
ZiZoNet: A Zoom-In and Zoom-Out Mechanism for Crowd
Counting in Static Images

c©2019

Usman Sajid

Submitted to the graduate degree program in Department of Electrical Engineering and Computer
Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science.

Committee members

Dr. Guanghui Wang, Chairperson

Dr. Bo Luo

Dr. Heechul Yun

Date defended: May 13, 2019



The Thesis Committee for Usman Sajid certifies
that this is the approved version of the following thesis :

ZiZoNet: A Zoom-In and Zoom-Out Mechanism for Crowd Counting in Static Images

Dr. Guanghui Wang, Chairperson

Date approved: May 13, 2019

ii



Abstract

As people gather during different social, political or musical events, automated crowd analysis can

lead to effective and better management of such events to prevent any unwanted scene as well as

avoid political manipulation of crowd numbers. Crowd counting remains an integral part of crowd

analysis and also an active research area in the field of computer vision. Existing methods fail to

perform where crowd density is either too high or too low in an image, thus resulting in either over-

estimation or underestimation. These methods also mix crowd-like cluttered background regions

(e.g. tree leaves or small and continuous patterns) in images with actual crowd, resulting in further

crowd overestimation. In this work, we present a novel deep convolutional neural network (CNN)

based framework ZiZoNet for automated crowd counting in static images in very low to very high

crowd density scenarios to address above issues. ZiZoNet consists of three modules namely Crowd

Density Classifier (CDC), Decision Module (DM) and Count Regressor Module (CRM). The test

image, divided into 224x224 patches, passes through the CDC module that classifies each patch

to a class label (no-crowd, low-crowd, medium-crowd, high-crowd). Based on the CDC informa-

tion and using either heuristic Rule-set Engine (RSE) or machine learning based Random Forest

based Decision Block (RFDB), DM decides which mode (zoom-in, normal or zoom-out) this im-

age should use for crowd counting. CRM then performs patch-wise crowd estimate for this image

accordingly as decided or instructed by the DM module. Extensive experiments on three diverse

and challenging crowd counting benchmarks (UCF-QNRF, ShanghaiTech, AHU-Crowd) show that

our method outperforms current state-of-the-art models under most of the evaluation criteria.
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Chapter 1

Introduction

In this chapter, we define the problem and challenges, motivation and background, and our con-

tributions. In the first section, background and motivation have been explained in detail, followed

by briefly providing overview of used approach and explaining contributions of this work. Lastly,

we go through the organization of this work. Most part of this chapter has been taken from the

introduction section of our work [32].

1.1 Motivation

Crowd counting remains an integral part of crowd analysis. While masses converge to huge gath-

erings like Hajj, sporting and musical events or political rallies, automated crowd count can lead

to better and effective management of such events and prevent any unwanted incident [16]. Crowd

counting is an active research problem due to different challenges pertaining to large perspective,

huge variance in scale and image resolution, severe occlusions and dense crowd-like cluttered

background regions. Manual crowd counting subjects to very slow and inaccurate results due to

the complex issues as mentioned above.

1.2 Background and Challenges

To obtain accurate, fast and automated crowd counting results, CNN-based approaches have been

proposed that achieve superior performance over traditional approaches [8, 10, 40]. CNN-based

methods can be broadly classified into three categories; regression-based, detection-based, and

density map estimation methods. Regression-based methods [38] directly regress the count from
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(a) GT=0, Regr.=75
Ours=0, Density=72

(b) GT=0, Regr.=18
Ours=0, Density=19

(c) GT=4535, Regr.=4109
Ours=4523, Density=2759

(d) GT=704, Regr.=861
Ours=708, Density=1017

Figure 1.1: Direct regression and Density map [3] methods overestimate in case of crowd-like cluttered background
patches as in (a) and (b), where there is no crowd at all. Similarly, these methods highly underestimate or overestimate
in two extreme cases, where most crowd patches belong to either high or low-crowd count as in (c) and (d) respectively,
as compared to the ground truth (GT).

the input image. However, these CNN regressors alone cannot handle huge diversity in the crowd

images varying from very low to very high. CNN detection-based methods [13, 30] first detect

persons in the image and then sum all detection results to yield the final crowd count estimate.

Detection-based methods perform well in low crowd images but could not be generalized well to

high-density crowd images as detection fails miserably in such cases due to very few pixels per

head or person. Density map estimation methods [36, 20, 37] generate density map values, with

one value for each image pixel. The final estimate is then calculated by summing all density map

values. These methods do not rely on localizing crowd but rather on estimating crowd density in

each region of the crowd image. Density map estimation methods outperform other approaches

and current state-of-the-art methods mostly belong to this category. However, density per pixel

estimation remains a huge challenge as indicated in [29] due to large variations in the crowd density

across different images. This naturally leads to a question: In which scenarios these methods may

fail and why?

One key issue with regression and density map methods is that they only rely on direct count

estimate and density map estimation per pixel for the input image respectively, thus, they may get

subjected to large crowd count for cluttered background image patches. As shown in Figure 1.1,

models [20] based on these methods consider this 224× 224 image patch as a crowd patch and

2



Figure 1.2: Upper and lower graphs compare ten cases each, belonging to high dense and low dense extreme
respectively for Density map [3], DenseNet [18] based direct regression and our method. As shown, other models
either highly underestimate or overestimate, whereas the proposed method remains the closest to the ground truth
(GT) bar in most cases.
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make false estimates, making the system unreliable as similar patterns are bound to occur in many

practical scenarios.

In addition, we observe that both types of methods perform well for images which contain most

crowd patches with neither low nor high crowd density. Problem arises when images have most

crowd patches with either high or low-density crowd. Due to the limitation in handling such prac-

tical diversity in crowd density, these methods may either highly underestimate or overestimate

the crowd count in these two extreme cases, as shown in Figure 1.1. To further explain this phe-

nomenon, we analyze ten such cases for both extremes separately from very recent UCF-QNRF

dataset [20] on the state-of-the-art density map method [3, 20] and direct regression-based method

as shown in Figure 1.2. It can be observed that, in both extreme cases, the crowd estimates are

either highly overestimated or underestimated due to the limitations as discussed above. So, it

remains a challenge to get a stable crowd count not only in normal crowd density cases, but also in

the case of very low or very high crowd density images.

Another challenge or limitation with crowd counting research is smaller datasets with images

ranging from few hundreds to one or two thousand in number. As CNN-based approaches rely

on huge training datasets for their training, so it puts a constraint on proposed methods to-date.

Keeping that in mind, mostly state-of-the-art existing methods uses image patches instead of actual

images to approach crowd counting problem in general. So, main challenges we focus on during

this work, are as follows:

• Large variation across crowd density across different images that results in overestimation

or underestimation.

• Crowd-like cluttered background regions in images that result in further overestimation.

• Availability of few training images, usually only few hundred for training purpose.
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1.3 Overview of the Work

To solve the above mentioned fundamental issues in crowd counting, we propose a modular ap-

proach that comprises of a Crowd Density Classifier (CDC), a novel Decision Module (DM), and

a Count Regressor Module (CRM). The input image is first sub-divided into fixed-size patches

(224× 224) and fed to the CDC module that contains a deep CNN classifier to perform a four-

way classification (low, medium, high-density, and no-crowd) on each patch. The classification

module eliminates any crowd-like background patches (no-crowd) from the test image and feeds

the information about the number of patches belonging to each of the no-crowd, low, medium

and high-density classes to the Decision Module (DM) using an accumulator. DM uses either

the machine learning based RFDB module or heuristic-based RSE module to determine if the im-

age belongs to a case of low, normal or high density. Based on the DM decision, this image is

then divided into fixed-size patches using one of three independent image patch-making modules

(Zin,Normal,Zout). The image, belonging to low-density extreme case, gets divided into patches

using the zoom-out (Zout) patch-maker, high-density extreme case via zoom-in (Zin) patch-making

block, and images of normal case split into patches using normal (Normal) patch-maker. These

patches are then routed one by one to the patch-wise count regressor (COUNT ER) for crowd

estimate and the image total crowd count is obtained by summing all patches count.

The Zin block divides each input patch into four 112× 112 patches, and then up-scales each

patch by 2× before routing each patch to the count regressor. Intuitively, this module is further

zooming-in into the image and looking in-detail all patches by using 1/2 input patch size instead

of the original 224× 224 patches. Similarly, zoom-out patch-maker divides the input image into

448× 448 patches, and down-scales each patch by 2× as it is dealing with the image containing

low-density crowd patches mostly. The normal case image directly employs the original 224×224

patch size with no up-scaling or down-scaling.
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1.4 Contributions of Thesis

The main contributions of this work include:

• This work reveals and analyzes the fact that extremely high and low dense crowd images

greatly influence the performance of the state-of-the-art regression and density map based

methods for crowd counting.

• A novel strategy is proposed to address the problem of counting in highly varying crowd

density images by first classifying the images into either one of the extreme cases (of very

low or very high density) or a normal case, and then feeding the images to specifically de-

signed patch-makers and crowd regressor for counting.

• A novel rule-set engine is developed to determine whether the image belongs to an extreme

case. For images of extremely high density, a zoom-in strategy is developed to look into

more details of the image; while for images of low-density extreme, a zoom-out based re-

gression is employed to avoid overestimate.

• We created three new datasets, each from the corresponding crowd counting benchmark, for

the training and testing of different machine learning algorithms to classify an image as nor-

mal, high or low-dense extreme case using its patches classification count. These manually

verified datasets will facilitate the researchers in analyzing complex crowd diversity, which

is at the core of the crowd analysis.

• ZiZoNet works without using any density maps. Consequently, it eliminates the limitation

of density map estimation per pixel problem.

The proposed ZiZoNet scheme is thoroughly evaluated on three benchmarks: UCF-QNRF [20],

ShanghaiTech [45], and AHU-Crowd [17]. The experimental results demonstrate the effectiveness

6



and generality of the proposed strategy and rule-sets, which are never realized for crowd counting.

The overall performance of the proposed model outperforms the state-of-the-art approaches on

most of the evaluation criteria.

1.5 Organization

Rest of the thesis is organized as follows. Sec. 2 introduces the related work in crowd counting

field, followed by a detailed description of the proposed framework in Sec. 3. Sec. 4 elaborates

the implementation details with focus on training and tuning discussion. Extensive experiments,

including ablation studies and analysis, are presented in Sec. 4.2. In the end, the thesis is concluded

in Sec. 5.
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Chapter 2

Related Work

Broadly, crowd counting approaches can be classified into pre-CNN (classical) and post-CNN

(modern) era techniques as shown in Figure 2.1. Nowadays, most solutions use convolutional

neural network (CNN) based network to solve different challenges for crowd counting problem.

Most part of this chapter has been taken from the related work section of our work [32].

2.1 Classical Techniques

Crowd counting remains an active research area in computer vision with different challenges re-

lated to large perspective, occlusion, cluttered background regions and high variance in crowd

density across different images. Earlier work [39, 40, 4, 41, 44] focused on the head or full-body

detection for counting using handcrafted features for detectors learning. These methods failed in

case of high dense images, where it is hard to find such handcrafted features. The approaches were

shifted towards regression based counting [8, 10, 31, 9], where a mapping function was learned

to directly regress count from local patches of an image. These methods improved the counting

process, however, they could not handle huge crowd diversity and also lack awareness about crowd

density across all parts of the image.

2.2 CNN-based Techniques

Recently, CNN-based approaches have been widely used [20, 24, 38, 25]. They are broadly cat-

egorized into three classes; Counting by detection, counting by direct regression, and counting

using density map estimation.
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Figure 2.1: Crowd Counting methods category-wise. Most methods nowadays belong to either
regression based or density map estimation based CNN methods.

2.2.1 Counting by Detection

CNN-based object detectors [13, 30, 26] detect each person in the image, and the final count is

then calculated by summing all detections. Detection process usually consists of either head or full

body detection for each person. Detection based methods work quite well for low density crowd

images where it’s easier to detect such objects. But these methods [34, 23] deteriorate in high

density and severe occlusion cases, where each head or body only occupies a few pixels.

2.2.2 Counting by Regression

Counting by direct regression methods [38] directly regress the count by learning feature maps

from the input image patch. Wang et al. [38] proposed an end-to-end AlexNet [22] based regressor

for crowd count. These methods alone cannot handle huge diversity in different crowd images and

have to be incorporated with some specialized guiding or controlling mechanism. Our work is

based on this key idea that regression based method used with some specialized controlling scheme

enables huge crowd diversity handling across different images.

9



Figure 2.2: Multi-column convolutional neural network (MCNN) based on density map estimation
method [45].

2.2.3 Density Map Estimation based Crowd Counting

Density map estimation methods [20, 24, 7, 36, 25, 45] learn to map crowd density per pixel of

an image without localizing the counts. The final estimate is calculated by summing all density

estimations. An example of such scheme is shown in Figure 2.2 as proposed by Zhang et al. [45],

consisting of a three-column CNN architecture (MCNN) to handle crowd diversity across images.

Each column is designed to handle different scales using different receptive field sizes. Sindagi

et al. [37] extended the idea of MCNN to incorporate contextual information for high-quality

density maps generation. Recently, Sam. et al. [33] proposed SwitchCNN which routes each input

patch to one of three independent CNN regressors using a switch CNN classifier. Based on the

classification and regression idea, Sindagi et al. [36] designed a Cascaded-MTL that estimates

count for the whole image by using cascaded 10-way classification prior and final density map

estimation.

2.3 Image-wise vs Patch-wise Techniques

Generally, crowd counting methods estimate crowd count using either whole image directly or

each patch one by one. Crowd counting models, based on whole image estimation and training

10



from the scratch [21], are subjected to over-fitting due to limited dataset availability (only a few

hundred training images). Thus, patch-based models are widely used nowadays. The final sum is

computed by adding up all patch count estimates. Liu et al. [25] proposed a hybrid approach by

incorporating both regression and detection blocks using an attention-guided mechanism to handle

low and high-density cases simultaneously. Li et al. [24] designed a CSRNet to get multi-scale

contextual information by incorporating dilation-based convolutional layers. Idress et al. [20]

proposed a composition loss based model for simultaneous crowd counting and localization.

2.3.1 Comments on Existing Methods

Existing methods perform worse in extreme cases where most crowd patches belong to either high

density or low density. Moreover, these methods lack the ability to fully discard any cluttered

background regions in the image, thus resulting in overestimate.
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Chapter 3

ZiZoNet Framework

The proposed framework is shown in Figure 3.2, which is composed of three modules namely

Crowd Density Classifier (CDC), Decision Module (DM) and Count Regressor Module (CRM).

The input image is first sub-divided into 224×224 size patches and each patch then passes through

the CDC module for 4-way classification (low, medium, high-density or no-crowd). The accu-

mulator gathers and feeds patch count per class information to the Decision Module. Based on

accumulator information and utilizing either Random Forest based Decision Block (RFDB) or

heuristic-based Rule-Set Engine (RSE), DM routes this image to one of three specialized patch-

making blocks (Zin,Normal,Zout) of CRM where the input image is divided into corresponding

patches, followed by the crowd estimate for each patch via crowd regressor (COUNT ER). Finally,

the image crowd count is calculated by summing all patches count. Below we will discuss the

details of each module, as well as the rules defined for the two possible extremes. Most part of this

chapter has been taken from the proposed approach section of our work [32].

3.1 Crowd Density Classifier (CDC) Module

3.1.1 Description

The CDC module is composed of a deep CNN 4-way classifier that specializes in making a distinc-

tion between no-crowd (NC), low-density (LC), medium-density crowd (MC), and high-density

crowd (HC) for each input patch. Let X be a test image sub-divided into N patches [x1,x2, ...xN ],

each with a size of 224× 224. The accumulator gathers each patch classification result for the

12



input image X as follows:

Py += 1, i f class(xi) = y (3.1)

for i= 1,2, ....N and y belongs to either NC, LC, MC or HC class label. In the end, the accumulator

passes the patch count per class (PCCX ) of this image to the decision module (DM) as:

PCCX = {PNC,PLC,PMC,PHC} (3.2)

where PNC,PLC,PMC and PHC denote the total number of patches being classified as NC, LC, MC

and HC respectively of the image X . Patches being classified as NC are discarded, and thus re-

maining {N−PNC} crowd patches are going to be used for final crowd estimate. As a result, the

crowd-like cluttered background regions (such as the tree leaves shown in Figure 1.1), which may

result in overestimation otherwise, will be eliminated.

3.1.2 Definitions of NC, LC, MC and HC class labels

During experiments for each crowd counting benchmark dataset, we randomly extract patches

from its training images for the CDC classifier training and assign a ground truth class label

(NC,LC,MC,HC) to each extracted patch. Since these datasets also contain the localization of

people, so we generate the ground truth class label for each patch using this information and the

maximum people count possible in any image patch of the corresponding dataset. LC class label

is assigned to a patch if the ground truth people count for that patch is less than or equal to 5% of

the maximum possible count but greater than zero as zero crowd means NC class patch. Similarly,

patches with ground truth people count between 5% to 20% of the maximum possible count are

assigned the MC class label, while patches containing more than 20% of the maximum people

count are labeled as HC category patches. In the end, a total of 90,000 patches, with an equal

amount per class label, are generated for the CDC classifier training in each benchmark setting.

Example patches for each class label are shown in Figure 3.3.
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Table 3.1: Description of two Rule-Sets: the lower density extreme (Rules 1-4) and the higher density extreme
(Rules 5-8). Third column indicates images that are affected the most (in terms of resolution) by that rule. Some rules
have much higher tendency to be applied on the Lower Resolution (LR) or Higher Resolution (HR) images, whereas
some rules have impact on all types of images (indicated by ’Mix’).

Extreme
Case
Type

Rule
Most

Affected
Images

Description

Low

1 LR Image contains LC and NC patches only.
2 Mix Image should have LC patches and no HC patch.
3 HR Image has more than 50% patches being classified as LC category.
4 Mix At most 5% patches belong to HC category with at least one patch

from NC category.

High

5 Mix Image with all patches belonging to HC category only.
6 Mix All patches are MC category only.
7 LR More than 50% patches of the image are from HC category.

8 Mix Image should have NC patches and at least 33% or more from both
PHC and PMC category each. Intuitively, first condition of R8
emphasizes the fact that more no-crowd patches shift image towards
high dense case, if supported by other given conditions.

3.1.3 CDC Classifier Details

We use DenseNet-201 [18] as our 4-way classifier, as shown in Figure 3.4. It has four dense

blocks with transition layers (convolution and pooling) in between them to adjust feature maps

size accordingly. The DenseNet-201 has consecutive 1×1 and 3×3 convolutional layers in each

dense block in {6,12,48,32} sets respectively. At the end of the last dense block, a classification

layer is composed of 7×7 global average pooling, followed by 1000−D fully connected layer and

the final 4-way softmax classification with cross-entropy loss.

3.2 Decision Module (DM)

The decision module, based on the CDC module output PCCX , decides if the test image should be

treated as a normal image or a low or a high-density extreme case image. DM makes this decision

by utilizing one of the two separate and independent decision-making blocks, namely Rule-Set

Engine (RSE) and Random Forest based Decision Block (RFDB). RSE is a novel heuristic-based
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Algorithm 1 Rule-Set Engine Algorithm for the RSE Module
Input: PCCX (Patch Count per Class for Test Image X)= {PNC, PLC, PMC, PHC}
Output: Normal or Zin or Zout
Let Pall = PNC +PLC +PMC +PHC
if input patch count satisfies any of following rules then Out put = Zout

Rule 1: i f PHC +PMC == 0
Rule 2: i f PHC == 0 and PLC > 0
Rule 3: i f PLC > (Pall ∗0.50)
Rule 4: i f PNC > 0 and PHC <= (Pall ∗0.05)

end
else if input patch count satisfies any of following rules then Out put = Zin

Rule 5: i f PLC +PMC == 0
Rule 6: i f PLC +PHC == 0
Rule 7: i f PHC > (Pall ∗0.50)
Rule 8: i f PNC > 0 and PMC >= (Pall ∗0.33) and
PHC >= (Pall ∗0.33)

end
else Out put = Normal

approach which employs the rule-sets to detect if the test image is either an extreme or a normal

case, while RFDB is an automated decision-making block based on Random Forest algorithm that

learns to map the test image features (PNC,PLC,PMC,PHC) to the respective class label (Zin, Normal,

Zout). We also create new RFDB training datasets, each from corresponding crowd counting bench-

mark, for the training of RFDB module as explained in Sec. 3.2.3.

3.2.1 Rule-Set Engine (RSE)

The accumulated patch count per class (PCCX) from CDC module is tested against two different

rule-sets to determine if an input image is a case of low or a high density extreme or a normal one so

that it can be divided into patches using the most suitable patch-making block (Zin,Normal,Zout).

The overall goal of RSE is to encourage an image with more number of high-density patches to

pass through zoom-in patch-making block (Zin), whereas the image with more number of low-

density patches goes through a zoom-out patch-making block (Zout). If the image does not belong

to any of the two extreme cases, it will be treated as a normal case that uses the normal patch-maker

(Normal).
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3.2.1.1 RSE Engine Rules

The RSE module consists of two generalized rule-sets, aiming to detect the images belonging to

any of the two extreme cases: the low-density extreme (Rules 1-4) and the high-density extreme

(Rules 5-8). As illustrated in Algorithm 1, if no rule applies to the test image X , it will use

Normal patch-maker, whereas the image satisfying any rule from (1−4) or (5−8) will generate

its patches using Zout or Zin patch-making blocks respectively. Each rule is explained in detail in

Table 3.1. This table also shows the most affected images by a specific rule in terms of resolution.

For example, Rule 7 is highly applicable on relatively lower resolution (LR) images, whereas

Rule 2 can affect images of any resolution equally. It is important to note that these rule-sets are

used consistently and evaluated across all three publicly available datasets in the experiments, thus

demonstrating the generality and efficacy of such rule-sets. In addition, the current rule sets are

extendable by adding more rules to refine the classification/decision process. Please note that all

parameters in Table 3.1 are chosen empirically.

3.2.2 Random Forest based Decision Block (RFDB)

The scalable rule-sets based decision process yields promising results as demonstrated through-

out the experiments in Sec. 4.2. Nevertheless, there are many heuristics to handle and it requires

manual input and special attention while inducting new rules. To address this issue, we propose

an automated machine learning based approach that learns the decision process by mapping the

four features (PNC(%),PLC(%),PMC(%),PHC(%)) to respective class label (Zin, Normal or Zout) for

each image, where the features denote percentages instead of total image patches belonging to NC,

LC, MC and HC classes respectively and labels represent zoom-in, normal and zoom-out patch-

making blocks required to generate the patches from the particular input image before proceeding

to the count regressor. We employ percentages for features because of the huge variance in resolu-

tion across different images in a dataset, which directly influences the features and hence training

quality. In addition, since there is no such dataset available for the crowd counting problem to-

date that can help in learning this mapping, thus we generate a new RFDB training dataset from
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each corresponding benchmark as explained in detail in next subsection. To automate the decision

block process, we explored different machine learning classification models and found the random

forest-based model to be the most effective as demonstrated in the experiments in Sec. 4.2. Thus,

we choose the random forest algorithm and hence named this module as Random Forest based

Decision Block.

Random Forest (RF), being a bootstrap aggregation or bagging based ensemble method, can be

used both for classification and regression. We employ the RF algorithm to classify the four fea-

tures (PNC(%),PLC(%),PMC(%),PHC(%)) to a class label of (Zin, Normal or Zout) by building, training

and tuning a large collection of de-correlated binary decision trees. Each tree then casts a vote for

class prediction for the test sample. Finally, the class label with a majority vote is assigned to that

test sample i.e., the input image.

Each RF decision tree tk is built using a bootstrap sample BS(tk) which is generated from the

training data. Such bootstrap sample is given as:

BS(tk) =



NC1 LC1 MC1 HC1 C1

NC2 LC2 MC2 HC2 C2

NC3 LC3 MC3 HC3 C3

...
...

...
...

...

NCM LCM MCM HCM CM


(3.3)

for K = 0,1,2, ...N− 1, where N denotes the total number of RF trees. Each row represents one

training sample for the tree tk with the class label as the last entry. We use N = 100, which

is set empirically as no significant improvement has been observed in performance beyond this

number. The trees are grown using the classification and regression (CART) algorithm, where

the nodes get split until all leaves become unmixed or contain less than mmin samples [1]. We

use mmin = 2 throughout our experiments, thus splitting nodes until they contain either only one

sample or become pure. To quantify the quality of a tree node split, Gini Impurity has been used
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as:

Gini Impurityn =
L=3

∑
i=1
−Fi(1−Fi) (3.4)

where L denotes the total unique class labels and Fi denotes the frequency of class label i at node n.

During testing, each RF tree gives its class prediction for test image X . Final class label is obtained

by the majority vote criterion [14] as follows:

CRF(X) = ma jority vote{Ck(X)}N
1 (3.5)

where Ck(X) represents the class prediction by the kth RF tree.

3.2.2.1 Feature Importance Analysis

Feature Importance (FI) depicts the role of each feature in determining the node split and eventually

the quality of the RF decision trees building. Features with much lesser FI value can be easily

discarded as they do not play any significant role in decreasing the node impurity. As shown in

the graph in Figure 3.5, all four features have approximately the same FI values in each RFDB

dataset. Thus, we keep and use all four available features (PNC(%),PLC(%),PMC(%),PHC(%)) in all

three newly generated RFDB datasets.

3.2.3 Dataset generation for RFDB

The RFDB module learns to map the image extracted features (PNC(%),PLC(%),PMC(%),PHC(%))

to the respective class label (Zin, Normal or Zout) using training dataset with the corresponding

mapping. No such dataset has been created to-date. Thus, for each benchmark (ShanghaiTech

[45], UCF-QNRF [20], AHU [17]), we created a new respective RFDB dataset which contains this

mapping.

To create the new RFDB dataset, each training image’s required features (PNC(%),PLC(%),PMC(%),

PHC(%)) are extracted using ground truth crowd localization information and definitions of class

labels (NC,LC,MC,HC) as stated in 3.1, followed by manual verification and ground truth (GT)

18



class label assignment. To ensure the quality of the generated dataset, each sample entry was

then double checked for any inconsistency, duplicates, missing and erroneous cases. For the ex-

tracted features, we use percentages instead of the actual number of patches (PNC,PLC,PMC,PHC)

belonging to each category because of the huge resolution difference across the images within each

benchmark dataset.

3.2.3.1 RFDB Training Datasets Statistics

For each of the three crowd counting benchmarks, we create the corresponding RFDB dataset

using its respective training images. For instance, in the case of ShanghaiTech dataset (300 training

images), we generate the new 300 samples RFDB dataset with each entry being created using one

of the respective training image, followed by manual verification that also includes removal or

modification of inconsistent entries. In total, 220 and 812 samples are finalized for two RFDB

datasets based on ShanghaiTech [45] and UCF-QNRF [20] benchmarks respectively. For AHU

[17] based RFDB dataset, 90 out of 96 available entries are kept on average with 5-fold cross-

validation. The graph in Figure 3.6 shows the percentage of each class label in all three newly

created RFDB datasets.

3.3 Count Regressor Module (CRM)

The CRM module comprises of three independent patch-making blocks and a deep CNN count

regressor (COUNT ER). The decision module routes the test image to one of these patch-makers

for dividing it into 224× 224 patches after required up-scaling or down-scaling, followed by the

crowd count for each image patch via the count regressor (COUNT ER). The regressor employs

DenseNet-201 [18] inspired architecture with a single neuron after the fully connected layer to

directly regress the crowd count. Mean squared error (MSE), as defined below, has been employed
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as the loss function for the count regressor c :

Lc =
1
N

N

∑
i=1

(F(Xi,Θ)−Yi)
2 (3.6)

where N is the number of training patches per batch, Yi is the ground truth crowd count for the

input patch Xi, and F is the function that maps the input patch Xi to the crowd count with learnable

parameters Θ.

3.3.1 Zoom-in based Patch Maker (Zin)

Ideally, the decision module (DM) routes the image, with most crowd patches being classified as

high-density crowd, to this patch-maker. The image, using this patch-maker, is further sub-divided

into equal 112×112 patches, and then up-scaled by 2× before proceeding to the count regressor

for each patch crowd count. Intuitively, it looks into each patch in detail by estimating the count on

smaller zoomed-in highly crowded patches. In this way, it greatly stabilizes and improves the count

estimate for high-density images, where other methods may either underestimate or overestimate

too much due to fixed patch sizes, as demonstrated in the experiments Sec. 4.2.

3.3.2 Zoom-out based Patch Maker (Zout)

This block is responsible for handling the low-density extreme case images as detected and routed

by the decision module. Zout takes 448× 448 original patches of the test image X , down-scales

them by 2 times, and feeds each resultant patch to the CDC classifier to eliminate any no-crowd

patches, as shown in Figure 3.7. The count estimate for each crowd patch is then computed through

CRM count regressor (COUNT ER) followed by the image total count estimate, which is the sum

of all patches crowd counts. In other words, it assists the count regressor by using larger area per

input patch (448×448 down-scaled to 224×224) which alleviates the overestimation problem.
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3.3.3 Normal case

In Normal case, the images are divided into 224× 224 size patches with no up- or down-scaling

before patch-wise count regression. It is also worth mentioning that there is no need to explic-

itly look for and eliminate any no-crowd patches in case of Normal and Zin case images as such

background patches are automatically removed during the CDC module classification process, and

thus we can also reuse the remaining CDC module crowd patches in both these cases for crowd

estimate.

3.4 Comments on the Proposed Architecture

So, using the modular architecture (Figure 3.2) as discussed in detail, we aimed to solve the key

challenges with crowd counting research area. In short, we used a hybrid approach where we

decide about on mode of counting using the whole image (image-wise) but perform the actual

image count by estimating crowd on each of its patch (patch-wise). Usually, existing methods

rely only on either image-wise or patch-wise approach. Furthermore, we focused on stabilizing

the crowd counting in cases where images are very highly crowded or very low crowded. Other

methods result in overestimation and underestimation in such scenarios. We also addressed and

discarded any crowd-like cluttered and complex regions in images that may result in further crowd

overestimation.
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Figure 3.1: ZiZoNet Crowd Counting Base.
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Figure 3.2: ZiZoNet architecture. The test image X , divided into 224× 224 patches, first passes
through the Crowd Density Classifier (CDC) module, which discards no-crowd patches as classi-
fied by the robust 4-way DenseNet classifier. The accumulator stores patch count per class (PCCX)
of this image. Decision Module (DM), based on CDC module output and using either autonomous
RFDB or heuristic-based RSE module, decides whether this image should be divided into all nor-
mal (Normal) patches or make all either zoom-in (Zin) or zoom-out (Zout) based patches before
proceeding to the patch-based regressor (COUNT ER) for each patch crowd count. Image final
crowd estimate is then obtained by summing all patches count.
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no-crowd(NC) low-crowd(LC) medium-crowd(MC) high-crowd(HC)

Figure 3.3: Actual patches being used for the CDC classifier training. They belong to one of the four class labels
(NC, LC, MC, HC) based on the definition.

Figure 3.4: Densenet-201 architecture used for 4-way crowd density classification. Blue blocks
represent Dense Blocks 1, 2, 3 and 4 from left to right, followed by a fully connected layer and
final softmax 4-way classification. 224×224 size input patch is expected.
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Figure 3.5: Graph shows the Feature Importance (FI) analysis of features from new RFDB datasets
created using the corresponding benchmarks (ShanghaiTech, UCF-QNRF and AHU-Crowd). As
shown by the FI value, each of the four features plays an important and equal role in maintaining
its respective RFDB dataset quality.
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Figure 3.6: Graph depicts the total samples per class (%) in the new RFDB datasets, each created
from corresponding benchmark dataset as indicated by the horizontal axis.

Figure 3.7: Workflow in case if the patch maker Zout is selected by the decision module for the test
image count estimate. The input image is divided into 448×448 patches, then down-scaled by 2
times and fed to the CDC classifier to eliminate no-crowd patches. Crowd patches are then routed
to the COUNT ER for each patch crowd estimate.
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Chapter 4

Experiments and Results

In this chapter, we provide the technical implementation and evaluation details followed by exper-

imental results on three benchmark datasets. Most part of this chapter has been taken from the

implementation details and experiments sections of our work [32].

4.1 Implementation Details

4.1.1 Training Details

The CDC classifier and the count regressor (COUNT ER) expect fixed size patch of 224×224 as

the input. For both modules, we randomly extract 112× 112, 224× 224 and 448× 448 patches

from the training images. Around 90,000 such patches with mixed crowd numbers are generated

for each of these modules. The count regressor is trained for 80 epochs with Adam optimizer and

a batch size of 16 and starting learning rate of 0.001, decreased by half after every 20 epochs.

The classifier employs the stochastic gradient descent (SGD) based optimization with multi-step

learning rate starting at 0.1 and decreased by half after 25% and 50% epochs with 80 epochs in

total. For each dataset, around 10% training data has been used for validation as recommended

in the corresponding literature. For the random forest algorithm in RFDB, we utilize machine

learning library scikit-learn for python programming. The Random Forest model was trained using

100 RF decision trees, where each RF tree is trained using the bootstrapped sample with Gini

Imprity as node split quality criterion. 10% of the training data has been used for validation in case

of each RFDB dataset.
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Table 4.1: Benchmark datasets (used in the experiments) statistics.

Dataset Images Annotations Min Max. Avg.
UCF-QNRF [20] 1535 1,251,642 65 12865 815

ShanghaiTech Part-A [45] 482 241,677 33 3139 501
AHU-Crowd [17] 107 45,807 58 2201 428

Table 4.2: Comparison of ZiZoNet with the state-of-the-art methods on the UCF-QNRF [20] dataset. Methods
with ’*’ do not use density maps at all. Both versions of our method outperform the state-of-the-art on most of the
evaluation criteria.

MAE MNAE RMSE
Idrees et al. [19]* 315 0.63 508

MCNN [45] 277 0.55 426
Encoder-Decoder [6] 270 0.56 478

CMTL [36] 252 0.54 514
SwitchCNN [33] 228 0.44 445
Resnet101 [15]* 190 0.50 277

Densenet201[18]* 163 0.40 226
CL [20] 132 0.26 191

ZiZoNet-RSE* 130 0.23 204
ZiZoNet-RFDB* 128 0.20 201

4.1.2 Evaluation Details

In order to make a fair and consistent comparison with other methods, we employ three evaluation

metrics namely Mean Absolute Error (MAE), Mean Normalized Absolute Error (MNAE) and Root

Mean Squared Error (RMSE) defined as below:

MAE =
1
N

N

∑
i=1
|Yi− Ŷi| (4.1)

MNAE =
1
N

N

∑
i=1

|Yi− Ŷi|
Yi

(4.2)

RMSE =

√
1
N

N

∑
i=1

(Yi− Ŷi)2 (4.3)

28



Table 4.3: Ablation experiments on UCF-QNRF [20] dataset emphasize importance of zoom-in, zoom-out patch-
making blocks and associated rules in ZiZoNet-RSE. The first eight rows depict the effect of removing one rule at
a time on MAE, MNAE and RMSE while next three rows demonstrate the effect without using the zoom-in (Zin),
zoom-out (Zout ) and both zoom-in and zoom-out blocks respectively, followed by the method with original setting in
last row. IZin, IN , IZout indicate the total images handled by zoom-in, normal and zoom-out patch-makers respectively
before proceeding to the count regressor.

Without MAE MNAE RMSE IZin IN IZout

R1 130.6 0.23 204 75 101 158
R2 130 0.23 204 75 115 144
R3 138.4 0.27 230 75 106 153
R4 130 0.23 204 75 127 132
R5 130 0.23 204 75 97 162
R6 130 0.23 204 75 97 162
R7 130 0.23 204 75 97 162
R8 140.7 0.23 219 8 164 162
Zin 141.3 0.23 220 0 172 162
Zout 150.0 0.31 244 75 259 0

Zin &Zout 160.1 0.30 250 0 334 0
- 130 0.23 204 75 97 162

where N denotes the total number of test images, and Yi and Ŷi are the ground truth and the esti-

mated counts respectively for the test image i.

4.2 Experiments

In this section, we demonstrate both quantitative and qualitative results from extensive experiments

on three benchmark datasets: UCF-QNRF [20], ShanghaiTech [45], and AHU-Crowd [17]. These

datasets contain images with huge crowd variance, different camera perspective and complex clut-

tered background regions. Details about each benchmark are given in Table 4.1.

Two different versions of the proposed model, the Rule-Set Engine (ZiZoNet-RSE) based and

the automated RFDB module (ZiZoNet-RFDB) based version, are being compared separately with

the state-of-the-art techniques throughout this section. Both ZiZoNet versions give almost identical

and much better performance under most of the evaluation criteria on the three benchmark datasets.
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Figure 4.1: Quantitative importance of zoom-in and zoom-out blocks and given rule sets. For each
benchmark, at least 11% and as high as 48.5% test images pass through one of these specialized
patch-makers before patch-wise count regression, demonstrating the value and effectiveness of
such blocks and associated rules.

4.2.1 Experiments on UCF-QNRF Dataset

The dataset was recently published by Idrees et al. [20], which is a challenging and the first dataset

of its kind. On one hand, it contains images with resolution as high as (6666×9999) and as low as

(300×377); on the other hand, crowd count per image ranges from a maximum value of 12,865 to

a minimum count of 65. The total number of annotations in this dataset is 1,251,642, indicating the

level of crowd complexity. It contains 1535 images in total, out of which 1201 and 334 images are

used for training and testing respectively. We compare ZiZoNet with the state-of-the-art methods

and tabulate the results in Table 4.2. It is evident that both versions of our method outperform all

other approaches in terms of MAE and MNAE; while performing competitively closer to the best

in terms of RMSE.
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Table 4.4: Comparison of ZiZoNet with the state-of-the-art approaches on the ShanghaiTech [45] dataset, where ’*’
indicates methods not using density maps at all. Our method performs the best on every evaluation criteria.

MAE MNAE RMSE
Zhang et al. [43] 181.8 - 277.7

MCNN [45] 110.2 - 173.2
Cascaded-MTL [36] 101.3 0.279 152.4

Switch-CNN [33] 90.4 - 135.0
CP-CNN [37] 73.6 - 106.4
CSRNet [24] 68.2 - 115.0
IG-CNN [5] 72.5 - 118.2

L2R [27] 72.0 - 106.6
ICC [29] 68.5 - 116.2

SA-Net [7] 67.0 - 104.5
Deep-NCL [35] 73.5 - 112.3

Densenet201[18]* 79.3 0.224 118.9
ZiZoNet-RSE* 66.6 0.197 94.5

ZiZoNet-RFDB* 66.0 0.190 97.5

In order to evaluate the influence of different rules, we perform the ablation experiments, as

shown in Table 4.3. We analyze the effect of all rules (R1 to R8) by removing them one at a time in

ZiZoNet-RSE version of the proposed method. As shown in the results, doing so greatly decreases

the performance of our method, thus demonstrating the importance of those rules. We also analyze

the effect of removing both or either of the zoom-in and zoom-out patch-makers in the experiments.

From the results in Table 4.3, it is evident that both modules play an effective role in improving

the overall performance of our method. The last three columns of Table 4.3 show the number

of the test images passed through the zoom-in, normal and zoom-out patch-makers respectively.

In the original setting, 75 (∼ 22%) images passed through the zoom-in patch-maker, whereas the

zoom-out block handled 162 (∼ 48.5%) images and normal patch-maker was used only for 97

(∼ 29.5%) images, showcasing quantitative importance of these extreme case handlers, as shown

in Figure 4.1. We also compare the crowd estimate of ten test images each, for both extreme cases

with DenseNet[18] direct regression and the state-of-the-art CL [20] density map method. Our

method performs much better in both cases, as shown in Figure 1.2.
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Table 4.5: Ablation experiments on the ShanghaiTech [45] dataset show quantitative importance of the zoom-in,
zoom-out patch-making blocks and associated rules in ZiZoNet-RSE. The first eight rows depict the effect of removing
one rule at a time. Next three rows demonstrate the results without using the zoom-in (Zin), zoom-out (Zout ) and both
zoom-in and zoom-out blocks respectively, followed by the method with original setting in the last row. IZin, IN , IZout
indicate the total images handled by zoom-in, normal and zoom-out blocks respectively before proceeding to the
counter.

Without MAE MNAE RMSE IZin IN IZout

R1 66.8 0.199 94.8 21 135 26
R2 66.8 0.198 94.6 21 122 39
R3 67.2 0.198 94.7 21 124 37
R4 66.6 0.197 94.5 21 121 40
R5 69.4 0.200 103.7 15 127 40
R6 69.1 0.210 101.8 19 123 40
R7 66.8 0.200 97.2 20 122 40
R8 66.8 0.197 94.6 15 127 40
Zin 74.9 0.200 116.4 0 142 40
Zout 69.1 0.210 96.5 21 161 0

Zin & Zout 78.3 0.210 118.9 0 182 0
- 66.6 0.197 94.5 21 121 40

4.2.2 Experiments on ShanghaiTech Dataset

The ShanghaiTech part A dataset contains a total of 482 images with 241,677 annotations, ran-

domly collected from the internet, with a split of 300 and 182 images for training and testing

respectively. We compare our method with the state-of-the-art methods as shown in Table 4.4.

The results show that our method outperforms all other methods on every evaluation metric with

significant improvement from 0.224 to 0.190(∼ 15%) in terms of MNAE and from 104.5 to

94.5(∼ 9.6%) in case of RMSE.

The proposed rules (R1-R8) play an important and effective role in the performance improve-

ment of ZiZoNet-RSE version of our method as shown in Table 4.5, where we remove each rule

one at a time. It is clear that the error increases by removing these rules. In the same table, We

also analyze the effect of removing the zoom-in and zoom-out blocks separately and together. As

expected, the performance plunges dramatically as error increases without using them. The last

three columns show the number of test images passing through the zoom-in, normal and zoom-out

patch-makers respectively. In the original setting, 21 (∼ 11.5%), 121 (∼ 66.5%) and 40 (∼ 22%)
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Figure 4.2: 182 test images are divided into ten groups with total crowd count in each group
increasing from left to right. Each group contains 18 images except group number 10. Vertical
axis indicates average count for each group. It is evident that ZiZoNet remains closer to the ground
truth (GT) bar in most cases as compared to the state-of-the-art methods.

images are handled by the zoom-in, normal and zoom-out blocks respectively, thus proving the

quantitative importance of all of them and associated rules in ZiZoNet-RSE, as shown in Figure

4.1. In Figure 4.2, we analyze the performance of our method on the average count across image

groups with different total crowd counts. As compared with the state-of-the-art methods, ZiZoNet

performs the best in most cases.

4.2.3 Experiments on AHU-Crowd Dataset

AHU-Crowd [17] dataset contains 107 images with 45,807 human annotations. The crowd count

ranges from 58 to 2201 per image. As per the standard being followed for this dataset [17], we

performed 5-fold cross-validation and evaluated our method using the same three evaluation met-
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GT=704, DR=861
Ours=708, Density[3]=1017

GT=1443, DR=1516
Ours=1443, Density[3]=388

GT=4535, DR=4109
Ours=4523, Density[3]=2759

GT=297, DR=474
Ours=299, Density[24]=457

GT=961, DR=997
Ours=996, Density[24]=1022

GT=1366, DR=1425
Ours=1384, Density[24]=1445

Figure 4.3: Some examples of the good qualitative results on the UCF-QNRF [20] and ShanghaiTech [45] datasets.
Each result also shows the estimates of DenseNet [18] Direct Regression (DR) and the Density map method as a
comparison.
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GT=353, DR=493
Ours=489, Density[3]=476

GT=1668, DR=1629
Ours=1476, Density[3]=1717

GT=249, DR=159
Ours=140, Density[24]=174

GT=199, DR=321
Ours=413, Density[24]=413

Figure 4.4: Some examples of the bad qualitative results on the UCF-QNRF [20] and ShanghaiTech [45] datasets.
Each result also shows the estimates of DenseNet [18] Direct Regression (DR) and the Density map method as a
comparison.
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Table 4.6: Comparison of ZiZoNet with the state-of-the-art on the AHU-Crowd [17] dataset, where ’*’ indicates
methods without using density maps. Our method outperforms previous approaches on all evaluation metrics.

MAE MNAE RMSE
Haar Wavelet [28] 409.0 0.912 -

DPM [12] 395.4 0.864 -
BOW–SVM [11] 218.8 0.604 -

Ridge Regression [10] 207.4 0.578 -
Hu et al. [17] 137 0.365 -
DSRM [42] 81 0.199 129

Densenet201[18]* 87.6 0.295 124.9
ZiZoNet-RSE* 79.3 0.198 121

ZiZoNet-RFDB* 74.9 0.190 111

Table 4.7: ZiZoNet performance analysis on ShanghaiTech and UCF-QNRF benchmarks using different ML classi-
fication algorithms in the RFDB block of Decision Module (DM). As shown, top five results indicate best performance
by the Random Forest algorithm, thus, justifying its usage in the RFDB module.

ShanghaiTech UCF-QNRF
MAE MNAE RMSE MAE MNAE RMSE

Random Forest 66.0 0.190 97.5 128 0.20 201
ExtraTrees 70.7 0.20 102.8 135 0.22 214

GradientBoosting 72.9 0.22 119.0 137 0.22 222
AdaBoost 75.0 0.22 105.31 151 0.24 265

Logistic Regression 78.9 0.23 119.6 177 0.24 279

rics. ZiZoNet outperforms all other methods as shown in Table 4.6. It is worth-mentioning that

ZiZoNet decreases MAE and MNAE significantly by ∼ 7.5% (81 to 74.9) and ∼ 4.5% (0.199 to

0.190) respectively, whereas RMSE decreases drastically by ∼ 11.2% (124.9 to 111).

4.2.4 Qualitative Results

In Figures 4.3 and 4.4, we show some good and bad case qualitative results respectively from

UCF-QNRF and ShanghaiTech datasets. We also compare our results with the ground truth (GT),

DenseNet [18] Regression (DR) and the state-of-the-art density map methods. In each row, the

first three cases demonstrate the good results followed by two bad estimates. The bad case results

happen mostly due to the test image being detected as wrong extreme case type by the decision
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no-crowd(NC) low-crowd(LC) medium-crowd(MC) high-crowd(HC)

no-crowd(NC) low-crowd(LC) medium-crowd(MC) high-crowd(HC)

Figure 4.5: Qualitative results of some test images patches being classified correctly as no-crowd (NC), low-crowd
(LC), medium-crowd (MC) or high-crowd (HC) by the CDC classifier as shown for each category column-wise.

module (DM). We also show some visual results to demonstrate the qualitative performance of the

CDC classifier in Figure 4.5.

4.2.5 RFDB Algorithm Selection

In this paper, we adopt the Random Forest algorithm for the RFDB module. In practice, other

machine learning-based classification algorithms can also be employed. In order to choose the best

one for our system, we experimented with different classifiers to select the appropriate decision-
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making algorithm. The results based on the ShanghaiTech and UCF-QNRF datasets are shown in

Table 4.7. We observe that ensemble based methods perform better on our relatively smaller and

imbalanced RFDB datasets as they prevent over-fitting and high variance by combining several

machine learning techniques. After evaluation, the Random Forest appears to be the best choice as

the RFDB algorithm as shown in Table 4.7, where the top five best results justify the selection of

the Random Forest algorithm. For these experiments, we used machine learning library scikit-learn

for python programming [2].
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Chapter 5

Conclusion and Future Work

In this work, we have proposed a novel zoom-in and zoom-out based mechanism for effective and

accurate crowd counting in highly diverse images. We propose to employ a decision module to

detect the extreme high and low dense cases, where most state-of-the-art regression and density

map based methods perform worse. The cluttered background regions are also discarded using the

rigorous deep CNN 4-way classifier. Without using any density maps at all, ZiZoNet outperforms

the state-of-the-art approaches on three benchmark datasets, thus proving the effectiveness of the

proposed model. We also created three new training datasets for the training of different machine

learning algorithms to learn the crowd diversity. This will help the researchers working in crowd

analysis field to explore the problem further. In this work, we addressed following crowd counting

challenges:

• Large variation across crowd density across different images that results in overestimation

or underestimation.

• Crowd-like cluttered background regions in images that result in further overestimation.

• Availability of few training Images.

In future, we aim to make the quality of three new RFDB datasets better by exploring addi-

tional dimensions and adding more features or density levels. We also look forward to work-with

and analyze different revisions of the proposed framework with different networks being used as

classifiers and regressors. End-to-end approach is also the most desirable form in deep learning
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research, but it seems inevitable in crowd counting problem to use modular approach to handle

huge crowd diversity. Most state-of-the-art and end-to-end models fail to address crowd count-

ing challenges alone. But in future, we will try to explore some end-to-end mechanisms for this

problem. We also aim to incorporate this approach in some other applicable domains e.g. crowd

tracking, crowd anomaly detection etc.

For fair comparison, the source code and the datasets will be available on the Author’s website.

Most part of this section has been taken from the conclusion section of our work [32].
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