCUSSION 

While this exploratory analysis did not find a significant interaction between maternal 

DHA status and infant body composition, excessive GWG was associated with lower change in 

infant FFM from 1 to 4 months compared to infants born to women who did not gain 

excessively, as has been previously established (4-6, 8, 40). The association between GWG and 

the change in infant body mass approached significance in that infants born to mothers who did 

not gain excessively had a higher change in body mass from 1 to 4 months, likely due to their 

increased FFM. We did not find differences between groups for change in infant FM or %fat 

from 1 month to 4 months, which is different from current literature that suggests excessive 

GWG is associated with increased FM of offspring. In literature, excessive GWG was associated 

with increased FM of offspring from infancy to adulthood (10, 12, 39, 41-45). 

In contrast with many studies, we did not find an association between improved maternal 

DHA status and markers of offspring body composition. These findings do agree with outcomes 

measured in other studies. Similar to our study, Bernard et al. did not find an association between 

maternal DHA status and infant adiposity, as assessed by ADP (99).  de Vries et al. measured 

offspring adiposity and also found that maternal DHA status was not related to offspring 

adiposity at 7 years of age, as assessed by sum of skinfolds (98). Stratakis et al. followed 

offspring growth from infancy to young adulthood and found that maternal DHA status did not 

predict offspring BMI at any time point (100). However, many studies have found an association 

between maternal DHA status and offspring growth and adiposity. Sanz et al. found that fetal 

DHA exposure was associated with improved abdominal circumference of infants at 2 weeks of 

age (93). Similarly, O’Tierney-Ginn et al found that maternal DHA status was negatively 

associated with skinfold thickness at birth and BMI z-score at 6 months of age (94). In studies 

that measured growth and adiposity of older offspring, Vidakovic et al. measured offspring 
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adiposity at 5 and 9 years of age and found that better maternal DHA status was associated with 

decreased % fat and better android:gynoid fat ratio at both time points (96). Moon et al. also 

reported that better maternal DHA was correlated with improved lean-mass accumulation of 

offspring at 4 and 6 years of age as assessed by DXA (97). 

This study is one of the first to investigate the interaction of maternal DHA status and 

GWG with infant body composition. No significant interactions between maternal DHA status 

and GWG on change in infant body mass or body composition were detected. Although no 

between groups differences were detected for any markers of infant body composition, higher 

powered trials may find associations due to the established effect of GWG on offspring body 

composition, and the hypothesized effect of DHA. Furthermore, studies that supplement DHA 

prenatally with the primary aim of detecting differences in body composition of offspring may be 

more likely to find differences. Several researchers have demonstrated the effects prenatal DHA 

supplementation on offspring growth and adiposity. Bergmann et al. found that growth of 

offspring born to mothers who were supplemented with 200 mg DHA per day during pregnancy 

was better than the un-supplemented group, as evidenced by improved BMI of offspring 

measured at 2 years of age. Foster et al. also studied growth of offspring born to mothers who 

were supplemented with 800 mg DHA per day and found that offspring had lower BMI z-scores 

at 2 and 4 years of age. Finally, Hidaka et al. found that mothers who were supplemented with 

600 mg DHA per day during pregnancy had offspring with higher FFM at 5 years of age. Due to 

the relationship between excessive GWG and offspring adiposity, it can be speculated that 

prenatal DHA supplementation may attenuate these effects by promoting desirable fat and lean-

mass distribution in the offspring. However, with data lacking, more studies are needed to 

observe this possibility. It is crucial that the effect of prenatal DHA supplementation on infant 

adiposity be further explored, especially in offspring born to mothers with excessive GWG.  
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There may be potential reasons for null results. In this study, the PeaPod® was used to 

measure infant body composition at 1 and 4 months. This analysis was nested within an ongoing 

clinical trial, so it was possible that differences a were not observed because infant adiposity was 

not measured between birth and one month, where a significant amount of fat and lean mass 

accumulation occurs. Furthermore, infants were only tracked at two timepoints in early infancy. 

If offspring growth and adiposity had been followed for a longer period, results may have been 

more likely to be observed. In this study, maternal baseline RBC-PL DHA status was better 

compared to other studies, suggesting this population did not have a deficient DHA status at 

baseline. In this study, mean baseline RBC-PL DHA was 6.95 ± 1.6% in the group that had low 

change in DHA status and 6.6 ± 1.5% in the group that had high change in DHA status. In three 

other supplemental DHA studies conducted in the Kansas City area, baseline DHA levels ranged 

from 4.3-5.0% (109-111). Because DHA status of this cohort was already adequate, the effect of 

improved maternal DHA status throughout pregnancy would be less likely to improve infant 

body composition. Further limitations include the relatively small sample size. Only 101 mother-

infant pairs could be included. A larger sample size would allow for more power to detect 

differences between groups. Lastly, because this analysis was nested within an ongoing clinical 

trial, DHA supplementation compliance could not be controlled for in the analysis. However, the 

statistical analysis only examined the change in maternal DHA status throughout pregnancy to 

form a median split rather exploring than the main effects of prenatal DHA supplementation on 

infant body composition.  

This study has many strengths. The blinded nature of this study minimized observer bias. 

Sampling bias was also minimal due to the study design that required mothers to consent to 

postnatal visits. Furthermore, the biological marker of RBC-PL DHA and omega-3 were used to 

assess maternal DHA status. Although dietary omega-3 and DHA intake were not controlled for, 
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blood status of omega-3 and DHA are the best indicator of intake (112). Use of ADP technology 

to assess infant body composition allowed for analysis of FM, %fat and FFM. Other studies have 

used skinfold thickness, which only estimates regional adiposity rather than total body fatness. 

Furthermore, studies that only measured BMI of offspring in relation to maternal DHA status 

could not verify location or amount of body fat.  

Further research that observes the effects of prenatal DHA supplementation on infant 

adiposity may help guide DHA recommendations for pregnant women to help promote favorable 

growth and body composition in offspring, especially for infants born to mothers who gained 

excessive weight in pregnancy. Studies that measure offspring growth and adiposity from birth 

and over a longer period could help determine how maternal DHA supplementation impacts 

offspring fat and lean-mass accumulation throughout childhood. Future research should include 

genetic and mechanistic studies that examine the impacts of placental fatty acid transporter gene 

expression to see if these would be related to infant body composition. Soluble receptors for 

advanced glycation end products (sRAGE) may also determine the effects of DHA status on 

inflammation. Studies that consider dietary PUFA intake in lactation could contribute to current 

knowledge regarding DHA as a nutrient that inhibits excess fat accumulation during infancy. 

Childhood obesity prevention strategies are currently targeted towards school-age 

children, but it may be necessary to implement strategies earlier such as in pregnancy. Although 

this exploratory analysis did not find an association between maternal DHA status and infant 

body composition, many studies have detected a positive impact of fetal DHA exposure on 

offspring fat accumulation. DHA may be a nutrient to start early obesity prevention when 

supplemented throughout pregnancy. Improved maternal DHA status may inhibit excess 

offspring fat accumulation, thus possibly preventing obesity in childhood and adulthood. These 

effects may be even more apparent in offspring born to mothers with excessive GWG.  
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APPENDIX 
 
Table 1a: Maternal Characteristics shown by DHA status 

 N Low Change in 
DHA Status 

N High Change in 
DHA Status 

Age at Enrollment 51 29.1 ± 4.7 51 30.2 ± 4.2 
Race (%) 
     White 
     Black 
     Asian 
     Other 

51  
40 (78.4) 
6 (11.8) 
2 (3.9) 
3 (5.9) 

51  
45 (88.2) 
3 (5.9) 
1 (2.0) 
2 (3.9) 

Ethnicity (%) 
     Non-Hispanic  
     Hispanic 

51  
46 (90.2) 
5 (9.8) 

51  
46 (90.2) 
5 (9.8) 

Annual Income (%) 
     <$10k 
     $10-15k 
     $15-25k 
     $25-50k 
     $50k-100k 
     $100k-150k 
     $150k-200k 
     >$200k 

51  
1 (2.0) 
2 (3.9) 
5 (9.8) 
6 (11.8) 
20 (39.2) 
10 (19.6) 
6 (11.8) 
1 (2.0) 

51  
0 (0) 
0 (0) 

1 (2.0) 
9 (17.6) 
21 (41.2) 
12 (23.5) 
2 (3.9) 
6 (11.8) 

Education Level (%) 
     High School or Less 
     Post-Secondary to less than 
graduate 
     Graduate degree or more 

51  
3 (5.9) 

34 (66.7) 
 

14 (27.5) 

51  
5 (9.8) 

30 (58.8) 
 

16 (31.4) 
Smoked in Pregnancy (%) 
     Yes 
     No 

51 
 

 
5 (9.8) 

46 (90.2) 

51  
1 (2.0) 

50 (98.0) 
Alcohol in Pregnancy (%) 
     Yes 
     No 

51  
7 (13.7) 
44 (86.3) 

51  
4 (7.8) 

47 (92.2) 
Pre-pregnancy weight (kg) 51 77.8 ± 14.1 51 68.0 ± 13.5* 
Height (cm) 51 164.7 ± 5.1 51 165.0 ± 6.1 
Pre-pregnancy BMI (kg/m2) 
     Normal n (%) 
     Overweight n (%) 
     Obese n (%) 

51 28.7 ± 5.5 
14 (27.5) 
17 (33.3) 
20 (39.2) 

51 24.9 ± 4.7* 
29 (56.9)* 
13 (25.5)* 
9 (17.6)* 

Last Prenatal Weight (kg) 50 93.7 ± 14.4 51 83.0 ± 14.2* 
Gestational Weight Gain (kg) 50 16.1 ± 6.1 51 15.0 ± 5.8 
Gained Excessively 
     Excessive n (%) 
     Not Excessive n (%) 

50 
 

 
35 (68.6) 
15 (29.4) 

51  
28 (54.9) 
23 (45.1) 

Baseline RBC DHA % 51 6.95 ± 1.6 51 6.6 ± 1.5 
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32 week RBC DHA %  47 8.6 ± 1.7 49 11.6 ± 2.0* 
Postpartum RBC DHA % 51 8.4 ± 1.7 51 12.2 ± 2.0* 
Change in RBC DHA % 
Baseline to Postpartum 

51 1.4 ± 1.2 51 5.6 ±1.7* 

Baseline RBC n-3 51 9.9 ± 2.0 51 9.5 ±1.7 
Postpartum RBC n-3 51 10.7 ± 1.8 51 14.3 ±2.0* 
Baseline RBC n-6 51 40.8 ± 3.4 51 39.8 ± 2.9 
Postpartum RBC n-6 51 38.8 ± 3.1 51 36.8 ± 2.7* 
Baseline RBC n-6:n-3 51 4.3 ± 0.9 51 4.3 ± 0.9 
Postpartum RBC n-6:n-3 51 3.7 ± 0.8 51 2.6 ± 0.5* 
Values are presented as unadjusted means ± standard deviations.  
*Denotes significant difference from the low change in DHA status group 
(p<0.05) 
RBC DHA% = red blood cell docosahexaenoic acid as a percent of total red blood 
cell fatty acids; RBC n-3= total omega-3 fatty acid of red blood cell; RBC n-6 = 
total omega-6 fatty acid content of red blood cell; RBC n-6:n-3 = ratio of omega-6 
to omega-3 fatty acids in red blood  
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Table 1b: Birth characteristics by DHA status 
  Low Change in 

DHA Status 
 High Change in 

DHA Status 
 N  N  
Gender n (%) 
     Male 
     Female 

51  
22 (43.1) 
29 (56.9 

51  
28 (54.9) 
23 (45.1) 

Gestational Age 51 39.4 ± 1.0 51 39.1 ± 1.1 
Birth Weight (g) 51 3334.39 ± 474.95 51 3330.71 ± 409.97 
Birth Length (cm) 49 50.4 ± 2.5 51 50.6 ± 2.1 
Birth Head Circumference (cm) 50 34.5 ± 1.2 49 34.2 ± 1.3 
Cord Blood RBC DHA % 51 9.6 ± 1.7 51 11.6 ± 2.0* 
Cord Blood RBC n-3  51 10.7 ± 1.8 51 12.7 ± 2.2 
Cord Blood RBC n-6  51 39.6 ± 3.0 51 38.9 ± 2.7 
Cord Blood RBC n-6:n-3  51 3.8 ± 0.7 51 3.2 ± 0.6 
Values are presented as unadjusted means ± standard deviations.  
*Denotes significant difference from the low change in DHA status group 
(p<0.05) 
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Table 1c: Infant characteristics at 1 month by DHA status  
  Low Change in 

DHA Status 
 High Change in 

DHA Status 
 N  N  
Age (wks) 51 5.1 ± 1.3 51 5.3 ± 1.1 
Length (cm) 51 54.3 ± 2.1 51 54.1 ± 2.0 
Head Circumference (cm) 51 37.6 ± 1.0 51 37.6 ± 1.1 
Abdominal Circumference (cm) 50 36.2 ± 2.2 51 36.6 ± 2.0 
Body weight (g) 51 4269.9 ± 454.0 51 4385.2 ± 511.2 
Percentage body fat (%fat) 51 17.5 ± 4.8 51 18.7 ± 4.5 
FM (g) 51 759.7 ± 255.1 51 829.5 ± 258.6 
FFM (g) 51 3510.2 ± 310.5 51 3555.8 ± 363.5 
Values are presented as unadjusted means ± standard deviations.  
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Table 1d: Infant characteristics at 4 months by DHA status  
  Low Change in 

DHA Status 
 High Change in 

DHA Status 
 N  N  
Age (wks) 51 18.0 ± 1.1 51 18.4 ± 2.5 
Length (cm) 51 62.5 ±2.2 51 63.4 ± 2.1* 
Head Circumference (cm) 51 41.6 ± 1.2 51 41.2 ± 1.2 
Abdominal Circumference (cm) 51 40.6 ±2.4 50 40.7 ± 2.4 
Body Weight (g) 51 6495.4 ± 761.4 51 6559.0 ± 778.5 
Percentage body fat (%fat) 51 25.1 ± 4.9 51 25.9 ± 5.4 
Fat mass (g) 51 1639.1 ± 413.8 51 1733.3 ± 509.8 
Fat-free mass (g) 51 4856.3 ± 582.3 51 4884.3 ± 457.4 
Values are presented as unadjusted means ± standard deviations.  
*Denotes significant difference from the low change in DHA status group 
(p<0.05) 
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Table 2: Change in infant body composition from 1 month to 4 months of age based on the 
change in maternal DHA status  

 
DHA Status 

D Body 
mass (g) 

 
P 

value 

 
D 

Percentage 
body fat 
(% fat) 

 
P 

value 

 
D Fat 

mass (g) 

 
P value 

 
D Fat-

free 
mass (g) 

 
P value 

Low 
Change in 

DHA Status 
N=50 

2139.0 ± 
827.3 

0.468 

21.1 ± 6.2 

0.973 

843.0 ± 
544.5 

0.512 

1290.0 ± 
530.3 

0.496 
High 

Change in 
DHA Status 

N=51 

2287.0 ± 
821.3 21.2 ± 6.1 931.0 ± 

535.6 
1380.0 ± 

528.5 

Difference -149.0 -0.052 -88.0 -90.0 

Values are presented as adjusted means ± standard deviations. 
Covariates included in the model: gestational weight gain, pre-pregnancy BMI, maternal race, 
maternal alcohol intake, maternal smoking status, infant gender, gestational age at birth, 
change in maternal DHA status from baseline to postpartum, maternal baseline DHA, change 
in maternal n-6:n-3 ratio from baseline to postpartum, infant weight at 1 month (baseline) 
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Table 3: Change in infant body composition from 1 month to 4 months of age based on maternal 
weight gain 

 
GWG 
Status 

D Body 
mass (g) 

 
P 

value 

 
D 

Percentage 
body fat 
(% fat) 

 
P 

value 

 
D Fat 

mass (g) 

 
P value 

 
D Fat-

free 
mass (g) 

 
P value 

Not 
Excessive 

N=38 

2429 ± 
795.2 

0.069 

21.3 ± 6.0 

0.848 

933.0 ± 
524.0  

0.559 

1516.0 ± 
505.5  

0.016 Excessive 
N=63 

2084 ± 
706.4 21.1 ± 5.3 860.0 ± 

468.3 
1227.0 ± 

452.4 

Difference  345.0  0.27 72.0 289.0 

Values are presented as adjusted means ± standard deviations. 
Covariates included in the model: gestational weight gain, pre-pregnancy BMI, maternal race, 
maternal alcohol intake, maternal smoking status, infant gender, gestational age at birth, 
change in maternal DHA status from baseline to postpartum, maternal baseline DHA, change 
in maternal n-6:n-3 ratio from baseline to postpartum, infant weight at 1 month (baseline) 
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Table 4: Change in infant body composition from 1 month to 4 months of age based on maternal 
weight gain and DHA status. 

Infant 
Variable 

 Weight gain status 
P value for 
interaction DHA Status 

 
Not 

Excessive 

Difference 
in change: 
High  - low 

Excessive 
Difference 
in change: 
High - low 

D Body 
mass (g) 

Low Change 
in DHA 
Status 

2276.0 ± 
720.4 

285.0 gm 

2033.0 ± 
846.0 

-88.0 gm 0.417 High 
Change in 

DHA Status 

2561.0 ± 
844.1 

2121.0 ± 
751.4 

D 
Percentage 

body fat 
(% fat) 

Low Change 
in DHA 
Status 

20.9 ± 5.5 

0.7% 

21.2 ± 6.5 

-0.3% 0.579 High 
Change in 

DHA Status 
21.6 ± 6.4 20.9 ± 5.6 

D Fat mass 
(g) 

Low Change 
in DHA 
Status 

850.0 ± 
480.2 

155.0 gm 

829.0 ± 
567.9 

55 gm 0.535 High 
Change in 

DHA Status 

1005.0 ± 
561.1 

884.0 ± 
492.1 

D Fat-free 
mass (g) 

Low Change 
in DHA 
Status 

1419.0 ± 
460.9 

179.0 gm 

1196.0 ± 
538.4 

54 gm 0.411 
High 

Change in 
DHA Status 

1598.0 ± 
532.3 

1250.0 ± 
470.9 

<50th %ile/Not Excessive: N=15;                > 50th %ile/Not Excessive: N=23 
<50th %ile/Excessive: N=35;                       > 50th %ile/Excessive: N=28 

Values are presented as adjusted means ± standard deviations. 
Covariates included in the model: gestational weight gain, pre-pregnancy BMI, maternal race, 
maternal alcohol intake, maternal smoking status, infant gender, gestational age at birth, 
change in maternal DHA status from baseline to postpartum, maternal baseline DHA, change 
in maternal n-6:n-3 ratio from baseline to postpartum, infant weight at 1 month (baseline) 
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Informed Consent 
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RESEARCH CONSENT FORM

Prenatal Docosahexaenoic Acid (DHA) & Neurofunctional Development (PANDA Study)
Sponsor: National Institute of Child Health and Development R01 HD086001

Kathleen M. Gustafson, PhD
University of Kansas Medical Center

913-588-0065

INTRODUCTION
You are being asked to join a research study. You are being asked to take part in this study 
because you are a pregnant woman who is between 12 and 20 weeks of gestation. You do not 
have to participate in this research study. The main purpose of research is to create new 
knowledge for the benefit of future patients and society in general. Research studies may or may 
not benefit the people who participate. 

Research is voluntary, and you may change your mind at any time. There will be no penalty to 
you if you decide not to participate, or if you start the study and decide to stop early. Either way, 
you can still get medical care and services at the University of Kansas Medical Center (KUMC). 

This consent form explains what you have to do if you are in the study. It also describes the 
possible risks and benefits. Please read the form carefully and ask as many questions as you 
need to, before deciding about this research. 

You can ask questions now or anytime during the study. The researchers will tell you if they 
receive any new information that might cause you to change your mind about participating. 

This research study will take place at the University of Kansas Medical Center with Kathleen M. 
Gustafson, PhD as the researcher. About 340 women will be in the study at KUMC. 

BACKGROUND 
Docosahexaenoic acid (DHA) is an essential nutrient. Our bodies make DHA from the foods we 
eat. If we eat foods with a lot of DHA, like fatty ocean fish, we have more DHA in our bodies. 
DHA is found in all cells of the body but is especially high in nerve cells of the brain and eye. 
Babies get DHA from the mother when they’re in the womb. After birth, they can get DHA from 
breast milk or infant formulas. Many studies have shown that DHA in the infant’s diet may help 
vision development, attention, and ability to learn. DHA may also be important before babies are 
born, while the nervous system is developing.

We studied a small number of women who took DHA supplements during their pregnancy and 
found that babies were still not getting enough. If a woman has enough DHA in her body, her 
baby will have the same amount, or slightly less than she does. Research suggests that when 
babies don’t get enough DHA, it can limit their development. This is why we are asking you to 
take part in a study that will provide DHA to all women, at two different doses.  Current over-the-
counter DHA capsules for pregnant women range from about 50 mg to 200 mg per day. We 
don’t know what the best dose is and we don’t know how the foods women eat alter how much 
DHA is available to the baby. 
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PURPOSE
By doing this study, we hope to learn how much DHA to give to mothers in order to provide 
enough to the baby. We also want to learn if there are differences in fetal development at 32 and 
36 weeks. After your baby is born, we want to learn if there are differences in infant body 
composition, how they pay attention in different sounds and sights and how their brain functions 
the first year of life.

Since we don’t know what dose is best or how mother’s diet affects how much DHA a baby gets, 
we are testing two different doses of DHA supplements (200 mg or 800 mg) and are asking what 
women eat before and during their pregnancy. This will help us find out what dose is best for the 
developing baby.

PROCEDURES
If you are eligible and decide to participate in this study, your participation will last from the time 
you enroll (12-20 weeks of pregnancy) until your baby is 12 months old. If you choose to enroll 
in this study, the investigators will get some information from your medical record about your 
pregnancy and medical history and will continue to check your medical records throughout your 
pregnancy. They will also ask you questions about foods that you usually eat, alcohol intake, 
smoking history, and your demographics (such as race and ethnicity, education, household 
income). You will be asked for a phone number where you can be reached during the day. Below 
is a description of study procedures.. 

DHA Capsule Assignment
You will be randomly assigned (like flipping a coin) to capsules with DHA-oil of either 200mg or 

SCHEDULE OF EVENTS BEFORE BIRTH
VISITS

AFTER BIRTH
VISITS

Study Procedure
Enroll
12-20 
wks

32 
wks

36 
wks Birth 1 mo 4 mo 6 mo 12 mo

Informed Consent and Capsule Assignment ●
Maternal Blood Samples ● ● ●
Diet History Questionnaire (DHQ-II) ● ●
Maternal-Fetal MCGs, Ultrasound ● ●
Record Birth Weight, Length ●
Newborn Cord Blood ●
Infant EEG ● ● ●
PeaPod (infant body composition) ● ●
Infant Visual Attention Tasks ● ●
Infant Still Face Procedure (Optional) ●
Infant Temperament Questionnaire (Optional) ●
Maternal Height ●

Maternal Weight and Blood Pressure ● ● ● ●
● 

(weight 
only)

Estimated Time for Each Study Visit 1.5 hrs 1.5 
hrs 1 hr 0 1.5 

hrs
1 hr 1.5 

hrs
1.5 hrs

Subject Compensation $50 $75 $50 $75 $50 $75 $75
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800 mg per day. You will take these capsules as long as you are pregnant.

Following DHA capsule assignment, you will be asked to not take any additional DHA from other 
dietary supplements. You should continue to take any other vitamin and mineral supplements 
that do not contain DHA as recommended by your doctor.

You will be given enough capsules each month to take 4 capsules each day. If you consume all 
4 capsules, you will be getting either 200 mg or 800 mg of DHA. You do not need to take the 
capsules at any specific time of day. You do not have to take all 4 at once, but you should take 
4 each day.

Neither you nor the people in the research study will know which capsules you have been 
assigned. On the day you enroll for the study, we will send you home with your first bottle of 
capsules. About 30 days later (early enough so that you do not run out of capsules), you will 
receive another bottle of capsules in the mail. AT THAT TIME, WE WILL ASK THAT YOU 
PLACE THE FIRST BOTTLE WITH ANY REMAINING CAPSULES IN THE POSTAGE-PAID 
ENVELOPE AND PUT IT INTO THE MAIL. You will get a letter each month that explains what 
to do.

This process will be repeated each month until your baby is born and you will continue to take 4 
capsules per day until your baby is born. 

The investigators will contact you by phone at least once per month. They will ask about how 
you are doing on the capsules and how many you are taking each day. Maintaining contact with 
our study personnel on a monthly basis is very important. 

IF YOUR PHONE NUMBER OR ADDRESS CHANGES AT ANY TIME DURING THE STUDY, 
YOU WILL LET THE INVESTIGATORS KNOW BY CALLING 913-588-3140 AND LEAVING A 
MESSAGE. 

BEFORE BIRTH VISITS
MCG/Ultrasound Measurement- (32 weeks and 36 weeks of pregnancy)
The heart naturally sends out an electrical signal, we can record it with a special machine. The 
machine we use is called a biomagnetometer (MCG). We will record your heart rate and the 
heart rate of your baby using the MCG at 32 and 36 weeks of pregnancy.

You should eat and drink a normal meal 1 ½ hours prior to testing. This is done to increase the 
chance of seeing your baby move during the testing. We will record your body weight, heart rate, 
and blood pressure before the MCG recording.

We will ask you to change into scrubs (a cotton pullover top and slacks with a loose waistband) 
and remove any jewelry. You should wear a sports bra or something similar with no underwire 
for the MCG recording. After you change you will be taken to a testing room and asked to sit in 
an adjustable, reclining chair designed to support pregnant women. Every effort will be made to 
make you comfortable in the chair. You should not proceed with testing if you are uncomfortable. 
Prior to starting the MCG, we will do an ultrasound examination to help position the machine. 
We will get a few basic measurements that will tell us how big your baby is and how it is lying in 
your womb. The biomagnetometer will be positioned to lightly touch your abdomen. After this is 
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completed we will leave the room and close the door. Someone may stay in the room with you 
if you like. We will be able to see you with a video camera. We can hear you and talk to you 
through a sound system. We will come in at any time if you become tired or uncomfortable. 

When the testing begins, we will ask you to hold still for a few minutes. We will first try to find the 
signals coming from your baby’s heart. We do not expect the MCG recording to take longer than 
45 minutes to an hour.

Collection of Blood Samples – (Enrollment, 32 weeks and after delivery)
Blood samples will be collected from your arm when you sign up for the study, at your 32 week 
visit and on the morning after your baby is born. We will draw about 4.5 teaspoons at enrollment 
and 1.5 teaspoons of blood at all other times. The blood will be used to measure DHA in your 
blood as well as other nutrients. In addition, we will test for genes that control how a person 
makes DHA in their body. This will be described in a separate consent. Some people have a 
gene that can make DHA well and some do not. This difference in genes can make a difference 
on how much DHA is in the blood sample when people are taking the same supplements and 
will help us interpret the study results. Any remaining sample will be stored for possible analysis 
of other nutrients and indicators in the blood that may help us understand how environmental 
exposures may influence pregnancy or to predict pregnancy outcomes (for example preterm 
labor). These are not clinical tests but are part of the research study so that we may learn how 
DHA affects these indicators in the blood. Your baby’s blood sample (1.5 teaspoons) will be 
taken from the umbilical cord after your baby is born.  

Diet Survey- (Enrollment and at 32 weeks of pregnancy)
We will ask you to fill out a diet survey (DHQ-II) at enrollment and at the 32 week visit. The 
survey can be completed online or by a paper copy. The survey asks about the food you normally 
eat and what types of supplements you might use. We will also give you a short survey asking 
what types of fish you might eat. The surveys can be completed in about 30-45 minutes, 
however, you can take as much time as you like. You will be compensated $25 for completing 
the diet survey at enrollment and the diet survey at 32 weeks.

DELIVERY
At your 36 week visit, we will give you a phone number to call when you are admitted to have 
your baby, to let the study team know you are about to deliver. Your baby’s blood sample, taken 
from the umbilical cord at birth, will be given to the investigators. A hospital nurse will also draw 
a small blood sample (1.5 teaspoons) from you while you are in the hospital. 

AFTER BIRTH VISITS
Pea Pod – Infant Body Composition (1 month and 4 month)
At the 1 month and 4 month visits, we will ask if you are breast-feeding or formula feeding your 
baby. To measure body composition, the infant will be placed on its back in a special incubator 
called a Pea Pod. The amount of volume (space) occupied by the infant will be measured and 
used to calculate lean mass (muscle) and total body fat. The staff and parent are able to monitor 
the child during the test through the transparent top. Weight, length, head circumference, 
abdominal circumference and crown-rump length will be measured. The test takes 15 to 20 
minutes to perform and will take place at the Hoglund Brain Imaging Center. 
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The study will pay for all study-related research services provided during this study. These 
services include the capsules, and all of the research measures described in this consent form.

FOR NON-UNIVERSITY OF KANSAS HOSPITAL PATIENTS: 
Any medical visits or procedures you have outside of the study due to other standard of care 
treatments or health issues are billable to you or your insurance through normal billing 
practices. Standard of care means necessary for the care of a medical issue as determined by 
your doctor and not necessary for this study.

FOR UNIVERSITY Of KANSAS HOSPITAL PATIENTS: 
Your insurance may not cover some or all of the standard care services if you are part of a 
research study. You may want to talk to your insurance company and review your specific 
benefits and coverage before deciding to participate. You will be responsible for normal co-
pays, deductibles and non-covered services that are not the responsibility of the study. Some 
procedures require Pre-Certification from your insurance company.  Pre-Certification is not a 
guarantee of payment.

You can still be in the study even if your insurance denies coverage for your standard of care 
treatment or if you are uninsured. The hospital has a financial assistance program which it 
makes available to all patients who qualify. If your insurance denies coverage and you do not 
qualify for the financial assistance, you will be charged for all bills that are not the responsibility 
of the study. The study staff will be able to provide more information to you.

PAYMENT TO SUBJECTS
You will be given a ClinCard, which works like a debit card. You will receive $50 when you enroll 
in the study ($25 for the blood draw and history plus $25 after completing the diet survey). You 
will receive $50 each for the shorter 36 week and 4 month visit. You will receive $50 for the 32 
week visit plus $25 for completing the 32 week diet survey for a total of $75. You will receive 
$75 for each of the longer 1 month, 6 month and 12 month visits for a total of up to $450. If you 
do not complete all study visits then you will only receive payment for the study visits you have 
completed. This is to cover the costs of transportation and to partially compensate you for the 
time required to participate in the study. 

After a study visit, payment will be added onto your card by computer. The money will be 
available within 1 business day. You can use the ClinCard at an ATM or a store. No one at 
KUMC will know where you spend the money. You will be given one card during the study. If 
your card is lost or stolen, please call (866) 952-3795. 

The KUMC Research Institute will be given your name, address, social security number, and the 
title of this study to allow them issue a ClinCard for your study payments. Study payments are 
taxable income. A Form 1099 will be sent to you and to the Internal Revenue Service if your 
study payments are $600 or more in a calendar year. 

IN THE EVENT OF INJURY
If you are harmed or experience other problems during this study, you should seek appropriate 
medical care and contact Dr. Gustafson at 913-588-0065 or Dr. Christifano at 913-588-3140. If 
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it is after 5:00 p.m., a holiday or a weekend, you should call Dr. Gustafson at 913-703-6525 

If you have a bodily injury as a result of participating in this study, treatment will be provided for 
you at the usual charge. Treatment may include first aid, emergency care and follow-up care, as 
needed. Claims will be submitted to your health insurance policy, your government program, or 
other third party, but you will be billed for the costs that are not covered by the insurance. You 
do not give up legal rights by signing this form.

INSTITUTIONAL DISCLAIMER STATEMENT
If you think you have been harmed as a result of participating in research at the University of 
Kansas Medical Center (KUMC), you should contact the Director, Human Research Protection 
Program, Mail Stop #1032, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas 
City, KS 66160. Under certain conditions, Kansas state law or the Kansas Tort Claims Act may 
allow for payment to persons who are injured in research at KUMC. 

CONFIDENTIALITY AND PRIVACY AUTHORIZATION
The researchers will protect your information, as required by law. Absolute confidentiality cannot 
be guaranteed because persons outside the study team may need to look at your study records. 
The researchers may publish the results of the study. If they do, they will only discuss group 
results. Your name will not be used in any publication or presentation about the study. Your 
health information is protected by a federal privacy law called HIPAA. By signing this consent 
form, you are giving permission for KUMC to use and share your health information. If you decide 
not to sign the form, you cannot be in the study. 

The researchers will only use and share information that is needed for the study. To do the study, 
they will collect health information from the study activities and from your medical records. You 
may be identified by information such as name, address, phone, date of birth, social security 
number, or other identifiers. Your health information will be used at KU Medical Center by Dr. 
Gustafson, members of the research team, the KUMC Research Institute, the KUMC Human 
Subjects Committee and other committees and offices that review and monitor research studies. 
Study records might be reviewed by government officials who oversee research, if a regulatory 
review takes place. 

All study data that is sent outside KU Medical Center will have your name and other identifying 
characteristics removed, so that your identity will not be known. Because identifiers will be 
removed, your study data will not be re-disclosed by outside persons or groups and will not lose 
its federal privacy protection.

Your permission to use and share your health information will not expire unless you cancel it. 

Certificate of Confidentiality
This research is covered by a Certificate of Confidentiality from the National Institutes of Health 
(NIH).  This protects the researchers from being forced to give out personal information about 
you in response to a court order.  This does not stop you from voluntarily releasing information 
about yourself or your participation in this research.
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One exception to the Certificate is if you agree that we can give out research information with 
your name on it. This includes any purposes described in this consent form.

Other exceptions are information we must report if we learn about child abuse or neglect or if 
we think you might harm yourself or others.

QUESTIONS
Before you sign this form, Dr. Gustafson or other members of the study team should answer all 
your questions. You can talk to the researchers if you have any more questions, suggestions, 
concerns or complaints after signing this form. If you have any questions about your rights as a 
research subject, or if you want to talk with someone who is not involved in the study, you may 
call the Human Subjects Committee at (913) 588-1240. You may also write the Human Subjects 
Committee at Mail Stop #1032, University of Kansas Medical Center, 3901 Rainbow Blvd., 
Kansas City, KS 66160.

 
A description of this clinical trial is available on ClinicalTrials.gov, as required by U.S. Law. This 
Web site will not include information that can identify you. At most, the Web site will include a 
summary of the results. You can search this website at any time.

SUBJECT RIGHTS AND WITHDRAWAL FROM THE STUDY
You may stop being in the study at any time. Your decision to stop will not prevent you from 
getting treatment or services at KUMC. The entire study may be discontinued for any reason 
without your consent by the investigator conducting the study. 

You have the right to cancel your permission for researchers to use your health information. If 
you want to cancel your permission, please write to Kathleen M. Gustafson, PhD. The mailing 
address is Kathleen M. Gustafson, PhD University of Kansas Medical Center, Hoglund Brain 
Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160. If you decide to 
withdraw from the study then we may ask permission to collect you and your baby’s health 
information at delivery. If you cancel permission to use your health information, you will be 
withdrawn from the study. The research team will stop collecting any additional information about 
you. The research team may use and share information that was gathered before they received 
your written cancellation. 

KUMC IRB # STUDY00003792 | Approval Period 2/26/2019 – 2/25/2020 | FWA# 00003411



 50 
 

Page 11 of 15
Consent 
V0.06

CONSENT
Dr. Gustafson or the research team has given you information about this research study. They 
have explained what will be done and how long it will take. They explained any inconvenience, 
discomfort or risks that may be experienced during this study. 

By signing this form, you say that you freely and voluntarily consent to participate in this research 
study. You have read the information and had your questions answered. 
You will be given a signed copy of the consent form to keep for my records.

____________________________________
Type/Print Subject's Name

____________________________________ _______ __________________
Signature of Subject   Time Date

____________________________________
Type/Print Name of Person Obtaining Consent

____________________________________ __________________
Signature of Person Obtaining Consent Date

In the future, we may want to contact you because you took part in this study. You can initial the 
statement below to let us know whether or not you would be interested in participating in future 
studies:

I am interested in being contacted by Dr. Gustafson or her colleagues to receive information 
about participating in future studies (please initial one) Yes_______     No_______
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OPTIONAL GENETIC RESEARCH CONSENT

Purpose
You are being asked to allow us to use some of your blood and the cord blood (your baby’s 
blood) to study genes that are related to the status of DHA or other nutrients.

The cells in your body contain deoxyribonucleic acid, or DNA for short. DNA is passed down 
from your parents. It carries the genes that determine how you look and how your body works. 
Differences in genes may help explain why some people have trouble making DHA. 

The study of DNA is called genetic research. Your entire genetic makeup will not be determined 
from this testing.  Your DNA will only be used for research to understand your requirement for 
DHA or other nutrients.  

By studying these samples, researchers hope to learn if some individuals need to consume more 
DHA than others because their body cannot make DHA as well.

What is involved?  
You will not be required to do anything more than you agreed to in the consent form for the 
primary study. If the sample of blood we took is too small, we could ask your permission to swab 
cells from the inside of your or your child’s mouth. 

How will information about me be kept private? 
• Samples will be stored in a freezer in a locked room. The samples will be labeled with 

your participant ID, date sample was obtained, and study visit. The samples maybe stored 
for up to 10 years. 

• KUMC will keep the list that links the participant ID to your name separate from your 
sample and information.  

• Qualified researchers can submit a request to use the stored samples. A committee will 
review each request. There will also be an ethics review to ensure that the study is 
necessary and proper. Researchers will not be given your name or any other information 
that could identify you. 

• You may withdraw your consent to use the remaining samples and associated health 
information at any time by contacting Dr. Kathleen Gustafson at 913-588-0065 or the 
research nurse, Danielle Christifano at 913-588-3140. In this case, the sample will be 
destroyed. Samples or related information that have already been used by researchers 
cannot be returned or destroyed. 

• The information about the uses and disclosures of your health information for the main 
study also applies to this and future research.

• Reports about research done with your samples will not be given to you or your doctor.  
These reports will not be put into your medical record. The research will not have an effect 
on your care.  

• Your samples will only be used for research purposes.

If results are published, your name and other personal information will not be given.
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What are possible risks?
If a swab of cells from your or your child’s mouth is required there is a very slight risk of scrapes 
or bruising of the inside of the cheek. Study staff will be careful when collecting the cheek cell 
samples to minimize this risk.

The main risk of this optional research is possible loss of privacy and confidentiality. We will take 
reasonable precaution to reduce this risk. 

There is a small risk that if people other than the researchers were given your genetic 
information, they could misuse them.  If genetic information was given to employers or insurers 
it could affect your ability to get a job or be insured. Misuse could cause problems for family 
members. To minimize these risks, your genetic information will be kept confidential as 
discussed in this form.

GINA
A federal law, called the Genetic Information Nondiscrimination Act (GINA), generally makes it 
illegal for health insurance companies, group health plans, and most employers to discriminate 
against you based on your genetic information. This law generally will protect you in the following 
ways:

• Health insurance companies and group health plans may not request your genetic 
information that we get from this research. 

• Health insurance companies and group health plans may not use your genetic information 
when making decisions regarding your eligibility or premiums.

• Employers with 15 or more employees may not use your genetic information that we get 
from this research when making a decision to hire, promote, or fire you or when setting 
the terms of your employment. The GINA protections do not help you if you work for a 
company with less than 15 employees.  

Be aware that this federal law does not protect you against genetic discrimination by companies 
that sell life insurance, disability insurance, or long-term care insurance.

This study has safeguards to protect your confidential genetic information.  It is extremely 
unlikely that your identity could be connected to results of current or future genetic studies.  
However, it is possible that this information could be discovered by someone who is not 
authorized to have access to it.

Research methods are rapidly changing. In the future, researchers may develop methods that 
allow your samples to be linked back to you.

If a commercial product is developed from this research, the profits will belong to the study 
sponsor. There are no plans to provide financial payment to you should this occur.   
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Consent
The choice to participate in the genetic research is completely voluntary. You can decide not to 
have your samples used and still participate in the main study. Please mark your choice “Yes” 
or “No” below. If you have any questions you can talk to the investigator or the study team.

You give permission that your blood, your baby’s cord blood, and/or cheek swab samples may 
be used for genetic research as described above.

☐YES ☐NO

      
____________________________________
Print Participant’s Name

____________________________________ ________ ____________
Signature of Participant     Time Date

____________________________________
Print Name of Person Obtaining Consent

____________________________________ __________________
Signature of Person Obtaining Consent Date
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OPTIONAL STILL FACE PROCEDURE CONSENT

You have enrolled in the University of Kansas PANDA Study (HSC#00003792) where we hope 
to learn how much DHA to give to mothers in order to provide enough to the baby and how DHA 
affects infant development. As part of the study, we are interested in learning how DHA affects 
infant temperament. To learn about your baby’s temperament, we have a tool called the “Still 
Face” procedure.  If you participate, you will be asked to place your infant in a car seat or carrier 
at the end of the 6 month visit.  Three small foam tabs with wires will remain on your infant’s 
abdomen to record heart beat while they take the test.  To begin the test, you will be asked to 
play with your child as you normally would, without toys, for two minutes.  You will then be asked 
to maintain a blank, neutral expression (“Still Face”) and to not touch or interact with your baby 
for two minutes.  You will be asked to complete five series of play and still face, each lasting two 
minutes, for a total of 10 minutes. The study team will use a stopwatch and let you know when 
to play and when to use a still face.  You will also be asked to complete a questionnaire about 
your baby’s temperament. To complete the Still Face procedure and infant temperament 
questionnaire it will take you about 30 minutes.  There are no known risks for completing the Still 
Face procedure or temperament questionnaire. All of the data we collect will be kept confidential 
just as we have with all your personal information. If you decide to participate this will not change 
the financial compensation you receive. Research is voluntary. If you decide not to participate, 
you still can participate from all other parts of PANDA study (HSC #00003792) and you can still 
receive care at the University of Kansas Medical Center.

CONSENT
If you agree to participate in the Still Face procedure and temperament questions, please check 
the “yes” box; if you do not agree, please check the “no” box. A signed copy of this consent form 
will give to you to keep for your records.

☐YES ☐NO

____________________________________
Print Participant’s Name

____________________________________ ________ ____________
Signature of Participant     Time Date

____________________________________
Print Name of Person Obtaining Consent

____________________________________ __________________
Signature of Person Obtaining Consent Date
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