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Abstract

There is growing interest in generating physicochemical and biological analytical data sets to 

compare complex mixture drugs, for example, products from different manufacturers. In this work, 

we compare various crofelemer samples prepared from a single lot by filtration with varying 

molecular weight cutoffs combined with incubation for different times at different temperatures. 

The 2 preceding articles describe experimental data sets generated from analytical characterization 

of fractionated and degraded crofelemer samples. In this work, we use data mining techniques 

such as principal component analysis and mutual information scores to help visualize the data and 

determine discriminatory regions within these large data sets. The mutual information score 

identifies chemical signatures that differentiate crofelemer samples. These signatures, in many 

cases, would likely be missed by traditional data analysis tools. We also found that supervised 

learning classifiers robustly discriminate samples with around 99% classification accuracy, 

indicating that mathematical models of these physicochemical data sets are capable of identifying 

even subtle differences in crofelemer samples. Data mining and machine learning techniques can 

thus identify fingerprint-type attributes of complex mixture drugs that may be used for 

comparative characterization of products.
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Introduction

Drugs derived from natural biological sources can be highly heterogeneous and structurally 

complex, if a single component is not highly purified in the manufacturing process. 

Naturally derived complex mixture drugs, especially from botanical sources, can exhibit 

batch-to-batch variation and be sensitive to changes in the manufacturing process.1 For this 

reason, analytical characterization is an important element of product development.2–4 

Comparative characterization is necessary to support any postapproval changes in the 

manufacturing process, including potential changes in raw material sources or process 

parameters.

An early step in process development generally involves identifying critical quality attributes 

(CQAs), which are a set of physical, chemical, and biological properties associated with the 

drug in question.5 Based on the nature of a CQA and the state of technology, either single or 

multiple analytical techniques measure the CQA, for example, during manufacturing and in 

stability studies. A combination of absorption spectra, chromatography, and mass spec-

trometry was used to monitor the CQAs of crofelemer, as described in the preceding 2 

articles in this 3-article series.6,7 CQAs are often used for comparisons between drug 

product batches. However, such comparisons often lack the capacity to deal with data sets of 

extreme size, or with the combination of orthogonal techniques to monitor a single CQA, 

which may be necessary to compare highly heterogeneous products. Although difficult using 

traditional methods of data analysis, machine learning and data mining offer a feasible 

approach to evaluate large and combined data sets.

In recent work on the use of IgG1-Fc glycoforms as a model system for biosimilarity 

assessments,8–11 Kim et al. implemented a machine learning approach to identify potential 

differences between IgG1-Fc glycoform samples. In particular, the physical stability profile 

of eight different samples of four well-defined IgG1-Fc glycoforms in two different 

formulations, with three replicates each, was generated by subjecting them to different 

temperature and pH conditions. They found that combining physicochemical data sets from 

multiple experimental sources allowed them to robustly discriminate various samples using 

various machine learning approaches.

In this work, we selected a botanical complex mixture drug, crofelemer (Fulyzaq®, a 

purified oligomeric proanthrocyanidin), as a model system to generate analytical data sets 

and develop an integrated mathematical model for comparative characterization. Unlike the 

fairly well-defined IgG1-Fc glycoforms, the crofelemer biopolymer is a botanical drug 

substance extracted from the sap of the Croton lechleri tree. It is used for treating 

noninfectious diarrhea in HIV/AIDS patients undergoing antiretroviral therapies.12 As 

described in the companion articles in this series of 3 articles,6,7 we prepared different 

samples of crofelemer by extracting it from the drug product tablet, dissolving it in aqueous 

solution, and then fractionating it. Finally, each sample was incubated at 2 different 
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temperatures. The goal in this case was to generate crofelemer samples that were treated in 

slightly different ways, with the expectation that the resulting materials would exhibit subtle 

analytical differences. Various experiments were performed to determine the physical, 

chemical, and biological characteristics of each crofelemer sample. We used data mining and 

data visualization tools such as principal component analysis (PCA) and mutual information 

score to extract useful information from these data sets. We then used machine learning 

classification to distinguish these samples from one another. We found that by combining 

information-rich regions of the data sets from the various analytical experiments, we were 

able to distinguish the crofelemer samples from one another with very high accuracy.

Materials and Methods

Sample Preparation

As described in detail in the 2 companion articles,6,7 for the purpose of this study we 

dissolved surface-scraped Fulyzaq tablets in water and obtained purified crofelemer by 

centrifuging the mixture. We then fractionated the filtrate using molecular weight cutoff 

centrifugal filters. The 10-kDa molecular weight cutoff separates the mixture into 2 parts: 

the 10-kDa bottom fraction, which contains molecules less than 10 kDa, and the 10-kDa top 

fraction, which contains molecules greater than 10 kDa. Similarly, we obtained 3-kDa top 

and 3-kDa bottom fractions. We also used a set of unfractionated samples for this study. The 

concentrations of these 5 samples were measured using a HP-8453 UV-Vis photodiode array 

spectrometer (Agilent Technologies, Santa Clara, CA) equipped with deuterium (D2) and 

tungsten (W) lamps in 1-cm path length cuvettes. The extinction coefficient (ε) used was 7.6 

mL/(mg$cm) at 280 nm; details on how this extinction coefficient was determined may be 

found in our companion article.6 These 5 aqueous fractions were then subjected to a stability 

study in which they were maintained at 2 different temperatures, 25°030C and 40°C, for 0 

and 2 days and 1 week and 1 month, producing 35 distinct samples. These samples were 

then analyzed by the methods described below.

Biological Characterization Data Sets

The assay used by the manufacturer to measure biological activity and potency of crofelemer 

is proprietary information, although a redacted FDA document indicates that it is a cell-

based assay.13,14 Previous publications have used single-cell patch-clamp assays to monitor 

crofelemer activity,15 but these assays are highly labor-intensive and difficult to apply to the 

number of different samples studied here (see below). We thus used the T84 chloride 

channel assay for biological characterization of the crofelemer stability samples,16 because it 

can be applied in a high-throughput 96-well plate format, as described in detail in the first of 

the 3 articles6 in this series. T84 cells are colon carcinoma cells which express both calcium-

activated chloride channels (CaCCs) and the cystic fibrosis transmembrane conductance 

regulator (CFTR), another Cl¯ ion channel. Crofelemer acts to selectively inhibit CaCC and 

CFTR chloride channels on the apical side of the intestinal wall.15,17 A Cl¯ ion quenched 

fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was 

used to measure intracellular chloride of the T84 monolayers in the presence of crofelemer 

and its degraded forms. Inhibition of CaCC and CFTR channels in the presence of 

crofelemer was challenged using ionomycin and forskolin, respectively. The samples for this 
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assay were organized slightly differently than described in the previous section. Specifically, 

the bottom fractions were excluded in this study due to limited availability of the lot of 

Fulyzaq used in the forced degradation study. We also did not use the day 2 stability time 

point in this assay due to limited availability of the lot of crofelemer active pharmaceutical 

ingredient we could obtain. On an individual plate, we ran the T84 assay with each 

crofelemer sample alone and in combination with ionomycin, an ionophore that facilitates 

transfer of Ca++ ion into the cell, which results in activation of CaCC, and forskolin, which 

activates adenylyl cyclase and results in higher intracellular cyclic AMP levels. Cyclic AMP 

increases protein kinase A activity which results in activation of the CFTR, another Cl¯ ion 

channel. In addition to these, we also ran the assay with no treatment as a negative control 

and with the flavonoid quercetin as a positive control. As a result, there are 75 instead of 35 

samples for this assay. To minimize experimental uncertainties associated with the plate 

readings, we ran replicates of these samples on 3 different plates and ran 8 replicates of the 

samples on each of these plates to obtain a greater statistical significance. The assay involves 

measuring the Cl¯ ion flux as a function of time for different samples treated with the 

previously mentioned examples. This gives us a total of 1800 trajectories, and for each one 

of those trajectories, we have measurements at 60 different time points, resulting in a total of 

108,000 determinations.

Physicochemical Characterization Data Sets

To characterize the physicochemical properties of the crofelemer stability samples, a wide 

range of techniques including UV-visible absorption spectroscopy (UV-Vis), Fourier 

transform infrared spectroscopy (FTIR), circular dichroism (CD), and HPLC techniques 

such as size-exclusion chromatography (SEC) and hydrophilic interaction chromatography 

(HILIC) were used as described in detail in the 2 companion articles.6,7 The raw data 

obtained from these experiments were normalized using the concentration for the 5 stability 

samples: 3-kDa bottom, 3-kDa top, 10-kDa bottom, 10-kDa top, and unfractionated. There 

are 4 replicates of each of these stability samples in all experiments. The data for UV-Vis 

spectroscopy report the absorbance value for different wavelengths ranging from 190 to 

1100 nm. The organization of the FTIR and CD data is very similar to that of UV-Vis, the 

only difference is the different ranges of wavelengths; FTIR measures absorbance between 

800 and 4000 cm−1 and CD measures the difference in absorbance between the right and the 

left circularly polarized light of wavelengths between 200 and 350 nm. SEC and HILIC 

separate the sample over a size-based or hydro-phobic interactionebased column, 

respectively, and record UV spectra for each retention time. For CD, HILIC, and SEC, the 

experiment was run with buffer (without any sample treatment), and we subtracted these 

background values from the raw data before normalizing it by concentration. Some of these 

techniques had artifactual data in some ranges of wavelengths. Thus, we did not include the 

data from these regions in our analysis. We included the wavelengths between 240 and 600 

nm for UV, wavenumber between 1100 and 1700 cm¯1 for FTIR, and the retention times 

between 10 and 40 min for all wavelengths for HILIC.

Principal Component Analysis

It is often helpful to visualize data in 2-D space for a more intuitive understanding of the 

data set. PCA is a commonly used dimensionality reduction technique that we applied to the 
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data. PCA transforms the data in such a way that new basis vectors are arranged in the order 

of the amount of the variance that they capture. In other words, the first principal component 

is calculated such that the projection of the data on to that component has the maximum 

variance. To perform the PCA of a given data set, the data are organized in the form of a 

matrix such that the rows represented the different samples and the columns represented 

different features of these samples. It is a common practice in data processing to rescale the 

data so that each column has zero mean and unit variance. This method is known as “feature 

scaling” or “standardization” and it helps to combine features from different experimental 

techniques that may have a broad range of values compared to others. We used the function 

scale() from sklearn.preprocessing for standardization and PCA().fit().transform() from 

sklearn.decomposition in Python to calculate the first 3 principal components for the data.

Mutual Information Score

Mutual information is a data mining technique that we used to identify regions of the data 

set that are rich in information content. The mutual information between 2 discrete random 

variables is defined as follows18:

I(X; Y) = ∑
x ∈ X

∑
y ∈ Y

p(x, y)log p(x, y)
p(x)p(y)

where X and Y are sets of possible x and y bins, p(x,y) is the joint probability distribution 

function of X and Y, and p(x) and p(y) are the marginal probability of distribution functions 

of X and Y, respectively. For our data, the y-bins are the 35 categorical variables 

representing the different samples and the x-bins estimate the probability of a particular 

range of feature values.7 I(X, Y) is a measure of statistical correlation between the random 

variables. In other words, higher values of I mean that knowing the value of a particular 

measurement (e.g., absorbance at 350 nm in the UV-Vis experiment) significantly reduces 

the uncertainty in which sample (e.g., unfractionated 7 days at 40°C vs. 10-kDa top 2 days at 

25°C) was measured. We used the function histogram2d() from numpy to create the 2D 

histograms with 6 x-bins and 35 y-bins, and we used mutual_info_score() from 

sklearn.metrics in Python to calculate the mutual information score.

Classification

For this part of the analysis, we made use of some of the most commonly supervised 

learning algorithms to classify the data, namely k-nearest neighbors (kNN), support vector 

machines (SVMs), decision trees (DTs), AdaBoost, random forest (RF), naive Bayes’, and 

linear discriminant analysis (LDA). Some of these classifiers are nonparametric whereas 

others have a number of parameters that must be tuned for them to be suitable for our 

problem. kNN classifiers work by calculating the Euclidean distance between the data points 

and classifies a given point based on a majority vote of its kNN.19 SVMs construct a 

hyperplane that maximizes the size of the boundary between classes in a high-dimensional 

space; this hyperplane is then used for classification.20 We tried 2 different kernels for our 

SVMs: the linear and the radial basis functions. DTs map the observations about a data point 

to conclusions about its target value. AdaBoost training is a special kind of decision tree 

which selects those features which are known to improve the classification efficiency, in 
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terms of both speed and accuracy.21 RFs fall under ensemble learning methods of 

classification and construct a multitude of decision trees at training time and output the class 

that is the mode of the prediction across all of these trees.22 The naive Bayes’ classifier is a 

probabilistic classifier based on applying Bayes’ theorem with the assumption that the 

features are independent of each other.23 LDA finds a linear combination of features that 

separate the classes from one another.24,25

Cross-Validation and Classification Accuracy

It is common to validate classification analysis by using cross-validation to assess how the 

classifier will generalize to an independent data set and help reduce the effect of problems 

such as overfitting. Cross-validation involves partitioning a sample of the data into training 

and test sets, performing the analysis on the training set, making predictions about the 

classes by using this model on the test set, and calculating the accuracy by looking at the 

frequency of correctly made predictions.26

There are several techniques that can be used to achieve this goal which are broadly 

categorized into 2 types: exhaustive and nonexhaustive cross-validation. Exhaustive cross-

validation methods make all possible combinations of the training and test data subsets. 

Leave-p-out is the most general form of an exhaustive cross-validation technique, which 

would evaluate a learning model for Cp
n combinations, where n is the total number of 

samples of training and test data sets. It is easy to see that even for moderately large n, leave-

p-out becomes too excessive to calculate. Non-exhaustive cross-validation methods do not 

compute all the possible combinations of training and test data sets and are an 

approximation to leave-p-out cross-validation. One of the common techniques is k-fold 

cross-validation, where the original data set is randomly partitioned into k equal-sized sub-

data sets; one of the k subsets is treated as a test set whereas the others are used as the 

training set. This process is then repeated using the other k-1 subsets for testing and the 

average accuracy is calculated. A variation of k-fold cross-validation, known as Monte Carlo 

cross-validation, randomly splits the data into test and training sets as well. The difference in 

this case is that the proportion of test to train sets is not dependent on the number of 

iterations. We used this technique for cross-validation of our data; specifically, we split the 

data into 80% training set and 20% test set and repeated this process 100 times to calculate 

the accuracy for a given classifier.

We optimized the parametric classifiers by calculating the classification accuracy for a range 

of parameters. The number of neighbors k for the kNN classifier was varied between 1 and 

5. We varied the parameters C and gamma for both the linear and radial basis function 

SVMs. For DTs and RF, we varied the maximum number of features under consideration 

when looking for the best split. In addition to that, we also varied the maximum depth and 

minimum sample split for the tree for DTs and number of estimators for RF and AdaBoost 

classifiers. We performed Monte Carlo cross-validation described above for each possible 

combination of the parameters (depending on the classifier) and chose the parameters that 

resulted in highest average classification accuracy. Table 1 summarizes the parameter values 

we used to optimize our classifiers.
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Results

Analysis of Bioassay Data

It is evident from Figure 1a bioassay data for the various crofelemer stability samples that 

there is a considerable overlap between the trajectories from different samples. The sheer 

volume of the data in this case (1800 trajectories with a total of 108,000 measurements) 

makes it difficult to quantitatively evaluate this overlap from the raw data. We thus used 

PCA to reduce dimensionality of the data. To perform PCA on the bioassay data, we 

organized it in the form of a matrix such that the rows represented the different replicates of 

the sample treatments and the columns represented the fluorescence values at a given time. 

Figure 1b shows the first 2 principal components. Note that the first principal component 

captures over 99% of the variance, indicating the bioassay data maps naturally to a 1-

dimensional space. We have retained the second principal component in Figure 1b for visual 

clarity.

We can see that quercetin, which is the positive control, is very well separated from the rest 

of the sample data, but the remaining treatments, including blank, which is the negative 

control, have significant overlap between samples. The only exceptions are the 10-kDa 30-

day sample and the unfractionated 7-day samples, which show some clustering. We found 

that the samples that did cluster (e.g., quercetin control) did so because they had, on average, 

lower (or higher) fluorescence intensities than the rest of crofelemer stability samples. This 

suggested that normalizing the data might permit greater separation among bioassay data 

from the samples. To do this, we tried the following normalization schemes for each plate:

I′(t) = I(t)
Imax

and

I′′(t) =
I(t) − Imin

Imax

where I(t) is the raw intensity for a given replicate at time t, and Imin and Imax are the 

minimum and maximum intensities observed on a plate, respectively. In all the cases, we 

observed that the first principal component still captured more than 99% of the variance in 

the data, and neither normalization scheme generated any greater separation between the 

samples than we observed with the raw data (see Fig. 1b).

Because PCA was unable to capture any distinguishing features of the bioassay data with the 

crofelemer fractionated and stability samples, we tried a different dimensionality reduction 

method. Figure 1c shows a representative trajectory, which seems to follow an exponential 

relaxation. We thus tried a 3-parameter fit to the trajectories of these samples using the 

function:
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I(t) = I0 + ΔI 1 − e−kt ,

where I0 denotes the initial intensity, ΔI represents the difference between initial and final 

intensities, and k is the rate parameter of the exponential relaxation. We found that most of 

the trajectories from the bioassay data fit this function well. Figures 1d–1f show the scatter 

plots between the fit parameters. It is evident from these scatter plots that I0 shows 

differences between quercetin control, 10-kDa 30-day, and unfractionated 7-day crofelemer 

samples, which is similar to the findings from the PCA. There are, however, no significant 

differences in k or ΔI, indicating that there are no large differences among treatments (even 

between quercetin and blank) in terms of influence of the treatment on Cl¯ efflux rate. From 

our analysis, we conclude that the T84 Cl channel assay lacks the requisite precision to 

distinguish between the majority of the different crofelemer treatments (various fractionated 

stability samples) under these conditions.

Analysis of UV-Vis, FTIR, CD Data

As described in Materials and Methods, each of the crofelemer stability samples was 

subjected to UV-Vis absorption, FTIR, and CD analyses. After background correction and 

normalization (as appropriate, see Materials and Methods), we found that, unlike the 

bioassay data, all of these biophysical techniques exhibited significant and reproducible 

variation between samples of different types (see Fig. 2). To quantify and visualize this 

result, we used mutual information scores: specifically, we independently calculated the 

mutual information between the signal at each wavelength in each experiment and the 

sample type (see Materials and Methods). We saw that each technique had regions with 

relatively high mutual information score (1.5–2 bits). It is thus clear that UV-Vis absorption, 

FTIR, and CD analyses can discriminate the crofelemer stability samples from each other, at 

least to some extent, which indicates that they should represent useful inputs for 

classification analyses (see below).

Analysis of HILIC and SEC Data

The HPLC techniques (i.e., SEC and HILIC) have much larger data sets, because they obtain 

a full UV absorption spectrum (as shown in Fig. 2a) for each retention time across the 

chromatogram. We thus have a total of 1,395,744 measurements for SEC and 2,326,240 

measurements for HILIC for each crofelemer stability sample. It is impractical in this case to 

use these entire data sets as features for classification. We thus employed the mutual 

information score approach not only to examine the general discriminatory power of these 

data but also to find useful subsets of the chromatography data for further analysis for 

comparative characterization of the various crofelemer samples.

The heat map of mutual information scores for SEC is shown in Figure 3a. Traditionally, it 

is common to choose one wavelength (e.g., 280 nm) and plot the absorbance at that 

wavelength across all retention times. As one can observe in Figure 3b, however, the area of 

highest mutual information scores is spread across a wide range of wavelengths for a narrow 

set of retention times. We quantified this observation by taking the average of all mutual 

Nariya et al. Page 8

J Pharm Sci. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information scores over all wavelengths for a given retention time or over all retention times 

for a given wavelength (see Fig. 3b). Note that the average mutual information is highest for 

retention times between 10 and 12 min, averaged over all wavelengths. Figure 3c shows the 

absorbance values across all wavelengths for the retention time with the highest average 

mutual information score (12.1 min), and we can see that there are very significant 

differences between the samples.

From the mutual information score heat map of the HILIC data obtained from the 

crofelemer stability samples (Fig. 3d), we observed that there was more information content 

in the conventional “slice” of the data set, that is, a range of wavelengths (between 260 and 

300 nm) across all retention times. Just as in the SEC case, we averaged the mutual 

information scores over all wavelengths and over all times for HILIC data sets (see Fig. 3e). 

For HILIC, the data subset consisting of absorbance values for the wavelength near 282 nm 

had the maximum average mutual information score across all retention times. The 

absorbance values for these retention times at approximately 282 nm show that there are 

indeed significant differences between the samples (see Fig. 3f). Despite the rather 

traditional wavelength identified for HILIC, these results highlight the fact that mutual 

information scores are a useful tool for data mining, that is, finding informative “slices” of 

these extremely high dimensionality data sets, some of which might easily be missed in a 

more traditional experimental analysis.

Data Visualization of the Physical and Chemical Analysis

Our mutual information score analysis suggested that the combination of the following data 

sets could be useful in classifying the crofelemer stability samples: UV-Vis absorption (240–

600 nm), CD (200–350 nm), FTIR (1100–1700 cm−1; see Figs. 2a–2c), SEC for all 

wavelengths at retention times near 12.1 min (see Figs. 3a–3c), and HILIC at all retention 

times at wavelength near 282 nm (see Figs. 3d–3f). This resulted in a total of 4441 features 

per sample. To visualize the organization of the data in this high-dimensional space, we 

performed PCA (see Fig. 4). We found that there is generally very good separation among 

classes. Not only is the average separation between crofelemer stability samples better than 

the bioassay data (see Fig. 1b), but the variance is also spread out more evenly across the 

principal components (the first 2 components collectively capture less than 80%). Overall, 

this indicates that the physicochemical data sets have much better discriminatory power than 

the bioassay data.

Classification Analysis

From the mutual information calculation, we saw that all the techniques on their own have 

individual data points with a relatively high mutual information score (~2 bits); while this is 

encouraging, it is clear that no single feature can completely discriminate among these 

sample types. We thus need to combine these features to classify the samples; this represents 

a classic problem of “supervised” machine learning. We thus applied a set of standard 

classifiers not only using all of the techniques individually but also for all possible pairs, 

combination of 3, combination of 4, and finally all 5 analytical techniques combined (see 

Materials and Methods). We used the Monte Carlo cross-validation technique, splitting the 

data into 80% training and 20% testing sets, and averaged the classification accuracy of our 
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classifiers across 100 such instants to obtain the accuracies reported in Table 2 (see 

Materials and Methods).

Table 2 summarizes the results of the classification accuracy for different classifiers for all 

possible combinations of the techniques in terms of being able to discriminate each of the 

crofelemer stability samples from each other. For a single technique, the UV absorption data 

with the LDA classifier performs best, with over 97% classification accuracy. The UV 

absorption data also performs well with kNN, SVMs (both linear and radial basis function 

kernel), and RF, with a classification accuracy close to 95% in each case. We found that data 

from the other techniques did not perform nearly as well when used in isolation. HILIC + 

UV and HILIC + CD + UV are the combinations with best classification accuracy (over 

98%).Interestingly, the combination of HILIC + CD + UV data has a classification accuracy 

higher than the ones in all combinations of 4 and 5 techniques, demonstrating that it may not 

always be better to have more features for classification. Top performers for any number of 

combinations of techniques include the UV absorption data and the LDA classifier. Also 

note that while these combinations improve performance, they are not all that much better 

than the UV absorption data alone with the LDA classifier (ca. 97% vs. ca. 98% each). The 

top-performing combinations that do not include UV are SEC + FTIR and SEC + HILIC 

(over 96% classification accuracy).

The LDA classifier consistently outperformed the others on nearly every data combination 

(Table 2). Nonetheless, a variety of methods produce acceptable accuracy (>95%) using 

various combinations of the techniques. Overall, these finding indicate that the 

physicochemical data sets contain enough information to robustly classify each of the 

different crofelemer stability samples from each other. We should note that Kim et al.8 found 

100% classification accuracy for an analytical data set focused on IgG1-Fc stability. Given 

the smaller sample sizes available in that previous study, the authors employed leave-1-out 

and leave-8-out cross-validation, resulting in smaller test sets than employed here. We found 

multiple examples of 100% classification accuracy in our analysis using leave-1-out cross-

validation (data not shown), indicating that the slightly lower accuracies we obtained were 

likely due to the cross-validation scheme we employed, rather than the fact that the IgG1-Fc 

samples were more structurally well defined.

Discussion

Crofelemer is 1 of 2 FDA-approved botanical drug products. Botanical drugs harbor more 

heterogeneity than typical small-molecule drugs owing in part to the biological variability of 

the naturally derived raw material. For botanical drug products, analytical characterization is 

important for product development. Comparative characterization supports any postapproval 

changes to the manufacturing process. In this work, we used the botanical drug crofelemer 

as a model system for comparative characterization of a therapeutic complex mixture drug. 

Unlike protein therapeutics, crofelemer is a polymeric natural mixture of compounds both 

heterogeneous in size and less well defined chemically and structurally than a protein. We 

used 5 different fractions of crofelemer and subjected each of them to different temperatures 

for different lengths of time, as described in the 2 companion articles in this series of 3 

articles,6,7 as a model system to mimic different lots of crofelemer. We thus obtained 35 
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distinct samples, which were then subjected to biological, chemical, and physical 

characterization and analysis. Our goal was to capture potentially subtle differences between 

these samples and assess to what extent the crofelemer stability samples can be 

distinguished from each other. Modern data mining and machine learning approaches offer a 

natural way to characterize these differences within analytical data sets. Specifically, we 

used data mining and visualization tools such as mutual information score and PCA to better 

understand such data. We found interesting differences among samples and selected features 

for classification analysis. We also used a standard set of supervised learning classifiers to 

classify crofelemer samples using the data that were available from different physical and 

chemical assays.

Our analysis revealed that the bioassay data obtained from a T84 chloride channel biological 

assay was not significant. In particular, PCA showed few significant differences between the 

various crofelemer treatments (see Fig. 1b). The fact that the first principal component itself 

captured over 99% of the variance in the data implies that the data are primarily 1-

dimensional. Looking at the trajectories of the Cl¯ ion efflux, we saw that the main 

differences between them were probably in their initial intensity. This motivated us to fit the 

trajectories using an exponential relaxation function. The fits to these trajectories showed no 

significant differences in k, which implies that different treatments had few detectable 

effects on the Cl¯ ion efflux rate (see Figs. 1d–1f). These results indicate that the 

physicochemical differences between the crofelemer samples did not significantly affect the 

readout in this particular biological assay. Given that the T84 assay could not distinguish the 

activity of almost any crofelemer sample from a blank control, it is likely that the assay itself 

lacks the precision to capture differences in the biological activity of the degraded samples 

studied here. It may also be the case that the chemical differences between these samples do 

not translate into biologically meaningful differences. Future work, perhaps relying on more 

sensitive single-cell patch-clamp assays,15 will likely be needed to determine whether 

degradation of crofelemer samples has an impact on biological activity.

Physical and chemical assays, particularly the HPLC techniques, generated extremely large 

volumes of data and it is difficult to analyze these data sets with traditional data analysis 

methods and identify any meaningful differences among the crofelemer stability samples. 

The mutual information score allowed us to identify subsets or “slices” of these large data 

sets that capture the most significant physical and chemical differences among the samples7 

and at the same time also helped us improve further analysis of the data. For instance, we 

saw that in the case of SEC data, the “traditional” analysis method of considering all 

retention times at a given wavelength is not the best method for detecting differences; 

instead looking at all of the wavelengths for the retention time of circa 12.1 min was more 

informative. This method allowed us to perform feature selection, which, in case of SEC and 

HILIC, reduced the number of features from around 3,700,000 to close to 3000 for each 

sample.

We obtained over 98% classification accuracy for some of the analytical data sets using the 

machine learning classifiers. This implies that the data sets are rich enough to robustly 

distinguish subtle differences between crofelemer samples by combining multiple data sets. 

We found that the LDA classifier outperformed the others for this data set with a 
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classification accuracy of over 90% for most combinations of techniques. The combinations 

with top accuracies all include the UV absorption data, suggesting that this information has 

more discriminatory capability than others. This indicates that the chemical changes that 

occur during crofelemer degradation are readily reflected in the vibrational modes of the 

covalent bonds in the material. Because many of these changes are due to chemical 

oxidation,6,7 this is perhaps not surprising. Further work will be needed, however, to fully 

characterize the chemical changes that are generating the observed differences in the UV 

absorption spectra.

Overall, our results suggest that machine learning classification applied to the physical and 

chemical assay data sets is a promising approach for comparative characterization between 

complex mixture drugs such as crofelemer. Although the bioassay described here did not 

detect significant differences between samples, our findings indicate that physical 

characterization data contain sufficient information to distinguish between both subtle and 

overt chemical differences between samples. Such data should be capable of distinguishing 

between biologically active and inactive material when given a bioassay sensitive enough to 

make conclusive determinations regarding potency and activity. Despite the heterogeneity of 

crofelemer, further analysis of these types of data sets from multiple lots from different 

manufacturers may permit a better understanding of the structural origin of the subtle 

differences responsible for the differences detected. Moreover, there results indicate that data 

mining and machine learning analysis of various analytical data sets may be able to provide 

a fingerprint analysis of complex molecules and provide an integrated mathematical model 

for comparative characterization. Future challenges will be determining the significance and 

potential clinical relevance and risk of differences identified by such a model and using 

multiple product lots to establish the range of variation between lots from the same 

manufacturer.
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Figure 1. 
Analysis of T84 chloride channel bioassay data of various crofelemer stability samples. (a) 

Raw data for all 1800 trajectories. (b) First and second principal components of the data. 

The triangles represent crofelemer treated with ionomycin whereas the squares represent 

crofelemer treated with forskolin. (c) An example of the fit to a typical raw trajectory. (d), 

(e), and (f) Scatter plots between the fitted parameters (k, ΔI, and I0) for all 1800 

trajectories.
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Figure 2. 
Raw data and mutual information score for (a) UV-Vis absorption, (b) CD, and (c) FTIR 

data from various crofelemer stability samples. In each plot, the colored lines show the 

normalized data for the corresponding technique and the background shows the mutual 

information score. In each case, the raw data were divided by the concentration of the 

samples, and the maximum intensity in each case was normalized to 1.
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Figure 3. 
Plots for mutual information score and normalized slice of data for SEC and HILIC of 

various crofelemer stability samples. (a) Heat map of mutual information score for SEC 

data. (b) The red line represents the mutual information score averaged over all retention 

times, and the blue line represents the mutual information score averaged over all 

wavelengths for SEC data. In each case, the circles represent the top 6 average mutual 

information score. (c) SEC data for the retention time of 12.1 min, background corrected and 

normalized using the dilution factors of the samples. (d) and (e) same as in (a) and (b) for 

HILIC. (f) HILIC data for the wavelength of 282 nm background corrected and normalized 

with dilution factors for the samples.
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Figure 4. 
PCA of combination of data from UV-Vis absorption, CD, FTIR, SEC, and HILIC analyses 

of various crofelemer stability samples.
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