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abstract: In this work, Grinnellian niche theory (a body of theory
about geographic distributions of species in terms of noninteracting
niche variables) is used to demonstrate that species-area relationships
emerge with both size of environmental space and size of geographic
area. As environmental space increases, more species’ fundamental
niches are included, thus increasing the number of species capable
of living in the corresponding region. This idea is made operational
by proposing a size measure for multidimensional environmental
space and approximating fundamental niches with minimum volume
ellipsoids. This framework allows estimating a presence-absence ma-
trix based on the distribution of fundamental niches in environmental
space, from whichmany biodiversity measures can be calculated, such
as beta diversity. I establish that Whittaker’s equation for beta diver-
sity is equivalent to MacArthur’s formula relating species numbers
and niche breadth; this latter equation provides a mechanism for
the species–niche space relationship. I illustrate the theoretical results
via exploration of niches of the terrestrial mammals of North America
(north of Panama). Each world region has a unique structure of its
environmental space, and the position of fundamental niches in niche
space is different for different clades; therefore, species-area relation-
ships depend on the clades involved and the region of focus, mostly as
a function of MacArthur’s niche beta diversity. Analyzing species-
area relationships from the perspective of niche position in environ-
mental space is novel, shifting emphasis from demographic processes
to historical, geographic, and climatic factors; moreover, the Grin-
nellian approach is based on available data and is computationally
feasible.

Keywords: species-area relationships, fundamental niche, niche space,
presence-absence matrices, beta diversity.
Introduction

Ecologists have appreciated for a long time that there is a
positive relationship between the area of a region and how
many species can be found in it (Arrhenius 1921; Gleason
1922; Preston 1962). This relationship (called a species-
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area relationship, or SAR) has been described by a variety
of mathematical shapes (Lomolino 2000; Tjørve 2003) and
explained by sampling effects, larger number of individu-
als with increasing area, more habitats included in larger
areas, and other causes (Rosenzweig 1995). Some argue that
there is a single SAR (Storch et al. 2012), others that there is
no single simple mathematical shape that can describe the
relationship (Harte 2011). Moreover, the underlying mech-
anisms determining a SAR change with scale (Williams
1964; Rosenzweig 1995; Drakare et al. 2006) and may be
better described using demography, individual movements
and habitat factors at small extents, and geography, climate,
barriers, and large evolutionary factors at larger extents.
In this contribution, I analyze SARs at a biogeographic

scale (extents of 106 to 107 km2 and resolutions of grids of
102 to 103 km2) using the amount of climatic space as the
predictor (Meyer and Pie 2018). The approach is based on
theoretical ideas related to Grinnellian niches (Jackson and
Overpeck 2000; Soberón and Peterson 2005; Colwell and
Rangel 2009; Peterson et al. 2011). Grinnellian niches mean
essentially two things. First, niche spaces are composed of
scenopoetic variables (Hutchinson 1978), that is, variables
that are not dynamically linked (via feedback loops) to pop-
ulation fluctuations even though they affect the fitness of a
population. They are conditions for existence (Begon et al.
2006) rather than resources to be exploited. This leads di-
rectly to the use of set theoretical language and to a compu-
tational approach rather than to the analytic approaches
(isoclines in phase spaces) required by niches defined using
interacting variables (Chase and Leibold 2003). Second,
Grinnellian niches are naturally oriented to analyze biogeo-
graphic questions in realistic geographic regions (i.e., no
arbitrary rectangular or toroidal arenas), defined explicitly
and subdivided by a discrete grid of extent and resolution
suitable to address biogeographic questions (Shmida and
Wilson 1985). This perspective relies on the one-to-one re-
lationship between the cells in the grid and the set of vectors
of scenopoetic variables. A one-to-one relationship is pos-
sible if enough variables, at enough precision, are used to
characterize the environmental space (Aspinall and Lees
1994). This is the original idea of a biotope (Hutchinson
1957), later christened “Hutchinson’s duality” by Colwell
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Grinnellian Niches and SARs 761
and Rangel (Colwell and Rangel 2009; Soberón and Naka-
mura 2009).

Grinnellian niche theory relates in an explicit and opera-
tional way areas of distribution and niches (Soberón 2007;
Peterson et al. 2011) and thus provides a natural framework
to analyze SARs at large scales. From this perspective, the
driving factor of the SAR is not the distribution of the num-
ber of individuals as a function of area (Preston 1962; May
1975; O’Dwyer andGreen 2010) nor the distribution of areas
of different size in geography (Coleman 1981; Allen and
White 2003; Leitner and Rosenzweig 2003) but the distribu-
tion of fundamental niches in niche space and how they in-
tersect with subregions of niche space of different measure
(in set theory, this is a number representing the size of a set).
Instead of assuming infinite arenas and arbitrary or random
distributions for the shapes and positions of niches, I will de-
rive them from data, and the region is of finite size.

Although theGrinnellian niche approach is unequivocally
empirical in that it requires large quantities of data, several
theoretical assumptions are needed to apply it to the SAR
problem. First, a sequence of larger and larger regions R is
used, for which a variety of measures of size (including area)
can be taken. Specifically, I will be interested in how “niche
space” increases with larger regions, which requires a defini-
tion of niche space size (see below). Second, I assume that
there are no barriers to dispersal, so if a geographic cell has
a suitable environment for a species, the species will occupy
it. This is called a “Hutchinson’s world” in the terminology of
Owens et al. (2013). Of course, this is an assumption known
to be false in many cases (Svenning and Skov 2004), but re-
laxing it requires modeling dispersal, something that, al-
though feasible (Rangel et al. 2007; Qiao et al. 2016), com-
plicates things substantially (for instance, hypotheses about
the initial conditions per species are needed). Therefore, for
illustration purposes, it is assumed that the geographic extent
of continental NorthAmerica (sensu lato) has been accessible
to the group of interest, the terrestrial mammals. Third, I will
assume that there are no interactions among species, which
will allow estimating the species composition of a region sim-
ply by stacking independently calculated distributions (Coo-
per and Soberón 2018). Thismay be called a Gleasonian ecol-
ogy. Again, there are biological (Leathwick 1998; Gutiérrez
et al. 2014) and technical (Calabrese et al. 2014) limitations
to this assumption, but to relax it one needs data (and theory)
on the results of interactions, a nontrivial problem.Moreover,
at coarse spatial resolutions interactions may not be univer-
sally important (Soberón 2010). Finally, I assume that niches
are of convex shape (Maguire 1973; Cohen 1978; Drake 2015)
and (for each species) conserved in time and space (Holt and
Gomulkiewicz 1997; Wiens and Donoghue 2004; Peterson
2011), thus disregarding evolution. Assuming no dispersal
limitations, noninteracting species and conserved fundamen-
tal niches constitute some sort of nullmodel for biogeography
This content downloaded from 129.23
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(NMB; Qiao et al. 2016; Ulrich et al. 2017), and one in which
the actual shapes of the geographic and environmental space
play a fundamental role.
Modeling the Niches

The large number of symbols used in this article are sum-
marized in table 1.When a grid has been established in geo-
graphic space, it is an easy task to obtain environmental
values for its cells and then characterize those geographic
points where a species has been reported to exist. This is
called environmental niche modeling, and it is illustrated
in figure 1, in two climatic variables for the case of the clade
of the felids of North America. Niches are modeled using
ellipsoids (see “Methods”). In figure 1 it is shown how cli-
mate combinations (symbolized by v) where species j has
been observed to exist can be used to model a shape defin-
ing a hypothetical fundamental niche of j.
We assume the ellipsoids are estimates of fundamental

niches. This should be interpreted as follows: Each species
has a function mapping environments to fitness. The fun-
damental niche is the level curve of minimum fitness com-
patible with existence (the value of 1 if fitness is measured
using the finite rate of increase; see Drake [2015] for a sim-
ilar idea and Holt [2009] for some clarifying remarks on the
issue), without interspecific interactions. These curves are
represented as ellipses (Fj). Although normally we do not
know the fundamental niches, Hutchinson (1957) hypoth-
esized that the environments in the actual observed niche
(the realized) should be inside the fundamental (Soberón
and Arroyo-Peña 2017), and thus one way of providing a
lower bound for Fj is by drawing a convex shape, like an el-
lipsoid, around the observations. Other authors have used
ellipsoids to represent realized niches (Ulrich et al. 2017),
but we specifically use them as models for the fundamental
niche.
The climates in region R constitute a set of vectors

ER(t) p fniji ∈ Rg. Each point i in the grid has a corre-
sponding “point,” or vector of environmental variables vi.
If a point vi is inside an Fj, that climate is assumed to be fa-
vorable (allows a fitness higher than the threshold) for spe-
cies j, and therefore the species will be present in the locality
corresponding to point i. Therefore, the set of points inside
the shape Fj constitute (by the assumption of dispersal equi-
librium) all of the climates in its area of distribution: F*

j p
fijvi is included in Fjg, and the measure of this set jF*

j j p
Wj is the amount of niche space occupied by the species.
The proportion relative to the total size of niche space is
denoted by wj. Correspondingly, for a given point vi in niche
space, the number of niches that contain the point represent
the local species richness for that environmental combina-
tion: a(vi) p jf jjFj contains vigj.
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Table 1: Symbols, names, and conceptual explanation of the main terms used in the article
Symbol
 Name
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Equation
G
 Geographic space
 A grid of cells of a given extent, form,
resolution, and projection, representing
the total area of interest. This is a dis-
crete set assumed to be constant in time.
G p {(xi, yi)}
R(t)
 Subregion in
geographic space
A subset of G (a discrete set). This set may
change in time. Its measure FRF is
simply the number of its elements.
R p {(xi, yi)} ⊆ G
ER(t)
 Environments in
a subregion
The set of environmental combinations
existing in a region R. This can be a
discrete set of multivariate elements
with d dimensions or a continuous
representation using density kernels. The
multivariate elements (n) are the sceno-
poetic variables used (e.g., BioClim var-
iables). Environmental combinations may
change in time. The kernel representa-
tion is a probability density, integrating
to 1.
ER p fnij(xi, yi) ∈ Rg
ER(n; t) p

1
jhj

Xn

ip1

Kh(n2 ni)
FER(t)F
 The size, or “mea-
sure,” of the envi-
ronmental space
The amount of available environmental
space in a region R at time t. A dimen-
sional magnitude, with units depending
on the bandwidth of the kernel.
φj(n)
 Fitness function for
species j as a
function of the d
environments
A function that maps, for species
j p 1, 2, ::: ,  S, environments into
fitness. For a suitable threshold in
fitness, this is the function that
determines a fundamental niche.
φj(n) :Rd → R
Fj(n) p
{vFφj (n) 1 k}
The fundamental
niche of species j
The fundamental niche of species j.
This is the set of all environmental
combinations for which fitness is
higher than the threshold. It can be a
continuous function, but often it is
represented as a simple presence-
absence function. It has a border for
the contour level p k.
Fj :Rd → {0, 1}
F*
j (t)
 The existing niche

of species j

The set of all environmental combinations

that both (1) are part of the fundamental
niche and (2) also exist in R at time t. It
can be defined over a continuous or a
discrete representation of E.
F*
j (t):R

d ∩ ER(t) → f0, 1g
F
 A set of fundamental
niches
All of the fundamental niches of a group of
species, defined by any means (ecologi-
cally, phylogenetically, economically).
F p fFj j p 1, ::: , Sg
wj(t)
 The proportional
size of the existing
niche
This is a measure of what proportion of
environmental space is occupied by spe-
cies j. Because of Hutchinson’s duality
and the assumption of dispersal capaci-
ties, it is also a measure of proportional
range size. It can be defined for contin-
uous or discrete representations of E.
Notice that in the continuous case, the
multiple integral is taken over the region
defined by the fundamental niche.
wj(t) p
1
jRj

Xn

ip1

F*
j (t)

wj(t) p
ð
Fj

ER(n; t) dn
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Presence-Absence Matrices (PAMs) and Whittaker
and MacArthur Equations

When considering many species, the overlay of the grid rep-
resentation of areas of distribution implies a PAM of N sites
by S species X p [di,j], with elements equal to 1 if species j is
present in cell i and 0 otherwise. PAMs can be estimated
from the extent of occurrence maps of a group of species
(Soberón and Ceballos 2011; Storch et al. 2012; Vilela and
Villalobos 2015). A well-sampled geographic PAM contains
all of the information about species incidences and co-
incidences and thus, implicitly, all incidence-based indices
(Soberón and Cavner 2015). Specifically, the local number of
species (alpha diversity), the total number of species (gamma
diversity), and their ratio, called beta diversity, are related as
follows (Whittaker 1960):

�a(R)
S(R)

p b(R) ≡
�q(R)
jRj , ð1Þ

where S(R) is the total number of species, �a(R) is the average
number of species in regionR, and �q(R) is the average range
size of the species. This equality can be derived directly from
a geographic PAM (Routledge 1977; Schluter and Ricklefs
1993; Arita et al. 2008).

PAMs can also be defined for niche space (Ulrich et al.
2017), and it is not widely appreciated that equation (1), de-
This content downloaded from 129.23
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rived for geographic space, has a niche space version, due to
MacArthur (1972). He related the total number of species in
a community present in a region R; the amount of niche
space (one dimensional, in the original derivation) available
in R, hereby denoted as FERF; and the amount of niche
overlap among species. The average niche usage of the spe-
cies present in R is W(R), the average amount of overlap
among niches is �O(R), and MacArthur derived the follow-
ing identity:

S(R) p
jERj
W (R)

[11 �O(R)]: ð2Þ

MacArthur did not present data related to equation (2) and
used it mostly as a conceptual framework to discuss a num-
ber of general problems. However, under the assumptions of
the NMB and for scenopoetic variables, it is possible to cal-
culate the components of MacArthur’s equation, realistically
and for large numbers of species. For any given region, its cli-
matic space can be sampled, and a continuous smooth ER(u)
kernel can be fitted (Petitpierre et al. 2012; Blonder et al.
2014), as shown in figure 2. The measure of ER(u) can also
be obtained. The measure I use is a metric of how spread a
distribution is. A uniform distribution over the range of
values of the variables would have the maximum measure,
Table 1 (Continued )
Symbol
 Name
 Concept
7.090.146 on February 11,
s and Conditions (http://ww
Equation
a(n; t)
 The local number
of species at a
neighborhood of
environmental
combination n
The measure of local or alpha diversity. A
count of number of species in a particular
combination of environments. It is cal-
culated using an indicator function Ij(n)
that is 1 if environment n is inside the
fundamental niche of species j and 0
otherwise. The time is explicit to empha-
size the fact that environmental combin-
ations change in time.
a(n) p
XS

jp1

Ij(n; t)
wR(t)
 The mean existing
niche for all spe-
cies in a region R
at time t
This is the average of the existing niche
measures for all species present in R.
Because of Hutchinson’s duality and the
assumptions of the NMB, this is also
equivalent to the mean range size in
geographic space.
w(t) p
1
S

XS

jp1

wj(t) p
1
S

XS

jp1

ð
Fj

ER(t) dn
�aR(t)
 The mean local
(alpha) species
number at time t
over the region R
This is the mean alpha diversity in the
region R. It is taken by integrating the
local alpha diversity over all environ-
mental space, weighted by the propor-
tional abundance of a particular envi-
ronmental combination.
�aR(t) p
ð
R
ER(n; t)a(n) dn
Note: The integrals are multiple integrals, taken over the appropriate d-dimensional environmental space. All sets and vectors are written using boldface.
NMB p null model for biogeography.
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Grinnellian Niches and SARs 765
and a spike over a narrow regionwould have a small measure
(see “Methods”).

If we represent the fundamental niches of species using
shapes (ideally convex) that separate the environmental
space in regions inside and outside the niche Fj(u), then
the size of existing niche space used by species j is

Wj(R) p qj(R)jERj,

qj(R) p
ð
Fj

ER(u) du:
ð3Þ

The symbol Wj(R) denotes the amount of total niche space
in region R actually occupied by species j, and qj(R) denotes
the proportion of niche space. Both are measures of niche
breadth, and under the assumptions of the NMB, Wj(R) is
equivalent to the size of the distributional range. The quan-
tity qj(R) is called the existing niche (Jackson and Overpeck
2000; Peterson et al. 2011). The integral symbol means the
multiple integral taken over the region inside the contour
curve (or surface) defining the fundamental niche of species j
in multidimensional space. Given the region R and the set
of niches F, calculations can be performed to obtain the dif-
ferent quantities in equation (3). Among the several possible
numbers that can be used as measures of the set R (Triantis
et al. 2003; Nogués-Bravo and Araújo 2006), I will use the
This content downloaded from 129.23
All use subject to University of Chicago Press Term
amount of environmental space in R as described above
and in figure 2.
Equation (3) expresses the proportion of available cli-

matic space inside the shape defining the fundamental niche
of species j, a measure of niche breadth in relation to avail-
able environments in R (Jackson and Overpeck 2000; So-
berón and Arroyo-Peña 2017). The average over all of the
species is

�q(R) p
1

S(R)

XS

jp1

qj(R) p
1

jERjW (R), ð4Þ

which is the reciprocal of the first term in MacArthur’s
equation (2).
To estimate the second term, the number of overlapping

niches at the point u, I use an indicator function per spe-
cies (Drake 2015), Ij(u), with a value of 1 if the environ-
mental combination u is inside the fundamental niche of
the species j and 0 otherwise. With this definition, the num-
ber of overlaps around u becomes

O(u) p
XS

jp1

Ij(u)2 1: ð5Þ

And its expected value over all of the environments in the
region is
Figure 2: Continuous kernel probability densities fitted to two regions (R) of the North American climate space (ER) in two variables. Panel
A shows a fit to 60 points in British Columbia, and panel B shows a fit to 5,044 points in the entire extent of North America. The measure
(jERj; see “Methods”) of the distribution in panel A is 3:17#104, and that in panel B is 1:44#106, both with units of (7C#mm)1=2.
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�O(R) p
ð
R
O(u)ER(u) du

p

ð
R

"XS

jp1

Ij(u)

#
ER(u) du 2

ð
R
ER(u) du

p

ð
R

"XS

jp1

Ij(u)

#
ER(u) du2 1

p

ð
R
a(u)ER(u) du2 1

p �a(R)2 1: ð6Þ

The sum in equation (6) represents the number of niches
that contain environmental combination u, which equates
to the number of species around the local region u. This is
the alpha diversity a(u), and its integral over the environ-
ments in region R, weighted by the density kernel ER, yields
the average local diversity in the region:ð

R
a(u)ER(u) du p �a(R): ð7Þ

Substituting equations (6) and (4) into equation (2) yields
MacArthur’s equation in terms that can be calculated from
R and F:

S(R) p
jERj
�q(R)

�a(R): ð8Þ

It is very interesting that MacArthur’s equation, in Grin-
nellian terms, hinges on the fact that the integral (over the en-
tire environmental space) of the indicator function of a given
species, weighted by the density ER(u), equals the integral of
ER(u) over the fundamental niche of the species:ð

R
[Ij(u)]ER(u) du p

ð
Fj

ER(u) du: ð9Þ

Therefore, the average alpha diversity (the average taken
over all environmental space) equals the sum of proportional
niche breadths taken over all species:ð

R
a(u)ER(u) du p �a(R)

p
XS(R) ð

ER(u) du

ð6Þ

ð10Þ

jp1 Fj

p S(R)�q: ð10Þ
Notice that in the original derivation of MacArthur (1972)
the number of overlappings in niche space was considered
a measure of the strength of competition, but in the NMB
we are assuming that interactions do not have an effect at
This content downloaded from 129.23
All use subject to University of Chicago Press Term
coarse scales, and thus “overlaps” are a measure of local co-
existence, or alpha diversity.
Equation (8) has numerous implications for biogeogra-

phy, and this is whatwe use to analyze SARs fromaniche per-
spective. The key observation, worth repeating, is that under
the NMB, equation (8) implies that the average proportional
species richness equals the average proportional area of dis-
tribution, which is the equivalent of Whittaker’s beta diver-
sity in niche space:

�a(R)
S(R)

p
W (R)
jERj p �q(R) ≡

1
b(R)

: ð11Þ

Despite the fact that equation (11) is a simple mathe-
matical consequence of the definitions, it shows that bio-
diversity patterns can be interpreted equivalently in terms
of local distribution of richness or global amount of niche
space occupied. The driving factors (under the assumptions of
theNMB) are the size and structure of environmental space in
a region and the position and size of the physiological set of
tolerances (the fundamental niches) of a set of species. This
is the idea explored in this article: niche breadths (which
can be estimated using scenopoetic variables for thousands
of species) are related to range sizes, and the dynamics of
the relationship is driven by climate as a forcing factor.

The Relationship between Alpha
and Beta Diversity and the SAR

Equation (8) relates the total number of species in a region
to the local numbers and the mean niche breadths. How
should �a(R) and �q(R) change when R grows? The answer
depends on the relationship among the position, structure,
and size of niche space in R, expressed by the kernel ER, in
relation to the location in niche space of the set of funda-
mental niches F p fF1, ::: , FSg of the pool of species (Ulrich
et al. 2017). When R expands, �a(R) and �q(R)—and there-
fore the total number of species S(R)—change, depending
on the specifics of the location of the fundamental niches with
respect to the trajectory of expansion of niche space with area.
If one creates a sequence of regions from small to large, in
nested, random, abutting, or whatever fashion (Rosenzweig
1995; Drakare et al. 2006; Scheiner et al. 2011), the actual con-
figuration of the environments in the sequence, in relation to
F, will strongly influence the shape of a SAR (Harte 2011,
p. 42). This is illustrated in figure 3, using the six species in
the cat’s family. Starting in a large region of low diversity
(fig. 3, British Columbia, point A) should produce a very
contrasting SAR to one that begins in a very species-rich re-
gion of small size (fig. 3, Panama, point B). The particular way
in which the changes take place should depend on the actual
path in which R grows in relation to the position of F.
Although both �a(R) and �q(R) change with the region R,

there is an important difference. Since �q(R) is the average
7.090.146 on February 11, 2020 06:05:23 AM
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proportion of niche space occupied, by increasing the size
of R one would expect that the average proportion of cli-
mate space used by the species should decrease, because in
small regions, whatever species live there probably occupy
most of the available niche space. However, with increas-
ing size of the region, environmental space grows and the
mean occupied proportion should diminish.

The mean local richness, �a(R), on the other side, is a num-
ber defined locally, and it may or may not depend on the size
of R. It can grow with increased R if larger regions include
more fundamental niches and thus larger pools of species
(Carstensen et al. 2013), as in path B of figure 3, or stay largely
constant if the larger regions are mostly composed of envi-
ronments favorable to the same set of species, as in path A.
In other words, whether niche space in largerR overlaps with
more or less fundamental niches depends on the position of
R relative to the locations and sizes of the set of fundamen-
tal niches (fig. 3).

Finally, as has been pointed out (Williamson et al. 2001),
both the planet and the pool of species are of finite size, and
thus both axes in any comprehensive SAR are bounded.
From the above, the predictions below follow.

Prediction 1. In a sequence of regions of increasing size,
the average alpha diversity should not have a preferred way
This content downloaded from 129.23
All use subject to University of Chicago Press Term
of changing, but the beta diversity (the reciprocal of the pro-
portion of occupied niche space) should increase: it is beta di-
versity that changes with area.
Prediction 2. In nestedRs, the precise way in which theRs

are constructed matters very much (Storch et al. 2003). In
fact, the specific sequence determines the shape of the SAR.
How alpha and beta diversity change depends on the path,
since they depend on where F is in relation to E. However,
in a random sequence of regions, the effect of the path on al-
pha diversity should be much less important. In any case, all
comprehensive SARs will end at the point of maximum cov-
erage and maximum number of species considered.
Prediction 3. When creating a SAR at biogeographic

scales, what should matter is the increase in niche space
rather than area per se. In other words, the correlation of
species numbers against niche volume should be better than
that against geographic area.
Prediction 4. The slope of the SAR depends on the rate

atwhich climate space (modeled by the density kernel) enters or
leaves F. For instance, the change in slope in the Alaska curve
is due to a large amount of niche space entering into contact
withF, that is, the relationship between alpha diversity andR.
Prediction 5. SARs change with climate change. In other

words, for the same set of species, climate structures at
Figure 3: Paths of growth of two regions (solid and broken lines) and fitted niches (Fj; hypothetically fundamental) for the six North Amer-
ican species of the family Felidae. The lines trace the mean values of the two variables for regions of increasing sizes. Red circles show the
starting positions for two paths of increasing amount of niche space. Point A begins in British Columbia and point B in Panama, and the
arrows indicate the direction of growth of ER. The blue circle shows the mean value of the two variables for all of North America. The black
points show the climatic composition of the 5,044 cells in the entire grid of North America.
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different times (and therefore with different shapes of the E
space) will produce different SARs.

Prediction 6. The speed of change in biodiversity indica-
tors will scale with the speed of change in the size of the E
space.

Prediction 7. Since the shape of the SAR is predicted to de-
pend on the location of fundamental niches inE space relative
to the way in which environmental space grows, it is expected
that different clades will have different SARs.
1. Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
Methods

North America is defined as the part of the Americas north
of the border of Panama with Colombia and without the
islands. The names of the species of terrestrial mammals in
this region were obtained from the database of the Interna-
tional Union for Conservation of Nature Red List, corrected
with the help of an expert mammalogist, Rodrigo Medellin,
from the National University of Mexico. With this list of
names, I queried theGlobal Biodiversity Information Facility
(GBIF) database using the gbif function of the R package
dismo to get 282,949 georeferenced localities for 663 species
of terrestrial mammals. The GBIF points for each species
were first checked for outliers and erroneous data points
(with expert help) and then “thinned” (Aiello-Lammens et al.
2015) to have, for each species, atmost one data point per cell
in the grid. This reduced the number of records to 69,900, or
about 100 points per species on average.

Using the R package dismo, I created a grid of 5,044 points
at 0.837 resolution, inside the polygon defining North Amer-
ica. The WGS84 datum was used. The resolution was deter-
mined only for practical reasons, to obtain a large but man-
ageable number of different grid cells. Using the extract
function in the R package dismo, values from theWorldClim
database (Hijmans et al. 2005) for annual precipitation in
millimeters (BioClim variable BIO12) and mean yearly tem-
perature (centigrade times 10, the BIO1 BioClim variable), at
10minutes of resolution, were averaged around each centroid
point. The GBIF records, with geographic coordinates and
BioClim values, have been deposited in the Dryad Digital
Repository (https://doi.org/10.5061/dryad.84bq56t; data file:
GBIF_Thinned_2; Soberón 2019).

To illustrate the effect of climate change, data sets of temper-
ature and precipitation for the world at present, 20,000 years
BP, and 130,000 years BPwere used. These are results of gen-
eral circulation model (GCM) experiments, for the world, at
a resolution of 17 and provided by the Hadley Data Center
(Valdes et al. 2017).

To create sequences of regions of growing size, the grid
was partitioned by aggregating immediate neighbors using
a distance of 1.27 (to include the eight nearest neighbors of
a given point). To do this, six localities in North America
were selected as initial regions (in Alaska, in the southern ex-
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treme of Panama, in the tip of Florida, in the southern tip of
Baja California, in the middle of the United States, and in
British Columbia; see fig. A1; figs. A1–A6 are available on-
line). In each one of them, five contiguous grid cells were
used as the starting region. An extra set of five random local-
ities was also created. A routinewritten in the packageMath-
ematica then finds contiguous nearest neighbors to create a
sequence of increasingly larger regions, formed of contigu-
ous cells, until the 5,044 cells are exhausted. One sequence
was created by simply adding random cells (noncontiguous).
Each sequence constitutes a “path” of increasing area, but
they trace very different routes through environmental space
(see fig. 3). The sequences have a maximum of 200 steps
needed to use the 5,044 cells, and a minimum of 78 steps.
At every step, the climate density kernel for the subregion

was calculated using the SmoothKernelDensity function in
the program Mathematica. Kernel densities (Blonder et al.
2014) integrate to 1. As ameasure of the size of the niche vol-
ume in the growing regions, I use the normalization de-
nominator of the continuous kernel. In symbols, this is
2pjRj(det(D))1=2, where FRF is the number of points used to
fit the kernel for region R and D is the bandwidth matrix for
the kernel of region R. This quantity (which, for the var-
iables used, has units of (7C#mm)1=2), is large for flat, spread
kernels, and small for climates mostly consisting of a narrow
“spike.” This conforms to the intuition one may have for the
size of a distribution, although its units would change with
the dimensions of the niche variables used.
An equal area projection for the grid was not used be-

cause the paths of growth of the regions are independent
of area. The paths are calculated only by relative proximity
of the centroids of cells, and since the PAM is calculated by
the climate of points being inside the niches of the species
and not spatial cells, area is not a consideration. However,
comparing niche volume and geographic area requires a cor-
rection for latitude. Correcting equations (Snyder 1987) for
the length of a degree of latitude and longitude as a func-
tion of latitude (assuming a sphere, for simplicity) are
latitude(φ) p pr=180 and longitude(φ) ppr cos(φ)=180,
with the radius of earth used in the WGS84 ellipsoid
(r p 6,378:137 km) and φ being the latitude in degrees.
Using the precipitation and temperature variables in

the points in GBIF data set, I fitted minimum volume el-
lipsoids (Van Aelst and Rousseeuw 2009) for those species
that had at least five different GBIF points and nonsingular
climatic covariance matrices. This left 543 species. The
Mathematica code appears in the appendix (available on-
line).1 The fitted ellipsoids are regarded as models of the
fundamental niche of the species (there are many caveats to
this assumption; see “Discussion”). The ellipsoid of the jth
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species is represented by the quadratic form fqj(v) p
(v2 mj)

TD21
j (v2 mj). The level curve defining the funda-

mental niche is fnj fqj(v) p 1g.
Finally, using the different sequences of increasing niche

space, PAMs were created by the following procedure. For
each one of the 543 species, it was checked whether the cli-
mate in the 5,044 cells in the grid was inside or outside the
ellipsoid modeling the fundamental niche of the species
( fqj(v) ! 1). A cell i, j was assigned a value of 1 if the climate
in cell i was contained in the fundamental niche of species j
and 0 otherwise. This 5,044#543 PAM was then subsetted
using the different sequences of abutting cells (see the appen-
dix for the code). For every step in the sequence, the following
numbers were obtained: (i) the total number of cells in each
PAM in the sequence; (ii) the measure of the volume of
climatic space; (iii) the total geographic area, corrected by
latitude; (iv) the total number of species in the region;
(v) the mean number of species per cell; (vi) the mean pro-
portion of environmental space occupied by each species;
and (vii) the total number of different species in the region.

It is important to stress that by having a PAM, almost any
index of biodiversity pattern (based on incidences) can be
constructed (Soberón and Cavner 2015). Total number of
species becomes simply one of many aspects of the biodi-
versity patterns being driven by change in R.
Results

The first prediction from equation (8) is that as the amount
of niche space grows, the mean local number of species �a(R)
should not grow in any specific way, but the proportion of
occupied niche space �q(R) (the reciprocal of Whittaker’s
beta diversity) should decrease. In figure 4A and 4B, I show
the results for seven different routes of expansion of area
(and therefore of niche space). The prediction holds very
well, with the exception of the path created by randomly ag-
gregating points (the red lines). It is interesting to stress that
the value of �a(R) remains mostly constant in log-log scale
until the end of the interval of growth of R, where it changes
to converge to the overall local mean, with a positive or neg-
ative slope depending on the path. On the contrary, for �q(R),
all of the paths (with the exception of the random one) pro-
duce a decreasing relationship with the amount of environ-
mental space. The paths beginning in the northern part of
the continent have averages of niche breadth of almost
100% of the environmental availability. Since the data points
are not independent (a consequence of the nested design), no
significance values are presented (Drakare et al. 2006), but
the linear correlations are all 10.7.

The second prediction states that the selected path will de-
termine the actual shape of the SAR, regardless of whether
area or niche space volume are used as predictors. In figure 4,
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the SARs for the seven different paths used are shown. The
SARs are different not only because they begin in different
points but also because the slopes at the end are also different.
Notice that the amount of niche volume at the beginning of
every curve in the top graph is different, since the same area
surface in different regions may contain very contrasting
amounts of environmental space. For instance, 100 km2 in
British Columbia and 100 km2 in Alaska may contain rather
contrasting ranges of climatic combinations. Although all of
the paths begin with five spatial points of 0.8337, there is a lat-
itudinal effect to the geographic size of a degree, and therefore
the minimum value of area in the bottom graph changes. A
summary of the regression parameters for figure 4A and 4B
appear in table A1 (tables A1, A2 are available online).
I predicted that niche space should be a better predictor

of species number than area. However, in North America
there is a very good correlation between these two measures
of the size of R and thus no apparent difference between us-
ing area or size of niche space to predict species numbers.
The main difference between geographic area and environ-
mental space size occurs at the beginning, for small regions
situated in contrasting parts of the continent, but all of the
paths become very similar at the end. Since the points in
the paths are not independent, a conventional statistical
analysis to test for equal slopes is not possible, but the results
of the regressions appear in table A2.
I expected SARs obtained with contrasting climate struc-

tures to have different shapes. This question is complicated
because over a period of many thousands of years there have
been extinctions and maybe speciation events. I simply used
the contemporary list of species, ignoring the Pleistocene
megafauna of North America. Three times were used: the
present, the glacial maximum 20,000 years ago, and the last
interglacial, 130,000 years ago. The three SARs start in Pan-
ama (fig. A2) and are different. Most of the difference occurs
at the beginning of the SAR. It is important to remember
that we are assuming niche conservatism over time.
With regard to changing climatic space, it is known that

species change their geographic ranges with climate (Pinsky
et al. 2013). What is the amount of change in biodiversity
metrics due to climate change (Garcia et al. 2014)? Not sur-
prisingly, this is essentially a function of the position of the
niches in climatic space. I illustrate this using some species
of the family Leporidae, although other sets of species could
have been used. These species were chosen because they il-
lustrate the effect of disjoint versus nested niches. The ques-
tion is, What is the time derivative of the mean breadth of
the existing niches of a group of species? Because of equation
(8), this affects the total number of species living in a region.
I used the present and the output of a present GCM (see
“Methods”) as well as two groups of species, one (fig. 5A)
with a set of fundamental niches with very little overlap
and another (fig. 5B) with large overlap.
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The time derivative of niche size for species j is obtained
from equation (3):

dqj(t)
dt

p
d
dt

ð
Fj

ER(n; t) dn

p

ð
Fj

d
dt

ER(n; t) dn:

ð12Þ

And its average, over any group of species, would be

d
dt

�q(t) p
1
S

XS

jp1

d
dt

qj(t): ð13Þ

But the last term in equation (12) is approximately

ð
Fj

d
dt

ER(n; t) ≈ 1
Dt

ð
Fj

[ER(n; t)2 ER(n; t 1 Dt)] dn

p
1
Dt

ð
Fj

ER(n; t) dn

2
1
Dt

ð
Fj

ER(n; t 1 Dt) dn:

ð14Þ
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And if the integral would be taken over the entire domain,
this value would be zero, since both probability density
kernels in equation (14) are normalized and integrate to 1.
The measure of the nonnormalized kernels at time t and t 1
Dt (over the entire domain) are jER(t)j and jER(t 1 Dt)j, re-
spectively, and therefore the integral, over the whole do-
main, of the time derivative of the nonnormalized kernels
is simply

d
dt

jER(t)j: ð15Þ

This means that for a group of species like that depicted in
figure 5A, the rate of change of the mean size of the existing
niches is approximately equal to the rate of change of cli-
mate volume for the entire region. Because of the equality
in equation (10), this implies that the mean proportional al-
pha diversity is changing at the same speed as climate in the
region. However, for a group of species like the one illustrated
in figure 5B, with high covariance in the position and sub-
stantial overlap of the fundamental niches, the rate of change
of local diversity needs to be calculated from the specifics of
the location and size of their niches. The bottom line is that
nogeneral statements about the size and/ordirectionof change
Figure 4: Log-log graphs of (A) the mean number of species �a(R) and (B) the mean occupied niche space �q(R), both as a function of environ-
mental niche space size. The species-area relationship is shown as a function of niche space in panel C and as a function of area in panel D. The
regions grow in area beginning in six contrasting geographic points (see text). Starting regions are as follows: yellow, southern tip of Florida; bright
green, British Columbia; dark green, Panama; orange, southern tip of Baja California; brown, Central Plains; blue, Alaska; and red, random.
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can be made using information only on the size of the region;
the information about the position of F in E is of crucial
importance.

Finally, the last prediction was that different clades would
have different SARs. In some sense this should be obviously
true, since different clades have different numbers of species.
However, it has been shown that the relationship between
climate and species richness changes for different clades
(Buckley et al. 2010), and this is to be expected assuming that
different clades cluster differently in environmental space
(as illustrated in fig. 5). The question of the relationship be-
tween phylogeny and position of fundamental niches is a
deep one (Donoghue 2008; Buckley et al. 2010), and there
is no space to explore it here. However, in the appendix I in-
clude data showing how six orders of mammals of North
America (i) have different positions in niche space and
(ii) occupy different amounts of niche space. Therefore, their
SARs are also different.
Discussion

Most of the theoretical work about SARs is built around
either (i) the statistical distributions of abundance of indi-
viduals among species (Preston 1962; May 1975), (ii) the
spatial pattern of randomly placed individuals (Coleman
1981; He and Legendre 2002), or (iii) the spatial pattern of
entire ranges (Ney-Nifle and Mangel 1999; Allen andWhite
This content downloaded from 129.23
All use subject to University of Chicago Press Term
2003). The main point of the present article is that an entire
new framework for studying biodiversity patterns in general
(at large spatial scales)—and specifically the SAR—can be
built on considerations about the interactions between a
suitably defined niche space and the placing of Grinnellian
niches in that space. This is an approach that has seldom
been tried in the past and that shows that different paths
of increasing area produce different patterns of environ-
mental volume growth, and thus different SARs; that it is
the equivalent of Whittaker’s beta diversity in niche space
what drives most of the SAR; that there is a ceiling to the
SARs; and that how fast this is reached depends on the pat-
tern of location of F in E. Finally, it also predicts that SARs in
different epochs will be different and allows calculation of
the rate of change of mean local diversity. For clades that
cover most of niche space, this rate of change equals the rate
of change of the volume of environmental space.
Much theory about Grinnellian niches has been accumu-

lating in recent years (Jackson and Overpeck 2000;Williams
and Jackson 2007; Hirzel and Le Lay 2008; Godsoe 2009;
Peterson et al. 2011; Broennimann et al. 2012; Petitpierre
et al. 2012; Drake 2015; Soberón and Arroyo-Peña 2017). In
the field of environmental niche modeling, realized niches
can be defined operationally and calculated on the basis of
gigabytes of available data (Peterson et al. 2011). However,
the approach I present here depends on estimating funda-
mental niches. Estimation ofmultivariate fundamental niches
is a notoriously difficult problem since, strictly speaking, it
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Figure 5: Fundamental niches of a contrasting set of species. In panel A, species with very little niche overlap (1, Lepus arcticus; 2, Ochotona
princeps; 3, Lepus callotis; 4, Sylvilagus brasiliensis) are shown. In panel B, species with large overlap (1, Lepus townsendii; 2, L. callotis;
3, Sylvilagus cunicularius; 4, Sylvilagus floridanus) are shown. Climate points are at present.
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requires experimental work (Kearney 2006; Soberón and
Arroyo-Peña 2017), which is very seldom performed (Sunday
et al. 2011). To obtain an approximation to the fundamental
niches, I assume (i) that fundamental niches have a convex
shape, like ellipsoids (Maguire 1973; Brown 1995; Soberón
and Nakamura 2009; Drake 2015); (ii) that the fundamental
niche should contain the realized niche (Hutchinson 1957;
Soberón and Arroyo-Peña 2017); and (iii) that the observa-
tion points are instances of the realized niche (Peterson et al.
2011). Therefore, ellipsoids in n variables containing well-
established observations may be regarded as some lower
limit to the projection in n-variable space of the hypothetical
true fundamental niche of a species. Although the above is
a strong assumption, experimental data are available mostly
for one dimension (Bennett et al. 2018). For more than one
variable and for most species, we simply do not have data
on the fundamental niches.

Assuming that an F set can be estimated, knowledge of
this, together with the assumptions of the NMB, allows ac-
tually calculating many quantities of biogeographic inter-
est, as it is shown in this work. The number of species is
shown to depend fundamentally on the mean proportion
of occupied niche space, which is the reciprocal of Whit-
taker’s beta diversity. This in turn depends on the location
of the fundamental niches. A fundamental question there-
fore is, What determines the position of F in niche space?
When we have a theory of that, we shall have a theory of
biodiversity patterns at biogeographical scales, a theory
that probably will be historical, not ecological (Wiens and
Donoghue 2004; Buckley et al. 2010). What kind of climate
space a species originated in and how conserved are funda-
mental niches are the key questions.

Although the estimation of F, on the one hand, and the
validity (or not) of the assumptions of the NMB, on the other,
are still problems requiring much work, stating the problems
of the structure and dynamics of biodiversity explicitly in
terms of causal climatic, geographic, and historic factors is
of great value (Fine 2015). It stresses the importance of an-
swering questions that ecologists have, with some exceptions
(Wiens and Donoghue 2004; Buckley et al. 2010; Carstensen
et al. 2013), basically marginalized in the past, such as those
related to the shapes of fundamental niches; their measure,
position, and covariance in environmental space; their evolu-
tionary histories; and the dynamics of change of favorable
conditions in environmental spaces. Finally, this approach
places realistic climate and geography firmly in the center
of a computational theory of the dynamics of biodiversity—
computational in the sense that, as this article shows, one
canuse large databases to calculateniches, their volumes, their
positions, and, using mechanistic assumptions (the NMB),
predict distributions. This allows using the NMB to create
the niche-based PAM and, consequently, a niche-driven view
of many biodiversity patterns, including the SAR, based on
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equation (8). The emphasis is on using available data to calcu-
late quantities of theoretical and practical importance. Given
the recent accumulation of theory about Grinnellian niches,
applying it to classic questions should be a fruitful avenue of
research. Specifically, relaxing the assumptions of the NMB
should be explored. The simplest to relax is the assumption
of no dispersal limitation. This can be relaxed using already-
available techniques, and doing it has a wealth of potential-
ities (Garcia et al. 2014).
The main differences between a classic and a Grinnellian

niche approach to study SARs are that the latter requires
knowledge of the individual niches of the species and that
the direct driver of change is the structure of climate in a
given realistic region. The approach is entirely data driven.
On the contrary, conventional approaches characterize the
SAR using two parameters (maybe three) to attempt to cap-
ture the ecology and history of a set of species and one phys-
ical measurement, area, as a proxy for more direct drivers.
Sometimes a covariate of area is used, such as habitat diver-
sity (Ricklefs and Lovette 1999). In classic approaches one
seldom starts with an empirical set of spatial distributions
of individuals or empirical polygons of the areas of distri-
bution of species in the pool, although a recent exception
would be Storch et al. (2012). In most classic approaches,
mathematically convenient assumptions are made about
the distribution of abundances or the placement of indi-
viduals or distributional ranges in space. The theories used
to predict SARs by placing random areas in space (Allen
and White 2003) or by solving master equations of neutral
theories (O’Dwyer andGreen 2010) predict a growing curve,
with no right-side limit. This is probably a consequence of
implicitly assuming a world of infinite size, such as when
the sampling area increases, it will keep encountering new areas
(or fundamental niches) at a constant rate. Implicitly assuming
very large or infinite number of species may be mathemati-
cally convenient, but it is empirically untenable. Examples of
ever-increasing functions at the large-size part of the SAR
may all be either cases of not getting enough samples toward
the right-side limit, like fig. 21.15 in Rosenzweig (1995), or
cases of never getting close to it (Storch et al. 2012), because
in real life the number of species is finite and often on the or-
der of just hundreds or thousands of species, and the area is
also finite. Therefore, any realistic SAR will eventually reach
a limit in both axes (Williamson et al. 2001; He and Legendre
2002). Whether this point is reached with a slope near zero
or rather a very positive slope depends on the path. This is
exactly what figure 4 shows, and it is a widely observed pat-
tern (Storch et al. 2003).
I would like to end on a semiphilosophical note. Ecology

has entered the era of large data sets (Hampton et al. 2013).
Some questions that used to require theoretical predictions
derived from analytically tractable assumptions now require
looking in databases. This is increasingly the case of areas of
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distributions and of Grinnellian niches.With wide availabil-
ity of data, the role of theory in ecology and in biogeography
is changing. Rather than analyzing analytically tractablemod-
els, perhaps we need to develop the logical structures and
assumptions necessary to organize and postulate relationships
among the concepts sustained by such databases and perform
actual calculations on the data rather than statistical infer-
ences. I hope I have shown that this approach is feasible and
interesting.
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