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Abstract 

 

The ability to accurately predict the prognosis for any given disease is of immense value 

for clinicians and patients. It can dictate and optimize an individual treatment plan for a patient 

and ultimately improve their quality of life and reduce the financial burden associated with 

unnecessary treatment. To allow the accurate prediction of disease prognosis, ongoing 

development of prediction models is of crucial importance. We introduce a novel curated, ad-

hoc, feature selection (CAFS) strategy in the context of the Prostate Cancer DREAM Challenge. 

We demonstrate enhanced prediction performance of overall survival differences in patients with 

metastatic castration-resistant prostate cancer by applying CAFS and identify clinically 

important risk-predictors. 

With ongoing advancements in the omics field promising molecular biomarkers are being 

identified in order to facilitate disease prognosis beyond the capability of clinical information. 

The identification of such biomarkers depends on the examination of omic marks in adequately 

powered studies. With the goal to assist researchers in study design and planning of epigenome 

wide association studies of DNA methylation, we present a user-friendly tool, pwrEWAS, for 

comprehensive power estimation for epigenome-wide association studies.  The R package for 

pwrEWAS is publicly available at GitHub (https://github.com/stefangraw/pwrEWAS) and the 

web interface is available at https://biostats-shinyr.kumc.edu/pwrEWAS/.  

The enormous volume of omic marks requires stringent evaluation to discover 

combinations of complementary marks that assemble predictive biomarkers. We therefore 

present a heuristic feature selection approach that allows one to handle such high-dimensional 

data. Selection Probability Optimization for Feature Selection (SPOFS) is designed to identify an 

https://github.com/stefangraw/pwrEWAS
https://biostats-shinyr.kumc.edu/pwrEWAS/
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optimal subset of omic features from among a vast pool of such features, which collectively 

improves prediction accuracy and form a biomarker. The integration of such biomarkers can then 

be utilized in the development and improvement of prediction models.  
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Introduction 

The term “cancer” refers to a collection of diseases which is involved in the growth of 

abnormal cells with the potential to spread throughout the body (NIH, 2015; WHO, 2018). 

Cancer is the second most common cause of death in the United States of America (WHO, 

2018). Approximately 38.4% of all men and women will be diagnosed with cancer, meaning that 

more than a third of people will be diagnosed with cancer at some point in their life (NIH, 2018). 

The national expenditures for cancer care were estimated to be > $147 billion in the United 

States of America in 2017 (NIH, 2018).  

Not only can these costs be drastically reduced by early detection and identifying 

predictors for the prognosis of cancer, but early detection can also save lives and improve quality 

of life of cancer patients. Early detection of cancer can lower the risk of dying from cancer, as 

treatments are likely to be more effective and efficient, ensuring a higher potential of cure 

(WHO, 2007). The treatment of cancer, generally, has been incredibly challenging, as outcomes 

vary substantially between individuals. As the result of the personal, societal, and economic 

burden associated with cancer, it is critically important to develop accurate prediction models 

and identify predictors for prognosis to facilitate individualized care and personalized cancer 

medicine. 

In chapter one of this dissertation, I describe a curated, ad-hoc, feature selection (CAFS) 

strategy used for the development of a prediction model during the Prostate Cancer DREAM 

Challenge, a crowd-based competition. Here, I focus exclusively on sub-challenge 1 of this 

competition, the prediction of overall survival in patients with metastatic castration-resistant 

prostate cancer (mCRPC). CAFS attempts to maximize the prediction performance of a given 

model by iteratively including and excluding features, with the goal of identifying clinically 
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important risk-predictors. Our ensemble-based Cox regression framework with CAFS resulted in 

strong overall performance for predicting prostate cancer survival and represents a promising 

approach for future prediction problems. 

One limitation of this project is the consideration of only clinical variables, as no 

genomic, genetic or epigenetic data were available in this competition. However, it has been 

demonstrated that molecular biomarkers can improve the prediction of patient prognosis 

(Bramsen et al., 2017; Choi, Park, Yoon, & Ahn, 2017). Epigenome-wide association studies 

(EWAS) aim to examine epigenetic marks on a genome-wide level and identify epigenetic 

biomarkers associated with some exposure(s) or phenotype(s), such as cancer. As for any study, 

it is crucial to assess sample size in EWAS to identify biomarkers with adequate power. 

However, direct power assessment of EWAS is challenging due to the complex nature of DNA 

methylation (DNAm) data (Saadati & Benner, 2014; Teschendorff & Relton, 2018), the most 

studied epigenetic mark. Due to the lack of tools and methods for power evaluation for EWAS, 

most EWAS are conducted in the absence of formal power analyses.  

In chapter two, I present pwrEWAS, a user-friendly tool for comprehensive power 

estimation for EWAS. With pwrEWAS, I facilitate power estimation for two-group comparisons 

of DNAm. Power is calculated using a semi-parametric simulation-based approach in which 

DNAm data is randomly generated from beta-distributions using parameters from one of several 

different existing DNAm data sets. I illustrate in a hypothetical EWAS the application of 

pwrEWAS and demonstrate how pwrEWAS can assist researchers in the design and planning of 

EWAS. 

Finally, in chapter three I discuss the integration of epigenetic biomarkers in the 

development of prediction models. To achieve this goal, I present a heuristic feature selection 



3 

 

approach called Selection Probability Optimization for Feature Selection (SPOFS). SPOFS is 

designed to identify an optimal subset of omic features from among a vast pool of such features, 

which collectively improve the ability to predict some outcome or response. Therefore, in an 

initial step, SPOFS involves filtering data to a manageable number of features. Then, sets of 

features are iteratively selected and their performance is assessed. The selection probability of 

each evaluated feature is then optimized based on its individual performance and a new set of 

features is selected. The fundamental idea is to optimize the selection probability of features to 

increase the probability of identifying an optimal set. Even though SPOFS was developed for a 

time-to-event analysis in the context of a nested case-control study, this methodology is 

applicable to any project that desires a selection of features evaluated on some prediction metric. 

The prediction performance of SPOFS was benchmarked against the performance of Lasso 

(Least Absolute Shrinkage and Selection Operator) in a nested case-control study of lung cancer 

risk, embedded in the Carotene and Retinol Efficacy Trial (CARET), and in a variety of 

simulated data sets. I demonstrate that SPOFS is a competitive feature selection method with the 

potential to outperform Lasso in certain scenarios. 
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1 Chapter 1: An ensemble-based Cox proportional hazards regression 

framework for predicting survival in metastatic castration-resistant 

prostate cancer (mCRPC) patients 

This chapter has previously been published in whole with minor adaptations since 

publication and is available as an open access article. Meier R and Graw S, et al. An ensemble-

based Cox proportional hazards regression framework for predicting survival in metastatic 

castration-resistant prostate cancer (mCRPC) patients. F1000Research 2016, 5:2677 (Meier et 

al., 2016). Creative Commons Attribution License, https://creativecommons.org/licenses/by/4.0/  

1.1 Abstract  

From March through August 2015, nearly 60 teams from around the world participated in 

the Prostate Cancer Dream Challenge (PCDC). Participating teams were faced with the task of 

developing prediction models for patient survival and treatment discontinuation using baseline 

clinical variables collected on metastatic castrate-resistant prostate cancer (mCRPC) patients in 

the comparator arm of four phase III clinical trials. In total, over 2,000 mCRPC patients treated 

with first-line docetaxel comprised the training and testing data sets used in this challenge. In this 

paper we describe: (a) the sub-challenges comprising the PCDC, (b) the statistical metrics used 

to benchmark prediction performance, (c) our analytical approach, and finally (d) our team’s 

overall performance in this challenge. Specifically, we discuss our curated, ad-hoc, feature 

selection (CAFS) strategy for identifying clinically important risk-predictors, the ensemble-based 

Cox proportional hazards regression framework used in our final submission, and the adaptation 

of our modeling framework based on the results from the intermittent leaderboard rounds. Strong 

predictors of patient survival were successfully identified utilizing our model building approach. 

Several of the identified predictors were new features created by our team via strategically 

https://creativecommons.org/licenses/by/4.0/
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merging collections of weak predictors. In each of the three intermittent leaderboard rounds, our 

prediction models scored among the top four models across all participating teams and our final 

submission ranked 9th place overall with an integrated area under the curve (iAUC, see 

Appendix I - Integrated area under the curve (iAUC)) of 0.7711 computed in an independent 

test set. While the prediction performance of teams placing between 2nd-10th (iAUC: 0.7710-

0.7789) was better than the current gold-standard prediction model for prostate cancer survival, 

the top-performing team, FIMM-UTU significantly outperformed all other contestants with an 

iAUC of 0.7915. In summary, our ensemble-based Cox regression framework with CAFS 

resulted in strong overall performance for predicting prostate cancer survival and represents a 

promising approach for future prediction problems. 

1.2 Introduction  

Today, prostate cancer is one of the most prevalent cancers afflicting men in the Western 

world. In addition to the prevalence of this disease, the mortality rates for prostate cancer ranked 

fifth among the most common causes of cancer death worldwide in 2012 

(http://www.cancerresearchuk.org/). In the US alone, approximately 137.9 out of 100,000 men 

were diagnosed with prostate cancer each year from 2008–2012, with an average annual 

mortality rate of 21.4 out of 100,000 men. 

(http://www.seer.cancer.gov/statfacts/html/prost.html). According to the Cancer Prevalence and 

Cost of Care Projections, the total annual cost of prostate cancer in 2016 has been estimated at 

14.3 billion dollars (http://www.costprojections.cancer.gov/). 

Over the course of the last decade in the US, approximately 15% of prostate cancer cases 

were initially diagnosed with metastatic disease (stage IV). Androgen deprivation therapy (ADT) 

is the established treatment for these cases, but one third of patients develop resistance and their 

http://www.cancerresearchuk.org/
http://www.seer.cancer.gov/statfacts/html/prost.html
http://www.costprojections.cancer.gov/
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disease progresses to metastatic castrate-resistant prostate cancer (mCRPC) 

(https://www.synapse.org/ProstateCancerChallenge). Treatment of mCRPC has been historically 

challenging, and while docetaxel – the current front-line therapy for mCRPC – has been effective 

at improving mCRPC survival at the population level, a significant fraction of patients do not 

respond to treatment or prematurely discontinue treatment due to adverse events (AE) (Schallier, 

Decoster, Braeckman, Fontaine, & Degreve, 2012), leading to substantial variation in the 

individual outcomes between mCRPC patients. For this reason, and because of the tremendous 

personal, societal, and economic burden associated with this disease, there is significant interest 

both in the identification of individual predictors for mCRPC prognosis as well as the 

development of prognostic models that can be used to identify high-risk mCRPC patients.  

In a recent publication (Halabi et al., 2014), Halabi et al. utilized data from a phase III 

trial consisting of over one thousand mCRPC patients to develop and test a prognostic model for 

overall survival among patients receiving first-line chemotherapy. The time dependent area 

under the curve (tAUC) was > 0.73 in both testing and independent validation data sets, 

suggesting strong performance of the Halabi et al. model for identifying low- and high-risk 

mCRPC patients. Notwithstanding the significant advances made by Halabi et al. and others 

toward the development of accurate prognostic models for mCRPC outcomes (Chang et al., 

2015; Halabi et al., 2014; van Soest et al., 2015), there remains ample room for improved 

prediction performance. 

Motivated by the potential to further improve existing risk-prediction tools along with 

growing worldwide burden of prostate cancer, the Prostate Cancer Dream Challenge was 

launched in March 2015 and included the participation of nearly 60 teams from around the 

world. The Prostate Cancer Dream Challenge was composed of two distinct sub challenges; in 

https://www.synapse.org/ProstateCancerChallenge
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sub challenge 1, teams competed in the development of prognostic models for predicting overall 

survival based on baseline clinical variables, whereas the objective of sub challenge 2 involved 

the development of models to predict short-term treatment discontinuation of docetaxel (< 3 

months) due to adverse events (AE). To assist in the development and testing of prediction 

models, approximately 150 variables collected on over 2,000 mCRPC patients treated with first-

line docetaxel in one of four different phase III clinical trials were used. Three of the four trials 

were combined to generate the training data set, which was used for model-building and 

development, while data from the remaining trial were withheld from challenge participants and 

used as an independent test set to evaluate each of the submitted models (Guinney et al., 2017). 

In the present manuscript, we focus exclusively on our methodological approach to sub 

challenge 1. Broadly speaking, the first step of our team’s approach to sub challenge 1 involved 

an initial screening of the data: data cleaning and processing, creation of new variables from 

existing data, imputation and/or exclusion of variables with missing values, and normalization to 

standardize the data across trials. The final “cleaned and standardized” training data was then 

used to fit to an ensemble of multiple Cox proportional hazards regression models whose 

constituent models were developed using curated, ad-hoc, feature selection (CAFS). Models 

developed by our team were subjected to internal cross-validation within the training data set to 

identify instances of model overfitting and to assist in further refinements to our prediction 

models. The source code utilized for our approach can be accessed via the Team Jayhawks 

Prostate Cancer Dream Challenge project web page 

(https://www.synapse.org/#!Synapse:syn4214500/wiki/231706) or directly via the GitHub 

repository webpage (https://github.com/richard-meier/JayhawksProstateDream). 

 

https://www.synapse.org/#!Synapse:syn4214500/wiki/231706
https://github.com/richard-meier/JayhawksProstateDream
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1.3 Materials and methods 

1.3.1 Data 

A detailed description of the data sets used in this challenge can be found on the Prostate 

Cancer Dream Challenge web page (https://www.synpase.org/ProstateCancerChallenge). Briefly, 

the training set originated from the ASCENT-2 (Novacea, provided by Memorial Sloan 

Kettering Cancer Center), MAINSAIL (Celgene) and VENICE (Sanofi) trials (Petrylak et al., 

2015; Scher et al., 2011; Tannock et al., 2013). For the 1600 patients in the training data, 

baseline covariate information and clinical outcomes (i.e., time to death and time to treatment 

discontinuation) were provided to participating teams for the purposes of model development 

and training. Although baseline covariate information for a subset of patients in the ENTHUSE-

33 (AstraZeneca) trial (Fizazi et al., 2013; Tannock et al., 2013) scoring set was provided to 

participating teams (n = 157), the clinical outcomes for each of these patients were censored and 

withheld from teams throughout the duration of the challenge. Specifically, the ENTHUSE-33 

data set (n = 470) was split into two disjoint sets that consisted of 157 and 313 patients. Whereas 

an undisclosed randomly selected subset of the 157 patients was used for model evaluation in 

each intermittent leaderboard round, the remaining 313 patients were withheld completely from 

participating teams and used only in the final scoring round. 

1.3.2 Preprocessing 

All aspects of our approach, from data preprocessing to model development and cross-

validation, were implemented using R version 3.2.1 (2015-06-18) (https://www.r-project.org/). 

Baseline covariate information on subjects comprising the training data were reformatted and 

normalized according to the type of variable (i.e., categorical, ordinal, numeric) and feature type 

(i.e., medical history, laboratory values, etc.). Cleaned and normalized baseline features were 

https://www.synpase.org/ProstateCancerChallenge
https://www.r-project.org/
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then used to derive additional novel risk predictors. (https://github.com/richard-

meier/JayhawksProstateDream/blob/master/dataCleaningMain.R) 

Several groups of binary variables representing patient specific clinical information and 

prior medical history reported on patients were merged into new features. Three different 

merging types were explored: “logical or”, regular summation, and z-score weighted summation. 

For the latter, each individual feature in the training set was fit against survival time with a Cox 

proportional hazards model and their resulting z-scores were used to derive weights that were 

proportional to each variable’s strength of association with survival (https://github.com/richard-

meier/JayhawksProstateDream/blob/master/deriveHardcodedWeights.R). Summation variables 

were created for 3 main categories: medical history information, prior medication information 

and metastasis information. For each of these categories, new variables generated by merging 

specific subcategories (i.e., protective, harmful, total, visceral, etc.) were created. 

A participant’s target lesion volume (TLV) was generated by multiplying each target 

lesion by its size, followed by summing over all lesions within that participant 

(https://github.com/richard-meier/JayhawksProstateDream/blob/master/src/lesion_volume.R). To 

impute the TLV for the ASCENT-2 trial, we calculated the average TLV per lesion within 

individuals who survived or died in the MAINSAIL or VENICE trials, and multiplied these 

separate averages by the number of non-bone lesions found in the ASCENT-2 data. To classify 

whether for each category a feature was in the subcategory “protective” or “harmful”, their z-

scores, when individually fitting against the outcome, were used. A feature was labeled 

"protective" if its z-score was greater than 1.64 and "harmful" if its z-score was smaller than -

1.64. 

https://github.com/richard-meier/JayhawksProstateDream/blob/master/dataCleaningMain.R
https://github.com/richard-meier/JayhawksProstateDream/blob/master/dataCleaningMain.R
https://github.com/richard-meier/JayhawksProstateDream/blob/master/deriveHardcodedWeights.R
https://github.com/richard-meier/JayhawksProstateDream/blob/master/deriveHardcodedWeights.R
https://github.com/richard-meier/JayhawksProstateDream/blob/master/src/lesion_volume.R
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Principal component analysis (PCA) was used to split numerical laboratory values into 

components that best explained their variation (see above: “deriveHardcodedWeights.R”). The 

top PCs were then treated as new features. In order to address issues or findings involving some 

specific variables, additional features were created: The Eastern Cooperative Oncology Group 

(ECOG) performance status score was both included as continuous and categorical variable. Age 

groups were also recoded as an ordinal age risk variable for which 0 represented patients older 

than 75 years, 1 represented patients younger than 65 years and 2 represented patients with ages 

between 65–75 years. The latter was motivated by our observation of a non-linear trend between 

age and survival time. 

Race was recoded into a binary variable where 1 referred to patients labeled as “white” or 

“other” and 0 represented patients that did not fall into one of those two categories (e.g. "black", 

"asian", etc.). The features “harm_pro” and “harm_pro2” were created by fitting the summation 

variables of the medical history subgroups “harmful” and “protective” against the outcome and 

obtaining the z-scores of these subgroup summation variables. The difference between the two 

features was that harm_pro exclusively fitted the two summation variables, whereas harm_pro2 

also utilized a set of important predictor variables for the initial fit. The two z-score weighted 

sums (corresponding to the two sets of features utilized for the previously mentioned fit) of these 

summation variables then correspond to the two new features. (https://github.com/richard-

meier/JayhawksProstateDream/blob/master/src/add_additional_features.R) 

1.3.3 Model building and feature selection 

Our methodological framework utilized an ensemble of Cox proportional hazards 

regression models that were found to be individually competitive in predicting survival. For each 

patient, the ensemble-based risk scores were generated as a weighted sum of the individually 

https://github.com/richard-meier/JayhawksProstateDream/blob/master/src/add_additional_features.R
https://github.com/richard-meier/JayhawksProstateDream/blob/master/src/add_additional_features.R
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estimated risk scores from separate Cox-regression models, fit using the “coxph” function in the 

“survival” R-package (Therneau, 2015) (Figure 1C). Feature selection among the competitive 

risk-prediction models that constituted our ensemble was undertaken by a method we call 

curated, ad-hoc, feature selection (CAFS). This method attempts to maximize the prediction 

performance of a given model by iteratively including and excluding features from a baseline 

initial model. The method is greedy in the sense that in each step of the algorithm, only the 

model candidates that achieve the current "local best" performance are selected. Each iteration 

started with a group of experts making two executive decisions based on a set of possible model 

candidates for which performance was evaluated in prior iterations. First, one model was 

nominated as the best current model and a decision was made whether to expand or shrink the 

model, or terminate the procedure and keep the model, in its current form (Figure 1A). Choosing 

the current best model was guided by a candidate’s estimated performance, performance of the 

previous best model, as well as knowledge of the researchers as to whether the form and 

components of a given model were reasonable in the context of the problem at hand. An example 

for the latter case would be that a newly introduced interaction term between completely 

unrelated features might be rejected after evaluation, even though it technically achieved the 

current best performance. 
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Figure 1 Model building and model ensemble utilization. 

(1A) Competitive prediction models were built individually by a curated, ad-hoc feature selection procedure. In each 

step researchers picked a new best model from the set of current models based on an optimization criterion and 

decided how it would be processed. (1B) Models were optimized by either forward selection, in which a new feature 

was added, or backward selection, in which a feature that had become obsolete was removed. Both selection 

methods generated a set of new models for which performance was predicted via in-depth cross-validation. (1C) 
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Once a variety of competitive prediction models had been created, models were combined into an ensemble, which 

averaged their individual predictions in order to increase performance. 

 

Model reduction was done via ad-hoc backward selection (Figure 1B). In this procedure a 

set of new models was generated by individually excluding each parameter or feature present in 

the current model. For each of these models, performance was evaluated based on a previously 

chosen optimization criterion, i.e., integrated time-dependent area under the curve (iAUC). The 

criterion was estimated via a cross-validation procedure in which the training set was repeatedly 

split into two random subsets of a fixed size. The first subset was used to estimate parameters of 

a given model, whereas the second subset was used to predict the outcome using the previously 

estimated parameters and to calculate the optimization criterion based on comparing the 

prediction with the true outcome. In our study, we utilized two-thirds for the parameter 

estimation subset, i.e., first subset, while the remaining one third comprised the second subset. 

The average of the calculated optimization criterion values, obtained from all random splits, 

served then as a performance estimate. We used 10,000 cross-validation steps for each model in 

our study to ensure stability of the average performance. The new models and performance 

estimates were then used as the basis for subsequent iterations. 

Expansion of a model was accomplished using an ad-hoc forward selection procedure 

(Figure 1B). In this procedure several new models were created for each feature within the 

feature space. Each subset of new models contained one base model that included only main 

effect terms for new features, i.e., no interaction terms included. All other models in the subset 

further expanded this base model by individually introducing an interaction term with each 

element already in the previous best model. 
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Performance of each new model was again assessed via the cross-validation procedure. 

Since this step iterated over the feature space, it created a large amount of different models. To 

make this step computationally feasible, the number of cross-validation iterations had to be 

reduced. In our study, 500 cross-validation steps per new model were utilized. 

(https://github.com/richard-meier/JayhawksProstateDream/blob/master/src/modelTuning.R) 

Finally, since the variances of these performance estimates were much higher than in the 

shrinkage step, the top 30 performing models were chosen, and performance was re-estimated 

via 10,000-fold cross-validation. This set of new models and performance estimates was then 

used in the next iteration. Once iterations provided only marginal performance increases, the 

procedure was terminated, and a final model was declared. Different models for the ensemble 

were found either by choosing different intermediate models as the current best and branching 

off a certain path, or by choosing different initial models. 

1.3.4 Model evaluation 

Each of the sub challenges in the Prostate Cancer Dream Challenge had its own 

prediction scoring metrics. In sub challenge 1A, participants were asked to submit a global risk 

score and time dependent risk scores, optimized for 12, 18 and 24 months. These risk scores 

were evaluated utilizing two scoring metrics: a concordance index (c-index, see Section 3.3.4), 

and an integrated time dependent area under the curve (iAUC; 6–30 months). The time specific 

risk scores were assessed using AUC’s computed using Hung and Chiang’s estimator of 

cumulative AUC (Hung & Chiang, 2010). In sub challenge 1B, participants were asked to 

predict the time to event (death). The predictions of time to event were scored utilizing the root 

mean squared error (RMSE), using patients with known days to death. 

https://github.com/richard-meier/JayhawksProstateDream/blob/master/src/modelTuning.R
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When applying CAFS, we utilized the iAUC calculated from the predicted risk scores as 

an optimization criterion. This measure was also used by the challenge organizers for 

performance assessment in the scoring rounds for sub challenge 1A. While participants were 

asked to predict the risk score for overall survival based on patients' clinical variables, they were 

also tasked to predict the time to event (TTE) in sub challenge 1B. We used the risk score for 

each patient to model the TTE: 

𝑇𝑇𝐸𝑖 = 𝑓(𝑟𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑖) + 𝜖𝑖 

Where 𝑟𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑖 corresponds to the risk score calculated in sub challenge 1A for the 

𝑖𝑡ℎ patient and f is an unknown smoothing function. We estimated f using a Generalized Additive 

Model (GAM) via the “gam” function within the “mgcv” package in R (Wood, 2011). When 

regressing TTEs on risk we used only the subset of individuals who died. 

1.4 Results 

The principal component analysis with all laboratory values revealed that the first 

principal component (PC) was highly correlated with patient survival. Furthermore, across all 

laboratory values, only a subset of six features (baseline levels of: albumin, alkaline phosphatase, 

aspartate aminotransferase, hemoglobin, lactate dehydrogenase and prostate specific antigen) 

contributed significantly to explaining the variation in said first component. Thus, in the first PC 

only these six laboratory values were used during model building and development. In addition 

to the first principal component, several other newly created metavariables were identified as 

clinically relevant predictors by our model building procedure. Three z-score weighted sums 

merging metastases locations, medical history and prior medication were included in our 

prediction models. The “logical or” merged variable, whether or not a patient had any known 

medical history issues, was also utilized. The protective versus harmful subcategorization was 
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only included in the models in the form of the sum of protective medical history features. 

However, this category only included a single feature, vascular disorders (yes/no). 

We developed 5 competitive prediction models (M1 – M5) that were used in our Cox 

proportional hazards regression ensemble (Figure 2). All models were developed by either 

refining a previous model via CAFS or by building a model from the bottom up via CAFS. M1 

used the best model found by manually selecting promising features as its initial model. M2 used 

an intermediate model from the CAFS procedure of M1 to deliberately branch off and provide a 

similar, yet different model. M3 and M5 were both built by using an initial model solely utilizing 

the strong predictors target lesion volume and principal component 1 but branching off in early 

iterations. M4 was built by using an initial model utilizing target lesion volume and the alkaline 

phosphatase level under the restriction that principal component 1 was excluded from the feature 

space. 
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Figure 2 Generated models utilized in the final challenge submission. 

(2A) The ensemble consisted of five different models, M1 to M5, which ended up sharing many feature types even 

though they were individually generated under different conditions. (2B) All models made use of a similar number 

of parameters and achieved comparable performance in cross-validation. Performance further increased when using 

the model ensemble. 

While no single feature was utilized in every model M1–M5, five different features were 

shared between four models, six features between three models, four features between two 

models and eight features were unique to a model (Figure 2A). Each model had at least one 

unique feature. Between two and four interaction terms (two-way interaction terms) were present 

in all the observed models (Figure 2B). One interaction was shared between the models M3, M4 

and M5, while two interactions were shared between two models M1 and M2. Including 

components of newly derived features, eight features that were included in the original model by 

Halabi et al. in some form, were also utilized in the model ensemble. In total, the ensemble 

contained 38 coefficients, out of which 11 were pairwise interaction terms across all models. 

The estimated iAUC during performance assessment was found to be stable up to 

approximately three decimals when using 10,000-fold cross-validation. Similar estimated 

performance within the range of 0.005 iAUC difference was achieved between the competitive 

prediction models, the highest total iAUC being 0.745. Optimal weights were chosen based on 

randomly initializing weights 100 times and estimating performance. Performance tended to be 

optimized the smaller the maximum pairwise difference between weights in an ensemble was. 

The best possible performance was estimated when choosing equal weights for all models. This 

ensemble was chosen as the best model. Utilizing the ensemble led to an estimated performance 

increase of 0.012 iAUC. 
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During the three leaderboard rounds the team explored and submitted various 

methodologies. Top performing submissions were always Cox proportional hazards models that 

outperformed more sophisticated approaches such as generalized boosted regression models and 

random survival forests. From scoring round 2 onward, single models utilizing CAFS were also 

submitted. In all intermittent leaderboard rounds, at least one of our submitted entries ranked 

among the top 4 performing models of sub challenge 1A (Figure 3A). In sub challenge 1B, at 

least one submission was within the top 3 performing models, with the exception of the second 

leaderboard round were our best model ranked number 12. Our models achieved performances 

ranging from 0.792 to 0.808 iAUC in 1A and from 172.51 to 196.25 RMSE in 1B. In the final 

scoring round, team FIMM-UTU (Guinney et al., 2017) significantly outperformed all other 

contestants with an iAUC of 0.7915 (Figure 3B). Our submission for 1A that utilized the CAFS 

ensemble achieved rank 9 with an iAUC of 0.7711. The performances of teams ranking from 2nd 

to 10th were very similar. While the difference in performance between rank 1 and 2 was 0.0126 

iAUC, the difference in performance between our method and rank 2 was only 0.0078 iAUC. 

Our submitted model ensemble also successfully outperformed the previous best model by 

Halabi et al. (Halabi et al., 2014), which was placed at rank 36 with an iAUC of 0.7429. Sub 

challenge 1B was won simultaneously by 6 teams out of which our method achieved rank 3. 
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Figure 3 Team performance during the challenge. 

(3A) Submitted models were consistently ranked at the top of the leaderboards during the scoring rounds before the 

final submission. Models build via the CAFS procedure were submitted starting with the second leaderboard round. 

(3B) The final challenge submission made use of the described model ensemble approach and was placed at rank 9 

in sub challenge 1A and at rank 3 in sub challenge 1B. 
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1.5 Discussion 

Many feature types present in the original model by Halabi et al. (Halabi et al., 2014) 

were also independently picked up and retained by CAFS. This solidifies the idea that these 

might be key components influencing survival. Considering that five out of these eight were also 

involved in the first principal component, which was one of the strongest predictors, does also 

support this. Another set of potentially interesting predictors are those shared between three or 

more models. 

It is debatable whether the fact that a lot of overlap exists between the various sub-

models points towards the validity of selected features and the developed approach, or a potential 

bias in the feature selection procedure. However, the former appears more likely in the light of 

the approach’s good performance on new data in the competition. 

The included interaction terms are difficult to interpret. There is no guarantee that an 

interaction is modeling a direct relationship and some terms might be artifacts of higher order 

interactions or confounding issues. Also, when solely including terms into the model based on 

the optimization criterion in each step of CAFS, there is a bias to include interaction terms. Since 

they introduce more parameters into the model than a main effect, they have more opportunity to 

improve the model within each step, even though including two different main effects in a row 

might be more beneficial. While our team was aware of this issue and cautious with the selection 

of sub-models, this still leaves potential for making suboptimal choices. This weakness could 

potentially be addressed in the future by switching to a parameter count based iteration, rather 

than a feature type-based iteration. 

The performed recoding of the age groups is still problematic. Intuitively, it does not 

make sense that the order “oldest, youngest, in-between” would be related to the outcome when 
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disease progression usually worsens with age. A possible explanation might be that the oldest 

patient group is confounded with a subset of people that are resistant to the disease and have 

already survived for a long time. Further research is required to validate this effect. 

Overall the presented method successfully built a robust predictor for the target outcome. 

Evidence for this is provided by the fact that the estimated performance via in-depth cross 

validation (iAUC = 0.757) was close to the reported performance on the larger, final leaderboard 

set (iAUC = 0.771) and the fact that our models were among the top performing candidates 

throughout the entire challenge. It should also be highlighted that the required human 

intervention in each selection step gives the team of researchers a lot of control, which can be 

very useful to introduce knowledge about the feature space into the selection process, but also 

limits the reproducibility. An example of this benefit is that despite the pointed-out weakness in 

the implementation, the team was able to account for it by rejecting inclusions of interactions 

that did not have a great enough impact. If desirable, early branches of the selection process can 

be tailored towards features with a known connection to the outcome when multiple feature 

inclusions provide similar performance benefits. 

1.6 Conclusion 

The presented method generated a model ensemble that was able to outperform the 

previous best efforts to predict survival in prostate cancer patients. The developed model 

ensemble also successfully competed with the top performing research teams in the Prostate 

Cancer Dream Challenge and was among the winning teams in sub challenge 1B. We attribute 

this success to careful data cleaning, our efforts to derive novel features and the fact that skeptic, 

human decision making is integral to each iteration of the curated ad-hoc feature selection. Due 

to its general applicability to model building, especially in exploratory settings, the approach is 
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promising in being useful for researchers around the world. Future studies will need to validate 

the presented, potentially disease associated features and potential weaknesses in the CAFS 

procedure should be investigated and addressed. 

1.7 Data availability 

The Challenge data sets can be accessed at:  

https://www.projectdatasphere.org/projectdatasphere/html/pcdc  

 

Challenge documentation, including the detailed description of the Challenge design, overall 

results, scoring scripts, and the clinical trials data dictionary can be found at:  

https://www.synapse.org/ProstateCancerChallenge  

 

The code and documentation underlying the method presented in this paper can be found at: 

http://dx.doi.org/10.5281/zenodo.49063 (Chalise et al., 2016) 

1.8 Contribution 

In this project I participated in the conception of the idea of CAFS, the model building 

process, model assessment and interpretation, the organization and presentation of the code, 

implementation of data cleaning functions for medication history, combining treatment history 

variables into new variables, and writing the manuscript.  

  

https://www.projectdatasphere.org/projectdatasphere/html/pcdc
https://www.synapse.org/ProstateCancerChallenge
http://dx.doi.org/10.5281/zenodo.49063


24 

 

2 Chapter 2: pwrEWAS: A user-friendly tool for comprehensive power 

estimation for epigenome wide association studies (EWAS) 

This chapter has previously been published in whole with minor adaptations since 

publication and is available as an open access article. Stefan Graw, M.Sc.; Rosalyn Henn, B.Sc.; 

Jeffrey A. Thompson, Ph.D.; Devin C. Koestler, Ph.D. pwrEWAS: A user-friendly tool for 

comprehensive power estimation for epigenome wide association studies (EWAS). BMC 

Bioinformatics 2019. (Graw, Henn, Thompson, & Koestler, 2019) Creative Commons 

Attribution License, https://creativecommons.org/licenses/by/4.0/  

2.1 Abstract  

When designing an epigenome-wide association study (EWAS) to investigate the 

relationship between DNA methylation (DNAm) and some exposure(s) or phenotype(s), it is 

critically important to assess the sample size needed to detect a hypothesized difference with 

adequate statistical power. However, the complex and nuanced nature of DNAm data makes 

direct assessment of statistical power challenging. To circumvent these challenges and to address 

the outstanding need for a user-friendly interface for EWAS power evaluation, we have 

developed pwrEWAS. The current implementation of pwrEWAS accommodates power 

estimation for two-group comparisons of DNAm (e.g. case vs control, exposed vs non-exposed, 

etc.), where methylation assessment is carried out using the Illumina Human Methylation 

BeadChip technology. Power is calculated using a semi-parametric simulation-based approach in 

which DNAm data is randomly generated from beta-distributions using CpG-specific means and 

variances estimated from one of several different existing DNAm data sets, chosen to cover the 

most common tissue-types used in EWAS. In addition to specifying the tissue type to be used for 

DNAm profiling, users are required to specify the sample size, number of differentially 

https://creativecommons.org/licenses/by/4.0/
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methylated CpGs, effect size(s) (Δ𝛽), target false discovery rate (FDR) and the number of 

simulated data sets, and have the option of selecting from several different statistical methods to 

perform differential methylation analyses. pwrEWAS reports the marginal power, marginal type 

I error rate, marginal FDR, and false discovery cost (FDC). Here, we demonstrate how 

pwrEWAS can be applied in practice using a hypothetical EWAS. In addition, we report its 

computational efficiency across a variety of user settings. Both under- and overpowered studies 

unnecessarily deplete resources and even risk failure of a study. With pwrEWAS, we provide a 

user-friendly tool to help researchers circumvent these risks and to assist in the design and 

planning of EWAS. 

Availability: The web interface is written in the R statistical programming language 

using Shiny (RStudio Inc., 2016) and is available at https://biostats-shinyr.kumc.edu/pwrEWAS/. 

The R package for pwrEWAS is publicly available at GitHub 

(https://github.com/stefangraw/pwrEWAS). 

2.2 Background 

Epigenome-wide association studies (EWAS) aim to examine the relationship between 

epigenetic marks and exposure(s) or phenotype(s) on a genome-wide level. DNA methylation 

(DNAm) is the most widely studied epigenetic mechanism and involves the chemical addition of 

a methyl group to the 5-carbon position of cytosine in the context of cytosine-phosphate-guanine 

(CpG) dinucleotides. The vast majority of EWAS use microarray-based platforms for assessing 

DNAm, such as the Illumina Infinium HumanMethylation BeadArrays (Illumina Inc.), as these 

platforms provide a compromise between coverage, cost, and sample throughput (Bibikova et al., 

2009; Pidsley et al., 2016). Illumina’s latest methylation microarrays, the Infinium 

HumanMethylation450 and Infinium HumanMethylationEPIC, interrogate the methylation levels 

https://biostats-shinyr.kumc.edu/pwrEWAS/
https://github.com/stefangraw/pwrEWAS
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of over 450,000 and 850,000 CpG dinucleotides, respectively. While these arrays differ in their 

coverage, both allow for the assessment of methylation at single-nucleotide resolution, quantified 

using what is referred to as the methylation 𝛽-value, an approximately continuously-distributed 

measure that reflects the methylation extent of a specific CpG locus; ranging from 0 

(unmethylated) to 1 (methylated). Interest in studying DNAm in the context of human health and 

disease has been ignited by the now numerous studies that have reported altered patterns of 

DNAm across various human diseases (Kulis & Esteller, 2010; Robertson, 2005) and in response 

to environmental exposures (Martin & Fry, 2018), along with reversible nature of DNAm, which 

makes it a promising target for potential treatments and therapies (Yang, Lay, Han, & Jones, 

2010). To detect a hypothesized difference in DNAm with adequate statistical power it is crucial 

to assess the required sample size. However, the complex nature of DNAm data (Saadati & 

Benner, 2014; Teschendorff & Relton, 2018) makes a direct power assessment challenging, as 

power depends on several factors: planned study sample size, array technology used to profile 

DNAm, tissue type used in assessing DNAm, proportion of differentially methylated CpGs and 

the distribution of their differences (Δ𝛽), and multiplicity. 

The importance of formal power assessment and sample size justification in the design of 

research studies has been recognized and addressed in related omic fields, and motivated the 

development of power evaluation tools, including: “RNAseqPS” (Guo, Zhao, Li, Sheng, & Shyr, 

2014), “RNASeqPowerCalculator” (Ching, Huang, & Garmire, 2014) and “PROPER” (Wu, 

Wang, & Wu, 2015) for RNA-Seq data, and “CaTs” (Skol, Scott, Abecasis, & Boehnke, 2006), 

“Statistical Power Analysis tool” (Blaise et al., 2016), “GWAPower” (Feng, Wang, Chen, & 

Lan, 2011), and “SurvivalGWAS_Power” (Syed, Jorgensen, & Morris, 2016) for GWAS data. 

However, surprisingly little attention has been given to this topic in the context of EWAS and 
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while there has been substantial work on the development of statistical methods and publicly 

available software for the preprocessing, quality control, normalization, and analysis of DNA 

methylation data (Li, Xie, Le Pape, & Dye, 2015; Siegmund, 2011), methods and tools for power 

evaluation for EWAS are lagging. Consequently, most EWAS are conducted in the absence of 

formal power analyses, resulting in studies that are potentially under- or overpowered (Michels 

et al., 2013). To our knowledge, only three studies have formally addressed the issue of power 

evaluation in the context of EWAS (Rakyan, Down, Balding, & Beck, 2011; Tsai & Bell, 2015; 

Wang, 2011). Wang et al. (Wang, 2011) simulated DNAm data for two group comparisons from 

uniform-normal mixture distributions with parameter settings that capture three general types of 

distributions often seen in methylation data (methylated, unmethylated, and partially 

methylated). Power was then assessed and compared for two differential methylation detection 

methods: proposed method by Wang et al. (Wang, 2011) and t-tests. Rakyan et al. (Rakyan et al., 

2011) generated DNAm data for two group comparisons from single and mixture beta 

distributions in three scenarios with four effect sizes each and differences in methylation ranging 

from 1.25% to 14.4%. Logistic regression was then applied to assess differential methylation and 

power was evaluated. Finally, Tsai et al. (Tsai & Bell, 2015) simulated DNAm data for two 

group comparisons from nine single locus DNAm distributions, again falling into three 

categories: methylated, hemi-methylated and unmethylated. The expected differences in 

methylation ranged from 1%-60%. Differential methylation was then analyzed by t-tests and 

Wilcoxon rank-sum tests, and the respective power was assessed. 

All three approaches utilize a limited number of single locus distributions, which result in 

a wide range of methylation levels of CpG sites but may lead to unrealistic data with a 

predefined fixed number of expected differences in methylation between two groups. This is 
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because individual CpGs have their own unique mean and variance depending on their genomic 

context and susceptibility to become methylated and vary depending on the tissue type used for 

methylation assessment (Lokk et al., 2014). Analogously, expected differences in CpG-specific 

methylation between two or more groups are expected to come from a continuous distribution 

instead of having predefined discrete values (Langie et al., 2017). In addition to the potential 

limitations above, none of the previously described methods provided accompanying software 

for their methodology, limiting their application within the epigenomics-research community. 

Therefore, there remains an outstanding need for publicly available software that addresses these 

limitations and enables comprehensive assessments of statistical power in the context of EWAS 

involving CpG-specific comparisons of DNAm.  

Inspired by PROPER (Wu et al., 2015), a publicly available tool to assist researchers with 

power assessment in RNA-seq studies, we have developed pwrEWAS for comprehensive power 

evaluation in the context of case-control EWAS. In pwrEWAS, power is estimated using a semi-

parametric simulation-based approach. First, DNAm data is randomly generated for each 

comparator group based on user-supplied information concerning the expected fraction of 

differentially methylated CpGs between groups and their expected effect size (Δ𝛽). To simulate 

realistic methylation data, DNAm data are generated from a beta-distribution using CpG-specific 

means and variances estimated from one of several different publicly available DNAm data sets, 

chosen to span the most common tissue-types used in EWAS. This gives the user the flexibility 

to select the tissue type (e.g., whole blood, peripheral blood mononuclear cells (PBMCs), etc.) 

that is most appropriate for the study being planned. Next, the generated data undergoes a formal 

differential methylation analysis, the results of which are used to estimate statistical power. In 

what follows, we begin by describing the statistical framework underlying pwrEWAS, followed 
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by its demonstration and an assessment of its run time across different user settings. We finish 

with a discussion of the limitations of pwrEWAS and describe future extensions. 

2.3 Methods 

As previously mentioned, the Illumina Infinium HumanMethylationEPIC microarray 

measures the methylation status of >850,000 CpGs throughout the genome. For a single CpG, 

DNAm is quantified via the 𝛽-value, 𝛽 =
𝑀

𝑀+𝑈
, where M and U are the methylated and 

unmethylated signal intensities, respectively. As M and U are typically assumed to be gamma-

distributed random variables with equal scale parameter (Saadati & Benner, 2014), it follows that 

the 𝛽-value follows a beta-distribution. As such, the 𝛽-value ranges from 0 to 1 and represents 

the methylation extent for a specific CpG. Under ideal conditions, a 𝛽-value of zero signifies that 

all alleles in all cells of a sample were unmethylated at that CpG site, while a 𝛽-value of one 

indicates methylation throughout all alleles in all cells at that CpG site (Du et al., 2010). A 

common goal of EWAS is to identify CpG-specific differential methylation based on some 

phenotype or exposure. Formally, this involves testing the null hypothesis 𝐻0: Δ𝛽,𝑗 = 0, where 

Δ𝛽,𝑗 = 𝜇𝑗
(1)
− 𝜇𝑗

(2)
 and represents the difference in mean methylation at the jth CpG between two 

groups (e.g. cases versus controls, exposed versus unexposed, etc.), with 𝑗 = {1,… , 𝐽} and J 

representing the number of interrogated CpGs.  

pwrEWAS is written using the R statistical programming language (http://r-project.org) 

and is comprised of three major steps: (1) data generation, (2) differential methylation analysis, 

and (3) power evaluation (Figure 4). Users are required to provide input parameters, including: 

tissue type to be used for methylation assessment, assumed total sample size (can be specified as 

a range of possible sample sizes), percentage of the total sample split into two groups (50% 

corresponds to a balanced study), number of CpGs to be formally tested, expected number of 

http://r-project.org/
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differentially methylated CpGs, and the expected difference in methylation between the 

comparator groups (Δβ) or alternatively, the standard deviation of these differences (𝑠𝑑(Δ𝛽)). 

To assist users with their experimental design, pwrEWAS provides estimates of statistical 

power as a function of the assumed sample and effect size(s). Further, it provides estimates of the 

marginal type I error rate, marginal FDR, false discovery cost (FDC), the distribution of 

simulated Δ𝛽’s, and probabilities of identifying at least one true positive. The probability of 

identifying at least one true positive is beneficial in studies where either the effect or sample size 

is very small (e.g. pilot or explanatory studies). 

 

Figure 4 Workflow for pwrEWAS.  

From an existing tissue-type-specific data set, J CpG-specific means and variances are estimated. Next, P CpGs are 

sampled with replacement from the collection of CpGs. For two groups, the mean of one group is changed by 𝛥𝛽, 

while the mean of the other group remains unchanged. 𝛥𝛽 comes from a truncated normal distribution 𝑁(0, 𝜏2). 

These parameters are then used to simulate 𝛽-values for the two groups. A CpG with an absolute difference in mean 

methylation greater than a predefined detection limit (default: 0.01) is considered as truly differentially methylated. 

Next, the simulated data set is used to test for differential, comparing the mean methylation signatures between the 

two groups. A CpG is defined as “detected” if its corresponding FDR is smaller than a predefined threshold (default: 

0.05). Each CpG can fall into one of six categories described in Table 1. The marginal power is calculated as the 

proportion of True Positives among all truly differentially methylated CpGs. 
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2.3.1 Data Generation 

Our approach to estimating statistical power begins by leveraging publicly available 

DNA methylation data sets in order to simulate realistic methylation data. Data sets used for the 

purpose of simulation were selected to represent the most commonly used tissue types used in 

EWAS. To identify these tissue types, the Gene Expression Omnibus (GEO) data repository was 

manually scanned and tissue types were rank-ordered based on the number of GEO deposited 

data sets including Illumina Infinium Human Methylation BeadChip data for that tissue type. For 

each of the most common tissue types identified, a single representative data set was selected 

(Table 1). Representative data sets were selected based on a combination of the study’s sample 

size (preference toward larger data sets), study design, and the inclusion of DNA methylation 

profiles for healthy, non-diseased subjects.  

 

Table 1 Curated tissue-type specific DNAm data sets used by pwrEWAS. 

Representative data sets for the most commonly used tissue types for EWAS with inclusion criteria for subjects. 

Tissue Type 
Accession 

Number 

Subjects within GSE-ID limited 

to 
Reference 

Saliva GSE92767  (Hong et al., 2017) 

Lymphoma GSE42372 disease state: non-HIV lymphoma (Matsunaga et al., 2014) 

Placenta GSE62733 health state: Normal (Kawai et al., 2015) 

Liver GSE61258 diseasestatus: Control (Horvath et al., 2014) 

Colon GSE77718 disease state: Normal (McInnes et al., 2017) 

Blood (Adults) GSE42861 subject: Normal 

(Kular et al., 2018; Y. Liu et 

al., 2013) 

Blood 

(Children) GSE83334 age: 5 years 

(Urdinguio et al., 2016) 

Blood 

(Newborns) GSE82273  

(Markunas et al., 2016) 

Cord-blood 

(whole blood) GSE69176  

 

Cord-blood 

(PBMC) GSE110128 cord blood 

(Langie et al., 2018) 

Adult (PBMC) GSE67170 disease state: control (Y. H. Zhang et al., 2018) 
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For each selected tissue type, CpG-specific means and variances were estimated (𝜇̂𝑗 =

1

𝑁
∑ 𝛽𝑖,𝑗
𝑁
𝑖=1  and 𝜎̂𝑗

2 =
1

𝑁−1
∑ (𝛽𝑖,𝑗 − 𝜇̂𝑗)

2𝑁
𝑖=1 ), where 𝛽𝑖,𝑗 represents the methylation 𝛽-value for 

CpG 𝑗 = {1,… , 𝐽} in subject 𝑖 = {1,… ,𝑁}. CpG-specific parameter estimates are then used as 

the basis for simulating realistic methylation data using a semi-parametric simulation strategy. 

First, P pairs of CpG-specific means and variances (𝜇̂𝑗, 𝜎̂𝑗
2) are sampled with replacement from 

one of the tissue-type specific reference data sets (Table 1). By default, P is set to 100,000 CpG 

sites, as previous studies have suggested filtering out low-variable CpGs to offset the burden of 

multiplicity (Logue et al., 2017), however in principle, P can be set according to the user’s 

preference (e.g., P = 866,836 for EWAS conducted using the EPIC array). Thus, pwrEWAS 

allows up- or down-scaling to any number of CpGs that the investigator plans to measure and 

conducted differential methylation analyses on. This is an important feature since the EPIC array 

is the successor to the now discontinued Infinium HumanMethylation450 array, which represents 

the technology used for methylation assessment of the tissue-specific reference data sets used as 

the basis of our simulation strategy. Of the P sampled CpGs, a difference in mean DNAm (Δ𝛽) is 

imposed on K CpGs, where 𝐾 ≤ 𝑃. The number of differentially methylated CpGs, K, is selected 

by the user and ideally motivated by a pilot study, previous literature, or expert knowledge about 

the effect of the phenotype(s) or exposure(s) of interest on DNA methylation. The mean 

methylation of K CpGs is shifted in one of the comparator groups by Δ𝛽 = {Δ𝛽,1, … Δ𝛽,𝑘, … Δ𝛽,𝐾}, 

while the mean methylation in the other comparator group remains unchanged. Due to the nature 

of 𝛽-values and the parameter restrictions of the beta distribution (0 ≤ 𝜇𝑘 ≤ 1 and 0 < 𝜎𝑘
2 <

0.25), Δ𝛽,𝑘 is bounded by 
1

2
− 𝜇𝑘 ±√

1

4
− 𝜎𝑘

2, where 𝜇𝑘 and 𝜎𝑘
2 are CpG-specific means and 

variances, respectively (see Appendix II - Effect size boundary calculation for additional 
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details). Due to its boundedness, Δ𝛽,𝑘 is drawn from a truncated normal distribution 

(Δ𝛽,𝑘~𝑁𝑘(0, 𝜏
2)). The normal distribution was chosen based on observed differences in DNAm 

of differentially methylated CpGs in previously published EWAS (see Figure S2.1 in Appendix 

III - Additional figures). The standard deviation of the simulated differences 𝜏 can be provided 

by the user or be automatically be determined based on the user-specified target Δ𝛽 and the 

expected number of differentially methylated CpGs, such that Δ𝛽 matches the target maximal 

difference in mean methylation. To achieve this, an internal function simulates P Δ𝛽,𝑘’s (this 

matches the number of subsequently simulated CpGs) 100 times, while stepwise adjusting 𝜏. The 

goal is to identify a standard deviation 𝜏 for the truncated normal distribution to matches the 

targeted maximal difference in DNAm. Therefore, 𝜏 is adjusted stepwise until the 99.99th 

percentile of the absolute value of simulated Δ𝛽,𝑘’s falls within a range around the targeted 

maximal difference in DNAm. The range is equal to the detection limit (± 0.005 based on 

default detection limit: 0.01). Figure S2.2 (in Appendix III - Additional figures) shows the 

distribution of simulated Δ𝛽,𝑘’s for different effect sizes and its respective range that the 99.99th 

percentile of the simulated Δ𝛽,𝑘’s needs to fall in for 𝜏 to be accepted.  

Since Δ𝛽 is simulated from a truncated normal distribution, a certain proportion of Δ𝛽 are 

within the detection limit range around zero and thus, do not exhibit a biologically meaningful 

difference in mean methylation. To ensure that K includes the number of meaningfully 

differential methylated CpGs (truly differentially methylated CpGs), K is calculated to reflect the 

user-supplied target number of differentially methylated CpGs (𝐾 =
1

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑢𝑙𝑦 𝐷𝑀 𝐶𝑝𝐺𝑠
∗

𝑇𝑎𝑟𝑔𝑒𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑀 𝐶𝑝𝐺𝑠). This results in K CpGs with changed means (Δ𝛽,𝑘 ≠ 0) and 𝑃 −

𝐾 CpGs with unchanged means (Δ𝛽,𝑘 = 0) between the two comparator groups. Variances across 
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all P CpGs remain unchanged in both comparator groups, that is, comparator groups are assumed 

to have the same CpG-specific variances. Next, the means and variances of both comparator 

groups are used to calculate CpG-specific shape parameters for the beta-distribution: 𝑎𝑗 =

𝜇𝑗
2 (

1−𝜇𝑗

𝜎𝑗
2 −

1

𝜇𝑗
) and 𝑏𝑗 = 𝑎𝑗 (

1

𝜇𝑗
− 1) (see Appendix II - Effect size boundary calculation). The 

two comparator group specific matrices (P x 2) containing the CpG-specific shape parameters 

are then used to generate 𝑁1 and 𝑁2 beta-distributed observations for each CpG, for both 

comparator groups respectively, resulting in two matrices (P x 𝑁1 and P x 𝑁2) of 𝛽-values, 

which are subsequently used for the differential methylation analysis. 

Simulated CpGs fall into one of three categories: (1) not differentially methylated (Δ𝛽,𝑘 =

0), (2) differentially methylated with negligible difference (|Δ𝛽,𝑘| < 0.01), and (3) truly 

differentially methylated (|Δ𝛽,𝑘| ≥ 0.01). The threshold of 0.01 was chosen according to the 

detection limit of DNAm arrays (Teschendorff & Relton, 2018), but can be modified by the user. 

2.3.2 Differential Methylation Detection 

Following data generation, differential methylation analyses are carried out using one of 

several established parametric and nonparametric approaches, including: limma (Ritchie et al., 

2015), CpGassoc (Barfield, Kilaru, Smith, & Conneely, 2012), t-test, or a Wilcoxon rank-sum 

test. In the first three of the above methods, simulated 𝛽-values are first transformed to 

methylation M-values using the logit-transformation (𝑀 = log2 (
𝛽

1−𝛽
)) due to their assumption 

of normality (Du et al., 2010; Wilhelm-Benartzi et al., 2013). Each method reports CpG-specific 

p-values, which are multiplicity adjusted using the Benjamini and Hochberg method (Benjamini 

& Hochberg, 1995) to control the False Discovery Rate (FDR). 
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2.3.3 Power Assessment 

Tested CpGs fall into one of six categories: (1) TP (True Positive): detected CpGs with 

meaningful difference in mean DNAm, (2) NP (Neutral Positive): detected CpGs with negligible 

difference in mean DNAm, (3) FP (False Positive): detected CpG with no difference in mean 

DNAm, (4) TN (True Negative): undetected CpGs with no difference in mean DNAm, (5) NN 

(Neutral Negative): undetected CpGs with negligible difference in mean DNAm, and (6) FN 

(False Negative): undetected CpGs with meaningful difference in mean DNAm (Table 2).  

 

Table 2 Differential methylation detection and terminology. 

Each CpG can fall into one of six following categories: False Positive (FP; detected CpG with no simulated 

difference in mean methylation); Neutral Positive (NP; detected CpG with negotiable simulated difference in mean 

methylation); True Positive (TP; detected CpG with meaningful simulated difference in mean methylation); True 

Negative (TN; not detected CpG with no simulated difference in mean methylation); Neutral Negative (NN; not 

detected CpG with negotiable simulated difference in mean methylation); False Negative (FN; not detected CpG 

with meaningful simulated difference in mean methylation). 

 
Differentially 

Methylated 

Truly 

Differentially 

Methylated 

Detected Not Detected 

  𝚫𝒌 = 𝟎 No No False Positive (FP) True Negative (TN) 

|𝚫𝒌| < 𝟎. 𝟎𝟏 Yes No Neutral Positive (NP) Neutral Negative (NN) 

|𝚫𝒌| ≥ 𝟎. 𝟎𝟏 Yes Yes True Positive (TP) False Negative (FN) 

 

Since it can be argued that CpGs with a negligible Δ𝛽,𝑘 are not biologically meaningful, 

we calculate the empirical marginal power, defined by Wu et al. (Wu et al., 2015) as the 

proportion of truly differentially methylated CpGs detected at the specified FDR threshold, 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Table 2). Further, even though failing to discover differentially methylated CpGs 
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represents a type II error, failing to detect CpGs with a negligible Δ𝛽,𝑘 can be disregarded (NN) 

due to their likely unimportance. Additionally, as identifying CpGs with a negligible Δ𝛽,𝑘 (NP) is 

not as crucial as identifying CpGs with a biologically meaningful Δ𝛽,𝑘 (TP), we also report the 

false discovery cost (𝐹𝐷𝐶 =
𝐹𝑃

𝑇𝑃
) (Wu et al., 2015). 

For each of the assumed sample and effect sizes we report the following metrics, 

averaged across simulations to obtain reliable estimates:  

Empirical classical power: The ratio of correctly detected CpGs and all differentially 

methylated CpGs 

𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙𝑃𝑜𝑤𝑒𝑟 =
𝑁𝑃 + 𝑇𝑃

𝑁𝑃 + 𝑁𝑁 + 𝑇𝑃 + 𝐹𝑁
 

Empirical marginal power: The ratio of correctly detected CpGs with biologically 

meaningful differences and all differentially methylated CpGs with biologically meaningful 

differences (excluding Neutral Positives and Neutral Negative with negligible differences): 

𝑚𝑎𝑟𝑃𝑜𝑤𝑒𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Empirical marginal Type I Error: The ratio of wrongly detected CpGs and all CpGs 

with no difference 

𝑚𝑎𝑟𝑇𝑦𝑝𝑒𝐼 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Empirical False Discovery Rate (FDR): The ratio of wrongly detected CpGs and all 

detected CpGs  

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑁𝑃 + 𝑇𝑃
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Empirical False Discovery cost (FDC): The ratio of wrongly detected CpGs and 

correctly detected CpGs: 

𝐹𝐷𝐶 =
𝐹𝑃

𝑇𝑃
 

2.3.4 Visualization 

The pwrEWAS package contains two functions that can be used to visualize the results 

(“pwrEWAS_powerPlot” and “pwrEWAS_deltaDensity”). “pwrEWAS_powerPlot” displays the 

estimated power as a function of sample size with error bars (2.5th and 97.5th percentile 

calculated across simulations). Power across different target Δβ′s as a function of sample size is 

differentiated by different colors (Figure 5, Box 4). “pwrEWAS_deltaDensity” illustrates the 

distribution of simulated Δβ,k′s for different target Δβ′s as density plots (Figure 5, Box 7). 

Densities for different target Δβ′s are color-coded as well and match the colors of the power 

curve (“pwrEWAS_powerPlot”). 

  



38 

 

 



39 

 

Figure 5 pwrEWAS Shiny User-Interface. 

(1) User-specific inputs; (2) Advanced input settings to optimize run time; (3) Link to vignette for detailed 

description of inputs and outputs, instructions and an example including interpretations of the example results; (4) 

Power curve as a function of sample size by effect size (Δ𝛽); (5) Estimated power average over simulation by 

sample size and effect size (Δ𝛽); (6) Probability of detection at least one true positive; (7) Distribution of simulated 

differences in DNAm (Δ𝛽) for different target Δ𝛽’s; (8) Log of input parameter and run time. 

 

2.4 Results 

Consider a hypothetical study that aims to understand the relationship between electronic 

cigarettes (e-cigarette) and DNAm derived from adult blood. The use of e-cigarettes has 

increased dramatically over the last decade, especially among young adults (H. Chen et al., 

2018). There exists a common perception in the population, including pregnant women and 

women in child-bearing age, that e-cigarettes are less harmful than smoking tobacco cigarettes 

(Nguyen et al., 2018). Although, studies have reported the presence of toxic components in e-

cigarette aerosol (H. Chen et al., 2018), there presently exists no study investigating the 

relationship between e-cigarette and DNAm derived from adult human blood. As the effect of e-

cigarette usage on DNAm is presently unknown, but is of interest in this hypothetical study, we 

will use the previously reported effects of tobacco smoke on blood-derived DNAm as an upper 

limit for the effect of e-cigarette usage on DNAm. Previous studies analyzing the effect of 

smoking tobacco cigarettes on blood-derived patterns of DNA methylation have reported CpG-

specific differences up to 24% between smokers and non-smokers, with a wide range of CpGs 

(724 - 18,760) declared as significantly differentially methylated (FDR ≤ 0.05) (Ambatipudi et 

al., 2016; Joehanes et al., 2016; Zeilinger et al., 2013). Hence, we want to investigate the number 

of subjects required to detect DNAm differences in 2,500 CpGs (selected to be within the range 
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of the number of significantly differently methylated CpGs reported between smokers and non-

smokers in previous reports) with 80% power for three reasonable effect sizes (Δ𝛽 =

{0.10, 0.15, 0.20} and one deliberately small effect size Δ𝛽 = 0.02, representing differences in 

DNAm up to ~2%,~10%,~15% and ~20%). To cover a wide range of total sample sizes, we 

analyzed total sample sizes ranging from 20 to 260 individuals with increments of 40 and equal 

allocation between e-cigarette users and non-users, while keeping the remaining default 

parameters of pwrEWAS intact: 

• Tissue type: Blood adult 

• Minimum total sample size: 20 

• Minimum total sample size: 260 

• Sample size increments: 40 

• Samples rate for group 1: 0.50 

• Number of CpGs tested: 100000 

• Target number of DM CpGs: 2500 

• Select ‘Target max Δ’ 

• Target maximal difference in DNAm: 0.02, 0.10, 0.15, 0.20 

• Target FDR: 0.05 

• Detection Limit: 0.01 

• Method for DM analysis: limma 

• Number of simulated data sets: 50 

• Threads: 4 

The results of this power analysis can be found in Figure 5. To detect differences up to 

10%, 15% and 20% in CpG-specific methylation across 2,500 CpGs between e-cigarette users 
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and non-users with at least 80% power, we would need about 220, 180 and 140 total subjects, 

respectively. As expected, 80% power was not achieved for a difference in DNAm ≤ 2% for the 

selected total sample size range. However, it can be observed for this target differences of 2% 

that the probability of detecting at least one CpG out of the 2,500 differentially methylated CpGs 

is about 36% for 20 total patients and virtually 100% for 60 and more total patients. Because 

there exists no literature on the magnitude of expected differences in DNAm, a pilot study would 

be helpful in this hypothetical situation to narrow the range of expected differences to more 

precisely identify the required sample size to achieve 80% power. 

To evaluate this broad range of sample and effect sizes of this theoretical experiment, 

pwrEWAS required ~49min in total. In general, the computational complexity of pwrEWAS 

depends on four major components: (1) assumed number and magnitude of sample size(s), (2) 

number of target Δ𝛽’s (effect sizes), (3) number of CpGs tested, and (4) number of simulated 

data sets. To enhance the computational efficiency, pwrEWAS allows users to process 

simulations in parallel. While (1) and (2) are usually dictated by the study to be conducted, (3) 

and (4) can be modified to either increase the precision of power estimates (increased run time) 

or reduce the computational burden (decreased precision of estimates). The run time of 

pwrEWAS for different combinations of sample sizes and effect sizes are provided in Table 3. 
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Table 3 Run time of pwrEWAS. 

Run time of pwrEWAS for different combinations of sample sizes and effect sizes. In all scenarios presented the 

number of tested CpGs was assumed to be 100,000, number of simulated data sets was 50, and the method to 

perform the differential methylation analysis as limma. A total of 6 clusters/threads were used. 

Total sample sizes 
Effect sizes (𝚫𝜷) 

0.1 0.1, 0.2 0.1, 0.3, 0.5 

10 2min 21sec 3min 11sec 3min 50sec 

100 6min 22sec 7min 39sec 8min 33sec 

500 24min 43sec 27min 36sec 29min 22sec 

10-100 (increments of 10) 9min 40sec 16min 34sec 23min 44sec 

300-500 (increments of 100) 27min 58sec 30min 01sec 52min 00sec 

 

As the number of simulated data sets is one of the major components (e.g., item (4), 

above) affecting the run time of pwrEWAS, it is important to identify a default value that offers a 

reasonable tradeoff between run time and precision of power estimates. To this end, the variance 

of power estimates was assessed for a range of simulated data sets (5-100), each repeated 100 

times, while keeping the remaining parameters unchanged (Figure 6A). We ultimately 

determined the default value for the number of simulated data sets to be 50, as it appears that 

simulating additional data sets reduces the variance of power estimates only marginally (Figure 

6B). 

  



43 

 

 

Figure 6 Empirical assessment of the number of simulations. 

To assess the number of simulated data sets (number of simulations) required to obtain consistent results for power, 

pwrEWAS was run for a variety of number of simulations (5-100 simulations), each 100 times and each with the 

same remaining input parameters. (A) shows the distribution of power estimates for 100 runs within each of the 

assumed number of simulations. (B) visualizes the variance of power estimates for each of the assumed number of 

simulations. Given the relative stability of variance estimates beyond 50 simulations, 50 was selected as the default 

value for the number of simulations in pwrEWAS. 

 

The pwrEWAS package is accompanied by a vignette (Appendix IV - Vignette), which 

provides a more detailed description of input and output, instructions for the usage, an example, 

and interpretations of the example results. In addition, a user-friendly R-Shiny point-and-click 

interface has been developed (Figure 5) for researchers that are unfamiliar or less comfortable 

with the R environment.  
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2.5 Discussion 

In our hypothetical study on the effect of e-cigarette usage on patterns of blood-derived 

DNAm, we found that 140-220 total subjects would be needed, depending on the expected effect 

size. However, these results should be treated with a certain level of caution and considered to be 

more of a guideline than an exact prescription. Due to computational, memory and storage 

burden, and simplicity considerations, pwrEWAS involves the random generation methylation 

𝛽-values independently across CpGs, which might not hold in real data given previous reports of 

local correlation in DNAm of nearby CpG sites (W. W. Zhang, Spector, Deloukas, Bell, & 

Engelhardt, 2015). Additionally, pwrEWAS assumes CpG-specific homoscedasticity between 

both comparator groups, that is CpG-specific variances are assumed to be identical between both 

groups. However, CpG-specific variances have been reported to change depending on 

exposure(s) and phenotype(s) (Hansen et al., 2011; Teschendorff et al., 2012). Violations of 

CpG-specific homoscedasticity can result in inflated estimates of statistical power and produce 

overly optimistic sample sizes, however identifying the magnitude of changes in variances 

depending on exposure(s) and phenotype(s) in advance of the study can be very challenging. 

Further, the expected difference in DNAm between both groups (Δ𝛽) is assumed to come from a 

truncated normal. This assumption seems to hold, at least approximately, based on observed 

distributions of differences in DNAm across a variety of studies. Additional limitations of 

pwrEWAS include: two group comparison, selection of methods for differential methylation 

analysis, and selection of tissue types specific reference data.  

Despite the above limitations, pwrEWAS is to our knowledge the first publicly available 

tool to formally address the issue of power evaluation in the context of EWAS. Further 

opportunities for the extension of pwrEWAS include the implementation of additional methods 
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for differential methylation analysis (e.g., linear regression for continuous 

phenotype(s)/exposure(s), Cox-proportional hazards models or relevant models for handling 

time-to-event outcomes, etc.), allowing multiple group comparisons, providing the opportunity 

for researcher to upload different reference data (tissue type(s) specific to their study), and 

addressing the potential change of CpG dispersion due to phenotype(s) and/or exposure(s). 

2.6 Conclusion 

When designing an EWAS, consideration of statistical power should play a central role in 

selecting the appropriate sample size to address the question(s) of interest. Under- and 

overpowered studies waste resources and even risk failure of the study. With pwrEWAS we 

present a user-friendly power evaluation tool with the goal of helping researchers in the design 

and planning of their EWAS. 

2.7 Contribution 

In this project I conceived the idea and framework of pwrEWAS, implemented 

pwrEWAS (including its visualizations and shiny user-interface), created the R package 

“pwrEWAS”, demonstrated pwrEWAS’s application in a hypothetical study, assisted in the 

process of creating reference data sets and wrote the manuscript and vignette.  

 

  



46 

 

3 Chapter 3: Selection probability optimization for feature selection 

(SPOFS): A feature selection strategy for biomarker identification 

3.1 Abstract 

Biomarkers offer great promise in improving disease diagnosis, prognosis, and the choice 

of treatment. In identifying useful biomarkers among a set of many candidate biomarkers, feature 

selection techniques have proven to be effective methods, especially in high-dimensional omic 

data sets. However, the high dimensionality of DNA methylation array data along with its unique 

characteristics render the identification of useful biomarkers in such studies challenging.  

Motivated by the goal of identifying blood-based DNA methylation biomarkers in a 

nested case-control study of lung cancer risk and the subsequent development of a prediction 

model based on such biomarkers, we present a heuristic feature selection approach called 

Selection Probability Optimization for Feature Selection (SPOFS). SPOFS is designed to identify 

optimal subset(s) of epigenetic features from among a vast pool of such features, such that the 

resultant subset(s) optimize the ability to predict some outcome or response. As an initial step, 

SPOFS involves filtering the data to a manageable number of features. Next, sets of features are 

iteratively selected and the contribution of each selected feature to the prediction performance is 

assessed. The selection probability of each evaluated feature is then modified based on its 

individual performance, in which the selection probabilities are increased for highly predictive 

features and reduced for less predictive features. The final selected model consists of K 

epigenetic features with the highest selection probabilities or the model that achieved the 

maximum prediction performance during the course of the previously described iterative 

procedure.  
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We evaluated SPOFS using both data from a nested-case control (NCC) study of lung 

cancer risk and in simulated data and benchmarked its performance against Lasso (Least 

Absolute Shrinkage and Selection Operator). The objective of the lung cancer risk NCC study 

was to build prediction model(s) for predicting lung cancer risk using pre-diagnostic blood-

derived DNA methylation biomarkers. In simulated data, we demonstrate that SPOFS 

outperforms Lasso in scenarios involving strong correlation between risk biomarkers, and when 

those biomarkers are associated with small effects relative to the outcome. Comparable 

performance was observed between SPOFS and Lasso in scenarios of weak to moderate 

correlation between biomarkers and when the effect of biomarkers was moderate to large. In the 

analysis of the lung cancer risk NCC study, we establish that neither SPOFS nor Lasso was able 

to identify a set of biomarkers that resulted in satisfying prediction accuracy. While these results 

may suggest that blood-derived DNA methylation has limited signal for predicting lung cancer 

risk, the applicability of SPOFS to real data sets remains an outstanding need. While this work 

provides initial support for SPOFS as a competitive feature selection method, there remain 

numerous opportunities for future development, enhancement, and evaluation of this approach. 

3.2 Background 

Biological markers or biomarkers were first defined in 1998 by the National Institutes of 

Health Biomarkers Definitions Working Group as “a characteristic that is objectively measured 

and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (Biomarkers Definitions Working 

Group, 2001), and represent powerful tools for decision-making processes in disease monitoring 

and treatment selection. For any newly proposed biomarker, it is critical to evaluate its accuracy 

for predicting future events (e.g. patient survival, disease onset, or recurrence) in prospective 
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studies. Many well-known studies, including the Carotene and Retinol Efficacy Trial (CARET) 

(Goodman et al., 2004), recognized this need and proactively stored biospecimens collected from 

study participants during their enrollment in the trial. However, the assessment of biomarkers 

can be expensive and time-consuming to collect, rendering their assessment in the full cohort 

impractical and infeasible. To circumvent these limitations, nested case-control (NCC) study 

designs involve the assessment of the biomarker(s) of interest in cases and a subset of controls, 

matched to individual cases based on their clinical characteristics, rather than assessing the 

biomarker across the entire cohort. While the NCC design is particularly advantageous when the 

prevalence of a disease is rare, biomarker assessment is costly to perform, or if the test is 

invasive (Biesheuvel et al., 2008), the sampling strategy of NCC designs can introduce 

methodological challenges in the statistical analysis and complicate the identification of useful 

biomarkers in high-dimensional settings.  

One of the foremost analytical challenges associated with NCC studies is the 

incorporation of case-control matching in the statistical analysis. Conditional logistic regression 

is an extension of the logistic regression, where matching is accounted for by introducing a 

stratification term unique to each matched case-control group (Liddell, Mcdonald, & Thomas, 

1977). While conditional logistic regression is the most flexible and general procedure for 

matched data, this approach does not explicitly facilitate the incorporation of time-to-event 

information. Information on the length of time between biospecimen collection (e.g. time-point 

at which the biomarker was assessed) and diagnosis is key criteria used in defining the risk set 

for each case, and thus matching. This time difference is not explicitly modeled in the 

conditional logistic regression model. Inverse Probability Weighting (IPW) in the context of Cox 

proportional-hazards models is an alternative approach, where individuals are assigned weights 
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inversely proportional to their inclusion probabilities of being sampled in the NCC study 

(Samuelsen, 1997). Even though Samuelsen’s IPW approach has been shown to be more 

efficient than conditional logistic regression (Kim, 2013), conditional logistic regression remains 

as the most commonly used methodology to analyze data from a NCC study. For complex data, 

the statistical method of feature selection is important in the process of extracting knowledge and 

part of ongoing research (Lee & Krischer, 2017).  

Many feature selection approaches have been proposed in the context of conditional 

logistic regression and have been categorized into three groups: (1) relevant features based on 

test statistics of original and modified pair t-tests, often followed by a classification approach, (2) 

feature selection algorithms within the conditional logistic regression framework, and (3) 

boosting strategies that address classification problems with matched case-control responses 

(Liang, Ma, Yang, Wang, & Ma, 2018). The best performance and accuracy was achieved by 

boosting strategies, while t-test methods performed poorest. However, the computational burden 

and run time of the boosting strategies pose a challenge as the number of features increases. 

While several approaches have been proposed in the context of Cox proportional-hazards models 

to address the issue of feature selection, only a handful of them are able to manage high-

dimensional data, where the number of covariates (𝑃) is greater than the sample size (𝑁). Grace 

and Li provide a selective review of feature selection methods for high-dimensional data, and 

underline the importance of their continuous development (Grace & Li, 2017). 

With growing high-dimensional data sets, the number of possible feature combinations 

increases rapidly. As a result, computationally efficient strategies for identifying optimal 

combinations of features is crucial. Inspired by IDOL (Koestler et al., 2016), a dynamic 

algorithm for Identifying Optimal Libraries in the context of cell mixture deconvolution using 
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DNA methylation (DNAm) data, we present Selection Probability Optimization for Feature 

Selection (SPOFS) for identifying predictive features in the context of inverse probability 

weighted Cox regression models. SPOFS is a heuristic algorithm where features are iteratively 

selected randomly, each feature’s importance is evaluated within the sampled subset of features, 

and their selection probability for subsequent iterations is modified proportional to contribution 

to prediction performance. Adapting this method from IDOL was motivated by a NCC study 

from the Carotene and Retinol Efficacy Trial (CARET) whose goal involved the identification of 

a set of blood-derived DNAm biomarkers that collectively predict lung cancer risk. To 

benchmark our proposed method, we compared its performance to Lasso (Tibshirani, 1996) 

across different simulation scenarios and in the lung cancer NCC study.  

In the following sections, we first orient the reader by providing general notation 

involving time-to-event analysis with the Cox proportional-hazards model and introduce the 

concept of IPW for NCC studies. Next, we provide a comprehensive description of SPOFS, 

followed by a high-level explanation of Lasso. We then describe the details of our simulation 

study to assess the performance of SPOFS. Finally, we report the results obtained from SPOFS 

and Lasso, applied to the lung cancer NCC study, as well as to simulated data across different 

scenarios. We conclude by discussing our findings and describe future directions for this work. 

3.3 Materials and Methods 

3.3.1 General notation and IPW Cox regression modeling 

Suppose we have a cohort of 𝑁 patients with 𝑃 covariates, where 𝑃 > 𝑁. Let 𝑡𝑖 and 𝑐𝑖 

denote the event and censoring time, respectively, for patient 𝑖 (e.g. time from blood-draw to 

diagnosis or censoring), where 𝑖 = {1,… ,𝑁}. Let 𝑌𝑖 = min (𝑡𝑖, 𝑐𝑖) and event indicator 𝛿𝑖 =

𝐼(𝑡𝑖 ≤ 𝑐𝑖), where 𝐼(⋅) represents an indicator function. In general, we assume that 𝑡𝑖 and 𝑐𝑖 are 
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independent. Further, let 𝑿𝒊 = (𝑋𝑖1, … , 𝑋𝑖𝑃)
𝑇 denote a vector with 𝑃 biomarkers of interest and 

an additional vector 𝒁𝒊 = (𝑍𝑖1, … , 𝑍𝑖𝑉)
𝑇with 𝑉 matching variables for the 𝑖𝑡ℎ patient.  

In the NCC design setting, at some time point 𝑡𝑐, there exist 𝑛 individuals who have 

experienced the event at time 𝑡𝑖, such that 𝑡𝑖 < 𝑡𝑐. These individuals are selected as “cases”. In 

addition, for each case 𝑖 a random sample of potential controls is selected from the case specific 

risk set, such that 𝑅(𝑡𝑖) = {𝑙: 𝑌𝑙 ≥ 𝑡𝑖} and 𝑙 = {1,… , 𝑛𝑙}. Without loss of generality, we assume 

that the number of matched controls for each case is equal to one (e.g., 1:1 matching). It is 

important to note that case 𝐴 can operate as a potential control for another case 𝐵, provided that 

the time at risk for case 𝐴 is greater than the time at risk of case 𝐵 (𝑡𝐴 ≥ 𝑡𝐵 ). Here, we utilize 

the Cox proportional hazard model defined as: 

ℎ𝑖(𝑡|𝑋𝑖, 𝑍𝑖) = ℎ0(𝑡)exp (𝜷
𝑇𝑿𝒊 + 𝜸

𝑇𝒁𝒊) 

where ℎ0(𝑡) represents the baseline hazard and 𝜷 and 𝜸 are the log-hazard ratios for 𝑿𝒊 and 𝒁𝒊, 

respectively. As the method of inverse probability weighting (IPW) allows for breaking the 

matching in NCC studies, it is important to adjust for matching variables (𝒁𝒊) (Stoer & 

Samuelsen, 2013). However, the estimation of parameters is not trivial due to the matching, and 

cases and controls are only used at the event time of a particular case (Stoer & Samuelsen, 2013). 

An estimation procedure based on the following weighted partial likelihood was proposed by 

Samuelsen (Samuelsen, 1997): 

 
𝐿(𝛽, 𝛾) =∏

exp (𝜷𝑻𝑿𝒊 + 𝜸
𝑻𝒁𝒊)

∑ exp(𝜷𝑻𝑿𝒍 + 𝜸𝑻𝒁𝒍)𝑤𝑙𝑙∈𝑅(𝑡𝑖)𝑖

 
 

(3.3.1.1) 

The partial likelihood is a product over all 𝑖 cases, divided by the sum of the risk set 𝑅 at 

time 𝑡𝑖, defined as all matching individuals at risk for that case. The weight 𝑤𝑙 represents the 

inverse probability of an individual 𝑙 having been sampled and is equal to 1 for all cases. For 
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simplicity, it is assumed here that all covariates are time invariant, although time-varying 

covariates are possible (Stoer & Samuelsen, 2013). 

IPW aims to adjust for bias in sampling from the full cohort, specifically the sampling 

bias with respect to the proportions of cases and controls, but also sampling bias with respect to 

matching variables introduced by additional matching. The idea is to let each control represent 

the complete risk set 𝑅(𝑡𝑖) by assigning them a weight greater than 1. As the risk set size 

increases, the probability of an individual to be selected as a control from this risk set decreases, 

and hence its weight increases. Assuming the selected controls are representative of the 

respective risk set, analyses and inferences can be conducted “as if the data was from a cohort 

study”, by introducing the inverse probability weights and utilizing a weighted Cox-regression 

model (Stoer & Samuelsen, 2013, p. 6).  

3.3.2 Weight estimation 

The weights 𝑤𝑙 for each selected control l in equation (3.3.1.1) must be estimated from 

the full cohort using the matching variables considered in the NCC study. Different types of 

estimators have been proposed including: Kaplan-Meier type of weights (Cai & Zheng, 2012; 

Salim, Hultman, Sparen, & Reilly, 2009; Samuelsen, 1997), model-based, logistic regression 

type weights (Mark & Katki, 2006; Saarela, Kulathinal, Arjas, & Laara, 2008; Samuelsen, 

Aring;nestad, & Skrondal, 2007; Stoer & Samuelsen, 2013), and local averaging weights (K. N. 

Chen, 2001). Here, we used the function “KMprob” in the R package multipleNCC (Stoer & 

Samuelsen, 2016) to estimate weights of Kaplan-Meier type, defined as follows: 

1

𝑤𝑙
= 1 −∏ {1 −

1

𝑛𝑖(𝑡𝑖) − 1
𝐼(Control 𝑙 meets matching criteria for case 𝑖)}

𝑡𝑖<𝑡𝑙
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Here 𝑛𝑖(𝑡𝑖) is the number of individuals at risk at time 𝑡𝑖 that meet the matching criteria 

of case 𝑖 and 𝐼(⋅) is an indicator function restricting the product to only include individuals that 

meet the matching criteria.  

3.3.3 Selection probability estimation for feature selection (SPOFS) 

Our goal involves the identification of an optimal subset of epigenetic features from 

among a vast pool of such features, such that the resultant subset(s) optimizes the ability to 

predict lung cancer risk beyond the prediction accuracy achieved by models based on clinical 

features only. In what follows, we provide a detailed description of each step of the SPOFS 

algorithm. 

Initial filtering step: Epigenetic feature assessment and filtering 

1) For each epigenetic feature, a weighted Cox regression model including this epigenetic 

feature, as well as all matching features (clinical features), is fit to the data using 10-fold 

cross-validation (CV). That is, a model is repeatedly fit to 9/10 of the data and evaluated 

on the 10th held-back piece, until each of the 10 pieces was held back once. The results of 

each fold are then averaged. Here, each epigenetic feature’s importance is evaluated 

based on its concordance index (c-index). The c-index is a popular metric to evaluate 

prediction performance in time-to-event analyses. It is defined as the probability that for a 

pair of randomly chosen individuals, the individual with the higher risk prediction 

experiences the event first (see 3.3.4 Concordance Index). 

2) Epigenetic features are then rank-ordered based on their average c-index and filtered such 

that a set 𝒬 of best performing epigenetic features remains. Here 𝒬 is defined as the P 

epigenetic features with the largest average c-index. 
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SPOFS: Scanning for optimal set of epigenetic features by updating their selection 

probability based on performance 

1) At each iteration m, K epigenetic features are randomly selected from 𝒬 with probability 

𝜋𝑝
(𝑚)

, where 𝑝 = {1,2, … , 𝑃}. At iteration 𝑚 = 0, the selection probability for each 

epigenetic feature contained in 𝒬 is specified to be equal, that is, 𝜋𝑝
(0)
=

1

𝑃
. 

2) Let the subset of sampled epigenetic features be defined as 𝒬 (𝑚) ⊂ 𝒬 at iteration m. 

The following steps are performed using 10-fold CV. 

3) Fit a full model (including all K sampled epigenetic features) by applying the 2-step 

modeling procedure proposed by Thompson et al. (Thompson, Christensen, & Marsit, 

2018), where an initial model is built using only the epigenetic features, in order to 

generate an epigenetic risk score. These epigenetic risk scores are then used to build a 

final model in conjunction with clinical features.  

a) An individual specific epigenetic risk score 𝜈𝑖
(𝑚)

 is calculated by fitting a 

weighted Cox regression model using only the epigenetic features contained in 

𝒬 (𝑚). 

b) A subsequent weighted Cox regression model is then trained using the epigenetic 

risk scores 𝜈(𝑚) = {𝜈1
(𝑚), … , 𝜈𝑁

(𝑚)} and matching features (clinical features) as 

terms in the model. 

c) The performance of the 2-step full model is assessed at iteration m by calculating 

its c-index 𝑐𝐹
(𝑚)

, where F refers to the full model. 
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4) Fit K reduced models to a reduced set of epigenetic features 𝒬 −𝑘
(𝑚)

, where the kth 

epigenetic feature is omitted from 𝒬 (𝑚) and 𝑘 = {1,… , 𝐾}, by applying the same 2-step 

modeling procedure described above:  

a) Individual specific epigenetic risk scores 𝜈𝑖,−𝑘
(𝑚)

 are calculated by fitting K 

weighted Cox regression model to the reduced set of epigenetic features 𝒬 −𝑘
(𝑚)

. 

b) Subsequent weighted Cox regression models are then trained using the epigenetic 

risk scores 𝜈−𝑘
(𝑚) = {𝜈1,−𝑘

(𝑚) , … , 𝜈𝑁,−𝑘
(𝑚) } and the matching variables as terms in the 

model. 

c) Performance of the K reduced models are assessed by calculating their c-indices 

𝑐𝑅𝑘
(𝑚)

 at iteration m. 

5) The contribution of each epigenetic feature in 𝒬 (𝑚) is assessed by calculating the 

difference between the c-indices of the full and reduced models: Δ𝑘
(𝑚) = 𝑐𝐹

(𝑚) −

𝑐𝑅𝑘
(𝑚), where Δ𝑘

(𝑚)
 can fall into one of the following three scenarios: 

a) 0 < Δ𝑘
(𝑚) ≤ 1: Removing the kth epigenetic feature leads to poorer overall 

prediction performance, and therefore the selection probability of kth epigenetic 

feature should be increased in subsequent iterations. As Δ𝑘
(𝑚)

 increases, we expect 

increasing contribution of kth epigenetic feature to overall prediction performance. 

b) Δ𝑘
(𝑚) = 0: Removing the kth epigenetic feature results in no change in 

performance, and therefore the selection probability of kth epigenetic feature 

should remain the same. 
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c) −1 ≤ Δ𝑘
(𝑚)

< 0: A model without the kth epigenetic feature performs better 

compared to a model containing it, and therefore the selection probability of kth 

epigenetic feature should be decreased in subsequent iterations. 

End of 10-fold CV. 

6) Based on the contribution to the prediction performance of each selected epigenetic 

feature, represented by Δ𝑘
(𝑚)

, its probability of being selected in subsequent iteration is 

adjusted, such that epigenetic features with greater performance contribution are more 

likely to be chosen. To achieve this, the following selection probability properties are 

defined: 

a) Every epigenetic feature p has the same initial probability of selection: 𝜋𝑝
(0)
=

1

𝑃
 

b) The probability of a specific epigenetic feature to be selected must be between 0 

and 1: 0 ≥ 𝜋𝑝
(𝑚) ≥ 1 

c) The sum over the selection probability of all epigenetic features is equal to 1: 

∑ 𝜋𝑝
(𝑚)𝑃

𝑝=1 = 1 

d) The sum over the selection probability of the K selected epigenetic features is 

identical before and after modifying their selection probability: ∑ 𝜋𝑘
(𝑚−1)𝐾

𝑘=1 =

∑ 𝜋𝑘
(𝑚)𝐾

𝑘=1  

7) The selection probability of each selected epigenetic feature k at iteration m is a function 

of its selection probability at iteration 𝑚 − 1 and a weighting function based on Δ𝑘
(𝑚)

. 

This weighted selection probability is then scaled by the sum of weighted selection 

probabilities of all selected epigenetic feature as well as the sum of their selection 

probabilities in iteration 𝑚 − 1:  
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𝜋𝑘
(𝑚) =

𝜋𝑘
(𝑚−1)

⋅ 𝑓(Δ𝑘
(𝑚)
)

∑ 𝜋
𝑘′
(𝑚−1) ⋅ 𝑓(Δ

𝑘′
(𝑚))𝐾

𝑘′=1

∗ ∑ 𝜋
𝑘′
(𝑚−1)

𝐾

𝑘′=1

 

Note: The weighting function 𝑓(⋅) can be any non-decreasing function, supporting values 

between -1 and 1. The choice of function is driven by the distribution of Δ𝑘
(𝑚)

 and dictates 

the degree to which the selection probabilities are modified. Possible functions that were 

considered are listed in Appendix V - List of potential weighting functions. 

8) Repeat main steps 1-7, while recording: full model at iteration m, the set of selected 

epigenetic features 𝒬 (𝑚) and prediction performance (10-fold cross-validated 𝑐𝐹
(𝑚)

). 

 

3.3.4 Concordance Index 

The concordance index (c-index) is a frequently used metric to evaluate the prediction 

performance of models for time-to-event outcomes. It was first proposed by Mann & Whitney in 

1947 as a test of whether one of two random variables is stochastically larger than the other 

(Mann & Whitney, 1947). More formally, let 𝑆1 and 𝑆2 be continuous independent random 

variables (e.g., linear predictors). The c-index is defined as: 

𝑐 = 𝑃(𝑆1 > 𝑆2) 

In the context of a time-to-event analysis, the c-index is defined as the probability that for 

a pair of randomly chosen individuals, the individual with the higher risk prediction (e.g., larger 

value of the linear predictor) experiences the event first. A c-index > 0.50 indicates a good 

prediction performance of a model, while a c-index of 0.50 implies that a model has no 

predictive ability. The c-index was calculated using the function “concordance.index” contained 

in the R package survcomp, which calculates the c-index by evaluating the risk scores of pairs of 
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randomly chosen samples (Haibe-Kains, Desmedt, Sotiriou, & Bontempi, 2008; Schroder, 

Culhane, Quackenbush, & Haibe-Kains, 2011).  

3.3.5 Lasso 

Lasso (Least Absolute Shrinkage and Selection Operator) is a frequently used dimension 

reduction method that performs regularization and feature selection (Tibshirani, 1996). Lasso 

penalizes coefficients of the regression feature, such that coefficients of certain features are 

shrunk to zero, while coefficients of other features remain non-zero and are considered as 

selected features.  

argmin
𝛽∈ℝ𝑝

||𝑦 − 𝛽𝑋||2
2 ⏟        

Loss

+ 𝜆 ||𝛽||1⏟  
Penalty

 

The cross-validated Lasso feature selection and model fitting algorithm was performed 

by the function ”cv.glmnet” implemented in the R packages “glmnet” (Friedman, Hastie, & 

Tibshirani, 2010), which is a k-fold CV extension of the Lasso function “glmnet”. The following 

parameter settings were specified: family = "cox", fold = “10” (10-fold CV) and weights equal to 

the calculated IPW weights. The tuning parameter “lambda” was chosen to match the desired 

number of features as closely as possible. Therefore, lambda was chosen such that the absolute 

difference between the target number of features K and the number of non-zero features 

(“nzero”) is minimal. 

3.3.6 Study population 

Subjects in the lung cancer NCC study were participants of the Beta-Carotene and 

Retinol Efficacy Trial (CARET) (Sakoda et al., 2012). CARET was a randomized, double-blind, 

placebo-controlled trial that assessed cancer prevention efficacy and safety of beta-carotene and 

retinyl palmitate in a high-risk for lung cancer population (Goodman et al., 2004; Omenn, 1997; 

Omenn et al., 1996). This high-risk population of 18,314 participants is comprised of 7,965 men 
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and 6,289 women with a heavy smoking history (≥ 20 cigarette pack-years at the time of 

enrollment), and 4,060 men with extensive occupational asbestos exposure. Whole blood and 

other specimens were collected from participants at or shortly after enrollment into the trial. In 

the lung cancer NCC, 316 cases and 316 matched controls were selected. Controls were chosen 

to match cases in a 1:1 ratio based on age at blood draw (±4 years), race, sex, exposure type 

(heavy smoker or asbestos exposure), smoking status at blood draw, and enrollment year (±2). 

3.3.7 Methylation array, quality control, preprocessing, and normalization of methylation 

data 

Whole blood DNA methylation (DNAm) was assessed by the Illumina 

HumanMethylation850 BeadArray platform at the University of Southern California 

Epigenomics Core Facility, following standardized protocols described by the manufacturer 

(Illumina, Inc). For a single DNAm site or cytosine-phosphate-guanine (CpG), DNAm is 

quantified via the β-value, 𝛽 =
𝑀

𝑀+𝑈
, where M and U are the methylated and unmethylated signal 

intensities, respectively. The signal intensities M and U are typically assumed to be gamma-

distributed random variables with equal scale parameter (Saadati & Benner, 2014) and it can be 

shown that their ratio (𝛽 =
𝑀

𝑀+𝑈
) follows a beta-distribution (see Appendix VI - Ratio of 

gamma distributed signals follows beta distribution). The β-value indicates the methylation 

extent for a specific CpG and ranges from 0 to 1. Under ideal conditions, a β-value of zero 

signifies that all alleles in all cells of a sample were unmethylated at that CpG site, while a β-

value of one indicates methylation throughout all alleles in all cells at that CpG site (Du et al., 

2010). 

For the obtained DNAm data, quality control, preprocessing, and normalization was 

carried out using Bioconductor packages minfi and wateRmelon (Aryee et al., 2014; Pidsley et 
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al., 2013). A combination of Noob+𝛽-mixture quantile (BMIQ) was used to perform the within-

array normalization, as it has been shown to improve signal sensitivity and outperform other 

approaches (J. Liu & Siegmund, 2016). In a first step, background fluorescence and dye biases 

were corrected within an array using minfi’s function “preprocessNoob” (Aryee et al., 2014). 

Next, poor quality samples and probes were excluded. Probes with a median detection p-value >

0.05 and samples with more than 20% of probes that had detection p-values > 1𝑥10−5 or 

irregularities in their distribution of control probes were removed (Wilhelm-Benartzi et al., 

2013). Following probe and sample quality control, “BMIQ” function in Bioconductor package 

wateRmelon was implemented to adjust beta-values of type II probes to match the statistical 

distribution characteristic of type I probes (Teschendorff et al., 2013). BMIQ fits a three-class 𝛽-

mixture model (unmethylated, hemimethylated, methylated) for each sample on type I and II 

probes separately, such that each probe is assigned to the class with the highest posterior 

predictive probability. Each class of type II probe 𝛽-values is then normalized to match classes 

of type II probe. Finally, associations of principal component analysis (PCA) and technical 

aspects of the array (e.g. batch-effect) were examined, and it was concluded that no further 

corrections were required (Grieshober et al., 2018). 

3.3.8 Simulation study 

To demonstrate the applicability of SPOFS in a controlled setting and to benchmark it 

against Lasso, we considered a series of simulation studies. In our simulation studies, we aimed 

to mimic the lung cancer NCC study in that we retained its clinical features (matching features) 

and time-to-event or time-of-censoring information but simulated epigenetic data under different 

scenarios with varying correlation, effect size and dimensionality. The epigenetic data of the 

lung cancer NCC study is DNAm, consisting of individual- and CpG-specific 𝛽-values. As prior 



61 

 

research has demonstrated that neighboring CpG can exhibit a strong correlation (W. W. Zhang 

et al., 2015), we desired to generate epigenetic data that exhibits correlation. For the purpose of 

simplicity, epigenetic data were simulated by drawing observations from a multivariate normal 

(MVN) distribution. The R packages MASS provides the function “mvrnorm” that allows to 

generate correlated observations by providing a mean vector 𝝁 = {𝜇1, 𝜇2, … } and a covariance 

matrix 𝚺. While the mean vector 𝝁𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 for controls is defined as a vector of 0’s, the vector of 

means for cases is defined as a vector of 0’s where a defined number of CpGs have a non-zero 

mean of Δ. The covariance matrix 𝚺 for both, cases and controls, is here defined to have 

variances in the diagonal, covariances with correlation 𝜌 between CpGs that have non-zero 

means in the cases, and zeros otherwise: 

𝐷 = 𝑀𝑉𝑁(𝝁, 𝚺) 

𝝁𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 = {0,0,0,0,0,0… } 

𝝁𝑐𝑎𝑠𝑒𝑠 = {0, Δ, 0, Δ, 0,0… } 

𝚺 =

[
 
 
 
 
 
 
𝜎1
2 0 0 0 0  

0 𝜎2
2 0 𝜌𝜎2𝜎4 0  

0 0 𝜎3
2 0 0 …

0 𝜌𝜎4𝜎2 0 𝜎4
2 0  

0 0 0 0 𝜎5
2  

  …   ⋱]
 
 
 
 
 
 

 

𝜎2~𝑈𝑛𝑖𝑓(0,10) 

While reusing clinical data from the NCC in CARET, epigenetic data sets were created 

for different combinations of the number of simulated CpGs, number of CpGs with non-zero 

means for cases, magnitude of non-zero means Δ, and correlation 𝜌 summarized in the following 

scenarios: 
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Table 4 Summary describing parameter setting for simulation scenarios assessing the influence of correlation. 

Parameter \ 

Scenario 

Number of 

simulated CpGs 

(P) 

Number of CpGs with 

non-zero means for 

cases 

Magnitude of 

non-zero means 

(Δ) 

Correlation 

(𝜌) 

Scenario 1 1000 5 0.3 0.9 

Scenario 2 1000 5 0.3 0.8 

Scenario 3 1000 5 0.3 0.7 

Scenario 4 1000 5 0.3 0.6 

Scenario 5 1000 5 0.3 0.5 

Scenario 6 1000 5 0.3 0 

 

Table 5 Summary describing parameter setting for simulation scenarios assessing the influence of magnitude of 

introduce differences. 

Parameter \ 

Scenario 

Number of 

simulated CpGs 

(P) 

Number of CpGs with 

non-zero means for 

cases 

Magnitude of non-

zero means (Δ) 

Correlation 

(𝜌) 

Scenario 1 1000 5 0.3 0.9 

Scenario 7 1000 5 0.5 0.9 

Scenario 8 1000 5 0.7 0.9 

 

Table 6 Summary describing parameter setting for simulation scenarios assessing the influence of the number of 

CpGs simulated with non-zero means for cases. 

Parameter \ 

Scenario 

Number of 

simulated CpGs 

(P) 

Number of CpGs with 

non-zero means for 

cases 

Magnitude of non-

zero means (Δ) 

Correlation 

(𝜌) 

Scenario 1 1000 5 0.3 0.9 

Scenario 9 50 5 0.3 0.9 

Scenario 10 10000 5 0.3 0.9 
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3.4 Results  

With the goal in mind of being able to validate results, we divided data from the lung 

cancer NCC study and each simulated data set into two parts. Specifically, 75% of the data were 

designated for model building and performance assessment (training-and-validation set), while 

25% of the data were held back (testing set) to evaluate final models. However, results can be 

influenced by the way the data were split, especially within the context of a time-to-event 

analysis. To compensate for any potential effects resulting from splitting the data, all results are 

generated by performing a random split into training-and-validation set and testing set for 

different seed settings. As data of such high dimensionality is susceptible to model over-fitting, 

models within each training-and-validation set were fit by performing 10-fold cross-validation 

(10-fold CV) to reduce potential over-fitting effects and to generate models that are 

generalizable.  

3.4.1 NCC study in CARET 

With the objective of identifying a set of CpGs that collectively predict lung cancer in the 

high-risk population comprising the lung cancer NCC study, we applied both methods (SPOFS 

and Lasso) to training-and-validation sets and evaluated model performance of each best model 

in the testing set. Models including 5, 15, and 30 epigenetic features (CpGs) were developed for 

ten different seeds (seed = {1,2, … ,10}) to attenuate the potential effects of splitting data sets 

into training-and-validation and testing sets. 
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The initial step of SPOFS was performed to rank-order > 850,000 CpGs on the basis of 

their c-index. For the purpose of reducing dimensionality, the 1,000 CpGs with the highest c-

indices were retained and considered for subsequent steps. Based on intermediate results of a 

variety of different weighting functions (see Appendix V - List of potential weighting 

functions) used in step 7) of SPOFS, we decided to apply a sigmoid function for calculating 

weights used for optimizing selection 

probabilities, defined as: 

 

 

 

𝑓(Δ𝑘
(𝑚)) =

1

1 + exp (−5Δ𝑘
(𝑚))

 

 

 

 

For the purpose of comparison, the 10-fold cross-validated Lasso function “cv.glmnet” 

was executed with default settings and the penalty coefficient lambda was chosen such that the 

absolute difference between non-zero coefficients and the user-defined number of features (5, 15, 

30 CpGs) was minimized. The results of both methods, SPOFS and Lasso, are provided in Figure 

8A-C. In addition, results were also obtained by choosing the penalty coefficient lambda as 

“lambda.min”, where Lasso’s mean cross-validated error is minimized, and the number of non-

zero feature is automatically chosen (Figure 8D). 

Figure 7 Weighting function defined as Sigmoid 

function. 
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Figure 8 Prediction performance of SPOFS and Lasso in lung cancer NCC study. 

Subfigure A-C illustrate the prediction performance of models including 5, 15 and 30 CpGs, respectively, that were 

identified by SPOFS and Lasso. Subfigure D demonstrates the prediction performance of Lasso when the penalty 

coefficient lambda is chosen as “lambda.min”.  

It can be observed that both methods, SPOFS and Lasso, achieved similar c-index, which 

were only marginally better than 0.50 (see Figure 8A-C) in the testing data set when including 5, 

15, and 30 CpGs. Further, it can be observed that the average c-index decreases, as the number 

of CpGs in the model increases; potentially a result of overfitting. In Figure 8D, prediction 

performance of Lasso is visualized when the penalty coefficient lambda is chosen “lambda.min”. 

This allows Lasso to automatically determine the number of features based on the minimized 

mean cross-validated error. Here, the number of features automatically selected by Lasso is equal 
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to zero (7 out of 10 times) and one (3 out of 10 times). This reveals that Lasso’s best prediction 

performance is achieved here, when either no or one CpG is included in a model that controls for 

the matching variables.  

These results suggest that either critically important assumptions were violated or that 

blood-derived DNAm data do not provide a substantial amount of information to predict lung 

cancer. To further investigate if the results shown above are due to a lack of signal in the data or 

due the inapplicability of both methods to the lung cancer NCC data, we conducted a series of 

simulation studies under a variety of different simulation scenarios.  

3.4.2 Simulated data 

With the goal of demonstrating that our proposed method SPOFS can competitively 

identify predictive features, we evaluated its performance based on simulated epigenetic data 

under a variety of scenarios (see Table 4, Table 5, Table 6). As previously, 75% of the data are 

designated for model building and performance assessment (training-and-validation set), while 

25% of the data were held back (testing set) to evaluate final models. For each simulation 

scenario, data were divided into both sets after specifying 100 different seeds. We then applied 

SPOFS and Lasso to the training-and-validation sets and evaluated the performance of selected 

features in the held-back testing data sets. We also evaluated the “Upper limit” of performance, 

which indicates the performance of models including all CpGs that were simulated to have an 

effect on time-to-diagnosis. The “Upper limit” serves as a point of reference and represents the 

scenario that can be thought of as the “gold-standard” for prediction performance. 

Figure 9 visualizes the prediction performance of models identified by SPOFS and Lasso 

in scenario 1, where data was simulated with a combination of strong correlation (𝜌 = 0.9) and 

weak signal (Δ = 0.3) of epigenetic features. Here, we demonstrate that SPOFS achieves a 
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significantly better prediction performance based on its selected features compared to Lasso 

(one-sided Wilcoxon rank-sum test p-value = 0.00028). 

 

 

Figure 9 Prediction performance of features selected by SPOFS and Lasso in scenario 1. 

 

In scenarios 1-6, we examined the influence of the simulated correlation on the ability of 

SPOFS and Lasso to identify an optimal set of features. Therefore, we reduced the correlation 

stepwise from 0.9 to 0.5 and as well as setting the correlation equal to zero. The results are 

shown in Figure 10, illustrating the prediction performance of features selected by SPOFS and 

Lasso, and each scenario’s “Upper limit”. It can be observed, that in scenario 6, where no 

correlation was simulated, SPOFS and Lasso demonstrate comparable prediction results. 

However, it can be observed that with increasing correlation (scenario 5-1) SPOFS performance 

to predict lung cancer exceeds Lasso’s. The difference in prediction performance is significant at 

the correlation of 𝜌 = 0.8 (scenario 2, one-sided Wilcoxon rank-sum test p-value= 0.00916), 

while the difference in prediction performance is not significant at the correlation of 𝜌 = 0.7 

(scenario 3, one-sided Wilcoxon rank-sum test p-value= 0.16632). 
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Figure 10 Prediction performance of features selected by SPOFS and Lasso.  

A) scenario 1 with 𝜌 = 0.9; B) scenario 2 with 𝜌 = 0.8; C) scenario 3 with 𝜌 = 0.7; D) scenario 4 with 𝜌 = 0.6; E) 

scenario 5 with 𝜌 = 0.5; F) scenario 6 with 𝜌 = 0. 

Next, we investigated the influence of the magnitude of the introduced differences on the 

ability of SPOFS and Lasso to identify an optimal set of features. Therefore, we generated 

simulated data sets with Δ = {0.5, 0.7} (scenario 7 and 8). The results are shown below (Figure 

11), illustrating prediction performances of feature selected by SPOFS and Lasso, and each 

scenario’s “Upper limit”. It can be observed that with increasing simulated differences between 

cases and controls, the ability to identify an optimal set of CpGs increases for both methods, 

SPOFS and Lasso, and prediction performances are more similar to the “Upper limit”. While the 

differences between prediction performances of SPOFS and Lasso are marginally significant in 
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scenario 7 (one-sided Wilcoxon rank-sum test p-value= 0.05462), there is no significant 

difference observed in scenario 8 (one-sided Wilcoxon rank-sum test p-value= 0.29845). 

 

 

Figure 11 Prediction performance of features selected by SPOFS and Lasso. 

A) scenario 1 with 𝛥 = 0.3; B) scenario 7 with 𝛥 = 0.5; C) scenario 8 with 𝛥 = 0.7. 

Finally, we explored the influence of the total number of CpGs simulated on the ability of 

SPOFS and Lasso to identify an optimal set of features. Therefore, for scenario 9 and 10 we 

generated data sets by simulating 50 and 10,000 CpGs, respectively. It can be observed in Figure 

12 that an increasing number of features introduces an increased challenge to identify an optimal 

subset of CpGs to predict lung cancer. For neither, a reduced number of CpGs nor an increased 

number of CpGs, the difference in prediction performance for SPOFS and Lasso was significant 

(scenario 9, one-sided Wilcoxon rank-sum test p-value= 0.11301; scenario 10, one-sided 

Wilcoxon rank-sum test p-value= 0.60642) 
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Figure 12 Prediction performance of features selected by SPOFS and Lasso. 

A) scenario 9 with a total number of 50 CpGs simulated; B) scenario 1 with a total number of 1000 CpGs simulated; 

C) scenario 10 with a total number of 10.000 CpGs simulated. 

3.5 Discussion 

Motivated by goal of feature selection in the context of high dimensional epigenetic data 

collected on subjects in a NCC study of lung cancer risk, we present a heuristic algorithm, where 

feature’s selection probabilities are iteratively optimized, while monitoring overall performance 

to identify an optimal subset of features. We employ the frequently used method Lasso to 

benchmark our results. In the lung cancer NCC study neither SPOFS nor Lasso provided 

satisfying feature selection results, however in simulated data, we demonstrate that SPOFS is a 

competitive method compared to Lasso. While both algorithms achieve highly comparable 

results, we have established that SPOFS outperforms Lasso in scenarios involving a combination 

of strong correlation and weak signal.  

There exist several potential reasons that can explain the lack of success in the lung 

cancer NCC study. One possible reason for the modest performance of both methods is the 

absence of predictive signal in the data. As neither method is able to identify a set of CpGs that 

improves the prediction performance of lung cancer in this lung cancer NCC study, it can be 
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speculated that the data do not contain any predictive CpGs for lung cancer. This lack of 

predictive signal can be the consequence of the time differences from blood-draw to lung cancer 

diagnosis. The median time from blood-draw to lung cancer diagnosis was 4.4 years with the 

time at risk (time from blood-draw to lung cancer diagnosis) ranging up to more than 10 years. It 

can be questionable to expect the identification of reliable biomarkers several years prior to the 

lung cancer diagnosis. To achieve reliable predictions, we might require epigenetic data from 

individuals who had their blood drawn more proximal to their diagnosis of lung cancer. Further, 

the lack of predictive signal could be a result of an averaging effect of histology types. It has 

been shown that the histology types of lung cancer exhibit distinct DNA methylation signatures 

(Grieshober et al., 2018). Because the objective was to identify a pre-diagnostic biomarker for 

lung cancer, we did not control for histology types of lung cancer, as they involve information 

that is not available prior to lung cancer diagnosis. However, we potentially fail to observe 

histology type specific pattern that are predictive of lung cancer, by averaging over them, as we 

do not incorporate them in the model building process. In future work, these speculations should 

be investigated by controlling for the histology type.  

Another possible explanation for lack of success in identifying predictive CpGs in the 

lung cancer NCC study involves the choice of model. Here, both methods were carried out in the 

framework of Cox proportional hazards model, due to its popularity, robustness (Sestelo, 2017) 

and ability to incorporate IPW calculated from the cohort. However, there exist different models 

that may be more suitable for the purposes of this study. If we assume that an increased hazard 

can be expected to be observed for individuals whose blood was taken more proximal to the 

diagnosis of lung cancer, then appealing alternatives include accelerated failure time models 

(AFT model), such as Weibull models. Lastly, the modest prediction performance of both 
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methods, SPOFS and Lasso, can potentially be the result of the metric used for model evaluation. 

Here, due to its popularity, we evaluated prediction performance of models based on their 

concordance index, but we acknowledge that other common metrics, such as Brier score and 

mean absolute error, to assess prediction performance are potentially more suitable.  

Nevertheless, in the simulated data, we have demonstrated that SPOFS is a competitive 

method compared to Lasso. While both algorithms achieve comparable results, we have 

established that Lasso’s performance can be compromised in scenarios involving a combination 

of weak signal and strong correlation in the data. This coincides with previous literature, which 

has reported that Lasso requires weak correlation and strong signal conditions on the design 

matrix to achieve high selection accuracy (Y. L. Zhang, 2017). This explains the performance of 

Lasso in simulated scenarios, where a combination of weak signal and strong correlation was 

specified for the generation of data. However, prior research has demonstrated that neighboring 

CpGs can exhibit a strong correlation (W. W. Zhang et al., 2015) and therefore, Lasso may be 

less applicable in such scenarios. In future iterations it is advisable to compare prediction 

performance of SPOFS under a variety of scenarios to more advanced and sophisticated 

methods, such as adaptive Lasso or elastic net (Zou, 2006; Zou & Hastie, 2005).  

The simulated data in this manuscript were generated from a Multivariate Normal (MVN) 

distribution for the purpose of simplicity, as the function “mvrnorm” of the R package MASS 

facilitates the option to provide covariance matrix. However, for a single CpG (epigenetic 

feature), DNAm is commonly quantified via β-values, which follow a beta distribution. To our 

knowledge, there exists no available R packages that assists one in generating correlated 

observations from beta distributions. However, it can be shown (see Appendix VII - 

Generation of correlated beta values) that correlated observations from a beta distribution 
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(𝑌1~𝑏𝑒𝑡𝑎(𝑐1, 𝑐2), 𝑌2~𝑏𝑒𝑡𝑎(𝑐3, 𝑐4)) can be obtained by taking the sum of two marginal Dirichlet 

distributed observations, where the concentration parameters of the Dirichlet distribution are 

functions of the target correlation and the shape parameters 𝑐{1,2,3,4} of the beta distributions. 

Therefore, one is required to specify the shape parameter 𝑐{1,2,3} of the beta distribution such that 

𝑐3 < 𝑐1 + 𝑐2 (shape parameter 𝑐4 will be determined based on the specified correlation). Next, 

the concentration parameters of the Dirichlet distribution can be calculated and used to generate 

observations from a Dirichlet distribution 𝑿~𝑑𝑖𝑟(𝛼1, 𝛼2, 𝛼𝑗 , 𝛼0). Finally, the sums of two 

marginal Dirichlet distributed observations (𝑌1 = 𝑋1 + 𝑋𝑗 and 𝑌1 = 𝑋2 + 𝑋𝑗) allow one to obtain 

beta-distributed observations that exhibit a correlation 𝜌. This procedure can be scaled up to 

facilitate a correlation structure of multiple CpGs. Detailed proofs, calculations and a sampling 

procedure (including an example) can be found in Appendix VII - Generation of correlated 

beta values. 

We have demonstrated the comparability of SPOFS’ and Lasso’s feature selection 

performance, but it is important to point out that the cross-validated feature selection performed 

by Lasso provides the opportunity to select the tuning parameter 𝜆 such that the mean cross-

validated error is minimized (“lambda.min”) and the number of non-zero feature is automatically 

chosen. In contrast, the number of epigenetic features is currently a necessary input for SPOFS. 

However, this presents an opportunity for future enhancements of this method, in which a range 

of number of features is scanned and evaluated.  

Further, it deserves mentioning that while SPOFS is designed to optimize a set of features 

for prediction, it does not evaluate all possible feature combinations (i.e., (
𝑃
𝐾
)), and therefore 

does not ensure a globally optimal set of features. The computational burden associated with the 

evaluation of all possible feature combinations is unmanageable and prohibitive. To reduce the 
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computational burden and run time of SPOFS, we utilize an initial filtering step to reduce 

dimensionality and additionally implemented a parallel processing of the cross-validated steps 

(steps 3-5). However, the initial filtering step involves a risk of potentially excluding features 

that are predictive in the combination with other features. An additional limitation that can also 

be considered as an advantage is the fact that SPOFS does not have a predetermined completion, 

meaning that the user is required to define a termination condition. But this also means that there 

always exists a chance of identifying a better performing set of epigenetic features with 

additional run time.  

Furthermore, SPOFS identifies a list of well-performing sets of features. This list 

provides the opportunity of combining multiple models in a model ensemble in order to leverage 

predictions of each individual model. Previous literature has demonstrated that the combination 

of multiple models in an ensemble outperforms the best participating single model in most 

scenarios (Weigel, Liniger, & Appenzeller, 2008).  

While SPOFS was developed here for a time-to-event analysis in the context of a nested 

case-control study, its methodology is applicable to most circumstances where a selection of 

features evaluated on some prediction metric is desired. In future iterations of SPOFS there exist 

several enhancements that can be incorporated to potentially improve prediction performance. In 

this manuscript we only have considered main effect combinations of clinical and epigenetic 

features. SPOFS’ methodology can be extended by incorporating interactions between and 

within clinical and epigenetic features. Another possible extension of SPOFS includes the 

combination of different evaluation metrics, as previously demonstrated in IDOL (Koestler et al., 

2016), where a composite measure was generated by combining of 𝑅2 and root mean square 

errors (𝑅𝑀𝑆𝐸).  
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While assessment of different simulation scenarios provides promising results, the 

evaluation of SPOFS in a real data set remains to be demonstrated, as data from the lung cancer 

NCC study did not provide satisfying results for either method. This also provides the 

opportunity for incorporating additional (high-dimensional) omic data types, such as gene 

expression.  

3.6 Conclusion 

Motivated by the desire to identify a pre-diagnostic biomarker consisting of a subset of 

epigenetic features (CpGs) that collectively predict lung cancer in the high-risk population of a 

nested case-control study in CARET, we here propose a heuristic feature selection method 

SPOFS. While neither SPOFS nor Lasso were able to identify a promising biomarker in the lung 

cancer nested case-control study of CARET, we have demonstrated in simulated data that 

SPOFS achieves competitive results compared to Lasso and exceeds the performance of lasso in 

certain scenarios involving a combination of weak signal and strong correlation structure. 

3.7 Contribution 

In this project I devised and implemented the SPOFS algorithm, preprocessed data from 

the lung cancer NCC study, generated simulated epigenetic data, estimated weights for IPW, 

analyzed data sets and wrote the manuscript. 
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4 Summary and Future Directions 

The discovery and establishment of predictive markers is a crucial part of the process for 

the early detection and prognosis of many diseases. Being able to detect a life-threatening 

disease such as cancer at an early stage can save lives and drastically improve quality of life 

among patients. Treatments have been shown to be more likely to be effective and efficient at an 

early stage of the disease progression and ensure a higher potential of cure (WHO, 2007). 

Patients’ responses to treatments can vary by individuals and employment of predictive markers 

for disease prognosis grant the gateway to personalized medicine, where treatments are specific 

to an individual patient based on their predicted response or risk of a disease (FORUM - 

Academy of Medical Sciences, 2015). 

Motivated by the potential to improve risk-prediction for prostate cancer, the Prostate 

Cancer Dream Challenge was launched 2015 with the objective to develop prognostic models for 

predicting overall survival. We have demonstrated that our curated, ad-hoc, feature selection 

(CAFS) strategy is able to identify clinically important risk-predictors of patient survival. 

Several of the identified predictors were new features created by strategically merging 

collections of weak predictors. The predictive features identified by CAFS were utilized to our 

ensemble-based Cox proportional hazards regression framework and we established prediction 

models that outperformed the gold-standard prediction model for prostate cancer survival (at that 

time) and ranked among the top models developed by teams from around the world.  

A considerable limitation of the Prostate Cancer Dream Challenge is the utilization of 

clinical features exclusively, as no omic or molecular data were provided for this competition. 

The incorporation of omic features in the prediction model development provides a promising 

opportunity to further improve prediction performances of patient’s prognosis. Such epigenetic 
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marks (i.e., DNA methylation) are generally investigated in epigenome-wide association studies 

(EWAS) to identify biomarkers that are associated with some exposure(s) or phenotype(s). As 

for any study, the identification of these biomarkers depends on an adequate sample size and 

associated power. However, due to the complex nature of DNA methylation (DNAm), there is a 

lack of tools and methods for power evaluation of EWAS. With the goal to fill this gap, we have 

developed pwrEWAS, a user-friendly tool for comprehensive power estimation for EWAS. With 

pwrEWAS we provide a publicly available R package including a user-friendly point-and-click 

interface for the power evaluation of EWAS. The package facilitates power estimation for two-

group comparisons of DNAm by applying a semi-parametric simulation-based approach. With 

pwrEWAS, we provide a user-friendly tool that assists researchers in the design and planning of 

EWAS. 

We then revert back to the development of prediction models and discuss the integration 

of these epigenetic biomarkers to enhance prediction performance by clinical features. Motivated 

by the challenge of feature selection in the context of high dimensional data, we introduced a 

flexible Selection Probability Optimization method for Feature Selection (SPOFS). SPOFS is 

designed to identify an optimal subset of epigenetic features and combine these potentially weak 

predictors in an epigenetic biomarker that improves the prediction performance of prognostic 

models with clinical features. We have demonstrated that SPOFS is a competitive feature 

selection method compared to Lasso, while outperforming it in scenarios involving a 

combination of weak signal and strong correlation. As considerable correlations can be expected 

in most omic data sets, we hypothesize that SPOFS is more suitable in such scenarios. 

In future work, we want to extend and improve each algorithm and tool. With the 

ongoing development of statistical methods and models, we want to explore the prediction 
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performance of CAFS in the context of models besides the Cox proportional-hazards model. 

Additionally, we desire to address the bias of CAFS in its current implementation to including 

interaction terms over main effect. This could be achieved by penalizing the inclusion of 

interaction terms. The current implementation of pwrEWAS allows for a variety of extension, 

including comparison of multiple groups. We also would like to incorporate the option for 

researchers to upload different tissue types that are specific to their study and address the 

potential change of CpG dispersion as a result of some phenotype or exposure. Further, we wish 

to implement additional methods for differential methylation analysis, as methods improve and 

develop. Lastly, we want to optimize the set of features selected by SPOFS by incorporating 

interactions between and within clinical and epigenetic features and automatize the choice of the 

number of features. Additionally, we would like to combine multiple evaluation metrics with the 

goal to improve and stabilize the prediction performance. Finally, we want to evaluate SPOFS’ 

performance in the context of different models and compare the performance of SPOFS with 

more advanced and sophisticated methods.  

Ultimately, we would like to apply a combination of both feature selection methods, 

CAFS and SPOFS. For a given data set that provides a great number of clinical features and one 

or more types of omic data, we desire to apply CAFS to the clinical data to identify clinically 

important risk-predictors, while SPOFS can be applied to one or a combination of different omic 

data sets (e.g. DNA methylation and gene expression) to identify optimal set(s) of omic features 

that improve the ability to predict some outcome or response.   
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Appendices 

Appendix I - Integrated area under the curve (iAUC) 

The integrated area under the curve (iAUC), defined by the DREAM website, is the 

averaged cumulative AUC over all time points (from 6 to 30 months). 
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Appendix II - Effect size boundary calculation 

PDF of the beta distribution, 𝐵𝑒𝑡𝑎(𝛼, 𝛽), with shape parameter 𝛼 > 0 and 𝛽 > 0: 

𝑥𝛼−1(1 − 𝑥)𝛽−1

B(𝛼, 𝛽)
 

Where B(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
 

 

Mean (𝜇) and variance (𝜎2): 

 𝜇 =
𝛼

𝛼 + 𝛽  
 

𝜎2 =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
 

 

(6.2.1) 

 

(6.2.2) 

 

Shape parameter as function of mean (𝜇) and variance (𝜎2): 

𝛽 as a function of 𝛼 and 𝜇 from (6.2.1): 

 𝜇 =
𝛼

𝛼 + 𝛽  
 

𝛽𝜇 = 𝛼 − 𝛼𝜇 

𝛽 = 𝛼 (
1

𝜇
− 1) 

 

 

 

(6.2.3) 

 

𝛼 as a function of 𝜇 and 𝜎2 (using (6.2.3) in (6.2.2)): 

 
𝜎2 =

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
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𝜇 − 1))

2
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 (6.2.4) 

 

𝛽 as a function of 𝜇 and 𝜎2 (using (6.2.4) in (6.2.3)): 

 
𝛽 = 𝜇2 (

1 − 𝜇

𝜎2
−
1

𝜇
) (
1

𝜇
− 1) 

 

 

(6.2.5) 

Relationship between 𝜇 and 𝜎2:  

 𝛼 > 0 

𝜇2 (
1 − 𝜇

𝜎2
−
1

𝜇
) > 0 

(
1 − 𝜇

𝜎2
−
1

𝜇
) > 0 

1 − 𝜇

𝜎2
>
1

𝜇
 

𝜇 − 𝜇2 > 𝜎2 

 

 

 

 

 

(6.2.6) 

 



90 

 

Consider a modified mean 𝜇∗ = 𝜇 + Δ, where the original mean 𝜇 was changed by Δ, while 𝜎2 

remains unchanged. This modified mean 𝜇∗ must satisfy relationship (6.2.5), too: 

 𝜇∗ = 𝜇 + Δ 

 

𝜇∗ − 𝜇∗2 > 𝜎2  

𝜇 + Δ − (𝜇 + Δ)2 > 𝜎2  

−𝜇 − Δ + (𝜇 + Δ)2 < −𝜎2  

−Δ + 𝜇2 + 2𝜇Δ + Δ2 < 𝜇 − 𝜎2 

Δ2 + 2Δ (𝜇 −
1

2
) < 𝜇 − 𝜇2 − 𝜎2 

Δ2 + 2Δ (𝜇 −
1

2
) + (𝜇 −

1

2
)
2

< 𝜇 − 𝜇2 − 𝜎2 + (𝜇 −
1

2
)
2

 

(Δ + (𝜇 −
1

2
))

2

< 𝜇 − 𝜇2 − 𝜎2 + 𝜇2 − 𝜇 +
1

4
  

Δ + (𝜇 −
1

2
) < ±√

1

4
− 𝜎2 

Δ <
1

2
− 𝜇 ± √

1

4
− 𝜎2 

 

 

 

 

 

 

 

 

 

 

 

 

(6.2.7) 

 
Hence, the imposed difference Δ is bounded by: 

 
1

2
− 𝜇 − √

1

4
− 𝜎2 < Δ <

1

2
− 𝜇 + √

1

4
− 𝜎2 

 

(6.2.8) 
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Appendix III - Additional figures 

 
Figure S2.1: Empirical distributions of differences in DNAm for CpGs identified in different studies.  

Density plots showing the distribution of differences in DNAm for CpGs identified in the following three studies: 

PMC6084815 (Hannon et al., 2018), PMC4256841 (Hall et al., 2014), and PMC4864062 (Moran, Arribas, & Esteller, 

2016). The first study (PMC6084815) reported the differences in DNAm (Δ𝛽) of 20,001 differentially methylated 

CpGs (p-value < 1𝑥10−8) comparing the additive genetic effects between monozygotic and dizygotic twins. The 

second study (PMC4256841) identified 470 differentially CpGs specific to the sex in human pancreatic islets. 

Difference in DNAm greater than 0.05 with a FDR less than 5% (q < 0.05) were provided. In the third study 
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(PMC4864062) two normal tissues were discriminated based on their methylation profile: colon mucosa (NC22A) 

and neurons (N229). Differences in DNAm greater than 0.33 were reported for 73,774 CpGs. It becomes apparent that 

simulating differences in DNAm from a truncated normal distribution, where values around zero (detection limit) are 

omitted, imitates observed values reasonably well. The truncation of the normal distribution is required due to the 

support of Δ𝛽 (−1 ≤ Δ𝛽 ≤ 1). Even though the shown distributions exhibit some imbalance between positive and 

negative values, it is not necessary to preserve this potential imbalance as it will not affect the estimated power. 
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Figure S2.2: Distributions of simulated differences in DNAm (Δ𝛽) for different target effect sizes.  

Δ𝛽 is simulated using a truncated normal distribution Δ𝛽,𝑘~𝑁𝑘(0, 𝜏). To match the targeted maximal difference in 

DNAm, 𝜏 is stepwise adjusted until the 99.99th percentile of the absolute value of simulated Δ𝛽,𝑘’s falls within a 

range (vertical colored dotted lines) around the targeted maximal difference in DNAm. The range is equal the 

detection limit (vertical black dotted lines). Based on a default detection limit of 0.01, the 99.99 th percentile needs to 

fall within a target effect size ± 0.005 for a 𝜏 to be accepted. The figure above shows densities of simulated Δ𝛽,𝑘’s 

for three effect sizes (0.1, 0.2, 0.5), and range for each effect size that the 99.99 th percentile is required to fall in for 𝜏 

to be accepted. 
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Appendix IV - Vignette 
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Appendix V - List of potential weighting functions  

Function based on density of Normal Density: 

𝑓(Δ𝑘
(𝑚)) =

1

2
(𝑠𝑖𝑔𝑛(Δ𝑘

(𝑚)) ∗ (1 −
𝑓𝑁(Δ𝑘

(𝑚))

𝑓𝑁(0)
) + 1) 

where 𝑓𝑁(⋅) is the density of the Normal distribution with mean 𝜇 = 0 and a standard deviation 

that controls the steepness.  

Sigmoid function: 

𝑓(Δ𝑘
(𝑚)) =

1

1 + exp (−𝜏Δ𝑘
(𝑚))

 

where 𝜏 controls the steepness. 

 

Cubic function: 

𝑓(Δ𝑘
(𝑚)) =

Δ𝑘
(𝑚)3 + 1 

2
 

 

Linear function: 

(Δ𝑘
(𝑚)) =

1

2
Δ𝑘
(𝑚) + 0.5 

 

The curves of these function can are visualized in Figure S3.1: 
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Figure S3.1: Weight function curves 
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Appendix VI - Ratio of gamma distributed signals follows beta distribution 

Assume the methylated signal M and unmethylated signal U follow a gamma distribution with 

equal scale parameter: 

𝑀 ∼  𝐺𝑎𝑚𝑚𝑎(𝑎, 𝜃) 

𝑈 ∼  𝐺𝑎𝑚𝑚𝑎(𝑏, 𝜃) 

 

Their joint distribution is given by: 

𝑓𝑚,𝑢(𝑚, 𝑢) =
1

Γ(𝑎)𝜃𝑎
𝑚𝑎−1𝑒−

𝑚
𝜃

1

Γ(𝑏)𝜃𝑏
𝑢𝑏−1𝑒−

𝑢
𝜃 

=
1

Γ(𝑎)Γ(𝑏)𝜃𝑎+𝑏
𝑚𝑎−1𝑢𝑏−1𝑒−

1
𝜃
(𝑚+𝑢) 

 

Let: 

𝑥 =  𝑢 +  𝑚 

𝑦 =
𝑚

𝑚 + 𝑢
 

Rearranging for m and u: 

𝑚  =   𝑥𝑦   

𝑢  =   𝑥 −  𝑥𝑦  

The Jacobian can be calculated as: 

𝐽 = |
𝑦 𝑥

1 − 𝑦 −𝑥| = −𝑥𝑦 − (𝑥 − 𝑥𝑦) = −𝑥 

 

The transformation is then given as: 
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𝑓𝑥,𝑦(𝑥, 𝑦) = 𝑓𝑚,𝑢(𝑚, 𝑢)|𝐽| 

= 𝑓𝑚,𝑢(𝑚 = 𝑥𝑦, 𝑢 = 𝑥 − 𝑥𝑦)|−𝑥| 

=
1

Γ(𝑎)Γ(𝑏)𝜃𝑎+𝑏
(𝑥𝑦)𝑎−1(𝑥 − 𝑥𝑦)𝑏−1𝑒−

1
𝜃
(𝑥𝑦+𝑥−𝑥𝑦)𝑥 

=
1

Γ(𝑎)Γ(𝑏)𝜃𝑎+𝑏
𝑥𝑎−1𝑦𝑎−1(1 − 𝑦)𝑏−1𝑥𝑏−1𝑒−

𝑥
𝜃𝑥 

=
1

Γ(𝑎)Γ(𝑏)𝜃𝑎+𝑏
𝑥𝑎−1+𝑏−1+1𝑦𝑎−1(1 − 𝑦)𝑏−1𝑒−

𝑥
𝜃
Γ(𝑎 + 𝑏)

Γ(𝑎 + 𝑏)
 

=
1

Γ(𝑎 + 𝑏)𝜃𝑎+𝑏
𝑥𝑎+𝑏−1𝑒

−
𝑥
𝜃
Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑏−1 

= 𝑓(𝑥)𝑓(𝑦) 

By the factorization theorem, x and y are independent. 

𝑓(𝑥) =
1

Γ(𝑎 + 𝑏)𝜃𝑎+𝑏
𝑥𝑎+𝑏−1𝑒−

𝑥
𝜃 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼 + 𝛽, 𝜃) 

𝑓 (𝑦 =
𝑚

𝑚 + 𝑢
) =

Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
(1 − 𝑦)𝑏−1𝑦𝑎−1 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

When M and U are gamma distributed random variables with equal scale parameter, then their 

ratio (𝑦 =
m

m+u
) follows a beta distribution. 
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Appendix VII - Generation of correlated beta values  

Let’s first show that the marginal distribution of a Dirichlet distribution is beta distributed: 

Given: 

𝑋⃗ ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼⃗) 

𝑋⃗ = [𝑋1, 𝑋2, … , 𝑋𝑃] 

∑𝑥𝑖

𝑃

𝑖=1

= 1 

 

𝛼⃗ = [𝛼1, 𝛼2, … , 𝛼𝑃] 

𝛼𝑖 > 0 

∑𝛼𝑖

𝑃

𝑖=1

= 𝐴 

 

𝑓(𝑥⃗|𝛼⃗) =
1

𝐵(𝛼⃗)
∏𝑥𝑖

𝛼𝑖−1

𝑃

𝑖=1

 

𝐵(𝛼⃗) =
∏ Γ(𝛼𝑖)
𝑃
𝑖=1

Γ(∑ 𝛼𝑖
𝑃
𝑖=1 )

 

 

We can write the joint density of 𝑥1, 𝑥2, … , 𝑥𝑃 as: 

𝑓(𝑥⃗) = 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑃−1, (1 −∑𝑥𝑖

𝑃−1

𝑖=1

)) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑃−1) 

 

Using: 𝑓(𝑥, 𝑦) = 𝑓(𝑥|𝑦)𝑓(𝑦) 
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= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑃−2)𝑓(𝑥𝑃−1|𝑥1, 𝑥2, … , 𝑥𝑃−2) 

= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑃−3)𝑓(𝑥𝑃−2|𝑥1, 𝑥2, … , 𝑥𝑃−3)𝑓(𝑥𝑃−1|𝑥1, 𝑥2, … , 𝑥𝑃−2) 

… 

= 𝑓1(𝑥1)𝑓2(𝑥2|𝑥1)𝑓3(𝑥3|𝑥1, 𝑥2)…𝑓𝑃−1(𝑥𝑃−1|𝑥1, … , 𝑥𝑃−2) 

 

Expressions for each term individually: 

𝑓1(𝑥1) =
Γ(𝛼1 + 𝐴 − 𝛼1)

Γ(𝛼1)Γ(𝐴 − 𝛼1)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝐴 − 𝛼1)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 

𝑓2(𝑥2|𝑥1) =
𝑓(𝑥1, 𝑥2)

𝑓(𝑥1)
 

=
Γ(𝛼1 + 𝛼2 + 𝐴 − 𝛼1 − 𝛼2)𝑥1

𝛼1−1𝑥2
𝛼2−1(1 − 𝑥1 − 𝑥2)

𝐴−𝛼1−𝛼2−1

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
 ⋅ 

=
Γ(𝛼1)Γ(𝐴 − 𝛼1)

Γ(𝛼1 + 𝐴 − 𝛼1)𝑥1
𝛼1−1(1 − 𝑥1)𝐴−𝛼1−1

 

=
Γ(𝐴)𝑥1

𝛼1−1𝑥2
𝛼2−1(1 − 𝑥1 − 𝑥2)

𝐴−𝛼1−𝛼2−1

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)

Γ(𝛼1)Γ(𝐴 − 𝛼1)

Γ(𝐴)𝑥1
𝛼1−1(1 − 𝑥1)𝐴−𝛼1−1

 

=
Γ(𝐴 − 𝛼1)

Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)

𝑥2
𝛼2−1(1 − 𝑥1 − 𝑥2)

𝐴−𝛼1−𝛼2−1

(1 − 𝑥1)𝐴−𝛼1−1
 

 

 

 

 

 

Analogously:  
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𝑓3(𝑥3|𝑥1𝑥2) =
Γ(𝐴 − 𝛼1 − 𝛼2)

Γ(𝛼3)Γ(𝐴 − 𝛼1 − 𝛼2 − 𝛼3)

𝑥3
𝛼3−1(1 − 𝑥1 − 𝑥2 − 𝑥3)

𝐴−𝛼1−𝛼2−𝛼3−1

(1 − 𝑥1 − 𝑥2)𝐴−𝛼1−𝛼2−1
 

𝑓𝑃−1(𝑥𝑃−1|𝑥1𝑥2…𝑥𝑃−1) =
Γ(𝐴 − 𝛼1 −⋯− 𝛼𝑃−2)

Γ(𝛼𝑃−1)Γ(𝐴 − 𝛼1 −⋯− 𝛼𝑃−1)
 ⋅ 

=
𝑥𝑃−1
𝛼𝑃−1−1(1 − 𝑥1 −⋯− 𝑥𝑃−1)

𝐴−𝛼1−⋯−𝛼𝑃−1−1

(1 − 𝑥1 −⋯− 𝑥𝑃−2)𝐴−𝛼1−⋯−𝛼𝑃−2−1
 

=
Γ(𝐴 − 𝛼1 −⋯− 𝛼𝑃−2)

Γ(𝛼𝑃−1)Γ(𝛼𝑃)

𝑥𝑃−1
𝛼𝑃−1−1𝑥𝑃

𝛼𝑃−1

(1 − 𝑥1 −⋯− 𝑥𝑃−2)𝛼𝑃−1+𝛼𝑃−1
 

 

 

Plugging individual terms back in: 

𝑓(𝑥) =
Γ(𝐴)

Γ(𝛼1)Γ(𝐴 − 𝛼1)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 ⋅ 

=
Γ(𝐴 − 𝛼1)

Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)

𝑥2
𝛼2−1(1 − 𝑥1 − 𝑥2)

𝐴−𝛼1−𝛼2−1

(1 − 𝑥1)𝐴−𝛼1−1
⋅ 

=
Γ(𝐴 − 𝛼1 − 𝛼2)

Γ(𝛼3)Γ(𝐴 − 𝛼1 − 𝛼2 − 𝛼3)

𝑥3
𝛼3−1(1 − 𝑥1 − 𝑥2 − 𝑥3)

𝐴−𝛼1−𝛼2−𝛼3−1

(1 − 𝑥1 − 𝑥2)𝐴−𝛼1−𝛼2−1
⋅ 

= ⋯ 

=
Γ(𝐴 − 𝛼1 −⋯− 𝛼𝑃−2)

Γ(𝛼𝑃−1)Γ(𝛼𝑃)

𝑥𝑃−1
𝛼𝑃−1−1𝑥𝑃

𝛼𝑃−1

(1 − 𝑥1 −⋯− 𝑥𝑃−2)𝛼𝑃−1+𝛼𝑃−1
 

 

 

 

 

 

Second part of the denominator cancels with the nominator of the successor: 
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=
Γ(𝐴)

Γ(𝛼1)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 ⋅ 

=
1

Γ(𝛼2)

𝑥2
𝛼2−1(1 − 𝑥1 − 𝑥2)

𝐴−𝛼1−𝛼2−1

(1 − 𝑥1)𝐴−𝛼1−1
⋅ 

=
1

Γ(𝛼3)

𝑥3
𝛼3−1(1 − 𝑥1 − 𝑥2 − 𝑥3)

𝐴−𝛼1−𝛼2−𝛼3−1

(1 − 𝑥1 − 𝑥2)𝐴−𝛼1−𝛼2−1
⋅ 

…   

=
1

Γ(𝛼𝑃−1)Γ(𝛼𝑃)

𝑥𝑃−1
𝛼𝑃−1−1𝑥𝑃

𝛼𝑃−1

(1 − 𝑥1 −⋯− 𝑥𝑃−2)𝛼𝑃−1+𝛼𝑃−1
 

 

Last term of each pdf cancels with the second denominator of the successor: 

=
Γ(𝐴)

Γ(𝛼1)
𝑥1
𝛼1−1 ⋅ 

=
1

Γ(𝛼2)
𝑥2
𝛼2−1 ⋅ 

=
1

Γ(𝛼3)
𝑥3
𝛼3−1 ⋅ 

= ⋯ 

=
1

Γ(𝛼𝑃−1)Γ(𝛼𝑃)
𝑥𝑃−1
𝛼𝑃−1−1𝑥𝑃

𝛼𝑃−1 

=
Γ(𝐴)

Γ(𝛼1)
𝑥1
𝛼1−1

1

Γ(𝛼2)
𝑥2
𝛼2−1

1

Γ(𝛼3)
𝑥3
𝛼3−1  … 

1

Γ(𝛼𝑃−1)
𝑥𝑃−1
𝛼𝑃−1−1

1

Γ(𝛼𝑃)
𝑥𝑃
𝛼𝑃−1 

=
Γ(∑ 𝛼1

𝑃
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑃
𝑖=1

∏𝑥𝑖
𝛼𝑖−1

𝑃

𝑖=1

 

If 𝑋𝑖 ∼ 𝑏𝑒𝑡𝑎(𝛼1, 𝐴 − 𝛼𝑖) the joint distribution 𝑋⃗ ∼ 𝑑𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼⃗). 

 

Alternatively, the Dirichlet aggregation property can be used: 
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If 

𝑋⃗ = (𝑋1, … , 𝑋𝑃) ∼ 𝐷𝑖𝑟(𝛼1, … , 𝛼𝑃) 

then, if the random variables with subscripts 𝑖 and 𝑗 are dropped from the vector and replaced by 

their sum 

𝑋′⃗⃗⃗⃗⃗ = (𝑋1, … , 𝑋𝑖 + 𝑋𝑗, … , 𝑋𝑃) ∼ 𝐷𝑖𝑟(𝛼1, … , 𝛼𝑖 + 𝛼𝑗 , … , 𝛼𝑃) 

 

This aggregation property may be used to derive the marginal distribution of 𝑋𝑖. Let's pick 𝑋1 

and 𝑋2 as an example: 

𝑓(𝑥1, 𝑥2|𝛼1, 𝛼2, 𝐴) =
Γ(𝛼1 + 𝛼2 + 𝐴 − 𝛼1 − 𝛼2)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1𝑥2

𝛼2−1(1 − 𝑥1 − 𝑥2)
𝐴−𝛼1−𝛼2−1 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1𝑥2

𝛼2−1(1 − 𝑥1 − 𝑥2)
𝐴−𝛼1−𝛼2−1 

 

Integrating out 𝑥2 

𝑓(𝑥1|𝛼1, 𝛼2, 𝐴) = ∫ 𝑓(𝑥1, 𝑥2|𝛼1, 𝛼2, 𝐴)𝑑𝑥2

1−𝑥1

0

 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1∫ 𝑥2

𝛼2−1(1 − 𝑥1 − 𝑥2)
𝐴−𝛼1−𝛼2−1𝑑𝑥2

1−𝑥1

0

 

 

 

 

 

 

 

Change of variables: 
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𝑢 =
𝑥2

1 − 𝑥1
= 𝑔(𝑥2) 

𝑥2 = (1 − 𝑥1)𝑢 

𝑑𝑥2 = (1 − 𝑥1)𝑑𝑢 

 

𝑓(𝑥1|𝛼1, 𝛼2, 𝐴) =
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1 ⋅ 

= ∫ ((1 − 𝑥1)𝑢)
𝛼2−1(1 − 𝑥1 − (1 − 𝑥1)𝑢)

𝐴−𝛼1−𝛼2−1(1 − 𝑥1)𝑑𝑢

1−𝑥1
1−𝑥1

0
1−𝑥1

 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1  ⋅ 

= ∫ (1 − 𝑥1)
𝛼2−1𝑢𝛼2−1((1 − 𝑥1)(1 − 𝑢))

𝐴−𝛼1−𝛼2−1(1 − 𝑥1)𝑑𝑢
1

0

 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1(1 − 𝑥1)

𝛼2−1+𝐴−𝛼1−𝛼2−1+1  ⋅ 

= ∫ 𝑢𝛼2−1(1 − 𝑢)𝐴−𝛼1−𝛼2−1𝑑𝑢
1

0

 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 ⋅ 

= ∫ 𝑢𝛼2−1(1 − 𝑢)𝐴−𝛼1−𝛼2−1𝑑𝑢
1

0

 

 

 

 

 

By the property that a beta pdf integrates to 1: 
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∫ 𝑢𝑎−1(1 − 𝑢)𝑏−1𝑑𝑢
1

0

=
Γ(𝑏)Γ(𝑏)

Γ(𝑎 + 𝑏)
 

𝑓(𝑥1|𝛼1, 𝛼2, 𝐴) =
Γ(𝐴)

Γ(𝛼1)Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 

=
Γ(𝛼2)Γ(𝐴 − 𝛼1 − 𝛼2)

Γ(𝛼2 + 𝐴 − 𝛼1 − 𝛼2)
 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝐴 − 𝛼1)
𝑥1
𝛼1−1(1 − 𝑥1)

𝐴−𝛼1−1 

= 𝑓(𝑥1|𝛼1, 𝐴) 

𝑋1 ∼ 𝑏𝑒𝑡𝑎(𝛼1, 𝐴 − 𝛼1) 

If 𝑋⃗ ∼ 𝑑𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼⃗), the marginals 𝑋𝑖 ∼ 𝑏𝑒𝑡𝑎(𝛼1, 𝐴 − 𝛼𝑖). 
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Next, let us show that the sum of two Dirichlet marginal distributions is beta distributed: 𝑌1 =

𝑋1 + 𝑋𝑗 

The joint distribution of 𝑋1, 𝑋𝑗: 

𝑓𝑥1,𝑥𝑗(𝑥1, 𝑥𝑗) =
Γ(𝐴)

Γ(𝛼1)Γ(𝛼𝑗)Γ(𝐴 − 𝛼1 − 𝛼𝑗)
𝑥1
𝛼1−1𝑥

𝑗

𝛼𝑗−1(1 − 𝑥1 − 𝑥𝑗)
𝐴−𝛼1−𝛼𝑗−1

 

𝛼0 = ∑ 𝛼𝑗
𝑗≠{1,2,𝑗}

 

 

Applying the following transformation: 

𝑦1 = 𝑥1 + 𝑥𝑗  

𝑢 =
𝑥1

𝑥1 + 𝑥𝑗
 

 

𝑥1 = 𝑢𝑦1 

𝑥𝑗 = 𝑦1 − 𝑢𝑦1 

𝐽 = ||

𝜕𝑥1
𝜕𝑦1

𝜕𝑥1
𝜕𝑢

𝜕𝑥𝑗

𝜕𝑦1

𝜕𝑥𝑗

𝜕𝑢

|| = |
𝑢 𝑦1

1 − u −𝑦1
| = −𝑢𝑦1 − 𝑦1(1 − 𝑢) = −𝑦1 

𝑓𝑦1,𝑢(𝑦1, 𝑢) = 𝑓𝑥1,𝑥𝑗(𝑦1, 𝑢)|𝐽| 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼𝑗)Γ(𝐴 − 𝛼1 − 𝛼𝑗)
(𝑢𝑦1)

𝛼1−1(𝑦1 − 𝑢𝑦1)
𝛼𝑗−1(1 − 𝑢𝑦1 − 𝑦1

+ 𝑢𝑦1)
𝐴−𝛼1−𝛼𝑗−1|−𝑦1| 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼𝑗)Γ(𝐴 − 𝛼1 − 𝛼𝑗)
𝑢𝛼1−1𝑦1

𝛼1−1𝑦1
𝛼𝑗−1(1 − 𝑢)𝛼𝑗−1(1 − 𝑦1)

𝐴−𝛼1−𝛼𝑗−1𝑦1 
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Obtaining the distribution of 𝑌1 by integrating out u: 

𝑓𝑦1(𝑦1) = ∫ 𝑓𝑦1,𝑢(𝑦1, 𝑢)𝑑𝑢
1

0

 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼𝑗)Γ(𝐴 − 𝛼1 − 𝛼𝑗)
𝑦1
𝛼1+𝛼𝑗−1(1 − 𝑦1)

𝐴−𝛼1−𝛼𝑗−1∫ 𝑢𝛼1−1
1

0

(1 − 𝑢)𝛼𝑗−1𝑑𝑢 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼𝑗)Γ(𝛼0 + 𝛼2)
𝑦1
𝛼1+𝛼𝑗−1(1 − 𝑦1)

𝛼0+𝛼2−1∫ 𝑢𝛼1−1
1

0

(1 − 𝑢)𝛼𝑗−1𝑑𝑢 

=
Γ(𝐴)

Γ(𝛼1)Γ(𝛼𝑗)Γ(𝛼0 + 𝛼2)
𝑦1
𝛼1+𝛼𝑗−1(1 − 𝑦1)

𝛼0+𝛼2−1
Γ(𝛼1)Γ(𝛼𝑗)

Γ(𝛼1 + 𝛼𝑗)
 

=
Γ(𝐴)

Γ(𝛼1 + 𝛼𝑗)Γ(𝛼0 + 𝛼2)
𝑦1
𝛼1+𝛼𝑗−1(1 − 𝑦1)

𝛼0+𝛼2−1 

This is the pdf of a beta distribution, and therefore: 𝑌1 ∼ 𝑏𝑒𝑡𝑎(𝛼1 + 𝛼𝑗 , 𝛼0 + 𝛼2) 
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Analogously, sum of the two Dirichlet marginal distributions: 𝑌2 = 𝑋2 + 𝑋𝑗 

The joint distribution of 𝑋2, 𝑋𝑗: 

𝑓𝑥2,𝑥𝑗(𝑥2, 𝑥𝑗) =
Γ(𝐴)

Γ(𝛼2)Γ(𝛼𝑗)Γ(𝐴 − 𝛼2 − 𝛼𝑗)
𝑥2
𝛼2−1𝑥

𝑗

𝛼𝑗−1(1 − 𝑥2 − 𝑥𝑗)
𝐴−𝛼2−𝛼𝑗−1

 

𝛼0 = ∑ 𝛼𝑗
𝑗≠{1,2,𝑗}

 

 

Applying the following transformation: 

𝑦2 = 𝑥2 + 𝑥𝑗  

𝑢 =
𝑥2

𝑥2 + 𝑥𝑗
 

 

𝑥2 = 𝑢𝑦2 

𝑥𝑗 = 𝑦2 − 𝑢𝑦2 

 

𝐽 = ||

𝜕𝑥2
𝜕𝑦2

𝜕𝑥2
𝜕𝑢

𝜕𝑥𝑗

𝜕𝑦2

𝜕𝑥𝑗

𝜕𝑢

|| = |
𝑢 𝑦2

1 − u −𝑦2
| = −𝑢𝑦2 − 𝑦2(1 − 𝑢) = −𝑦2 

 

𝑓𝑦2,𝑢(𝑦2, 𝑢) = 𝑓𝑥2,𝑥𝑗(𝑦2, 𝑢)|𝐽| 

=
Γ(𝐴)

Γ(𝛼2)Γ(𝛼𝑗)Γ(𝐴 − 𝛼2 − 𝛼𝑗)
(𝑢𝑦2)

𝛼2−1(𝑦2 − 𝑢𝑦2)
𝛼𝑗−1(1 − 𝑢𝑦2 − 𝑦2 + 𝑢𝑦2)

𝐴−𝛼2−𝛼𝑗−1|−𝑦2| 

=
Γ(𝐴)

Γ(𝛼2)Γ(𝛼𝑗)Γ(𝐴 − 𝛼2 − 𝛼𝑗)
𝑢𝛼2−1𝑦2

𝛼2−1𝑦2
𝛼𝑗−1(1 − 𝑢)𝛼𝑗−1(1 − 𝑦2)

𝐴−𝛼2−𝛼𝑗−1𝑦2 
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Obtaining the distribution of 𝑌2 by integrating out u: 

𝑓𝑦2(𝑦2) = ∫ 𝑓𝑦2,𝑢(𝑦2, 𝑢)𝑑𝑢
1

0

 

=
Γ(𝐴)

Γ(𝛼2)Γ(𝛼𝑗)Γ(𝐴 − 𝛼2 − 𝛼𝑗)
𝑦2
𝛼2+𝛼𝑗−1(1 − 𝑦2)

𝐴−𝛼2−𝛼𝑗−1∫ 𝑢𝛼2−1
1

0

(1 − 𝑢)𝛼𝑗−1𝑑𝑢 

=
Γ(𝐴)

Γ(𝛼2)Γ(𝛼𝑗)Γ(𝛼0 + 𝛼1)
𝑦2
𝛼2+𝛼𝑗−1(1 − 𝑦2)

𝛼0+𝛼1−1∫ 𝑢𝛼1−1
1

0

(1 − 𝑢)𝛼𝑗−1𝑑𝑢 

=
Γ(𝐴)

Γ(𝛼2)Γ(𝛼𝑗)Γ(𝛼0 + 𝛼1)
𝑦2
𝛼2+𝛼𝑗−1(1 − 𝑦2)

𝛼0+𝛼1−1
Γ(𝛼2)Γ(𝛼𝑗)

Γ(𝛼2 + 𝛼𝑗)
 

=
Γ(𝐴)

Γ(𝛼2 + 𝛼𝑗)Γ(𝛼0 + 𝛼1)
𝑦1
𝛼2+𝛼𝑗−1(1 − 𝑦2)

𝛼0+𝛼1−1 

This is the pdf of a beta distribution, and therefore: 𝑌1 ∼ 𝑏𝑒𝑡𝑎(𝛼2 + 𝛼𝑗 , 𝛼0 + 𝛼1) 
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In the next section we derive an expression for correlation: 

We know: 

𝑌1 ∼ 𝐵𝑒𝑡𝑎(𝛼1 + 𝛼𝑗 , 𝛼0 + 𝛼2) 

𝑌2 ∼ 𝐵𝑒𝑡𝑎(𝛼2 + 𝛼𝑗 , 𝛼0 + 𝛼1) 

𝐸[𝑌1] =
𝛼1 + 𝛼𝑗

𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2
 

𝐸[𝑌2] =
𝛼2 + 𝛼𝑗

𝛼2 + 𝛼𝑗 + 𝛼0 + 𝛼1
 

𝑣𝑎𝑟(𝑌1) =
(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)

(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2)
2
(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2 + 1)

 

𝑣𝑎𝑟(𝑌2) =
(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

(𝛼2 + 𝛼𝑗 + 𝛼0 + 𝛼1)
2
(𝛼2 + 𝛼𝑗 + 𝛼0 + 𝛼1 + 1)

 

𝐶𝑜𝑟𝑟(𝑌1, 𝑌2) =
𝐶𝑜𝑣(𝑌1, 𝑌2)

𝑠𝑑(𝑌1)𝑠𝑑(𝑌2)
 

 

Let's find an expression for the covariance: 

𝐶𝑜𝑣(𝑌1, 𝑌2) = 𝐸[(𝑌1 − 𝐸[𝑌1])(𝑌2 − 𝐸[𝑌2])] 

= 𝐸[𝑌1𝑌2 − 𝑌1𝐸[𝑌2] − 𝑌2𝐸[𝑌1] + 𝐸[𝑌1]𝐸[𝑌2]] 

= 𝐸[𝑌1𝑌2] − 𝐸[𝑌1]𝐸[𝑌2] − 𝐸[𝑌2]𝐸[𝑌1] + 𝐸[𝑌1]𝐸[𝑌2] 

= 𝐸[𝑌1𝑌2] − 𝐸[𝑌1]𝐸[𝑌2] 

= 𝐸[𝑌1𝑌2] −
(𝛼1 + 𝛼𝑗)(𝛼2 + 𝛼𝑗)

(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2)
2 

= 𝐸[𝑌1𝑌2] −
(𝛼1 + 𝛼𝑗)(𝛼2 + 𝛼𝑗)

𝐴2
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Let's find 𝐸[𝑌1𝑌2]: 

𝐸[𝑌1𝑌2] = 𝐸[(𝑋1 + 𝑋𝑗)(𝑋2 + 𝑋𝑗)] 

= 𝐸[𝑋1𝑋2] + 𝐸[𝑋1𝑋𝑗] + 𝐸[𝑋2𝑋𝑗] + 𝐸[𝑋𝑗
2] 

Looking at the four terms separately: 

𝐸[𝑋1𝑋2] = 𝐸[𝑋1]𝐸[𝑋2] + 𝑐𝑜𝑣(𝑋1, 𝑋2) 

The covariance between 𝑋1 and 𝑋2 if 𝑋⃗ ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼⃗) is 𝑐𝑜𝑣(𝑋1, 𝑋2) =
−𝛼1𝛼2

𝐴2(𝐴+1)
 

𝐸[𝑋1𝑋2] =
𝛼1

𝛼1 + 𝐴 − 𝛼1

𝛼2
𝛼2 + 𝐴 − 𝛼2

+
−𝛼1𝛼2

𝐴2(𝐴 + 1)
 

=
𝛼1𝛼2(𝐴 − 1)

𝐴2(𝐴 − 1)
+

−𝛼1𝛼2
𝐴2(𝐴 + 1)

 

=
𝛼1𝛼2𝐴 + 𝛼1𝛼2 − 𝛼1𝛼2

𝐴2(𝐴 + 1)
 

=
𝛼1𝛼2

𝐴(𝐴 + 1)
 

Analogously: 

𝐸[𝑋1𝑋𝑗] =
𝛼1𝛼𝑗

𝐴(𝐴 + 1)
 

𝐸[𝑋2𝑋𝑗] =
𝛼2𝛼𝑗

𝐴(𝐴 + 1)
 

𝐸[𝑋𝑗
2] = 𝑣𝑎𝑟(𝑋𝑗) + 𝐸[𝑋𝑗]

2
=

𝛼𝑗(𝐴 − 𝛼𝑗)

(𝛼𝑗 + 𝐴 − 𝛼𝑗)
2
(𝛼𝑗 + 𝐴 − 𝛼𝑗 + 1)

+ (
𝛼𝑗

𝛼𝑗 + 𝐴 − 𝛼𝑗
)

2

 

=
𝛼𝑗(𝐴 − 𝛼𝑗)

𝐴2(𝐴 + 1)
+
𝛼𝑗
2

𝐴2
 

=
𝛼𝑗𝐴 − 𝛼𝑗

2 + 𝛼𝑗
2𝐴 + 𝛼𝑗

2

𝐴2(𝐴 + 1)
=
𝛼𝑗𝐴 + 𝛼𝑗

2𝐴

𝐴2(𝐴 + 1)
=
𝛼𝑗(𝛼𝑗 + 1)

𝐴(𝐴 + 1)
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Plugging in the four terms: 

𝐸[𝑌1𝑌2] =
𝛼1𝛼2
𝐴2

+
𝛼1𝛼𝑗

𝐴2
+
𝛼2𝛼𝑗

𝐴2
+
𝛼𝑗(𝛼𝑗 + 1)

𝐴(𝐴 + 1)
 

𝐶𝑜𝑣(𝑌1, 𝑌2) =
𝛼1𝛼2

𝐴(𝐴 + 1)
+

𝛼1𝛼𝑗

𝐴(𝐴 + 1)
+

𝛼2𝛼𝑗

𝐴(𝐴 + 1)
+
𝛼𝑗(𝛼𝑗 + 1)

𝐴(𝐴 + 1)
−
(𝛼1 + 𝛼𝑗)(𝛼2 + 𝛼𝑗)

𝐴2
 

=
𝛼1𝛼2𝐴 + 𝛼1𝛼𝑗𝐴 + 𝛼2𝛼𝑗𝐴 + 𝛼𝑗(𝛼𝑗 + 1)𝐴

𝐴2(𝐴 + 1)
−
(𝛼1 + 𝛼𝑗)(𝛼2 + 𝛼𝑗)(𝐴 + 1)

𝐴2(𝐴 + 1)
 

=
𝛼1𝛼2𝐴 + 𝛼1𝛼𝑗𝐴 + 𝛼2𝛼𝑗𝐴 + 𝛼𝑗

2𝐴 + 𝛼𝑗𝐴

𝐴2(𝐴 + 1)

+
−𝛼1𝛼2𝐴 − 𝛼1𝛼𝑗𝐴 − 𝛼𝑗𝛼2𝐴 − 𝛼𝑗

2𝐴 − 𝛼1𝛼2 − 𝛼1𝛼𝑗 − 𝛼𝑗𝛼2 − 𝛼𝑗
2

𝐴2(𝐴 + 1)
 

=
𝛼𝑗𝐴 − 𝛼1𝛼2 − 𝛼1𝛼𝑗 − 𝛼𝑗𝛼2 − 𝛼𝑗

2

𝐴2(𝐴 + 1)
 

=
𝛼𝑗(𝐴 − 𝛼1 − 𝛼2 − 𝛼𝑗) − 𝛼1𝛼2

𝐴2(𝐴 + 1)
 

=
𝛼0𝛼𝑗 − 𝛼1𝛼2

𝐴2(𝐴 + 1)
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Now let's work through the denominator: 

𝑠𝑑(𝑌1)𝑠𝑑(𝑌2) = √
(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)

(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2)
2
(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2 + 1)

⋅ √
(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

(𝛼2 + 𝛼𝑗 + 𝛼0 + 𝛼1)
2
(𝛼2 + 𝛼𝑗 + 𝛼0 + 𝛼1 + 1)

 

= √
(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2)
4
(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2 + 1)

2 

=

√(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2)
2
(𝛼1 + 𝛼𝑗 + 𝛼0 + 𝛼2 + 1)

 

=

√(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

𝐴2(𝐴 + 1)
 

Combining the nominator and denominator: 

𝐶𝑜𝑟𝑟(𝑌1, 𝑌2) =
𝐶𝑜𝑣(𝑌1, 𝑌2)

𝑠𝑑(𝑌1)𝑠𝑑(𝑌2)
 

=

𝛼0𝛼𝑗 − 𝛼1𝛼2
𝐴2(𝐴 + 1)

√(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

𝐴2(𝐴 + 1)

 

=
−𝛼1𝛼2 + 𝛼0𝛼𝑗

√(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

 

This is an expression for the correlation between 𝑌1 and 𝑌2. 
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Next, we will describe a sampling procedure: 

As described above the correlation is given by: 

𝑟 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑌2) =
−𝛼1𝛼2 + 𝛼0𝛼𝑗

√(𝛼1 + 𝛼𝑗)(𝛼0 + 𝛼2)(𝛼2 + 𝛼𝑗)(𝛼0 + 𝛼1)

 

 

𝑐1 = 𝛼1 + 𝛼𝑗  

𝑐2 = 𝛼0 + 𝛼2 

𝑐3 = 𝛼2 + 𝛼𝑗  

𝑐4 = 𝛼0 + 𝛼1 

Rearranging: 

𝛼1 = 𝑐1 − 𝛼𝑗  

𝛼𝑗 = 𝑐3 − 𝛼2 

𝛼2 = 𝑐2 − 𝛼0 

𝛼0 = 𝑐4 − 𝛼1 

 

𝛼1 = 𝑐1 − 𝛼𝑗  

𝛼1 = 𝑐1 − 𝑐3 + 𝛼2 

𝛼1 = 𝑐1 − 𝑐3 + 𝑐2 − 𝛼0 

𝛼1 = 𝑐1 − 𝑐3 + 𝑐2 − 𝑐4 + 𝛼1 

𝑐4 = 𝑐1 + 𝑐2 − 𝑐3 

Since 𝑐1, … 𝑐4 are shape parameter of a beta distribution, 𝑐𝑖 > 0 

𝑐4 > 0 

𝑐1 + 𝑐2 > 𝑐3 
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Recall the correlation r: 

𝑟 =
−𝛼1𝛼2 + 𝛼0𝛼𝑗

√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3)
 

𝛼0𝛼𝑗 − 𝛼1𝛼2 = 𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) = (𝑐4 − 𝛼1)𝛼𝑗 − (𝑐1 − 𝛼𝑗)(𝑐2 − 𝛼0) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) = (𝑐4 − 𝑐1 + 𝛼𝑗)𝛼𝑗 − (𝑐1 − 𝑐3 + 𝛼2)(𝑐2 − 𝑐4 + 𝛼1) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) = (𝑐4 − 𝑐1 + 𝛼𝑗)𝛼𝑗 − (𝑐1 − 𝑐3 + 𝑐2 − 𝛼0)(𝑐2 − 𝑐4 + 𝑐1 − 𝛼𝑗) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3)

= (𝑐4 − 𝑐1 + 𝛼𝑗)𝛼𝑗 − (𝑐1 − 𝑐3 + 𝑐2 − 𝑐4 + 𝛼1)(𝑐2 − 𝑐4 + 𝑐1 − 𝛼𝑗) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3)

= (𝑐4 − 𝑐1 + 𝛼𝑗)𝛼𝑗 − (𝑐1 − 𝑐3 + 𝑐2 − 𝑐4 + 𝑐1 − 𝛼𝑗)(𝑐2 − 𝑐4 + 𝑐1 − 𝛼𝑗) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) = (𝑐4 − 𝑐1 + 𝛼𝑗)𝛼𝑗 − (𝑐1 − 𝛼𝑗)(𝑐3 − 𝛼𝑗) 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) = 𝛼𝑗𝑐4 − 𝛼𝑗𝑐1 + 𝛼𝑗
2 − 𝑐1𝑐3 + 𝑐1𝛼𝑗 + 𝑐3𝛼𝑗 − 𝛼

2 

𝑟√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) + 𝑐1𝑐3 = 𝛼𝑗(𝑐4 + 𝑐3) 

𝛼𝑗 = 𝑟
√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) + 𝑐1𝑐3

𝑐1 + 𝑐2
 

So, the 𝛼's can be expressed as a function of c's and r: 

𝛼𝑗 = 𝑟
√𝑐1𝑐2𝑐3(𝑐1 + 𝑐2 − 𝑐3) + 𝑐1𝑐3

𝑐1 + 𝑐2
 

𝛼1 = 𝑐1 − 𝛼𝑗  

𝛼2 = 𝑐3 − 𝛼𝑗 

𝛼0 = 𝑐4 − 𝑐1 + 𝛼𝑗 = 𝑐2 − 𝑐3 + 𝛼𝑗 
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Procedure for sampling: 

1. define values for 𝑐1, 𝑐2, 𝑐3(, 𝑐4) and r 

2. make sure that 𝑐3 < 𝑐1 + 𝑐2 and 𝑐𝑖 > 0 

3. calculate 𝛼1, 𝛼2, 𝛼𝑗 , 𝛼0 

4. make sure that 𝛼𝑖 > 0 

5. draw n samples from: 𝑋⃗ ∼ 𝑑𝑖𝑟(𝛼1, 𝛼2, 𝛼𝑗 , 𝛼0) 

6. calculate sums of 𝑋1, 𝑋2, 𝑋𝑗 for correlated beta values: 

a. 𝑌1 = 𝑋1 + 𝑋𝑗 

b. 𝑌2 = 𝑋2 + 𝑋𝑗 
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The following code will create correlated observations, that follow a beta distribution with the 

correlation r = {−1.00,−0.50, 0.00, 0.25, 0.75, 1.00}: 

 

This code proves the following scatterplots illustrating the specified correlations. Each 

subfigure’s title indicates the calculated correlation from the simulated specified and in 

parenthesis specified correlation: 
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