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ABSTRACT

Cretaceous through Eocene strata of the Four Corners region provide an 
excellent record of changes in sediment provenance from Sevier thin-skinned 
thrusting through the formation of Laramide block uplifts and intra-foreland 
basins. During the ca. 125–50 Ma timespan, the San Juan Basin was flanked 
by the Sevier thrust belt to the west, the Mogollon highlands rift shoulder 
to the southwest, and was influenced by (ca. 75–50 Ma) Laramide tectonism, 
ultimately preserving a >6000 ft (>2000 m) sequence of continental, marginal-
marine, and offshore marine sediments. In order to decipher the influences of 
these tectonic features on sediment delivery to the area, we evaluated 3228 
U-Pb laser analyses from 32 detrital-zircon samples from across the entire 
San Juan Basin, of which 1520 analyses from 16 samples are newly reported 
herein. The detrital-zircon results indicate four stratigraphic intervals with 
internally consistent age peaks: (1) Lower Cretaceous Burro Canyon Forma-
tion, (2) Turonian (93.9–89.8 Ma) Gallup Sandstone through Campanian (83.6–
72.1 Ma) Lewis Shale, (3) Campanian Pictured Cliffs Sandstone through Cam-
panian Fruitland Formation, and (4) Campanian Kirtland Sandstone through 
Lower Eocene (56.0–47.8 Ma) San Jose Formation. Statistical analysis of the 
detrital-zircon results, in conjunction with paleocurrent data, reveals three dis-
tinct changes in sediment provenance. The first transition, between the Burro 
Canyon Formation and the Gallup Sandstone, reflects a change from predom-
inantly reworked sediment from the Sevier thrust front, including uplifted 
Paleozoic sediments and Mesozoic eolian sandstones, to a mixed signature 
indicating both Sevier and Mogollon derivation. Deposition of the Pictured 
Cliffs Sandstone at ca. 75 Ma marks the beginning of the second transition 
and is indicated by the spate of near-depositional-age zircons, likely derived 
from the Laramide porphyry copper province of southern Arizona and south-
western New Mexico. Paleoflow indicators suggest the third change in prove-
nance was complete by 65 Ma as recorded by the deposition of the Paleocene 
Ojo Alamo Sandstone. However, our new U-Pb detrital-zircon results indicate 

this transition initiated ~8  m.y. earlier during deposition of the Campanian 
Kirtland Formation beginning ca. 73 Ma. This final change in provenance is 
interpreted to reflect the unroofing of surrounding Laramide basement blocks 
and a switch to local derivation. At this time, sediment entering the San Juan 
Basin was largely being generated from the nearby San Juan Mountains to 
the north-northwest, including uplift associated with early phases of Colorado 
mineral belt magmatism. Thus, the detrital-zircon spectra in the San Juan 
Basin document the transition from initial reworking of the Paleozoic and 
Mesozoic cratonal blanket to unroofing of distant basement-cored uplifts 
and Laramide plutonic rocks, then to more local Laramide uplifts.

INTRODUCTION

U-Pb detrital-zircon (DZ) geochronology has played an integral role in de-
ciphering sediment-dispersal patterns in Cretaceous and Paleogene strata of 
North America (e.g., Lawton and Bradford, 2011; Dickinson et al., 2012; Blum 
and Pecha, 2014; Bush et al., 2016; Sharman et al., 2017). DZ analyses allow 
for generation of a DZ fingerprint (Ross and Parrish, 1991) of the host rock, 
establishing provenance ties between host rock and source region(s) (Gehrels 
and Pecha, 2014), and for calculation of maximum depositional age of host 
rock (Surpless et al., 2006; Dickinson and Gehrels, 2009b), which can then be 
compared to biostratigraphic age where available. Combining DZ ages with 
fluvial paleocurrent information bolsters provenance ties and allows for re-
gional paleogeographic reconstructions (Lawton and Bradford, 2011; Dickin-
son et al., 2012).

Cretaceous through Lower Eocene strata preserved in the San Juan Basin 
(SJB) in northwestern New Mexico and southwestern Colorado provide a 
unique opportunity to study spatial and temporal variations in sediment prov-
enance using DZ geochronology. During the deposition of these sediments, 
the SJB region was flanked by the Sevier thrust belt, the Mogollon highlands 
rift shoulder, and was also influenced by Laramide tectonism (ca. 75–50 Ma). 
Understanding how these surrounding tectonic elements influenced sediment 

GEOSPHERE

GEOSPHERE; v. 14, no. 2

doi:10.1130/GES01485.1

12 figures; 3 tables; 3 supplemental files

CORRESPONDENCE:  mpecha@​email​.arizona​.edu

CITATION:  Pecha, M.E., Gehrels, G.E., Karlstrom, 
K.E., Dickinson, W.R., Donahue, M.S., Gonzales, 
D.A., and Blum, M.D., 2018, Provenance of Creta‑
ceous through Eocene strata of the Four Corners 
region: Insights from detrital zircons in the San Juan 
Basin, New Mexico and Colorado: Geosphere, v. 14, 
no. 2, p. 785–811, doi:10.1130/GES01485.1.

Science Editor: Shanaka de Silva
Associate Editor: Graham D.M. Andrews

Received 11 December 2016
Revision received 9 September 2017
Accepted 5 January 2018
Published online 16 February 2018

OPEN ACCESS

GOLD

This paper is published under the terms of the 
CC‑BY-NC license.

© 2018 The Authors

†Deceased 21 July 2015, during preparation of manuscript

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/doi/10.1130/GES01485.1/4110452/ges01485.pdf
by University of Kansas user
on 08 November 2019

http://geosphere.gsapubs.org
http://geosphere.gsapubs.org
mailto:mpecha%40email.arizona.edu?subject=
http://www.geosociety.org
http://www.geosociety.org/pubs/openAccess.htm
http://www.geosociety.org/pubs/openAccess.htm


Research Paper

786Pecha et al.  |  Detrital zircons from the San Juan BasinGEOSPHERE  |  Volume 14  |  Number 2

delivery to the Four Corners region, particularly the SJB, is the overall goal of 
this research.

Here we synthesize new and existing DZ data from Cretaceous and Paleo-
gene strata and combine the observations with paleoflow information to make 
provenance assessments and paleogeographic interpretations. We also use 
the DZ ages to refine maximum depositional ages of the units by comparing 
them with biostratigraphic ages. Our new U-Pb DZ data indicate that three 
distinct changes in sediment provenance occur in the Cretaceous through Eo-
cene section of the SJB. The results track changes in sediment routing from 
initial reworking of the Paleozoic and Mesozoic cratonal blanket to unroofing of 
distant basement-cored uplifts and Laramide plutonic rocks, then to more local 
Laramide uplifts. The results also provide additional clarity in sediment routing 
during the transition from Sevier retroarc thrusting through foreland basin par-
titioning during the Laramide, providing important insights into sediment-dis-
persal patterns and paleogeographic reconstructions. These new results fill 
in gaps from previous DZ studies (e.g., Dickinson and Gehrels, 2008; Gehrels 
et al., 2011; Lawton and Bradford, 2011; Dickinson et al., 2012) of Paleozoic and 
Mesozoic Colorado Plateau stratigraphy and Paleogene units (Dickinson et al., 
2010; Donahue, 2016).

GEOLOGIC SETTING

The Four Corners region was part of an expansive late Mesozoic Cor
dilleran foreland basin system (Fig. 1) related to loading of the Sevier retroarc 
fold and thrust belt to the west (Armstrong, 1968; Jordan, 1981; DeCelles, 
2004) and flanked on the southwest by the Mogollon highlands rift shoulder, 
a high-standing structural feature that formed at the same time as the Bis-
bee-McCoy basin (Dickinson and Lawton, 2001b; Lawton, 2004; Lucas, 2004; 
Dickinson and Gehrels, 2008). Immediately west of both of these features was 
the Cordilleran magmatic arc, which was assembled in response to continuous 
subduction of the Farallon plate along the western coast of North America from 
Permian (ca. 284 Ma) through early-middle Paleogene time (Dickinson, 2004).

Beginning in Late Campanian (ca. 75 Ma) time, deformation and magma-
tism translated inland in response to flat-slab subduction of the Farallon plate, 
creating the Laramide Province (Coney and Reynolds, 1977; Dickinson and 
Snyder, 1978; Bird, 1988; Miller et al., 1992; English et al., 2003; Saleeby, 2003; 
Liu et al., 2010). This change in plate dynamics partitioned the once-continu-
ous Cordilleran foreland basin into a series of isolated intra-foreland basins 
and intervening basement-cored uplifts (Dickinson et al., 1988; Cather, 2004). 
In the Four Corners region, these uplifts are typically in the form of broad 
monoclines (e.g., Hogback monocline) or high-angle, fault-bounded basement 
blocks (e.g., Nacimiento uplift). Six distinct Laramide-age basins (San Juan, 
Raton, Galisteo–El Rito, Baca, Carthage–La Joya, and the Sierra Blanca) (Fig. 1) 
preserve varying thicknesses of Cretaceous–Eocene strata (Cather, 2004).

Late Cretaceous through Paleogene uplift and subsequent erosion have 
played a significant role in the formation of the current Colorado Plateau geo-

morphology (Elston and Young, 1991). Estimates of the thickness of pre-Cre-
taceous Mesozoic strata eroded from the Colorado Plateau range from  
~3000 to 5000+ ft (~1000–1500 m), with thickness increasing from south-south-
east to north-northwest (Wilson, 1967; Pederson et  al., 2002; Lazear et  al., 
2013). It is also estimated that an additional ~1000–3000 ft (~300–1000 m) 
of Cretaceous strata were removed during Cenozoic beveling (Wilson, 1967; 
Epis and Chapin, 1975; Evanoff and Chapin, 1994; Pazzaglia and Kelley, 1998). 
This extensive erosion resulted in removal of most Cretaceous and younger 
rocks, leaving a wide region around Four Corners predominantly devoid of 
the entire Cretaceous section. The San Juan Basin (SJB) in northwestern 
New Mexico and southwestern Colorado is an exception, preserving a se-
quence of Cretaceous and younger sediments exceeding 6000 ft (~2000 m) 
in total thickness. The SJB represents the best preserved, deepest, and most 
comprehensive section that characterizes the Cretaceous/Paleogene stratig-
raphy of the region.

San Juan Basin

We define the SJB as the contiguous area that encompasses Lower Cre-
taceous through Eocene strata preserved in northwestern New Mexico and 
southwestern Colorado (Figs. 1 and 2). It is a structurally-bound intra-foreland 
basin that encompasses more than 46,000 km2. It developed coevally with the 
adjacent Laramide tectonic features: San Juan (Needle Mountains) uplift to 
the north, Archuleta anticlinorium and/or San Juan sag to the northeast, Naci
miento uplift on the east, Zuni uplift to the south, Defiance uplift on the west, 
and Hogback monocline to the northwest (Kelley, 1950, 1951, 1957) (Fig. 2). 
Differential subsidence and sedimentation across the basin began in Campa-
nian time, demonstrated by the deposition of the Lewis Shale (Ayers et al., 
1994; Cather, 2003, 2004). Laramide accommodation within the interior basin 
is manifested in an asymmetrical synform with an arcuate axis that mimics 
the trend of bounding uplifts (Fig. 2) (Cather, 2003, 2004). Stratigraphic units 
in the SJB are relatively flat lying to shallow dipping, except along the east-
ern and northern margins of the basin. On the east side of the basin along 
the Nacimiento uplift, Lewis shale and younger sediments are highly attenu-
ated and oriented vertically, showing growth strata relationships that indicate 
deposition was influenced by the developing Nacimiento thrust from ca. 80 
to 50 Ma (Baltz, 1967; Molenaar, 1983). Steeply dipping units also occur along 
the northern margin of the basin where they have also been influenced by 
Laramide tectonism.

The Cretaceous and Eocene rocks preserved in the SJB are predominantly 
composed of interfingering marine and nonmarine sedimentary rocks (Fig. 3). 
The Cretaceous strata were deposited during basinwide cycles of transgres-
sion and regression of an expansive epicontinental sea (Fassett and Hinds, 
1971); Tertiary strata were deposited in nonmarine, dominantly fluvial settings. 
Detailed geologic and sedimentologic descriptions and/or background of each 
unit can be found in Craigg (2001).
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Four Corners Depositional Environments and Paleoflow Directions

Upper Jurassic–Lower Cretaceous Paleoflow (Upper Jurassic 
[163.5–145.0 Ma]; Timescale Based on Gradstein et al., 2012, 
Morrison Formation through Lower Cretaceous [145.0–100.5 Ma] 
Burro Canyon Formation)

Paleodrainage patterns on the Colorado Plateau document flow toward 
the northeast and east within the Upper Jurassic (Kimmeridgian–Tithonian) 
Morrison Formation (Craig et al., 1955; Peterson, 1984; Currie, 1997; Robinson 
and McCabe, 1998; Dickinson and Gehrels, 2008). Fluvial paleocurrent trends 
within the Lower Cretaceous Cedar Mountain and Burro Canyon Formations 
are generally easterly and northeasterly (Harris, 1980; Craig, 1981; Tschudy 

et al., 1984; Aubrey, 1992, 1996; Currie, 1998, 2002; Kirkland and Madsen, 2007; 
Dickinson and Gehrels, 2008), with a few restricted measurements having a 
northerly trend (Dickinson and Gehrels, 2008).

Sub-Dakota Unconformity

The southwestern margin of the Colorado Plateau, including portions of 
the future SJB, was stripped of several hundred meters of Triassic and Ju-
rassic strata by NE-flowing rivers prior to early Late Cretaceous deposition of 
the Dakota Formation (Dickinson, 2013). This beveling of the NE margin of the 
pre-Laramide Mogollon highlands reflects Early Cretaceous uplift and erosion, 
which reworked older strata and redistributed older sediments.
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Figure 1. Tectonic elements map of south-
western North America including the loca-
tion of the San Juan Basin (SJB) in relation 
to major Mesozoic and Cenozoic structural 
features of the North American Cordillera: 
PR—Peninsular Ranges; SN—Sierra Ne-
vada; GVfab—Great Valley forearc basin; 
Sflb—Sevier foreland basin. Laramide ba-
sins (Maastrichtian–Paleogene) (Dickinson 
et al., 1988, 2012; Beard et al., 2010; Cather, 
2004; Lawton, 2008): B—Baca; Bl—Black 
Mesa; C-LJ—Carthage–La Joya; ER-G—El 
Rito–Galisteo; F—Flagstaff; P—Piceance; 
SJB—San Juan; TC—Table Cliff; U—Uinta. 
Laramide uplifts (Kelley, 1955; Dickinson 
et  al., 1988, 2012): CC—Circle Cliffs; D—
Defiance; Kb—Kaibab; K—Kingman; M—
Monument; N—Needle Mountains; Nc—
Nacimiento; SR—San Rafael; Ui—Uinta; 
Un—Uncompahgre; Z—Zuni. Purple line 
denotes approximate boundary between 
dominantly Cretaceous (K) arc plutons 
(westward) and dominantly Jurassic (J) 
and older arc plutons (eastward) (Dickin-
son et  al., 2012). Laramide-age magma-
tism: CMB—Colorado mineral belt; LPCP—
Laramide porphyry copper province. 
Oligocene (post-Laramide) volcanic fields: 
Mvf—Marysvale; Dvf—Mogollon-Datil; 
Svf—San Juan. States: AZ—Arizona; BC—
Baja California; CA—California; CO—Colo
rado; NV—Nevada; NM—New Mexico; 
UT—Utah; WY—Wyoming. Figure restored 
palinspastically after Dickinson (2011) and 
modified from Dickinson et al. (2012).
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in bold print: Colorado mineral belt, San 
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Upper Cretaceous Paleoflow (Coniacian [89.8–86.3 Ma] Mancos Shale 
through Campanian/Maastrichtian [83.6–66 Ma] Kirtland Formation)

The east-northeast paleoflow direction remained relatively constant 
through Late Cretaceous time (Fig. 4), as shown by deltaic systems on the 
margin of the Western Interior Seaway (Cather et al., 2012). The combination of 
paleocurrents and paleoshoreline migration (Cumella, 1983; Molenaar, 1983) 

during Mancos-Mesaverde sedimentation records sediment transport to-
ward the interior of the Cordilleran foreland basin and the Great Plains region 
(Cumella, 1983; Dickinson and Gehrels, 2008). This sedimentation transport 
direction persisted through a series of regressive and transgressive cycles be-
ginning with the Gallup Sandstone and continuing through the coastal facies 
(beach sand) deposits of Pictured Cliffs Sandstone, including the intervening 
Mancos Shale, Point Lookout Sandstone, and Menefee Formation.
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Figure 4. Paleocurrent map of Cretaceous 
through Eocene strata of the San Juan 
basin, northwestern New Mexico and 
southwestern Colorado. Paleocurrent 
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The late Campanian Fruitland Formation (ca. 76–73 Ma), which represents 
a distal facies of the final regression of the Late Cretaceous seaway, locally 
intertongues with the Pictured Cliffs Sandstone where it formed in overbank 
deposits within backshore lowlands (Fassett, 2009). The landward facies depo
sitional model for the Pictured Cliffs Sandstone consists of a deltaic complex 
in the northwestern basin and a barrier shoreline to the southeast (Erpenbeck, 
1979; Flores and Erpenbeck, 1981). The paleoshoreline during Pictured Cliffs 
Sandstone deposition generally trended northwest-southeast, with inferred 
paleoflow to the northeast (Hunt, 1984; Hunt and Lucas, 1992).

The Late Campanian Kirtland Formation is composed of a southward-thin-
ning package of fluvial sandstones and shales first described by Bauer (1916). 
It overlies the Fruitland Formation conformably and is overlain unconformably 
by the Ojo Alamo Sandstone. Fluvial paleocurrent directions in the south-cen-
tral part of the SJB for the Fruitland-Kirtland interval indicate that streams de-
positing the Farmington Sandstone member flowed from southwest to north-
east (Dilworth, 1960; Fassett and Hinds, 1971; Cather, 2004). However, in the 
western part of the basin, the paleocurrents generally trend easterly (Fig. 4) 
(Cather, 2004).

Upper Cretaceous through Paleocene Paleoflow—
McDermott, Ojo Alamo, Animas, and Nacimiento

During the early Paleogene, paleoflow was toward the northeast in south-
ern Utah and northern Arizona, with headwaters originating near the Sevier 
thrust belt and the Mogollon highlands (Young and McKee, 1978; Lawton, 1986; 
Elston and Young, 1991; Goldstrand, 1994). However, Paleocene paleoflow in 
the southern SJB beginning with the deposition of the Ojo Alamo Sandstone, 
shifted abruptly from northeast- to southeast-directed flow (Powell, 1972; Leh-
man, 1985; Klute, 1986; Cather, 2004), or southward-directed flow (Sikkink, 
1987). The combination of these flow indicators and the presence of Laramide 
volcanic and/or plutonic, Paleozoic, and Precambrian detritus led some to in-
terpret the Ojo Alamo Sandstone as recording the local initiation of Laramide 
uplift during late Maastrichtian–early Paleocene time (Fassett, 1985; Lehman, 
1985). The presence of volcanic fragments and similar detrital constituents be-
tween the upper Kirtland Formation and Ojo Alamo Sandstone suggests they 
may have been derived from the same source (Klute, 1986).

The Paleocene McDermott Formation is only exposed in the northwest-
ern margin of the SJB near Durango, Colorado (Figs. 2–4). Detailed studies 
of the McDermott Formation indicate that it contains multiple lithofacies and 
intraformational erosional surfaces (Lorraine and Gonzales, 2003; O’Shea, 
2009). It contains a basal conglomerate and fines upward into interbedded 
sandstone and siltstone. The development of the McDermott Formation has 
been debated, from the traditional view as a volcaniclastic deposit (Reeside, 
1924; McCormick, 1950; Barnes et al., 1954; Kottlowski, 1957; Sikkink, 1987), to 
a braided river deposit (O’Shea, 2009), to roof-flank detachment deposit that 
was remobilized and transported by debris flows and fluvial systems (Lorraine 
and Gonzales, 2003; Gonzales, 2010). Petrographic observations of igneous 

clasts present in the basal conglomerate (Gonzales, 2010; this study) suggest 
derivation from hypabyssal and plutonic intrusive rocks in the La Plata lacco-
litic complex. The vast majority of paleoflow indicators within the McDermott 
and Animas Formations document southerly flow toward the center of the SJB 
(Sikkink, 1987).

Lower Eocene Paleoflow (Ypresian [56.0–47.8 Ma] San Jose Formation)

The Lower Eocene San Jose Formation, initially described by Simpson 
(1948), has been the focus of subsequent studies of stratigraphy and paleo
geography (Baltz, 1967; Smith et al., 1985; Smith, 1988, 1992). It is the youngest 
formation preserved within the SJB and unconformably overlies the Paleo-
cene Nacimiento Formation in the south (with a gap of at least 5.6 m.y. in the 
vicinity of Mesa de Cuba; Fassett et al., 2010) and the Paleocene Animas For-
mation to the north. While it is likely the SJB originally contained Middle and 
Late Eocene strata, as adjacent Laramide basins do, only the Lower Eocene 
(Ypresian) remains after late Cenozoic erosion. The San Jose Formation pre-
serves the final synorogenic sedimentation during waning Laramide activity.

Paleoflow within the San Jose Formation, as measured from large-
scale trough cross-strata and pebble imbrications, is generally toward the 
south-southeast (Fig. 4) (Smith, 1988, 1992). Slight variations in the mean 
flow azimuth are indicated between various members of the formation, but 
the southeasterly direction is coincident with the underlying Paleocene stra-
tigraphy (Klute, 1986; Sikkink, 1987), indicating similar paleoslope directions 
during the entire early Paleogene (Smith, 1988, 1992). Isolated conglomeratic 
sandstone lenses within the silt and mud–dominated sequence suggest spo-
radic sediment derivation directly from local basement-cored uplifts to the 
northwest.

Deposition of the San Jose Formation fluvial unit occurred in high-energy, 
low-sinuosity streams and associated muddy floodplains during late stages 
of the Laramide orogeny, as indicated by growth folds near the Nacimiento 
uplift (Baltz, 1967). Waning of the Laramide orogeny is recorded in the strati-
graphic record by the Rocky Mountain erosion surface (RMES) (Evanoff and 
Chapin, 1994; Pazzaglia and Kelley, 1998) or Late Eocene erosion surface (Epis 
and Chapin, 1975).

METHODOLOGY

Sampling Strategy

Multiple samples were collected from each major stratigraphic unit within 
the SJB and contiguous areas (Fig. 3), and where outcrop and/or access al-
lowed, samples were taken near the base and top of each unit in order to 
assess internal stratigraphic variability. Samples were also collected across 
the entire basin to evaluate spatial variations within individual units (Fig. 2). 
Previous DZ studies excluded some units (i.e., Lewis Shale) in order to avoid 
complications in the DZ signatures due to the effects of longshore sediment 
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transport (e.g., Dickinson and Gehrels, 2008). However, this study incorpo-
rated those samples for completeness and for statistical comparisons with 
the fluvial sediments.

DZ sample descriptions, including GPS coordinates of sample localities, 
can be accessed in Supplemental Item 11.

U-Pb Analytical Methods

Zircon grains were extracted from whole-rock samples using traditional 
methods of jaw crushing and pulverizing, followed by density separation using 
a Wilfley table and heavy liquids (methylene iodide). The resulting heavy-min-
eral fraction then underwent separation using a Frantz LB-1 magnetic barrier 
separator to isolate the zircons. A representative split of the entire zircon yield 
of each sample was incorporated into a 1-inch epoxy mount along with multi-
ple fragments of the primary Sri Lanka (SL) zircon standard. The mounts were 
sanded down ~20 microns, polished using a 9-micron polishing pad, and back-
scattered electron (BSE) imaged using a Hitachi S-3400N scanning electron 
microscope (SEM). Prior to isotopic analysis, the mounts were cleaned in an 
ultrasound bath of 1% HNO3 and 1% HCl in order to remove any residual com-
mon Pb from the surface of the mount.

U-Pb geochronology of single zircon crystals was conducted by laser abla-
tion–multicollector–inductively coupled mass spectrometry (LA-MC-ICPMS) at 
the Arizona LaserChron Center (Gehrels et al., 2006, 2008). The isotopic anal-
yses involved ablation of zircon using either a New Wave UP193HE excimer 
laser (analyses completed prior to May 2011) or a Photon Machines Analyte 
G2 excimer laser (analyses completed post–April 2011) coupled to a Nu Instru-
ments HR-MC-ICPMS (see Supplemental Item 22 for complete U-Pb analytical 
methods including exact laser used on each sample).

Approximately 105 laser analyses were completed on each sample with 
only one U-Pb measurement per grain. Random grain selection was conducted 
using BSE images with rejection only of zircons that were too small to fit the 
entire 30-micron spot within its borders or those that contained cracks and/or 
inclusions that prohibited a clear spot placement.

U-Pb analytical data are presented here in age-distribution diagrams, which 
account for both analytical uncertainty and age of each analysis. These plots 
were generated by assuming normal distributions of age for each grain age, 
followed by the summing of all normal distributions into composites, which 
were then normalized to produce equal areas under the curves.

DETRITAL-ZIRCON U-Pb RESULTS

We report a total of 1520 new U-Pb laser analyses from 16 DZ samples of 
Cretaceous strata from the SJB in northwestern New Mexico and southwest-
ern Colorado. Table 1 summarizes the DZ samples from this study, in addi-
tion to previously reported DZ samples used in reference comparisons. The 

complete U-Pb analytical results are reported in the Supplemental Item 2 (see 
footnote 2) and summarized below according to stratigraphic unit from oldest 
to youngest. Multiple samples were collected from each major unit, and the 
results are presented in composite age distributions (Fig. 5, composites a–f).

The maximum depositional age for each newly reported sample is pre-
sented in Table 1 (all maximum depositional ages are reported as weighted 
averages at 2 sigma). Samples were evaluated for maximum depositional 
age using “Tuffzirc” and “Unmix” age routines available in the Excel plug-in, 
Isoplot 3.60 (Ludwig, 2008), as well as calculating weighted averages. The 
calculated maximum depositional age results and associated plots can be 
found in Supplemental Item 2 (see footnote 2). In all cases the “Tuffzirc” and 
“Unmix” age routines yielded similar results as their counterpart weighted 
averages; therefore, the weighted averages are deemed as the robust maxi-
mum depositional age for each sample since they account for all internal and 
external errors.

Detrital-Zircon Results of Cretaceous Strata of the San Juan Basin

Point Lookout Sandstone

Two detrital-zircon samples (WP58 and WP59) of Point Lookout Sandstone 
yielded 195 reliable U-Pb analyses. Both samples produced a mix of Precam-
brian, Paleozoic, and Mesozoic ages, with similar age distributions. The com-
posite age spectra (Fig. 5A) are dominated by Paleoproterozoic (39%) and 
Mesoproterozoic (25%) ages ranging from ca. 2100 to 1015 Ma (prominent age 
peaks at 1728, 1690, 1417, and 1113  Ma), isolated Neoproterozoic (2%) ages 
ranging from ca. 918 to 602 Ma, Paleozoic (7%) ages ranging from ca. 460 to 
334 Ma (peaks at 421 and 349 Ma), and Mesozoic (27%) ages ranging from ca. 
236 to 77 Ma (peaks at 167 and 85 Ma). U-Pb DZ maximum depositional ages 
for WP59 and WP58 are 85.1 ± 2.2 Ma and 84.6 ± 1.5 Ma, respectively.

Cliff House Sandstone

Two samples of Cliff House Sandstone (WP24 and WP41) yielded 195 robust 
U-Pb ages. The two samples yielded similar age ranges, but sample WP24 con-
tained a significantly higher proportion of Mesozoic ages compared to WP41. 
The composite age distribution (Fig. 5B) is characterized by sparse Archean  
(5%) ages ranging from ca. 3350 to 2600 Ma (peak of 2723 Ma) and is domi
nated by Paleoproterozoic (24%) and Mesoproterozoic (35%) ages rang-
ing from ca. 1920 to 1000 Ma (dominant age peaks of 1832, 1713, 1428, and 
1062 Ma), isolated Neoproterozoic (3%) ages ranging from ca. 999 to 710 Ma, 
Paleozoic (10%) ages ranging from ca. 515 to 255 Ma (peak of 427 Ma), and 
Mesozoic (23%) ages ranging from ca. 235 to 76 Ma (dominant age peaks of 
210, 173, 93, and 77 Ma). U-Pb DZ maximum depositional ages for WP41 and 
WP24 are 93.3 ± 2.8 Ma and 77.5 ± 1.9 Ma, respectively.

2010  Four Corners samples -ExxonMobil COSA & Arizona Laserchron Center

Station number UTM UTM East
UTM 
North Date Location

TRIM 
sheet U-Pb sample description

Cliff House SS-wp24 13S 321314 3973252 2010
San Juan Basin 
near Cuba, NM

fine grained arkosic ss, contains moderate amt 
of lithics and cemented w/ calcite (rxtn w/ HCl) or 

clay.  Well sorted, local x-beds, tn to buff 
(yelowish brown).  Sample taken from the 

LaVentana tongue-same outcrop as fig 1.2 
(near mile 9.2 S of Cuba, NM (from NMGS, 

1992 SJBIV Guidebook). Taken near base of 
thick, competent ss layer, above where it is 

interbedded w. the underlying Menefee, which 
consists of siltstones, shales, and clay or 

mudstones.  Thickly bedded w/ local x-beds.

Lewis Shale-wp25 13S 321063 39977333 2010
San Juan Basin 
near Cuba, NM

Difficult to find outcrop…the Lewis is very friable 
and weathers easliy into a low-lying region w/ 
very little tomography and gently rolling hills.  

Sample taken in stream cut, taken from 
coarsest lenslens where there are also 1-2 cm 

cobbles.  Matrix reacts to HCL

Nacimiento Fm-wp26 13S 318955 3983387 2010
San Juan Basin 
near Cuba, NM

Medium grained quartz arenite to arkose? SS.  
Interbedded w/ fine grained shales; forms 

"badlands" looking hills; predominantly qtz clasts 
w/ minor feldspars and lithics.  Cemented w/ 

white clay…NO RXTN to HCL., probably 
deposited in a stream channel…beds not huge 

lateral extent.

Ojo Alamo SS-wp27 13S 311105 3978428 2010
San Juan Basin 
near Cuba, NM

Coarse grained arkosic SS w/ subangular 
grains; not well lithified, clast supported…little 

matrix;  Qtz, feldspars, mica, lithics.  Light brown 
in color (rusty in outcrop locally); forms 

overlapping sheet-like sequences.

Upper Kirtland-wp28 13S 297409 3976665 2010
San Juan Basin 
near Cuba, NM

Sample taken ~3' below the Kirtland-OjoAlamo 
contact.  Taken from saniest layer in Kirtland (in 
vicinity); Sample consists entirely of the tan SS 

layer, but there are also purplish shale beds 
which are interbedded here (not sampled); Very 
fine to fine grained arkosic SS...qtz, feldspar w/ 
minor black lithics; DOES NOT RXCT w/ HCL.

Pictured Cliffs SS-wp29 13S 299447 3974650 2010
San Juan Basin, 
NM

Weathers like fruitland but it is a fine to med gr 
SS.  Sample taken from coarsest lens within the 

unit; cemented w/ calcite (rxcts w/ acid); fine 
grained arkosic SS consisting of qtz,feldspar 
and minor lithics; sample contains abundant 

fossil twigs and some appear "coalish".  SAME 
AS wp30

Pictured Cliffs SS-wp30 13S 299454 3974655 2010
San Juan Basin, 
NM

Weathers like fruitland but it is a fine to med gr 
SS.  Sample taken from coarsest lens within the 

unit; cemented w/ calcite (rxcts w/ acid); fine 
grained arkosic SS consisting of qtz,feldspar 
and minor lithics; sample contains abundant 

fossil twigs and some appear "coalish". SAME 
AS wp 29

1Supplemental Item 1. Detrital-zircon sample descrip-
tions, including GPS coordinates of sample localities. 
Please visit http://​doi​.org​/10​.1130​/GES01485​.S1 or 
the full-text article on www​.gsapubs​.org to view Sup-
plemental Item 1.

Supplemental Text #3. U-Pb geochronologic analyses.
Isotope ratios Apparent ages (Ma)

Analysis U 206Pb U/Th 206Pb* ± 207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± Best age ± Conc
(ppm) 204Pb 207Pb* (%) 235U* (%) 238U (%) corr. 238U* (Ma) 235U (Ma) 207Pb* (Ma) (Ma) (Ma) (%)

WP 58, Point Lookout Sandstone (UTM: 13S, 0238461, 4129844; Lat/Long: -107.949875, 37.278464)
WP58-POINT-LOOKOUT-1 516 54436 0.7 20.0940 3.8 0.1799 4.1 0.0262 1.3 0.33 166.8 2.2 168.0 6.3 184.1 89.3 166.8 2.2 NA
WP58-POINT-LOOKOUT-2 161 23678 1.9 18.0338 2.9 0.5099 3.4 0.0667 1.7 0.50 416.2 6.7 418.4 11.5 430.4 65.2 416.2 6.7 NA
WP58-POINT-LOOKOUT-3 150 11543 1.2 19.9188 13.6 0.1910 14.2 0.0276 4.0 0.28 175.5 6.9 177.5 23.2 204.5 317.9 175.5 6.9 NA
WP58-POINT-LOOKOUT-5 584 454476 3.3 9.6432 0.1 4.4804 1.6 0.3134 1.6 1.00 1757.2 25.2 1727.3 13.6 1691.3 2.4 1691.3 2.4 103.9
WP58-POINT-LOOKOUT-6 199 107142 1.2 13.2253 1.8 1.7677 2.7 0.1696 2.1 0.76 1009.7 19.2 1033.7 17.5 1084.8 35.2 1084.8 35.2 93.1
WP58-POINT-LOOKOUT-7 320 20658 2.3 20.0538 7.1 0.1616 7.4 0.0235 2.2 0.29 149.8 3.2 152.1 10.5 188.7 165.8 149.8 3.2 NA
WP58-POINT-LOOKOUT-8 112 74446 2.3 11.2852 1.4 3.1112 3.0 0.2546 2.6 0.89 1462.4 34.4 1435.5 22.8 1395.8 26.1 1395.8 26.1 104.8
WP58-POINT-LOOKOUT-9 593 24171 0.8 20.3794 2.9 0.1727 3.4 0.0255 1.7 0.50 162.4 2.7 161.7 5.1 151.1 68.9 162.4 2.7 NA
WP58-POINT-LOOKOUT-10 185 120162 1.8 13.0647 0.6 1.8082 5.3 0.1713 5.3 0.99 1019.5 49.9 1048.4 34.8 1109.3 11.5 1109.3 11.5 91.9
WP58-POINT-LOOKOUT-11 115 104671 1.8 9.6482 0.8 4.3551 2.9 0.3047 2.8 0.97 1714.8 42.8 1703.9 24.3 1690.4 14.0 1690.4 14.0 101.4
WP58-POINT-LOOKOUT-12 181 103694 1.5 11.1840 0.7 3.0211 2.3 0.2451 2.2 0.96 1412.9 28.5 1413.0 17.8 1413.0 12.7 1413.0 12.7 100.0
WP58-POINT-LOOKOUT-13 165 106595 2.0 11.1602 0.7 3.0385 1.1 0.2459 0.9 0.80 1417.5 11.6 1417.4 8.6 1417.1 12.9 1417.1 12.9 100.0
WP58-POINT-LOOKOUT-14 75 64164 2.0 9.4106 0.7 4.4604 1.1 0.3044 0.9 0.76 1713.3 12.8 1723.6 9.2 1736.3 13.2 1736.3 13.2 98.7
WP58-POINT-LOOKOUT-15 155 35679 1.4 11.1531 1.0 2.9388 2.4 0.2377 2.2 0.92 1374.8 27.5 1392.0 18.3 1418.3 18.5 1418.3 18.5 96.9
WP58-POINT-LOOKOUT-16 168 71418 77.3 14.3576 1.4 1.5077 1.6 0.1570 0.8 0.48 940.1 6.9 933.5 10.0 918.1 29.6 918.1 29.6 102.4
WP58-POINT-LOOKOUT-17 346 21770 1.5 20.4197 4.3 0.1818 4.6 0.0269 1.6 0.34 171.3 2.6 169.6 7.2 146.5 101.3 171.3 2.6 NA
WP58-POINT-LOOKOUT-18 327 76552 1.9 17.8625 2.0 0.5596 2.7 0.0725 1.8 0.67 451.1 7.9 451.2 9.9 451.7 45.1 451.1 7.9 NA
WP58-POINT-LOOKOUT-19 596 35848 2.1 9.5669 0.2 4.3838 0.9 0.3042 0.8 0.98 1712.0 12.8 1709.3 7.2 1706.0 3.2 1706.0 3.2 100.4
WP58-POINT-LOOKOUT-20 670 30171 1.3 22.8744 6.5 0.0778 6.7 0.0129 1.5 0.23 82.6 1.2 76.0 4.9 -126.6 160.6 82.6 1.2 NA
WP58-POINT-LOOKOUT-21 231 133991 1.9 9.6783 0.4 4.3270 1.9 0.3037 1.8 0.97 1709.8 27.4 1698.5 15.5 1684.7 8.1 1684.7 8.1 101.5
WP58-POINT-LOOKOUT-22 366 31263 0.9 21.1648 7.2 0.1002 7.4 0.0154 2.0 0.27 98.4 2.0 96.9 6.9 61.8 170.8 98.4 2.0 NA
WP58-POINT-LOOKOUT-23 373 29251 1.5 19.9318 4.8 0.1818 5.3 0.0263 2.1 0.40 167.3 3.4 169.6 8.2 202.9 112.0 167.3 3.4 NA
WP58-POINT-LOOKOUT-24 1035 105997 1.4 20.2262 1.5 0.1855 1.8 0.0272 0.9 0.52 173.1 1.6 172.8 2.8 168.8 35.4 173.1 1.6 NA
WP58-POINT-LOOKOUT-25 114 51452 2.1 11.2359 0.9 3.0339 3.3 0.2472 3.2 0.97 1424.2 41.3 1416.2 25.6 1404.1 16.6 1404.1 16.6 101.4
WP58-POINT-LOOKOUT-26 113 56839 1.3 9.6441 0.7 4.2818 1.0 0.2995 0.8 0.75 1688.8 11.5 1689.9 8.5 1691.2 12.5 1691.2 12.5 99.9
WP58-POINT-LOOKOUT-27 110 27778 1.8 9.6346 0.8 4.2336 1.1 0.2958 0.7 0.68 1670.6 10.6 1680.6 8.7 1693.0 14.3 1693.0 14.3 98.7
WP58-POINT-LOOKOUT-28 214 6656 0.8 24.6946 31.5 0.0715 31.6 0.0128 2.9 0.09 82.0 2.4 70.1 21.4 -319.3 824.2 82.0 2.4 NA
WP58-POINT-LOOKOUT-29 77 63226 1.3 9.9397 1.6 3.9640 3.1 0.2858 2.7 0.86 1620.3 38.4 1626.9 25.4 1635.3 29.9 1635.3 29.9 99.1
WP58-POINT-LOOKOUT-30 45 14847 3.1 13.6871 5.3 1.8009 6.4 0.1788 3.7 0.57 1060.3 36.1 1045.8 41.9 1015.6 106.5 1015.6 106.5 104.4
WP58-POINT-LOOKOUT-31 606 39855 0.8 20.7844 2.6 0.1718 2.9 0.0259 1.2 0.42 164.8 2.0 161.0 4.3 104.8 61.3 164.8 2.0 NA
WP58-POINT-LOOKOUT-32 114 133561 0.8 9.6359 0.9 4.1261 1.1 0.2884 0.7 0.61 1633.3 10.2 1659.5 9.4 1692.8 16.7 1692.8 16.7 96.5
WP58-POINT-LOOKOUT-33 474 34074 1.8 20.4576 3.5 0.1830 4.8 0.0272 3.4 0.70 172.7 5.7 170.7 7.6 142.1 81.6 172.7 5.7 NA
WP58-POINT-LOOKOUT-34 797 904523 1.7 8.8313 0.3 5.0960 0.9 0.3264 0.8 0.94 1820.9 12.8 1835.4 7.3 1851.9 5.3 1851.9 5.3 98.3
WP58-POINT-LOOKOUT-35 824 32017 1.5 21.0042 2.7 0.1174 3.1 0.0179 1.5 0.48 114.3 1.7 112.8 3.3 79.9 64.3 114.3 1.7 NA
WP58-POINT-LOOKOUT-36 107 96042 1.1 9.7604 1.1 4.1749 1.5 0.2955 0.9 0.63 1669.2 13.6 1669.1 12.1 1669.0 21.2 1669.0 21.2 100.0
WP58-POINT-LOOKOUT-37 199 70906 2.5 11.1594 0.6 3.0522 2.1 0.2470 2.0 0.95 1423.1 25.8 1420.8 16.3 1417.2 12.4 1417.2 12.4 100.4
WP58-POINT-LOOKOUT-38 454 10043 1.2 20.7867 12.9 0.0946 13.0 0.0143 1.2 0.10 91.3 1.1 91.8 11.4 104.6 306.3 91.3 1.1 NA

2Supplemental Item 2. Complete U-Pb analytical 
methods including exact laser used on each sample. 
Please visit http://​doi​.org​/10​.1130​/GES01485​.S2 or 
the full-text article on www​.gsapubs​.org to view Sup-
plemental Item 2.
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TABLE 1. U-Pb DETRITAL-ZIRCON SAMPLES OF CRETACEOUS AND PALEOGENE STRATA FROM THE SAN JUAN BASIN AND SURROUNDING REGION, 
INCLUDING REFERENCE SUBSETS FROM THE CORDILLERAN FORELAND (UTAH) AND NORTHERN FLANK OF THE MOGOLLON HIGHLANDS (ARIZONA)

Sample ID Stratal unit Stratal age (biostrat. age) Location U-Pb MDA U-Pb reference

4NARCHU Chuska Eocene–Oligocene Chuska Mountains Dickinson et al., 2010
4COL12 Music Mountain Paleogene Peach Springs Wash Dickinson et al., 2012
4COL13 Music Mountain Paleogene Duff Brown tank Dickinson et al., 2012
WP32 San Jose Fm. Early Eocene (55–50 Ma) SJB 80.0 ± 2.6 Ma; 1.3 MSWD Donahue, 2016
WP46 San Jose Fm. Early Eocene (55–50 Ma) SJB 71.9 ± 3.1 Ma; 0.41 MSWD Donahue, 2016
WP26 Nacimiento Fm. Paleocene (65–61 Ma) SJB 72.0 ± 1.5 Ma; 1.2 MSWD Donahue, 2016
WP34 Nacimiento Fm. Paleocene (65–61 Ma) SJB 69.9 ± 3.3 Ma; 3.4 MSWD Donahue, 2016
WP44 Animas Fm. Paleocene (66–60 Ma) SJB 63.58 ± 1.22 Ma; 0.4 MSWD Donahue, 2016
WP45 Animas Fm. Paleocene (66–60 Ma) SJB 70.4 ± 1.5 Ma; 1.6 MSWD Donahue, 2016
WP57 Animas Fm. Paleocene (66–60 Ma) SJB 68.9 ± 1.2 Ma; 0.74 MSWD Donahue, 2016
WP27 Ojo Alamo SS Early Paleocene (66–65 Ma) SJB 73.2 ± 2.9 Ma; 0.16 MSWD Donahue, 2016
WP36 Ojo Alamo SS Early Paleocene (66–65 Ma) SJB 69.9 ± 2.4 Ma; 1.12 MSWD Donahue, 2016
WP63a Ojo Alamo SS Early Paleocene (66–65 Ma) SJB Only one Maastrichtian age Donahue, 2016
WP53 McDermott Mbr. Maastrichtian (68–67 Ma) SJB, nr. Durango 69.84 ± 1.10 Ma; 1.0 MSWD Donahue, 2016
WP56 McDermott Mbr. Maastrichtian (68–67 Ma) SJB, nr. Durango 68.04 ± 0.75 Ma; 0.4 MSWD Donahue, 2016
WP28 Kirtland Fm. Late Camp.–Maast. (74–71.5 Ma) SJB 70.6 ± 1.5 Ma; 1.09 MSWD This paper
WP37 Kirtland Fm. Late Camp.–Maast. (74–71.5 Ma) SJB 75.8 ± 1.7 Ma; 1.7 MSWD This paper
WP54 Kirtland Fm. Late Camp.–Maast. (74–71.5 Ma) SJB 74.4 ± 2.8 Ma; 0.12 MSWD This paper
WP55 Kirtland Fm. Late Camp.–Maast. (74–71.5 Ma) SJB 75.1 ± 2.4 Ma; 0.49 MSWD This paper
WP63b Kirtland Fm. Late Camp.–Maast. (74–71.5 Ma) SJB 71.8 ± 1.7 Ma; 0.18 MSWD This paper
WP31 Fruitland Fm. Late Campanian (75.5–73.5 Ma) SJB 73.7 ± 1.6 Ma; 0.41 MSWD This paper
WP38 Fruitland Fm. Late Campanian (75.5–73.5 Ma) SJB 72.5 ± 1.4 Ma; 0.73 MSWD This paper
WP39 Pictured Cliffs SS Late Campanian (76.5–73.5 Ma) SJB 76.9 ± 1.4 Ma; 0.89 MSWD This paper
WP64 Pictured Cliffs SS Late Campanian (76.5–73.5 Ma) SJB 75.8 ± 1.4 Ma; 0.73 MSWD This paper
WP40 Lewis Shale Campanian (80.5–74.5 Ma) SJB 75.6 ± 1.5 Ma; 1.2 MSWD This paper
WP61 Lewis Shale Campanian (80.5–74.5 Ma) SJB No Mesozoic ages present This paper
WP62 Lewis Shale Campanian (80.5–74.5 Ma) SJB No Mesozoic ages present This paper
1P6GC Grand Castle Campanian Parowan Canyon Johnson et al., 2011
1WF6GC Grand Castle Campanian Webster Flat Johnson et al., 2011
1WP9GC Grand Castle Campanian Paunsagunt Plateau Johnson et al., 2011
1CP40 Capping Wahweap Middle Campanian Henrieville Creek Dickinson and Gehrels, 2008
WP41 Cliff House SS Middle Camp. (80.5–79.5 Ma) SJB 93.3 ± 2.8 Ma; 0.14 MSWD This paper
WP24 Cliff House SS Middle Camp. (80.5–79.5 Ma) SJB 77.5 ± 1.9 Ma; 0.87 MSWD This paper
3KK1 Lower Kaiparowits middle Campanian Kaiparowits Plateau Lawton and Bradford, 2011
CP22 Menefee Fm. Early-middle Camp (85–78.5 Ma) SJB Dickinson and Gehrels, 2008
12JL5 Capping Wahweap Early Campanian Henrieville Creek Larsen et al., 2010
WP58 Point Lookout SS Sant.–early Camp (85–80.5 Ma) SJB 84.6 ± 1.5 Ma; 1.2 MSWD This paper
WP59 Point Lookout SS Sant.–early Camp (85–80.5 Ma) SJB 85.1 ± 2.2 Ma; 1.1 MSWD This paper
CP23 Gallup SS Turonian (91–88.5 Ma) SJB Dickinson and Gehrels, 2008
3CP39 Upper Wahweap Early Campanian Henrieville Creek Dickinson and Gehrels, 2008
31JL5 Lower Wahweap Early Campanian Star Seep Larsen et al., 2010
3CP33 Ferron Turonian Dry Wash Dickinson and Gehrels, 2008
3COL11 Ferron Turonian (91–88.5 Ma) Caineville Gap Dickinson et al., 2012
CP27 Burro Canyon Fm. Aptian–Albian SJB Dickinson and Gehrels, 2008
CP53 Burro Canyon Fm. Aptian–Albian SJB Dickinson and Gehrels, 2008
4CP9 Toreva Turonian Black Mesa Dickinson and Gehrels, 2008
25-6B Buckhorn Aptian Buckhorn Draw Larsen et al., 2010
2CP32 Buckhorn Aptian San Rafael River Dickinson and Gehrels, 2008
2RRR12 Poison Strip Aptian Ruby Ranch Ludvigson et al., 2010

Notes: All U-Pb ages were determined by laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS) at the Arizona LaserChron Center, University of 
Arizona, except samples in italics, which were determined by thermal ionization mass spectrometry (TIMS) at the Australian National University. Reference detrital-zircon 
(DZ) subsets from Dickinson et al. (2012); subsets are indicated using number designation in sample ID column as follows: 1Southern Sevier reference subset J; 2Northern 
Sevier reference subset I; 3Sevier and Mogollon reference subset K; 4Mogollon reference subset M. Biostratigraphic (biostrat.) ages from ammonite zones (figure 6 from 
Nummedal, 2004; figure 2 and table 1 from Cather, 2004) as calibrated by Gradstein et al. (2012) (Walker and Geissman [2009]). Maximum depositional ages (MDA) are 
reported for newly reported samples that contain U-Pb ages within 10% of reported biostratigraphic age. Abbreviations: Camp.—Campanian; Fm.—Formation; Maas.—
Maastrichtian; Mbr.—Member; MSWD—mean square of weighted deviates; nr.—near; Sant.—Santonian; SJB—San Juan Basin; SS—sandstone.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/doi/10.1130/GES01485.1/4110452/ges01485.pdf
by University of Kansas user
on 08 November 2019

http://geosphere.gsapubs.org


Re
se

ar
ch

 Pa
pe

r

79
4

Pe
ch

a 
et

 a
l. 

|  
D

et
rit

al
 z

irc
on

s 
fro

m
 th

e 
Sa

n 
Ju

an
 B

as
in

G
E
O
S
P
H
E
R
E

 |
 V

ol
um

e 
14

 |
 N

um
be

r 2

a.a.

b.b.

c.c.

d.d.

e.e.

f.f.

0      0      500500 750750
Age  (Ma)Age  (Ma)

250250 10001000 12501250 15001500 17501750 20002000 22502250 25002500 27502750 30003000 32503250

Archean cratonArchean craton
1.8-2.3 orogens1.8-2.3 orogens

W
op

m
ay

W
op

m
ay

Tr
an

s-
H

ud
so

n
Tr

an
s-

H
ud

so
n

Ya
va

pa
i

Ya
va

pa
i

M
az

at
za

l
M

az
at

za
l

1.
48

-1
.4

0 
G

a
1.

48
-1

.4
0 

G
a

1.
34

-1
.4

0 
G

a
1.

34
-1

.4
0 

G
a

G
re

nv
ill

e
G

re
nv

ill
e

Su
w

an
ee

Su
w

an
ee

A
m

ar
ill

o-
W

ic
hi

ta
A

m
ar

ill
o-

W
ic

hi
ta

A
lle

gh
an

ia
n

A
lle

gh
an

ia
n

Ac
ad

ia
n

Ac
ad

ia
n

Ta
co

ni
c

Ta
co

ni
c

Co
rd

ill
er

an
m

ag
m

at
is

m
Co

rd
ill

er
an

m
ag

m
at

is
m

La
ra

m
id

e/
CM

B
La

ra
m

id
e/

CM
B

San Jose (N=2; n=188)San Jose (N=2; n=188)

Animas (N=3; n=276)Animas (N=3; n=276)

Nacimiento (N=2; n=176)Nacimiento (N=2; n=176)

McDermott (N=2; n=181)McDermott (N=2; n=181)

Ojo Alamo (N=3; n=295)Ojo Alamo (N=3; n=295)

Kirtland (N=5; n=470)Kirtland (N=5; n=470)

Fruitland (N=2; n=195)Fruitland (N=2; n=195)

Pictured Cli�s (N=2; n=174)Pictured Cli�s (N=2; n=174)

Lewis Shale (N=3; n=291)Lewis Shale (N=3; n=291)

Cli� House (N=2; n=195)Cli� House (N=2; n=195)

Menefee CP22 (N=1; n=118)Menefee CP22 (N=1; n=118)

Point Lookout (N=2; n=195)Point Lookout (N=2; n=195)

Gallup CP23 (N=1; n=87)Gallup CP23 (N=1; n=87)

Burro Cn CP27,53 (N=2;n=201)Burro Cn CP27,53 (N=2;n=201)

1/2x1/2x

1/2x1/2x

1/2x1/2x

1/2x1/2x

1/4x1/4x

Figure 5. Normalized age distribution curves of composite detrital-zircon (DZ) samples (0–3250 Ma) stacked from oldest (Burro Canyon Formation) to youngest (San 
Jose Formation). N is the number of samples composited, and n is the total number of DZ ages in each composited distribution. Colored bands (A–M) correspond to 
the North American crustal province map (Fig. 6). 0–750 Ma scale is expanded to show the young end of the age spectra in greater detail. The bold “1/2x” and “1/4x” 
mean the tallest peaks from those particular age spectra have been reduced by 50% and 75% in height, respectively. This was done to enhance the other age peaks 
that would be diminished otherwise. CMB—Colorado mineral belt; Cn—Canyon.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/doi/10.1130/GES01485.1/4110452/ges01485.pdf
by University of Kansas user
on 08 November 2019

http://geosphere.gsapubs.org


Research Paper

795Pecha et al.  |  Detrital zircons from the San Juan BasinGEOSPHERE  |  Volume 14  |  Number 2

Lewis Shale

Three samples of Lewis Shale (WP40, WP61, and WP62) yield a complex 
age distribution (Fig. 5C) consisting of scattered Archean (5%) ages ranging 
from ca. 3210 to 2504 Ma (peak at 2742), and Paleoproterozoic (32%) and Meso-
proterozoic (38%) zircons ranging in age from ca. 2095 to 1015 Ma (prominent 
age peaks at 1736, 1642, 1491, 1388, and 1076 Ma), scattered Neoproterozoic 
(5%) grains ranging from ca. 995 to 552 Ma, Paleozoic (8%) grains ranging from 
ca. 540 to 260 Ma (peak at 434 Ma). There is a significant fraction of Mesozoic 
(12%) ages that range from ca. 202 to 72 Ma (pronounced age peaks at 168 and 
75 Ma). U-Pb DZ maximum depositional age for WP40 is 75.6 ± 1.5 Ma. Lewis 
Shale samples WP61 and WP62 did not contain any Mesozoic zircons; so maxi
mum depositional ages were not calculated for these samples.

Pictured Cliffs Sandstone

Two samples of Pictured Cliffs Sandstone (WP39 and WP64) yielded 174 ro-
bust U-Pb zircon ages. The combined distribution (Fig. 5D) contains a few scat-
tered Archean (2%) ages ranging from ca. 3647 to 2760 Ma and Paleozoic (5%) 
ages ranging from ca. 554 to 255 Ma but is dominated by Paleoproterozoic 
(22%) and Mesoproterozoic (28%) ages ranging from ca. 2108 to 1039  Ma 
(prominent age peaks of 1692, 1418, 1338, and 1154 Ma) and Mesozoic (41%) 
ages ranging from ca. 250 to 72 Ma (distinct age peaks at 166, 94, and 76 Ma), 
plus isolated Neoproterozoic (2%) ages ranging from ca. 958 to 553 Ma. U-Pb 
DZ maximum depositional ages for WP39 and WP64 are 76.9 ± 1.4 Ma and 
75.8 ± 1.4 Ma, respectively.

Fruitland Formation

Two samples of Fruitland Formation (WP31 and WP38) produced 195 ro-
bust U-Pb ages. The composite age distribution (Fig. 5E) shows a few scat-
tered Archean (2%) ages, Paleoproterozoic (11%) and Mesoproterozoic (28%)  
ages ranging from ca. 1920 to 1009 Ma (age peaks of 1762, 1685, 1421, 1183, 
and 1094  Ma), isolated Neoproterozoic (2%) ages ranging from ca. 703 to 
579 Ma, and scattered Paleozoic (8%) ages ranging from ca. 444 to 59 Ma. The 
spectrum is dominated by Mesozoic (49%) ages ranging from ca. 245 to 66 Ma 
(subordinate age peaks at 219 and 161 Ma and a dominant depositional age 
peak at 74 Ma). U-Pb DZ maximum depositional ages for WP31 and WP38 are 
73.7 ± 1.6 Ma and 72.5 ± 1.4 Ma, respectively.

Kirtland Formation

A total of 470 U-Pb laser analyses have been completed on five samples 
of Kirtland Formation (WP28, WP37, WP54, WP55, and WP63b), and the com-
posite age distribution (Fig. 5F) reveals a relatively simple distribution with six 

main age peaks. The Kirtland Formation contains isolated Archean (1%) ages 
ranging from ca. 2770 to 2560 Ma but is dominated by Paleoproterozoic (55%) 
and Mesoproterozoic (17%) ages ranging from ca. 1895 to 1040 Ma (prominent 
peaks at 1689, 1409, 1230, and 1109  Ma) and Mesozoic (24%) ages ranging 
from ca. 230 to 67 Ma (main peaks at 168 and 72 Ma), isolated Neoproterozoic 
(1%) ages ranging from ca. 954 to 569 Ma, scattered Paleozoic (2%) ages rang-
ing from ca. 534 to 254 Ma, and a few Cenozoic (<1%) ages between 65 and 
63 Ma. U-Pb DZ maximum depositional ages for WP37, WP55, WP54, WP63b, 
and WP28 are 75.8 ± 1.7 Ma, 75.1 ± 2.4 Ma, 74.4 ± 2.8 Ma, 71.8 ± 1.7 Ma, and 
70.6 ± 1.5 Ma, respectively.

INTERPRETATION OF DETRITAL-ZIRCON AGES

U-Pb detrital-zircon age signatures of the Cretaceous through Eocene strata 
of the SJB contain distinct age distributions that can be linked to particular 
source regions (Fig. 5). The presence or absence of specific age peaks allows 
for first-order provenance assessment with respect to the basement geology 
of the North America, which is well known and can be summarized by its prin-
cipal source components (Fig. 6). Given that these are Cretaceous and younger 
strata, and the likelihood of recycling older zircon through younger strata be-
fore deposition in the SJB is high, therefore, comparisons were made with 
reference DZ age subsets from Dickinson et al. (2012), which allowed us to 
identify source regions for the detrital zircons preserved in the SJB. These ref-
erence subsets contain detritus shed from reworking of the sedimentary cover 
that capped the adjacent Sevier and Mogollon highlands and distributed them 
peripherally during Cretaceous and Paleogene time.

The North American crustal province map (Fig. 6) was originally based on 
Hoffman (1988) and later adapted from Gehrels et  al. (2011) and Laskowski 
et al. (2013) and is color-coded to match age bands of potential source regions 
on DZ U-Pb age-probability diagrams (Figs. 5 and 7–11). Kolmogorov-Smirnov 
(K-S) statistical test results comparing the detrital-zircon results can be found 
in Supplemental Item 33. The ubiquitous Proterozoic ages in our data, which 
correlate with the Yavapai (ca. 1.8–1.7 Ga)-Mazatzal (ca. 1.7–1.6 Ga) provinces 
and the ca. 1.48–1.34 magmatic province, reflect local basement geology of the 
greater Four Corners region.

To assess the provenance of the Cretaceous through Eocene section pre-
served in the SJB, we include previously reported DZ results from within the 
basin (Table 1). Ojo Alamo Sandstone, Animas Formation–McDermott Mem-
ber, Animas Formation, Nacimiento Formation, and San Jose Formation are 
from Donahue (2016). Burro Canyon Formation, Mancos shale, and Menefee 
Formation DZ results are from Dickinson et al. (2012). DZ data from the Dakota 
Sandstone (Ludvigson et al., 2010; Dickinson et al., 2012) were initially eval-
uated (probability density plot comparisons are available in the Dakota tab 
located in Supplemental Item 2 [footnote 2]) in the same manner as the SJB DZ 
samples. However, the only available DZ data from the Dakota Sandstone were 
collected far outside the SJB and therefore are not included in this summary.

Analysis run on: Wednesday, May 22, 2013 @ 03:16:30 PM.  Version: 1.0.

K-S P-values using error in the CDF
Point Lookou Cliff House Lewis ShalePictured Cliffs Fruitland Kirtland Ojo Alamo McDermott Animas Nacimiento San Jose

Point Lookout 0.057 0.009 0.009 0.000 0.003 0.002 0.000 0.000 0.007 0.000
Cliff House 0.057 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.011 0.000
Lewis Shale 0.009 0.002 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000
Pictured Cliffs 0.009 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.012 0.000
Fruitland 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Kirtland 0.003 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.066
Ojo Alamo 0.002 0.000 0.005 0.000 0.000 0.019 0.000 0.000 0.004 0.020
McDermott 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.119 0.000 0.000
Animas 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.119 0.070 0.000
Nacimiento 0.007 0.011 0.000 0.012 0.000 0.000 0.004 0.000 0.070 0.000
San Jose 0.000 0.000 0.000 0.000 0.000 0.066 0.020 0.000 0.000 0.000

3Supplemental Item 3. Kolmogorov-Smirnov (K-S) 
statistical test results for comparison of detrital-zircon 
results. Please visit http://​doi​.org​/10​.1130​/GES01485​
.S3 or the full-text article on www​.gsapubs​.org to 
view Supplemental Item 3.
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Ages of Possible Source Regions

We first explore the young (<285 Ma) grains within each age spectrum to 
elucidate significant differences and similarities between various SJB strata. 
Detrital zircons <285 Ma in age from Upper Cretaceous through Eocene strata 
of the SJB could have been derived from any of the following sources.

1.  Permian–Triassic grains (ca. 284–202 Ma) are potentially derived from the 
Permo-Triassic east Mexico arc (ca. 284–232 Ma) and its cryptic exten-
sions westward across Sonora (Torres et al., 1999; Dickinson and Lawton, 
2001a; Arvizu et al., 2009) into the Mojave region or from the nascent 
Cordilleran arc (<245 Ma) extending across northern Mexico and up the 
length of California (Busby-Spera, 1988; Barth and Wooden, 2006).
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2.	Triassic grains (ca. 245–201 Ma) are potentially derived from the Nazas 
arc of northern Mexico and its extensions westward through Arizona and 
up the length of eastern California (Lawton and McMillan, 1999; Haxel 
et al., 2008).

3.	Late Jurassic grains (ca. 160–150 Ma) are potentially sourced from a 
major pulse of granitic magmatism in the Sierra Nevada (Ducea, 2001).

4.	Cretaceous grains (ca. 125–80 Ma) are potentially sourced from the evolv-
ing Cordilleran arc of California, Baja California, and coastal Sonora fol-
lowing the Early Cretaceous accretion of Guerrero. A second major pulse 
of granitoid magmatism took place in the Sierra Nevada arc ca. 98–86 Ma 
(Ducea, 2001).

5.	Latest Cretaceous grains (ca. 80–65 Ma) are potentially sourced from the 
Laramide magmatic arc that migrated inland to Mexico-Arizona-Nevada 
in response to shallow Farallon plate subduction or from laccoliths 
and/or plutons at the southwestern end of the Colorado mineral belt, 
which formed in response to the same migratory phase of Cordilleran 
magmatism.

6.	Paleogene ca. 65–60 Ma grains are potentially sourced from continued 
Laramide and Colorado mineral belt magmatism. See Figure 6 for ap-
proximate locations of the similar-aged eastward-migrating southern Ari
zona and Colorado mineral belt magmatism.

7.	 Recycling of Permian–Triassic grains from the Chinle Formation (Upper Tri-
assic) and of Permian–Triassic and Jurassic grains from either the Morrison 
Formation (Upper Jurassic) or Burro Canyon Formation (Lower Cretaceous) 
is possible, although only proximal reaches of those depositional systems 
on the northern flank of the Jurassic–Cretaceous Mogollon highlands rift 
shoulder of the Bisbee basin could have been eroded before onlap by the 
early Late Cretaceous Dakota Formation protected them from erosion until 
Laramide deformation in latest Cretaceous and Paleogene time.

Due to the broad lull in Cordilleran arc magmatism during the Early Cre-
taceous (ca. 140–125 Ma; Armstrong and Ward, 1993; Yonkee and Weil, 2015), 
grains of this age range should be sparse in the DZ age spectra.

Sources of Laramide-Age (ca. 80–50 Ma) Zircons

Potential source regions of Laramide (ca. 80–50 Ma) ages present in the DZ 
age spectra of the SJB include the North American porphyry copper province 
of southern Arizona, southwestern New Mexico, and northern Sonora and the 
Colorado mineral belt, a linear belt of laccolithic-plutonic-volcanic complexes 
stretching from south-central Colorado into far northeastern Arizona (Figs. 1 
and 6; Table 2).

In the Laramide porphyry copper province south of the SJB, various Lara
mide-age volcanic and plutonic rocks are as old as ca. 80–76  Ma (Ramos-
Velázquez et al., 2008). However, most of the mineralizing porphyries in this 
region were emplaced in the ca. 75–52 Ma range (Seedorff et al., 2005; Valencia 
et al., 2005; Valencia et al., 2006; Ramos-Velázquez et al., 2008; González-León 

et al., 2011; Leveille and Stegen, 2012; Mizer, 2013; Vickre et al., 2014; Favorito 
and Seedorff, 2017). A potential sampling bias exists because the majority of 
the U-Pb age dating on the porphyry copper systems has been focused on 
the mineralizing porphyries and their host rocks, and because the Laramide 
volcanic carapaces to these systems have been largely removed by erosion. 
However, we can still characterize the main age bracket for southern Arizona at 
ca. 75–55 Ma, southwestern New Mexico at ca. 64–55 Ma, and northern Sonora 
at ca. 80–50 Ma. These age ranges indicate a general younging from west to 
east as Laramide deformation and magmatism migrated eastward toward the 
interior of the continent (Leveille and Stegen, 2012).

The Coastal Sonoran Batholith west of Hermosillo, Sonora experienced 
Laramide magmatism ranging from ca. 80 to 69 Ma (Ramos-Velázquez et al., 
2008). Farther inland in Sonora, the Tarahumara assemblage and associated 
Laramide plutonic rocks of northern Sonora span the interval from ca. 76 to 
50 Ma (González-León et al., 2011), including Laramide porphyry copper depos-
its at Cananea and Nacozari at ca. 64 Ma and ca. 56–52 Ma, respectively (Valen-
cia et al., 2005; Valencia et al., 2006). However, these regions lie >500 km south 
of the SJB and are on the opposite side of the inferred and inverted Border Rift 
system divide present in southeastern Arizona and northern Sonora (Lawton 
and Bradford, 2011), making it unlikely that detritus from northern Sonora was 
transported to the SJB by either fluvial or eolian transport.

Plutonic activity in the Colorado mineral belt has been well documented by 
K-Ar, Ar-Ar, and zircon fission-track analyses to the age ranges of ca. 75–65 Ma 
and ca. 35–23 Ma (Armstrong, 1969; Cunningham et al., 1994; Mutschler et al., 
1997; Semken and McIntosh, 1997; Chapin et al., 2004; Chapin, 2012; Gonzales, 
2015). However, these methods and results are not directly comparable to 
U-Pb zircon ages, so are not considered in the provenance assessment of SJB 
strata. A limited number of U-Pb zircon geochronologic analyses on Colorado 
mineral belt plutons and laccoliths are reported in Gonzales (2015) and are 
summarized in Table 2. Magmatic activity in the Ouray, Colorado region of the 
San Juan Mountains falls in the age range of ca. 69–57 Ma (Gonzales, 2015). 
Plutonic activity in the La Plata Mountain region of the Colorado mineral belt 
occurred in the age range of ca. 70–57 Ma (Gonzales, 2015).

Although each of these regions experienced magmatism during distinct 
intervals, there is a large degree of zircon age overlap between the southwest-
ern part of the North American porphyry copper province and the Colorado 
mineral belt. Therefore, source areas of Laramide DZ in SJB strata cannot be 
distinguished on DZ ages alone.

DZ Grain Age Analysis—Changing Proportions of 
<285 Ma Grains throughout SJB Strata

Tables 3A and 3B show the general pattern of DZ grains in SJB strata that 
are <285 Ma. These grains must have been derived from Cordilleran arc mag-
matism to the north, west, and south, including rocks formed in an easterly 
sweep of magmatism that includes the Colorado mineral belt. We do not fur-
ther consider grain ages forming ≤5% of arc-derived grains <285 Ma.
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Figure 7 displays the (<285 Ma) DZ age distribution and the biostratigraphic 
age range based on ammonite zones (Nummedal, 2004) for each unit sampled 
in the SJB. The results indicate a strong overlap between detrital-zircon peak 
ages from the combined probability distribution plots and biostratigraphic 
ages, beginning with the Gallup Sandstone and continuing up-section through 
the San Jose Formation. All but three newly reported individual samples over-
lap maximum depositional age weighted averages (Table 1) with biostrati-
graphic ages within uncertainty (2 sigma); the exceptions are two Lewis Shale 
samples (WP61 and WP62), which were likely affected by longshore currents 
that potentially homogenized the DZ age distribution, and one Cliff House 
Sandstone sample (WP41). This overlap between depositional ages and de-
trital-zircon crystallization ages means the source to sink transport of these 
approximately depositional-age zircons must have occurred rapidly over the 
course of 1–2 m.y., either by fluvial transport or airfall.

In four pre–Lewis Shale (>75 Ma depositional-age) samples, 55%–75% of 
arc-derived grains <285 Ma are Jurassic or Permian–Triassic and were likely 
derived from the pre–Laramide arc assemblage lying generally south of 
the international border but also extending northwestward into the Mojave 
region (a lesser 25%–45% of Cretaceous arc-derived grains in the same 
samples were presumably derived from younger components of that arc 
assemblage).

In four post–Cliff House (<75  Ma depositional-age) Campanian samples, 
the proportion of combined Jurassic and Permian–Triassic grains in the arc-
derived (<285  Ma) population is only 20%–35%, suggesting that the pre–
Laramide arc to the south and southwest had by then been overprinted by 
Cretaceous arc rocks (Laramide porphyry copper province), and/or another 
provenance (Colorado mineral belt) had come into play.

In the Maastrichtian McDermott Formation sample, the proportion of Lara
mide-age grains (ca. 75–65 Ma) is >90%, with no other <285 Ma age bracket 
represented by more than 5% of <285  Ma grains. If Colorado mineral belt 
sources are significant for the SJB, they are most likely in the McDermott 
Formation, which is consistent with McDermott and Animas paleoflow indi-
cators. More than three-quarters of the Laramide-age (ca. 75–65 Ma) grains in 
the McDermott Formation sample could have been derived from the nearby 
ca. 70–57  Ma San Juan and/or La Plata laccoliths (Gonzales, 2015) as Lara-
mide deformation got under way near the SJB. Other likely sources of these 
Laramide-age grains are the Ouray and Rico intrusive centers. An intriguing 
aspect of these two Colorado mineral belt intrusive centers is that the La 
Plata Mountains, Sleeping Ute, and Lone Cone laccoliths contain an inordi-
nately high proportion of Proterozoic xenocrysts and very few zircons yielding 
Laramide crystallization ages, whereas the nearby San Juan intrusive rocks 
contain abundant zircons that grew during Laramide emplacement, some of 

TABLE 2. U‑Pb COMPILATION OF POTENTIAL LARAMIDE‑AGE (CA. 80–50 MA) SOURCES: SOUTHWESTERN NORTH AMERICA LARAMIDE 
PORPHYRY COPPER PROVINCE (LPCP) IN SOUTHERN ARIZONA, SOUTHWESTERN NEW MEXICO, AND NORTHERN SONORA, 

MEXICO AND COLORADO MINERAL BELT (CMB), SOUTHWESTERN COLORADO AND NORTHEASTERN ARIZONA

Region Location

Approximate 
U‑Pb age range

(Ma) U‑Pb reference

Southwestern North America Laramide Porphyry Copper Province (LPCP)

LPCP in southern Arizona (ca. 74–52 Ma)

Various deposits Globe‑Miami, Superior, Ray, Arizona 75–61 Seedorff et al., 2005
Various locations throughout Arizona 76–54 Leveille and Stegen, 2012

Patagonia Mountains, Santa Cruz County, Arizona 74–56 Vickre et al., 2014
Tortilla Mountains, Pinal County, Arizona 70–66 Favorito and Seedorff, 2017

LPCP in southwestern New Mexico (ca. 75–55 Ma)
Various locations throughout New Mexico 60–55 Leveille and Stegen, 2012

Silver City, Central Mining District, New Mexico 64–55 Mizer, 2013

LPCP in northern Sonora (ca. 80–50 Ma)

La Caridad mine, Nacozari, Sonora 56–52 Valencia et al., 2005
Milpillas mine, Cananea District, Sonora 64 Valencia et al., 2006

Coastal Sonoran Batholith, west of Hermosillo, Sonora 80–69 Ramos‑Velázquez et al., 2008
Sonoran Batholith near Arizpe, Sonora 76–50 González‑León et al., 2011

Colorado mineral belt (CMB), southwestern Colorado and northeastern Arizona

CMB: Ouray, San Juan Mountains, Colorado (ca. 69–57 Ma)

Oak Creek, Ouray area, Colorado 65–64

Gonzales, 2015
The Blowout, Ouray area, Colorado 66–65

Coal Back Pass, Rico, Colorado 69–65
Hermosa Peak, Rico, Colorado 68–57

CMB: La Plata Mountains, Colorado (ca. 70–57 Ma) The Notch, La Plata Mountains, Colorado 70–69 Gonzales, 2015
Sleeping Ute Mountain, La Plata Mountains, Colorado 68–57
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which have inherited Proterozoic cores (Gonzales, 2015). These are nuances 
that are yet to be fully understood but may indicate the Laramide-age zircons 
in the McDermott and Animas Formations were likely derived from either the 
volcanic cover that may have existed over the Rico intrusive center or from 
another nearby intrusive center such as Ouray.

Although paleoflow was from the northwest (Klute, 1986) or north (Sikkink, 
1987), the Ojo Alamo grain population <285 Ma consists of 68% Jurassic plus 
Permian–Triassic grains and only 21% Laramide (<75 Ma) grains, compared 
to ~80% Laramide-age grains in the McDermott Formation. Detrital-sanidine 
Ar-Ar ages confirm the Ojo Alamo Sandstone was deposited ca. 65.6  Ma 
(Pappe et al., 2013). Only five (indicated in Supplemental Item 2 [footnote 2], 
Ojo Alamo composite tab) of the 295 U-Pb DZ ages from the Ojo Alamo Sand-

stone overlap the biostratigraphic age. The paucity of depositional-age grains 
suggests that the Ojo Alamo Sandstone was largely derived from reworking of 
Jurassic and Cretaceous cover. This interpretation is consistent with the notion 
that the McDermott Formation and Ojo Alamo Sandstone are likely proximal 
versus distal facies of approximately the same age, where detrital zircons in 
the Ojo Alamo Sandstone could have been largely recycled from Jurassic and 
Cretaceous cover over the La Plata laccoliths as they were unroofed during 
Laramide deformation and a combination of reworked Jurassic and Creta-
ceous strata plus Colorado mineral Belt volcanic sources for McDermott sedi
mentation.

Both McDermott and Animas Formations contain (in their <285 Ma grain 
populations) ~80% Laramide-age grains that, given southeasterly-directed 

TABLE 3A. <75 MA PROPORTIONS OF ARC‑DERIVED <285 MA GRAINS IN SAN JUAN BASIN STRATA

Unit
Depositional age

(Ma)
Total no.

DZ grains No. Arc DZ grains Arc DZ Grains (%)

Arc DZ grains (%)

60–65 Ma 65–70 Ma 70–75 Ma

San Jose 55–50 188 31 16 0 5 11
Nacimiento 65–61 177 60 34 3 14 31
Animas 66–60 299 101 36 35 32 14
Ojo Alamo 66–65 297 0 24 N/A 4 17
McDermott 68–67 186 86 46 N/A 77 15
Kirtland 74–71.5 276 119 25 2 10 37
Fruitland 75.5–73.5 196 97 49 N/A 10 50
Pictured Cliffs 80.5–74.5 177 73 41 N/A N/A 8
Lewis 80.5–74.5 294 38 13 N/A N/A 22
Cliff House 80.5–79.5 196 48 24 N/A N/A N/A
Menefee 85–78.5 117 59 50 N/A N/A N/A
Point Lookout 85–80.5 196 53 27 N/A N/A N/A
Gallup 91–88.5 87 13 15 N/A N/A N/A

TABLE 3B. >75 MA PROPORTIONS OF ARC‑DERIVED <285 MA GRAINS IN SAN JUAN BASIN STRATA

Unit
Depositional age

(Ma)

Percentages of arc DZ grains

75–80 Ma 80–90 Ma 90–100 Ma 101–145 Ma 145–201 Ma 202–284 Ma

San Jose 55–50 13 13 13 3 26 16
Nacimiento 65–61 8 5 2 3 22 12
Animas 66–60 2 2 1 1 9 3
Ojo Alamo 66–65 3 0 9 0 39 29
McDermott 68–67 1 1 0 0 5 1
Kirtland 74–71.5 11 2 3 4 21 10
Fruitland 75.5–73.5 16 3 1 0 12 8
Pictured Cliffs 80.5–74.5 32 5 14 7 27 7
Lewis 80.5–74.5 13 13 10 8 24 10
Cliff House 80.5–79.5 8 5 15 14 38 21
Menefee 85–78.5 2 5 10 7 36 41
Point Lookout 85–80.5 2 21 13 8 49 6
Gallup 91–88.5 N/A N/A 23 8 54 15

Note: Depositional ages are taken from ammonite zones (Nummedal, 2004, Fig. 6) and Cather (2004, Fig. 2 and Table 1) as calibrated by Gradstein et al. (2012) 
[GSL 2012/GSA 2013 timescale]. N/A denotes impossible or implausible grain ages (depositional age older than grain age range). DZ—detrital zircon.
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paleocurrents, were likely derived from Colorado mineral belt laccoliths, with 
only 6%–12% Jurassic plus Permian–Triassic grains that could well have been 
recycled from older Mesozoic strata exposed near the laccoliths and/or plutons 
in Laramide time. The Animas Formation from the northern part of the SJB 
and in the San Juan sag across the Archuleta anticlinorium contains by far 
the highest proportion (35%) of <65 Ma grains among its <285 Ma grains. The 
geography seems suitable for derivation from the northeastern-most (Rico–
San Miguel–Ouray) laccoliths and/or plutons (ca. 70–57  Ma) of the igneous 
clusters that form the southwestern end of the Colorado mineral belt and/or 
from igneous sources in the Twin Lakes batholith of the Sawatch Range to the 
north that had a pulse of felsic magmatism ca. 64–54 Ma (Feldman, 2010).

The Nacimiento Formation contains <50% of Laramide-age (<65 Ma) grains 
in its <285 Ma grain population, coupled with nearly as many (36%) older Ju-
rassic plus Permian–Triassic grains. Thus, in Paleocene time, most of the sedi-
ment entering the SJB was being generated from erosion of nearby Laramide 
basement block uplifts and their overlapping sedimentary cover. The San Jose 
Formation displays a mixed age signature, containing only 16% Laramide (ca. 
75–65  Ma) grains and 42% Jurassic plus Permian–Triassic grains. Based on 
a strong southeasterly paleoflow, it is likely the sediments contained in the 
San Jose Formation were derived from bedrock sources or were recycled from 
older strata as Laramide uplifts formed. The similarities in DZ age distributions 
between the San Jose Formation, Nacimiento Formation, and the Ojo Alamo 
Formation are striking in both the <285 Ma range (Fig. 7), as well as the entire 
0–3250 Ma range (Fig. 5), which is not surprising based on the notion these are 
the three units that are mainly derived from reworking of the Mesozoic and 
early Cenozoic cratonal blanket.

PROVENANCE ASSESSMENT

Changes in Sediment Provenance

Three distinct changes in sediment provenance are evident in the detrital 
record of Cretaceous and younger sediments of the SJB (Figs. 7 and 8). The 
first provenance change occurs between the Lower Cretaceous Burro Canyon 
Formation and the overlying Gallup Sandstone and Lewis Shale and is identi-
fied by the addition of ca. <100 Ma grains and a decrease in peri-Gondwanan 
(ca. 750–550 Ma) grain ages. This initial transition is interpreted to reflect the 
introduction of sediment from the Mogollon highlands and decreasing sedi-
ment input from the Sevier thrust belt. The second change in provenance oc-
curs between the Lewis Shale and the overlying Pictured Cliffs Sandstone and 
is indicated by the addition of abundant Laramide-age grains (ca. 75 Ma). This 
transition reflects sediment derivation directly from the Laramide porphyry 
copper province of southern Arizona and southwestern New Mexico. The third 
provenance shift occurs at the base of the Kirtland Formation with the dis
appearance of Archean, Neoproterozoic, and Paleozoic grains. This third tran-
sition is interpreted to reflect major drainage reorganization due to developing 

Laramide basement uplifts, including unroofing of the adjacent San Juan and 
Nacimiento uplifts.

Molenaar (1977) recognized a change in sediment source area within the 
uppermost Kirtland Shale and attributed this change to the initiation of igneous 
activity in the Four Corners region during the Late Cretaceous. Petrologic and 
paleoflow evidence supports this provenance interpretation, indicating that the 
source was likely to the north or northwest, and erosion of these grains results 
from the unroofing of Precambrian rocks of the Needle Mountains uplift in south-
western Colorado (Powell, 1972; Klute, 1986). Cather (2004) indicates the earliest 
occurrence of detritus from Paleozoic and Precambrian sources was ca. 65 Ma 
with the deposition of the Ojo Alamo Sandstone, but our new DZ results suggest 
this change actually occurs in the upper Kirtland Formation. These results also 
support the argument of Cather (2004) that the initiation of Laramide tectonism 
and rapid subsidence in the SJB preceded deposition of the Ojo Alamo Sand-
stone by ~15 m.y. Emplacement of the Laramide plutons and laccoliths contrib-
uted >1 km to the elevation of the region, resulting in a generally southward 
drainage system in the southern SJB (Gonzales, 2015; Donahue, 2016).

Provenance Intervals

Based on DZ ages, the SJB can be divided into four stratigraphic intervals 
(Fig. 8) that display internally consistent age peaks: (1) Lower Cretaceous Burro 
Canyon Formation, (2) Turonian Gallup Sandstone through Campanian Lewis 
Shale, (3) Campanian Pictured Cliffs Sandstone through Fruitland Formation, 
and (4) Campanian Kirtland Sandstone through Eocene San Jose Formation. 
Combining multiple samples into composite DZ age spectra highlights clear 
differences between the four intervals (Fig. 8). These composite DZ age spectra 
from our new data allow comparisons with existing composite DZ references 
(e.g., Dickinson et al., 2012), bolster the number of U-Pb analyses per group, 
paralleling the large-n analysis routine described in Pullen et al. (2014), mini-
mize “noise” in the age spectra that result in smoother probability density plot 
curves, and allow for evaluation of relative proportions of various age peaks, 
not just their presence or absence (Pullen et al., 2014).

1. Lower Cretaceous Burro Canyon Formation

Based on petrofacies and DZ age signature reported in Dickinson and 
Gehrels (2008), the Jackpile Sandstone (CP53, used in this study) is correlated 
with Cedar Mountain–Burro Canyon samples and reported herein as such. 
A composite probability density plot composed of two samples from the 
Lower Cretaceous Burro Canyon Formation (CP27 and CP53) yields a complex 
spectrum of ages with numerous age peaks (Fig. 8). This spectrum contains 
Archean ages ranging from ca. 3100 to 2600  Ma, Proterozoic ages ranging 
from ca. 1950 to 542 Ma, Paleozoic ages ranging from ca. 500 to 275 Ma, and 
Mesozoic ages ranging from ca. 245 to 150 Ma.
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Figure 8. Normalized age distribution 
curves of composite detrital-zircon (DZ) 
samples (0–3250 Ma). Samples from con-
tiguous units with similar DZ age distri-
butions and similar paleocurrent flow are 
grouped together resulting in the four 
composite groupings shown. Samples are 
stacked from oldest (Burro Canyon For-
mation) to youngest (Kirtland Formation 
through San Jose Formation). N is the 
number of samples composited, and n is 
the total number of DZ ages in each com-
posited distribution. Colored bands (A–M) 
correspond to the North American crustal 
province map (Fig. 6). 0–750 Ma scale is ex-
panded to show the young end of the age 
spectra in greater detail. The bold “1/2x” 
and “1/4x” mean the tallest peaks from 
those particular age spectra have been 
reduced by 50% and 75% in height, re-
spectively. This was done to enhance the 
other age peaks that would be diminished 
otherwise.
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Dickinson and Gehrels (2008) inferred that the Cedar Mountain Formation 
(proximal equivalent of the Burro Canyon Formation) was derived from the 
Sevier thrust front, and Burro Canyon Formation proper was derived from the 
Mogollon highlands. However, direct comparison to the southern Sevier refer-
ence-subset J and the northern Sevier reference-subset I from Dickinson et al. 
(2012) suggests these samples from the Lower Cretaceous basal Burro Can-
yon Formation have provenance ties to the Sevier retroarc fold-and-thrust belt 
to the west (Fig. 9). Derivation of the Burro Canyon Formation from sources 
exposed within the Sevier thrust belt is consistent with a Lower Cretaceous 
paleoflow direction toward the east and northeast (Dickinson and Gehrels, 
2008, their figure 5). The Burro Canyon Formation also contains abundant 
ages ranging from 650 to 570 Ma, indicative of peri-Gondwanan derivation 
(Dickinson and Gehrels, 2009a). All of these lines of evidence support the in-
terpretation that the Burro Canyon Formation sediments were derived directly 
from the eroding Sevier retroarc fold-and-thrust belt to the west and/or par-
tial recycling of Colorado Plateau sediments including the Jurassic eolianites 
(Dickinson and Gehrels, 2008, 2009b).

2. Turonian Gallup Sandstone through Campanian Lewis Shale

We compile nine samples spanning six units from the Gallup Sandstone 
through the Lewis Shale into one composite probability density plot consisting 
of 891 U-Pb zircon ages and dominated by Paleoproterozoic and Mesoprotero-
zoic ages ranging from ca. 1950 to 1600 Ma and ca. 1550 to 1000 Ma (Fig. 8). 

This composite plot contains a few scattered Neoproterozoic ages ranging from 
ca. 700 to 550 Ma and a significant number of Paleozoic ages ranging from ca. 
500 to 290 Ma. This sequence also contains a significant proportion (23%) of 
Mesozoic zircons ranging in age from ca. 250 to 73 Ma.

Direct comparison to the Sevier and Mogollon reference-subset K from Dick-
inson et al. (2012) suggests the Gallup Sandstone through Lewis Shale interval 
has provenance ties to both the Sevier fold-and-thrust belt to the west and the 
Mogollon highlands rift shoulder to the southwest (Fig. 10). This interval likely 
represents reworking of the sedimentary cover that was being shed from both 
of these high-standing structural features. Triassic and Jurassic DZ grains could 
be transported directly west from the Cordilleran arc via fluvial transport, but 
the preservation of Grenville- and Appalachian- (Taconic and Acadian) derived 
zircons present in Paleozoic strata of the Colorado Plateau (Gehrels et al., 2011) 
suggest that it is more likely these Triassic and Jurassic detrital zircons also 
represent reworking of the Mesozoic sedimentary blanket of the region.

3. Campanian Pictured Cliffs Sandstone through Fruitland Formation

A total of 373 U-Pb laser analyses from four samples of Pictured Cliffs 
Sandstone and the Fruitland Formation yield results very similar to the Gallup 
Sandstone through Lewis Shale section (Fig. 8), with the main difference in the 
influx of near-depositional-age zircons (main age peak at 75 Ma) preserved in 
the younger section. This interval also likely represents reworking of the Late 
Cretaceous sedimentary cover that was still being eroded from both the Sevier 
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Figure 9. Normalized age distribution 
curves of composite detrital-zircon (DZ) 
samples (0–3250 Ma). N is the number of 
samples composited, and n is the total 
number of DZ ages in each composited 
distribution. Colored bands (A–M) cor-
respond to the North American crustal 
province map (Fig. 5). 0–750  Ma scale is 
expanded to show the young end of the 
age spectra in greater detail.
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fold-and-thrust belt, in addition to the Mogollon highlands region (Fig. 10). This 
interval also contains the pervasive Grenville ages (ca. 1200–1000 Ma) that are 
present in all units from the Basal Burro Canyon through the Fruitland For-
mation. The Fruitland Formation is also the youngest SJB unit that contains 
a significant fraction of Paleozoic (ca. 500–290 Ma) grains, which were also 
derived from reworking the Paleozoic section of the Colorado Plateau but were 
originally sourced from the Appalachian region (Gehrels et al., 2011).

The Pictured Cliffs Sandstone through Fruitland Formation interval con-
tains a significant proportion (34%) of Cretaceous zircons. Based on paleo
current indicators within both units, these zircons were likely derived from the 
Laramide porphyry copper province in southern Arizona and/or southwestern 
New Mexico. The timing of the influx of near-depositional-age grains (ca. 77–
75 Ma) matches closely with the time frame (ca. 76–75 Ma) that Liu et al.’s (2010) 
reconstruction locates the Shatsky conjugate under the Four Corners region, 
setting the stage for the Laramide block uplifts and a change in local drainage 
patterns. However, Heller et  al. (2013) show the Shatsky conjugate beneath 
Four Corners during Ojo Alamo Sandstone deposition at ca. 65 Ma. While it is 

uncertain what the upper-crustal response was at the moment the proposed 
Shatsky conjugate passed under the SJB region, our new DZ data are more 
consistent with the Liu et al. (2010) model, in which the Shatsky conjugate was 
under the SJB region at ca. 76 Ma, immediately preceding deposition of the 
Kirtland Formation (ca. 74.6–72.8 Ma; 40Ar/39Ar ages of ash beds in the Kirtland 
Formation are reported in Fassett and Steiner, 1997; Sullivan and Lucas, 2006).

4. Campanian Kirtland Sandstone through Eocene San Jose Formation

A composite age distribution of 1602 U-Pb ages from 16 Upper Cretaceous 
Kirtland Sandstone through Lower Eocene San Jose Formation samples yields a 
strikingly simple age curve consisting of five discrete age peaks (Figs. 8 and 11). 
The age spectra from this interval are dominated by Paleoproterozoic (ca. 1800–
1600 Ma) and Mesoproterozoic (ca. 1500–1000 Ma) zircons, and these units also 
contain abundant Mesozoic zircons ranging in age from ca. 250 to 66 Ma.

The time interval represented by the Campanian Kirtland Formation 
through Eocene San Jose Formation records a profound increase in the pro-
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Figure 10. Normalized age distribution 
curves of composite detrital-zircon (DZ) 
samples (0–3250 Ma). N is the number of 
samples composited, and n is the total 
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portion of Paleoproterozoic (ca. 1800–1600  Ma) grains and a significant de-
crease in the number of Grenville-age (ca. 1200–1000 Ma) grains. This likely 
represents a shift from sediment derivation primarily from the Sevier and 
Mogollon regions, as demonstrated for the Gallup Sandstone through Fruit-
land Formation, to predominantly locally derived sediment shed directly from 
the surrounding Laramide basement-cored uplifts, which were tectonically ac-
tive during this time interval (Cather, 2004). Comparing reference-subset M 
(Dickinson et al., 2012), a proxy for the DZ signature that would be derived 
from the erosion of the Cretaceous sedimentary cover over the local basement 
core uplifts, with the age spectra produced from Kirtland Formation through 
San Jose Formation (Fig. 11) results in an almost perfect match of age ranges 
and peaks, except for the youngest age peak (68 Ma) that represents Colorado 
mineral belt derivation. This distinctive shift from distal to proximal sediment 
sources has also been documented in Maastrichtian (ca. 70 Ma) time within the 
Raton basin, which lies to the east of the SJB (Bush et al., 2016).

The pervasive Triassic (ca. 235–215 Ma) and Jurassic (ca. 190–155 Ma) sig-
natures in the DZ age spectra throughout all four provenance intervals could 
only be derived from two sources: (1) directly from the Triassic–Jurassic mag-
matic arc that was situated along the western margin of North America or 
(2) reworked through the Mesozoic eolianites and sedimentary blanket that 
once covered most of the Colorado Plateau region. Based on the dominant 
paleocurrent directions and the estimated thickness of eroded Mesozoic and 
early Cenozoic sedimentary cover, we conclude that erosion and redeposition 
of the Triassic–Jurassic and younger sediments are the main drivers for at least 

the Upper Cretaceous and Eocene units. As the surrounding Laramide blocks 
were uplifted and eroded, the sedimentary cover would provide the first sedi-
ment into the SJB, with increased Precambrian grains as the Proterozoic crys-
talline basement rocks were further exhumed.

Samples from the Kirtland, McDermott, and Animas Formations contain 
depositional-age zircons that likely originated from either the Laramide por-
phyry copper province of southeastern Arizona, southwestern New Mexico, 
and northern Sonora, or the nearby Colorado mineral belt to the north-north-
west. The abrupt change in paleocurrent directions, from trending toward the 
northeast to trending toward the south-southwest, beginning with the Paleo-
cene Ojo Alamo Sandstone and continuing through the McDermott and Ani-
mas Formations, indicates that the likely source of depositional-age grains was 
the neighboring Colorado mineral belt.

Paleo-Drainage Interpretation

From ca. 125 to 75 Ma, sediments derived from both the high-standing Sevier 
thrust front (Nevadaplano) and the Mogollon highlands were deposited in the 
broad foreland basin that occupied the greater Four Corners region (Dickinson 
and Gehrels, 2008; Lawton and Bradford, 2011; Dickinson et al., 2012). How-
ever, beginning ca. 75 Ma, Laramide block uplifts had a profound effect on 
the geomorphology of the Four Corners region, partitioning this once contin-
uous foreland basin into smaller isolated intra-foreland basins typically sur-
rounded by basement-cored uplifts (Fig. 12). As Laramide thrusts generated 
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Figure 12. Paleogeographic maps of the 
Four Corners region in relationship to 
Cordilleran tectonic features. Figure en-
tails four discrete timeframes: (A) ca. 
130–125  Ma, Barremian–Aptian (Jurassic) 
corresponds with deposition of the Burro 
Canyon Formation (Dickinson and Gehrels, 
2008); (B) ca. 90–88  Ma, Turonian (Upper 
Cretaceous) corresponds with deposi-
tion of the beach sand Gallup Sandstone; 
(C) ca. 75–73 Ma, Late Campanian (Upper 
Cretaceous) corresponds with the early 
phases of Laramide tectonism and depo-
sition of the time-transgressive stratigra-
phy from Lewis Shale through Fruitland 
Formation; (D) ca. 65–62  Ma, Early Paleo-
cene corresponds to deposition of the Ojo 
Alamo Sandstone, Nacimiento Formation, 
and Animas Formation. Figures have been 
restored palinspastically after Dickinson 
(2011), and modified from Blakey (2012) 
and Dickinson et  al. (2012). Laramide 
basins (Maastrichtian–Paleogene sediment 
fill) after Lawton (2008) and Cather (2004): 
SJB—San Juan; B—Baca; Bl—Black Mesa; 
C-LJ—Carthage–La Joya; ER-G—El Rito–
Galisteo; TC—Table Cliff; P—Piceance; U—
Uinta; F—Flagstaff. Laramide uplifts after 
Kelley (1955): Nc—Nacimiento; D—Defi-
ance; N—Needle Mountains (San Juan); 
Kb—Kaibab; K—Kingman; M—Monu
ment; CC—Circle Cliffs; SR—San Rafael; 
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Proposed paleorivers are represented with 
dashed lines with arrows: red—this study; 
brown—Lawton and Bradford (2011); 
gray—Davis et al. (2010); black—Wernicke 
(2011); green—Karlstrom et al. (2014). State 
boundaries are dash-dot-dash lines: UT—
Utah; CO—Colorado; AZ—Arizona; NM—
New Mexico; NV—Nevada; CA—California; 
BC—Baja California. Nevadaplano after 
DeCelles (2004). Purple line is approximate 
boundary between Triassic–Jurassic (TR-J) 
and Cretaceous (K) arc magmatism (Dick-
inson et  al., 2012). Sflb—Sevier Foreland 
Basin; LPCP—Laramide porphyry copper 
province; CMB—Colorado mineral belt 
magmatism. Location of inverted Border 
Rift System divide from Lawton and Brad-
ford (2011).
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topographic relief and adjacent depositional centers (i.e., SJB), erosion of the 
cratonal blanket provided the initial sediment into the SJB, followed by subse-
quent exhumation of cratonal basement sources. These reworked sediments 
were most likely the source for much of the sediments seen in the SJB begin-
ning in Late Campanian time and continuing into the Eocene.

During most of late Mesozoic time, drainage systems in the Four Corners 
region flowed toward the northeast. During this time, sediment delivery to the 
region was primarily being generated from the distant Mogollon highlands 
and Sevier thrust front (Fig. 12B). In the Farmington region, thickening of the 
Campanian Kirtland Formation (ca. 74–71 Ma) indicates the bordering Hogback 
monocline was active during Kirtland deposition, as Laramide orogenesis be-
gan to shape the local landscape, and alter paleodrainage patterns (figure 22 
from Cather, 2004). Paleocurrent indicators in the Kirtland Formation (Fig. 4) 
provide the earliest evidence that paleoflow was shifting from northeast di-
rected to east directed (Fig. 12C). The DZ age spectra from the Kirtland Forma-
tion indicate a change in sediment provenance ca. 73 Ma, which matches well 
with the shift in Kirtland paleoflow. However, it wasn’t until deposition of the 
fluvial Ojo Alamo Sandstone that the paleoflow fully shifted to be south-south-
east directed (Fig. 12D). This south-southeast–directed paleoflow persisted 
through the Paleocene and into the Eocene, evidenced by paleoflow indicators 
in the Nacimiento and San Jose Formations, respectively.

CONCLUSIONS

Cretaceous through mid-Paleogene strata of the Four Corners region pro-
vide an excellent opportunity to decipher changes in sediment provenance 
during the transition from Sevier thin-skinned thrusting through the formation 
of regional Laramide basement uplifts. DZ age spectra, in conjunction with 
paleocurrent data, reveal three distinct changes in sediment provenance during 
Cretaceous–Early Eocene time; these changes define four stratigraphic intervals 
with internally consistent age distributions. Comparison of each stratigraphic 
interval with reference DZ data sets supports the following model: (1) During 
Early Cretaceous time, sediment was entering the Four Corners region predom-
inantly from the Sevier thrust front, as uplifted Paleozoic and Mesozoic pas-
sive margin sediments were eroded; (2) during Turonian and Coniacian time 
(93.9–86.3 Ma), the Four Corners region was receiving sediment from both the 
Sevier thrust belt to the west and the Mogollon highlands rift shoulder to the 
south-southwest, but relative proportions of each are unknown; and (3) during 
the Laramide orogeny (ca. 75–55 Ma), deformation migrated eastward toward 
the interior or North America, which created differential subsidence and sedi-
mentation. The SJB sediments were derived predominantly from the surround-
ing fault-bounded Precambrian basement-block uplifts and their sedimentary 
cover, in addition to input from the nearby Colorado mineral belt.

Two possible sources of the abundant Laramide-age grains in the SJB 
include: (1) the porphyry copper province of southern Arizona, southwest-
ern New Mexico, and northern Sonora, and (2) the Colorado mineral belt 

predominantly in extreme southwestern Colorado. While there is significant 
age overlap in the two regions, DZ results and paleoflow indicators suggest 
derivation from the south-southwest porphyry copper province (in southern 
Arizona and/or southwestern New Mexico) during deposition of the Pictured 
Cliffs Sandstone and Fruitland Formation (ca. 76–73  Ma), followed by deri-
vation from the Colorado mineral belt from uplifted basement blocks to the 
NNW beginning with the Kirtland Formation, beginning ca. 73 Ma. The timing 
of this provenance change matches well with the model of Liu et al. (2010), 
which places the Shatsky conjugate under the SJB region at the same time, 
indicating plate interactions at depth may be the driver of the tectonics our 
DZ age spectra record. Overall, the DZ age spectra in the SJB document the 
transition from initial reworking of the Paleozoic and Mesozoic cratonal blanket 
to unroofing of basement-cored uplifts and Laramide plutonic rocks with the 
Campanian onset of Laramide deformation in the Four Corners region.
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