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Abstract 

 

In recent years, metal-metal oxide catalysts have proven to be robust catalysts for 

hydrodeoxygenation (HDO) of oxygenated compounds derived from bio-renewable feedstocks to 

value-added products. Herein, the conversion of 1,2,6-hexanetriol (1,2,6-HT) to 1,6-hexanediol 

(1,6-HD) in aqueous media over a Pt-WOx/TiO2 catalyst is examined via isotope incorporation in 

HDO of a model compound, 1,2-pentanediol (1,2-PD). Absence of a primary kinetic isotope effect 

(kH/kD = 0.84 ± 0.11) disproves a possible direct C‒O scission mechanism. The observation of 

nearly complete deuterium incorporation in both the α-C and the β-C is inconsistent with the 

reverse Mars-van Krevelen mechanism and suggests an enol formation pathway that has not been 

proposed for HDO reactions of this type until now. Evidence consistent with the intermediacy of 

an oxocarbenium ion as a minor contributor has also been observed.  In drawing the conclusions, 

it was necessary to characterize the facile isotope exchange between surface activated hydrogen 

and the water solvent. Hydrogenation of a water soluble olefin, tetra(ethylene glycol) diacrylate 

(TEGDA) in H2/D2O revealed predominant incorporation of deuterium instead of hydrogen in the 

reduced product, confirming the rapid exchange of surface activated hydrogen. The methods used 

in this study provide a new perspective for a reaction mechanism currently under debate, and these 

findings can be applied to other systems involving HDO of linear polyols over metal-metal oxide 

catalysts, improving catalyst design and utilization of sustainable feedstocks. 
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w = catalyst loading per unit volume of reactor [kg m-3] 
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α1 = gas-liquid mass transfer parameter 

α2 = liquid-solid mass transfer parameter 

ε = rate of flow energy supply per mass of liquid [m2 s-3] 

ν = kinematic viscosity of solvent [m2 s-1] 

τ = tortuosity factor of catalyst [--] 

ρp = catalyst particle density [kg m-3] 

ϕc = Carman’s surface factor [--] 

ϕexp = intraparticle mass transfer parameter 
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Chapter 1: Introduction 

 

1.1 Biomass utilization 

The utilization of biomass as a potential alternative for fossil resources in the production of 

chemicals and fuels has garnered significant attention in recent years. The chemical structure of 

different biomass species determine the type of fuels and valuable chemicals that can be derived 

from them and, accordingly, the functionalities and mechanisms that will be involved. 

Lignocellulosic biomass makes up about 90% of most plants by dry weight1, and comprises 

cellulose, hemicellulose, lignin, and pectin. The first three are the components of greatest interest, 

as they are not associated with food production. Lignocellulose is composed of around 50% 

cellulose, 10-40% hemicellulose (10-30% in woods and 20-40% in herbaceous plants), and 10-40% 

lignin (20-40% in woods and 10-40% in herbaceous plants) on a dry basis.2 The high degree of 

polymerization of cellulose provides strength to the plant cell walls while hemicellulose helps to 

bind this fibrous cellulose to the lignin, providing additional structural support as well as 

impermeability and resistance to microbial attacks.3-4 Yang et al. observed the breakdown of these 

main constituents during pyrolysis and found that hemicellulose breaks down at 220-315 °C, 

cellulose at 315-400 °C, and lignin at 160-900 °C.5 Accordingly cellulose contains stronger 

chemical bonds than hemicellulose, and lignin’s broad temperature range is a product of its high 

degree of heterogeneity. 

Cellulose is mainly found in plant cell walls that are part of stalks, stems, trunks, or any 

other woody portion of a plant, and it is also present in bacteria, fungi, algae, and even in some 

animals.6 A great deal of literature has been produced on the structure and chemical properties of 

cellulose since its discovery and isolation from the rest of plant matter by Anselme Payen in 1838.7 
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It is a homogeneous, polymeric material, which forms a strong, fibrous structure. It is made of β-

D-glucopyranose units, existing in chair formation, with its hydroxyl groups in the equatorial 

position; β-glycosidic bonds are responsible for the linkages within the polymer.6, 8-9 The degree 

of polymerization for cellulose is about 10,000 for wood and 15,000 for cotton which cause this 

material to be insoluble in water.10 Cellulose can be depolymerized to glucose monomers, which 

are used extensively in biomass utilization technologies. 

Hemicellulose is a heterogeneous polymer with a much lower degree of polymerization 

than cellulose (~200)11 with branched chains that may contain pentoses, hexoses, and uronic acid 

depending on the biomass source.12 Xylan is the most prominent substance in hemicellulose that 

makes up anywhere from 8-25% of the total biomass weight,13 and may be composed of a 

combination of arabinose and glucuronic, acetic, ferulic, and p-coumaric acids.14 Xylans are 

typically heteropolysaccharides that are supported by homogeneous polymer chains of 1,4-linked 

β-D-xylopyranose units.15 The sugar xylose can be obtained from hemicellulose just as glucose 

was from cellulose, and this can be used to produce various furans, which are some of the major 

building blocks for important biomass valorization products such as monomers and fuels.16-17 

The quest for valorization of bio-renewable feedstocks and their derivatives requires 

technological developments ranging from the macro-scale, referring to processes of the chemical 

plant, down to the nano-scale of catalyst functionality and design. An aspect that aids in catalyst 

design is determination of the reaction mechanism,18-20 and one important biomass reaction is the 

conversion of 1,2,6-hexanetriol (1,2,6-HT) to 1,6-hexanediol (1,6-HD).21-23 1,6-HD is a precursor 

to very popular polymers such as polyester,24 polyurethane,25 and Nylon-6,6,26 and its procurement 

can be drawn from a few major renewable intermediates including isosorbide and 

hydroxymethylfurfural which can be derived from cellulose.27-28 The central goal of this thesis is 
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the elucidation of the mechanism of 1,6-HD formation over PtWOx/TiO2 catalysts in aqueous 

media. 

 

1.2 Metal-metal oxide catalysts 

Metal-metal oxide supported catalysts have become popular in recent years for their superior 

activity in deoxygenation reactions that are important for biomass utilization.21, 29 These reactions 

often involve the use of hydrogen as the reactive gas and water as the solvent. Water is a desirable 

solvent for its abundance and environmentally benign nature. An advantage of metal-metal oxide 

catalysts is their stability, both in structure and activity, under practical reaction conditions.23, 30-32 

Group VIIIB reducible metals paired with the transition metal oxides MoOx, WOx, and ReOx are 

most commonly used, and form the epicenter of recent mechanistic investigations.21, 23, 29, 32 The 

addition of a metal oxide greatly enhances the activity of the catalyst compared to traditional 

supported noble metal catalysts.21, 29 The reason for this enhancement has proven elusive with 

some authors attributing it to the oxide/metal interface strengthening Lewis acidity.33-34 Such 

structure sensitive catalysts must be carefully prepared to optimize the population of interfacial 

sites.  In other work, a computational study showed a Ru/RuO2 interface used for furfural 

hydrodeoxygenation (HDO) does not considerably enhance Lewis acid oxophilicity.35 The Gibb’s 

free energy of oxide formation, and hence reducibility, of the metal oxide is also an important 

factor governing activity and considered in catalyst optimization.36 

The complexity of these catalysts has caused a definitive explanation of their function to 

be elusive. Group VIIIB metals are agreed to be responsible for hydrogen activation, but advocates 

for both homolytic and heterolytic dissociation exist.35, 37 Also, whether the metal hydrides are 

involved in hydrogenation of the substrate is debatable.38-39 Uncertainties about the functionality 
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of the metal oxide are also present in the community. As will be seen in the following sections, 

these sites have been argued to act as Brønsted acids in the form of surface hydroxyl species bound 

to the metal oxide which promotes acid catalyzed dehydration of the oxygenated substrate.23, 38 

However, if the metal oxide is characterized as a Lewis acid, oxygen vacancies are said to be 

formed at the metal oxide’s surface enabling a reverse Mars-van Krevelen (RMvK) mechanism.35, 

39 Reducible supports such as TiO2 are known to facilitate hydrogen spillover and transfer across 

their surfaces.40 After H2 activation, H atoms may travel in the form of proton and electron pairs, 

and in the case of the Pt/WO3 system reduce W6+ species to W5+.41 

 

1.3 Mechanisms under consideration 

To elucidate the mechanism of the selective HDO of 1,2,6-HT to 1,6-HD, four reaction pathways 

were considered. Three are derived from work of Dumesic,38 Tomishige,37 and Vlachos35 and the 

fourth is a proposed acid catalyzed enol formation. All attempt to explain the deoxygenation 

pathway for various cyclic and linear oxygenates. 

Dumesic and coworkers claim hydrogenolysis of both cyclic and linear oxygenates 

involves an oxocarbenium ion intermediate that precedes metal-catalyzed hydrogenation, seen in 

Figure 1.1.38 Here, acid catalyzed dehydration occurs at the secondary C‒O bond to form the 

carbenium intermediate following hydride transfer from the primary carbon. The resulting 

Figure 1.1: Reaction pathway via oxocarbenium ion formation derived from Dumesic and 
coworkers with WOx species transformations. 
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oxocarbenium avoids formation of an unstable primary carbenium ion that would form if 

deoxygenation of the primary hydroxyl was executed. The unsaturated intermediate is then 

hydrogenated by a metal site, e.g. Pt-H species. The rate-determining step for this mechanism is 

expected to be the acid catalyzed C‒O scission step. Brønsted acid sites on the metal oxide are 

regenerated via hydrogen spillover from Pt reducing W6+ to W5+.23 

 The second mechanism under consideration is derived from that of Tomishige and 

coworkers.37 Here a primary hydroxyl binding, followed by direct C‒O scission is utilized to 

explain selectivity toward deoxygenation of the secondary hydroxyl. An adaption of this 

mechanism is seen below in Figure 1.2.  

 

 

Pt is shown to heterolytically activate H2 gas forming a H‒ species at the metal oxide/metal 

interface and a H+ ion in solution following Tomishige’s precedent for RhReOx. The H‒ then reacts 

with the β-C of the substrate performing a direct C‒O scission and forming the chemisorbed 

product while the leaving group forms water in solution. Metal oxide/metal interfaces are given 

much importance as the reaction is mediated by these sites. The rate-determining step of this 

mechanism is the surface reaction between the substrate and the H‒ species.37  

Figure 1.2: Reaction pathway via direct C‒O scission derived from Tomishige and coworkers and 
catalyst surface transformations. 



6 
 

 The RMvK mechanism is another plausible pathway for the present HDO reaction. Vlachos 

and coworkers have performed extensive computational studies on a Ru/RuOx system for 

deoxygenation reactions35 which could be relevant to the present system. Conversion of the 

substrate is dependent on oxygen vacancy formation in this mechanism. These vacancies are 

produced via reduction from hydrogen spillover. The steps are shown below in Figure 1.3. As 

mentioned previously, cooperative interfacial sites are not given emphasis in the mechanism. 

Instead, oxophilicity and reducibility of the metal oxide is key for the performance of the 

catalyst.35-36 After an oxygen vacancy is formed, the Lewis basicity of the substrate’s secondary 

hydroxyl (which is greater than the primary hydroxyl) leads to preferred adsorption. After the C‒

O bond scission takes place, the vacancy is filled with the hydroxyl group as the substrate desorbs 

in the form of a radical followed by intermolecular H transfer from the adsorbed hydroxyl group.35 

Another plausible avenue is a concerted, two electron transfer from the vacancy site with concerted 

C‒O bond scission which would form a very unstable carbanion intermediate. This carbanion 

would then quickly obtain a proton from the surrounding hydronium ions. The rate-determining 

step of this mechanism is deemed to be the breaking of the C‒O bond. After the reaction takes 

place, oxygen vacancies are created again via reduction with hydrogen to repeat the cycle. 

Figure 1.3: Reaction pathway via reverse Mars-van Krevelen derived from Vlachos and coworkers 
with oxygen vacancy transformations. 
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 The fourth mechanism considered involves acid catalyzed dehydration followed by enol 

formation and alkene reduction and has some similarities to the first mechanism. Initial acid 

catalyzed dehydration is present in many proposals23, 38, 42-43 with some proceeding to the 

oxocarbenium intermediate23, 38 and others to ketones and aldehydes.42 However, direct 

hydrogenation of the enol intermediate over Pt metal sites is a logical mechanistic step that was 

not promoted in the above three mechanisms. Following hydrogenation, the WOx Brønsted sites 

are regenerated as in the oxocarbenium mechanism. Figure 1.4 below shows a possible reaction 

route via enol formation. 

Utilization of isotopologues, often hydrogen and deuterium, are invaluable for mechanistic 

studies, and in recent years deuterated compounds and D2 gas have been employed in HDO 

investigations.29, 44-45 Some experiments comprise deuterium incorporation into reaction products 

and are analyzed via nuclear magnetic resonance (NMR) spectroscopy to clarify the position of 

the differing isotope and make mechanistic deductions.29, 45 Other experiments observe a kinetic 

isotope effect (KIE) that the heavier atom imposes on the reaction and gives clues on the nature of 

the rate-determining step.44 Deuterium is often the isotope of choice because of its atomic weight 

ratio with hydrogen (2:1) allowing the largest differentiation among the accessible isotopes. In this 

work, the HDO mechanism of 1,2,6-HT conversion over Pt-WOx/TiO2 is elucidated. The 

techniques applied in this venture are: deuterium incorporation with D2 gas and D2O solvent, 

analysis of the rate of isotope exchange between the catalyst surface and solvent, and the 

observation of KIEs.   

Figure 1.4: HDO reaction mechanism via acid catalyzed dehydration and enol formation. 
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Chapter 2: Materials, Experimental Methods, and Characterization Techniques 

 

2.1 Materials 

The chemicals 1,2-pentanediol (96%), 1-pentanol (99%), methyl sulfoxide-d6 (99.9 atom % D), 

and 1-methyl-2-pyrrolidinone were purchased from Acros Organics. 1,2,6-Hexanetriol (96%) and 

diethylene glycol diethyl ether (99+%), were purchased from Alfa Aesar. Deuterium oxide (99.9 

atom % D), 1,2-hexanediol (98%), 1,5-hexanediol (99%), tetrahydropyran-2-methanol (98%), 

tetra-ammineplatinum(II) nitrate (# 278726) and ammonium paratungstate hydrate (# 510114) 

were purchased from Aldrich. Methanol (HPLC grade) was purchased from Fisher Scientific. 

Evonik Industries generously provided the TiO2 catalyst support (Aeroxide P 25, # 99036028). 

Hydrogen (>99.9999%), deuterium (>99.999%), and carbon monoxide (99.999%) gases were 

purchased from Matheson Tri-Gas. 

 

2.2 Catalyst synthesis 

4 wt% Pt-WOx/TiO2 (1:1 Pt:W molar ratio), hereafter will be named Pt-WOx/TiO2, catalysts were 

synthesized via incipient wetness impregnation. First, a tetra-ammineplatinum(II) nitrate aqueous 

solution was added dropwise to wetted TiO2 while being stirred vigorously. This mixture was then 

dried in a vacuum oven overnight at 110 °C. The dry solid was lightly rehydrated and an aqueous 

solution of ammonium paratungstate hydrate was added dropwise with vigorous stirring. The 

mixture was dried in a vacuum oven overnight at 110 °C. The dry solid was then calcined for three 

hours at 400 °C (5 °C min-1). Pt/TiO2 catalysts were synthesized following the same method except 

the steps involving the tungsten precursor were omitted. WOx/TiO2 catalysts were synthesized 
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following the same method omitting the Pt precursor where the same amount of WOx loading as 

the previous catalysts was used. 

 

2.3 Autoclave reactor 

A custom-made autoclave reactor combined with a heating block and stirring magnet was used for 

screening reactions. The reactor is comprised of a stainless-steel rectangular base with a circular 

cutout that accommodates 7 x 1.5 mL reaction vials.  Gases are introduced and exhausted through 

piping attached to a top plate that is secured to the base with bolts where a polytetrafluoroethylene 

(PTFE) gasket provides an air-tight seal between the plate and the base. The maximum allowable 

working pressure (MAWP) is 82 bar at 260 °C. Figure 2.1 below shows a schematic of the reactor 

where a legend can be found in Figure 2.3. It is equipped with an inlet accommodating multiple 

gases, a pressure gauge, a dual thermocouple (TC) that measures the temperature at the location 

of the reaction vials, and a rupture disk. 

 

Figure 2.1: Schematic of autoclave reactor system. 
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The substrate solution and catalyst were charged with a PTFE stirring bar into a 1.5 mL 

glass vial closed with a metal cap and septum that was punctured with a needle to facilitate gas 

transfer. The vial was sealed in the reactor, purged with nitrogen followed by the reactive gas, and 

subsequently pressurized with the reactive gas. The reactor was then heated to the desired 

temperature and stirring was activated to initiate reaction. After the reaction, the reactor was cooled 

to room temperature and subsequently depressurized. The product solution was filtered from the 

catalyst and analyzed. 

 

2.4 Stirred tank reactor 

Kinetic studies were carried out in a 50 mL Parr Series 5500 Compact Reactor seen in Figure 2.2 

where a legend can be found in Figure 2.3. This apparatus consists of a stainless-steel cup to which 

the reaction mixture is charged, and a stainless-steel head with multiple ports to accommodate an 

inlet, a dip tube for sampling, a rupture disk, pressure gauge, dual TC, and an outlet. The entire 

vessel is portable and is placed on a stand with a heating block and stir shaft. Heating and stirring 

Figure 2.2: Schematic of stirred tank reactor system. 
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are controlled by a Parr Series 4848 Reactor Controller equipped with an over-temperature 

controller. The MAWP is 200 bar at 350 °C. 

Substrate solution and catalyst were charged to the reactor, the reactor sealed, and purged 

with nitrogen followed by the reactive gas. The reactor was then pressurized with the reactive gas 

and heated to the reaction temperature with slow stirring. After reaching the desired temperature, 

the stirring was set to 1000 rpm initiating the reaction. Samples were taken during reaction by 

closing valve V-A12 and briefly opening valve V-A11 to trap a plug of liquid between the two 

valves. The liquid was allowed to cool before slowly opening valve V-A12 to avoid loss product 

via evaporation. Before each sample, 1 mL of product solution was purged through the sample line 

and discarded to ensure the line is clear of contaminants. After the reaction, the reactor was cooled 

to room temperature and pressure released.  

Figure 2.3 below shows a piping and instrumentation diagram (P&ID) for both reactors. 

Compressed cylinders supplying the system with N2, H2, and an auxiliary gas are shown. The 

P&ID displays both reactors used; the braided hose is connected to the desired reactor’s inlet 

during operation. A larger 150 mL stirred tank reactor is located beside the current setup which is 

operated via the side panel and air actuators mentioned in the diagram. Dual TCs are utilized for 

connections to both temperature controllers and over-temperature controllers for safety. Each 

reactor is fitted with a rupture disk to prevent over-pressurizing. 
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2.5 Gas Chromatography 

Reaction product identification and quantification was done with an Agilent 7890B gas 

chromatograph (GC) equipped with an Rx-1701 column (30 m length, 0.25 mm internal diameter, 

and 1 μm film thickness) and a flame ionization detector (FID). Sample preparation involved 

filtering the product solution of particulates, addition of an internal standard, and dilution with 

methanol. Injections were made by an Agilent 7693A Automatic Liquid Sampler with 1 μL 

injection volume and a 10:1 inlet split ratio. Helium was used as the carrier and makeup gas. 

Calculations were made with an internal standard calibration (ISC) using diethylene glycol diethyl 

ether (Alfa Aesar # 43464) as the internal standard. All reaction data calculated with the ISC were 

compared to an external calibration of FID signal vs concentration with R2 values >0.99 of a linear 

fit to the data points in the concentration range 0.1 – 6.0 mg mL-1. An example of a reaction product 

injection can be found in Appendix A where all peaks are seen to separate and no overlapping 

occurs. 

 

2.6 Nuclear Magnetic Resonance Spectroscopy 

1H and 2H NMR analyses were performed with a Bruker Avance III HD 400 MHz resonator 

equipped with a broadband X-channel detect gradient probe. Analyses involving 13C detection, 

including distortionless enhancement by polarization transfer – 135° (DEPT), were performed with 

a Bruker Avance III 500 MHz resonator equipped with a multi-nuclear BBFO cryoprobe. Reaction 

products were filtered from catalyst powder and inserted directly into a sample tube for analysis. 
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2.7 Powder X-Ray Diffraction 

Powder x-ray diffraction (PXRD) was performed with a Bruker D2 PHASER equipped with a Co 

Kα radiation source (λ = 1.79026 Å) operated at 30 kV and 10 mA. The 2θ scanning angle ranged 

from 25° to 100° with a speed of 11°/min. Catalyst powders were loaded onto a poly(methyl 

methacrylate) specimen holder and pressed to level the powder surface with the holder to obtain 

highest reproducibility of data. 

 

2.8 Scanning and Transmission Electron Microscopy 

Scanning transmission electron microscopy (STEM) images were collected with an FEI Tecnai 

F20 field emission microscope equipped with a 200 kV electron source. Samples were suspended 

in ethanol via sonication and placed on a carbon Cu TEM grid. Scanning electron microscopy 

(SEM) images were collected with an FEI Versa 3D DualBeam SEM. 

 

2.9 N2 Physisorption 

N2 physisorption was performed on a Micromeritics ASAP 2020 Plus Chemisorption apparatus. 

Before analyses, samples weighing about 0.2 g were degassed for 12 hours at 150 °C under vacuum 

(<0.1 Torr). Measurements were taken of adsorbed gas at liquid nitrogen temperatures (-196 °C) 

at relative pressures of N2 ranging from ~0.050 to ~0.988 Relative pressure is defined as P/Po 

which is the absolute pressure over the saturation pressure. Surface areas were calculated by the 

Brunauer-Emmett-Teller (BET) theory; equations and error analysis can be found in Appendix E. 

Pore size distributions were found using the method of Barrett, Joyner, and Halenda (BJH) which 
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is an iterative algorithm used in the software to analyze the adsorption and desorption isotherms 

seen in Appendix E. This method was used since the material is in the mesoporous regime. 

 

2.10 CO Chemisorption 

Carbon monoxide chemisorption experiments were conducted with a Micromeritics ASAP 2020 

Plus Chemisorption apparatus. About 0.3 g of catalyst was placed in a quartz sample tube 

supported by quartz wool above and below the sample to prevent entrainment. First, the sample 

was heated to 100 °C under vacuum for 30 minutes and backfilled with He. Then, the samples 

were subsequently heated to 350 °C under the flow of H2 for 120 minutes to reduce the catalyst. 

After evacuation, the sample tube was cooled to 35 °C under vacuum, an automated leak test of 

the system was done, and another evacuation performed. Isothermal analysis with CO was done at 

35 °C with 8 pressure data points ranging from ~100 mmHg to ~450 mmHg; this first analysis 

measures both physisorbed and chemisorbed CO. A repeat analysis was done on the resulting 

unreduced catalyst in which only the physisorbed CO was measured, CO molecules adsorbed to 

surface species other than Pt, and this amount was subtracted from the results of the first analysis 

to give a value that represents only chemisorbed CO. Equations used for calculating metal 

dispersion and metal surface area are found in Appendix F. 
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Chapter 3: Results and Discussion 

 

3.1 Catalyst Characterization 

3.1.1 Powder X-Ray Diffraction 

To analyze the crystal structure of different components of the catalyst, PXRD was performed. 

Figure 3.1 shows patterns of three catalysts: Pt-WOx/TiO2, Pt/TiO2, and WOx/TiO2 as well as the 

support, TiO2. The TiO2 support was subjected to the same synthesis conditions and thermal 

history as the catalysts to enable use as a control. There are noticeable peaks at ~46° and ~54° on 

Figure 1: XRD patterns of Pt-WOx/TiO2 (black), Pt/TiO2 (red), WOx/TiO2 (green), and TiO2 
(blue). 

Pt-WOx/TiO2 

Pt/TiO2 

WOx/TiO2 

TiO2 

2θ 
Figure 3.1: XRD patterns of Pt-WOx/TiO2 (black), Pt/TiO2 (red), WOx/TiO2 (green), and TiO2 
(blue). 
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the two platinum-containing catalysts that correspond to Pt (111) and (200) respectively.46-47 The 

Pt-WOx/TiO2 catalyst Pt peaks are seen to be smaller than that of the Pt/TiO2 catalyst, consistent 

with the decreased metallic surface area seen in CO chemisorption (Section 3.3.2). The patterns of 

tungsten oxide-containing catalysts were fitted with peak profiles for WO2 and WO3 and no 

apparent matching was seen (Appendix C), but the surfaces of TiO2 nanoparticles are visibly 

altered by the addition of WOx (Figure 3.2d) which indicates WOx is very well dispersed. 

Quantitative analysis of the TiO2 phase for each catalyst gave a composition of ~90% anatase and 

~10% rutile via relative peak intensities. 
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3.1.2 Scanning and Transmission Electron Microscopy 

TEM was performed on the catalysts for qualitative analysis. The results compliment other 

characterization data. Figure 3.2 shows the Pt nanoparticles to be on the scale of 2 to 3 nm which 

is consistent with the same catalyst found in literature.23 However, the Pt nanoparticles seem to be 

selectively growing on certain TiO2 particles suggesting there is a preferred phase of growth for 

platinum. The surface of TiO2 particles are visibly altered by the addition of WOx (compare Figure 

3.2b and d), and since reactivity is affected by the addition of WOx, but its presence not detected 

Figure 2: TEM images of 4 wt% Pt/TiO2 at (a) 20 nm and (b) 10 nm length scales, 
and of Pt-WOx/TiO2 at (c) 20 nm and (d) 10 nm length scales. 
Figure 3.2: TEM images of 4 wt% Pt/TiO2 at (a) 20 nm and (b) 10 nm length scales, 
and of Pt-WOx/TiO2 at (c) 20 nm and (d) 10 nm length scales. 
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by PXRD, it can be said that the sub-nanometer roughness observed on TiO2 in TEM imaging is 

attributable to highly dispersed WOx. Also, Appendix D shows the same roughness for a 

WOx/TiO2 catalyst, suggesting roughness is not a contribution from Pt. 

Appendix D contains an SEM image at 500 μm length scale that shows Pt forming 

concentrated clusters in various areas. It has been proposed in literature that Pt has a tendency to 

nucleate on the rutile phase as opposed to the anatase phase of TiO2
48

 which could explain the 

clustering seen in TEM and SEM imaging. It should be noted that the Pt particles remain separate 

from one another and do not agglomerate into large single particles. 

 

3.1.3 N2 Physisorption 

Catalyst surface area and pore size distribution were found for the Pt-WOx/TiO2 catalyst via N2 

physisorption. The results are seen in Table 3.1 below. The BET surface area is in agreement with 

values in the literature.23 The average pore diameter shows that the material is in the mesoporous 

region which is why the BJH method was used for the calculations. An isotherm plot of adsorbed 

N2 versus relative pressure can be found in Appendix E. 

 

        Table 3.1: N2 physisorption results for Pt-WOx/TiO2 catalyst. 

a Experience with this technique suggests that most samples have an uncertainty less 
than 5% of value. 

BET surface area 
(m2 g-1) 

BJH cumulative pore volume 
(cm3 g-1) 

BJH average pore diameter 
(nm) 

53.8 ± 0.3 0.38 a 29.3 a 
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A pore volume distribution has not yet been reported for the Pt-WOx/TiO2 catalyst. N2 

adsorption and desorption isotherm data can be found in Figure 3.3 where the data are plotted as 

change in pore volume over change in pore diameter as a function of pore diameter. Both 

adsorption and desorption isotherms show that a large population of pores lie in the 5-80 nm 

diameter region, and another population is seen around 2 nm in diameter in the adsorption isotherm 

(Figure 3.3a). 

Figure 3.3: BJH pore volume distributions of the Pt-WOx/TiO2 catalyst 
of N2 (a) adsorption isotherm and (b) desorption isotherm. 

(a) 

(b) 
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3.1.4 CO Chemisorption 

To obtain Pt metal dispersion and surface area CO chemisorption was performed. The Pt-

WOx/TiO2 catalyst was compared with a 4 wt% Pt/TiO2 catalyst to observe the effects of added 

WOx. These results can be found in Table 3.2. 

 

Table 3.2: CO chemisorption results for Pt-WOx/TiO2 and 4 wt% Pt/TiO2 catalysts.a 

Catalyst CO uptake (μmol g-1) Metal dispersion (%) Metallic surface area (m2 g-1) 

Pt-WOx/TiO2 10 5 0.5 
4 wt% Pt/TiO2 19 9 0.9 

a Experience with this technique suggests that most samples have an uncertainty less than 15% of 
value. 

  

All values found in Table 3.2 decrease with the addition of WOx. The group of Huber characterized 

the Pt-WOx/TiO2 catalyst and found that there is a volcano plot relation between WOx loading and 

turnover frequency of a Pt-WOx/TiO2 catalyst for hydrogenolysis of tetrahydrofuran-2,5-

dimethanol.23 Wang et al. showed that WOx creates a submonolayer film over Pt nanoparticles 

which is characterized as the active region.49 The chemisorption results in Table 3.2 support this 

idea since the Pt-WOx/TiO2 catalyst has less CO uptake than Pt/TiO2 even though both catalysts 

have the same Pt loading. WOx seems to be depositing partly on the Pt nanoparticles.  
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3.2 Hydrodeoxygenation of 1,2,6-Hexanetriol 

As mentioned previously, production of 1,6-HD via HDO of 1,2,6-HT is a beneficial route due to 

the use of a sustainable feedstock. Also, application of the supported metal/metal oxide catalyst, 4 

wt% Pt-WOx/TiO2 (1:1), invented by Allgeier et al.22 of DuPont, gives high conversion and 

selectivity to 1,6-HD. The deceptively simple reaction scheme is show below in Scheme 3.1.  

 

The activity of the catalysts synthesized for this study were compared to that of the patent 

using the same reactor type and conditions. Data for these are seen in Table 3.3. The conversion 

values are very similar, but the selectivity to 1,6-HD for the catalysts in this work is a bit lower. 

Since this difference is not very significant and the catalysts are still quite selective for the α,ω-

diol product, the catalysts synthesized were deemed satisfactory for mechanistic studies. 

 

Table 3.3: Comparison of DuPont patent to this work's reaction results for HDO of 1,2,6-HT.a 

Source 1,2,6-HT Conversion (%) 1,6-HD Selectivity (%) 

DuPont patent22 86 84 

This work 89 70 
a Reactions for both works were performed in an multi-well pressure reactor using a 1.5 mL vial 
with 1 mL of substrate solution (5 wt% 1,2,6-HT in H2O) at 180 °C under 69 bar H2 for 4 hours. 

 

Scheme 1: HDO of HT to 1,6-HD over a Pt-WOx/TiO2 catalyst. Scheme 3.1: HDO of 1,2,6-HT to 1,6-HD over a Pt-WOx/TiO2 catalyst. 
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 The autoclave reactor was used to collect data for five reactions ranging from 30 minutes 

to 4 hours. This was done since the apparatus does not allow sampling during the reaction. Products 

of each reaction were analyzed by GC and quantified with an internal standard method. Conversion 

of 1,2,6-HT and selectivity to 1,6-HD and byproducts: tetrahydropyran-2-methanol (THP2M), 1,5-

hexanediol (1,5-HD), 1,2-hexanediol (1,2-HD), and 1-hexanol (hexanol) are shown in Figure 3.4. 

The results show the selectivity to 1,6-HD is ca. 70% at fairly high conversion. As described in 

Section 1, the mechanistic assertion of Dumesic et al.38 explains this observation by noting 

Figure 3: Conversion and selectivity data for HDO of 1,2,6-HT in the pressure reactor. Note: 
each data point is a separate reaction run for the specified time. Each reaction contained 1 mL 
of substrate solution (5 wt% HT in H2O) in a 1.5 mL pressure vessel operated at 180 °C under 
69 bar H2. 

Selectivity 

HT Conversion 

Figure 3.4: Conversion and selectivity data for HDO of 1,2,6-HT in the autoclave reactor. Note: 
each data point is a separate reaction run for the specified time. Each reaction contained 1 mL of 
substrate solution (5 wt% 1,2,6-HT in H2O) in a 1.5 mL pressure vessel operated at 180 °C under 
69 bar H2. The reaction at 4 h was repeated 7 times and an error of ±1.8% was found for 1,2,6-HT 
conversion and ±0.72% for 1,2-PD selectivity. 
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formation of a secondary carbenium versus a primary carbenium is more stable, thus favoring 

deoxygenation of the secondary hydroxyl. In one description of the direct C‒O scission mechanism, 

the anchoring of the substrate by its primary hydroxyl to the oxophilic metal would direct the 

secondary C‒O bond to the noble metal H‒ species, logically explaining the selectivity.37 A RMvK 

mechanism35 would attribute selectivity to secondary hydroxyl cleavage due to stronger Lewis 

basicity of the secondary hydroxyl leading to preferred association to the reduced vacant site of 

WOx. Beyond the desired reaction manifold it will be noted that THP2M can be formed via acid 

catalyzed ring-closure of 1,2,6-HT21 (even during heat up), but ultimately re-opened and 

deoxygenated as seen with the decreasing selectivity to THP2M. Selectivity to 1,5-HD and 1,2-

HD also decrease as they readily convert to hexanol, which is seen to increase with time. For the 

desired reaction pathway that produces 1,6-HD each of the mechanisms described above provides 

a rationale for the selective reduction at the secondary alcohol site but each would lead to alternate 

perspectives on how to optimize the catalyst, e.g. tuning density and strength of acid sites, versus 

tuning the reducibility of the oxophilic metal sites. Accordingly, elucidation of the operative 

mechanism of great value. 

 

3.3 Deuterium Incorporation 

3.3.1 Deuterium Incorporation of 1,2-Pentanediol 

Deuterium incorporation in HDO reactions using D2 as the reactive gas or D2O as the solvent has 

shown to be insightful for mechanistic investigations involving phenolic compounds.45, 50 Similar 

methodology to evaluate the reaction pathway for the conversion of the compound of interest, 

1,2,6-HT, has been implemented in this investigation. However, HDO of 1,2,6-HT yields a 

symmetrical molecule, 1,2-HD, proved challenging to analyze via NMR as two pairs of C atoms 
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would possess the same chemical shift. A substrate that yields an asymmetrical product upon HDO 

was desirable to simplify NMR analysis. HDO of 1,2-PD with Pt-WOx/TiO2 selectively yields 1-

pentanol (pentanol) where each carbon atom has a unique chemical shift, and this molecule can be 

considered similar in reactivity of 1,2,6-HT since they both contain neighboring primary and 

secondary hydroxyls on a carbon chain. Therefore, 1,2-PD was used as a model compound in our 

mechanistic studies. 

Experimental permutations, involving substituting the reactive gas, hydrogen, or solvent, 

water, with its corresponding isotopologue; D2/H2O (A) and H2/D2O (B) were conducted. Scheme 

3.2 shows the expected deuterium positions upon incorporation using system A for each 

mechanism in consideration.  It will be noted that no attempt to analyze the hydroxyl protons was 

made as these are expected to rapidly scramble with the water solvent. The oxocarbenium 

formation suggested by Dumesic and coworkers has two possible products, but the intermediate 

yielding compound RCH2-CHD-OH (1) seen in Scheme 3.2 was shown, computationally, to be 

more favorable.38 A compound with the formula RCHD-CH2-OH (2) arises from the direct C-O 

scission derived from the mechanism of Tomishige and coworkers37 and is regarded as the main 

product of this route. A RMvK pathway yields RCH2-CH2-OH (3), no incorporation from the gas, 

since the primary function of the deuterium drawn from the gas is to create oxygen vacancies via 

dissociation of deuterons and electrons and, following the precedent of Vlachos and coworkers,35 

the substrate abstracts a hydrogen radical from the departing hydroxyl. Enol formation gives way 

to the α-C and β-C, both being deuterated on the metallic, Pt surface of the catalyst giving RCHD-
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CHD-OH (4). From this perspective, isotope incorporation would provide definitive evidence for 

which mechanism is operative under the present conditions.  

Using the methodology previously described, the mechanism of selective HDO of the 

secondary hydroxyl on 1,2-PD over Pt-WOx/TiO2 was investigated. The product solution was 

analyzed by NMR to characterize the position of deuterium atom incorporation into the product. 

This was accomplished by utilizing the DEPT technique paired with a separate integratable 13C 

NMR. The integratable 13C NMR experiment was set up to allow sufficient delay time to allow 

full relaxation between scans. Peaks were assigned to each carbon atom of the product in the 13C 

spectrum and the corresponding peak in DEPT was used to determine the number of H atoms 

bonded to each carbon. This is done by a pulse sequence containing multiple timed pulses on the 

-HO•, +H• 

+D2 

+D2 

1 

2 

3 

4 

Scheme 3.2: Expected deuterium placement after incorporation in D2/H2O system over Pt-
WOx/TiO2 for each considered mechanism. 

-D+ 
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carbon and proton channels. Experiments in this study use an initial 90° pulse angle on the 1H 

channel and a final 1H pulse angle of 135° to cause CH and CH3 species to have a different phase 

than CH2 species. Quaternary carbons to not appear in the spectra. Also, the sequence contains a 

time period between the first 90° proton pulse and the final pulse where spins evolve under the 

one-bond scalar coupling between the carbon atom and its protons. This transfers spin order from 

the more highly polarized protons to the carbon atoms which increases the carbon signal 

intensity.51 

            After the number of H atoms, and thus the number of D atoms, were determined for each 

carbon, the peaks of interest were then integrated using the 13C spectrum and relative amounts of 

each species calculated. Splitting patterns in the 13C spectrum were consistent with the substitution 

patterns predicted by DEPT. Figure 3.5 depicts this method analyzing the beta-carbon (β-C) of 

pentanol resulting from HDO of 1,2-PD over Pt-WOx/TiO2 with the reaction permutation B under 

50 bar H2 pressure at 180 °C in the stirred tank reactor. Here, two singlets are seen at ~30.87 ppm 

and ~30.75 ppm which correspond to a -CH2- species since the DEPT spectrum shows a negative 

phase. There are two peaks present because differing isotopologues (adjacent carbon) cause a 

deuterium induced 13C shift.52 Integration of both peaks includes C atoms from all pentanol 

isotopologues consisting of a -CH2- species at the β-C. Two triplets are present ranging from 30.15 

ppm to 36.50 ppm that are assigned to a -CHD- species since the DEPT spectrum shows positive 

values. Two sets of triplets are seen due to the effects mentioned previously.52 Proton decoupling 

prevents additional splitting from arising in 13C spectra, which is why the carbons with only H 

atoms bonded are present as singlets. However, carbons with one D atom appear as triplets because 

the NMR experiments were not deuterium decoupled. NMR spectral regions of the α-C, as well 

as, results from permutation B can be found in (Appendix B). Each peak was fitted with a Gaussian 
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integral which enables integration of partially overlapping peaks. The areas were summed, and a 

percentage of each species was determined.  

 

Table 3.4 below shows the results of deuterium incorporation of 1,2-PD HDO for both 

reaction permutations.  

 

 

Figure 3.5: NMR analysis on the β-C of pentanol after HDO of 1,2-PD with the H2/D2O reaction 
system. 
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Table 3.4: Results of deuterium incorporation reactions of 1,2-PD HDO.a 

Reaction system 
(gas/solvent) 

α-C β-C 
-CH2- -CHD- -CH2- -CHD- 

D2/H2O (A) 100% 0% 100% 0% 
H2/D2O (B) 0% 100% 19% 81% 

a Reactions were performed with 25 mL of aqueous substrate solution (5 wt% 1,2-PD) in the stirred 
tank reactor at 180 °C under 50 bar of reactive gas with 1.0 g Pt-WOx/TiO2 and 4 h reaction time. 

 

For permutation A, the α-C and β-C were each bonded to two H atoms, i.e. compound 3 was the 

only product. For the other permutation (B), opposite incorporation was observed at the α-C and 

largely for that of the β-C. The installation of permutation A supports the RMvK pathway since 

only hydrogen is seen at α-C and β-C, 3. However, this mechanism cannot explain the 

incorporation seen in permutation B since only the β-C should have been labeled with deuterium. 

While working with such gases paired with a protic solvent, one must be wary of isotope 

exchange reactions between H and D of the catalyst surface and the solvent.53 Also, isotopic 

exchange between the solvent and the substrate or products can occur. These complications are 

evaluated in the following section. 

 

3.3.2 Isotope Exchange Analyses 

After each reaction in Section 3.3.1, the unconverted substrate that remained in solution was 

inspected via NMR for the presence of deuterium. This would occur if there was exchange at the 

α-C or β-C, presumably via a transfer hydrogenation-like mechanism, before the desired HDO. 

Such exchange would reflect the reactive gas or, if activated hydrogen on the catalyst surface 

exchanged rapidly with the solvent, the exchange would reflect the solvent isotopes and these must 

be accounted for in any sound mechanistic study. There were no signals for deuterium in 



30 
 

unconverted 1,2-PD under the conditions of permutation A. However, permutation B revealed 12% 

D incorporation at the α-C and 3% D incorporation at the β-C after 4 hours, i.e. the exchanged 

isotope came from the solvent, not the reactive gas, itself.  While the extent of exchange was rather 

small, it does suggest the activated hydrogen bound to the catalyst readily exchanged with the 

water solvent. Enlarged NMR spectra of the α-C and β-C of 1,2-PD can be found in Appendix B. 

As mentioned in the previous section, isotopic exchange between the gas and solvent can 

obscure results obtained from a deuterium incorporation study, especially if the reaction 

mechanism involves the solvent. This phenomenon was first investigated by subjecting the solvent, 

water, to the same reaction conditions with D2 gas in the absence of substrate and catalyst for 4 

hours. This resulted in a very small peak seen for partially deuterated water, DHO, in 2H NMR 

where it was quantified using DMSO-d6 as an internal standard (see Appendix B). Next, the 

previous experiment was augmented by the addition of the catalyst, Pt-WOx/TiO2, into the solvent. 

This resulted in significantly more deuteria detected within the solvent. The results are seen in 

Table 3.5 below. 

 

Table 3.5: Concentration of partially deuterated water (DHO) in the resulting solution of isotope 
exchange between D2 gas and water with and without the catalyst. 

Reaction system Concentration of 
DHO (mol L-1) 

Without catalyst a 1 

With catalyst b 12 
a 1 mL of solution (water) in a pressure reactor at 180 °C under 70 bar D2. b Same experiment 
except with the addition of 50 mg Pt-WOx/TiO2. 
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For the analysis, only partially deuterated water, DHO, was considered the product rather than 

D2O under the assumption that a molecule of water only exchanges once. It is seen that the isotope 

exchange is much greater in the presence of the catalyst indicating the catalyst is facilitating the 

exchange between the gas and solvent. 

To further study the degree of isotope exchange and implications on data analysis of 

deuterium incorporation, hydrogenation of TEGDA was carried out. TEGDA was utilized for its 

water-solubility and to observe deuterium incorporation in a mechanistically simpler reduction, 

known to occur over Pt sites alone.54 Scheme 3.3 shows expected deuterium incorporation into the 

alkene after hydrogenation with permutation A. Pt sites should activate D2 gas and saturate the 

double bond giving a deuterium on each carbon. 

 

Reaction permutations A and B were conducted with TEGDA as the substrate (5 wt% TEGDA in 

H2O, 20 mL) in the stirred tank reactor at 25 °C under 50 bar of reactive gas pressure with 0.1 g 

Pt-WOx/TiO2. A lower temperature was used due to the facility of alkene hydrogenation over Pt. 

After reaction, the product solution was analyzed with 13C NMR and the relative amounts of 

isotopologues were quantified. The NMR spectral region for the α-C of TEGDA after reaction 

under conditions of permutation B is shown in Figure 3.6. 

+D2 

Scheme 3.3: Expected deuterium placement after incorporation in D2/H2O system over Pt-
WOx/TiO2 for the hydrogenation of TEGDA. 
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 Again, all peaks were individually fit with a Gaussian integral, so the two peaks 

overlapping at ~8.25 ppm are properly quantified. There are two singlets that correspond to a α-C 

with only H atoms and two sets of triplets that correspond to a α-C with a bonded D atom. The 

reason for each compound showing two sets of each signal was explained in Section 3.3.1. 

Quantitative results from experiments using systems A and B are shown in Table 3.6. 

 

 

Figure 4: NMR analysis on the α-C of TEGDA after hydrogenation with the H2/D2O reaction 
system. 
Figure 3.6: NMR analysis on the α-C of TEGDA after hydrogenation with the H2/D2O reaction 
system. 
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Table 3.6: Results of deuterium incorporation reactions of TEGDA hydrogenation.a 

Reaction system  
(gas/solvent) 

α-C β-C 
-CH3- -CH2D- -CH2- -CHD- 

D2/H2O (A) 73% 27% 85% 15% 
H2/D2O (B) 40% 60% 48% 52% 

a Reactions were performed with 20 mL of aqueous substrate solution (5 wt% TEGDA) in the 
stirred tank reactor at 25 °C under 50 bars of reactive gas with 0.1 g Pt-WOx/TiO2 and 2 h reaction 
time.  

 

The data show that in all cases over half of the deuterons (or protons) incorporated via 

hydrogenation are derived from the solvent. The simplicity of this reaction precludes consideration 

of tungsten involvement in the reaction and demonstrates that even at mild temperatures there is 

isotope exchange occurring at the surface of the catalyst, consistent with early studies.55-56 This 

exchange is expected to be between activated deuterium (or hydrogen) and water (or D2O). It was 

determined by NMR that the reaction reached full conversion in less than 2 hours which is 

significantly faster than the HDO reaction (see Section 3.5). Notably HDO occurs at higher 

temperatures than olefin hydrogenation. Comparing the CH3 species in permutation A with the 

CH2D species of permutation B at the α-C, less isotope incorporation occurred from the solvent 

when the solvent was D2O versus H2O. The same pattern was seen at the β-C. This is consistent 

with kinetic isotope theory that breaking the bonds of D2O should be slower than for H2O.  

Additionally, it has been reported the rate of adsorption of hydrogen on Pt metal exceeds that of 

deuterium by about 1.5.57 

 It may be concluded that isotope exchange between surface activated hydrogen and the 

water solvent occurs much faster than the HDO reaction, since significant deuterium incorporation 

was observed in TEGDA hydrogenation with H2/D2O even at a much lower temperature than HDO 

reaction temperatures. In spite of this rapid exchange at the surface, a relatively low rate of isotope 
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exchange into the 1,2-PD substrate was observed (≤12% in 4 hours), presumably occurring via a 

transfer hydrogenation type mechanism.  Accordingly, isotope incorporation during HDO should 

occur primarily through the desired reduction reactions, and the 100% isotope incorporation seen 

on the α-C does not occur from background exchange over the catalyst surface and is inconsistent 

with the RMvK mechanism. 

 An enol intermediate is consistent with the observed isotope incorporation pattern. Since 

the Pt surface sites contain the hydrogen isotope of the solvent, hydrogenation of the enol would 

install that isotope on both the α-C and the β-C positions. It should be noted that tautomerization 

of the enol to an aldehyde followed by reduction would give the same isotope incorporation. The 

labeling of the β-C under permutation B is not quantitative (81%) and may be explained by partial 

competition from formation of an oxocarbenium ion via intramolecular hydride shift as suggested 

by Dumesic and coworkers.38 While kinetically competing, we conclude the oxocarbenium is not 

dominant compared to the enol and only contributes the minor labeling product (19%), 1. 

 

3.4 Mass Transfer Limitations 

Before any kinetic analyses are done for a reaction, the system must first be verified to be free of 

mass transfer limitations. This system is defined as a three-phase, slurry, batch reactor. The 

presence of any mass transfer limitations, gas-liquid, liquid-solid, or intraparticle, would inhibit 

measurement of the intrinsic kinetics of the reaction, and any data obtained would be clouded by 

the effects of mass transfer resistances throughout the reactor volume. Criteria were used from 

Ramachandran and Chaudhari58 to analyze each regime of mass transfer, they are 
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 𝛼𝛼1 =
𝑅𝑅𝐴𝐴

𝑘𝑘𝐿𝐿 ∙ 𝑎𝑎𝐵𝐵 ∙ 𝐴𝐴∗
< 0.1 (1) 

 𝛼𝛼2 =
𝑅𝑅𝐴𝐴

𝑘𝑘𝑠𝑠 ∙ 𝑎𝑎𝑝𝑝 ∙ 𝐴𝐴∗
< 0.1 (2) 

 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑑𝑑𝑝𝑝
6
�

𝜌𝜌𝑝𝑝 ∙ 𝑅𝑅𝐴𝐴
𝑤𝑤 ∙ 𝐷𝐷𝑒𝑒𝑒𝑒 ∙ 𝐴𝐴∗

�
0.5

< 0.2 (3) 

Equations 1-3 represent the gas-liquid, liquid-solid, and intraparticle regimes, respectively. They 

are expressed as the observed rate of the HDO reaction of 1,2-PD over the maximum possible rates 

of mass transfer, and if each requirement is met, it can be said that the system is not mass transfer 

limited. This method has been used previously in literature.59 

The reaction rate, RA, was found by initial rates of 1,2-PD HDO outlined in Section 3.5 and is 

converted to appropriate units to give 0.0362 mol L-1 h-1. Chaudhari and coworkers60 provide an 

experimental correlation to calculate kLaB for autoclave reactors shown in Equation 4 below: 

 𝑘𝑘𝐿𝐿𝑎𝑎𝐵𝐵 = 1.48𝑥𝑥10−3(𝑁𝑁)2.18 �
𝑉𝑉𝑔𝑔
𝑉𝑉𝐿𝐿
�
1.88

�
𝑑𝑑𝐼𝐼
𝑑𝑑𝑇𝑇
�
2.16

�
ℎ1
ℎ2
�
1.16

 (4) 

The values used here are as follows: N, the stirring speed, is 16.7 Hz, the volume of the gas and 

liquid, Vg and VL, respectively are both 2.5 x 10-5 m3 since 25 mL of reaction solution is used in a 

50 mL vessel, the diameter of the impeller, dI, is 0.02053 m, the diameter of the reactor tank, dT, 

is 0.03278 m, height of the impeller from the bottom of the tank, h1, is 0.0125 m, and the height 

of the liquid in the tank, h2, is 0.0284 m. This yields a kLaB value of 0.096 s-1. The concentration 

of hydrogen gas at the gas-liquid interface, A*, was assumed to be the equilibrium solubility of 

hydrogen in water at reaction conditions. Solubility data of hydrogen was used from the 

dissertation of Suciu61 which is tabulated in IUPAC Solubility Data Series by Young.62 A value of 

hydrogen solubility in water was interpolated between data points of 34 bar and 69 bar at ~178 °C 



36 
 

since hydrogen solubility in water has been shown to have a linear relationship with pressure.63 

The value used for A* is 0.0536 kmol m-3. Applying these parameters in Equation 1 gives an α1 of 

0.002 which is well below 0.1 indicating the system is not limited by the rate of gas to liquid mass 

transfer. 

 The criteria for the liquid-solid regime in Equation 2 was evaluated. The liquid-solid mass 

transfer coefficient, ks, was calculated through a dimensionless correlation of the Sherwood 

number done by Sano et al.,64 Equation 5: 

 𝑆𝑆ℎ = �2 + 0.4�
𝜀𝜀 ∙ 𝑑𝑑𝑝𝑝4

𝜈𝜈3
�

1
4
𝑆𝑆𝑐𝑐

1
3 � ∙ 𝜙𝜙𝑐𝑐 (5) 

The Sherwood number (Sh) is defined as 

 𝑆𝑆ℎ =
𝑘𝑘𝑠𝑠 ∙ 𝑑𝑑𝑝𝑝
𝐷𝐷𝐴𝐴

 (6) 

where dp is the specific surface diameter and DA is the diffusivity of hydrogen gas in water. 

Experimental data for DA is provided by Cussler65 and is 4.50 x 10-9 m2 s-1. The particle diameter, 

dp, is defined in Equation 7.64 

 𝑑𝑑𝑝𝑝 =
6

𝜌𝜌𝑝𝑝 ∙ 𝑆𝑆𝑤𝑤
 (7) 

The density of the solid (ρs) and specific surface area (Sw) are assumed to be equal to that of pure 

TiO2 where a range was obtained from Evonik and averaged (ρs = 1.4 x 105 g m-3 and Sw = 50 m2 

g-1).66 This gave a value for dp of 8.57 x 10-7 m. For the kinematic viscosity of water, ν, in Equation 

5, a value of 2.94 x 10-7 m2 s-1 at 100 °C will be used67 which is a limiting case since the kinematic 

viscosity of water decreases as temperature increases, therefore, increasing the rate of mass transfer. 

The Schmidt number (Sc) is defined as  
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 𝑆𝑆𝑆𝑆 =
𝜈𝜈
𝐷𝐷𝐴𝐴

 (8) 

Sc was calculated to be 65.3. Next, the rate of flow energy supply per unit mass of liquid, ε, is 

calculated to be 675 m2 s-3 by Equation 9 which utilizes a power number, Np, of 4 found in the 

work of Bates et al.68 

 𝜀𝜀 =
𝑁𝑁𝑝𝑝 ∙ 𝑙𝑙5 ∙ 𝑛𝑛3

𝑉𝑉𝐿𝐿
 (9) 

The variable l is the diameter of impeller, n is the rps of impeller, in rad s-1, and VL is the volume 

of liquid. Finally, Carman’s surface factor, ϕc, from Equation 5 is defined as 

 𝜙𝜙𝑐𝑐 =
6

𝜌𝜌𝑝𝑝 ∙ 𝑆𝑆𝑤𝑤 ∙ 𝑑𝑑𝑝𝑝′
 (10) 

where 𝑑𝑑𝑝𝑝′  is the screen diameter taken as 2 x dp based on a graphical approximation in the work of 

Sano et al.64 Equation 11 gives ϕc = 0.5. Combining Equations 5 and 6 and rearranging for ks gives 

a value for the liquid-solid mass transfer coefficient of 6.71 x 10-3 m s-1. From Equation 2, ap is 

the external surface area of the catalyst per unit volume of reactor and is calculated to be 2.0 x 106 

m2 m-3. Using these values obtained and plugging into Equation 2 yields an α2 of 1 x 10-8 which is 

orders of magnitude below 0.1 indicating the system is not mass transfer limited in the liquid-solid 

regime. 

 Finally, intraparticle mass transfer was investigated. Most of the variables in Equation 3 

have already been found. The term w, the weight of catalyst loading per unit volume of the reactor, 

comes out to be 40 kg m-3. The effective diffusivity of hydrogen within the pores of the catalyst, 

DeA, is determined by Equation 11: 
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 𝐷𝐷𝑒𝑒𝑒𝑒 =
𝑃𝑃 ∙ 𝐷𝐷𝐴𝐴
𝜏𝜏

 (11) 

where P is the porosity of the catalyst particles and τ is the tortuosity factor, both assumed to be 

0.6 and 3.0, respectively.59 These assumptions are taken from a previous work that used powdered 

catalysts in a slurry, batch reactor.59 The value obtained for DeA is 9.0 x 10-10 m2 s-1. Calculating 

ϕexp from Equation 3 gives a value of 1 x 10-4. This is significantly below the criteria of 0.2, so it 

is accurate to say there is no presence of intraparticle mass transfer limitations. 

 

3.5 Kinetic Isotope Effect  

To further explore the HDO reaction pathway of this alcohol over the Pt-WOx/TiO2 catalyst, a KIE 

study was carried out. This allowed insight into the rate-determining step of the reaction based on 

a ratio of the rate constants of two systems differing only by isotope incorporation. Isotopically 

labeled substrates have been used to observe a KIE in HDO reactions44 and deuterium gas used to 

be incorporated into products,45 but to the best of our knowledge observing a KIE with deuterium 

gas or D2O has not been performed for HDO reactions involving linear alcohols. In this section, 

two reaction systems were compared: a system using H2 as the gas and H2O as the solvent, and a 

system using D2 as the gas and D2O as the solvent. These systems were chosen due to the rapid 

exchange between the gas and solvent in the presence of the catalyst (cf. Section 3.3.2). Since the 

H/D exchange is so facile, experiments using different isotopes in the gas versus solvent would 

not be conclusive because of the uncertainty to whether an H or D atom was involved in the rate-

determining step. A KIE is defined as the rate constant of the reaction for the lighter isotopic 

system over the rate constant of the reaction for the heavier isotopic system, kH/kD. 
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 Reactions were performed in a stirred tank reactor equipped with a sampling port using 5 

wt% 1,2-PD in H2O (25 mL), 50 bar H2 at 180 °C over 1.0 g Pt -WOx/TiO2 and a 4 hour reaction 

time, Figure 3.7. As the reaction proceeds, selectivity to pentanol decreases. This was expected 

since the pentanol produced would have more opportunity to be further deoxygenated over the 

catalyst to form pentane, although this species was not calibrated for detection in GC analyses due 

to insolubility. A decrease in the conversion rate was seen after 1.5 hours. It is unclear why the 

conversion rate decreased after this time; a form of catalyst deactivation is the most likely cause. 

However, this issue is disregarded since the relevant data is contained within 15% conversion, and 

this region does not show a significant decrease in conversion rate. 

1,2-PD Conversion 

Pentanol selectivity 

Figure 3.7: Selectivity and conversion as a function of time for the HDO of 
1,2-PD in a batch stirred tank reactor with the substrate solution (5 wt% 1,2-
PD in H2O, 25 mL) under 50 bars H2 at 180 °C over 1.0 g Pt-WOx/TiO2. 
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 Conversion data of both systems used for kinetic analysis, H2/H2O and D2/D2O exhibit 

first-order kinetics during initial rates as a plot of the natural logarithm of PD concentration as a 

function of time produces a linear plot (Figure 3.8). The plots in Figure 3.8 display a very good 

trend in the data points up to 1.5 h for both systems, so the first four points of each set were used 

a) 

b) 

Figure 3.8: Natural logarithm of 1,2-PD concentration as a function of time 
for the HDO of 1,2-PD in a stirred tank reactor with a) the substrate solution 
(5 wt% PD in H2O, 25 mL) under 50 bars H2 at 180 °C over 1.0 g Pt-
WOx/TiO2 and b) the substrate solution (5 wt% 1,2-PD in D2O, 25 mL) 
under 50 bars D2 at 180 °C over 1.0 g Pt-WOx/TiO2. 
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in the rate calculations. The data points were fitted with a trendline, and the slope of this trendline 

was taken to be equal to the rate constant, k, of the reaction since the kinetics can be considered 

pseudo-first order. Also, an observed reaction rate was found by the slope of 1,2-PD concentration 

as a function of time and converted into the units of mmol 1,2-PD g-catalyst-1 h-1. The standard 

error of the mean was calculated for each value, and the equations involving these calculations can 

be found in Appendix G. Table 3.7 displays results of these calculations. 

 

Table 3.7: Rate data assuming first order kinetics for reactions performed in a stirred tank reactor 
with the substrate solution (5 wt% 1,2-PD in solvent, 25 mL) under 50 bars reactive gas at 180 °C 
over 1.0 g Pt-WOx/TiO2. 

Reaction System  
(gas/solvent) 

Observed Rate  
(mmol 1,2-PD g-cat.-1 h-1) 

kx
a  

(h-1) 

H2/H2O 0.90 ± 0.08 0.085 ± 0.007 
D2/D2O 1.06 ± 0.05 0.101 ± 0.005 

a The term kx is defined as kH for the H2/H2O system and as kD for the D2/D2O system. 

 

 In this system, a primary KIE would arise if the rate-determining step involved the cleavage 

or formation of a hydrogen covalent bond. This effect can give values for kH/kD on the order of 10 

or higher depending on the reaction.69 A secondary KIE is seen not when the rate determining step 

involves breaking or forming of bonds with H or D, but when these species are present in the α or 

β position from the reaction center affecting the zero-point energy of ordinary vibration. This effect 

is normally around 1.15 to 1.25 for reactions involving, but not limited to, sp3 to sp2  conversions.70 

In addition, a kH/kD < 1.0 signifies an inverse KIE where the mechanism often involves a 

transformation from sp2 to sp3.71 
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For this system, a kH/kD value of 0.84 ± 0.11 was observed between the undeuterated and 

deuterated gas/solvent systems. Clearly no primary KIE exists in this system and the rate-

determining step does not involve the gas nor the solvent.  Accordingly, the direct C‒O scission 

mechanism can be eliminated, since the mechanism involves a hydride species breaking its bond 

with Pt and forming a bond with the substrate. While the kH/kD value suggests an inverse KIE, the 

uncertainty in the measurement precludes a strong conclusion, except to note the absence of a 

primary KIE. Although the KIE study does not affirmatively support which mechanism is taking 

place, conclusive evidence of disproof of direct C‒O scission is nonetheless invaluable.72  
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Chapter 4: Conclusions and Recommendations 

 

4.1 Conclusions 

The studies conducted in this thesis have elucidated the aqueous HDO reaction mechanism of 

1,2,6-HT over a Pt-WOx/TiO2 catalyst, by reference to a model compound, 1,2-PD. The absence 

of a primary kinetic isotope effect using D2/D2O versus H2/H2O disproves the possible direct C‒

O scission mechanism. Deuterium incorporation using two different reaction systems, D2/H2O and 

H2/D2O, showed a significant incorporation of isotopes from the solvent rather than the gas in the 

reaction product. The incorporation seen in both the α-C and β-C did not initially support any of 

the proposed mechanisms. Rather, rapid and facile isotope exchange between the surface of the 

catalyst and the water solvent was observed. This was confirmed by measuring deuterium 

incorporation during an alkene hydrogenation, a reaction with lower activation energy, faster rate 

and a simpler mechanism than HDO. In this case, the isotope incorporated into the product 

primarily came from the solvent. Given that water / surface isotope exchange was much faster than 

the HDO reaction, the observed product isotope distributions provide additional insight into the 

mechanism. Nearly equal deuterium incorporation in the α-C and β-C support the preferred 

intermediacy of an enol formed by acid-site-catalyzed dehydration of the secondary hydroxyl.  The 

intermediacy of an oxocarbenium in the alpha position formed by intramolecular hydride transfer38 

may be competitive but the enol dominates.  Further, the reverse Mars-van Krevelen mechanism 

is not consistent with the observed isotope incorporation since this mechanism should not provide 

the observed pattern of nearly equal isotope incorporation at the α-C and β-C. Accordingly, a 

logical mechanism for HDO of 1,2,6-HT comprises the following steps: 
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1. Acid catalyzed dehydration of the secondary hydroxyl by Brønsted sites of the metal oxide 

forming a secondary carbenium ion. 

2. Subsequent proton abstraction from the α-C by water forming an enol intermediate. 

3. Hydrogenation of the double bond of the enol over Pt metal followed by desorption 

yielding 1,6-HD. 

Regeneration of the acid sites would follow the mechanism described by Huber and coworkers, 

which explains the preferred behavior of TiO2 as a support.23  

i. Hydrogen molecules are activated by Pt. 

ii. Hydrogen moves from the Pt-TiO2 interface to WOx sites via spillover.40 

iii. The hydrogen atoms exist in the form of H+ and e- pairs and reduce W=O species to 

W‒OH Brønsted sites with tungsten in the 5+ oxidation state. 

To the best of our knowledge, the methods used in this study are unprecedented for 

investigating the mechanism of HDO over supported metal-metal oxide catalysts. This provides a 

new perspective of the proposed reaction mechanisms of this system. The mechanism may extend 

to a broad range of linear polyols over supported metal-metal oxide catalysts, which have shown 

the best performance for deoxygenation of certain feedstocks derived from biomass.29 

Understanding the reaction mechanism is essential for optimizing catalyst design,20 so the findings 

here further advanced technologies for the utilization of sustainable feedstocks. 

 



45 
 

4.2 Recommendations 

In this study it was seen how the presence of the catalyst affected isotope exchange between the 

gas and liquid phases. It is expected that various catalysts will have different exchange rates 

depending on the reducible metal’s affinity for hydrogen/deuterium activation, metal oxide acidity, 

and support reducibility. All of these parameters can be systematically tested and material property 

relationships to isotope exchange deduced. This would possibly impact mechanistic studies using 

deuterium incorporation and KIE methods that employ heterogeneous catalysts for reactions 

involving hydrogen/deuterium gas and polar protic solvents. 

 Inspection of solvent effects could be another valuable avenue of research. Utilization of 

aprotic solvents and their effects on the rate of reaction or deuterium incorporation is expected to 

be insightful. Also, this may decrease the amount of isotopic exchange between the gas and solvent. 

Protic solvents other than water may also provide interesting results possibly based on the pKa 

value of the solvent. Interaction between the catalyst, specifically the Brønsted acid sites of the 

metal oxide, and the solvent is another aspect where the system could be affected. 

 In addition, a techno-economic assessment can be done for a process involving the 

production of 1,6-HD from an appropriate biomass-derived intermediate, not necessarily 1,2,6-HT, 

with the present catalyst. Just like any other technology, the valorization of sustainable feedstocks 

such as biomass involves economic feasibility. It should be recognized that aqueous conditions in 

the presence of alcohols can lead to challenging, energy-intensive separations, which would 

increase the cost of production.  
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Appendix 

Appendix A: Gas Chromatography 
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Appendix B: Nuclear Magnetic Resonance Spectroscopy 
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Figure A.3: 13C spectrum for 1,2-pentanediol hydrodeoxygenation-deuterium incorporation 
experiment. Products with peak assignment for 1-pentanol and 1,2-pentanediol. The peak 
corresponding to 5-C is a small peak overlapping the 10-C peak located ~13 ppm. 
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Figure A.4: DEPT and 13C NMR of the α-C of pentanol after 
hydrodeoxygenation of 1,2-pentanediol with the H2/D2O reaction system. 
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Figure A.5: DEPT and 13C NMR of the β-C of pentanol after 
hydrodeoxygenation of 1,2-pentanediol with the D2/H2O reaction system. 



58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

6161.261.361.461.561.661.761.861.962.062.162.262.3
f1 (ppm)

DEPT 

13C Integratable 

Figure A.6: DEPT and 13C NMR of the α-C of pentanol after 
hydrodeoxygenation of 1,2-pentanediol with the D2/H2O reaction system. 
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Figure A.7: DEPT and 13C NMR of the α-C of 1,2-PD after hydrodeoxygenation 
in H2/D2O reaction system. 



59 
 

 

 

 

 

 

 

 

 

 

DEPT 

13C Integratable 

Figure A.8: DEPT and 13C NMR of the β-C of 1,2-PD after hydrodeoxygenation 
in H2/D2O reaction system. 
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Figure A.9: 2H NMR spectrum of isotopic exchange experiment between only 
D2 and H2O. Peak at ~4.8 is DHO and the peak at ~2.7 is DMSO-d6. 
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Figure A.10: 2H NMR spectrum of isotopic exchange experiment between D2 
and H2O in the presence of the Pt-WOx/TiO2 catalyst. Peak at ~4.8 is DHO and 
the peak at ~2.7 is DMSO-d6. 
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Appendix C: Powder X-Ray Diffraction 
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Appendix D: Scanning and Transmission Electron Microscopy 

 

 

  

Figure A.14: SEM of Pt-WOx/TiO2 catalyst with Pt elemental overlay and EDS elemental analysis 
results. 
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Figure A.15: TEM of WOx/TiO2 catalyst showing the 
subnanometer WOx particles. 
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Appendix E: N2 Physisorption 

BET surface area equations:73 

 The BET transformation for each data point is 

 𝐵𝐵1 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑙𝑙𝐼𝐼

�1.0 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑙𝑙𝐼𝐼� ∗ 𝑁𝑁𝑎𝑎𝑎𝑎𝑠𝑠𝐼𝐼
 (A12) 

where BI is in units of g cm-3, Prel I is the relative pressure for the Ith data point (mmHg), and  Nads 

I is the amount of gas adsorbed after equilibrating Ith dose (cm3 STP). This equation is fitted with 

least-squares on designated (Prel I , BI) pairs where Prel I is the independent variable and BI is the 

dependent variable. 

Surface area is calculated with 

 𝑆𝑆𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 =
𝐶𝐶𝐶𝐶𝐶𝐶 ∗ (6.023 𝑥𝑥 1023)

(22414 𝑐𝑐𝑚𝑚3 𝑆𝑆𝑆𝑆𝑆𝑆) ∗ �1018  𝑛𝑛𝑚𝑚
2

𝑚𝑚2 � ∗ (𝑆𝑆 + 𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼)
 (A13) 

where SABET is the BET surface area in m2 g-1, CSA is the analysis gas molecular cross-sectional 

area in nm2, S (slope, g cm-3) and YINT (Y-intercept, g cm-3) are calculated via Equation A1. 

 Error of the BET surface area is calculated by the equation: 

 𝐵𝐵𝐵𝐵𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑆𝑆𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 ∗ (𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑌𝑌𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸2 )0.5

𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑆𝑆
 (A14) 

where SERR (g cm-3), YIERR (g cm-3), YINT (Y-intercept, g cm-3), and S (slope, g cm-3) are calculated 

with Equation A1. 
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Table A.1 BJH adsorption pore distribution data. 

 

 

 

 

 

 

 

 

 

 

Table A.2: BJH desorption pore distribution data. 

 

  

Average pore diameter (Å) Cumulative pore volume (cm3 g-1) 

816.5 0.140771 
480.8 0.255896 
362.6 0.289623 
295.4 0.313499 
240.3 0.332373 
151.3 0.360688 
107.1 0.368243 
82.7 0.371949 
66.8 0.374015 
55.5 0.375232 
47.2 0.376091 
40.6 0.376761 
35.3 0.377462 
30.8 0.378291 
27.0 0.379399 
23.6 0.380697 
20.4 0.381978 
17.3 0.382805 

Average pore diameter (Å) Cumulative pore volume (cm3 g-1) 

836.9 0.011307 
571.4 0.048103 
377.0 0.213081 
292.0 0.26766 
239.6 0.31019 
156.2 0.36809 
108.6 0.380394 
80.5 0.383789 
63.5 0.384141 
22.9 0.38421 
19.8 0.384303 
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Figure A.16: N2 physisorption linear isotherm plot for analysis of 4 wt% Pt-WOx/TiO2. 
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Appendix F: CO Chemisorption 

Equations used:74 

 The platinum metal dispersion was found by the equation 

 %𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
100% ∗ 100%

22414
∗
𝑉𝑉 ∗ 𝑆𝑆𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
%𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

 (A15) 

where %MDISP is the metal dispersion (%), V is the volume intercept derived from the best fit line 

to the volume differences between the selected points of the first analysis and the repeat analysis, 

SFCALC is the calculated stoichiometry factor, %weight is the percent of sample weight for the 

metal, and WATOMIC is the atomic weight of the metal (g mol-1). 

 The metallic surface area of platinum was calculated with 

 𝑀𝑀𝑠𝑠𝑠𝑠 =
6.023 𝑥𝑥 1023

22414
∗ 𝑉𝑉 ∗ 𝑆𝑆𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (A16) 

where Msa is the metallic surface area in m2 g-sample-1, V and SFCALC are defined as before, and 

AAREA is the effective area of 1 active metal atom (m2 atom-1). 
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Figure A.17: Isotherm plot from CO chemisorption experiment of the Pt-WOx/TiO2 catalyst. 
A repeat analysis is done to subtract the physisorbed CO to obtain a value that represents 
chemisorbed CO exclusively. 

Table A.3: Experiment log of CO chemisorption experiment for Pt-WOx/TiO2 catalyst. 
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Table A.4: Experiment log of CO chemisorption experiment for Pt/TiO2 catalyst. 

Figure A.18: Isotherm plot from CO chemisorption experiment of the Pt/TiO2 catalyst. A repeat 
analysis is done to subtract the physisorbed CO to obtain a value that represents chemisorbed CO 
exclusively. 
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Appendix G: Kinetic Isotope Effects 

 

  

Figure A.19: Concentration of 1,2-pentanediol as a function of time with a 
straight line fit on the first four data points for reaction in the stirred tank 
reactor with substrate solution (5 wt% 1,2-pentanediol in H2O, 25 mL) 
under 50 bars H2 at 180 °C over 1.0 g 4 wt% Pt-WOx-TiO2 (1:1). 

Figure A.20: Concentration of 1,2-pentanediol as a function of time with a 
straight line fit on the first four data points for reaction in the stirred tank 
reactor with substrate solution (5 wt% 1,2-pentanediol in D2O, 25 mL) 
under 50 bars D2 at 180 °C over 1.0 g Pt-WOx-TiO2. 
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Error calculations: 

The error for each data point found in reaction data and KIE results is calculated with the standard 

error of the mean: 

 𝜎𝜎𝑚𝑚 =
𝜎𝜎
√𝑛𝑛

 (A17) 

where σ is the standard deviation and n is the sample size. The standard deviation is calculated by 

the equation 

 𝜎𝜎 = �∑(𝑥𝑥 − 𝑥̅𝑥)2

𝑛𝑛
 (A18) 

where x is a data point and 𝑥̅𝑥 is the mean of the data points. For Figure in section 3.5, each data 

point was taken as the natural logarithm of 1,2-pentanediol concentration while just the 

concentration of 1,2-pentanediol was used for Figures A.19 and A.20. 
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