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Abstract 

Background: Acute alcoholic hepatitis (AH) is a distinct form of alcoholic liver disease 

characterized by acute jaundice and hepatic and systemic inflammation. Heavy alcohol 

consumption is well-tolerated by most individuals. Only a minority of heavy drinkers experience 

an episode of acute AH. Variation in resident and infiltrating macrophage immune response is 

believed to underly the variable penetrance observed in acute alcoholic hepatitis. Here we 

examine the relationship of SIRT7 and inflammatory cytokine expression in peripheral blood 

monocytes in alcoholic hepatitis. 

Objectives: The objectives of this study were to: 1) determine the relationship between p-

FOXO3, SIRT7, and inflammatory cytokine response in circulating monocytes in patients with 

acute AH; 2) assess the association between clinical outcomes, inflammatory cytokine 

expression levels, and SIRT7; and 3) to compare levels of p-FOXO3, SIRT7, and inflammatory 

cytokine expression in patients at varying risk for AH. 

Methods: Peripheral blood monocytes were isolated from patients with acute AH and various 

control groups and were treated with 100ng/mL lipopolysaccharide (LPS). Relative expression of 

SIRT7, TNFα, IL-6, IL-10, ICAM1, and CCL2 were measured using reverse transcriptase real-

time PCR. SIRT7 and cytokine expression data were assessed for correlation with model for end-

stage liver disease (MELD) score and Maddrey Discriminant Function (MDF) score.  

Results: Ninety-nine subjects, including 22 with acute AH were enrolled. There was no 

significant difference in LPS-stimulated SIRT7 expression among patients with AH, healthy 

controls, healthy drinkers (alcohol control), and sepsis patients (inflammatory control). In 

patients with AH, SIRT7 expression is correlated with CCL2 expression (R=0.689, P=0.0004). 

SIRT7 expression is not correlated with TNFα, IL6, ICAM1, IL10, MELD score, or MDF score. 
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LPS-stimulated levels of SIRT7 were not significantly different among patients hypothesized to 

be at low risk (healthy controls & healthy drinkers), medium risk (alcoholic & non-alcoholic 

cirrhosis), or high risk (previous history of AH) of developing acute AH.  

Conclusions: SIRT7 mRNA expression does not reflect monocyte or clinical phenotype. Further 

studies assessing SIRT7 and FOXO3 protein levels are needed.  
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Chapter 1: Introduction and Review of Literature 

Introduction 

Globally, over 600,000 people die annually of alcoholic liver disease (ALD). Effective 

treatments remain elusive, in part due to an incomplete understanding of the underlying disease 

mechanisms. Among heavy alcohol consumers, 85% remain free of liver disease. The remaining 

15% develop alcoholic liver disease which manifests as various forms of liver pathology ranging 

from steatosis and steatohepatitis to fibrosis, cirrhosis, and ultimately end-stage liver disease.1 

Approximately 20% of patients with alcoholic liver disease will experience one or more episodes 

of acute alcoholic hepatitis (AH). AH is an acute systemic inflammatory condition characterized 

by severe liver inflammation and acute jaundice. AH can occur in patients with relatively mild 

ALD (i.e. steatosis or mild steatohepatitis) and no previously recognized clinical signs of liver 

disease. More often, however, it occurs in the setting of underlying fibrosis or cirrhosis. While 

cirrhosis is irreversible, the acute inflammation and accompanying hepatic dysfunction seen in 

alcoholic hepatitis is reversible with abstinence from alcohol. Alcoholic hepatitis can progress to 

liver failure, multi-organ failure, and death. Current therapies, including glucocorticoids, 

pentoxifylline, and nutritional support, have limited efficacy. Thirty day mortality is 

approximately 20-30%.2,3 Although, for patients who survive the acute inflammatory phase of 

AH and who remain abstinent from alcohol, the prognosis is good.  

AH is a distinct form of ALD and is the focus of this thesis. However, it is important to 

note that AH exists within the broader category of ALD and shares many of the same 

epidemiological patterns and risk factors. Furthermore, the pathogenesis of AH and ALD are 

intertwined, with the existence of ALD increasing one’s risk for AH and episodes of AH 

contributing to the progression of ALD. Thus, the following introductory sections address the 



2 

 

epidemiology, risk factors, and pathogenesis of ALD more broadly before focusing specifically 

on AH as a distinct disease.  

Epidemiology of Alcohol Consumption and Alcoholic Liver Disease 

Heavy alcohol consumption is essential for the development of alcoholic liver disease. As 

such, the geographic distribution of the incidence and prevalence of alcoholic liver disease tends 

to mirror alcohol consumption patterns. According to the World Health Organization’s (WHO) 

“Global Status Report on Alcohol and Health,” alcoholic cirrhosis resulted in 607,000 deaths and 

22.2 million disability adjusted life years (DALYs) lost in 2016.4 43% of the world’s population 

over age 15 has consumed alcohol within the past year. From 2000 to 2016, the number of 

current drinkers, defined as those consuming alcohol within the past year, decreased from 63.5% 

to 54.1% in the Americas and from 70.1% to 59.9% in Europe. However, other areas of the 

world, especially China, have seen an increase in the number of current drinkers.  

The highest alcohol consumption per capita is seen in Russia and Eastern Europe 

followed by Western Europe and the Americas. The lowest per capita consumption is seen in the 

Middle East and Southeast Asia in predominantly Islamic populations. Since 2000, per capita 

alcohol consumption has remained relatively stable in the Americas and Africa. Europe has seen 

a decline in per capita alcohol consumption while Southeast Asia and the Western Pacific 

regions have seen increases in consumption. Globally, alcohol consumption has increased 

slightly from 2000 to 2016. The number of current drinkers has declined in most regions of the 

world since 2000, yet the number of per capita drinks has remained stable or increased in most 

areas of the world. Accordingly, the number of drinks per active drinker has increased globally 

since 2000, with an increase that is quite dramatic in some regions. This trend of increased levels 
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of alcohol consumption among active drinkers suggests that most regions of the world can 

anticipate an increase in the incidence of ALD over the next 10-30 years.  

In the United States, the National Vital Statistics Reports track ALD-related mortality 

from death certificates.5 In 2016, ALD resulted in 21,815 deaths in the United States. The overall 

death rate for ALD was 6.8 deaths per 100,000 people. The rate was more than twice as high in 

men (9.5 per 100,000) than women (4.1 per 100,000), which is true in all racial/ethnic categories. 

Among non-Hispanics, whites (7.7 per 100,000) have higher death rates than blacks (3.8 per 

100,000), and American Indian or Alaskan Natives have the highest rates at 28.4 per 100,000. 

The lowest rates are seen in Asian or Pacific Islanders at 1.4 deaths per 100,000. Hispanics have 

an intermediate rate at 6.1 deaths per 100,000. In general, the age adjusted rates are slightly 

lower but tend to mirror the unadjusted rates across the categories of gender, race, and ethnicity. 

Exceptions to this are Hispanics and American Indian/Alaskan Natives which have higher age 

adjusted rates (7.7 and 29.2 deaths per 100,000, respectively) which suggests that these minority 

populations experience mortality due to ALD at a younger age.   

Risk Factors for Alcoholic Liver Disease  

Alcoholic liver disease tends to affect individuals age 45-64 years old. Men are more 

likely to be heavy drinkers, and as a result are more likely to develop ALD. However, women are 

more sensitive to the hepatotoxic effects of alcohol, and for a given level of alcohol 

consumption, women are more likely than men to develop ALD.6–8 Genome-wide association 

studies have associated patatin-like phospholipase domain containing protein 3 (PNPLA3) with 

an increased risk of ALD and non-alcoholic fatty liver disease.9 Multiple environmental factors 

can increase one’s risk of developing ALD. Hepatitis C virus infection has been shown to act 

synergistically with alcohol in causing liver disease. Obesity and insulin resistance, which are 
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primary risk factors for nonalcoholic fatty liver disease, also increase one’s risk for developing 

ALD.10 Additionally, dietary patterns and gut microbiome have been associated with ALD.11 

Alcohol consumption leads to intestinal bacterial overgrowth and altered microbial flora 

including decreased Clostridiales, Akkermansia, and Bacteroides species and increased 

Enterobacteriaceae, Actinobacteria, Proteobacteria, and others.12,13 Animal models and early 

phase human studies have shown promising results in the treatment of AH from altering the gut 

microbiome through fecal microbiota transfer.14–16 

Natural History and Pathogenesis 

Alcoholic liver disease represents a spectrum of disease with multiple distinct 

classifications.17 Excessive alcohol consumption leads to steatosis (fatty deposition) in greater 

than 90% of drinkers. Approximately 30% of excessive drinkers will develop fibrosis, and with 

continued drinking, approximately 20% of all heavy drinkers will progress to cirrhosis. Those 

with cirrhosis are at risk for development of hepatocellular carcinoma which occurs at a rate of 

1.5% annually.1 Alcoholic hepatitis is a distinct entity characterized by acute liver inflammation 

and jaundice. It occurs in approximately 20% of heavy drinkers and can develop in the setting of 

steatosis, fibrosis, or cirrhosis. Importantly, steatosis and alcoholic hepatitis are reversible with 

abstinence. While cirrhosis is not reversible, mortality is much lower in those who remain 

abstinent.1  

The pathogenesis of alcoholic liver disease is incompletely understood. It is known that 

alcohol contributes to the development and progression of liver disease through both direct 

toxicity to hepatocytes and through indirect mechanisms.18 The major pathway of ethanol 

metabolism is via alcohol dehydrogenase which produces acetaldehyde via reduction of NAD+ 

to NADH. Acetaldehyde is further metabolized by aldehyde dehydrogenase to acetate; this 
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reaction also requires reduction of NAD+. The toxic intermediate, acetaldehyde results in 

microtubule dysfunction and production of reactive oxygen species. The increased 

NADH/NAD+ ratio results in oxidative mitochondrial damage resulting in decreased ATP 

production. The minor pathway of hepatic ethanol metabolism by cytochrome P450-2E1 also 

contributes to the production of acetaldehyde and ROS. Ethanol also results in damage to cellular 

membranes through interaction with and oxidation of membrane phospholipids.19 

In addition to the direct toxic effects of alcohol and its metabolites, the pathogenesis of 

alcohol in liver disease is known to involve immune mechanisms. Alcohol consumption disrupts 

the tight junctions between epithelial cells in the intestine, leading to bacterial translocation from 

the gut and release of bacterial lipopolysaccharide (LPS).20,21 This LPS enters the liver via the 

portal venous circulation where it can trigger an inflammatory immune response through 

interaction with hepatic macrophages. The pro-inflammatory effect of LPS is mediated through 

activation of toll-like receptor 4 which leads to induction of nuclear factor-kappaB (NF-κB) 

culminating in transcription of proinflammatory cytokines including TNFα, IL-1β, and IL-6. The 

mechanism of alcohol induced inflammation in AH is further expanded upon in Chapter 3, 

Introduction of Thesis.  
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Chapter 2: Retrospective Analysis of Monocyte Count in Alcoholic Hepatitis 

Introduction 

As discussed in Chapter 1 and Chapter 3, resident macrophages play a key role in the 

pathogenesis and resolution of inflammation in alcoholic hepatitis. Additionally, studies in 

animal models of alcoholic hepatitis (AH) have demonstrated that circulating monocytes 

infiltrate the liver and contribute to the pathogenesis of AH.22 In a small cohort of 12 patients, 

McKeever et.al. demonstrated that patients with AH have elevated absolute monocyte counts 

(AMC) compared to healthy controls.23 Shi and Thomas also report a single case of monocytosis 

in AH.24 To our knowledge, these two reports represent the only studies of AMC in AH. Given 

the small sample size contained in these previous studies, we sought to confirm these findings in 

a larger retrospective cohort. Additionally, we sought to evaluate the relationship between AMC 

in patients with alcoholic hepatitis and disease severity and prognosis.  

AH is characterized by an acute rise in bilirubin to greater than 3 mg/dL, AST 50-400 

IU/mL, and AST/ALT ratio of >1.5 in the setting of heavy alcohol consumption (>40 g/day for 

females, >60 g/day for males) for greater than 6 months.25 When AH presents classically, 

without any potentially confounding conditions, the diagnosis can be made clinically. However, 

in 10-20% of cases, an accurate diagnosis cannot be made without liver biopsy which is the gold 

standard for confirming the diagnosing AH.25 Liver biopsy is rarely performed in cases of AH 

due the associated risk of complications. For this reason, we also sought to evaluate whether 

AMC might be useful in aiding in the clinical diagnosis of AH. To assess the diagnostic utility of 

AMC in AH, we compare the AMC in cases of clinically and histologically diagnosed AH to a 

group of controls with histologically diagnosed non-AH alcoholic liver disease. 

Methods 



7 

 

Study Population. Patients age 18-70 admitted to a large tertiary care academic medical 

center hospital with an ICD-9/10 diagnosis code associated with alcoholic liver disease were 

identified retrospectively. Patients with ICD codes for infection (sepsis, spontaneous bacterial 

peritonitis, urinary tract infection, pneumonia), immunodeficiency, HIV, or hematologic 

malignancy were excluded. The full listing of ICD codes used for inclusion and exclusion can be 

found in Appendix A. Based on recommendations from the National Institute on Alcohol Abuse 

and Alcoholism (NIAAA) Alcoholic Hepatitis Consortia, the following laboratory inclusion 

criteria which are consistent with a probable diagnosis of AH were applied: AST >50, AST/ALT 

> 1.5, AST & ALT < 400, total bilirubin >3mg/dL.25 Patients meeting the inclusion/exclusion 

criteria were then divided into two groups: AH (cases) and ALD (controls) based on the 

following criteria. Patients with a clinical diagnosis of AH and no recent liver biopsy were 

classified as AH. Patients with a liver biopsy occurring within the 14 days prior or 30 after the 

inpatient admission were classified as either AH or ALD based on the results of the liver biopsy. 

Patients without either a clinical (ICD-9/10) diagnosis of acute AH or a history of ALD plus a 

liver biopsy were not considered for inclusion in this study.   

Only the patients’ first recorded admission for AH was included in the study. Subsequent 

readmissions for AH were excluded. Initial and follow up absolute monocyte count (AMC), 

absolute lymphocyte count (ALC), absolute neutrophil count (ANC), and white blood cell 

(WBC) count, were determined. Clinical outcomes including model for end-stage liver disease 

(MELD) score, Maddrey discriminant function (MDF), and 30-day, 90-day, 180-day, and 1-year 

mortality were assessed. MELD and MDF scores were calculated using the component lab 

values from a patient’s first labs obtained after admission. MDF score was estimated from the 

international normalized ratio (INR) value assuming a prothrombin control time of 12.0 seconds 
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and an international sensitivity index of 1.0. Data were automatically extracted through the 

center’s I2B2-based electronic health record research data repository.26,27 Data cleaning was 

conducting using SQLiteStudio version 3.2.1. Pathology reports were manually reviewed for 

patients receiving a liver biopsy. A histologic diagnosis of alcoholic hepatitis was defined as 

macrovesicular steatosis plus one or more of the following: neutrophil infiltration, hepatocyte 

ballooning, or Mallory-Denk bodies. This definition is consistent with recommendations from 

the National Institute on Alcohol Abuse and Alcoholism Alcoholic Hepatitis Consortia.25 

Statistical Analysis. Continuous variables were evaluated for normality using the 

Shapiro-Wilk test and quantile-quantile plots. One sample Student’s T test and the Wilcoxon 

signed-rank tests were used to compare the absolute blood counts to the reference ranges. Two-

sample T tests, Wilcoxon-Mann-Whitney test, and Fisher’s exact test were used to compare the 

AH group with the ALD control group. Spearman’s correlation coefficient was used to evaluate 

relationships between MELD, MDF, and AMC. AMC was compared between cases stratified as 

mild (MDF ≤ 32) or severe (MDF > 32) using the two-sample T test and the nonparametric 

Wilcoxon Mann-Whitney test. Logistic regression was used to evaluate the effect of AMC on 

30-day, 90-day 180-day, and 1-year mortality. The diagnostic utility of AMC was evaluated 

using receiver operating characteristic analysis to assess the ability of AMC to distinguish 

between cases of AH and ALD controls. All statistical analyses were conducted using SAS 

version 9.4, Cary, NC.  

Results 

Table 1 compares the demographic and study characteristics between the AH (cases) and 

the ALD (control) groups. The median age for patients in the AH cohort was 48 years which was 

slightly younger than patients in the ALD cohort (53 years, P = 0.0054). The distribution of race 
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and ethnicity was similar in the 2 cohorts. The two groups had similar MELD and MDF scores 

suggesting similar severity of liver disease. The ALD group had a significantly higher percentage 

of patients with HCV infection compared to the AH group (52% vs 20%, P = 0.0019).  

Table 1. Comparison of demographics, comorbidities, and clinical laboratory data between AH 

(cases) and ALD (controls).  

 AH (n = 164) ALD (n = 21) P valuea 

Age 48 (38 – 54) 53 (49 – 58) 0.0054 

Female 60 (37) 4 (19) 0.1117 

Race      

White 126 (77) 18 (86) 0.5735 

Black 14 (9) 3 (14)  

Other 22 (13) 0 (0)  

Unknown 2 (1) 0 (0)  

Ethnicity     0.7021 

Non Hispanic, Latino 

or Spanish Origin 

144 (78) 20 (95)  

Hispanic, Latino or 

Spanish Origin 

18 (11) 1 (5)  

Not Recorded 1 (1) 0 (0)  

HCV infection 33 (20) 11 (52) 0.0019 

HBV infection 5 (3) 1 (5) 0.5198 

MELD 26.2 ± 6.8 25.5 ± 6.7 0.6223 

MDF 53 (32 – 84) 47 (37 – 78) 0.6654 

Total Bilirubin 10.3 (5.89 – 18.2) 4.6 (3.8 – 9.1) 0.0022 

AST 139 (96 – 200) 108 (83 – 158) 0.0334 

ALT 56 (32 – 68) 48 (31 – 72) 0.8813 

Table Values are n (%) or mean ± SD or median (interquartile range). aP value calculated from t 

test, Wilcoxon-Mann-Whitney, or Fisher exact test as appropriate. AH = Alcoholic Hepatitis, 

ALD = alcoholic hepatitis, HCV = hepatitis C virus, HBV = hepatitis B virus MELD = model for 

end-stage liver disease, MDF = Maddrey discriminant function, AST = aspartate 

aminotransferase, ALT = alanine aminotransferase. 

 

The comparison of white blood cell counts to the normal reference ranges is summarized 

in Table 2. For the AH cohort, the mean WBC was 11.33 thousand cells per µL, which is not 

significantly higher than the normal reference range. The mean AMC for the AH cohort was 0.95 
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thousand cells per µL which is significantly higher than the upper limit of normal (P = 0.0015). 

The follow up AMC on day 10 of admission was also significantly elevated (mean=1.11, P = 

0.0039). The day 10 AMC was only available for 37 of 164 patients in the AH cohort and 6 of 21 

patients in the ALD cohort. Mean ANC was also elevated in the AH cohort (8.26 thousand cells 

per µL) (P = 0.0903); although this did not reach statistical significance. ALC was within the 

normal reference range. For the ALD cohort, AMC was similarly elevated (0.97 thousand cells 

per µL) (P = 0.0511). The mean WBC, ANC, and ALC were all within the reference range for 

the ALD cohort.  

Table 2. Comparison of white blood cell counts in each cohort to the normal reference ranges. 

  AH Cohort (n = 164)  ALD Cohort (n = 21)  AH vs 

ALD 

 Reference 

Rangea 

Mean 95% CI P 

Valueb 

 Mean 95% CI P 

Valueb 

 P 

Valuec 

WBC 4.5 – 11.0 11.33 (10.29 – 12.36) 0.3350  7.82 (6.66 – 8.99)   0.0432 

AMC 0.0 – 0.8 0.95 (0.87 – 1.02) 0.0015  0.97 (0.799 – 1.15) 0.0511  0.5749 

ANC 1.8 – 7.0 8.26 (7.48 – 9.04) 0.0903  5.42 (4.26 – 6.58)   0.0127 

ALC 1.0 – 4.8 1.32 (1.19 – 1.45)   1.29 (1.03 – 1.55)   0.9396 

AMC 

Day 10 

0.0 – 0.8 1.11 (0.91 – 1.31)    

n = 37 

0.0039  0.78 (0.37 – 1.18) 

n = 6 

  0.2844 

Units are in thousand cells per µL. aReference range refers to the normal laboratory reference 

range for the specified blood count. bP values for each cohort are obtained from one-sample t test 

or Wilcoxon signed rank test and are in comparison to the upper limit of the normal reference 

range. P values are omitted for measures falling within the normal reference ranges. cP value 

obtained from Wilcoxon-Mann-Whitney test comparing the mean blood count from the AH 

cohort to the ALD cohort. WBC = white blood cell count, AMC = absolute monocyte count, 

ANC = absolute neutrophil count, ALC = absolute lymphocyte count. 

 

In comparing the AH cohort and the ALD cohort (Table 2), the AH group had 

significantly higher white blood cell count (WBC) and absolute lymphocyte count (ALC). There 

was no significant difference in absolute monocyte count (AMC) or absolute lymphocyte count 

(ALC) between the two groups. When the analysis of AMC was limited to only those patients 
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with biopsy confirmed AH (n = 9) there remained no significant difference in AMC between the 

AH group (median AMC 0.70, IQR 0.60-1.10) and the ALD group (median AMC 1.00, IQR 

0.78 – 1.19) (P = 0.4545). The receiver operating characteristic analysis which was used to 

assess the ability of AMC to distinguish between cases of AH and ALD controls indicates that 

AMC is neither sufficiently sensitive nor specific. The area under the ROC curve was 0.5377 

(Figure 1).  

 

Figure 1. ROC Curve for absolute monocyte count.  

AMC is neither sensitive nor specific for distinguishing cases of AH from ALD controls. Area 

Under the Curve = 0.537. 

 

 In patients with alcoholic hepatitis, AMC was found to be positively correlated with 

MELD score with a Spearman’s correlation coefficient (R) of 0.400, P < 0.0001 (Figure 2). 

AMC was similarly correlated with discriminant function score (R = 0.330, P < 0.0001) (Figure 

3). Patients with severe AH defined as MDF ≥ 32 have a mean monocyte count of 1.01 thousand 

cells per µL which is significantly higher than patients with mild AH (MDF < 32) who have a 

mean monocyte count of 0.75 (P = 0.0011). Similarly, patients with a MELD score of greater 
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than 20 have a higher mean AMC (1.02 thousand cells per µL) compared to patients with a 

MELD score ≤ 20 (mean AMC 0.71 thousand cells per µL) (P = 0.0002).  

 
Figure 2. Correlation between MELD score and absolute monocyte count. 
n = 163, Spearmans R = 0.400, P < 0.0001. Shown with 95% prediction ellipse. 

 

 

Figure 3. Correlation between MDF and absolute monocyte count.  

n = 163, Spearman's R = 0.330, P < 0.0001. Shown with 95% prediction ellipse.  



13 

 

In the AH cohort, 30-day, 90-day, 180-day and 1-year mortality were 9%, 14%, 17%, 

24%, respectively. Initial AMC following admission for AH was not associated with an 

increased odds of 30-day, 90-day, 180-day, or 1-year mortality. Follow up AMC on day 10 (+/- 2 

days) was associated with increased odds of mortality at 30 days (OR 5.30, 95% CI 1.00-28.19), 

90 days (OR 2.55, 95% CI 0.69 – 9.50), 180 days (OR 3.92, 95% CI 1.01-15.31), and 1 year (OR 

4.33, 95% CI 1.10-17.05). Due to the small number of cases with a follow up AMC on day 10 of 

admission these odds ratios contain a large degree of uncertainty as seen in the wide confidence 

intervals. Additionally, the effect of day 10 AMC on odds of mortality did not reach the 

traditional threshold for statistical significance for 30 and 90-day mortality. 

Discussion 

 This retrospective cohort study supports the findings from McKeever et.al. of an elevated 

absolute monocyte count in alcoholic hepatitis.23 We also find that absolute monocyte count is 

positively correlated with disease severity as determined by MELD and MDF scores. Monocyte 

count at the time of admission was not associated with an increased odds of mortality. However, 

follow up monocyte count on day 10 (± 2 days) of hospital admission was associated with an 

increased odds of mortality. The day 10 monocyte count was only available for 37 out of 164 

patients in the AH cohort. The availability of a day 10 monocyte count indicates that these 

patients were hospitalized for at least 8 days and were still receiving regular blood counts. As 

such, these 37 patients likely represent a more severely ill group and the association of AMC 

with increased odds of mortality may not generalize to all patients with AH. Additionally, this 

relatively small sample size leads to wide confidence intervals for the odds ratio. For these 

reasons our findings of increasing odds of mortality with increasing day 10 monocyte count 

should be interpreted with caution.  
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 One of the objectives of this study was to determine the diagnostic utility of AMC in 

alcoholic hepatitis. It is uncommon for patients with suspected AH to receive a confirmatory 

liver biopsy. For this reason, we opted to compare patients with clinically or histologically 

diagnosed AH to a cohort of ALD controls. The ALD control group was defined as patients who 

were admitted to the hospital with a primary diagnosis of alcohol-related liver disease (e.g. 

alcoholic cirrhosis, fibrosis, decompensated cirrhosis) and who met the clinical laboratory 

criteria for a probable diagnosis of AH (AST > 50, AST/ALT > 1.5, AST & ALT < 400, total 

bilirubin > 3mg/dL). The control patients were required to have had a liver biopsy confirming the 

absence of alcoholic hepatitis on histology within the 14 days prior or 30 days after their hospital 

admission. Thus, we were able to define a control cohort of patients that had a clinically similar 

presentation to patients with alcoholic hepatitis (i.e. hospitalization with jaundice, elevated AST, 

and a history of alcohol use) who did not have histological findings consistent with AH. We then 

compared this ALD control cohort to patients with a clinical (non-histological) diagnosis of AH. 

In doing so we found that AMC is elevated to a similar degree in both the AH cases and ALD 

controls. This finding was confirmed in subgroup analysis consisting only of patients with 

histologically confirmed AH. Future studies should evaluate whether AMC is elevated in 

patients with other causes of cirrhosis, such as viral hepatitis, autoimmune diseases, and non-

alcoholic steatohepatitis. This would help determine if elevated AMC is a feature of chronic liver 

disease in general or if elevated AMC is unique to alcohol-related liver disease.  

The findings of elevated AMC in patients with AH and ALD are important in that they 

provide evidence that circulating monocytes play a role in the pathogenesis of alcoholic liver 

diseases. Previous studies have demonstrated hepatic infiltration of circulating monocytes in 

animal models of AH. In combination with these previous studies, the findings presented here 
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suggest that peripheral monocytes can be utilized to provide insight into the pathogenesis of 

alcoholic hepatitis. This approach is utilized in the remainder of this thesis, where we evaluate 

SIRT7 and cytokine expression in peripheral blood monocytes from patients with alcoholic 

hepatitis.  
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Chapter 3: Rational for Studying FOXO3 and SIRT7 in Alcoholic Hepatitis 

Background 

Acute alcoholic hepatitis (AH) is characterized by prolonged hepatic and systemic 

inflammation and can progress to liver failure, multi-organ system failure, and death. Disease 

penetrance for AH is highly variable among heavy drinkers.7 Approximately 15% experience 

AH, while the other 85% appear to be protected. Variation in resident and infiltrating 

macrophage immune response is believed to underlie the variable penetrance observed in acute 

AH. Although the underlying mechanisms are incompletely understood, it is known that alcohol 

causes release of lipopolysaccharide (LPS) from the gut which interacts with hepatic 

macrophages leading to inflammatory cytokine production in alcoholic hepatitis. In Chapter 2, 

we demonstrate that AH patients have elevated numbers of circulating monocytes. Further, it has 

previously been shown that monocytes from patients with AH produce increased levels of TNFα, 

IL6, and MCP-1 in response to stimulation with LPS.28–31  

The forkhead box transcription factor FOXO3 appears to play a key role in the 

susceptibility to and pathogenesis of alcoholic hepatitis. FOXO3 has been shown to have 

hepatoprotective effects in alcohol fed mice, and suppression of FOXO3 by the combination of 

alcohol and hepatitis C virus (HCV) has been shown to lead to more severe liver injury.32 The 

transcriptional activity of FOXO3 is highly variable and is dependent upon post-translational 

modifications. LPS has been shown to induce JNK-dependent phosphorylation of FOXO3 at 

serine-574.33 S-574 phospho-FOXO3 (pFOXO3) has altered promoter specificity which leads to 

apoptosis of monocytes and macrophages and downregulation of inflammation through 

suppression of NF-κB and inflammatory cytokines.33–36 The phosphorylation of FOXO3 at 

serine-574 by JNK is largely limited to the acetylated version of FOXO3.37 The acetylation status 
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of FOXO3 is regulated by the histone deacetylases SIRT1 and SIRT7. It has also been shown 

that in patients with AH, SIRT7 is upregulated which leads to decreased acetylation of FOXO3 

and thus prevents phosphorylation of FOXO3 and suppression of the inflammatory phenotype 

observed in AH.37   

Objectives 

The objectives of this study were to 1) determine the relationship between p-FOXO3, 

SIRT7 and inflammatory cytokine response in circulating monocytes in patients with acute 

alcoholic hepatitis; 2) assess the association between clinical outcomes, inflammatory cytokine 

expression levels, and SIRT7; and 3) to compare levels p-FOXO3, SIRT7, and inflammatory 

cytokine expression in patients at varying risk for alcoholic hepatitis.  

We hypothesized that patients with alcoholic hepatitis have elevated levels of SIRT7 

compared to controls, which leads to decreased formation of anti-inflammatory pFOXO3 and 

thereby produces an enhanced inflammatory phenotype in monocytes and a more severe clinical 

phenotype. Additionally, we hypothesized that abnormalities in SIRT7 and LPS induced 

cytokine expression would exist in patients at high risk for alcoholic hepatitis, including those 

with a history of alcoholic hepatitis and alcoholic cirrhosis, compared to controls.   
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Chapter 4: Methods 

Study Approval 

This study was approved by the institutional review board at the University of Kansas 

Medical Center. All subjects provided informed consent. 

Patient Selection and Definition of Study Groups 

Subjects age 18-70 years old from the following seven groups were included in this study:  

1. Acute Alcoholic Hepatitis: Subjects with severe acute alcoholic hepatitis were recruited 

from the inpatient hepatology consult service at a large tertiary academic medical center. 

A diagnosis of severe acute alcoholic hepatitis was defined as a consulting hepatologist’s 

clinical diagnosis of acute alcoholic hepatitis with supporting evidence including elevated 

aspartate aminotransferase (AST), AST/alanine aminotransferase (ALT) ratio of greater 

than 1, elevated total bilirubin, a history of alcohol consumption consistent with alcoholic 

hepatitis, and no other identified etiology of liver disease.  

2. Sepsis: Patients with sepsis were recruited in the inpatient setting of the same hospital 

through monitoring of the institution’s positive blood culture log which is updated daily 

by the clinical lab. The diagnosis of sepsis was based on positive blood cultures and two 

or more systemic inflammatory response syndrome (SIRS) criteria (Temperature > 38 C 

or < 36 C, heart rate > 90 beats/min, respiratory rate > 20 breaths/min, white blood cell 

count greater than 12,000/µL or less than 4,000/µL with 10% band neutrophils) at the 

time blood cultures were drawn.  

3. Alcohol Controls: Individuals with current, regular alcohol consumption and no known 

current or previous liver disease. The Substance Abuse and Mental Health Services 

Administration (SAMHSA) defines heavy alcohol consumption as binge drinking (4 or 
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more drinks for females or 5 or more drinks for males on the same occasion) on 5 or 

more days per month. The National Institute on Alcohol Abuse and Alcoholism 

(NIAAA) defines low risk drinking as no more than 7 drinks per week for women and no 

more than 14 drinks per week for men. Thus, for the purpose of this study, regular 

alcohol consumption was defined as individuals either meeting the definition of heavy 

alcohol consumption or exceeding 14 drinks per week for men or exceeding 7 drinks per 

week for women These subjects were recruited from the community. Subjects with a 

history of liver disease or viral hepatitis were excluded from this group. 

4. Alcoholic Cirrhosis: Patients with a histologic, radiographic, or clinical diagnosis of 

alcoholic cirrhosis were recruited from outpatient hepatology clinics. This group includes 

patients on the liver transplant waiting list. Patients with alcohol consumption within the 

last three months were excluded from this group, as were patients with other etiologies of 

cirrhosis. 

5. Cirrhotic Controls (non-alcohol related cirrhosis): Patients with a histologic, 

radiographic, or clinical diagnosis of cirrhosis and no history of regular heavy alcohol 

consumption were recruited from outpatient hepatology clinics. 

6. History of Alcoholic Hepatitis: this group includes patients who were hospitalized within 

the past 5 years for an episode of severe alcoholic hepatitis. Patients with ongoing alcohol 

consumption within the previous 3 months were excluded. Patients with evidence of 

ongoing systemic inflammation as evidenced by a temperature > 37.8, elevated white 

blood cell count, or recent changes in bilirubin or INR were also excluded.  

7. Healthy Controls: Healthy adults with no history of heavy alcohol use and no history or 

evidence of liver disease were recruited from the community.  
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The following exclusion criteria were applied to all of the study groups. Subjects with 

immune deficiencies, HIV, HBV, active malignancy, or current infection (except the sepsis 

group) were excluded. Patients taking immunosuppressive medications, other than 

glucocorticoids for the treatment of alcoholic hepatitis, were excluded.  

Outpatient subjects (groups 4, 5, & 6 above) were identified through hepatology clinic 

schedules and were recruited during their regularly scheduled outpatient visits. Community 

volunteers (groups 3 & 7) were recruited through distribution of recruitment flyers on the 

medical center campus and in the community. Community volunteer subjects (groups 3 & 7) 

were compensated twenty dollars for their participation.  

Monocyte Isolation 

5-20 milliliters of whole blood was collected from subjects through venipuncture or 

through existing arterial or intravenous catheters into EDTA tubes. Whole blood samples were 

stored on ice or at 4 degrees Celsius until further processing which occurred within eight hours 

of sample collection. Whole blood components were separated by centrifugation at 350 x g for 

15 minutes. The buffy layer (3-4 mL) containing the white blood cells was extracted and diluted 

with an equal volume of phosphate buffered saline (PBS). Peripheral blood mononuclear cells 

(PBMCs) were then isolated using a density gradient method. The PBS/blood mixture was 

layered on top of a density gradient solution (Histopaque-1077, Sigma-Aldrich) and centrifuged 

at 150 x g for 30 minutes. The PBMCs were removed from the interphase and washed with PBS. 

Peripheral blood monocytes were then isolated from the PBMC fraction using anti-CD14 

antibody conjugated microbeads and magnetic column separation (MACS Cell Separation, 

Miltenyi Biotec). Freshly isolated monocytes were resuspended in 2 mL of RPMI 1640 medium 

(Gibco) and divided into four fractions in a 24 well culture plate. After approximately 12-24 
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hours in culture, two of the four wells for each sample were treated with 500 mL of 200 ng/mL 

Escherichia coli lipopolysaccharide (LPS) in RPMI for a final LPS concentration of 100 ng/mL. 

An additional 500 mL of RPMI (without LPS) was added to the untreated samples at the same 

time as LPS treatment to maintain an equal volume of 1mL in both the untreated and LPS treated 

samples. After 6 hours, cells were collected for protein and RNA analysis. 

RNA Analysis 

RNA was isolated using the acid guanidinium thiocyanate-phenol-chloroform extraction 

method (TRIzol Reagent, Invitrogen). cDNA was prepared from total RNA using a cDNA 

reverse transcription kit with random primers (Applied Biosystems). Quantitative real-time PCR 

was performed using a CFX96 real-time system (Bio-Rad, Hercules, CA, USA). 20 microliter 

reaction volumes utilizing 10 µL of 2x iQ SYBR Green Supermix (Bio-Rad), 3 µL of cDNA 

(diluted 1:4) and 7 µL of 1 µmol/L forward and reverse primer solution. Gene expression 

normalized to GAPDH was determined for interleukin 6 (IL-6), interleukin 10 (IL-10), 

intracellular adhesion molecule 1 (ICAM1), tumor necrosis factor alpha (TNFα), chemokine (C-

C motif) ligand 2 (CCL2), and SIRT7. PCR primer sequences are available in Appendix B. 

Statistical Analysis 

The mRNA expression data was not normally distributed and had frequent outliers. For 

this reason, nonparametric tests were exclusively utilized in the analysis. The Kruskal-Wallis test 

was utilized to compare relative mRNA expression for SIRT7 and cytokines among different 

patient groups with the null hypothesis of equivalency among groups. In cases where the null 

hypothesis was rejected at a type I error rate (alpha) of 5%, post-hoc pairwise comparisons were 

conducted for all groups using the Dwass, Stell, Critchlow-Flinger Method. The effect of 

treatment with LPS on each of the six mRNA targets within each of the seven patient groups was 
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assessed using a Wilcoxon-signed rank test for each comparison. SIRT7 expression, cytokine 

expression, and clinical severity (MELD score) were assessed for simple correlation using 

Spearman’s rank correlation. Statistical analysis and generation of plots were conducted using 

SAS version 9.4, Cary, NC.  
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Chapter 5: Results 

Subject Recruitment and Demographics 

 A total of 99 subjects meeting inclusion/exclusion criteria were enrolled between July 

2017 and February 2019. The number of subjects in each study group as well as the distribution 

of age and sex within each group is summarized in Table 3. Fifty-four percent of subjects were 

male. The distribution of sex was not equal within the 7 patient groups (P = 0.0351, Pearson Chi-

Square). A higher proportion of males was seen in the acute AH group (77%) and the healthy 

control group (78%). The overall median age was 51 (IQR 36-57). The distribution of age was 

not equivalent across the 7 study groups (P < 0.0001). The cirrhotic control group was 

significantly older than the acute AH group (P = 0.0159) and the alcohol control group (P = 

0.0029). The alcoholic cirrhosis group was also significantly older than the alcohol control group 

(P = 0.0118). Table 4 summarizes the clinical laboratory data for the acute alcoholic hepatitis 

group.  Prior to initiation of recruitment for this study, samples from healthy controls were 

collected under a separate biobanking protocol. For a portion of the healthy control samples 

collected under this protocol, the subject age was not collected. We are therefore unable to report 

the exact distribution of age in the healthy control group. We estimate that the healthy controls 

range in age from 25 to 60 with the distribution skewed towards a younger population compared 

to the overall study population.  
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Table 3. Demographics 

Study Group N 

Age 

Median (IQR) Sex (% M) 

MELD 

Median (IQR) 

Acute 

Alcoholic 

Hepatitis 

22 45 (32-56) 77 27 (21-38) 

History of 

Alcoholic 

Hepatitis 

14 46 (36-53) 43 12 (10-15) 

Alcoholic 

Cirrhosis 
13 55 (46-60) 54 14 (10-18) 

Cirrhotic 

Controls 
14 61 (56-66) 36 9 (8-12) 

Sepsis 14 54 (30-59) 57 N/A 

Alcohol 

Controls 
12 28 (27-43) 25 N/A 

Healthy 

Controls 
10 unknown* 78 N/A 

Total 99 51 (36-57) 54 16 (10-24) 

 

 

Table 4. Clinical Laboratory Data for the Acute Alcoholic Hepatitis Group 

Measure Median IQR 

MDF 58 (42-91) 

AST 133 (77-178) 

ALT 62 (35-76) 

Alkaline Phosphatase 153 (121-232) 

Total Bilirubin 16.6 (10-30) 

White Blood Cell Count 13.6 (9.4-17.7) 

Absolute Monocyte Count 1.2 (0.8-1.4) 
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SIRT7 and Inflammatory Cytokine Response in Acute Alcoholic Hepatitis 

To determine the relationship between SIRT7 and inflammatory cytokine expression we 

measured basal and LPS-stimulated mRNA levels (normalized to GAPDH) for SIRT7, IL6, 

IL10, TNFα, CCL2, and ICAM-1 in peripheral blood monocytes from patients with acute 

alcoholic hepatitis and the following control groups: healthy controls, alcohol controls, and 

sepsis.  These results are summarized in Figure 4. There was no significant increase in SIRT7 

mRNA expression after treatment with LPS for 6 hours (P > 0.05 for all four groups, Wilcoxon 

Signed-Rank test). With regards to basal SIRT7 expression levels, the alcohol control group had 

significantly higher SIRT7 expression compared to the acute AH group (P = 0.0039), healthy 

control group (P = 0.0008), and sepsis group (P = 0.0177). The sepsis group had significantly 

higher SIRT7 expression compared to healthy controls (P = 0.0419). There was no significant 

difference in SIRT7 expression between the acute AH group and the sepsis group (P = 0.6875) 

or the healthy control group (P = 0.3868). There were no significant differences in SIRT7 

expression after treatment with LPS or in fold-change of SIRT7 expression among the 4 groups 

(Figure 4 A). 

Basal TNFα expression was not significantly different among the 4 groups (Figure 4 B). 

LPS treatment resulted in a significant increase in TNFα expression for the acute AH group (P = 

0.0003), the alcohol control group (P = 0.0005), and the sepsis group (P < 0.0001); the increase 

in TNFα expression after LPS for healthy controls did not reach statistical significance (P = 

0.0625). After treatment with LPS, the alcohol control group had significantly higher TNFα 

expression compared to the acute AH group (P = 0.0283). The remaining groups had similar 

levels of TNFα expression. 



26 

 

Basal IL6 levels were low for all four groups (Figure 4 C). Treatment with LPS resulted 

in increased IL6 expression (P < 0.001 for all groups except healthy control, P = 0.0625). After 

treatment with LPS, the alcohol control group had significantly higher IL6 expression compared 

to the acute AH group and the sepsis group (P = 0.0004 and P = 0.0325, respectively). The fold 

change in IL6 expression after LPS treatment was greatest for the alcohol control group.  

Basal ICAM1 expression was low in all 4 groups but was significantly lower in the 

alcohol control group than in the other 3 groups (P < 0.01 for all). ICAM1 expression was 

increased by treatment with LPS (P < 0.001 for all groups except healthy control, P = 0.125). 

Following treatment with LPS, all 4 groups had similar levels of ICAM1 expression (P = 0.0751) 

(Figure 4 D). 

Basal CCL2 expression was significantly lower in the healthy control group compared to 

the other 3 groups (P < 0.01 for all). Treatment with LPS increased the level of CCL2 expression 

in the acute AH group (P = 0.0105) and the sepsis group (P = 0.0203) but not in the alcohol 

control group (P = 0.6221) or the healthy control group (P = 0.4316). After treatment with LPS, 

CCL2 expression was not significantly different among the 4 groups (P = 0.0773) (Figure 4 E). 

Basal expression of the anti-inflammatory cytokine IL10 was low in all groups but was 

significantly lower in the alcohol control group compared to acute AH (P = 0.0073) and sepsis 

(P = 0.0432). Treatment with LPS resulted in a significant increase in IL10 expression in acute 

AH (P < 0.0001), alcohol controls (P = 0.0005), healthy controls (P = 0.0371), and sepsis (P = 

0.0002). Treatment with LPS produced the largest IL10 increase in the alcohol control group. 

Post-LPS levels of IL10 were significantly higher in the alcohol control group compared to 

healthy controls (P = 0.0105). All other groups had similar post-LPS levels of IL10 (Figure 4 F).  
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Figure 4. SIRT7 and Cytokine mRNA Expression in Alcoholic Hepatitis Compared to Alcohol 

Controls, Healthy Controls, and Sepsis Controls   
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Relationship Between SIRT7, Cytokine Expression, and Clinical Severity 

 Spearman’s correlation coefficient was used to assess the relationship between SIRT7 

mRNA expression, cytokine expression and clinical severity. Correlations were assessed for all 

subject groups combined and for the acute AH group only. For all subject groups combined, 

basal SIRT7 levels were correlated with basal CCL2 levels (R = 0.619, P < 0.0001) but not with 

basal levels of TNFα, IL6, ICAM1, IL10, or MELD score. Basal SIRT7 levels were correlated 

with the following cytokines levels after stimulation with LPS: IL10 level (R = 0.447, P < 

0.0001), IL6 level (R = 0.282, P = 0.0089), TNFα level (R = 0.430, P < 0.0001), and CCL2 (R = 

0.470, P < 0.0001). LPS-stimulated levels of SIRT7 were correlated with LPS-stimulated levels 

of IL10 (R = 0.347, P = 0.0006), TNFα (R = 0.425, P < 0.0001), and CCL2 (R = 0.724, P < 

0.0001). LPS-stimulated levels of SIRT7 were not correlated with MELD score, ICAM1, or IL6. 

MELD score was inversely correlated with basal ICAM levels (R = -0.305, P = 0.0224), post-

LPS IL-10 levels (R = -0.413, P = 0.0009), basal IL6 levels (R = -0.473, P = 0.0002), and basal 

TNFα levels (R = -0.363, P = 0.0059). 

 For the acute AH group, basal SIRT7 levels were correlated with basal CCL2 levels (R = 

0.534, P = 0.0105), and LPS-stimulated SIRT7 level was correlated with LPS-stimulated CCL2 

(R = 0.689, P = 0.0004). SIRT7 expression was not correlated with TNFα, IL6, ICAM1, IL10, 

MELD score, or MDF score. Neither MELD score nor MDF were correlated with basal or LPS-

stimulated levels of SIRT7, ICAM1, TNFα, IL6, CCL2, or IL10 in the acute alcoholic hepatitis 

group.  

Comparison of SIRT7 and Cytokine Expression in Patients at Varying Risk for AH 

We hypothesized that SIRT7, as a mediator of inflammation, would have relatively 

higher expression in patients at high risk compared to patients at low risk for acute alcoholic 
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hepatitis. This hypothesis was based on the assumption that alcohol abstainers (healthy controls) 

and regular alcohol consumers without a history of liver disease (alcohol controls) would 

represent a groups of individuals at low risk of developing acute AH, patients with non-alcohol 

related cirrhosis would represent an intermediate risk group, and patients with alcoholic cirrhosis 

or a previous history of AH would represent the highest risk of developing acute AH. To test this 

hypothesis, we measured basal and LPS-stimulated levels of SIRT7 and inflammatory cytokines 

in monocytes from the following five patient groups: healthy controls, alcohol controls, cirrhotic 

controls (non-alcohol related cirrhosis), alcoholic cirrhosis, and patients with a history of 

cirrhosis. The findings from this experiment are summarized in Figure 5.  

 SIRT7 expression at baseline was significantly lower in the healthy control group than 

the alcohol control group (P = 0.0012), the cirrhotic control group (P = 0.0468), and the 

alcoholic cirrhosis group (P = 0.0047). The group with the highest hypothesized risk of 

developing acute AH (those with a previous history of AH) did not have significantly different 

SIRT7 mRNA levels than any of the other groups. None of the five groups had a significant 

increase in SIRT7 expression after treatment with LPS, and there was no significant difference in 

LPS-stimulated levels of SIRT7 mRNA among any of the five groups (Figure 5 A). Basal TNFα 

expression was low for all five groups and increased with LPS. After treatment with LPS, TNFα 

expression was similar for all five groups (Figure 5 B). 

Basal IL-6 expression was low for all five groups and increased post-LPS treatment (P < 

0.01 for all groups except healthy controls P = 0.0625). Following treatment with LPS both the 

cirrhotic control group (P = 0.0178) and the alcohol control group (P = 0.0041) had significantly 

higher IL-6 mRNA levels than the history of AH group. All other groups had similar levels of 

IL-6 (Figure 5 C). Basal ICAM1 expression was low in all five groups and increased 
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significantly in all groups (P < 0.01 for all) except the healthy control group (P < 0.1250). Post-

LPS ICAM1 level was similar across all groups except for cirrhotic controls which were 

significantly higher than alcohol controls (P = 0.0027) (Figure 5 D). 

Basal CCL2 expression was low and did not increase with LPS in any of the five groups 

(P > 0.05 for all). Post-LPS CCL2 expression was similar among the five groups (P = 0.1113) 

(Figure 5 E). Basal expression of the anti-inflammatory cytokine IL-10 was low in all groups and 

increased significantly following stimulation with LPS (P < 0.05 for all). Following treatment 

with LPS, the healthy control group had significantly lower IL-10 expression than the alcohol 

control group (P = 0.0166), the cirrhotic control group (P = 0.0030), the alcoholic cirrhosis 

group (P = 0.0090), and the history of AH group (P = 0.0135). Additionally, the history of AH 

group had significantly lower IL-10 expression than the cirrhotic control group (P = 0.0118) 

(Figure 5 F). 
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Figure 5. SIRT7 and Cytokine mRNA Expression in Patients at Varying Risk for Acute 

Alcoholic Hepatitis 
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Chapter 6: Discussion 

This cross-sectional study of SIRT7 expression in peripheral blood monocytes from 

patients with acute alcoholic hepatitis and various control populations is the first known study of 

its kind. Based on previously published findings demonstrating the protective role of pFOXO3 in 

alcohol induced liver injury and the regulation of pFOXO3 by SIRT7, we hypothesized that 

SIRT7 would be elevated in patients with acute AH. We also hypothesized that through 

deacetylation of FOXO3, elevated SIRT7 would be associated with increased inflammatory 

cytokine production and therefore a more severe clinical phenotype. The results presented here 

are unanticipated and are not consistent with these hypotheses.  

In our analysis of SIRT7 mRNA expression we found that basal and LPS-stimulated 

levels of SIRT7 mRNA in monocytes from patients with acute AH were not significantly 

different from either healthy controls or inflammatory controls (sepsis) and were about 3-fold 

lower than in the alcohol control group. This finding seems to suggest that SIRT7 is not a unique 

regulator of monocyte phenotype in alcoholic hepatitis. However, it may be the case that total 

mRNA levels do not reflect the SIRT7 protein levels or SIRT7 activity which may be controlled 

by other mechanisms. For example, SIRT7 expression is translationally regulated by various 

micro RNAs (including miR-125a-5p, miR-125b, miR-93, miR-3666, and miR-340) which have 

been shown to downregulate SIRT7 activity.38–42 SIRT7 has also been shown to be post-

translationally regulated through phosphorylation by cyclin-dependent kinase 1 and AMP-

activated protein kinase as well as polyubiquitination. Immunoblots for SIRT7 are needed to 

confirm the relationship between SIRT7 mRNA and protein levels before we can draw definitive 

conclusions regarding relative SIRT7 levels in monocytes in alcoholic hepatitis.  
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 We did not see increased TNFα, IL-6, IL-10, CCL2, or ICAM mRNA expression in AH 

patients. This finding is inconsistent with previous reports. McClain et.al. report elevated basal 

and LPS-stimulated levels of TNFα in monocytes from 16 AH patients compared to healthy 

controls.28 Schafer et.al. report increased TNFα in LPS-stimulated monocytes from patients with 

alcoholic fatty liver, alcoholic cirrhosis, and alcoholic hepatitis compared to healthy controls; 

increased IL-6 production was only seen in monocytes from patients with alcoholic fatty liver.29 

Devalaraja et.al. report increased basal and LPS-stimulated CCL2 in monocytes from a cohort of 

15 patients with alcoholic hepatitis compared to healthy controls.30 Importantly, these three 

studies all measured cytokine levels in the cytosol and/or culture media rather than using 

cytokine mRNA levels as we have utilized in this study. As discussed above for SIRT7, mRNA 

levels at the time of cell collection may not reflect protein expression. Thus, it would be 

preferable to measure cytosolic and/or media cytokine levels in addition to mRNA levels. 

Furthermore, we utilized a 6-hour duration of LPS treatment which may not have been optimal 

for identifying changes in mRNA expression for each the various cytokines measured. Schafer 

et.al. and Hill et.al. utilized a 3-hour LPS treatment for stimulating TNFα and Devalaraja et.al 

utilized a 20-hour LPS incubation prior to measuring CCL2. Thus, differences in both the 

method of measuring cytokine expression and duration of LPS treatment may explain the 

discrepancy in our findings. 

Our study has several limitations, including the limitation of using mRNA expression as 

an indicator of SIRT7 and cytokine levels, as discussed above. Additionally, the distribution of 

age and sex was not equivalent in each of our seven study groups which may confound the 

results.  
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Future Directions 

The results presented here represent one component our proposed research plan. We plan 

to extend our analysis of cytokine production by using enzyme-linked immunosorbent assay 

(ELISA) to measure cytokine concentrations in monocyte culture medium. If this cytokine 

analysis reveals a difference in inflammatory phenotype between AH and control monocytes, we 

will evaluate whether the difference can be explained by SIRT7 or pFOXO3 protein levels.  

A central component to our hypothesis is the role of FOXO3 in regulating inflammatory 

phenotype through transcriptional activation. The experiments presented here did not measure 

FOXO3. Rather, we evaluated the inflammatory phenotype of AH monocytes and the association 

with SIRT7, which we believed to be a key regulator of FOXO3 activity. In order to directly 

characterize the relative levels of pFOXO3 in alcoholic hepatitis, we are planning to conduct 

immunoblots from patients with acute AH. To date, we have been unsuccessful in conducting 

pFOXO3 immunoblots due to the low protein concentration obtained from cultured monocytes. 

As an alternative, if our attempts at pFOXO3 immunoblots remain unsuccessful we will use an 

ELISA to quantify levels of pFOXO3 in AH patients relative to controls. If pFOXO3 is 

decreased in AH as we hypothesize, we will be able to determine if the decrease in pFOXO3 is 

related to increased SIRT7 (as assessed by immunoblot). If SIRT7 does not prove to be a 

primary regulator of pFOXO3, other members of the sirtuin family such as SIRT1 could be 

evaluated. If pFOXO3 levels in AH monocytes are found to be equivalent to controls, we could 

then utilize PCR arrays to identify new targets for further investigation.  

The relationship between circulating monocytes and liver macrophages in the 

pathogenesis of AH also deserves further attention. Mouse models have confirmed that 

circulating monocytes infiltrate the liver and differentiate into hepatic macrophages in response 
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to acute alcohol ingestion.20,22 Furthermore, Li et.al. have shown that pFOXO3 promotes hepatic 

macrophage apoptosis and differentiation of infiltrating macrophages to an anti-inflammatory 

M2 phenotype.22 It remains unknown whether the phenotype of circulating monocytes (and their 

response to LPS) is reflective of the phenotype of liver macrophages. As such, our findings of no 

increased cytokine or SIRT7 mRNA expression in AH monocytes may not reflect the phenotype 

assumed by these cells upon liver infiltration and differentiation to tissue macrophages which is 

likely influenced by the hepatic cytokine environment.  This is not easily studied in humans due 

to practical issues with obtaining liver tissue samples from acute AH patients.  

One finding that is of interest going forward is the relative difference in cytokine 

expression between healthy controls and alcohol controls. Prior to this study, we hypothesized 

that there would be no difference in cytokine expression between these two groups. However, in 

the alcohol control group we observed increased expression of SIRT7 as well as increased 

production of IL-6 and IL-10 in response to LPS compared to healthy controls. IL-10 is an anti-

inflammatory cytokine with inhibitory effects on myeloid cells. Thus, its increased expression in 

healthy drinkers (alcohol control group) as compared to healthy non-drinkers (healthy control 

group) fits the growing hypothesis that alcohol consumption is well tolerated in the majority of 

individuals due to an adaptive, anti-inflammatory immune process. This hypothesis is illustrated 

by Li et.al. who demonstrated that FOXO3-dependent macrophage apoptosis leads to 

differentiation of infiltrating macrophages to an anti-inflammatory alcohol-tolerant phenotype in 

alcohol fed mice.22 The observed differences in circulating monocyte cytokine expression and 

how these relate to FOXO3 expression should be confirmed in a larger sample of healthy alcohol 

drinkers and abstainers.  
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Appendix A: ICD-9/10 Inclusion & Exclusion Criteria for Retrospective Study 

Inclusion Criteria: one or more of the following diagnoses 

1) Alcoholic Hepatitis 

571.1 Acute alcoholic hepatitis 

K70.1 Alcoholic hepatitis 

2) Other Alcohol Related Liver Disease 

571.0 Alcoholic fatty liver 

571.2 Alcoholic cirrhosis of liver 

571.3 Alcoholic liver damage, unspecified 

572.8 Alcoholic liver failure 

572.8 Hepatic failure due to alcoholism 

K70.2 Alcoholic fibrosis and sclerosis of liver 

K70.3 Alcoholic cirrhosis of liver 

K70.4 Alcoholic hepatic failure 

K70.9 Alcoholic liver disease, unspecified 

Exclusion Criteria  

1) Infection 

038 Septicemia 

481 Pneumococcal pneumonia 

482 Other bacterial pneumonia 

483 Pneumonia due to other specified organism 

484 Pneumonia in infectious diseases classified elsewhere 

485 Bronchopneumonia, organism unspecified 
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486 Pneumonia, organism unspecified 

567.23 Spontaneous bacterial peritonitis 

590 Infections of kidney 

599.0 Urinary tract infection, site not specified 

A40 Streptococcal sepsis 

A41 Other sepsis 

J13 Pneumonia due to Streptococcus pneumoniae 

J14 Pneumonia due to Hemophilus influenzae 

J15 Bacterial pneumonia, not elsewhere classified 

J16 Pneumonia due to other infectious organisms, not elsewhere classified 

J17 Pneumonia in diseases classified elsewhere 

J18 Pneumonia, unspecified organism 

K65.2 Spontaneous bacterial peritonitis 

N39.0 Urinary tract infection, site not specified 

2) Immune Deficiency 

279 Disorders involving the immune mechanism 

B20-B20 Human immunodeficiency virus 

D80-D89 Certain disorders involving the immune mechanism 

3) Hematologic Malignancy 

200-208.99 Malignant neoplasm of lymphatic and hematopoietic tissue  

C81-C96 Malignant neoplasms of lymphoid, hematopoietic and related tissue 

Covariates: 

070.2 Viral hepatitis B with hepatic coma 
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070.3 Viral hepatitis B without mention of hepatic coma 

070.7 Unspecified viral hepatitis C 

B18 Chronic viral hepatitis 
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Appendix B: RT-PCR Primer Sequences 

SIRT7 forward: 5’-GACCTGGTAACGGAGCTGC-3’ 

SIRT7 reverse: 5’-CGACCAAGTATTTGGCGTTCC-3’ 

TNFα forward: 5’-CAGCAGGCACAGGCTCC-3’ 

TNFα reverse: 5’-CCTGCAACAAGATGATCGTGA-3’ 

IL-6 forward: 5’-TGAGGAGACTTGCCTGGTGA-3’ 

IL-6 reverse: 5’-CACAGCTCTGGCTTGTTCCT-3’ 

IL-10 forward: 5’-TCACATGCGCCTTGATGTCT-3’ 

IL-10 reverse: 5’-TGCCAAGCCTTGTCTGACAT-3’ 

CCL2 forward: 5’-GGTGAGACCTGCCTGAATG-3’ 

CCL2 reverse: 5’-GTTGGGGTCCTGGCATC-3’ 

ICAM1 forward: 5’-CCATGGTACCTGCACACCTA-3’ 

ICAM1 reverse: 5’-TGTCTTGAGTCTTGCTCCTTCC-3’ 

GAPDH forward: 5’-GAAGGTGAAGGTCGGAGTC-3’ 

GAPDH reverse: 5’-GAAGATGGTGATGGGATTTC-3’ 


