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Abstract  

      Obesity and the associated health risks represent a world-wide health and financial 

crisis. Lack of physical activity combined with excessive caloric intake are the root 

cause of the problem. Despite the increased advocation for healthy lifestyle choices, the 

trend has yet to reverse and indeed, seems to be on the rise especially among pre-

teens and adolescents, a constituent that had not been previously part of the obesity 

epidemic.  

     Mitochondria are the “fuel-burners” of the body and like other combustion devices, 

become inefficient in the context of fuel surplus. Moreover, with chronic over-feeding, 

the physiological mechanisms that regulate energy balance become permanently 

dysfunctional leading to the progression of pathologies such as Type II diabetes and 

cardiovascular disease. 

     Medical and scientific evidence confirms that mitochondria are integral to the 

responses necessary to adapt to over-nutrition. However, success in mitochondria-

based therapies has been extremely limited in the context of metabolic diseases. Our 

knowledge of the regulation of mitochondrial function, dynamics, signaling, and 

transport processes in different tissues and organ systems is extremely limited and this 

knowledge gap is a serious impediment to progress toward targeting mitochondria for 

treatment of metabolic diseases.  

     In this study, we successfully genetically manipulated the expression of 

mitochondrial transporter ABCB6. The physiological function of this transporter is 

unknown but non-functional mutations of this protein have been linked to several 

heritable human diseases. 
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     This study establishes that ABCB6 plays a role in the maintenance of energy 

homeostasis. Whole-body Abcb6 knockout adult male and female mice have increased 

body mass with no increases in food consumption. Increased body mass is due to 

increased adiposity. ABCB6 deficiency results in steatosis, glucose intolerance, insulin 

resistance, and lower energy expenditure. Exposure to high-fat diet exacerbates these 

metabolic derangements.  

     Genetically targeting ABCB6 expression specifically in liver results in disruption of 

whole-body energy metabolism as well with a loss of metabolic flexibility. Loss of 

hepatic ABCB6 results in fragmented mitochondria while overexpression leads to 

mitochondrial elongation, dysregulating dynamic mitochondrial functional responses to 

energy status. In this liver-specific model, hepatic metabolites are significantly altered 

with either ABCB6 knockdown or overexpression. Metabolites that have a profound 

impact on energy metabolism such as bile acids, amino acids, and phospholipids were 

significantly altered in this model.  

     Interestingly, we discovered that ABCB6 expression is responsive to nutrient status 

and circadian patterns. ABCB6 expression is upregulated in the fasted state and rapidly 

downregulated in response to feeding. Also, ABCB6 expression is reduced in cases of 

chronic over-nutrition such as, diet and genetic mouse models of obesity as well as in 

clinically obese humans. These findings suggest that ABCB6 acts as a nutrient sensor 

and mediates a homeostatic response through dynamic mitochondrial changes in form 

and function.  
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1.1 Mitochondria: Energetic Symbionts 

     It would be difficult to overstate the importance of mitochondria regarding eukaryotic 

physiology.  Thought to have been first discovered in the 1840’s, mitochondria were 

later described to be ubiquitous in all eukaryotic life and to be “elemental organisms” 

living inside cells carrying out vital functions by Richard Altmann and others (Ernster et 

al., 1981). Following a series of discoveries that mitochondria could produce energy and 

had an independent genome (circular DNA), Lynn Margulis published her theory of 

endosymbiosis in 1967 which stated that mitochondria as we know them, probably 

came to be when an independent prokaryotic life form was endocytosed by a distant 

relative of current eukaryotes. The prokaryotic entity was permanently hosted by the 

eukaryote and the ensuing symbiotic relationship is thought to have  made possible the 

existence of multi-celled organisms because of the increased ability to provide the 

bioenergetics necessary for differentiation, growth and development (Gray, 2017). 

Although energy production is the best-known attribute of mitochondria, there are a 

plurality of known alternate functions of these organelles and current investigation 

uncovers novel roles for mitochondria at a rapid pace. They are integral to nearly every 

physiological process and pathology. Hence, the fervent research of mitochondria and 

their impact on health and disease is not surprising.  
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 Figure 1.1 Basic mitochondrial structure 

                            

Physical Properties of Mitochondria       

    Figure 1.1 is an image from an electron microscope that relates the basic structure of 

mitochondria. Individual mitochondria measure from 0.5 to 10 microns and are 

enveloped by a double membrane. The outer mitochondrial membrane is relatively 

porous allowing for diffusion of small molecules. Protein channels called porins also 

allow for proteins less than 5000 Daltons to pass through the outer membrane. Proteins 

larger than this must be transported via active transport processes.  
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      The area between the two membranes is called the intermembrane space. Within 

the intermembrane space, there are discrete contact points between the two 

membranes thought to be important in several aspects such as metabolite exchange, 

protein transport, and dynamic morphological changes (Reichert et al., 2002) .  

     The inner mitochondrial membrane has many folds (cristae) that greatly increase 

surface area. The provided increased area is necessary for an abundance of proteins 

that perform key mitochondrial functions. Along with a high protein to lipid ratio, the 

inner membrane has a unique lipid composition with low triglyceride levels, a higher 

degree of fatty acid unsaturation, and cardiolipin, a phospholipid specific to 

mitochondria.  The interdependent functions of  lipid composition and IMM proteins are 

thought be crucial to mitochondrial function (Gohil et al., 2009).  

     The area interior to the inner membrane and its folds is known as the mitochondrial 

matrix which contains the enzymes that contribute to the mitochondrion’s bioenergetic 

production as well as nucleoids which contain double-stranded, circular mitochondrial 

DNA and mitochondrial protein translational machinery.  

     Although mitochondria were possibly once independent organisms, the evolution of 

increased interdependence between this organelle and the host cell is clear. 

Mitochondrial DNA and protein translational components provide just 1% of the known 

mitochondrial proteins with nuclear DNA and cytosolic transcription and translation 

providing the rest (Boengler et al., 2011).  
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Mitochondrial Energy Production 

   Just as mitochondria rely upon the cell for their protein synthesis, cells rely upon 

mitochondria for energy production. Indeed, 90-95 % of adenosine triphosphate (ATP), 

the main source of cellular biochemical energy, is produced by mitochondria with the 

balance coming from glycolysis (Skulachev, 1999).  These “powerhouses of the cell” 

can utilize different substrates (Figure 1.2) such as carbohydrates, lipids, and proteins 

to produce ATP. 

 

 

 

 

 

 

 

 

 

 

 

 

                    

 

Figure 1.2 Mitochondria utilize multiple macromolecules to produce ATP.  
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     Because there are relatively long periods between food intake for most mammals, 

the ability to utilize stored fat or protein reserves is a crucial physiological aspect. The 

coordination of the trafficking and utilization of nutrients between highly metabolic 

tissues and storage depots is highly dependent upon this “metabolic flexibility” provided 

by mitochondria. 

     The tricarboxylic acid (TCA) or “Krebs Cycle” and oxidative phosphorylation are the 

main components of non-glycolytic energy production. Oxidation of carbon sources by 

the TCA cycle occurs in the mitochondrial matrix and a myriad of transport, anaplerotic, 

and cataplerotic processes allow for metabolic flexibility, or the ability of an organism to 

use multiple substrates for energy production. Oxidation of these substrates by the TCA 

cycle results in the reduction of nicotinamide adenine dinucleotide (NAD) and flavin 

adenine dinucleotide (FAD) which act as “electron carriers” in the form of NADH and 

FADH2. Acceptance of electrons from these carriers allows complexes in the electron 

transport chain to “pump” protons into the intermembrane space which results in the 

creation of an electrochemical gradient and membrane potential. This “proton motive” 

force is returned to the mitochondrial matrix through ATP synthase, a protein complex 

embedded in the inner membrane. The flow of protons produces mechanical energy 

through ATP synthase which allows the formation of ATP by combining ADP with 

inorganic phosphate. The ATP produced by this “oxidative phosphorylation” can then be 

shuttled out of the mitochondria for use in the rest of the cell in exchange for ADP via 

the ADP/ATP translocase protein. Acetyl CoA, a two-carbon molecule, is the common 

metabolite in carbohydrate, fatty acid, and amino acid metabolism. It is used in the TCA 

cycle to generate carbon dioxide, ATP or GTP, NADH, and FADH2. During carbohydrate 
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oxidation, acetyl CoA can be derived from glycolysis in the cytosol. Glucose molecules 

are catabolized into two molecules of pyruvate which are then transported into the 

mitochondria and oxidized by pyruvate dehydrogenase to form acetyl-CoA. Acetyl-CoA 

is combined with oxaloacetate to form citrate. This six-carbon molecule undergoes 

various TCA cycle chemical reactions that result in the production of carbon dioxide, 

NADH, FADH2, and ATP/GTP.  Mitochondrial oxidation of fatty acids provides both 

acetyl CoA as an input to the TCA cycle and NADH used in the electron transport chain. 

Amino acids, derived from the catalysis of endogenous proteins or from the diet, after 

deamination, can also act as substrates for use in the TCA cycle.  

     There are many human pathologies related to defects in mitochondrial energy 

production including: Leigh Syndrome, mitochondrial encephalopathy lactic acidosis and 

stroke-like episodes (MELAS), deafness–dystonia syndrome (DDP), and Friedreich 

ataxia (Shoffner, 2001; Smeitink et al., 2001).  

      Mitochondrial energetic functions are also required to maintain health. Metabolic 

flexibility represents the ability to utilize various energy substrates to match energetic 

demand which results in achieving energy balance. In the modern world, this 

adaptability has become particularly important. Due to easy access to calorie-rich foods 

and a concurrent decrease in typical daily physical exertion, metabolic diseases have 

become a pandemic. The disruption of energy balance (over-nutrition plus reduced 

energy expenditure) results in mitochondrial dysfunction which is central to the 

development of Metabolic Syndrome, a collection of conditions including increased 

visceral adiposity, hyperglycemia, high cholesterol, hypertriglyceridemia, hypertension, 

and insulin resistance (Mitchell et al., 2012). Mitochondrial dysfunction is often 
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etiological in these pathologies. For example, disruption of mitochondrial ability to utilize 

fats as an energy source (incomplete fatty acid oxidation) results in the buildup of 

lipotoxic metabolites which are known to interfere with insulin signaling and increased 

inflammation (Sunny et al., 2015). Disruption of insulin signaling is often an initial step in 

the progression toward non-alcoholic fatty liver disease (NAFLD) and increased fat 

storage.  

     Obesity and the ensuing metabolic disease pathologies are currently the greatest 

health concerns in most developed countries and represent a staggering financial 

burden. Targeting mitochondrial dysfunction that has resulted from over-nutrition is an 

obvious approach to abrogate metabolic syndrome-related disease. However, there are 

several roadblocks to this approach. Mitochondria function and regulation varies greatly 

in a tissue-specific manner and our knowledge of these differences is incomplete. Also, 

congenital mitochondrial mutations are not often homogeneous due to selective 

segregation during development and because of mitochondrial replication processes. 

Partial loss of function due to heteroplasmy confounds efforts to assign dysfunction to 

specific genetic alterations. Because of these factors, mitochondrial diseases are 

currently addressed through palliative efforts and cannot currently be cured (Nunnari et 

al., 2012).  

    

1.2 Alternative Functions of Mitochondria 

     Other than energy production, mitochondria also perform a multitude of crucial 

“alternative functions”. For example, in some tissues, proton motive force can be 

“uncoupled” from ATP synthesis by increasing the permeability of the inner 



9 

 

mitochondrial membrane through the action of uncoupling proteins. Protons can then 

bypass ATP synthase to enter the mitochondrial matrix which instead of providing 

chemical energy in the form of ATP, results in heat production. This process of 

thermogenesis allows maintenance of body temperature. Recent research indicates 

there may be potential therapeutic value in the pharmacological regulation of 

thermogenesis. Interventions that increase thermogenesis may allow for the treatment 

of obesity while treatment to pharmacologically reduce thermogenesis may treat fever 

or ischemic insult from stroke (Tupone et al., 2014). 

      There are also numerous critical biosynthetic pathways that rely upon mitochondria. 

For instance, the majority of iron in the body is stored in heme-containing proteins 

(Ajioka et al., 2006) and heme biosynthesis is a coordinated process between 

mitochondrial and cytosolic enzymes and transporters (Xu et al., 2013). Additionally, the 

first and rate-limiting step in steroidogenesis is performed by the cholesterol side-chain 

cleavage enzyme (p450scc) which resides in the inner mitochondrial membrane (Miller, 

2017). Another crucial function reliant upon mitochondria is amino acid metabolism.  

The TCA cycle produces oxaloacetate and 2-oxoglutarate which contribute to the 

production of the amino acids, aspartate/asparagine, glutamine/glutamate, arginine, and 

proline (Johnson et al., 2014). Essential branched-chain amino acids such as leucine, 

isoleucine, and valine, are crucial for maintenance of muscle mass, neurotransmitter 

synthesis, maternal health and embryonic growth (Zhang et al., 2017). The catabolic 

enzymes required for use of BCAAs are located within mitochondria (Hutson et al., 

2005).  
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     Citrate, a metabolite of the TCA cycle, can be exported from mitochondria as a 

building block for the synthesis of fatty acids, a component of cellular membrane 

phospholipids.  Indeed, phospholipid synthesis is a coordinated effort of both cytosolic 

and mitochondrial pathways as evidenced by the existence of mitochondrial and 

extramitochondrial redundant pathways for the production of phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), and phosphatidylserine (PS) (Scharwey et al., 2013). 

Because these glycerophospholipids are required for membrane formation, functional 

mitochondria are a fundamental requirement for cell growth and proliferation. 

Mitochondria also produce cardiolipin, a mitochondrial-specific phospholipid that is 

required for mitochondrial function.  

      Transient changes in cellular calcium levels trigger signals that result in a wide array 

of events from cell death to proliferation (Contreras et al., 2010). During cytosolic 

calcium overload, mitochondria provide a protective uptake through the mitochondrial 

calcium uniporter. Mitochondrial calcium efflux can also be utilized  to maintain 

homeostasis when cytosolic calcium concentrations normalize through mitochondrial 

Na+/Ca2+ antiporters (Contreras, et al., 2010). 

     The urea cycle represents another protective function of mitochondria. Amino acid 

catabolism produces the toxic waste product ammonia which must be converted to urea 

for excretion. The first two steps of the five-step process take place in mitochondria. 

Several mitochondrial transporters are required for urea production (Morris, 2002). 

 

 

 



11 

 

1.3 Mitochondrial Dynamics and Cell Signaling 

     Mitochondria are crucial mediators of cellular signaling. They act as a 

communication and signaling hub because their structure and function are 

physiologically responsive to intracellular signals and by extension, extracellular signals. 

The molecular mechanisms for the transmission of extracellular signals to mitochondria 

are a current area of investigation. Signaling molecules are also sent from the 

mitochondria to the nucleus (retrograde signaling) to affect cellular responses. 

Mitochondria directly participate in signaling through interaction or trafficking of proteins, 

lipids, and ions on the outer mitochondrial membrane, by the production of metabolites, 

and through alterations in morphology and motility (Tait et al., 2012). 

     It is important to consider that mitochondria are not static entities and that 

contributions of mitochondria to cellular function and signaling are dependent upon the 

dynamic control of intrinsic mitochondrial properties such as membrane potential, TCA 

flux and ETC activity which are themselves interrelated.  In addition, mitochondria are 

motile and undergo morphological changes. Indeed, two neighboring individual 

mitochondria can either fuse (Figure 1.3) into one, or a single mitochondrion can “split” 

into two daughter mitochondria. These fusion/fission processes allow for the sharing 

and segregation of mitochondrial components as well as the fine-tuning of mitochondrial 

function. Mitochondrial also interact with other cellular organelles such as the 

endoplasmic reticulum and lysosomes to facilitate signaling and intra-cellular 

communication. Mitochondrial dynamics is a term used to comprehensively describe 

mitochondrial motility, intracellular localization and morphology. Mitochondrial dynamics 
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are inseparably linked to the major cellular signaling categories of cell death, reactive 

oxygen species (ROS), and ATP production in response to demand. 

                          

 

 

 

 

 

 

Figure 1.3 Mitochondrial fusion and fission. Reprinted with permission from Zhan M, et al. 

Mitochondrial dynamics and emerging role in renal pathophysiology. 2013. Kidney International. 

83(4):586-581. https://doi.org/10.1038/ki.2012.441 (Zhan et al., 2013) 

 

 

Mitochondrial Motility 

     Mitochondria are tethered to the cytoskeleton which allows translocation in an 

energy consuming process. Intracellular localization of mitochondria is known to play 

important roles in cellular responses. For example, hypoxia has been shown to induce 

perinuclear clustering of mitochondria. This translocation allows proximity-driven ROS 

signaling that produces a nuclear transcriptional response to abate detrimental ROS-

mediated effects (Al-Mehdi et al., 2012). Spatial distribution of mitochondria in parotid 

acinar cells is thought to be integral to calcium mediated function within these highly 

polarized cells. Firstly, the intercellular distribution of mitochondria acts as a buffer to 

protect the basolateral portion of the cell from calcium waves produced due to 

https://doi.org/10.1038/ki.2012.441
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specialized cellular functions via mitochondrial calcium buffering. Secondly, 

mitochondria are positioned so that the calcium-driven ATP production is selectively 

utilized for exocytosis (Bruce et al., 2004). Perhaps the most profound example of the 

need for mitochondrial motility is found in neurons. These cells, which can be up to a 

meter in length, require most mitochondria at the synapse to support neuronal firing. 

However, mitochondrial biogenesis takes place in the soma, at a great distance from 

the synapse. Mitochondria must translocate in order to provide ATP at the proximal 

location of neurons (Course et al., 2016). Also, mitochondria are requisite for the 

production of neurotransmitters at synaptic gaps (Course, et al., 2016). Neurons 

themselves have a long lifespan and have high energetic demand. Consequently, older 

mitochondria within neurons must fuse with newer ones to maintain genome integrity 

and function as they traverse the distance of axons illustrating the necessity of both 

major facets of mitochondrial dynamics; translocation and fusion/fission. Additionally, 

there are large neurotransmitter-stimulated calcium influxes at neuronal synapses. The 

aforementioned calcium buffering function of mitochondria is protective against 

excitotoxity at these synaptic gaps further illustrating the vital role of mitochondrial 

mobility (Nunnari, et al., 2012).    

 

Mitochondrial Fusion and Fission 

     Mitochondrial morphology is controlled by a balance between the processes of 

mitochondrial fusion, or the physical joining of separate mitochondria, and fission, the 

division of a single mitochondria to multiple mitochondria. A loss of fusion activity itself 

results in fragmented mitochondria and an increase of fusion results in elongated, 
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tubular morphology whereas a gain of fission results in more fragmentation and its loss 

results in a return to the elongated form.  Mitochondrial motility and fusion/fission 

activities and the regulation thereof vary greatly depending upon cellular status or 

environment. The variability of these processes within different anatomical structures 

contributes to the pleiotropic phenotypes seen during the loss of mitochondrial dynamic 

functions (Nunnari, et al., 2012).  

     The process of mitochondrial fusion and fission are carried out by a group of 

dynamin-like GTPases. In mammals, the proteins involved in fusion are Mitofusin1 

(MFN1), Mitofusin 2 (MFN2), and Optic atrophy type 1 (OPA1). Fusion is a two-step 

process (Meeusen et al., 2004) in which outer membrane proteins MFN1 and MFN2 

accomplish the fusion of the outer membrane. Inner membrane fusion is dependent 

upon OPA1.  

  Increased mitochondrial fusion is often seen in metabolically active cells and the 

process results in an extensive electrically connected network allowing for the 

distribution of membrane potential across cellular oxygen gradients thereby spatially 

distributing energy production.  Fusion is often described as a protective response 

against cellular stressors such as energy deprivation and ROS. Mitochondrial fusion 

acts as a defense against ROS-mediated mitochondrial DNA damage by facilitating the 

“mixing” of gene products responsible for oxidative phosphorylation. In a process 

termed complementation, the combining of mitochondrial contents allows for well-

functioning components in one mitochondrion to compensate for damaged components 

of another. It is also thought that defective components are segregated during fusion to 
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prepare for eventual removal which can be mediated via fission (Westermann, 2008) 

(Youle et al., 2012).   

          The first step of mitochondrial membrane fusion is a remarkable process in which, 

protein complexes in distinct mitochondria are coordinately formed in trans allowing the 

fusion of four membranes (two outer and two inner) despite the repellant negative 

charges of individual mitochondria. Studies in yeast systems indicate that outer 

membrane fusion can be initiated by reversible ubiquitylation (Wiedemann et al., 2013). 

However, knowledge of molecular mechanisms of initiation events in mammals is 

incomplete. Numerous cellular events are known to coincide with fusion such as energy 

deficiency, calcium efflux, and cellular division. For example, in some plants and kidney 

cells, all mitochondria fuse as a single interconnected entity to allow proper distribution 

of mitochondrial DNA prior to cytokinesis. This is in stark contrast to less drastic and 

transient fusion events in response to changes in energy demand. Considering the 

plurality of cellular events associated with mitochondrial fusion, it is likely that initiation 

arises from distinct mechanisms. The mechanistic details of the process of 

mitochondrial outer membrane fusion itself are also unclear but ablation of GTP 

binding/hydrolysis in fusion proteins completely abolishes membrane fusion 

(Wiedemann, et al., 2013). There are two mechanistic models of mitochondrial fusion 

considered to be likely. First, the nucleotide binding state of mitofusins may promote 

recruitment of other proteins required to complete the process or secondly, mitofusin 

GTP hydrolysis may provide the mechanochemical energy required to allow fusion 

through membrane conformational changes or close apposition (Wiedemann, et al., 

2013). It is known that mitofusins can form both homo and heterodimers (MFN1/MFN1 
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MFN2/MFN2, MFN1/MFN2) and that coordination of trans mitofusins interaction is 

mediated by heptad repeats (HR1 and HR2) (Eura et al., 2003). Interaction of trans HR 

domains between mitofusins are thought to tether mitochondrial pairs but not at a 

distance to allow spontaneous fusion. This tethered complex forms an intermediate 

complex after which, the GTPase activity of both mitofusins bring to completion outer 

membrane fusion (Koshiba et al., 2004), (Meeusen, et al., 2004).  

     As mentioned above, inner membrane fusion is a distinct process, but it is unknown 

what causes the transition from outer to inner membrane fusion. However, it has been 

demonstrated that following trans mitofusin complex formation, the lipid bilayer contents 

from each prospective mitochondrion are mixed (Frohman, 2015). Mixing of membrane 

components may be a factor in the accomplishment of complete mitochondrial fusion.  

     The inner membrane dynamin-like GTPase OPA1 facilitates inner mitochondrial 

membrane fusion and is required for mitochondrial fusion in mammals (Song et al., 

2007).  OPA1 knockout mice die in mid-gestation and mutations in OPA1 are known to 

be causative of the heritable human ocular disease, optic atrophy type 1. OPA1 has 8 

isoforms due to alternate mRNA splicing and these various isoforms are subject to post-

translational proteolytic processing resulting in long and short forms. Unprocessed 

OPA1 contains a mitochondrial targeting sequence and cleavage may be regulated 

based upon its import into the inner membrane (Wiedemann, et al., 2013). Drosophila 

models deficient in short-form OPA1 display drastically fragmented mitochondria 

demonstrating the long form alone is insufficient for fusion (McQuibban et al., 2003). 

Also, disruptions in the ratio of long and short forms results in mitochondrial morphology 

alterations (Herlan et al., 2004) indicating the need for both isoforms to maintain normal 
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fusion. Paradoxically, both OPA1 knockout and overexpression models display 

fragmented mitochondria. OPA1 has also been shown to be involved in the 

maintenance of cristae morphology as yeast systems deficient for OPA1 have 

disorganized, poorly invaginated cristae. It has been postulated therefore, that the 

disruption of fusion in both models may be secondary to OPA1 mediated cristae 

structure (Wiedemann, et al., 2013). Mechanistic details of inner membrane fusion are 

scarce but GTP availability and mitochondrial membrane potential are crucial aspects. 

Dissipation of mitochondrial membrane potential using ionophores or limiting GTP 

concentrations allows outer membrane fusion but blocks inner membrane fusion 

demonstrating both that outer membrane and inner membrane fusion are distinct steps 

and that GTP hydrolysis and maintenance of membrane potential are necessary for 

complete mitochondrial fusion (Mattenberger et al., 2003), (Meeusen, et al., 2004).  

     Mitochondrial fission is mediated by dynamin-related protein 1 (DRP1). Disruption of 

DRP1 function results in elongated, tubular mitochondrial morphology (Youle, et al., 

2012). DRP1 is localized mainly in the cytosol but a portion of the population is situated 

on the outer mitochondrial membrane and possibly acts as a marker of future fission 

events (Chan, 2006). The process occurs in four stages which are translocation of 

cytosolic DRP1 to the outer mitochondrial membrane, assembly of DRP1 oligomers, 

GTP hydrolysis, and disassembly (Hu et al., 2017). Mitochondrial fission can be initiated 

by calcium efflux from the endoplasmic reticulum (ER) to the mitochondria or from 

CDK1 during mitosis. Also, increased ROS can initiate fission via PKC1 delta (Hu, et al., 

2017). Several accessory proteins have been shown to play a role in the recruitment of 

DRP1 from the cytosol to the mitochondrial outer membrane including mitochondrial 
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fission factor (MFF), mitochondrial fission 1 protein (FIS1), and mitochondrial elongation 

factors 1 and 2 (MiD51 and MiD49).  

     Endoplasmic reticulum mitochondrial-associated membranes seem to act as 

markers as a guide for fission sites and DRP1 recruitment (Willems et al., 2015). Exact 

mechanistic details of DRP1 recruitment are still under investigation and are 

model/species dependent. Once the recruitment stage is complete, DRP1 undergoes 

oligomerization. Conserved regions of individual DRP1 units fold back on each other to 

form a stalk. This complex induces a spiral effect that brings GTPase regions of DRP1 

units into a position that favors hydrolysis and the mechanochemical force required for 

constriction is produced enabling the scission of outer and inner membranes (van der 

Bliek et al., 2013).  

     Mitochondrial fission machinery is regulated by multiple post-translational 

modifications including SUMOlation, s-nitrosylation, ubiquitination, O-GlcNAcylation, 

and phosphorylation of DRP1. There are several phosphorylation sites that positively 

and negatively regulate DRP1 activity (Hu, et al., 2017). Accessory proteins such as 

MFF are also regulated via phosphorylation.  

     Because mitochondria cannot be formed de novo, mitochondrial fission is required 

for cell division. Fission allows for the increased population of mitochondria that newly 

formed cells require. Like fusion, fission is often the consequence of cellular stress but 

rather, occurs in late stages when the protective response of fusion has reached 

capacity. Fission allows for the clearance of defective mitochondria and recycling of 

materials through autophagy (Youle, et al., 2012). 
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Mitochondrial Dynamics and Cell Death      

     Mitochondria carry out well-characterized functions involved in regulating programed 

cell death in response to both extracellular (extrinsic) and intracellular (intrinsic) stimuli. 

Apoptosis is a critical factor for the formation of anatomical structures during 

development and for maintenance of cellular populations in tissues and organs 

throughout adulthood and during the aging process (Elmore, 2007). During programmed 

cell death, cellular components are degraded in a controlled manner with no adverse 

effects to surrounding cells. The extrinsic apoptotic pathway (receptor-mediated) is 

initiated via “death receptors” such as first apoptosis signal (FAS) and tumor necrosis 

factor (TNF) receptors that are activated by immune responses or trauma from without 

the cell. The intrinsic pathway also called “mitochondrial-mediated apoptosis”, is 

initiated via mitochondrial outer membrane permeabilization (MOMP) and release of 

pro-apoptotic factors such as cytochrome c, apoptosis inducing factor (AIF), and 

endonuclease G from the mitochondria. There is extensive crosstalk between extrinsic 

and intrinsic pathways with mitochondria playing crucial roles in both. Mitochondrial 

morphology is tightly linked to apoptosis (Figure 1.4). In general, fission is pro-apoptotic. 

During the early stage of apoptosis, cytosolic DRP1 is recruited to the OMM resulting in 

fragmentation and cytochrome C release. RNAi induced knockdown of DRP1 prevents 

cytochrome c release mitigating apoptosis (Youle, et al., 2012). Bcl-2-associated X 

protein (BAX), a well characterized mediator of apoptosis resides in the cytosol in non-

apoptotic cells and like DRP1, is recruited to the OMM co-localizing with DRP1 and 

MFN2 which induces cytochrome c release. Again, knockdown of DRP1 prevents 

cytochrome c release despite BAX translocation (Youle, et al., 2012). However, fission 
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is not universally pro-apoptotic but rather is dependent upon the source of stimuli. In the 

case of an apoptotic calcium wave through a mitochondrial network, fragmentation can 

block the transmission of the calcium signal thereby blocking apoptosis (Perfettini et al., 

2005).  Mitochondrial fusion is generally anti-apoptotic. Bcl-2 homologous 

antagonist/killer (BAK) and BAX have been shown to promote fusion in healthy cells via 

maintenance of MFN2 distribution on the OMM (Youle, et al., 2012). Knockdown of 

MFN1 and MFN2 promotes fragmentation and sensitivity to apoptotic stimuli while 

overexpression delayed BAX translocation and cytochrome c release (Suen et al., 

2008). Further, the bulk of cytochrome c resides in cristae junctions and its release is 

dependent upon OPA1 cristae remodeling activity. Like the mitofusins, efficient 

knockdown of OPA1 can induce apoptosis (Suen, et al., 2008) illustrating the anti-

apoptotic roles of mitochondrial fusion mediators. 
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 Figure 1.4 Mitochondrial dynamics and cell death are inter-related processes. Reprinted 

with permission from Zhan M, et al. Mitochondrial dynamics and emerging role in renal pathophysiology. 

2013. Kidney International. 83(4):586-581. https://doi.org/10.1038/ki.2012.441 (Zhan, et al., 2013) 
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Mitochondrial Dynamics and Reactive Oxygen Species 

     As a consequence of respiration, mitochondria are the main cellular source of 

reactive oxygen species (ROS). The main sites of mitochondrial ROS production are 

Complexes I & III in the electron transport chain (ETC). During the process of electron 

transfer, some electrons “leak” rather than being transferred from complex I and 

complex II to complex III resulting in a single electron reduction of molecular oxygen 

thus forming the superoxide anion. Superoxide cannot readily pass through membranes 

and is quickly converted to hydrogen peroxide by mitochondrial dismutase. Hydrogen 

peroxide is freely diffusible and is converted to water by peroxidases and peroxidoxins 

within mitochondria and by catalase in the cytosol and peroxisomes. In the presence of 

metals, superoxide and hydrogen peroxide can be converted to the highly reactive 

hydroxyl radical. Free radical species such as these can cause cellular damage 

including membrane disruption by lipid peroxidation, DNA damage via hydrogen 

abstraction, and oxidation-mediated disruption of protein function.  

     Eukaryotes have developed endogenous anti-oxidant defenses such as the “non-

critical” nucleophile glutathione. In addition to the enzymatic conversion (via 

peroxidases) of free radicals to water, glutathione acts as an antioxidant by donating its 

electrons to free radicals. The oxidized form (GSSG) is then recycled to the reduced 

form (GSH) by glutathione reductase. Despite the potential damage caused by these 

reactive species, healthy cells maintain a constant low level of ROS. Indeed, some 

reactive oxygen species are valuable signaling molecules that are necessary for proper 

development and cellular function (Di Meo et al., 2016). A physiological level of ROS 

promotes cellular production of antioxidant molecules necessary for defense against 
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environmental sources of ROS such as ionizing radiation and xenobiotics (Yamashita et 

al., 1997). Further, ROS levels dictate cellular proliferation/death balance and innate 

immune responses (Zuo et al., 2015).  

     There is sufficient evidence to demonstrate that mitochondrial form and function 

mediate ROS dependent cellular responses. Indeed, ROS levels regulate mitochondrial 

fusion and fission and reciprocally, mitochondrial morphology can modulate ROS levels. 

Mitochondria within cells exposed to exogenous hydrogen peroxide have increased 

fragmentation while subsequent exogenous antioxidant treatment results in increased 

fusion (Willems, et al., 2015) demonstrating that fission fusion balance is affected by 

ROS levels. The interrelation of mitochondrial dynamics, function, and ROS is illustrated 

by studies that show greatly reduced complex I activity results in mitochondrial 

fragmentation and increased ROS (Willems, et al., 2015). Other studies demonstrate 

DRP1-dependent fragmentation due to increased nitric oxide levels which is attenuated 

by nitric oxide scavengers (Willems, et al., 2015). In yeast, peroxidation of the 

mitochondrial-specific phospholipid cardiolipin, results in the functional disruption of the 

fusion protein OPA1. In this case and in the cases of hydrogen peroxide exposure and 

reduced complex I activity, loss of membrane potential is a common theme. 

Mitochondria with low membrane potential are often targeted for degradation through 

mitophagy. Decreased membrane potential increases E3 ubiquitin ligase Parkin activity 

which in turn regulates the degradation of DRP1 and MFN2 illustrating the connection 

between ROS levels, mitochondrial function, and mitophagy. Fragmentation facilitates 

the removal of defective mitochondria through mitophagy.  Conversely, mitochondria 

that have undergone fusion may avoid degradation because their increased size 
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prevents entry into the autophagosome (Nunnari, et al., 2012). ROS-induced s-

nitrosylation influences Parkin, a E3 ubiquitin ligase that regulates DRP1 and MFN2 

degradation which ultimately controls mitochondrial morphology. Additionally, several 

fusion/fission proteins undergo ROS-mediated posttranslational modifications (PTMs) 

that regulate their function illustrating an interdependent relationship between cellular 

redox status, mitochondrial dynamics and mitochondrial quality control.   

 

Mitochondrial Dynamics and Energy Balance 

     Mitochondria are highly responsive to cellular energetic demands. Reciprocally, 

mitochondrial ATP production dictates overall cellular function. Bioenergetic balance is 

coordinated by regulation of cellular activity and energy production in response to 

nutrient availability (Benard et al., 2010). Nutrient availability is sensed by mammalian 

target of rapamycin kinases that broadly influence metabolic state 

(anabolism/catabolism). Energy status is determined by the adenosine monophosphate 

(AMP) to adenosine triphosphate ratio (ATP) and NAD+/NADH levels which are sensed 

by amp-activated protein kinase (AMPK) and sirtuins respectively. These energy 

sensors regulate energy production via mitochondrial biogenesis regulation, influencing 

catabolic/anabolic state, and through the regulation of energy substrate usage 

(metabolic flexibility).  

     Metabolic control analysis (MCA) is the study of cellular energy flux. It involves 

investigating the expression and activity of enzymes involved in transport and oxidation 

of energy substrates and the subsequent production of ATP. Performance of MCA is 

highly complex due to the diversity of the energetic needs of various organs and 
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tissues. For example, the regulation of mitochondrial bioenergetics in cardiac and 

skeletal muscle are dictated mainly by ETC activity while in the brain, liver and kidney, 

the main determinant is ATP production (Benard, et al., 2010). Indeed, not only are 

there vast differences in total mitochondrial content and protein expression levels 

between tissues but proteomics reveals that subsets of mitochondrial proteins are 

unique to various organ systems illustrating the complexity of mitochondrial biology. 

     In addition to the regulation of metabolic control via the cytosolic nutrient and energy 

sensors, mitochondrial fusion and fission rapidly fine tunes energy balance in response 

to energetic status and demand. Increasing evidence suggests that there is an 

interdependent relationship between cellular energetic status and mitochondrial 

dynamics that maintains overall energy homeostasis.  

     Mechanisms that link nutritional state, mitochondrial dynamics, and mitochondrial 

energy production are active areas of investigation but clearly, mitochondrial 

morphology is influenced by nutritional state. Diet induced obesity rat models result in 

decreased mitochondrial fusion in skeletal muscle parallel to decreased MFN2 (Bach et 

al., 2005). Additionally, genetic and diet induced obesity models result in increased 

fission protein expression and increased fragmentation (Putti et al., 2015). However, 

fusion and fission responses to increased energy substrates are dependent upon the 

type of energy substrate concerned. Mice fed lard-based diet exhibit increased 

mitochondrial fragmentation in parallel with decreased MFN2 expression. Conversely, 

diets supplemented with polyunsaturated fats had increases in mitochondrial fusion 

which was negated with siRNA knockdown of MFN2 indicating that fusion/fission 

machinery is responsive and highly selective to nutritional inputs (Zhang et al., 2011). 
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Nutrient deprivation also results in selective mitochondrial morphology responses. In 

one cell-based model, glucose or serum starvation results in increased fragmentation 

while nitrogen-based nutrient deprivation results in increased fusion. Mixed nutrient 

deprivation results in increased fusion. Caloric restriction however, results in increases 

in DRP1 and FIS1 with no change in fusion proteins (Khraiwesh et al., 2013). One could 

infer from these data that dynamic responses are dependent upon the type of nutrient 

deficiency and the length of starvation period (Putti, et al., 2015).  

     In the above listed studies, the general finding is that mitochondrial fragmentation is 

accompanied by reduced mitochondrial function and increased ROS production 

whereas increased fusion results in increased oxidative phosphorylation efficiency. It is 

postulated that mitochondrial fragmentation could occur as a protective mechanism in 

the context of high nutrient status by increasing total surface area to facilitate oxidation 

of the surplus substrate supply. An exception is seen in the case of prolonged caloric 

restriction. Increased fragmentation in this case was thought to support mitochondrial 

biogenesis to increase ATP production in this context. This view is supported by an 

increased mitochondrial number per cell with decreased ROS production and no 

decrease in ATP production. This agrees with studies that show caloric restriction 

increases longevity because of reduced ROS production. There are limited studies 

supporting the idea that increased mitochondrial fusion directly causes increased 

mitochondrial function and efficiency (Mitra et al., 2009), (Tondera et al., 2009) and 

mechanistic details are scarce in this regard. However, some studies suggest that 

mitochondrial remodeling proteins enable the formation of “super complexes” of 

individual ETC members that are in complex to afford a synergistic efficiency (Genova 
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et al., 2014). Other studies demonstrate that fusion allows a complementation of 

mitochondrial DNA, a situation in which two separate mitochondria, each with a different 

set of genetic mutations compensate for gene defects by the “sharing” of their 

respective genomes. This principle was illustrated when two cell lines, one with a 

normal genome, and one with mitochondrial DNA mutations that caused respiratory 

defects were hybridized. After a few days, respiratory capacity was restored  in the loss 

of function mutation group, ostensibly due to the transmission of functional genes from 

the healthy group to the other (Ono et al., 2001). Mouse fibroblasts deficient for MFN1 

and MFN2 can maintain mitochondrial DNA content but rapidly lose membrane 

potential. However, cells with fragmented mitochondria that still possess some fusion 

activity maintain their respiratory capacity (Westermann, 2012) indicating that 

mitochondrial DNA complementation rather than morphology supports the increase in 

function.  

     Mitochondrial fission positively influences mitochondrial function through selective 

degradation of dysfunctional mitochondria. After a fission event, daughter mitochondria 

with low membrane potential have lower fusion protein expression making it unlikely 

that they will undergo fusion in the future and will be targeted for mitophagy thereby 

maintaining a healthy mitochondrial population. This contrasts with pathogenic 

fragmentation seen in response to chronic overfeeding or genetic disruptions in which 

diminished ATP production and increased ROS is seen (Jheng et al., 2012).  

     The above examples illustrate the interdependent relationships that exist between 

mitochondrial dynamics, nutritional state, energy demand, and energy production. 

However, there is a considerable gap of knowledge with respect to control mechanisms. 
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Individual mitochondria acquire genome diversity (heteroplasmy) in different cell 

populations and indeed, even within the same cell, evidence suggests there are 

subpopulations of mitochondria making these groups functionally unique (Benador et 

al., 2018). Also, due to the disparate, yet connected functionality of different organs in 

the maintenance of whole-body energy balance, the regulation of mitochondrial 

dynamics is necessarily context dependent. Methods previously and currently used to 

study mitochondrial function include the utilization of immortal or primary cells and 

mitochondrial isolation ex vivo. These methodologies are artefactual and extremely 

limited in giving a clear picture of how mitochondrial dynamics influences energy 

homeostasis under normal physiology in vivo and much less, under pathogenic 

conditions. New technologies such as nuclear magnetic resonance (NMR) analysis of 

mitochondrial transport chain activity in situ, will advance the field of study of this crucial 

aspect of cellular biology.    

 

1.4  Mitochondrial Transporters 

     Just as mitochondria themselves are not static entities, dynamic control of the 

transport of substrates, waste products, lipids, and proteins to and from mitochondria 

are a requisite for life. As mentioned previously, mitochondria are enveloped in a double 

membrane. The outer membrane is comprised mainly of lipids and permeable to 

molecules of 10 kilodaltons or less but the inner membrane is highly organized, 

proteinaceous and impermeable to diffusion except for very small molecules such as 

oxygen and water. ATP produced within mitochondria is needed throughout the cell and 

is derived from ADP. Thus, ATP/ADP exchange is a crucial transport function within the 
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cell. Further, most enzymes required for mitochondrial function are synthesized in the 

cytosol. Therefore, the most obvious needs for mitochondrial transport are an exchange 

of ADP/ATP, bidirectional trafficking of TCA cycle substrates, and import of nuclear 

encoded mitochondrial proteins, all of which require active transport processes.  

      ATP-Binding Cassette Transporters (ABC transporters) belong to one of the largest 

super families of proteins and are highly conserved throughout evolution (Davidson et 

al., 2008). As active transporters, they couple the binding and hydrolysis of ATP to the 

active transport of  various substrates across lipid membranes or from one double-

membrane leaflet to another (Quazi et al., 2012). ABC transporters consist of two 

hydrophilic nucleotide binding domains (NBDs) and at least two hydrophobic 

transmembrane domains (TMDs). The nucleotide binding region is highly conserved and 

serves as a common transport mechanism among the superfamily of proteins (Locher, 

2009). The NBD consists of Walker A and B sequence motifs that allow the binding and 

hydrolysis of ATP and a signature, “C” region located upstream of the Walker B site that 

contains the consensus sequence (LSGGQ) which distinguishes ABC transporters from 

other ATP binding proteins (Kay et al., 2012). The NBDs are located on the cytosolic 

face and typically pump compounds out of the cell or into organelles such as the 

endoplasmic reticulum, mitochondria, peroxisomes, and lysosomes (Procko et al., 2009). 

The transmembrane domains typically consist of six membrane spanning segments and 

serve as substrate binding sites and are less conserved  allowing for transport of a 

diverse array of substrates within the ABC family members (Kaminski et al., 2006). 

Eukaryotic ABC transporters are divided into seven subfamilies (A through G) according 

to sequence similarity and phylogenic analysis (Vasiliou et al., 2009). ABC transporters 
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are further divided into full or half transporter categories. Full transporters contain two 

NBDs and two TMDs within a single polypeptide chain and are a complete, fully 

functional unit. Half-transporters contain only one NBD and one TMD and must homo or 

heterodimerize to form a fully functional transporter. Figure 1.5 is a graphic depiction of 

the basic organization and structure of ABC transporters. 

     

 

Figure 1.5 Basic structure of an ABC transporter. (TMD)-transmembrane domain. (NBD)- 

Nucleotide binding domain. 

 

 There are four known mitochondrial ABC transporters all belonging to the “B” 

subfamily. ABCB7, ABCB8, and ABCB10 are localized to the inner membrane and have 

proposed functions including iron-sulfur cluster and heme biosynthesis.  ABCB6 is the 

only ABC transporter known to be localized to the outer mitochondrial membrane. Due 

to the highly hydrophobic nature of ABC transporter TMDs, they would be predicted to 

be directed co-translationally to the ER membrane. However, it has been demonstrated 

that a long, positively charged N-terminal leader sequence re-routes the mitochondrial 
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ABC transporters to the mitochondria (Zhang, et al., 2011). The exception to this 

proposed mechanism is ABCB6 which has no defined mitochondrial targeting sequence 

and has been found in the secretory locations of the ER, Golgi, and plasma membrane 

(Tsuchida et al., 2008). How ABCB6 is targeted to mitochondria is an active area of 

investigation. 

     ABCB6 is a member of the “B” subfamily which is further divided by homology into 

the multidrug resistance (MDR) and the transporter associated with antigen processing 

(TAP) classes. The ABC B subfamily is unique in that the entire set of transporters 

within the class are present in all mammals (Locher, 2009). Another distinguishing 

characteristic of this subfamily is that it includes both full and half transporters. The 

conservation of ABC B subfamily members in humans and mice demonstrate that 

murine model is useful for understanding ABCB6 functionality in humans. ABCB6 was 

initially cloned while screening for novel drug resistance-related genes in the liver using 

a partial ABCB1 or P-glycoprotein sequence as a probe. Subsequently, the full-length 

protein was independently cloned and named UMAT (ubiquitously expressed 

mammalian ABC half-transporter) or MTABC3 (mammalian mitochondrial ABC protein 3 

(Hirsch-Ernst et al., 1998; Mitsuhashi et al., 2000). These terms are synonymous with 

ABCB6 as it is referred to in the currently accepted nomenclature. ABCB6 is a 

transmembrane protein with the full transporter having two TMDs and two NBDs. The 

NBD shows similar homology to other ABC transporters and faces the cytosol 

(Kurashima-Ito et al., 2006).  ABCB6 is nearly universally expressed with high protein 

expression seen in liver, gallbladder, stomach, duodenum, kidney, bladder, testis, 

epididymis, thyroid, and bronchus (Uhlen et al., 2015). 
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     Non-functional or null mutations in Abcb6 have been shown to be involved in several 

human diseases and pathologies. ABCB6 is known to be localized in the plasma 

membrane (PM) of red blood cells and thought to be involved in the export of 

porphyrins. Studies have identified ABCB6 as the genetic basis of the Langereis blood 

type. Patients with Abcb6 null alleles are at for risk hemorrhagic complications during 

transfusions (Helias et al., 2012). In another blood-related pathology, Abcb6 mutations 

are responsible for Familial Pseudo Hyperkalemia, a condition that results in increased 

potassium in whole blood or serum (Andolfo et al., 2013). Dyschromatosis universalis 

hereditaria presents as areas of hyper or hypo skin pigmentation. Ocular coloboma is 

an inherited developmental disease that results in incomplete closure of the optic 

fissure. Loss of function of ABCB6 is causative for both conditions (Wang et al., 2012), 

(Zhang et al., 2013). Studies in mice indicate that ABCB6 plays a role in the 

development in atherosclerosis (Murphy et al., 2014). The variation in the severity of 

these disease phenotypes associated with ABCB6 suggest incomplete penetrance. 

Moreover, the pleiotropic nature of these conditions supports multiple and/or tissue-

dependent physiological roles.  

     ABCB6 is highly conserved and unique in its mitochondrial outer membrane 

localization. Because of this, considerable efforts have been taken to ascertain its 

physiological function. Initially, because of its sequence similarity (46%) to the yeast 

mitochondrial iron transporter ATM1p, it was thought that ABCB6 may be an ATM1p 

ortholog and would play a role in iron homeostasis. However, it was discovered that 

ABCB7 was actually the functional ortholog of ATM 1p (Pondarre et al., 2007). Abc6 is 

highly expressed in the gut of Caenorhabditis elegans and is required for iron uptake 
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from diet again suggesting a role in iron/heme-related processes (Krishnamurthy et al., 

2011). Additional in vitro and ex vivo studies demonstrated that ABCB6 binds heme-

related molecules (porphyrins) suggesting a role in heme biosynthesis (Krishnamurthy 

et al., 2006). However, cohort studies using Lan -  samples identified no impairment of 

erythropoiesis (a heme-dependent process) and only slight increase in porphyrin in 

subject red blood cells with no incidents of anemia (Helias, et al., 2012). This study 

refutes the presumed role of the plasma membrane form of ABCB6 in porphyrin export 

and suggests another plasma membrane transporter may compensate for the loss of 

ABCB6. Whole-body and liver specific  Abcb6 mouse knockout models show no 

significant decrease in heme or upregulation of other heme biosynthesis pathway genes 

(Chavan et al., 2015) suggesting the absence of need for outer membrane heme active 

transport or an additional, yet unidentified transport process.  

     A significant challenge in determining the physiological roles of ABC transporters is 

their promiscuity. Although they are perhaps best known for promotion of drug 

resistance in humans through cellular efflux of hydrophilic pharmaceuticals, the 

discovery that ABCB4 was responsible for the secretion of PC into bile (Borst et al., 

2000), lead to the idea that ABC transporters can and do transport hydrophobic 

substrates including lipids. This concept has been confirmed in several instances. 

Streptococcus produce the toxin doxorubicin, a hydrophobic entity that can enter cells 

through simple diffusion. Intuitively, bacteria that produce these toxins would require 

efflux transporters to protect themselves from the poisons they produce. Indeed, that is 

the case as the streptococcus that produces doxorubicin also encodes an ABC 

transporter that transports it out of the cell (Borst, et al., 2000). Nearly half of the 48 
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human ABC transporters transport lipids or lipid-related compounds like cholesterol and 

bile acids in addition to hydrophilic substrates (Schou et al., 2012). Examples include 

ABCD4 which transports long-chain fatty acids into peroxisomes, and ABCB4 which 

transports phosphatidylcholine via floppase activity. (Neumann et al., 2017).  

     Interestingly, ABC transporter conformation and activity are affected by their cellular 

environment which they help to maintain (Neumann, et al., 2017).  It has been 

demonstrated that this interrelationship has physiological consequences regarding 

energy metabolism. ABCB11, a bile acid transporter influences glucose and lipid 

homeostasis through the signaling actions of bile acids (Ma et al., 2014). Genetic 

alterations in ABCA1 result in high-density lipoprotein (HDL) deficiency (Tangier 

disease) which disrupts reverse cholesterol transport. Abcg1 is expressed in 

macrophages, adipose tissue, and pancreatic beta cells and is responsible for the 

regulation of insulin secretion, cholesterol homeostasis, and adiposity in a context-

dependent manner (Schou, et al., 2012), (Frisdal et al., 2015).  

     Our current studies focus on the role of the ABC transporter ABCB6 in the 

maintenance of energy homeostasis. We discovered that genetic manipulation of Abcb6 

expression in mice resulted in observable phenotypes including, lower than predicted 

Mendelian KO progeny and altered growth pattern. Liver microarray data from these 

studies supported these phenotypes as they showed disturbances in organismal 

survival, lipid metabolism, metabolic disease, and carbohydrate metabolism (Table 1) 

(Chavan, et al., 2015). These initial observations prompted the current study which 

explores the influence of ABCB6 protein expression on energy metabolism. 
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Table 1.1 Microarray IPA analysis of Abcb6 knock out mouse liver 
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2.1 Study Objective 

     The world’s current population is the most obese in history according to the 

National Health and Nutrition Examination Survey. Except for a relatively small 

percentage of congenital etiologies, the increase in obesity is due to lifestyle 

choices. Nonetheless, interventions of diet and exercise mostly fail due to lack of 

sustained compliance which necessitates alternative treatment options. Obesity in 

and of itself is not necessarily pathological. However, there is voluminous clinical 

evidence that incidents of various pathologies are closely associated with increased 

body fat including diabetes mellitus, insulin resistance, and the metabolic 

syndrome.(Bray, 2004).  

     Progression toward obesity begins with positive energy balance. Imbalances in 

the type of dietary calories are also implicated in increased adiposity. Mitochondria 

are the first defense against obesity as they are key to metabolic flexibility. Chronic 

positive energy balance dysregulates mitochondrial adaptive responses and 

eventually causes mitochondrial dysfunction. Parallel to this process, capacity to 

store a surfeit of energy is overwhelmed leading to dyslipidemia and increased 

postprandial blood glucose. This leads to systemic stress and further mitochondrial 

dysfunction in a feed-forward manner. Non-alcoholic fatty liver, type II diabetes, 

hypercholesterolemia, and hypertension are manifestations of this maladaptive 

process and could ultimately be described as a failure of metabolic flexibility.  

     It is known that dynamic regulation of mitochondrial form and function in 

response to changes in nutritional status is required for metabolic flexibility but there 

are no pharmacological therapies that target this axis. Additionally, current 
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understanding of how mitochondrial transport systems affect mitochondrial dynamics 

is extremely limited. In this study, we show that the alteration of expression of a 

single mitochondrial transporter, ABCB6 disrupts mitochondrial dynamics leading to 

metabolic syndrome. 

     Previous studies demonstrated that loss of ABCB6 resulted in alterations of 

hepatic function and metabolism. Overall observable phenotypes were pleiotropic 

but among them was a disturbance in growth and body weight. Further, it was 

discovered that ABCB6 expression was regulated by nutrient status. Despite past 

and ongoing efforts, ABCB6 transport and other possible physiological functions 

remain unknown. The current study explores ABCB6 regulation and the impact of 

ABCB6 expression on energy metabolism.       

 

 Specific Aim 1 tests the hypothesis that the loss of ABCB6 in vivo results in 

disrupted metabolic homeostasis. We utilized a whole-body Abcb6 knock out mouse 

to study the metabolic effects of ABCB6 loss. Specifically, we tracked body weight 

and food consumption from post-weaning to adulthood, analyzed lipid and glucose 

metabolic pathways, and determined the impact of these pathway disturbances on 

substrate utilization and energy expenditure.  

 

Specific Aim 2 tests the hypothesis that ABCB6 expression is driven by nutrient 

availability and ensuing changes of ABCB6 expression controls mitochondrial form 

and function in response to energetic state. To determine that alterations in 

mitochondrial dynamics were directly attributable to ABCB6 expressional changes, 
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we utilized a genetic model that allowed for temporal, tissue-specific control of 

ABCB6 expression. Under these conditions, we monitored mitochondrial form and 

function as well as hepatic metabolic functions and the impact of these changes on 

whole-body homeostasis.  

 

Specific Aim 3 tests the hypothesis that alteration of ABCB6 expression modifies the 

hepatic metabolome. We used hepatocyte-specific Abcb6 deficient and over 

expressing mice to study the resulting changes in liver metabolites in both high-

nutrient and low-nutrient states to discover novel ABCB6 transport substrates.  
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2.2  Study Significance 

         We have established a model that consistently and predictably alters 

mitochondrial form and function. Therefore, it is possible to ascertain the impact of 

the disruption of mitochondrial dynamics throughout the entire lifespan, including 

development, in a whole-body or tissue-dependent manner. Additionally, these 

studies allowed progress toward understanding the possible in vivo role of ABCB6. 

More importantly, the outcome of this and future studies could direct therapies for a 

myriad of congenital metabolic pathologies as well as interventions for metabolic 

syndrome due to chronic over-nutrition. This model promises to further elucidate the 

interconnected feedback signals between energy supply and the physiological 

responses required for homeostasis. 
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2.3 Innovation 

     Our current study is the only one, to our knowledge that studies the impact of 

mitochondrial ABC transporter, ABCB6 on energy metabolism. Also, ours is the only 

model that allows for inducible, tissue-specific, alteration of ABCB6 in vivo.  

     We demonstrate that altered expression of a mitochondrial ABC transporter 

affects mitochondrial form and function. More specifically, Abcb6 deficiency or 

overexpression impairs nutrient-mediated fusion and fission responses in mice. This 

study highlights the connection between mitochondrial transporters, energy sensing 

processes, and mitochondrial dynamic bioenergetics which introduces a novel 

approach to understanding the regulation of metabolic flexibility. 

     The liver-specific studies described in this dissertation illustrate how disruption of 

hepatic mitochondrial form and function has a dramatic effect on overall energy 

utilization and balance. There are limited models describing how impaired 

mitochondrial dynamics within a single tissue affect whole-body homeostasis. 

Analysis of non-hepatic tissues in our liver-specific model will further elucidate 

organ-organ crosstalk in various energy states thereby expanding our knowledge of 

whole-body energy physiology.  

    Currently, our knowledge of the regulation of ABCB6 expression is extremely 

limited. We introduce a novel mechanism in the regulation of ABCB6.  
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Chapter 3. Characterization of Abcb6 Null Mice 
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3.1 Abstract 

     ABCB6 is a member of the ATP binding cassette superfamily of transport proteins 

that has been shown to play a role in heme biosynthesis. Here, we assess the effect of 

disrupting mouse ABCB6 in vivo and report on its unanticipated role in metabolic 

regulation and body-weight homeostasis. Abcb6 deficient mice show early signs of 

mature onset obesity, which is more severe in males than in females. Abcb6-deficient 

mice show accumulation of abdominal fat, hepatic steatosis, and high fasting plasma 

levels of insulin leading to glucose intolerance and insulin resistance. Gene expression 

analyses of liver and visceral white fat from Abcb6-deficient mice show deregulation of 

metabolic programs, including fatty acid, glucose metabolism and lipid signaling. 

Indirect calorimetry analysis of Abcb6 deficient mice before the onset of obesity show 

disturbances in energy expenditure and physical activity. We identify disturbances in 

mitochondrial form and function as key factors affected by Abcb6 deletion in the liver. 

These findings reveal a role for a mitochondrial ATP binding cassette protein in the 

regulation of metabolism. 
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3.2 Introduction 

     The ATP binding cassette (ABC) superfamily of active transporters is composed of 

many functionally diverse proteins (Dean et al., 2001a; Dean et al., 2001b). These 

proteins are fundamental to membrane transport of a broad variety of substrates 

including amino acids, lipids, lipopolysaccharides, inorganic ions, peptides, sugars, 

metals, drugs and proteins (Dean, 2009; Dean, et al., 2001a; Schmitz et al., 2000). 

These proteins utilize energy derived from the hydrolysis of ATP to `pump' substrate 

across the membrane against a concentration gradient. The ABC transporters not only 

move a variety of substrates into and out of the cell but are also involved in intracellular 

compartmental transport (Dean, et al., 2001a; Dean, et al., 2001b) and are often vital to 

the health and survival of the organism. 

     The ATP binding cassette transporter subfamily member B6 (ABCB6) gene encodes 

a membrane protein of 842 amino acids with a transmembrane domain (TMD) followed 

by a nucleotide binding domain (NBD) (Chavan et al., 2013; Krishnamurthy, et al., 

2006). Hydrophobicity and sequence homology analysis suggests that the TMD 

contains six transmembrane helices with the N and C termini located in the cytoplasm. 

The minimal functional unit has been suggested to be a homodimer residing in the outer 

mitochondrial membrane (Chavan, et al., 2013; Krishnamurthy, et al., 2006). ABCB6 

has been characterized as a mitochondrial transporter involved in the translocation of 

coproporphyrinogen III (CPIII) from the cytoplasm into the mitochondria (Chavan, et al., 

2013; Krishnamurthy, et al., 2006). CPIII a byproduct of heme synthesis in the 

cytoplasm requires active transport into the mitochondria to complete heme synthesis 
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(Krishnamurthy et al., 2007). Thus, ABCB6 has been characterized with a physiological 

role in heme synthesis.  

     Recent localization and genome association studies have suggested that 

mammalian Abcb6 has several other functions and localization. ABCB6 has been 

localized to the plasma membrane and specifies the new blood group system Langereis 

(Lan) (Helias, et al., 2012). Loss of ABCB6 function has been associated with 

developmental defects including ocular coloboma (Wang, et al., 2012). Further, 

exogenous expression of ABCB6 has been correlated with increased cell growth and 

proliferation while loss of ABCB6 expression results in delayed progression through the 

mitotic phase of the cell cycle (Polireddy et al., 2011). These studies together suggest 

that ABCB6 might have non-heme functions in mammals.  

     To test the role of ABCB6 in vivo, we have analyzed the phenotypes associated with 

ABCB6 loss. Here, we report on an unanticipated function of ABCB6 in controlling body 

weight and regulating metabolism. Abcb6 knockout mice display a phenotype 

characterized by obesity, glucose intolerance, insulin resistance, liver steatosis and 

adipose tissue expansion. Dysregulated hepatic function and adipose tissue expansion 

coincide with significant alterations in gene expression and are preceded by significant 

alteration in daily energy expenditure and physical activity. Lastly, we identify that in 

liver, the key factor affected by Abcb6 deletion, is altered mitochondrial form and 

function. 

 

 

 



46 

 

3.3 Results 

Mature-onset obesity in mice lacking ABCB6 
 
     To study the physiological function of ABCB6 in vivo we generated a whole-body 

constitutive Abcb6 knockout mouse by homologous recombination. As we previously 

reported, mice lacking ABCB6 show a pleiotropic phenotype including embryonic 

lethality and short stature (Chavan, et al., 2015). However, a subset of Abcb6 knockout 

mice were alive and fertile (Chavan, et al., 2015). Surprisingly, Abcb6-KO mice that 

survived embryonic lethality and overcame short stature, displayed a gradual increase 

in body weight. To establish a chronology of overweight occurrence in the absence of 

ABCB6, we performed regular weight and food consumption recordings of individual 

mice under a standard diet over a 20-week period. By 20 weeks of age Abcb6 deficient 

male mice showed a significant increase in body weight (Figure 1A-1C, right panel; 16% 

increase over WT males). In contrast to male mice, the difference in body weight among 

females was less pronounced (Figure 1A-1C, left panels; 6% increase over WT 

females). The increase in body weight in either male or female mice could not be 

attributed to increase in food intake (Figures 1D and 1E). Together, these findings 

indicate that ABCB6 deletion leads to early signs of mature-onset obesity, which is more 

pronounced in males than in females. 
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Figure 3.1 
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Figure 3.1 Abc6 deficiency leads to early signs of mature onset obesity 

(A) Abcb6-KO male mice display morphological signs of obesity when compared to Abcb6-WT 

controls. Shown are representative photographs of 20-week old male (left) and female (right) 

mice. (B) Body weight curves of Abcb6-WT and Abcb6-KO mice over a period of 20 weeks. (C) 

Animals were fed a normal chow diet and weighed once every week. Data represent mean 

value ± SD Statistical significance was determined by two-tailed Student’s t test. ap < 0.05 

Individual value plot showing the actual weight of each mice at 20 weeks of age. 15 mice per 

genotype. (D) Relative food intake curves per mice per week. Data represent mean value ± SD. 

(E) Individual value plot showing the relative food intake per mice at 20 weeks. Data represent 

mean value ± SD.  

 

Abcb6-deficient mice accumulate more fat in visceral tissues and show signs of 
liver steatosis 
 
     We next determined whether increased body weight in Abcb6-deficient mice could 

be attributed to a difference in body composition. To this end we performed ECHOMRI 

which allows quantification of whole-body fat mass and the fat-to-lean ratio. We found 

that Abcb6 deficient mice had a significant relative increase in fat mass and a 

statistically non-significant decrease in lean mass (Figure 3.2A) at 20 weeks of age.    

We next examined if the larger fat mass of Abcb6 deficient mice reflects a proportionate 

increase in organ size. Direct measurements of organ weights from mice maintained on 

standard diet showed a significant increase in liver, intraabdominal fat, and brown fat 

mass relative to total body weight in Abcb6-deficient male mice compared to wild-type 

controls (Figures 3.2B). The gross morphology of liver, intrabdominal fat and brown fat 

was consistent with the increased mass of these tissues in Abcb6-deficient male mice 

(Figures 3.2C). Further, no significant differences in the weight of spleen, and kidney 

https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
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was observed in either the male or the female Abcb6 deficient mice compared to their 

respective controls (data not shown). Hematoxylin and eosin staining (H&E) of liver and 

white fat sections revealed increased hepatic lipid deposits and a larger size of 

adipocytes (Figure 3.2D) in Abcb6 deficient mice. Oil red O staining of liver sections 

confirmed accumulation of large lipid droplets suggestive of liver steatosis 

(Figure 3.2D). The oil red O-stained area per section was significantly higher in Abcb6-

deficient mouse livers compared to wild-type controls (Figure 3.2E). Finally, we found 

increased amounts of liver triglycerides in Abcb6-deficient mice compared to wild-type 

controls, further indicative of liver steatosis (Figure 3.2F). The increased adiposity in 

Abcb6 deficient mice was consistent with decreased adipocyte number (Figure 3.2G). 

Interestingly, the increased adiposity in Abcb6 deficient mice was not associated with 

inflammation, because we did not find any difference in F4/80 staining of white fat 

sections in Abcb6-deficient samples compared to the wild-type controls (Figure 3.2H).  

Of note, we observed accumulation of white fat also around brown fat in Abcb6-deficient 

mice, which was coincidental with larger intracellular lipid droplets in brown fat tissues 

(Figures 3.2C).      

 

Abcb6-deficient mice are glucose resistant and show some signs of metabolic 

syndrome 

    In humans, increased body mass and fatty liver are indicative of metabolic defects, a 

condition associated with glucose intolerance and insulin resistance (Castro et al., 2014; 

Moller et al., 2005). To address whether Abcb6-deficiency lead to features of glucose 

intolerance and insulin insensitivity, we tested the ability of Abcb6-deficient mice to 

https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
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respond to glucose and insulin. To this end, we performed glucose and insulin tolerance 

tests (GTTs and ITTs, respectively) on 20-week-old mice. Although blood glucose, 

taken after an overnight fast, was not significantly different between the genotypes, a 

small but significant increase in higher values of glucose were observed in Abcb6-

deficient mice after an intraperitoneal glucose tolerance test (Figure 3.2I). In contrast to 

blood glucose levels Abcb6 deficient mice showed a small but significant increase in 

serum insulin levels (Figure 3.2J). The presence of greater insulin resistance in the 

Abcb6 deficient mice was confirmed by the insulin tolerance test; at a dose of 0.75 U/kg, 

the Abcb6 deficient mice showed a small but significantly lower decrease in blood 

glucose (Figure3.2J). The area under the curve (AUC) values for the GTT and ITT 

assays were significantly higher in Abcb6-deficient mice compared to wild-type controls 

(Figure 3.2K).  

 

Figure 3.2 
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https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
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Figure 3.2 cont 
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Figure 3.2 continued 
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Figure 3.2 continued 
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Figure 3.2 continued 

 

 

 

Figure 3.2 Abcb6-Deficient male mice accumulate more fat and are insulin resistant  

(A) Relative fat mass and lean mass of 20-week-old male mice n=15 mice per genotype 

(B) Organ weight-to-total body weight ratios, WAT, White adipose tissue; BAT, brown adipose 

tissue, n = 15 mice per genotype (C) Representative macroscopic images of the indicated 

tissues and organs (D) Representative light microscopy images of H&E sections, and oil red O 

staining of the indicated tissues, WAT, white adipose tissue; BAT, brown adipose tissue (E) 

Quantification of oil red O-positive areas in liver sections of the indicated genotypes (F) 

Quantification of triglyceride content in liver samples, n=15 mice per genotype (G) Quantification 

of the adipocyte number in abdominal fat depots (H) Average macrophage count per high power 

field [HPF (200x optical field)]. Ten adjacent HPF were used and the average number of positive 

cells per HPF was calculated. (I) Fasting glucose levels and GTT data of fifteen 20-week-old 

wild-type and Abcb6 knockout mice (J) Fasting inulin and ITT data of fifteen 20-week-old wild-

type and Abcb6 knockout mice (K) Quantification of the area under the GTT and ITT curve 

K 
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(AUC), a.u., arbitrary units Values represent means ± SD. Statistical significance was 

determined by two-tailed Student’s t test. ap < 0.05, abp< 0.01 

Abcb6-deficient mice show altered hepatic and adipose gene expression that 

favor the altered hepatic and adipose phenotype 

     To investigate the biological processes underlying the altered hepatic and adipose 

phenotype, we assessed the effects of Abcb6 deficiency on gene transcription and 

protein translation in liver and adipose of 20-week-old mice. We focused our attention 

on liver first, due to its role in regulating metabolic homeostasis. We used an Affymetrix 

GeneChip microarray to assess gene expression changes. Of the total 45,105 

transcripts analyzed 501 genes were differentially expressed between Abcb6-WT and 

Abcb6-deficient mice (p< 0.05 with a fold change > 1.5; 336 downregulated and 165 

upregulated genes). Ingenuity Pathway analysis of all differentially expressed genes 

indicated a significant dysregulation in genes which impact different metabolic pathways 

including lipid, fatty acid, cholesterol and carbohydrate metabolism as well as in genes 

involved in developmental process, organismal survival, reproduction and transport 

(Figure 3.3A pie diagram to the left). To confirm and extend the GeneChip results 

further we examined liver mRNA and protein response focusing on protein products 

related to fatty acid and lipid metabolism. Consistent with the microarray data we found 

a modest but significant difference in the expression of mRNA and protein that regulate 

hepatic fat and lipid homeostasis in the livers of Abcb6 deficient mice compared to wild 

type control mice (Figure 3.3B & 3.3C). Quantification of the protein bands in the 

immunoblots allowed confirmation of the presence of significant differences in the 

expression of proteins involved in hepatic fat and lipid homeostasis (Figure 3.3B & 3.3C 

right panels). 
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     We next turned our attention to the intra-abdominal fat. Differential gene expression 

analysis, using the PRIMEPCR pathway analysis plate (BioRad), revealed 62 genes 

that were significantly deregulated in Abcb6 deficient male mice as compared to age-

matched controls. Ingenuity Pathway analysis of all differentially expressed genes 

indicated a significant deregulation in genes involved in regulating metabolic process, 

including fat and lipid metabolism (Figure 3.3A pie diagram to the right). To confirm and 

extend the microarray expression analysis we examined the intrabdominal mRNA and 

protein response focusing on protein products related to fatty acid and lipid metabolism. 

As observed in the liver protein response, we found a modest but significant difference 

in the expression proteins that regulate adipose fat and lipid homeostasis in Abcb6 

deficient mice compared to wild type control mice (Figure 3.3D & 3.3E). Quantification 

of the protein bands in the immunoblots allowed confirmation of the presence of 

significant differences in the expression of proteins involved in adipose fat and lipid 

homeostasis (3.3D & 3.3E right panels). 
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Figure 3.3 
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Figure 3.3 continued 
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Figure 3.3 continued 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Abcb6 Deficiency alters liver and adipose metabolism leading to steatosis and 

adipose expansion respectively 

(A) Gene ontology analysis and classification of differentially expressed genes into biological 

processes. (B) qPCR and western blot validation of selected mRNA and proteins involved in fat 

mobilization. Gene expression changes were normalized to actin and fold changes were 

normalized to Abcb6-WT mice. (C) qPCR and western blot validation of selected mRNA and 

proteins involved in de-novo lipogenesis. (D) Western blot validation of selected proteins 

involved in adipose tissue lipolysis. (E) Western blot validation of selected proteins involved in 

adipose tissue lipid homeostasis. Values represent mean ± SD. Statistical significance was 

determined by two-tailed Student’s t test. ap < 0.05, abp< 0.01 ImageJ was used to normalize 

protein bands in western blots against the respective loading controls (Actin). 

D 
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Abcb6 deficient mice have decreased energy expenditure and physical activity. 
 
     We next sought to define the basis for the altered body composition in the Abcb6 

deficient mice. To this end, we performed indirect calorimetry analysis to determine 

whether increased body weight in Abcb6 deficient mice could be due to differences in 

energy expenditure (EE). Cohorts of male mice at 6 weeks of age, prior to when the 

effect of Abcb6 deletion on body weight is evident, were placed on a standard diet and 

subjected to indirect calorimetry analysis. We found significant differences in both day 

and night time EE in Abcb6 deficient male mice (Figures 3.4A & 3.4I). We also found 

significant differences in VO2 and VCO2 between the genotypes (Figures 3.4B & 3.4C 

and 3.4J & 3.4K). More importantly we observed lower respiratory exchange rate (RQ) 

in Abcb6-deficient males compared to wild-type males in both light and dark cycles 

(Figures 3.4D & 3.4L). Finally, measurements of physical activity taken during the 

calorimetry studies revealed a modest but significantly decreased nighttime but not 

daytime locomotor activity in Abcb6 deficient male mice compared to wild-type mice 

(Figure 3.4E & 3.4F and 3.4M & 3.4N). Together, these results suggest that the 

substantially increased deposition of fat in Abcb6 deficient mice could be partly 

attributable to a modest decrease in EE and physical activity.   
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Figure 3.4 
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Figure 3.4 continued 
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Figure 3.4 continued  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Abcb6 Deficiency affects diurnal energy expenditure  

(A-D) Average daytime (A) energy expenditure, (B) volume of O2, (C) volume of   CO2, and (D) 

RER (E-F) Average daytime (E) activity, (F) distance travelled, (G) average food intake and (H) 

average water intake. (I-L) Average nighttime (I) energy expenditure, (J) volume of O2, (K) 

volume of CO2, and (L) RER. (M-P) Average nighttime (M) activity, (N) distance travelled, (O) 

average food intake and (P) average water intake. Indirect calorimetric analysis of 6 – week-old 

Abcb6-WT and Abcb6-KO mice monitored during a week period in metabolic cages. Values 

represent mean ± SD. Statistical significance was determined by two-tailed Student’s t test. ap < 

0.05 
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High-fat diet further aggravates obesity and diabetes in Abcb6-deficient mice 

To further understand the origin of obesity and liver steatosis associated 

with Abcb6 deficiency, we subjected 6-week-old Abcb6+/+ and Abcb6−/− mice to high-fat 

diet (HFD) and followed weight gain in a longitudinal manner (weekly measurements). 

HFD resulted in a significant increase in body weight compared to wild-type controls, 

(Figure 3.5A and 3.5B). The increased body weight of Abcb6 deficient mice fed a HFD 

could not be attributed to differences in daily food intake (Figure 3.5B inset). 

     Next, we performed direct measurements of organ weights from mice maintained on 

HFD. We observed a significant increase in liver, intra-abdominal, and brown fat mass 

(Figure 3.5D & 3.5E) relative to total body weight in Abcb6-deficient mice compared to 

wild-type controls on HFD. Hematoxylin and eosin staining (H&E) of white fat revealed a 

larger size of adipocytes in Abcb6 deficient mice (Figure 3.5F). Oil red O staining of liver 

sections confirmed accumulation of large lipid droplets (Figure 3.5F). Finally, we found 

increased amounts of liver triglycerides in Abcb6-deficient mice (Figure 3.5I). Of note, 

we observed accumulation of white fat also around brown fat in Abcb6-deficient mice, 

which was coincidental with larger intracellular lipid droplets in brown fat tissues 

(Figures 3.5F).  

     To further understand the metabolic effects of HFD in Abcb6 deficiency, we analyzed 

several metabolic parameters in the plasma of mice of both genotypes. Glucose and 

insulin plasma levels were increased in Abcb6 deficient mice (Figure 3.5C). The GTTs 

and ITTs confirmed that Abcb6-deficient mice are significantly more glucose resistant 

and insulin-insensitive than wild-type mice on the same diet (Figure 3.5G and 3.5H). We 

also found that the levels of cholesterol, serum triglycerides and free fatty acids were 

https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig4
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig4
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
https://www.cell.com/cell-reports/fulltext/S2211-1247(13)00247-7#fig2
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elevated in Abcb6 deficient mice compared to their wild type counterparts (Figures3. 5I 

– 3.5M). Taken together, these results suggest that ABCB6 impairment has adverse 

metabolic consequences that can lead to diet induced obesity in mouse. 

 

Figure 3.5 

 

 

 

 

 

 

 

 

 

C 



66 

 

Figure 3.5 continued 
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Figure 3.5 continued 
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Figure 3.5 continued 
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Figure 3.5 continued 
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Figure 3.5 continued 
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Figure 3.5 Enhanced weight gain and disruption of glucose metabolism in Abcb6     

deficient mice subjected to HFD 

(A) Representative image of male mice of the indicated genotype and age subjected to HFD for 

8 weeks. (B) Weight curves of male mice of the indicated genotype on HFD (60% calories from 

fat) commencing at 5 weeks of age. Inset in (B) relative food intake monitored during the HFD 

feeding. (C)  Fasting glucose and insulin levels in male mice of the indicated genotype. (D) 

Representative macroscopic images of the indicated tissues and organs. (E) Organ weight-to-

total body weight ratios, WAT, White adipose tissue; BAT, brown adipose tissue, n = 15 mice 

per genotype. (F) Representative light microscopy images of H&E sections, and oil red O 

staining of the indicated tissues, WAT, white adipose tissue; BAT, brown adipose tissue. (G) 

Glucose tolerance test (GTT) data in Abcb6-WT and Abcb6-KO mouse fed HFD for 8 weeks. 

(H) Insulin tolerance test (ITT) data in Abcb6-WT and Abcb6-KO mice fed HFD for 8 weeks. 

(I-M) Analysis of hepatic and plasma parameters in wild-type and Abcb6-deficient mice on HFD. 

(I) Hepatic TG, (J) Plasma LDL/VLDL ratio, (K) Plasma TG, (L) Plasma HDL (M) Plasma FFA. 

TG, Triglycerides; LDL, low density lipoproteins; VLDL, very low-density lipoproteins, HDL, high 

density lipoprotein; FFA, free fatty acids.  

Values represent mean ± SD. Statistical significance was determined by two-tailed Student’s t 

test. ap < 0.05, abp < 0.01 

 

ABCB6 expression is suppressed under obese conditions 

     Given the significant association between Abcb6 deficiency, and obesity we 

wondered if ABCB6 expression is differentially regulated under obese conditions. To 

test this hypothesis, we extracted proteins from livers and intra-abdominal adipose 

tissue of HFD induced obese mice and mice that are obese because of leptin deficiency 

(ob/ob). We found that ABCB6 expression was suppressed in the livers and white 
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adipose tissue of both HFD induced obese mice and leptin deficient obese mice 

(Figures 3.6A and 3.6B). We next sought to extend these observations and test whether 

ABCB6 expression was differentially regulated in obese humans compared to their ‘non-

obese’ counterparts. Towards this end we analyzed ABCB6 expression in clinically 

obese (BMI≥ 30, with hepatic steatosis of 20% or more by histology) and non-obese 

(BMI≤ 25, with no significant steatosis) human livers. As observed in the livers of obese 

mice we found decreased ABCB6 expression in obese human livers (Figure 3.6C). 

Together these results suggest a strong association between ABCB6 expression and 

metabolic homeostasis.   
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Figure 3.6 continued 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Conditions that lead to obesity affects ABCB6 expression in liver and adipose 

tissue  

(A) Representative figure showing the effects of HFD feeding on ABCB6 abundance in liver 

(upper left) and adipose tissue (upper right).  (Lower panels) Quantification of the protein bands 

in the immunoblots normalized to actin (n=15 mice per genotype). (B) Representative figure 

showing ABCB6 expression in liver (middle left) and adipose (middle right) in leptin deficient 

B 

C 
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(ob/ob) mice. (Lower panels) Quantification of the protein bands in the immunoblots normalized 

to actin (n=15 mice per genotype). (C) Representative figure showing hepatic ABCB6 

expression in obese (BMI≥ 30, with hepatic steatosis of 20% or more by histology) and non-

obese (BMI≤ 25, with no significant steatosis) human. Values represent mean ± SD. Statistical 

significance was determined by two-tailed Student’s t test. ap < 0.05. 

 

Abcb6 deficient mice display altered mitochondrial form and function 

     Over the past decade, it has become evident that shifts in energy expenditure are 

often linked to changes in mitochondrial function and such altered mitochondrial 

function also underlie systemic metabolic abnormalities that characterize the many 

clinical features of metabolic disease (Kim et al., 2008; Krishnamurthy, et al., 2011; 

Pintus et al., 2012). Given that ABCB6 is a mitochondrial protein we wondered if some 

of the observed phenotype in Abcb6 deficiency could result from altered mitochondrial 

function. To test this, we evaluated liver mitochondrial morphology and liver 

mitochondrial function in 6-week-old Abcb6-deficient male and female mice, prior to 

when the effect of Abcb6 deletion on body weight is evident. We found loss of ABCB6 

resulted in swollen mitochondria with indistinct cristae in liver tissue (Figure 3.7A and 

3.7B left panels) and decreased mitochondrial function in primary hepatocytes (Figure 

3.7A and 3.7B middle panels) and crude mitochondria isolated from Abcb6-deficient 

livers (Figure 3.7A and 3.7B right panels). Interestingly, we found that the mitochondrial 

form and function changes observed in Abcb6-deficient mice livers on standard chow 

diet was analogous to those observed in wildtype mice that developed obesity in 

response to high-fat diet feeding (Figure 3.7D) or developed obesity because of leptin 

deficiency (ob/ob mice; Figure 3.7C). Together, these results suggest a strong 
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association between ABCB6 expression and mitochondrial form and function in obesity 

linked metabolic disease. 

     The oxidative phosphorylation system, consisting of the four-multimeric enzyme 

complexes (CI–CIV) of the respiratory chain, and the ATP synthase complex (CV), drive 

the synthesis of ATP in most cells and defines the bioenergetic efficiency of the 

mitochondria. We wondered whether altered expression and/or activity of oxidative 

phosphorylation complexes contributed to the differential bioenergetic capacity of the 

hepatic mitochondria in Abcb6 deficient mice. To test this, we measured the activity of 

each (CI, CII, CIII, and CIV) of the respiratory complexes and found a significant 

decrease in the activity of CI, CIII and CIV complexes in Abcb6 deficient mice (Figure 

3.7E left panel). We next determined if the changes in enzyme activity resulted from 

changes in respiratory complex expression. Towards this end we performed a 

denaturing gel electrophoresis of mitochondrial proteins isolated from Abcb6-

deficienand Abcb6 WT control mice liver. Surprisingly, western blot analysis revealed no 

significant difference in the protein levels of any of the complexes in Abcb6-deficient 

mice compared to the Abcb6WT controls (Figure 3.7E middle panel). Quantification of 

the protein bands in the immunoblots allowed confirmation of the lack of significant 

differences in the expression of respiratory complexes between the Abcb6 genotypes 

(Figure 3.7E right panel). Together these results suggest that the decreased hepatic 

mitochondrial bioenergetics in Abcb6 deficiency could partly arise from a decrease in 

the activity of respiratory complexes CI and CIII without any significant change in their 

expression.  
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Figure 3.7 
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Figure 3.7 continued 
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Figure 3.7 continued  
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Figure 3.7 continued 
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Figure 3.7 continued 
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Figure 3.7 ABCB6 expression affects hepatic bioenergetic capacity 

(A) Representative electron microscopic image showing the effects of Abcb6 deficiency on   

hepatic mitochondrial morphology, primary hepatocyte bioenergetics and isolated mitochondrial 

bioenergetics in 6-week-old Abcb6-WT and Abcb6-KO male mice. (B) Representative electron 

microscopic image showing the effects of Abcb6 deficiency on hepatic mitochondrial 

morphology, primary hepatocyte bioenergetics, and isolated mitochondrial bioenergetics in 6-

week-old ABCB6-WT and Abcb6-KO female mice. (C) Representative electron microscopic 

image showing the effects of obesity on hepatic mitochondrial morphology and isolated 

mitochondrial bioenergetics in 8 -week-old leptin deficient ob/ob mice fed a standard chow diet. 

(D) Representative electron microscopic image showing the effects of diet induced obesity on 

hepatic mitochondrial morphology and isolated mitochondrial bioenergetics in mice fed HFD for 

8 weeks. (E) Quantification of OXPHOS complex activity and expression in Abcb6 deficient 

mice at 6 weeks of age.   

3.4 Discussion 

     Overall our study sheds light on a yet unanticipated role for mammalian ABCB6 in 

normal body weight control. Our data establish that ABCB6 acts as a molecular 

determinant of metabolic homeostasis. Abcb6 deficiency leads to a multisystem 

metabolic derangement reflected by glucose intolerance, insulin resistance, liver 

steatosis, and excess fat accumulation. Ultimately, this manifests as late onset obesity 

in the Abcb6 knockout mice.  

     Although the mechanism underlying the metabolic phenotype of Abcb6 deficiency 

remains to be delineated, our observation draws an interesting link between 

mitochondrial transport, mitochondrial function, metabolic flexibility and metabolic 

regulation. The best explanation we could identify for the differential gain in fat mass in 
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Abcb6-deficient mice is decreased EE as measured by indirect calorimetry. Regarding 

the source of the decreased EE in Abcb6 deficient mice, the altered mitochondrial form 

and function observed in Abcb6 deficiency provides an important clue, particularly given 

that these alterations in mitochondrial form and function as well as decreased EE occur 

simultaneously and prior to when the effect of Abcb6 deletion on body weight is evident.  

     A number of studies have described reduced levels of mRNA for mitochondrial 

genes (Heilbronn et al., 2007; Mootha et al., 2003; Morino et al., 2005; Patti et al., 

2003), decreased mitochondria DNA (Boushel et al., 2007; Ritov et al., 2005) and lower 

protein expression of respiratory chain subunits (Heilbronn, et al., 2007) in mitochondria 

isolated from insulin-resistant individuals. However, several features point to a more 

complex role for ABCB6 in mitochondrial bioenergetics and mitochondrial function. 

These include the decreased activity of the mitochondrial respiratory complexes without 

any change in the either the transcriptional or translational efficiency of many liver 

mRNAs encoding mitochondrial electron transport components. We speculate that 

change in mitochondrial form observed in Abcb6 deficiency might be a contributing 

factor for decreased mitochondrial function. Such a functional change would be 

analogous to the Barth syndrome, a fatal X-linked recessive disease characterized by 

cardioskeletal myopathy (Barth et al., 2004), where defective mitochondrial form 

correlates with reduced mitochondrial bioenergetics leading to severe cellular 

dysfunction (McKenzie et al., 2006). Alterations in mitochondrial form have also been 

identified during aging (Frenzel et al., 2010; Lombardi et al., 2009; Lopez-Lluch et al., 

2015), as well as in metabolic disease (Arruda et al., 2014) including type 2 diabetes 

(Antoun et al., 2015).  
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     Obesity is a major global public health concern that has now reached epidemic 

proportions. Obese individuals are faced with a markedly increased risk of 

cardiovascular disease, type 2 diabetes, osteoarthritis, and several metabolic 

syndromes. Of the many genes that have been reported to impact obesity in mice, only 

a handful of heritable genes have been identified in human genetic studies. Results 

from our studies suggest that ABCB6 expression correlates inversely with body weight 

gain. Although, gene association studies have established a strong link between loss of 

ABCB6 function with a variety of human diseases (Chavan, et al., 2015; Cui et al., 2013; 

Wang, et al., 2012; Zhang, et al., 2013), it remains to be seen whether such loss of 

function mutations in ABCB6 are also associated with human metabolic syndromes. 

Nevertheless, our finding that ABCB6 expression is down regulated in obese conditions, 

and loss of ABCB6 results in weight gain, and substantial metabolic phenotype supports 

the case for Abcb6 as a causal gene in metabolic disease and provides a strong 

impetus to the investigation of the physiologic roles of the human Abcb6 SNPs in 

metabolic disease.  

     In conclusion, our studies demonstrate that Abcb6 deficient mice, both male and 

female, present impaired hepatic mitochondrial function and are susceptible to diet 

induced obesity, glucose intolerance, hepatic steatosis and adipose tissue expansion. 

Given that ABCB6 is ubiquitously expressed and that loss of ABCB6 results in a wide 

variety of human pathologies, it will be important to evaluate if ABCB6 has tissue 

specific effects that are dependent on mitochondrial function.  
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Chapter 4: ABCB6 Fine-tunes Metabolic Flexibility in Response to     

Physiological Signals 
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4.1 Abstract 

     Hepatic mitochondria undergo cyclical changes in their shape, size, and distribution to 

adapt their bioenergetic and biosynthetic output to the ever-changing anabolic/catabolic 

state of the liver. This adaptability allows organisms to switch freely between alternative 

fuels, according to physiological and nutritional circumstances, and is essential to 

maintain metabolic homeostasis.  Here we provide evidence that the mitochondrial outer-

membrane protein ABCB6 plays a pivotal role, in controlling systemic energy and body 

weight homeostasis, through temporal regulation of mitochondrial dynamics. In mice 

ABCB6 expression is in sync-with diurnal bioenergetic demands, and chronic loss or gain 

of hepatic ABCB6 results in lack of bioenergetic and biosynthetic adaptation of the 

mitochondria, leading to metabolic inflexibility and the development of metabolic disease. 

Our data suggest that ABCB6 acts as a conserved pivot for the adaptive metabolic 

responses to promote the bioenergetic and biosynthetic adaptation of the mitochondria, 

to the ever-changing anabolic/catabolic state of the liver.  
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4.2 Introduction 

     Organisms sense nutrients in the environment and adapt their metabolism based on 

the available energy. This adaptability, termed ‘metabolic flexibility’, allows organisms the 

ability to switch from fatty acid oxidation during the fasted state to enhanced glucose 

metabolism during the fed state (Kohler, 1985) (Gao et al., 2014; Smith et al., 2018b). 

During the last decade, mitochondria have independently emerged as key regulators of 

metabolic flexibility (Gao, et al., 2014; Liesa et al., 2013; Stephenson et al., 2014).  

Mitochondrion’s ability to regulate cellular processes such as ATP synthesis, 

autophagy/mitophagy, and apoptosis in response to changing energetic levels maintains 

metabolic homeostasis. Dysregulation in mitochondrial function has been shown to result 

in metabolic inflexibility leading to the inability of the organism to adapt its metabolism to 

energetic changes, resulting in the development of metabolic diseases such as obesity 

and insulin resistance (Corpeleijn et al., 2009; Galgani et al., 2008; Gao, et al., 2014; 

Smith, et al., 2018b).  

     Two main mechanisms allow mitochondria to adjust ATP synthesis to changes in 

energetic demand and to control metabolic flexibility (i) acute change of both 

mitochondrial dynamics (fusion and fission) and post-translational modifications, and (ii) 

longer-term modification of mitochondrial quantity.(Gao, et al., 2014). Evidence 

suggests that mitochondrial response to nutrients is mediated by the acute change; 

mitochondrial dynamics, which is shaped by fusion and fission (Gao, et al., 2014). In 

nutrient excess, cells maintain their mitochondria in a fragmented state, while during 

fasting/starvation mitochondria tend to persist in a fused state (Gomes et al., 2011a; 

Liesa, et al., 2013; Molina et al., 2009). While the complete lack of fusion or fission 
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results in embryonic lethality (Chen et al., 2003; Davies et al., 2007; Ishihara et al., 

2009), shifts in balance between fusion and fission are an important adaptive process 

required to retain mitochondrial flexibility and health upon changes to our environment 

(Kulkarni et al., 2016; Sebastian et al., 2012; Wang et al., 2015). However, our 

understanding of the potential mechanisms that regulate the dynamic shifts in fusion 

and fission, to remodel mitochondrial architecture upon whole-body physiology remain 

largely incomplete. 

     In this report, we show that ABCB6, a mitochondrial outer membrane ATP binding 

cassette protein, is an important regulator of mitochondrial form and function in the liver. 

Loss of ABCB6 in hepatocytes leads to a pronounced shortcoming in mitochondrial 

morphology that favors fission. In contrast liver-specific overexpression of ABCB6 

favors fusion which results in elongated mitochondria. In addition, we find that ABCB6 

expression is in sync-with diurnal bioenergetic demands, and that chronic loss or gain of 

ABCB6 results in lack of biosynthetic adaptation of the mitochondria to the changing 

anabolic/catabolic state of the liver leading to metabolic inflexibility. Although, the exact 

mechanism by which ABCB6 regulates mitochondrial dynamics and metabolic 

homeostasis is not completely clear, the strength of evidence presented in this report 

favors the hypothesis that ABCB6 is a potential regulator of mitochondrial form and 

function and suggests a role for ABCB6 in linking environmental stimuli to mitochondrial 

dynamics and metabolic flexibility. 
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4.3 Results 

 

Genetically engineered hepatic ABCB6 deficient mice exhibit altered mitochondrial 

form. 

     We used adeno associated viral delivery of Cre-recombinase, driven by liver specific 

Thyroxine- binding globulin (TBG) promoter, to eliminate hepatic ABCB6 expression 

postnatally (Figure 4.1A). This approach eliminated ABCB6 expression by > 85% ten days 

post infection (Figure 4.1B). In the rest of this dissertation, liver specific ABCB6 deficient 

mice are designated by the acronym Abcb6LKO, liver-specific overexpressing mice by 

Abcb6LOE, and Abcb6 wild-type control mice are designated by the acronym Abcb6WT. 

     Although, ABCB6 has been shown to regulate heme synthesis in vitro (Krishnamurthy, 

et al., 2006), loss of ABCB6 in the present mouse model did not affect hepatic heme 

levels (Figure 4.1C), nor were there any compensatory responses in the expression of 

heme synthesis pathway genes (Figure 4.1D). However, quite surprisingly, mice with 

liver-specific deletion of ABCB6 (Figures 4.1E-1G) displayed a shift in mitochondria size 

distribution, toward rounder, shorter organelles, compared to wild-type littermate controls 

(Abcb6WT) (Figure 4.1H). We performed a systematic evaluation of these mitochondrial 

alterations and found an overall increase (~26%) in the mitochondrial number in 

Abcb6LKO mice (338 in Abcb6LKO vs 269 in Abcb6WT mice per image of 980 µm2; 

(Figure 4.1I). However, we found that on an average the area of the individual 

mitochondrion decreased by ~16% in Abcb6LKO mice (0.606 µm2 in Abcb6LKO livers vs 

0.724 µm2 in Abcb6WT livers; (Figure 1K) without any significant difference in the total 

mitochondrial area between the two groups of animals (Figure 4.1J). We found that this 
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change in decreased mitochondrion area in Abcb6LKO mice was due to a shift in 

mitochondria size distribution toward rounder (Figure 4.1H), shorter organelles (Figure 

4.1L-1N).    

Figure 4.1 
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Figure 4.1 cont 
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Figure 4.1 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I J 

K 
L 



92 

 

Figure 4.1 continued 

 

Figure 4.1 Loss of hepatic ABCB6 is linked to fragmentation of the mitochondrial network 

(A) Schematic representation of the generation of tissue specific Abcb6 knockout mice using the 

Cre-loxP system. The floxed Abcb6 gene mouse line contains loxP sites flanking exon 2. 

Injection of AAV8 viral particles carrying the Cre-recombinase under the control of liver specific 

(TBG) promoter deletes the intervening DNA sequence resulting in loss of exon 2. (B) 

Immunoblot analysis of ABCB6 expression in Abcb6-floxed mice injected with AAV8-TBG-PI. 

Cre. (C) Hepatic heme levels in Abcb6WT, Abcb6LKO, and Abcb6LOE mice. (D) RTPCR 

analysis of hepatic enzymes involved in heme biosynthesis in Abcb6WT and Abcb6LKO mice. 

Histograms represent mean ± SD.  

 (E) Representative western blot analysis of ABCB6 and Porin in Abcb6LKO and Abcb6WT mice 

at 10 days post infection. Porin is used as a loading control. (F) ImageJ analysis of protein bands 

normalized to porin. Average of three independent studies with 5 mice per group per study. 

Histograms are mean ± SD (G) RTPCR analysis of Abcb6 transcript levels in Abcb6LKO and 

Abcb6WT mice. Average of three independent studies with 5 mice per group per study. 

Histograms are mean ± SD (H) Representative EM image of liver mitochondria used to study 

mitochondrial number, area and morphology. (I-N) Effect of hepatic Abcb6 deficiency on (I) 

M N 



93 

 

average mitochondria number per image, (J) average mitochondria area per image, (K) average 

area per mitochondrion, (L) mitochondria shape, (M) mitochondria number major axis class 

distribution, (N) mitochondria percent major axis class distribution. Mitochondrial network 

dynamics were calculated in 16 images (2 images per mice per genotype) each of 980 µm2 

representing 8 Abcb6LKO and 8 Abcb6WT mice. Values represent mean ± SD. 

Genetically engineered hepatic ABCB6 overexpressing mice exhibit altered 

mitochondrial form  

     We next tested whether ectopic overexpression of ABCB6 in wildtype mice would 

affect mitochondrial morphology. We used adenoviral associated viral delivery of Abcb6 

gene, driven by liver specific TBG-promoter to ectopically express ABCB6 in the livers of 

Abcb6WT mice. This delivery method resulted in a ~ 4-fold increase in ABCB6 expression 

in the livers of Abcb6WT mice by 10 days post infection (Figure 4.2A-4.2C). In the rest of 

the dissertation liver specific ABCB6 overexpressing mice are designated by the acronym 

Abcb6LOE. 

     We found that ectopic overexpression of ABCB6 resulted in mitochondria that were 

significantly more elongated than those observed in Abcb6WT mice that received control 

AAV particles (Figure 4.2D). A systematic evaluation of these mitochondrial alterations 

demonstrated an overall decrease (~ 18%) in the mitochondrial number (174 Abcb6LOE 

mice vs 266 in Abcb6WT mice per image of 980 µm2; Figure 4.2E), and an overall 

increase in the area of the individual mitochondrion in Abcb6LOE mice (1.191 µm2 in 

Abcb6LOE livers vs 0.782 µm2 in Abcb6WT livers; Figure 4.2G). However, we did not find 

any significant difference in the total mitochondrial area between the two groups of 

animals (Figure 4.2F). As with the Abcb6LKO mice the change in individual mitochondrion 
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area and number in Abcb6LOE mice appear to result from a shift in mitochondria size 

distribution toward longer, elongated organelles (Figures 4.2H – 4.2J). Together these 

results causally link ABCB6 expression to mitochondrial morphology. 

Figure 4.2 
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Figure 4.2 continued 
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Figure 4.2 continued 

 

 

 

 

 

 

 

 

Figure 4.2 Overexpression of hepatic ABCB6 is linked to hyper-fusion of the 

mitochondrial network  

(A) Representative western blot analysis of ABCB6 and Porin in Abcb6LOE and Abcb6WT mice. 

Porin is used as a loading control. (B) ImageJ analysis of protein bands normalized to porin. 

Average of three independent studies with 5 mice per group per study. Histograms are mean ± 

G H 
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SD (C) RTPCR analysis of Abcb6 transcript levels in Abcb6LOE and Abcb6WT mice. Average of 

three independent studies with 5 mice per group per study. Histograms are mean ± SD. (D) 

Representative EM image of liver mitochondria used to study mitochondrial number, area and 

morphology. (E-J) Effect of ABCB6 overexpression on (E) average mitochondria number, (F) 

average mitochondria area per image, (G) average area per mitochondrion, (H) mitochondria 

shape, (I) mitochondria number major axis class distribution, (J) mitochondria percent major axis 

class distribution. Mitochondrial network dynamics were calculated in 12 images (2 images per 

mice per genotype) each of 980 µm2 representing 6 Abcb6LOE and 6 Abcb6WT mice. Values 

represent mean ± SD. 

Altered mitochondrial form in genetically engineered hepatic Abcb6 deficient and 

Abcb6 overexpressing mice results in altered mitochondrial function 

     Mitochondrial architecture, through the balance between fusion and fission events, 

represents a central mechanism for bioenergetic adaption (Cheng et al., 2013; Liesa, et 

al., 2013; Nasrallah et al., 2014). In general, elongated mitochondria (fusion) are 

considered to be in a state of increased bioenergetic efficiency, while in contrast 

shortened mitochondria (fission) are considered to be in a state of decreased 

bioenergetic efficiency (Liesa, et al., 2013). We hypothesized that increased 

mitochondrial elongation following ABCB6 overexpression would favor increased 

bioenergetic efficiency, while increased mitochondrial shortening in ABCB6 deficiency 

might favor decreased bioenergetic efficiency. To test this hypothesis, we measured the 

bioenergetic function of mitochondria isolated from wildtype, ABCB6 deficient and 

ABCB6 overexpressing livers by determining the oxygen consumption rate (OCR) using 

seahorse XF24 extracellular flux analyzer (Figure 4.3). Isolated mitochondria were 

loaded into different wells of the same seahorse plate and assayed with succinate as 
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fuel. Prior to the assay, we confirmed that equal amounts of functional mitochondria and 

mitochondrial content were present in all mitochondrial preparations by directly staining 

and imaging the wells of the XF24 flux analyzer plate with Mitotracker (Figure 4.3A), 

and by immunoblot analysis of mitochondrial preparations for equal protein content 

(Figure 4.3B). Extracellular flux analyzer studies revealed a significant decrease in 

basal respiration, ATP-synthesizing respiration (state III) and maximal respiratory 

capacity induced by uncoupling with FCCP (maximal) in Abcb6LKO mitochondria 

compared to Abcb6WT mitochondria (Figure 4.3C). In contrast these same parameters 

were significantly increased in Abcb6LOE mitochondria compared to Abcb6WT 

mitochondria (Figure 4.3D). 

     The oxidative phosphorylation system, consisting of the four multimeric enzyme 

complexes (CI–CIV) of the respiratory chain, and the ATP synthase complex (CV), 

drives the synthesis of ATP in most cells and defines the bioenergetic efficiency of the 

mitochondria. We wondered whether altered expression of oxidative phosphorylation 

complexes contributed to the differential bioenergetic capacity of the hepatic 

mitochondria in ABCB6 deficient and ABCB6 overexpressing mice. To test this, we 

performed a denaturing gel electrophoresis of mitochondrial proteins isolated from 

Abcb6LKO, Abcb6LOE, and Abcb6WT mice liver. We first confirmed that equal 

amounts of protein were loaded by staining western blot membranes with the non-

specific protein dye Ponceau S (Figure 4.3E & Figure 4.3F). To control for mitochondrial 

protein loading, we normalized bands to the mitochondrial protein Porin, which did not 

vary significantly between samples. Surprisingly, western blot analysis revealed no 

significant difference in the protein levels of any of the complexes in either the 
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Abcb6LKO or Abcb6LOE mice compared to Abcb6WT controls (Figure 4.3G and 4.3H). 

Quantification of the protein bands in the immunoblots allowed confirmation of the lack 

of significant differences in the expression of respiratory complexes between the Abcb6 

genotypes (Figure 4.3I and Figure 4.3J). 

     With the advent of native electrophoretic gel systems that could separate large 

membrane complexes, respiratory super complexes were shown in a wide variety of 

eukaryotes, including yeast, plants, and animals (Genova, et al., 2014; Schagger et al., 

2000). These super complexes have been hypothesized to be important in stabilizing 

the levels of the individual respiratory complexes themselves, and increasing the 

efficiency of electron transport, thus enhancing the overall respiratory complex activity 

and mitochondrial function (Greggio et al., 2017; Lapuente-Brun et al., 2013). Given the 

lack of difference in respiratory complex protein levels in Abcb6LKO and Abcb6LOE 

mitochondria, we speculated if the differences in respiratory capacity could be due to 

changes in the assembly of respiratory super complexes. To test this, we analyzed 

super complex assembly in Abcb6LKO, Abcb6LOE and Abcb6WT mitochondria using 

native gel electrophoresis (blue native PAGE; BNPAGE). As with the denaturing gel 

electrophoresis, in BNPAGE we first confirmed that equal amounts of protein were 

loaded by normalizing bands to the mitochondrial protein VDAC, which did not vary 

significantly between samples. We first labeled in detail the specific SCs in Abcb6WT 

mice using the most recent description and characterization of SC structure in 

mammalian tissues (Greggio, et al., 2017). In line with previous reports, CI was mostly 

found in super-assembled species. CII existed predominantly, but not exclusively, as a 

single band. CIII and CIV existed both as free and super-assembled species (Figure 
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4.3K). Interestingly, blue native PAGE revealed an overall decrease in the assembly of 

SCs (specifically SCs I+III+IV) in Abcb6LKO mice, while an overall increase in SC 

assembly was observed in Abcb6LOE mice, compared to control Abcb6WT mice 

(Figure 4.3L). Quantification of BNPAGE confirmed significant differences in SCs in 

Abcb6LOE and Abcb6LKO mice (Figure 4.3M). To establish this observation further we 

analyzed the distribution of CI and CIII SCs, the two most prominent SCs in mammals. 

We observed that the fraction of CI and CIII allocated to SCs were lower in Abcb6LKO 

mice and higher in Abcb6LOE mice compared to the Abcb6WT controls (Figures 4.3N 

and 4.3O). Quantification of BNPAGE CI and CIII SCs allowed us to confirm a 

significant change in the assembly of SCs I and III between the genotypes (Figures 

4.3P and 4.3Q). 

     Taken together our results suggest that ABCB6 expression dependent change in 

mitochondrial function is driven by reorganization of the OXPHOS super complexes 

without any significant change in the overall expression of the individual protein 

complexes. 

 

Figure 4.3 
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Figure 4.3 cont 
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Figure 4.3 cont  
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Figure 4.3 continued 
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Figure 4.3 continued 
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Figure 4.3 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 ABCB6 expression affects hepatic bioenergetic capacity 

 (A) Representative fluorescence microscopy image of Seahorse respirometry plate wells 

containing isolated mitochondria stained with MitoTracker Red. (B) Representative Immunoblot 
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analysis of VDAC and Tom20 in mitochondria that were in the Seahorse respirometry plates. (C 

- D) Quantification of OCR at different mitochondrial respiratory states in a representative 

experiment using mitochondria isolated from (C) Abcb6WT and Abcb6LKO mice and (D) 

Abcb6WT and Abcb6LOE mice, driven with succinate. ADP, oligomycin, FCCP, and antimycin 

were sequentially injected to assess mitochondrial respiratory states. 4-6 replicates per group. 

(E and F) Western blot analysis of (E) Abcb6WT and Abcb6LKO mitochondria and (F) 

Abcb6WT and Abcb6LOE mitochondria stained with the dye Ponceau S for total protein loading. 

(G-H) Representative western blot analysis of OXPHOS complex subunits I-V (CI-CV) in 

mitochondria isolated from (G) Abcb6WT and Abcb6LKO mice and (H) Abcb6WT and 

Abcb6LOE mice. Porin is used as a loading control. (I-J) Quantification of OXPHOS complex 

subunits (average of n=5 independent isolations) normalized to Porin loading control in 

mitochondria isolated from (I) Abcb6WT and Abcb6LKO mice and (J) Abcb6WT and Abcb6LOE 

mice. (K) Representative BN-PAGE analysis of mitochondrial extracts from Abcb6WT mice. 

Specific antibodies against individual ETC complexes were used separately. The high molecular 

weight bands (HMW), were mainly composed of SC In+IIIn. The strong band below the HMW, 

primarily composed of I, III, and IV, were defined as SC I+III+IV. (L) Representative BN-PAGE 

of mitochondrial extracts from Abcb6WT, Abcb6LKO and Abcb6LOE mice probed with 

OXPHOS antibody cocktail. (M) Quantification of the total amount of SCs (average of n=5 

independent isolations) in Abcb6WT, Abcb6LKO and Abcb6LOE mice. Abcb6WT SC content 

was used to normalize Abcb6LKO and Abcb6LOE SC expression. Values represent mean ± 

SD. ‘a’ significantly different from Abcb6WT; p<0.001. ‘b’ significantly different from Abcb6LKO; 

p< 0.01  

(N and O) BNPAGE analysis of (N) complex I and (O) complex III super-assemblies in 

mitochondria isolated from Abcb6WT, Abcb6LKO and Abcb6LOE mice. (P and Q) Quantification 

of the total amount of SCs I and III in Abcb6WT, Abcb6LKO and Abcb6LOE mice; Average of 

n=5 independent isolations. Abcb6WT SC content was used to normalize Abcb6LKO and 
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Abcb6LOE SC expression. ‘a’ significantly different between Abcb6WT vs Abcb6LKO; p<0.001. 

‘b’ significantly different between Abcb6WT vs Abcb6LOE; p< 0.01. Histograms represent mean 

± SD 

 

Hepatic ABCB6 expression oscillates in sync with fasting and feeding signals. 

     Multiple lines of evidence demonstrate that in the liver, mitochondrial dynamics of 

fusion and fission is closely linked to support the changing bioenergetic demand (Jacobi 

et al., 2015; Lionetti et al., 2014; Smith, et al., 2018b). Based on the strong association 

between hepatic mitochondrial form and function, and the Abcb6 genotype, we wondered 

whether under physiological conditions ABCB6 expression was regulated to link 

bioenergetic demand to mitochondrial dynamics. To test this, we measured ABCB6 

expression in two physiological relevant mouse models, postprandial (Figure 4.4A) and 

circadian rhythm (Figure 4.4B), where mitochondria undergo cyclical changes in their 

shape, size and distribution to adapt their bioenergetic and biosynthetic output to the ever-

changing anabolic/catabolic state of the liver (Jacobi, et al., 2015; Sood et al., 2014). We 

used the activation of nutrient-sensing mechanistic/mammalian target of rapamycin 

complex 1 (mTORC1) to confirm that mice were responsive to the fasting and feeding 

protocol used in our studies (Albert et al., 2015; Laplante et al., 2009, 2012) (Figure 4.4E). 

Similarly, we used circadian oscillation of Period Circadian Regulator 2 (Per2) to confirm 

circadian rhythm in our mouse models (Schmutz et al., 2012) (Figure 4.4G and 4.4H). 

ABCB6 expression was evaluated in these models at both the transcription and 

translational levels. We found that in the postprandial mouse model (Figure 4.4A) ABCB6 

expression was induced in response to fasting, while feeding decreased ABCB6 

expression (Figure4.4E). More interestingly we found that fasting dependent increase in 
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ABCB6 expression was regulated at the transcriptional level (Figure 4.4D) with the 

highest expression seen after an overnight fast ~12 h. In contrast to fasting, feeding 

mediated decrease in ABCB6 expression appeared to be regulated at the post-

transcriptional level, as we did not observe any change in the ABCB6 transcript following 

feeding (Figure 4.4D). Quantification of ABCB6 protein bands in immunoblots confirmed 

significant decrease in ABCB6 expression (Figure 4.4F). 

To confirm the feeding dependent decrease in ABCB6 expression and to explore 

the dynamics of this process we developed an ex vivo model of postprandial using primary 

hepatocytes isolated from Abcb6WT mice. In this ex vivo model Abcb6WT mouse primary 

hepatocytes were cultured in either low nutrient (5 mM glucose) or high nutrient (25 mM 

glucose) media to replicate the in vivo fasting and feeding conditions. Further, to define 

the dynamics of feeding on ABCB6 expression we analyzed the time dependent decrease 

in ABCB6 protein by western blot. Consistent with the in vivo results, ex vivo ABCB6 

expression was eliminated following 5 h of culturing in high nutrient media (Figure 4.4I). 

More importantly we observed a significant decrease (> 75%) in ABCB6 protein as early 

as 1 h of culturing in high nutrient media (Figure 4I). Quantification of the protein bands 

in immunoblots confirmed significant decrease in ABCB6 expression in response to 

nutrient load in primary hepatocytes (Figure 4.4J).   

In the circadian rhythm model, we found a rather sluggish synchronization of the 

Abcb6 transcript with the circadian clock (Figure 4.4C). However, in contrast to the Abcb6 

transcript, ABCB6 protein showed robust synchronization with the diurnal rhythm (Figure 

4.4G). Quantification of the immunoblot protein bands allowed us to plot the circadian 
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profile of the ABCB6 protein which was phase reversed to the circadian oscillation of Per2 

protein (Figure 4.4H).   

Taken together these results suggest that hepatic ABCB6 expression is in sync with 

physiological and environmental stimuli where hepatic bioenergetic and biosynthetic 

output requires reprogramming to meet the ever-changing metabolic state. 
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Figure 4.4 cont 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

C 

D E 



111 

 

Figure 4.4 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F 

G 

H 



112 

 

Figure 4.4 continued 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Hepatic ABCB6 expression in response to diurnal bioenergetic demand (A) 

Schematic representation of the postprandial model used in this study. (B) Schematic 

representation of the circadian model used in this study. (C) Double-plotted average (±SEM, 

n=4) mRNA levels of Abcb6 in liver at different times of the day. Transcript levels were 

measured by qRT-PCR and normalized to Gapdh mRNA levels. Broken line separates double 

plotted data. 

 (D) Abcb6 mRNA transcript in Abcb6WT mouse liver in response to postprandial. (E) ABCB6 

protein expression in Abcb6WT mouse liver in response to postprandial. pS6K1 and p4EBP1 

were used to confirm feeding and fasting responses and Porin was used as loading control. (F) 

Quantification of ABCB6 protein in Immunoblots normalized to Porin loading control (average of 

n= 3 independent experiments with 4-5 mice per group per experiment). (G) Circadian 

expression of ABCB6 protein in Abcb6WT mouse livers.  Liver samples were collected every 3 

I 

J 
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hours for 24 hours (n=3-4 mice/time point). Per2 expression was used to confirm circadian 

rhythm and Porin was used as loading control. (H) Quantification of ABCB6 and Per2 

Immunoblots normalized to Porin loading control (average of n=3 independent experiments with 

3-4 mice per group per experiment). The white and black bar represents light cycle and dark 

cycle, respectively. Zeitgeber time 0; lights on; 12; lights off. The dotted line separates one 24 h 

(day and night) cycle. (I) Representative Immunoblot analysis of ABCB6 protein expression in 

primary hepatocytes isolated from Abcb6WT mice livers cultured in the presence of either low-

nutrient (5 mM glucose) or high nutrient (25 mM glucose) for the indicated periods. Actin is used 

as a loading control. (J) Quantification of immunoblots normalized to actin (average of n=3 

independent primary hepatocyte isolations). Values represent mean ± SD. ‘a’ significantly 

different from low nutrient; p < 0.001. ‘b’ significantly different from high nutrient at 1 h; p < 

0.001. ‘c’ significantly different from high nutrient at 3 h; p<0.001. High 1, High 2, High 3, High 4, 

and High 5 represent hepatocytes treated with high nutrient media for 1 h, 2 h, 3 h, 4 h and 5 h 

respectively. 

 

Dynamic changes in hepatic ABCB6 expression is required to accommodate 

mitochondrial form and function in response to hepatic bioenergetic demand. 

     Based on the synchronization of hepatic ABCB6 expression with bioenergetic demand 

and mitochondrial form and function, we hypothesized that dynamic changes in ABCB6 

expression may be essential to accommodate hepatic bioenergetic demand to the 

mitochondrial life cycle of fusion and fission. To test this hypothesis, we first determined 

the dynamic changes in mitochondrial form and function in Abcb6WT mice in response 

to fasting and feeding using the postprandial mouse model described in Figure 4.4A. In 

Abcb6WT mice, a shift from ad libitum feeding to fasting reprogramed hepatic 
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mitochondria into a more fused or elongated morphology (Figure 4.5A) with a significant 

decrease in mitochondrial number (Figure 4.5B) without any significant change in total 

mitochondrial area (data not shown). Consistent with the more fused morphology, Abcb6 

WT mitochondria displayed increased basal respiration, ATP-synthesizing respiration 

(state III) and maximal respiratory capacity (FCCP uncoupled) (Figure 4.5C). In contrast, 

a shift from fasting to refeeding resulted in shortened or fragmented mitochondria with a 

significant decrease in basal respiration, ATP-synthesizing respiration (state III) and 

maximal respiratory capacity (Figure 4.5A – 5C).  

Using the mitochondrial form and functional changes observed in the Abcb6WT 

mice liver as the benchmark we next tested how these parameters were altered in 

Abcb6LKO and Abcb6LOE mice livers. We found that in Abcb6LKO mice, hepatic 

mitochondria were unable to undergo fusion (Figure 4.5D), decrease mitochondrial 

number (Figure 4.5E) or increase mitochondrial bioenergetic profile in response to energy 

demand (fasting) (Figure4.5F). However, in the fed conditions Abcb6LKO mice responses 

were similar to the Abcb6WT mice (Figure 4.5D-5F). In contrast to Abcb6LKO mice, 

Abcb6LOE mice were unable to undergo fission (Figure 4.5G), increase mitochondrial 

number (Figure 4.5H) or decrease bioenergetic efficiency in response to nutrient 

availability (feeding) (Figure 4.5I). However, in the fasted condition Abcb6LOE mice 

responses were similar to the Abcb6WT mice (Figure 4.5G – 5I). Together these results 

confirm our hypothesis and suggest that disturbances in hepatic ABCB6 expression 

results in an inability of these respective mitochondria to adapt their mitochondrial form 

and function to the changing energetic demands. By extension these results imply that 
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ABCB6 expression is an essential component in linking bioenergetic demand to 

mitochondrial form and function.           

Figure 4.5 
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Figure 4.5 (A-I) continued 
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Figure 4.5 (A-I) ABCB6 expression affects postprandial remodeling of mitochondrial form 

and function and metabolic homeostasis (A, D, G) Representative EM images showing 

mitochondrial ultrastructural morphology in response to fasting and refeeding in (A) Abcb6WT, 

(D) Abcb6LKO and (G) Abcb6LOE mitochondria. (B, E, H) Mitochondrial number changes in 

response to fasting and feeding in (B) Abcb6WT, (E) Abcb6LKO and (H) Abcb6LOE mice. 

Mitochondrial number was calculated in 12 images (2 images per mice per genotype per 

condition) each of 980 µm2 representing 6 mice per genotype per condition. Values represent 

mean ± SD. (C, F, I) Quantification of OCR at different mitochondrial respiratory states in a 

representative experiment using mitochondria isolated from (C) Abcb6WT, (F) Abcb6LKO and (I) 

Abcb6LOE in response to fasting and feeding. 

Dynamic changes in hepatic ABCB6 expression is required to accommodate 

hepatic metabolic flexibility in response to hepatic bioenergetic demand. 

     A key aspect of synchronizing mitochondrial form and function in response to 

bioenergetic demand is to drive cellular adaptations that facilitate efficient use of available 

nutrients (glucose, lipids, and amino acids) (Gao, et al., 2014; Pintus, et al., 2012; Singer, 

2013). Such adaptations promote hepatic metabolic homeostasis (metabolic flexibility) 

(Cheng, et al., 2013; Smith, et al., 2018b). Conversely, loss of this synchronization impairs 

metabolic homeostasis (Chowdhury et al., 2013; Corpeleijn, et al., 2009; Lopez-Lluch, 

2017). We speculated whether an inability to accommodate mitochondrial form and 

function to nutrient status in Abcb6LKO and Abcb6LOE mice results in impaired metabolic 

flexibility. To test this hypothesis, we first defined the parameters of energy usage, 

including fed and fasted hepatic ketone body production, glycogen depletion and 

triacylglycerol accumulation in Abcb6WT mice. Consistent with previous observations 
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(Arias et al., 1997; Geisler et al., 2016; Seitz et al., 1977), fasting Abcb6WT animals 

showed increased hepatic ketone body production, glycogen depletion and triacylglycerol 

accumulation (Figures 4.5J – 5L and Figures 4.5P-5Q), while feeding Abcb6WT animals 

showed repletion of glycogen stores, and decreased beta-oxidation (Figures 4.5M – 5O).  

     Using the metabolic adaptations observed in Abcb6WT mice as benchmark we then 

tested how these parameters were altered in Abcb6LKO and Abcb6LOE mice. We found 

that Abcb6LKO mice were blunted in their ability to mobilize hepatic ketone body 

production (Figure 4.5J) and glycogen depletion (Figure 4.5K and Figure 4.5P) in 

response to fasting. In addition, fasting hepatic triglyceride content was significantly 

increased in the Abcb6LKO mice compared to Abcb6WT mice (Figures 4.5L and 4.5Q). 

However, in the fed state Abcb6LKO mice display features that are consistent with the 

Abcb6WT mice with repletion of hepatic glycogen stores and inhibition of beta-oxidation, 

although these parameters were much more significantly affected in Abcb6LKO mice 

compared to Abcb6WT mice (Figures.4.5M – 5O).  

     In contrast to Abcb6LKO mice, in Abcb6LOE mice fasting induced hepatic ketone body 

production and liver glycogen content were higher than that observed in the Abcb6WT 

mice (Figures 4.5J and4.5K respectively). However, these values did not reach statistical 

significance.  In contrast to serum ketones and liver glycogen content, the liver triglyceride 

content of fasting Abcb6LOE mice was significantly lower compared to Abcb6WT mice 

(Figure 4.5L). Interestingly in the fed state no significant differences were observed 

between Abcb6LOE and Abcb6WT mice with respect to liver glycogen content or liver 

triglyceride levels (Figures 4.5M – 5O). Together these observations suggest that 

Abcb6LKO mice appear to be in a fed state with an inability to adapt to the metabolic 
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demands of the fasted state, while Abcb6LOE mice appear to show metabolic features, 

some of which, are consistent with the fasted state. 

Figure 4.5 (J-Q) 
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Figure 4.5 (J-Q) continued 

 

 

Figure 4.5 (J-Q) ABCB6 expression affects postprandial remodeling of mitochondrial 

form and function and metabolic homeostasis (J and M) Serum ketones, (K and N) Liver 

glycogen, and (L and O) Liver TG in fasted (J-L) and fed (M-O) Abcb6WT, Abcb6LKO 

and Abcb6LOE mice. Values represent mean ± SD. N= 3 independent experiments with 

5 mice per group per experiment per condition. (P) Representative tissue sections 

showing fasting liver glycogen content assessed using periodic acid-Schiff stain. (Q) 

Representative tissue sections showing fasting liver lipid content assessed using Oil-O 

Red stain. ‘a’ significantly different from Adlib values in panels ‘C, F, and I’ and 

significantly different from WT in panels ‘J – O’; p<0.001. ‘b’ significantly different from 

P 

Q 
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fasted values in panels ‘C, F, and I’ and significantly different from LKO in panels ‘J – O’; 

p<0.001. NS; values are statistically not significant. 

Metabolic inflexibility in mice with altered ABCB6 expression leads to early signs 

of metabolic disease. 

     A lack of metabolic flexibility is a significant contributing factor in the development of 

metabolic disease which includes obesity, insulin resistance and other comorbidities of 

metabolic syndrome (Corpeleijn, et al., 2009; Galgani, et al., 2008; Sieber et al., 2017; 

Smith, et al., 2018b). Given the strong association between ABCB6 expression and 

metabolic inflexibility, we wondered whether chronic hepatic ABCB6 deficiency or hepatic 

ABCB6 sufficiency contributes to metabolic comorbidities associated with metabolic 

inflexibility. To test this, we initiated a study to define how ABCB6 expression affected 

food consumption, body composition and body weight change as well as parameters of 

metabolic disease. We placed 4-week-old (post weaning) Abcb6LKO, Abcb6LOE, and 

Abcb6WT mice on chow diet with ad libitum feeding, and followed the changes in weight 

gain, and food consumption (Figures 4.6A-6C). We observed that during the first 5 weeks 

of this study (week 6 to week 10) both Abcb6LKO and Abcb6LOE mice consumed 

significantly less food than the Abcb6WT mice (Figure 4.6B). However, this pattern in 

food consumption changed dramatically in the next three weeks (week 11 to week 13) 

with Abcb6LOE mice consuming significantly more food than Abcb6WT mice, and 

Abcb6LKO mice consuming significantly less food than the Abcb6WT mice (Figure 4.6B).   

Interestingly, we found that the Abcb6LKO mice consistently gained weight compared to 

Abcb6WT mice when normalized to food consumption (Figure 4.6C). In contrast the 

Abcb6LOE mice showed no significant difference in normalized body weight (normalized 
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to food consumption) during the first 5 weeks (Figure 4.6C) of the study. However, this 

changed dramatically during the next three weeks (week 11 to week 13) with Abcb6LOE 

mice showing a significant decrease in normalized body weight (normalized to food 

consumption) compared to Abcb6WT mice (Figure 4.6C).    

     To identify parameters of metabolic disease mice in each group were subjected to 

glucose and insulin tolerant tests at the end of 13 weeks. We observed that the Abcb6LKO 

mice were glucose intolerant in the glucose tolerance test (Figure 4.6H) with the 

calculated area under the curve (AUC) being statistically significant (Figure 4.6I). We also 

observed that the Abcb6LKO mice were insulin resistant at later time points (90 and 120 

min) in the insulin tolerance test (Figure 4.6J), however the calculated area under the 

curve (AUC) for insulin tolerance was not statistically significant (Figure 4.6K) compared 

to Abcb6WT mice. In contrast to Abcb6LKO mice, Abcb6LOE mice showed improved 

glucose tolerance and insulin sensitivity compared to Abcb6WT mice, although these 

differences were not statistically significant for the most part (Figures 4.6L – 6O).  

To identify additional parameters of metabolic disease the chow diet study was 

terminated at the end of 13 weeks and mice in each group were sacrificed. Serum and 

tissues were collected from the sacrificed mice and parameters of metabolic disease 

including fed and fasted serum triglycerides (TG) and serum free fatty acids (FFA) were 

assessed. We found that in both the fed and fasted states, serum TG (Figures 4.6D and 

4.6F), and serum FFA (Figures 4.6E and Figure 4.6G) were significantly higher in 

Abcb6LKO mice compared to Abcb6WT mice. In contrast in Abcb6LOE mice we 
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observed decreased serum FFA under fed conditions (Figure 4.6G) while fasting serum 

FFA and fasting serum TG were high compared to Abcb6WT mice (Figures 4.6D and 6E).  

     The unique pattern of serum parameters combined with the distinctive body weight 

changes seen in Abcb6LKO and Abcb6LOE mice prompted us to evaluate the size and 

weight parameters of liver and adipose tissue, two key organs that are thought to 

contribute to body weight changes and the observed serum metabolite changes. We 

found that in Abcb6LKO mice both the liver and the white adipose tissue were heavier 

(normalized to body weight) compared to the liver and white adipose tissue of Abcb6WT 

mice (Figures 4.6P and 4.6Q). In contrast in Abcb6LOE mice the liver and the white 

adipose tissue (normalized to body weight) were lighter compared to the liver and white 

adipose tissue of Abcb6WT mice (Figures 4.6P and 4.6Q). More importantly the organ to 

body weight ratio observed in Abcb6LKO mice were significantly higher than the organ to 

body weight ratio seen in Abcb6LOE mice (Figures 46P and 46Q).  

     Taken together these results suggest that in mice chronic hepatic ABCB6 deficiency 

contributes to the development of metabolic disease while ABCB6 overexpression might 

be protective. 
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Figure 4.6 
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Figure 4.6 continued 
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Figure 4.6 continued 

 

 

 

 

 

 

 

 

 

 

 

 

J K

K 

L

K 

M

K 



127 

 

Figure 4.6 continued 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Early signs of metabolic disease in male mice on chow diet as a result of chronic 

changes in hepatic ABCB6 expression  
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(A) Body weight, (B) food consumption and (C) body weight change normalized to food consumed 

in Abcb6WT, Abcb6LKO and Abcb6LOE mice. (D-G) serum biochemical parameters of 

Abcb6WT, Abcb6LKO and Abcb6LOE mice in (D, E) fasted and (F, G) fed conditions. (H, I) 

glucose and (J, K) insulin response in Abcb6WT and Abcb6LKO mice. (L, M) glucose and (N, O) 

insulin response in Abcb6WT and Abcb6LOE mice. ‘a’ significantly different from WT; p<0.001. 

‘b’ significantly different from LKO; p<0.001 in serum biochemical parameters. ‘c’ significantly 

different from WT; p<0.001. ‘d’ significantly different from LOE; p<0.001 in body weight and food 

consumption. (P, Q) Organ to body weight ratios for Abcb6LKO and Abcb6LOE mice (p values 

listed). Results representative of 4 independent experiments with 5 – 6 mice per group per 

experiment. Values represent mean ± SD. 

ABCB6 expression alters localization of mitochondrial fission and fusion proteins 

     To elucidate the mechanism by which ABCB6 expression affects mitochondrial 

morphology, we carried out cell fractionation experiments to determine the effect of 

ABCB6 on the expression and localization of the core proteins that regulate mitochondrial 

dynamics. In principal mitochondrial dynamics is controlled by the amount, localization 

and activity of the dynamin related proteins Mfn1, Mfn2, Opa1 and Drp1 (Bereiter-Hahn 

et al., 1994; Ferree et al., 2012; Hermann et al., 1998; Lee et al., 2016). In the following 

studies we first measured the expression of Mfn1, Mfn2, Opa1, and Drp1 in livers of 

Abcb6LKO and Abcb6LOE mice. We found no significant differences in the expression of 

any of the core mitochondrial fusion or fission proteins in either Abcb6LKO or Abcb6LOE 

mice (Figures 4.7A and 4.7E). We next tested whether mitochondrial localization of the 

fusion and fission proteins were different between the three mouse genotypes. We 

observed decreased mitochondrial localization of MFN2 and OPA1 and increased 
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mitochondrial localization of DRP1 in Abcb6LKO mice (Figures 4.7C and 4.7G). In 

contrast, in Abcb6LOE mice we found increased mitochondrial localization of Mfn2 and 

Opa1 and decreased mitochondrial localization of DRP1 compared to wildtype mice 

(Figures 4.7C and 4.7G). Quantification of the protein bands normalized to loading 

controls confirmed the immunoblot results (Figures 4. 7B, 4.7D, 4.7F & 4.7H). Collectively 

these results suggest that altered ABCB6 expression affects mitochondrial localization of 

MFN2, OPA1 and DRP1 some of which might contribute to ABCB6 mediated effects on 

mitochondrial dynamics. 

Figure 4.7 
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Figure 4.7 continued 

 

 

Figure 4.7 Effect of ABCB6 on the expression and mitochondrial localization of Mfn2, 

Opa1 and Drp1  

(A-H) Representative western blot analysis of (A & C) fusion protein and (E & G) fission protein 

distribution between (A & E) whole liver lysate and (C & G) mitochondrial fractions. Porin and 

VDAC were used as loading controls for the mitochondrial fractions and actin was used as 

loading control for the total lysate fractions. (B, D, F, H) Quantification of immunoblots (n=5 

independent experiments with 4-5 mice per group per experiment) normalized to Porin, VDAC 

and actin. Values represent mean ± SD. ‘a’ significantly different from WT; p<0.001. ‘b’ 

significantly different from LKO; p<0.001. NS; statistically non-significant. 

4.5 Discussion 

     Mitochondria have a unique ability to change their morphology through fusion and 

fission events (Bereiter-Hahn, et al., 1994). This flexibility in mitochondrial morphology is 
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an important aspect of mitochondrial respiratory status which entails changes in energy 

and redox alterations, thereby integrating sensing and signaling processes that promote 

hepatic metabolic homeostasis. A major challenge has been to understand the molecular 

mechanisms that couple intracellular and environmental stimuli to mitochondrial 

dynamics. In this study we identify ABCB6, a mitochondrial outer membrane ABC 

transporter protein, as a physiologically controlled regulator of mitochondrial dynamics 

and hepatic energy homeostasis. To our knowledge, this is the first report of a 

mitochondrial ATP binding cassette transporter protein capable of modulating metabolic 

flexibility by simultaneous regulation of mitochondrial dynamics and mitochondrial 

function in the liver. Our studies suggest that hepatic ABCB6 expression is essential to 

promote whole-body metabolic homeostasis and dysregulation in its expression 

contributes to the development of metabolic disease.   

ABCB6 mediated reprograming of mitochondrial function results from altered 

supra complex assembly of respiratory complexes   

     We found that ABCB6 mediated change in mitochondrial form reprograms 

mitochondrial bioenergetic efficiency. Bioenergetic efficiency during oxidative 

phosphorylation is carried out by the electron transport chain (ETC), a composite multi-

protein system organized in four respiratory chain complexes (CI-CIV). The structural and 

functional organization of the ETC defines the efficiency of energy harvest by the 

mitochondria(Lenaz et al., 2009). Recent studies suggest that the structural and 

functional organization of the ETC plastically changes from freely moving to super-

assembled structures, called super complexes (Cogliati et al., 2013). Indeed, change in 

mitochondrial morphology is thought to reorganize cristae architecture that promotes 
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higher order organization of the respiratory complexes into super assemblies, often 

without any significant change in the expression of the individual complexes (Cogliati, et 

al., 2013; Lenaz, et al., 2009; Schagger, et al., 2000). Such SCs are believed to reduce 

the diffusion distance required for the transfer of electrons from one complex to the other, 

thereby increasing the transport efficiency and overall mitochondrial function while limiting 

the production of reactive oxygen species (ROS) (Lapuente-Brun, et al., 2013; 

Maranzana et al., 2013). In mice with differences in ABCB6 expression SCs appear to 

dynamically adapt to changes in mitochondrial morphology and be stabilized by cristae 

shape. This ABCB6 mediated adaptation of mitochondrial morphology and the ensuing 

super-assembly of respiratory complexes likely allows hepatocyte mitochondria to 

reprogram mitochondrial function. Consistent with the observation that such SC mediated 

changes in mitochondrial function do not translate into damaging amounts of ROS 

(Maranzana, et al., 2013), mitochondrial functional changes precipitated by differential 

ABCB6 expression does not lead to any significant change in ROS production (data not 

shown). However, whether a shift from dynamic change in ABCB6 expression to chronic 

gain or loss of ABCB6 expression leads to pathologically significant ROS levels requires 

further investigation. 

ABCB6 deficiency or overexpression leads to compromised nutrient sensitivity  

     Normal energy metabolism is characterized by periodic shifts in glucose and fat 

oxidation as the mitochondrial machinery responsible for carbon combustion switches 

freely between alternative fuels according to physiological and nutritional circumstances 

(Gao, et al., 2014; Liesa, et al., 2013). This capacity of the mitochondria to switch between 

fuels is coupled to cellular and/or tissue changes, that promotes fasting and feeding 
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dependent glucose disposal, and lipid storage. An inability to accommodate such switch 

between fuel sources results in aberrant energy metabolism in the liver promoting the 

development of metabolic disease including obesity and insulin resistance (Bournat et al., 

2010; Galgani, et al., 2008; Gomes et al., 2011b; Smith, et al., 2018b).  

     In mice with hepatic ABCB6 deficiency or hepatic ABCB6 overexpression 

mitochondrial capacity to switch between fuels is compromised. Abcb6 deficient mice, 

because of their blunted ability to switch between carbon sources (blunted fat oxidation 

and glycogen depletion in the fasted state), appear to be in a state of over-nutrition and 

unabated substrate competition leading to a phenotype associated with metabolic 

comorbidities of glucose intolerance, and insulin resistance. In contrast ABCB6 

overexpressing mice appear to be glucose tolerant and insulin sensitive. Interestingly, 

ABCB6 deficient mice respond to this state of unabated substrate competition by 

decreasing their food intake. Although the cause of anorexia in these animals should be 

further investigated, the observed feeding adaptation may be a compensatory mechanism 

to slow down excessive weight gain because of low energy efficiency. This is consistent 

with the observation that metabolic signals relating to energy surplus usually trigger 

compensatory changes, including decreased food intake and increased physical activity 

to maintain energy balance (Lenard and Berthoud, 2008). In this context it will be 

informative to assess if Abcb6LKO mice are physically more active either in the form of 

spontaneous physical activity or voluntary physical activity (commonly thought of as 

“exercise”).  

     In contrast to Abcb6LKO mice, Abcb6LOE mice respond to a state of under-nutrition 

with increased food consumption. Although, the underlying molecular mechanisms that 
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allow Abcb6LOE mice to increase food consumption needs to be elucidated, the observed 

response is consistent with activation of mechanisms that facilitate coping with an energy 

deficit. Under normal circumstances a decrease in fuel availability will be signaled to the 

brain by elevated ghrelin levels and low levels of all other gut hormones and a dip in leptin 

levels (Lenard and Berthoud, 2008). In this context it would be informative to evaluate if 

signaling mechanisms, regulated by hormones such as leptin and ghrelin, are altered in 

these mice to promote fasting responses in brain activity.  

     Most interestingly, in both Abcb6LKO and Abcb6LOE mice, despite the adaption in the 

feeding habits, chronic metabolic pressures appear to compromise nutrient sensitivity 

leading to increased body weight gain in ABCB6 deficient mice and low body weight in 

ABCB6 overexpressing mice. We hypothesize that the increased liver and white adipose 

tissue weight in Abcb6LKO mice results from increased lipogenesis and ensuing lipid 

accumulation in the liver and increased mobilization of fat for storage in adipocytes along 

with decreased lipolysis. Such a hypothesis would be consistent with the observation that 

the Abcb6LKO mice appear to be in a constant fed state and would also help explain the 

increased serum FFA and TG in Abcb6LKO mice irrespective of the nutrient status (fed 

or fasted).  

     In contrast to Abcb6LKO mice, we hypothesize that in Abcb6LOE mice the decreased 

liver and white adipose tissue weight results from decreased lipogenesis in liver and 

increased lipolysis in white adipose tissue resulting in increased mobilization of fat from 

the adipocytes as a potential source of fuel. Consistent with such a hypothesis the 

Abcb6LOE mice show increased serum FFA which would be expected with enhanced 

lipolysis under fasting conditions. 
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     However, it is evident from the discussion presented in the above paragraphs, that a 

detailed analysis of the signaling pathways altered in Abcb6LKO and Abcb6LOE mice, 

not only in the liver but also in white and brown adipose tissue and the muscle, is required 

for a detailed understanding of the complex metabolic phenotype observed in these 

genetically modified mice.  

 

ABCB6 expression is linked to nutrient status 

     Our studies demonstrate that ABCB6 expression is in sync with hepatic bioenergetic 

demands, and that ABCB6 is a required component of the metabolic and cell signaling 

events that enable crosstalk and cooperation between nutritional status and energy 

homeostasis. Fasting results in increased ABCB6 expression which appears to be 

regulated at the level of transcription, while feeding leads to loss of ABCB6 expression 

mediated by post-transcriptional mechanisms. However, at this stage, it is not clear what 

mechanisms link nutritional changes to ABCB6 expression. Three major nutritional 

sensors, mammalian target of rapamycin (mTOR), AMP-activated kinase (AMPK) and 

Sirtuins are involved in the control of mitochondrial physiology (Albert, et al., 2015; Bullon 

et al., 2016; He et al., 2017; Laplante, et al., 2012; Li, 2013; Ross et al., 2016; Sengupta 

et al., 2010). These nutritional sensors control mitochondrial biogenesis, mitochondrial 

dynamics and mitochondrial turnover through mitophagy/autophagy. Future studies will 

explore if ABCB6 is regulated by these pathways, and if so how these pathways are 

integrated to promote metabolic homeostasis. 
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ABCB6 expression is casually linked to regulation of core protein machinery that 

governs mitochondrial shape. 

     It has been established that the Dynamin-like GTPases form the core machinery that 

govern mitochondrial shape. The mammalian orthologues of mitofusin 1 and mitofusin 2 

(Mfn1 and Mfn2) and Optic Atrophy 1 (OPA1) are required to maintain a reticular 

mitochondrial network in cells, while the Dynamin-related protein 1 (DRP1) is required to 

promote mitochondrial fragmentation.  Indeed, genetic ablation of mitofusin-1 and 

mitofusin-2 as well as the inner mitochondrial membrane (IMM) GTPase optic atrophy 1 

is embryonic lethal (Chen, et al., 2003; Davies, et al., 2007). Similarly, the loss of the core 

fission GTPase Drp1 is also lethal (Ishihara, et al., 2009). However, unlike the phenotypes 

observed with the complete loss of these Dynamin-like GTPases, adaptive mitochondrial 

response to physiological and environmental stimuli appears to require a tighter 

regulation in their expression and activity. Indeed, the recent characterization of several 

regulatory proteins that control the activity and localization of the core dynamin related 

GTPases indicate that the molecular mechanisms regulating and controlling the 

morphology and function of mitochondria are more elaborate and complex in vertebrates 

(Ali et al., 2018; Chandhok et al., 2018; MacVicar et al., 2016; Santel et al., 2008). Our 

findings demonstrate that ABCB6 might function as a regulatory protein that controls the 

activity of the core dynamin related GTPases by modifying their mitochondrial localization. 

However, the precise mechanism, by which ABCB6 expression regulates differential 

localization of the core fusion/fission machinery requires further investigation. 
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Chapter 5. Alterations of the Hepatic Metabolome of Fasted and Refed Wild-

type and Abcb6 genetically altered mice 
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5.1 Abstract 

Inbred mouse strains are frequently used as a model to study metabolic flexibility. 

Central to these studies are responses during pre-absorptive and post-absorptive 

states. Previous studies demonstrated that liver-specific Abcb6 deficient (Abcb6LKO) 

and liver-specific Abcb6 over expressing (Abcb6LOE) mice, alterations in metabolic 

flexibility responses were manifested in altered food consumption, respiratory exchange 

ratio, and disrupted glucose homeostasis. Further, in these mice, metabolic inflexibility 

was associated with disrupted mitochondrial dynamics. However, the mechanistic 

details of how altered ABCB6 expression leads to disruptions in mitochondrial dynamics 

are unclear. Given that ABCB6 is a membrane transport protein, we hypothesized that 

the phenotype observed in ABCB6 deficiency or over expression might arise from or 

loss of metabolite homeostasis. As a first step in testing this hypothesis, we performed 

an untargeted analysis of hepatic metabolites. To our surprise, preliminary analysis of 

the results demonstrates a role for hepatic ABCB6 in the reorganization of three 

prominent mitochondrial metabolic networks including bile acid, amino acid, and 

phospholipid homeostasis.  
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5.2 Introduction 

Metabolic flexibility is the set of physiological adaptations to energy supply and demand. 

The primary facet of flexibility is the ability to preferentially utilize either carbohydrates or 

lipids as an energy source in response to environmental cues. Societal trends of 

decreased physical activity and increased caloric intake have led to increased average 

body weight and impaired metabolic flexibility that are accompanied by comorbidities 

such Type II diabetes, and metabolic syndrome (Goodpaster et al., 2017). 

     Metabolic flexibility is needed under drastic circumstances such as physical exertion 

and starvation as well as circadian-driven eating patterns. Ensuing the diurnal sleep 

period, the is the fasted state. During this period, stored lipids are utilized to ensure 

adequate blood glucose primarily for the brain and resting metabolic processes. In the 

waking state, food consumption is utilized to maintain blood glucose and excess energy 

is stored as lipids in fat deposits for future use.  

     Maintenance of energy homeostasis through flexibility is accomplished via the 

coordination of interlinked metabolic pathways in multiple tissues. The liver, skeletal 

muscle, adipose tissue, heart, brain, and pancreas orchestrate the utilization, trafficking, 

and storage of energy substrates in response to endocrine signaling. Energy supply and 

demand drives enzymatic activity unique to individual organs that ensures rapid 

switching between carbohydrate and lipid metabolism. These responses are fine-tuned 

by energy sensing transcriptional programs (Smith et al., 2018a). 

     Quantitative analysis of energy pathway metabolites has the potential to pinpoint 

derangements in the function or regulation of metabolic flexibility pathways. Analysis of 

metabolites in individual metabolic tissues under various energy supply conditions 
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would uncover how organ systems contribute to metabolic flexibility. Comparisons of the 

responses from individual metabolic tissues could also elucidate the how organ-organ 

crosstalk regulates overall metabolism. As a first step in understanding how individual 

organs contribute to maintaining energy homeostasis, and how physiological responses 

are integrated during nutrient state transitions, we initiated the analysis (completed by 

Metabolon Inc, Research Triangle Park, NC) of global metabolites in fasted (18 hours) 

and refed (6 hours) mouse liver in wild-type (WT), Abcb6 liver-specific knock out 

(Abcb6LKO), and Abcb6 liver-specific over expressing (Abcb6LOE) 8-week male mice.  

     To our knowledge, this is the first study of its kind and as such, will assist in further 

defining the liver’s role in metabolic flexibility. Also, this knowledge base of hepatic 

responses to nutrient state in wild-type mice can serve as a basis of comparison for 

other pharmacological or genetic treatments. In the case of our ABCB6 model of 

metabolic inflexibility, this study is especially appropriate and will potentially assist in 

describing the physiological role of ABCB6 in mammals. 

 

 

 

5.4 Results 

 

Summary of Super Pathway Changes in Fasted and Refed Mouse Liver 

     Data analysis was organized in a hierarchical manner with “Super pathways” being a 

large group of physiologically related sub pathways and with individual biochemicals 

(metabolites) being grouped within the sub pathways. The nomenclature “pathway” 



141 

 

does not necessarily indicate biochemical pathways per se, but rather, a convenient 

way to organize related biochemicals. For instance, the “Energy” super pathway 

contains metabolites generated from Krebs cycle and oxidative phosphorylation 

activities. Figures 5.1 A-H show the magnitude of change of the 8 “super pathways” 

Amino Acids, Carbohydrates, Energy, Lipids, Nucleotides, Peptides, Vitamins, and 

Xenobiotics from the fasted to refed state in WT, Abcb6LKO, and Abcb6LOE mice. 

      Values represented are the average sums of all metabolite peak values within the 

super pathway. In WT mice, food intake resulted in an increase in 6 of the 8 super 

pathways (Amino Acids, Carbohydrates, Energy, Peptides, Vitamins, and Xenobiotics). 

The Carbohydrate, Vitamin, and Xenobiotic super pathways reached statistical 

significance (Figures 5.1A-1C and 5.1F-1H). In contrast, the Lipid and Nucleotide super 

pathways in WT mice were decreased in the refed state with the Lipid super pathway 

reaching statistical significance (Figures 5.1D and 5.1E).  

     In Abcb6LKO mice, the same 6 super pathways were increased in the refed state 

with the Amino Acid, Carbohydrate, Vitamin, and Xenobiotic categories reaching 

statistical significance (Figures 5.1A- 1C, and 5.1F-1H). Lipid and Nucleotide super 

pathways were reduced in LKO mice as in the WT group. Again, with only the Lipid 

super pathway decrease reaching significance statistically (Figures 5.1D and 5.1E). In 

Abcb6LOE mice, the Amino Acid, Peptide, and Vitamin super pathways were not 

increased in response to feeding (Figure 5.1A, 5.1F, and Figure 5.1G). Both the Lipid 

and Nucleotide super pathway fasting mediated increase reached significance in 

Abcb6LOE mice (Figures 5.1D and 5.1E). Refed Abcb6LOE mice had significantly lower 

Vitamin super pathway values than both WT and Abcb6LKO mice (Figure 5.1G). 
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     Although the super pathway analysis showed significant differences between the 

experimental condition (fasted or refed), this type of analysis did not demonstrate 

significant changes in the super pathway values between the genotypes (WT, LKO, and 

LOE).  

Figure 5.1 
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Figure 5.1 continued 
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Figure 5.1. Metabolic super pathway changes in response to fasting and refeeding in WT, 

Abcb6LKO, and Abcb6LOE mouse liver (A)-(H) Total peak values in the Amino Acid, 

Carbohydrate, Energy, Lipid, Nucleotide, Peptide, Vitamin, and Xenobiotic super pathways. 

N=4.  

 

Amino Acid Metabolites in Fasted and Refed Mouse Liver 

     The liver utilizes amino acids for protein synthesis as well as for a glucogenic or 

ketogenic energy source. They are obtained exogenously from meals via portal 

circulation, de novo synthesis, or from protein and peptide degradation. In WT mice, 

total amino acids were slightly but non-significantly increased in response to feeding 

(Figure 5.1A). The main contributing factor to the overall increase in amino acids was 

the significant increase in the glutathione sub pathway (Figure 5.2A). The 

Methionine/Cysteine/SAM/Taurine sub pathway metabolites are necessary for 

glutathione production and intuitively, were also increased in the refed state (Figure 

5.2B). Conversely, the glucogenic amino acid sub pathways Alanine/Aspartate and 

Histidine were increased in the fasted state with the Alanine/Aspartate sub pathway 

reaching statistical significance (Figures 5.2C and 5.2D). The ketogenic amino acid sub 

pathway Lysine was also significantly increased in the fasted state with the other major 

ketogenic sub pathway, Leucine/Isoleucine/Valine also being increased but not reaching 

statistical significance (Figures 5.2E and 5.2F). Within the Glutathione sub pathway, the 

reduced form of glutathione (GSH) metabolite was the main contributor to the increase 

in response to feeding (data not shown). The observed feeding induced increase in 

GSH in this study agrees with published data in rat liver (Yamada et al., 2018). Higher 

glucogenic and ketogenic amino acid levels seen in WT mouse liver in the fasted state 
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may indicate increased import from extrahepatic tissues in the fasted state to support 

increased gluconeogenesis and ketosis.  

     As previously noted, Abcb6LKO refed mice had a significantly higher Amino Acid 

super pathway levels compared to fasted LKO mice (Figure 5.1A). Like the WT group, 

the major contribution to the increase was the Glutathione sub pathway (also due to 

GSH) with the Methionine/SAM/Taurine sub pathway following the same expected 

trend. Strikingly, the increases in the Amino Acid super pathway, Glutathione and 

Methionine/SAM/Taurine sub pathways were not seen in Abcb6LOE mouse liver 

(Figures 5.1A,5.2A, and 5.2B). Rather, these pathways were not significantly changed 

in response to feeding. In fact, Abcb6LOE Amino acid levels were significantly lower 

than Abcb6LKO in the fed state (Figures 1A, 5.2A, and 5.2B). Glucogenic amino acids 

in the Histidine and Alanine/Arginine sub pathways in the Abcb6LKO and Abcb6LOE 

followed the same fasting-induced increase trend as WT mice with feeding response 

reaching statistical significance. However, the fasted Abcb6LKO Alanine/Aspartate sub 

pathway level was significantly lower than both the WT and Abcb6LOE groups (Figure 

5.2C and 5.2D). The ketogenic Leucine/Isoleucine/Valine sub pathway was, as in the 

WT group, increased in response to fasting in Abcb6LKO and Abcb6LOE mice with only 

the Abcb6LOE group reaching significance (Figure 5.2F). The other ketogenic sub 

pathway, Lysine, was also increased in response to fasting in Abcb6LKO and 

Abcb6LOE groups but only in the Abcb6LKO group did the increase reach significance. 

However, in both Abcb6LKO and Abcb6LOE mice, the fasted level of the Lysine sub 

pathway was significantly lower compared to WT mice (Figure 5.2E).  
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     The two main concepts derived from analysis of amino acid sub pathways are, 

glutathione metabolism is increased in response to feeding and glucogenic/ketogenic 

amino acids are increased in the fasted state in mouse liver. In Abcb6LOE mice, the 

feeding-induced glutathione increase is extremely blunted. Also, both Abcb6LKO and 

Abcb6LOE mice had generally less drastic increases in glucogenic/ketogenic amino 

acids in response to fasting. (Figure 5.2A and Figures 5.2C-2F). 

Figure 5.2 
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Figure 5.2 continued 

 

 

 

 

 

 

Figure 5.2. Metabolic Amino Acid sub pathway changes in response to fasting and 

refeeding in WT, Abcb6LKO, and Abcb6LOE mouse liver (A)-(F) Total peak values in the 

Glutathione, Methionine/SAM/Taurine, Alanine/Aspartate, Histidine, Lysine, and the 

Leucine/Isoleucine/Valine sub pathways. N=4.  
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Carbohydrate Metabolites in Fasted and Refed Mouse Liver 

     A major function of the liver is to maintain blood glucose within a narrow range in 

both fasted and fed conditions. In the fed state, excess carbohydrates are stored as 

glycogen or are converted to fatty acids via de novo lipogenesis. During a fast, hepatic 

glycogen stores are converted to glucose which is subsequently exported to circulation. 

Concomitantly, hepatic gluconeogenesis activity increases to maintain blood sugar as 

glycogen stores are depleted. During the fasted period, the liver foregoes maintenance 

of its own glucose supply to provide for extrahepatic tissues. This phenomenon is 

demonstrated in our study with a greater than 2-fold reduction of hepatic glucose in the 

fasted state in WT mouse liver (Figure 5.3A). In the WT group, the carbohydrate super 

pathway was significantly increased in response to feeding (Figure 5.1B). The Glycogen 

sub pathway was expectedly significantly increased in the refed state (Figure 5.3B). The 

Fructose/ Mannose/Galactose sub pathway also contributed to the overall increase in 

hepatic carbohydrates presumably due to metabolism of diet-derived sugars (Figure 

5.3C). Conversely, the Nucleotide Sugar sub pathway in WT mouse liver was 

significantly decreased in the refed state possibly due to the fact certain nucleotide 

sugars are precursors for glycogen synthesis (Ball et al., 2011) (Figure 5.3D). In WT 

mice, hepatic lactate, a product of glycolysis, was significantly higher in the refed state 

(Figure 5.3E).  However, the upstream glycolysis intermediate, pyruvate was not 

significantly altered in response to feeding (Figure 5.3F).  

     Abcb6LKO and Abcb6LOE mice had no significant variations from WT mice in 

hepatic glucose, the Carbohydrate super pathway, Glycogen, Fructose/Mannose, 

Lactose, or Pyruvate sub pathways in either nutritional state. (Figures 5.3A, 5.1B, 5.3B, 
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5.3C, 5.3E, and 5.3F). However, several changes were seen in the Nucleotide sugars 

sub pathway. Although both Abcb6LKO and Abcb6LOE groups had increases in 

nucleotide sugars in response to fasting, only the Abcb6LOE group was statistically 

significant. Also, Abcb6LKO mice had significantly lower nucleotide sugars in the fasted 

state compared to WT. Finally, in the refed state, Abcb6LOE mice had significantly 

lower refed nucleotide sugar levels. 

     The carbohydrate super pathway and most carbohydrate sub pathways were 

increased in the refed state with virtually no differences in sub pathway levels or 

responses between any genetic treatment groups. The exception to this trend was a 

relative increase in nucleotide sugars in the fasted state in all groups with Abcb6LKO 

and Abcb6LOE mice having lower fasted state nucleotide sugar levels compared to WT.       

 

Figure 5.3 
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Figure 5.3 continued 

 

 

 

 

 

Figure 5.3. Metabolic Carbohydrate sub pathway changes in response to fasting and 

refeeding in WT, Abcb6LKO, and Abcb6LOE mouse liver (A)-(F) Peak values of glucose, 
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Glycogen, Fructose/Mannose/Galactose, and Nucleotide sugars sub pathways, lactate, and 

pyruvate. N=4.  

 

Energy Metabolites in Fasted and Refed Mouse Liver 

     In this analysis, the Energy super pathway is comprised of oxidative phosphorylation 

and tricarboxylic acid (TCA) cycle sub pathways. The Energy super pathway was not 

significantly altered in response to feeding in any of our treatment groups (Figure 5.1C) 

nor did the Abcb6LKO or Abcb6LOE group responses significantly differ from the WT 

group. However, several TCA derivative metabolites were significantly altered. In WT 

mice, the metabolite that had the highest magnitude of upregulation in response to 

feeding was succinyl carnitine (Figure 5.4A). Conversely, alpha-ketoglutarate was 

significantly decreased in the refed state (Figure 5.4B). These significantly altered 

intermediates may indicate cataplerotic/anaplerotic exit and entry points of the TCA 

cycle.  

     Abcb6LKO mice did not differ significantly from WT mice in the parameters listed 

above (Figures 5.1C, 5.4A, and 5.4B). Energy super pathway and succinyl carnitine 

levels were similar to WT and Abcb6LKO mice in Abcb6LOE mice. However, fasting did 

not illicit an increase in alpha-ketoglutarate (Figures 5.1C, 5.4A, and 5.4B). 

     The Energy super pathway was only very slightly decreased upon fasting in all 

treatment groups; supportive of the concept that the liver contributes to energy 

homeostasis through metabolic flexibility responses. 
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Figure 5.4 

 

 

 

 

 

 

Figure 5.4 Metabolic Energy metabolite changes in response to fasting and refeeding in 

WT, Abcb6LKO, and Abcb6LOE mouse liver (A) Succinyl carnitine total peak values. (B) 

Pyruvate total peak values. N=4. 

 

Lipid Metabolites in Fasted and Refed Mouse Liver 

     At the start of the fasting period, blood lipid levels fall. Through beta-adrenergic 

signaling, free-fatty acids are liberated through lipolysis in adipose deposits and fatty 

acids are taken up by the liver. It is well established that as a result, total hepatic lipids 

are increased in the fasted state (Geisler, et al., 2016; Rui, 2014). Our analysis was in 
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accord, showing an increase in the Lipid super pathway in response to fasting in all 

treatment groups (Figure 5.1D). The free-fatty acids are either oxidized into ketones or 

packaged into VLDL particles for use by extrahepatic tissues. In WT mice, the 

Diacylglycerol sub pathway contributed to the greatest increase within the super 

pathway (Figure 5.5A). Long and medium chain fatty acid sub pathways were also 

significantly increased in the fasted state. (Figures 5.5B and 5.5C). Polyunsaturated 

fatty acids (n-3 and n-6) were also increased in the fasted state in keeping with 

previously published results (Figure 5.5D) (Marks et al., 2015). The increased hepatic 

fatty acid and diacylglycerol content was likely due to the well-characterized influx of 

adipose fatty acids due to increased lipolysis and hepatic fatty acid uptake. The Ketone 

and Oxidized fatty acid sub pathways were also significantly increased in the fasted 

state (Figures 5.5E and 5.5F). The increase in ketone bodies is intuitive due to the 

expected switch to utilization of lipids for energy in the fasted state. Oxidized fatty acids 

such as 4-hydroxynonenal (the sole metabolite assessed in this study) have been 

associated with increased beta-oxidation (Li et al., 2013). The Mevalonate sub pathway 

was also significantly increased in the fasted group (Figure 5.5G) in agreement with 

previously published data (Wiss et al., 1977) that describes increased cholesterol 

synthesis in the fasted state. The increase seen in mevalonate may be a compensatory 

action to increase endogenous cholesterol production in absence of an exogenous 

supply.  

     Despite the fasting-mediated increase of most hepatic lipids, WT 

glycerophospholipids were significantly increased in the refed state with the significant 

increases seen in phosphatidylcholine (PC), phosphatidylethanolamine (PE), 



154 

 

phosphatidylinositol (PI) and phosphatidylglycerol (PG) (Figures 5.5H-5K). The relative 

decrease in hepatic phospholipid content due to fasting is consistent with published 

results (Ikeda et al., 2014). 

     An essential function of the liver is the production of bile acids which are the main 

component of bile (also containing cholesterol and phospholipids), a substance that aids 

in the intestinal absorption of fats and fat-soluble nutrients through its surfactant action 

on lipids. Primary bile acids originate from the liver while secondary acids are produced 

through bacterial reactions in the intestine. Primary bile acids from the liver are routed to 

the ileum through the common hepatic bile duct and are also stored in the gall bladder 

(in mice). Primary and secondary bile acids are reabsorbed from the intestinal lumen 

and returned to the liver through portal circulation. The total amount of bile acids 

existing this enterohepatic circulation is referred to as the bile acid pool. In WT mice, 

Primary and Secondary bile acid sub pathways had a slight, non-significant increase in 

response to feeding suggesting increased hepatic bile acid synthesis and a larger bile 

acid pool. (Figures 5.1D, 5.5L, and 5.5M)This response is in agreement with published 

data (Chiang, 2013).  

     Hepatic diacylglycerol and fatty acid fasting-induced increases in Abcb6LKO and 

Abcb6LOE mice were similar to WT mice (Figures 5.5A-5D). Likewise, oxidized fatty 

acids and beta-hydroxybutyrate levels were increased in response to fasting in both 

Abcb6LKO and Abcb6LOE mouse liver. However, in Abcb6LKO and Abcb6LOE mice, 

fasting beta-hydroxybutyrate was lower compared to the WT group with the Abcb6LOE 

group reaching statistical significance. Also, both Abcb6LKO and Abcb6LOE mouse 

liver had lower oxidized fatty acids in the fasted state compared to the WT groups but 
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the decrease did not reach statistical significance (Figures 5.5E and 5.5F). The 

Abcb6LKO and Abcb6LOE Mevalonate sub pathway levels increased in response to 

fasting as was the case in the WT group. However, both Abcb6LKO and Abcb6LOE 

fasted levels were significantly lower as compared to WT (Figure 5.5G). Feeding 

induced glycerophospholipids in a similar manner in Abcb6LKO and Abcb6LOE mice 

with the exception being the Abcb6LOE Phosphatidylcholine sub pathway which was 

not significantly increased in response to feeding (Figures 5.5H-5K). In contrast to the 

slight feeding-induced increase in bile acids seen in WT mice, the Abcb6LKO group 

refed levels were virtually identical to fasted state levels. Remarkably, Abcb6LOE mice 

had an opposite response compared to the WT group with relatively lower bile acids in 

the refed state with the fasted levels being significantly higher than both WT and 

Abcb6LKO groups (Figures 5.5.L and 5.5.M).  

     In summary, hepatic lipids were generally increased in the fasted state except for 

glycerophospholipids which were decreased in response to fasting in WT mice. 

Products of fatty acid oxidation are also increased in WT mice in the fasted state. 

Abcb6LKO and Abcb6LOE mice had blunted fasting-induced beta-oxidation and 

cholesterol responses as compared to WT. Finally, genetic manipulation of ABCB6 

expression clearly disrupted the feeding induced increase of hepatic bile acids.   
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Figure 5.5 
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Figure 5.5 continued 
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Figure 5.5 continued 
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Figure 5.5 continued 

 

 

 

 

 

 

 

Figure 5.5. Metabolic Lipid sub pathway changes in response to fasting and refeeding in 

WT, Abcb6LKO, and Abcb6LOE mouse liver (A)-(M) Total peak values in the diacylglycerol, 

long chain, medium chain, and polyunsaturated fatty acid, ketone, oxidized fatty acid, 

mevalonate, PC, PE, PI, PG, primary bile acid, and secondary bile acid sub pathways N=4.  

 

Nucleotide Metabolites in Fasted and Refed Mouse Liver 

     The liver is the main site of nucleotide biosynthesis through the salvage and de novo 

synthesis pathways (Fustin et al., 2012). Integral to all biological functions, they are 

found in energy molecules such as adenosine triphosphate (ATP), cofactors such as 
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flavin adenine dinucleotide (FAD), and nucleic acids in DNA and RNA. In WT mice, the 

Nucleotide super pathway was decreased in the refed state (Figure 5.1E) but the overall 

decrease did not reach statistical significance. Purine sub pathways in WT mice were 

decreased in response to feeding with the Adenosine and Inosine/Xanthine sub 

pathways reaching statistical significance (Figures 5.6A-6C). Pyrimidines in the 

Cytidine, Thymine, and Uracil sub pathways were also significantly decreased in the 

refed state in the WT group. The Orotate sub pathway was the exception to this 

downward trend in the fed state with this pyrimidine precursor being significantly 

increased in response to feeding (Figures 5.6D-6G). The overall trend of increased 

nucleotides in the WT fasted mice may be consistent with published data that indicate 

increased glucagon induces RNA degradation to yield an overall increase in nucleotides 

(Bleiberg-Daniel et al., 1994).  

     Purine metabolites in Abcb6LKO group followed the same general trend as WT 

except that Abc6LKO mice had no significant increase in the Adenine sub pathway 

(Figures 5.1E and 5.6A-6C). In the Abcb6LOE group, the fasting mediated increase in 

the Nucleotide super pathway as well as Purine sub pathways reached statistical 

significance (Figures 5.1E and 5.6A-6C). Also, Abcb6LOE mice had significantly lower 

Guanine sub pathway levels compared to WT mice (Figure 5.6B). As in the WT group, 

Abcb6LKO and Abcb6LOE mice had lower levels of most pyrimidine sub pathway levels 

in the fed state with the Abcb6LOE group reaching significance. As in the WT group, the 

Orotate sub pathway was increased in the refed state for both Abcb6LKO and 

Abcb6LOE mice. However, Abcb6LKO and Abcb6LOE mice had lower refed orotate 

levels compared to WT with the Abcb6LKO group reaching statistical significance 
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(Figures 5.6D-6G). In the Uracil pyrimidine sub pathway, Abcb6LOE mice had 

significantly lower levels in the refed state compared to Abcb6LKO (Figure 5.6F).  

      Purines and pyrimidines (Nucleotide super pathway) increased in the fasted state 

with respect to the refed state except for the pyrimidine precursor, orotate which 

displayed an opposite trend. This trend was true for all treatment groups with orotate 

levels being lower in the Abcb6LKO and Abcb6LOE groups compared to WT in both 

nutritional states. Because orotate is a precursor to de novo pyrimidine synthesis, it is 

possible that it is not degraded in response to fasting. 

Figure 5.6 
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Figure 5.6 continued 

 

 

 

 

 

Figure 5.6. Metabolic Nucleotide sub pathway changes in response to fasting and 

refeeding in WT, Abcb6LKO, and Abcb6LOE mouse liver (A)-(G) Total peak values in the 
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Adenine, Guanine, Inosine/Xanthine, Cytidine, Thymine, Uracil, and Orotate sub pathways. 

N=4.  

 

Peptide Metabolites in Fasted and Refed Mouse Liver 

     Peptides are oligomers of linked amino acids formed from the degradation of 

proteins (Fruton et al., 1950). The source for peptides may be the proteolysis of 

endogenous proteins or they may be derived from diet. Peptides from a meal may be 

delivered to the liver from enterocytes through portal circulation where they are broken 

down through extracellular hydrolysis (Lochs et al., 1986) for the delivery of amino 

acids. Hepatic lysosomes are they main source of endogenous peptides through protein 

degradation (Thamotharan et al., 1997). In WT mice, feeding produced a slight, albeit 

non-statistically significant increase in the peptide super pathway (Figure 5.1F). Both 

the Dipeptide and Gamma-glutamyl sub pathways were increased in response to 

feeding with the Dipeptide sub pathway reaching statistical significance (Figures 5.7A 

and 5.7B). The increase in gamma-glutamyl peptides indicates an increase in the 

gamma-glutamyl transferase activity which regulates the gamma-glutamyl cycle 

(Orlowski et al., 1976) and the increase in that sub pathway is in accordance with the 

increase in glutathione seen in the amino acid super pathway in WT mouse liver (Figure 

5.1A). 

     Abcb6LKO mice were not significantly different from WT in the Peptide super 

pathway nor either sub pathway (Figures 5.1F, 5.7A, and 5.7B). Abcb6LOE mice 

however, had an opposite trend in the Peptide super pathway with a fasted mediated 

increase though not reaching statistical significance (Figure 5.1F). The same trend was 

seen in both sub pathways in Abcb6LOE mice although not reaching statistical 
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significance (Figures 5.7A and 5.7B). However, refed Abcb6LOE levels of both sub 

pathways were lower than WT and Abcb6LKO mice with the dipeptide sub pathway 

reaching statistical significance (Figures 5.7A and 5.7B). 

     In summary, peptides were increased in response to feeding in WT and Abcb6LKO 

mice with both sub pathways also being increased in the refed state. However, 

Abcb6LOE mice showed the opposite trend with an increase in the fasted state. This 

result correlates well with the previously data showing a relatively blunted glutathione 

response to feeding seen in the Abcb6LOE group because gamma-glutamyl peptides 

may be positively associated with glutathione levels.      

 

Figure 5.7 
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Figure 5.7 Metabolic Peptide sub pathway changes in response to fasting and refeeding 

in WT, Abcb6LKO, and Abcb6LOE mouse liver (A) Total peak values in the Dipeptide sub 

pathway. (B) Total peak values in the gamma-glutamyl sub pathway. N=4.  

 

Vitamin Metabolites in Fasted and Refed Mouse Liver 

     Vitamins and cofactors are essential for crucial enzymatic functions. While some 

vitamin levels can be maintained through endogenous biosynthesis, like humans,  mice 

are reliant upon diet-derived biochemicals for survival (1995). In the WT group, the 

Vitamin super pathway was significantly increased in the fed state (Figure 5.1G). 

Interestingly, there were several vitamin sub pathways that were significantly reduced in 

the fed state including Folate, Riboflavin, Vitamin B6, and Thiamine sub pathways 

(Figures 5.8A-8D) even though the standard diet used for this study included the 

biochemicals from these sub pathways. The Vitamin A, Vitamin E (tocopherol), and 

Pantothenate/ CoA sub pathways were significantly increased in response to feeding 

(Figures 5.8E-8G). The decreases seen in some sub pathways could be due to hepatic 

transport and metabolism at the time-point chosen for this study. 

     In Abcb6LKO mouse liver, the Vitamin super pathway was also significantly 

increased in response to feeding. However, Abcb6LOE mice had a slight (non-

significant) decrease of the Vitamin super pathway in the fed state (Figure 5.1G). In the 

vitamin sub pathways that were decreased in response to feeding in the WT group 

(Folate, Riboflavin, Vitamin B6, and Thiamine), Abcb6LKO and Abcb6LOE mice also 

had lower levels in the refed state (Figures 5.8A-8D). With the only notable alteration 

being that Abcb6LOE mice had a slight but significant increase in the Thiamin sub 

pathway in the fasted state compared to Abcb6LKO mice (Figure 5.8D). In the vitamin 
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sub pathways that were increased in response to feeding in the WT group (Vitamin A, 

and Vitamin E (tocopherol), Pantothenate/ CoA), Abcb6LKO and Abcb6LOE mice also 

showed the same increased trend in response to feeding (Figures 5.8E-8G). However, 

Abcb6LOE mice had drastically lower refed values in the refed state compared to WT 

and Abcb6LKO mice (Figures 5.8E-8G). The lower values in these sub pathways 

contributed to the significantly lower refed Abcb6LOE values in the Vitamin super 

pathway.  

     The Vitamin super pathway included the Heme sub pathway in which, heme was the 

sole metabolite. ABCB6 has been shown to be involved in heme biosynthesis in vitro 

(Krishnamurthy, et al., 2006) but in vivo studies suggest that ABCB6 expression is 

dispensable for heme production (Chavan, et al., 2015; Helias, et al., 2012). In this 

study, there was no significant difference in hepatic heme levels in Abcb6LKO or 

Abcb6LOE mice in either nutritional state. However, in WT mice heme was slightly 

elevated in response to feeding while in Abcb6LKO and Abcb6LOE mice, the was a 

slight decrease in the refed state (Figure 5.8H). Interestingly, Vitamin A and Vitamin E 

sub pathway level changes in the refed state seemed to follow the heme levels seen in 

the refed state. Published data suggests that hepatic levels of vitamins A and E are 

positively influenced by dietary iron (a component of the standard diet used for this 

study) (Domitrovic et al., 2008).  

     In summary, vitamins were differentially affected by feeding with increases seen in 

some sub pathways and decrease seen in others. The major difference between the 

treatment groups in this pathway was Abcb6LOE mice tended to have lower increases 

in vitamins upon feeding. 
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Figure 5.8 
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Figure 5.8 continued 

 

 

 

 

 

Figure 5.8 Metabolic Vitamin sub pathway changes in response to fasting and refeeding 

in WT, Abcb6LKO, and Abcb6LOE mouse liver (A)-(H) Total peak values in the Folate, 
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Riboflavin, Vitamin B6, Thiamine, Vitamin A, Vitamin E, Pantothenate/CoA, and Heme sub 

pathways. N=4.  

 

Xenobiotic Metabolites in Fasted and Refed Mouse Liver 

     Xenobiotics are by definition, exogenous compounds received from environmental 

sources such as food, water, and air. The liver is the major organ involved in 

metabolizing xenobiotics as it receives ingested materials from the alimentary tract via 

portal circulation. As expected, feeding significantly increased the Xenobiotic super 

pathway in WT mouse liver (Figure 5.1H). Food and Benzoate sub pathways were also 

both significantly increased in response to feeding (Figure 5.9A and 5.9B). Compounds 

in the Benzoate sub pathway included 3-phenyl propionate and hippurate that are 

known metabolites from gut microbiota (Gautam et al., 2015). Feeding-induced 

stimulation of intestinal microbe metabolism likely explains the drastic increase in these 

biochemicals in the (Figures 5.9C and Figures 5.9D).  

     Xenobiotics were increased in response to feeding for all groups with the Abcb6LOE 

again having a less drastic increase in response to feeding as compared to WT with the 

Abcb6LKO group showing the opposite trend (greater magnitude of increase in the 

refed state) as compared to WT. 
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Figure 5.9 

 

 

 

 

 

Figure 5.9 Metabolic Xenobiotic sub pathway changes in response to fasting and 

refeeding in WT, Abcb6LKO, and Abcb6LOE mouse liver (A) Total peak values in the Food 
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sub pathway. (B) Total peak values in the Benzoate sub pathway. (C) Peak values of phenyl 

propionate. (D) Peak values of hippurate. N=4.  

 

5.5 Discussion 

     Metabolic inflexibility plays an important role in the development of metabolic 

disease. Hepatic physiological responses to fasting and feeding are crucial to 

maintaining appropriate adaptation to nutritional status. Here, we present analysis of 

liver metabolites in fasted and refed states in WT, Abcb6LKO, and Abcb6LOE mice.   

     Because the liver receives macromolecules from portal circulation in the post-

absorptive state, an increase in most hepatic metabolic super pathways would be 

expected. Indeed, we saw increases in 6 out of 8 super pathways in WT and Abcb6LKO 

mice in response to feeding. Interestingly, in Abcb6LOE mice, only 4 out of 8 super 

pathways were increased in response to feeding.  

     This study’s analysis of hepatic metabolites reinforced previously established 

general maxims regarding physiological responses to fasting and feeding such as 

glycogen depletion, increased hepatic lipid uptake, and increased ketone production 

during a fast and increased hepatic carbohydrates and xenobiotics in response to 

feeding. 

     This set of data provides the first, to our knowledge, benchmark levels for hepatic 

metabolites in fasted and refed mice fed a standard chow diet. In the future, this study 

may be utilized to compare metabolite levels in other metabolic studies such as diet 

induced obesity or other dietetic alterations as well as genetic treatments effecting 

hepatic metabolism.  
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    With respect to the genetic treatment groups (Abcb6LKO and Abcb6LOE) used in this 

study. The most striking departures from the WT group were seen in amino acid and 

lipid metabolism. As previously mentioned, dipeptides can be imported and degraded to 

generate hepatic amino acid supply. In our study, disruption of ABCB6 expression 

lowered select hepatic dipeptides and amino acids. Members of the ABC transport 

super family have been shown to be involved in the transport of dipeptides and amino 

acids. (Vasiliou, et al., 2009; Young et al., 2001). Future studies could explore the 

possible transport dipeptide or amino acid transport function of ABCB6.  

     Cholesterol is the required substrate for bile acid synthesis. We found that genetic 

manipulation of ABCB6 resulted in lower hepatic cholesterol and bile acid levels and 

altered responses to feeding in these sub pathways. Again, published data indicates 

that ABC transporters play important roles in bile acid and cholesterol metabolism 

(Borst, et al., 2000) so it is conceivable that ABCB6 could have a transport function in 

either cholesterol or bile acid homeostasis.  

     There were relatively modest changes in phospholipid levels in Abcb6LKO and 

Abcb6LOE mouse liver compared to WT. Previous data demonstrates that Abcb6LKO 

and Abcb6LOE mice have altered mitochondrial morphology. It is likely that these 

changes are accompanied by altered mitochondrial membrane composition that may 

contribute to phospholipid changes seen in the whole lysate used for this study. Future 

analysis of isolated mitochondrial would be useful in pinpointing the source of altered 

phospholipids seen in this model. 

     Disruption of any one of the drastically altered pathways mentioned here could 

possibly explain our observation of metabolic inflexibility in Abcb6LKO and Abcb6LOE 
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mice. This study has provided a roadmap for future studies that will result in increased 

understanding of the contribution of ABCB6 to mammalian physiology. Supplemental 

assays such as RNA sequencing and mitochondrial metabolomics will direct future 

studies involving the potential role of ABCB6 in lipid and amino acid metabolism and will 

expand our understanding of tissue-specific metabolic flexibility adaptations in general. 

 
 

Study Limitations 

     The present study is a “snap-shot” of both nutritional states (18 hour fasted, and 6 

hours refed). Time course evaluation of both states would be informative regarding 

physiological responses. The liver plays an important role in whole-body metabolic 

flexibility, but additional studies of major metabolic organs would provide a more 

complete picture of the responses necessary to maintain energy homeostasis. Further, 

our report does not venture to discern between endogenous and exogenous levels of 

metabolites. 
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                            Chapter 6: Conclusions and Future Directions 
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     This dissertation provides a detailed description of the metabolic consequences of 

altered ABCB6 expression in mice. The present studies show that ABCB6 deficiency or 

overexpression has a profound impact on energy homeostasis which is associated with 

changes in mitochondrial form and function. Despite previous in vitro and ex vivo data 

that suggested ABCB6 was associated with heme biosynthesis, multiple experiments 

determined that ABCB6 ablation or overexpression did not result in significant changes 

in heme levels in vivo. Therefore, the phenotypes described here are independent of 

changes in heme biosynthesis.  

 

Chapter 2 Prior to this study, ATP-binding cassette transporter, ABCB6 was shown to 

be involved in the heme biosynthesis pathway in cell-based models (Krishnamurthy, et 

al., 2006). Additional studies confirmed that loss of ABCB6 is associated with several 

mammalian pathologies such as ocular coloboma, familial pseudo hyperkalemia, and 

atherosclerosis (Andolfo, et al., 2013; Murphy, et al., 2014; Wang, et al., 2012). 

Because these conditions have not been found to be directly linked to a disruption in 

heme synthesis, it is probable that ABCB6 has additional non-heme related 

physiological functions.  

     To better understand ABCB6 function in vivo, we utilized a whole-body Abcb6 

knockout mouse model. We observed metabolic disturbances in homozygous Abcb6 

whole-body knock-out in male and female mice. Suggestive of a role in development, a 

portion of Abcb6 KO offspring had stunted growth. Over time, these smaller mice 

surpassed wild-type liter mates in body weight despite no difference in food 

consumption. We discovered that the increased body mass was due to increased 
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adipose tissue. The obesogenic phenotype was accompanied by lower energy 

expenditure, metabolic syndrome-like characteristics such as disrupted glucose 

metabolism and disturbances in pathways that regulate energy homeostasis. 

Interestingly, through these studies, we discovered that hepatic ABCB6 expression is 

suppressed in obesity. Through EM imaging and bioenergetic flux assays, we found that 

ABCB6 deficiency resulted in increased fragmentation and decreased function in 

hepatic mitochondria. These results lead to the hypothesis that the metabolic 

disturbances in whole-body KO mice were due to ABCB6-mediated mitochondrial 

alterations.  

     Most of the analysis of mitochondrial form and function was done in liver. However, 

because the driving force of the obesogenic phenotype is likely due to reduced energy 

expenditure and physical activity, analysis of other tissues that regulate this aspect 

should be performed in the future. Endocrine system components such as the 

hypothalamus, thyroid, and pituitary contribute to overall energy balance and activity. 

Along with skeletal muscle and the brain, macro and micro anatomical analysis as well 

as mitochondrial form and function studies of these tissues in Abcb6 KO mice would 

possibly result in a better understanding of origins of the observed phenotype.  

     Because the disruption of mitochondrial morphology and function was observed prior 

to the onset of obesity, it seems clear that mitochondrial dysfunction precedes metabolic 

syndrome in this model. However, it is presently unclear at what timepoint mitochondrial 

changes occur. Earlier observations of possible embryonic lethality seem to suggest 

that alteration of ABCB6 expression would have a developmental impact.  At what point 

do mitochondrial abnormalities occur in Abcb6 KO mice and if in early development, 
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how does this contribute to the metabolic syndrome seen in adulthood are still open 

questions. A full developmental study of Abcb6 KO mice could partially address these 

questions. Additionally, because we currently have an Abcb6 “floxed” mouse model, it is 

possible to alter ABCB6 expression using a universal promoter creating a whole-body 

KO or over expressing mouse after development is complete via intraperitoneal delivery 

of AAV8 Cre virus under a universal promoter. The combination of these two studies 

would give a clearer picture of how ABCB6 expression influences development and 

contributes to energy homeostasis in adulthood in absence of generational or 

developmental effects.  

 

Chapter 3 The maintenance of whole-body energy homeostasis involves extensive 

inter-organ crosstalk. Also, we currently don’t fully understand the developmental or 

generational consequences of ABCB6 deletion. Although ABCB6 is expressed in all 

metabolic tissues, it is unknown whether this transporter has tissue-specific functions. 

These facts represented barriers to unraveling the mechanistic details of ABCB6-

mediated homeostatic disruptions in whole-body KO mice. To overcome these 

impediments, we developed a tissue-specific, inducible system to control ABCB6 

expression. This chapter discusses the phenotypes seen due to liver-specific deletion or 

overexpression of ABCB6 in 8-week male mice.  

     Following up on the mitochondrial dysfunction seen in Abcb6 whole-body knockout 

mice, we confirmed that liver-specific alteration of ABCB6 also resulted in mitochondrial 

morphological changes with Abcb6LKO having increased fragmentation and Abcb6LOE 

having increased elongation in their respective mitochondrial populations. We also 
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discovered that function followed form in this model with fragmentation being associated 

with decreased mitochondrial function and elongation resulting in increased function in 

Abcb6LKO and Abcb6LOE mice respectively.  

     Based upon the previous observation that ABCB6 expression is downregulated in 

the obese state and the known association between mitochondrial dynamic changes in 

response to nutrient status, we investigated ABCB6 hepatic expression patterns in 

response to the diurnal feeding cycle. We found that ABCB6 expression was 

upregulated in low-nutrient (fasted) state and downregulated in high-nutrient (post-

absorbent) state mirroring the mitochondrial morphology and function seen in the 

Abcb6LOE and Abcb6LKO models respectively. 

     In Abcb6LKO mouse liver, the expression of mitochondrial fusion proteins was 

decreased while fission protein expression was increased. In Abc6LOE mouse liver 

fusion protein expression was increased, and fission proteins were downregulated. This 

data supported the hypothesis that ABCB6 is responsive to nutrient signals and 

mediates a homeostatic response via interaction with mitochondrial fission and fusion 

machinery thus regulating metabolic flexibility. Indeed, Abcb6LKO and Abcb6LOE mice 

have altered food consumption and respiratory exchange ratio in response to dietary 

challenges as compared to wild-type mice as measured by indirect calorimetry assays. 

The loss of metabolic flexibility in Abcb6LKO and Abcb6LOE mice resulted in abnormal 

hepatic lipid and carbohydrate metabolism as well as disrupted glucose and insulin 

signaling. This study illustrates that ABCB6 plays a crucial role in maintaining energy 

homeostasis as suggested in the Abcb6 whole-body KO studies. Remarkably, either 
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knockdown or overexpression of ABCB6 in a single organ, the liver, manifested 

systemic metabolic syndrome-like characteristics.  

     Future studies are needed to understand the mechanisms by which nutrient status 

influences ABCB6 expression and the downstream effects of this transporter’s 

regulation. Our previous studies showed that ABCB6 expression was post-

translationally downregulated by acute or chronic high nutrient status. Therefore, it is 

likely that ABCB6 degradation pathways are dynamically activated in response to 

increased nutrient supply. Inhibition of selected protein degradation pathways could 

uncover details of how nutrient sensing pathways are linked to the rapid regulation of 

ABCB6 expression.  

     Chapter 3 describes phenotypes seen after a set time point after genetically altering 

ABCB6 expression (10 days post IP delivery of AAV8 virus). It would be informative to 

discover the rapidity of mitochondrial morphological/functional changes in response to 

the loss or gain of ABCB6 expression. Such experiments could include analysis of 

ABCB6 expression and mitochondrial form and function as early as 24 hours post-

injection and tracking those changes up to the 10 day point previously studied. 

Alternatively, it would be interesting to discover if the severity of the 10-day phenotypes 

would be more drastic after a longer period of ABCB6 knockdown/overexpression or 

conversely, would compensatory responses overcome the metabolic disturbances seen 

in this study. Any observable compensatory responses would no doubt, be informative.  

     Because the liver is crucial maintaining whole-body energy homeostasis and 

because ABCB6 is highly expressed in the liver, we chose this organ as the first tissue-

specific study.  However, crosstalk between the liver and other metabolic organs is well 
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documented and this study did not fully explore the effects of hepatic alteration of 

ABCB6 in other tissues. Changes in ectopic lipid accumulation, fuel selection in non-

hepatic tissues, adipose hypertrophy or biogenesis, and hormonal responses are just a 

few examples of non-hepatic aspects that could be explored using this model. 

Information gained using this approach could shed further light upon the role of ABCB6 

in maintaining energy homeostasis.  

     In addition, ABCB6 is also highly expressed in other tissues. Adipose, pancreas, 

muscle, testes, and brain-specific viruses are commercially available by which, further 

studies could explore the impact of changing ABCB6 expression in these tissues. Would 

gain or loss of ABCB6 have the same mitochondrial effects in these tissues? If so, what 

would be the impact on energy metabolism and other metabolic tissues in which ABCB6 

expression was not targeted? Since the physiological role of ABCB6 in mammals is 

unclear, is it possible that ABCB6 expression could have differential functionality based 

upon specific organs or tissues. For example, ABCB6 is highly expressed in testes. 

Would genetic alteration of ABCB6 testicular expression affect fertility? Based upon the 

lower than expected homozygous progeny seen in our whole-body Abcb6 knockout 

mice, this is a worthy question. We also observed behavioral abnormalities in the whole-

body knock out model. Because the nervous system is highly reliant on mitochondrial 

function and appetite control is an essential function of the brain, behavioral and 

metabolic studies using an Abcb6 brain-specific model are likely warranted.  

     The temporal and tissue-specific control of gene expression is a powerful tool. In our 

model, we also can accurately assess spatial and tissue-specific expression of ABCB6 

through LacZ/ X Gal staining. Comprehensive analysis of the tissue-specific effects of 
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changes in ABCB6 expression, compensatory ABCB6 expressional changes by non-

targeted tissues, and differential ABCB6 expression patterns will provide crucial 

information needed to understand ABCB6 function in higher eukaryotes.  

 

Chapter 4 details global metabolomic data from the livers of wild-type, Abcb6LKO, and 

Acb6LOE mice in fasted and refed states. The purpose of this study was two-fold. 

Firstly, changes in liver metabolites in response to fasting or feeding are descriptive of 

hepatic adaptive responses to nutrient status that are not yet fully understood. Because 

this is the first murine study under these conditions, we needed to establish baseline 

levels of metabolites in wild-type mouse as well as the change in these levels in 

response to nutrient status. Secondly, Abcb6LKO and Abcb6LOE mice exhibit 

metabolic inflexibility. We proposed that metabolomic analysis of mice in this model 

would be informative as to possible transport substrates and functions of ABCB6 in 

mouse liver.   

     Our WT metabolomic study re-enforced previously well-characterized hepatic 

adaptations to fasting and feeding such as increased lipid import and glycogenesis. The 

study also reveals less understood adaptations. In our study, select vitamins were 

increased upon feeding while others were decreased in the refed state. Also, previous 

studies have shown that hepatic lactate is increased in liver in the fasted state, but our 

study shows higher lactate levels in the refed state.  

     Abcb6LKO and Abcb6LOE mice had significant changes in amino acid/peptide, 

nucleotide, and lipid metabolism. Additional studies and additional analysis of the 
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metabolite study will likely aid in pinpointing how ABCB6 expression relates to metabolic 

flexibility. 

     Although this study was informative, future studies will greatly enhance the value and 

usefulness of this data. Since many metabolites analyzed in this study could originate 

from either exogenous sources (food) or endogenous metabolic pathways, it is 

impossible to discern whether some metabolite level changes are attributable to the 

intake of a particular metabolite (or parent compound further metabolized to the final 

metabolite), or from regulatory actions of endogenous pathways. Another complication 

involved in these studies is that some pathways share a common metabolite. It is 

conceivable that opposing physiological adaptations could increase a common 

metabolite thus confounding the ability to conclude which metabolic action is causative 

of the metabolite level change. A parallel RNA sequencing analysis would assist in 

resolving both issues. RNA sequencing would provide a detailed transcriptional picture 

in both nutritional states thus potentially allowing us to conclude through pathway 

analysis if level changes were of endogenous origins and from which metabolic 

response/s they arose.  

     Our metabolomic study was performed on liver tissue whole lysate.  Additional 

analysis of isolated mitochondria from the same treatment groups would be beneficial in 

several aspects. Previous publications have suggested multiple sub cellular 

localizations for ABCB6. Analysis of the mitochondrial fraction would highlight metabolic 

disturbances associated with the mitochondrial form of ABCB6. Both this metabolomic 

and our previous studies suggest dramatic lipid metabolism alterations in this model.  

Cellular membrane content contributes substantially to the overall lipid profile of the 
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liver. Our previous data show drastic morphological changes in Abcb6LKO and 

Abcb6LOE mitochondria which are very likely accompanied by alterations in membrane 

composition. Performance of metabolomic analysis on the mitochondrial fraction would 

improve the resolution of mitochondrial lipid changes and possibly identify lipid-related 

mechanistic details of how mitochondrial dynamics are affected in our model. 
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                                   Chapter 7: Methods and Materials 
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Animal Studies— All animal experiments were approved by the University of Kansas 

Medical Center Institutional Animal Care and Use Committee. Mice were housed in 

polycarbonate cages (four per cage) and maintained on a 14-h/10-h light-dark cycle at 

22 5 °C and 20% relative humidity. For Abcb6 whole-body knock out studies, mice were 

provided standard chow diet and water ad libitum. Mice were fasted for 12 hours prior to 

tissue collection.  

      For liver-specific studies, mice were entrained to time-restricted feeding (food 

provided from 7:30 pm to 7:30 am only) for one week prior to tissue collection. Fasted 

groups were fasting for 18 hours. Refed groups were fed for six hours prior to collection. 

Water provided ad libitum. 

 

Abcb6 Whole-Body Null Mice—Abcb6 knock-out mice were generated on C57BL6/N 

background using ES cells developed by the trans-NIH Knock-Out Mouse Project. The 

ablation cassette (velocigene cassette [bacterial J3-galactosidase-polyadenylation 

signal-loxP (locus of X over P1) site-human ubiquitin C gene promoter-neomycin 

phosphotransferase-polyadenylation sig- nal-loxP site]) used to generate Abcb6 knock-

out mice replaces the Abcb6 ORF containing exons 3–5 with the J3-galactosidase- 

hUBC/em7-neomycin-poly(A) cassette, where the neomycin expression cassette is 

flanked by loxP sites (24). Microinjection of ES cells and generation of Abcb6 

heterozygous mice were done according to standard procedures. Mice were genotyped 

using appropriate primers. The first primer pair anchors to exon 1 and exon 3 and 

amplifies 470 bp of the WT allele. The sequences of the primers are as follows: WT-F, 

5'- GCCCCCAGTCTTATACTCTA- CACG-3', and WT-R, 5'-
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CCCATGCCTCTCTCTGCTTTCC- 3'. The second primer pair anchors to exon 1 and 

the neomycin cassette and amplifies 620 bp of the mutant allele. The primer sequences 

are as follows: KO-F, 5'-CACACCTCCCCCTGAACCTGAAA-3', and KO-R, 5'-CGT- 

GACCCCTCTCAGAGTTAGGAAAG-3'). 

Weight recordings- For body weight analysis, animals on a regular chow diet (Harlan 

Teklad 2018; 18% calories from fat) or, when indicated, an HFD (Research Diets 

D12451; 45% of total calories from fat) were weighed at the indicated time points from 

week 5 till week 20. Food intake was measured daily for the entire duration of the study 

and was determined to the nearest 0.1g by weighing the remaining chow or HFD. 

Trained personnel performed weekly observations of all mice.  

ECHOMRI- Quantitative Magnetic Resonance (ECHOMRI 1100) measurements were 

made were done on mice that were fed ad lib during the light phase (0900 hr.). Scans 

were performed by placing animals into a thin-walled plastic cylinder (1.5 mm thick, 4.7 

cm inner diameter), with a cylindrical plastic insert added to limit movement. While in the 

tube, animals were briefly subjected to a low-density (0.05 Tesla) electromagnetic field 

to measure fat, lean mass, free water, and total body water. The general theoretical 

background and specific technical details describing the basic functionality of this 

system is well-described by Tinsley et al (Evaluation of a quantitative magnetic 

resonance method for mouse whole body composition analysis. Tinsley FC, Taicher GZ, 

Heiman ML. Obes Res. 2004 Jan; 12(1):150-60.) 
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Generation of genetically modified Abcb6 Liver-Specific mice- Abcb6LKO and 

Abcb6LOE mice were generated on a C57BL6/N background. The strategy for the 

generation of genetically modified Abcb6 mice is shown in Figure 3.1A. Mice were 

maintained on a 12 h dark/light cycle and housed in groups of two to four with unlimited 

access to water and chow diet (5053 PicoLab Rodent diet 20, Fort Worth, TX) as indicated 

for individual experiments. All animal procedures were performed in accordance with the 

Guide for Care and Use of Laboratory Animals of the NIH and were approved by the 

Institutional Animal Care and Use Committee of the University of Kansas Medical Center, 

Kansas. In this report all animal studies were done using male mice. 

 

Production of Adeno Associated Viral (AAV) Particles- Purified AAV-TBG-PI-Cre and 

AAV-TBG-PI.eGFP viral particles were obtained from Penn Vector Core (University of 

Pennsylvania, Philadelphia, PA). Purified AAV-TBG-PI-Abcb6 and AAV-TBG-PI.eGFP 

(Abcb6 control) viral particles were obtained from Vector Biolabs (Malvern, PA). 

 

Postprandial mouse model. The strategy for the postprandial mouse is shown in 

Supplementary Figure 4A. Briefly, For ABCB6 expression studies, male mice (C57BL6/N) 

were trained to handling, and night time feeding and day time fasting for a period of 9 

days to minimize variability linked to stress and food consumption.  On the 10th day mice 

were moved to fresh cages and grouped into mice that were scheduled to be fasted or 

mice that were scheduled to be fed. On the 10th night mice scheduled to be fed were 
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given food for 6 h, while mice scheduled to be fasted were not given any food. At the end 

of 6 h feeding mice in all groups were sacrificed and liver biopsy and/or harvest followed.  

     For fed and fasted responses of genetically modified Abcb6 mice studies Abcb6flox/flox 

male mice 5 weeks of age were given a single peritoneal injection of either AAV8-TBG-

PI. Cre or AAV8-TBG-PI-eGFP or AAV8-TBG-PI-Abcb6. Injected mice were then trained 

to handling and night time feeding and day time fasting for a period of 9 days to minimize 

variability linked to stress and food consumption. On the 10th day mice were moved to 

fresh cages and grouped into mice that were scheduled to be fasted or mice that were 

scheduled to be fed. On the 10th night mice scheduled to be fed were given food for 6 h, 

while mice scheduled to be fasted were not given any food. At the end of 6 h feeding mice 

in all groups were sacrificed and liver biopsy and/or harvest followed.  

 

Circadian mouse model. The strategy for the circadian rhythm is shown in Figure 3.4B. 

Briefly, mice were housed in barrier facilities with 12 h light and dark cycles. ZT0: lights 

on at 6 am; ZT12: lights off at 6 pm. Mice were fed ad libitum with chow diet (5053 PicoLab 

Rodent diet 20, Fort Worth, TX). For circadian studies male mice C57BL6/N 5 - 6 week 

of age were sacrificed every 3 hours for 24 hr. Liver tissue was harvested and was used 

to isolate RNA. RNA samples were used to analyze circadian oscillation of Abcb6 

transcript while total liver lysates were processed and used to analyze circadian 

oscillation of ABCB6 protein.   
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Hepatic H & E staining- Mouse liver sections were rinsed in phosphate buffered saline 

and immediately fixed in buffered 10% formaldehyde for 48 hours followed by a 24-hour 

incubation in 70% ethanol. Tissues were then processed for 6 hours in a Leica 

ASP300S tissue processor. Paraffin-embedded tissues were sectioned to 6uM and 

stained with hematoxylin and eosin and imaged with an Olympus DP71 microscope. 

 

Oil O Red Staining- Liver sections were collected and embedded in embedding 

medium. (Tissue-Tek® O.C.T. Compound, SAKURA, USA) and frozen on dry ice. 

Frozen sections (6 mm thick) were cut in a cryostat and stained with oil red O and 

hematoxylin for studying lipid accumulation with an Olympus DP71 microscope. 

 

Periodic Schiff stain- Glycogen was visualized in paraffin-embedded tissue sections 

using a periodic acid – Schiff (PAS) staining kit (Sigma Aldrich, St Louis, MO). Tissue 

sections were also stained with standard hematoxylin and eosin for general cell 

morphology. 

 

Lipid and metabolite Analysis- Hepatic and serum ketones, triglyceride, free fatty 

acid, and total cholesterol were determined using BioVision Incorporated (155 South 

Milpitas Blvd. Milpitas, California) kits as per manufacturer’s instructions.  
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Preparation of tissue lysates - Mouse liver lysates were prepared as follows. 

Approximately, 0.05 grams (wet weight) of frozen tissue was homogenized in 500uL 1X 

Ripa buffer (Thermo Scientific, Waltham, MA) with protease inhibitors (Roche Applied 

Science) using a glass dounce homogenizer on ice. The resulting solution was spun at 

10,000 g for 10 minutes at 4 degrees Celsius in a tabletop centrifuge. The supernatant 

was then collected and following BCA protein estimation, mixed with 4X Laemmli buffer 

(Bio-Rad 161-0747) and 1:100 beta mercaptoethanol. 

Immunoblotting- Approximately 50 𝜇g of total protein was analyzed by polyacrylamide 

gel electrophoresis (PAGE). Commercial primary antibodies were used for relative 

protein detection. Immunoreactive proteins were detected by using polyclonal goat anti-

rabbit or anti-mouse horseradish peroxidase IgG secondary antibodies (Thermo 

Scientific, Waltham, MA) and visualized using Supersignal chemiluminescent 

horseradish peroxidase substrate (Thermo Scientific, MA) or IRDye goat anti-

rabbit/goat-anti-mouse secondary antibodies (Li-Cor Lincoln, NE, USA) and visualized 

by Li-Cor Imager model 2800. Densitometry analysis was performed using ImageJ 

analysis software (National Institutes of Health). 

 

Mito Stress Test- Isolated mitochondrial function was assessed using Seahorse XF243 

Mito Stress test as previously described (Rogers et al., 2011). Primary mouse 

hepatocyte Mito Stress analysis was performed as previously described (Chavan et al., 

2017).  
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RNA isolation, reverse transcription, and Real-time PCR analysis- RNA isolation 

from tissue was accomplished using TRIZOL® reagent (Invitrogen, CA) following 

manufacturer’s protocol. iScript (BioRad, CA) was used for cDNA synthesis using 1 μg 

of RNA according to manufacturer’s protocol. Real-time PCR was performed using 

CFX384TM Real Time PCR System using gene specific primers and iTaq™ Universal 

SYBR® Green Supermix (Bio-Rad, Hercules, California) for amplification measurement.  

 

Intraperitoneal glucose and insulin tolerance tests- Control diet fed male wild-type 

and knockout mice were fasted overnight (16 hours). Tail snipping was used to collect 

blood. Glucose levels were detected using One Touch Ultra Mini blood glucose meter at 

0 hour and at 30, 60, 90 and 120 minutes after intraperitoneal injection of 2.0 g/kg 

glucose or 0.05 units/kg insulin. 

 

Transmission electron microscopic imaging- Fixed tissue was rinsed with 0.1N 

Cacodylate buffer twice, 10 min each. Tissue was post-fixed in 1% osmium tetroxide 

buffered in 0.1M Cacodylate buffer for 1 hour in a fume hood. Samples were rinsed with 

distilled water 3 times, 10 min each. Samples were dehydrated in a series of graded 

ethanol as follows; 50%, 70%, 80%, 95%, 100%, 100% for 15 min each. Samples were 

placed into propylene oxide for 20 min, then into 1:1 solution of propylene oxide and 

Embed 812 resin formulation medium (Electron Microscopy sciences, Fort Washington, 

PA) overnight. The samples were then placed in fresh Embed 812 medium formula for 1 

hour. Samples were then placed into 00 size micromolds with fresh resin and placed in 

a 65-degree oven overnight. Samples were sectioned at 70nm using a Diatome 
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diamond knife on a Leica UC-7 ultra-microtome. Sections were viewed at 100kv on a 

J.E.O.L. JEM 1400 transmission electron microscope. 

 

Mitochondrial isolation- Mitochondrial isolation was performed using an established 

protocol (Chavan, et al., 2013; Krishnamurthy, et al., 2006). In brief, liver was 

homogenized in 4 ml cold isolation buffer (70 mM sucrose, 210 mM mannitol, 5 mM 

HEPES buffer, 1mM EGTA, and 0.5% fatty-acid free bovine serum albumin). 

Homogenization was achieved using a Dounce glass homogenizer at 12 strokes. 

Following two rounds of centrifugation at 800 x g for 10 min, the mitochondrial fraction 

was washed and pelleted at 8,000 x g for 10 min. The pellet was suspended in 

approximated 150 µL cold isolation buffer and either stored at -80⁰C in 50 µg aliquots or 

used immediately for extracellular flux assays.  

Primary hepatocyte isolation- Primary hepatocyte isolation and culturing were 

performed as previously described (Chavan et al., 2017). 

Mitochondria number, area and size calculations- Low magnification EM images of 

the liver samples each measured 980 µm2. A total of 12-16 images (of 980 µm2) for each 

genotype was used to calculate the average mitochondrial number. On each of these 

images, every mitochondrion was identified manually, and the perimeter was outlined with 

an optical pen using the adobe Photoshop software. The shape of each mitochondrion 

was defined by the axis ratio of the oval that best fits the area of the organelle (Adobe 

Photoshop software). Data are expressed as means ± SD. The statistical significance of 

differences was assessed with a one-or two –sample Student t test. One-Way Analysis 
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of Variance (ANOVA) was used to compare between treatment groups in the fed and 

fasted conditions. Statistically significant results from ANOVA were computed further 

using all pairwise multiple comparison procedures (Holm-Sidak method). All calculations 

were performed with SPSS statistical software package Version 22 (IBM) 

Mitochondria Respirometry- All procedures were performed with pre-chilled buffers, 

equipment, and consumables. Isolated mitochondria were re-suspended in respiration 

buffer (100 mM KCl, 10 mM KH2PO4, 5 mM MgCl2,  5 mM HEPES, 1 mM EGTA, 

0.24%BSA, pH 7.2) and kept on ice as described previously (Chao et al., 2018; Chavan, 

et al., 2017). 10 micrograms per well were loaded into Seahorse XF24 microplate in 50 

µL volume containing substrates. The loaded plate was centrifuged at 2,000 x g for 5 min 

at 4⁰C and an additional 450 µL of buffer+substrate (14 mM succinic acid and 2 mM 

rotenone) was added to each well.  

Fluorophore excitation/emission- Mitotracker red, was excited with 488 nm 25 mW 

Argon-ion laser and their emission captured through 500-550 nm band-pass filter. 

Supercomplex detection, identification, and quantification- Were performed using an 

established protocol (Jha et al., 2016). 

SC detection- 10-50 µg mitochondrial extracts were solubilized in 20 µL solubilization 

buffer (50 mM Imidazole, 500 mM 6-aminohexanoic acid, EDTA 1 mM pH7.0). 8 mg 

digitonin/mg of protein was added, and samples were incubated on ice for 30 min. 

Solubilized samples were centrifuged at maximal speed in a microcentrifuge for 30 min 

at 4⁰C. The clear supernatant was combined with 1 µL of 2.5% Coomassie G-250. 



194 

 

Samples were loaded into NativePage 3%-12% Bis – Tris gel (Invitrogen) and 

electrophoresed at 4⁰C in a Sure-Lock Xcell Tank (Invitrogen) at constant voltage of 20V 

for 60 min and 200V for 120 min or until dye front exited the gel. Simultaneous detection 

of CI-CV was achieved with the anti-OXPHOS complex kit (Mitosciences, catalog 

number, dil. 1: 2,000).  

SC identification- in total, 50 µg mitochondrial extracts (with digitonin 8 g/g protein and 

G-250 Coomassie blue) were individually loaded for the detection of each complex. After 

the transfer, the membrane was cut and incubated in the same primary antibodies used 

for western blotting. 

Blood and tissue biochemistry- Blood was drawn at the time of sacrifice via retro-orbital 

puncture, and plasma was prepared. Tissues were processed according to the kit specific 

manufacturer’s instructions. The following kits were used to determine metabolic 

parameters: triglyceride determination kit (BioVision, catalog # K622), total cholesterol kit 

(BioVision, catalog # K603), free fatty acids determination kit (BioVision, catalog # K652), 

glycogen determination kit (BioVision, catalog # K646), ketone determination kit 

(BioVision, catalog # K632).  

 

Heme measurements- Hepatic heme measurements were done using UPLC-QTOFMS 

system as described (Chavan et al., 2015).  

Statistical Analysis- Unless specified otherwise, all values presented in the text are 

mean ± standard deviation (SD). The statistical significance of differences was assessed 
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with a one-or two –sample Student t test. Where applicable, Two-Way Analysis of 

Variance (ANOVA) was used to compare between the genotypes and between the 

treatment groups. Statistically significant results from ANOVA were computed further 

using all pairwise multiple comparison procedures (Holm-Sidak method). All calculations 

were performed with SPSS (software package Version 22 IBM) and/or Sigma Plot 

(version 12.0). A difference was considered significant at the p < 0.05 level. 
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