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Abstract 

 
Sea Ice in Polar Regions is typically covered with a layer of snow. The thermal insulation 

properties and high albedo of the snow cover insulates the sea ice beneath it, maintaining low 

temperatures and limiting ice melt, and thus affecting sea ice thickness and growth rates. Remote 

sensing of snow cover thickness plays a major role in understanding the mass balance of sea ice, inter-

annual variability of snow depth, and other factors which directly impact climate change. Researchers 

at the Center for Remote Sensing of Ice Sheets (CReSIS) at University of Kansas have developed an 

ultra-wide band FMCW Snow Radar used to measure snow thickness and map internal layers of polar 

firn from low and high-altitude. This system has shown outstanding performance, but it has some 

limitations in terms of operational altitude and relies on the operator to make adjustments during 

surveys to capture radar echoes if the altitude changes significantly. In this thesis, an automated 

onboard real-time surface tracker for the snow radar is presented to detect snow surface elevation 

from the aircraft and track changes in the surface elevation. A common technique for an FMCW radar 

to have a long-range (high-altitude) capability relies on the system’s ability to delay the reference 

chirp signal used for de-chirping to maintain a relatively constant beat frequency. Currently, the radar 

uses an analog filter bank to condition the received IF signal over discrete altitude ranges and store 

the spectral power in each band utilizing different Nyquist zones. During airborne missions in Polar 

Regions with the radar, the operator has to manually switch the filter banks whenever there is a 

significant change in aircraft elevation. The work done in this thesis aims at eliminating the manual 

switching operation and providing the radar with surface detection, chirp delay, and a constant beat 

frequency feedback loop to enhance its long-range capability and ensure autonomous operation. 



iv  

Acknowledgements 
 

I want to thank my advisor Dr. Carl Leuschen who offered continuous guidance and support 

to me throughout the course of my master’s studies. This work would not have been possible 

without Dr. Leuschen’s vision and continuous feedback on my work. I want to thank my committee 

members Dr. Fernando Rodriguez-Morales and Dr. Christopher Allen for teaching me the 

technical concepts and providing valuable suggestions for my thesis. I want to thank the EECS 

department and all the faculty members who taught me during the course of my studies.  

Most importantly, I would like to dedicate this work to my beloved father Mr. Sanjeev 

Bhatnagar who passed away the previous year. Dad, I want to tell you that whatever I have 

achieved is all because of your continuous motivation and confidence in me, I love you. I want to 

thank my mother Mrs. Neelu Bhatnagar and brother, Harsh for their unconditional support. My 

master’s journey has been a worthwhile experience and these two years have taught me a lot. I also 

want to thank Akhilesh for letting me know about the amazing work done at CReSIS while he was 

a student at KU and encouraging me to be a part of CReSIS. Finally, I would like to thank all the 

staff members and students working at CReSIS who extended a helping hand whenever I needed 

one.



v  

 

Table of Contents 
 

Acceptance Page ............................................................................................................................ ii 

Abstract ........................................................................................................................................ iii 

Acknowledgements ...................................................................................................................... iv 

Table of Contents ........................................................................................................................... v 

List of Figures .............................................................................................................................. vii 

List of Tables ................................................................................................................................. ix 

Chapter 1 Introduction ................................................................................................................. 1 

1.1 Motivation ........................................................................................................................... 2 

1.2 Objectives and Approach .................................................................................................... 5 

1.3 Contribution ...................................................................................................................... . 6 

1.4 Thesis Organization ............................................................................................................ 7 

Chapter 2 Literature Review ........................................................................................................ 9 

2.1 FMCW Radars-Theory and Background .......................................................................... 10 

2.1.1 FMCW Radar Operation Simulation………………………………………………14 

    2.1.1.1 Beat Frequency Spectrum……………………………………………………..14 

    2.1.1.2 Range Ascope…………………………………………………………………14 

    2.1.1.3 Range plot-slow time domain…………………………………………………15 

    2.1.1.4 Range Doppler Spectrum……………………………………………………...16 

2.2 Field Programmable Gate Arrays - Background and Principle....……………………......17 

2.3 Peak Detection  ................................................................................................................. 19 

2.4 Review of Peak Tracking Algorithms………………………………………………........14 

2.4.1 Adaptive Linear Prediction based Tracking ......................................................... 20 

2.4.2    Kalman Filter Based Tracking…………..……………………………...……......21 

2.4.3    Offset Centre of Gravity Algorithm (OCOG)……………………………………24 

Chapter 3 Peak Detection ........................................................................................................... 26 



vi  

3.1 Spectrum Analysis ............................................................................................................ 26 

3.2 Discrete Fourier Transform………………………………………………………………27 

3.3 Fast Fourier Transform ..................................................................................................... 29 

3.4 Spectrum Analysis using FFT ........................................................................................... 32 

3.5 Implementing Peak Detection in FPGA ........................................................................... 35 

Chapter 4 Surface Tracking ....................................................................................................... 37 

4.1 Surface Tracking Importance ............................................................................................ 37 

4.2 Tracking Approach ........................................................................................................... 38 

4.3 Implementing Surface Tracking on FPGA ....................................................................... 40 

Chapter 5 Implementation and Results .................................................................................... 43 

5.1 System Information ........................................................................................................... 43 

5.2 High Level Block Diagram………………………………………………………………44 

5.3 Simulations on Host Computer ......................................................................................... 45 

5.3.1 FFT Implementation on FPGA…………………………………..………............45 

5.3.2 Surface Tracking Implementation………………………………………………..48 

5.4 Hardware Implementation on FPGA Target ..................................................................... 56 

5.4.1 Hardware Implementation Procedure ................................................................... 56 

5.4.2 Artificial Target Simulation using Optical Delay Line  ........................................ 57 

5.4.3 Implementation Results and Analysis……………………………………………57 

5.4.4 Arbitrary Waveform Generator Settings…………………………………………58 

5.4.5 Data Acquisition System Settings………………………………………………..60 

5.4.6 Hardware Implementation Results……………………………………………….62 

Chapter 6 Conclusion and Future Work ................................................................................... 68 

6.1 Summary ........................................................................................................................... 68 

6.2 Future Work… .................................................................................................................. 68 

   References .................................................................................................................................... 70 

Appendix A .................................................................................................................................. 74 

 
 

 



vii  

List of Figures 

 
1.1 Sea Ice as seen from the window of DC-8 aircraft………………………………………… 3 

2.1 A linear frequency modulated chirp waveform………………………………………......... 10 

2.2 FMCW radar block diagram……………………………………………………………….. 11 

2.3 Extracting the beat frequency and converting it into range………………………………... 12 

2.4 Beat frequency spectrum of received echoes………………………………......................... 14 

2.5 Ascope showing the range of targets and the relative strength of their echoes……………. 15 

2.6 Range mapping in slow time domain……………………………………………………….16 

2.7 Mapping of the received data matrix in range and Doppler spectrum……………………...17 

2.8 Basic architecture of a field programmable gate array……………………………………...18 

2.9 Adaptive linear prediction…………………………………………………………………. 20 

2.10 Kalman filter Operation……………………………………………………………………24 

   3.1 Different types of Transforms………………………………………………………………27 

   3.2 A 4-point FFT implementation……………………………………………………………...31 

   3.3 Signal containing 2 sinusoids of frequency 10 Hz and 50 Hz………………………………32 

   3.4 Random noise added to signal………………………………………………………………33 

   3.5 Power spectral density plot of the noisy signal……………..………………………………34 

   3.6 FFT IP Core in LabVIEW FPGA …………………………..………………………………36 

   3.7 FFT implementation mode inside a single cycle timed loop…..……………………………36 

   4.1 Current Radar Operation ………………………………………………………….………...39 

4.2 Operation with delayed LO reference chirp…………………………………………….…...40 

5.1 NI FlexRIO Device …………………………………………………………………………44 

5.2 High level block diagram showing different processing steps………………………………45 

5.3 Sine Wave Generator………………………………………………………………………...46 

5.4 FFT IP configuration…………………………………………………………………………46 

5.5 2 plots displaying Direct FFT taken on host computer and FPGA FFT……………………..47 

5.6 LabVIEW code for FFT implementation and extracting maximum FFT output value….......48 

5.7 LabVIEW code for extracting maximum value every 1023 data indexes……………….......49 

5.8 LabVIEW code which converts maximum data index into beat frequency…………………49 

5.9 LabVIEW code for calculating the delay from the obtained beat frequency and calculating   



viii  

the corresponding loop cycles required……………………………………………………….51 

5.10 LabVIEW code for calculating the error required to fix the beat frequency at 350 loop cycles 

(100 Hz)……………………………………………………………………………………….51 

5.11 Beat frequency 400MHz corresponding to a delay of 1875 loop cycles to achieve a constant 

beat frequency of 100Hz, assuming an initial delay of 750(200 MHz) loop cycles…………..53 

5.12 Beat frequency 399MHz corresponding to a delay of 1871 loop cycles to achieve a constant 

beat frequency of 100Hz,assuming an initial delay of 750(200 MHz) loop cycles……….…..54 

5.13 PRI Trigger counter and LO Trigger counter logic in LabVIEW………………………...........55 

5.14 Changing the design execution mode to ‘FPGA Target’ for hardware compilation…………..56 

5.15 FPGA Hardware compilation steps……………………………………………………….........57 

5.16 Direct and FPGA FFT for 240usec, 2-18 GHz Chirp with 8 presums…………………………58 

5.17 Keysight M8195A ports ‘Trigger In’ and ‘Event In’ were used for sending the PRI and  

LO triggers ………………………………………………………………...………………….59 

5.18 Keysight M8195A import waveform settings…………………………………………………59 

5.19 Keysight M8195A Trigger settings………………………………………………………........60 

5.20 NI PXIe 6674T settings………………………………………………………………………..61 

5.21 KU Snow Radar in operation…………………………………………………………………..61 

5.22 Connection diagram of the setup……………………………………………………………….62  

5.23 NI DAQ showing the beat frequency of 75MHz at 409 LO loop cycles…………………........63 

5.24 NI DAQ showing the beat frequency of 75MHz…………………………………………….....63 

5.25 NI DAQ showing the beat frequency of 116MHz at 408 LO loop cycles……………………..64 

5.26 NI DAQ showing the beat frequency of 33MHz at 410 LO loop cycles…………………........65 

5.27 NI DAQ showing the IF signal of frequency116 MHz…………………………………………66 

5.28 NI DAQ showing the IF signal of frequency 34 MHz……………………………………........66 

 

 

 

 

 



ix  

List of Tables 

 
1.1 Beat frequency range corresponding to different Nyquist zones…………………………... 5 

2.1 Radar simulation parameters……………………………………………………………….. 13 

2.2 Radar cross section of two targets…………………………………………………………...13 

2.3 Discrete Kalman filter time update equations……………………………………………….23 

2.4 Discrete Kalman filter measurement update equations……………………………………...23 

3.1 MATLAB code for FFT implementation……………………………………………………34  

 



1  

Chapter 1 

Introduction 

Global mean sea level has been rising over the past century, and the rate of sea level rise has 

been rapid in recent decades. The overall global rate of sea level rise during the last 100 years has 

been nearly 2 mm/year [1] and continues to rise at a rate of about one eighth of an inch per year in 

the 21st century [2]. Globally, this rise has led to thinning of coastlines, loss of agricultural land, 

abandoned islands, loss of habitat in marshlands and severe storm vulnerabilities [3]. The two major 

causes of sea level rise are thermal expansion due to warming of the ocean (since water expands as it 

warms) and melting of ice sheets in Greenland and Antarctica [4]. Therefore, as around 37% of the 

world's population lives within hundred kilometers of the coast [1], understanding as to why the sea 

levels continue to increase rapidly is a matter of exigency. By apprehending the reason of this rapid 

elevation in sea levels, scientists and geologists could develop prognostic and diagnostic models to 

predict future trends in global sea level rise.  

Sea ice in Polar Regions has a covering of snow at the top, which usually varies in thickness 

between few centimeters to over one meter. This layer of snow over sea ice acts as a thermal insulator 

which in turn modulates heat exchanges between the ocean and the atmosphere. The thermal 

conductivity of snow is less than that of the sea ice beneath it, which in turn insulates the sea ice from 

extremely cold polar winds [5]. Thermal insulation reduces the basal sea-ice accumulation rate and 

high albedo (reflected solar energy) retards the sea ice melting during the summer [6]. The melting 

of this insulating snow cover creates ponds on the ice surface which have a low albedo and therefore 

absorb more heat than snow, which in turn increases the surface melting and initiates fresh water 

supply into the ocean [7]. Remote sensing of the depth of snow cover over sea ice with the help of 
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radars provides efficient data for the scientists to understand and investigate the winter inter annual 

snow depth, sea-ice mass balance, energy and surface heat budget [8]. High quality radar data also 

helps to determine the inter-annual variability of precipitation rates in the region which discerns the 

amount of freshwater input in Polar Regions. 

 The Center of Remote Sensing of Ice Sheets (CReSIS) is a science and technology center at 

The University of Kansas which was established by the National Science Foundation (NSF) in 2005, 

with a mission of developing new technologies and computer models to measure and predict the 

response of sea level change to the mass balance of ice sheets in Greenland and Antarctica [9].At 

CReSIS, researchers develop various radar sensors which are deployed in polar regions to provide 

precise measurement of ice bed thickness, mapping of internal layers, sounding and imaging of ice 

bed, etc. The data acquired from various radar sensors is provided to scientists and geologists and 

helps them studying the rapidly changing characteristic of polar ice sheets.  

1.1 Motivation 

 
Radars operating at a wide range of frequency spectrum possess large signal bandwidth which 

is essential for efficacious measurement of snow cover depth layers. Transmitting a signal which has 

a broad range of different frequencies (large bandwidth) enables the radar to be sensitive to minute 

changes in the snow microstructure. Frequency dependent radar signatures obtained from radars 

operating at multiple bands identified essential snow cover features such as ice and depth hoar layers 

[11]. Sub-band data processing utilizes the ultra-wideband nature of the FMCW radar to examine the 

scattering characteristics of snow within a particular frequency band of interest [10] [12]. A frequency 

modulated continuous wave radar operating at 2-18 GHz provides a large bandwidth which in turn 

improves the range resolution of snow cover images to about 1.4 cm from a nominal survey altitude 

of 500 meters [13] [14]. High operating bandwidth enables unambiguous detection of the underlying 

stratum of snow cover including the rough, thin and thick layers of snow on sea ice. The unambiguous 
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detection is further fine-tuned by achieving small range resolution which enables efficient 

differentiation of the air/snow and snow/ice interfaces. 

Currently, as a part of NASA operation IceBridge, the frequency modulated continuous wave 

(FMCW) radar also called the ‘Snow Radar’, is used to map near surface internal layers of polar firn 

[12]. The ‘Snow Radar’ operates at a frequency of 2-18 GHz and is deployed on aircrafts to carry out 

airborne measurements of the Polar Regions. A linear, frequency modulated chirp is transmitted 

which impinges on the target, as a result a backscattered attenuated copy of the transmitted chirp 

signal is propagated back to the radar receiver after a propagation delay. The transmitted and the 

received chirps are multiplied together in the hardware and this process is called dechirping or 

deramping. After dechirping, the signal is bandpass filtered to produce an IF signal known as the beat 

frequency signal. The radar employs stretch chirp processing which supplies the reference chirp 

waveform from the radar to the local oscillator (LO) at the same time as the signal transmits from the 

antenna. Owing to the propagation delay of the received signal, the overlap between the transmitted 

and received signal has to be significant in order to achieve high signal to noise ratio (SNR). Figure 

1.1 shows a picture of sea ice taken from DC-8 aircraft for NASA OIB.  

 

Figure 1.1: Sea Ice as seen from the window of DC-8 aircraft [15] 
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For the FMCW radar to exhibit a long range capability, the radar must have a reference chirp 

delaying ability, i.e. the delayed and attenuated return signal should be mixed with a ‘delayed’ version 

of the reference chirp signal in order to perform exact match filtering. The amount of time by which 

the reference chirp signal has to be delayed would depend on the two way propagation time of the 

transmitted chirp signal. Consequently, the two way propagation time determines the range of the 

target and an FMCW radar maps range of the target to the IF or beat frequency. Therefore, a way of 

delaying the reference chirp signal supplied to the local oscillator should be deciphered that results in 

exact match filtering of the transmitted and received signals. 

 Currently, in order to achieve a longer range capability, the radar uses an analog filter bank to 

condition the received IF signal over discrete altitude ranges and store the spectral power in each band, 

utilizing Nyquist zones 1, 2, 3 and 4 as given in Table 1.1.During the airborne measurements, the 

radar operator has to manually switch the filter banks whenever there is a significant change in aircraft 

elevation in order to store the spectral power in each band. One way to bypass the manual switching 

is to delay the reference chirp by an amount of time corresponding to the increase in the beat 

frequency of the signal in each band. Thus, by delaying the reference chirp, manual switching of the 

filter banks could be avoided and the resulting IF signal would only be low pass filtered. 

Implementing this feature would fully automate the operation of the ‘Snow Radar’ and would no 

longer require manual switching of filter banks as the aircraft gains or loses altitude. 
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Snow Radar (Bandwidth: 2-18GHz, Chirp Length : 240 µsec) 

Nyquist Zone Range(meters) Beat Frequency(fb)(MHz) Filter Type 

1 23 - 281 10 - 125 Low Pass 

2 281 - 563 125 - 250 Band Pass 

3 563 - 844 250 - 375 Band Pass 

4 844 - 1125 375 - 500 High Pass 

 

Table 1.1 Beat frequency range corresponding to different Nyquist zones [16]. 

 

1.2 Objectives and Approach 

 Frequency modulated continuous wave (FMCW) radars use the difference in the 

frequency of the transmitted as well as the received signal, also known as the beat frequency, to 

measure the range of the illuminating target. In order to delay the reference chirp fed to the local 

oscillator (LO), there must be a way of determining the range of the illuminated target in real time in 

order to determine the amount of time by which the reference chirp signal should be delayed and fed 

to the local oscillator in order to perform exact match filtering. 

 The objective of this thesis is to spectrally analyze the returned IF signal in real time 

and extract the beat frequency information from the signal. The FMCW radar maps the beat frequency 

directly to the range of the target by the following equation: 

                                                       𝑅 =
𝑐𝑇𝑠𝑓𝑏

2𝐵
             ….………………………………. (1.1) 

 

 

Where R is the range, bf  the beat frequency, ST is the sweep time, B  is the Bandwidth,       

and c is the speed of light.  

Thus, by determining the range of the target from the beat frequency, one can determine the 

two-way propagation time of the chirp signal which in turn is equal to the amount of time required to 
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delay the reference deramping chirp signal sent to the local oscillator.  

Moreover, along with calculating the delay for the reference chirp, a robust real time surface 

tracking algorithm needs to be implemented such that range of the ice surface from the aircraft must 

be tracked accurately. The tracking algorithm is necessary for the system as it shields the system from 

tracking and interpreting a wrong waveform peak arising due to a sudden glitch or noise. In order to 

maintain steady tracking of the ice surface, and to save the system from tracker errors arising due to 

unforeseen circumstances, implementing a tracking algorithm is a necessity. 

In this thesis, to implement signal detection, spectral analysis of the signal was done in real 

time using fast fourier transforms and a peak tracking algorithm was implemented. The snow radar 

uses field programmable gate arrays for data acquisition. Field programmable gate arrays (FPGAs) 

are semiconductor devices which are designed to be configured and reprogrammed by the designer 

to suit the desired application needs after manufacturing [17].Field programmable gate arrays have 

an advantage over Application Specific Integrated Circuits (ASICs), as unlike ASICs which are 

manufactured for a specific application and have a fixed functional aspect, FPGAs can be 

programmed according to the changing needs of a system. In order to implement a peak detector and 

tracker unit and make it work in real time, FPGAs are ideally suited due to their high operating speed 

as well as software controlled reprogrammability [18].  

1.3 Contribution 

 
In this thesis, a module is developed which has two basic functions of signal peak detection 

and consistent peak tracking. The module can be appropriately called the ‘Peak detection and 

Tracking unit’. The unit will track the returned chirp signal from the ice sheet surface and would 

consistently update the altitude of the aircraft from the ice surface. The beat frequency obtained from 

the real time spectral analysis would correspond to the two way propagation time of the chirp and 

also the amount of time delay by which the local oscillator should receive the reference chirp in order 
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to perform the dechirp operation. 

As mentioned in Table 1.1, different range of beat frequencies would correspond to different 

range of altitudes of the aircraft and the ‘Peak detection and Tracking unit’ would automatically delay 

the reference chirp without the need of manual switching of different filter banks. The radar operator 

would no longer need to manually switch the filter banks whenever there is a change in the aircraft 

altitude. This implementation would make the operation of the snow radar more autonomous and free 

from errors caused in the data acquisition due to manual switching of the filter banks.  

1.4 Thesis Organization 

 
The thesis is divided into six chapters. Chapter two presents literature review which comprises 

of the theory and background of frequency modulated continuous wave radars (FMCW). The next 

section underlines the theory and principles of operation of field programmable gate arrays. The 

chapter also reviews different tracking algorithms used for peak detection and tracking.  

Chapter 3 discusses the method of peak detection using fourier transforms. It explains how a 

signal is processed and analyzed in the frequency domain and how spectrum analysis is useful 

specially in the case of frequency modulated continuous wave radars where the beat frequency of the 

signal is used to extract the two-way propagation time information. 

Chapter 4 presents the importance of surface tracking and how it can be achieved. It also 

discusses how tracking can be achieved in real time using field programmable gate arrays and the 

approach used in building a tracker. It also highlights the challenges involved in surface tracking in 

real time.  

Chapter 5 discusses the implementation of the peak detection and tracking module in the lab. 

It presents how the simulations were done on the host computer followed by the hardware 

implementation of the module. The chapter also highlights the process of synthesizing and 

implementing the design on FPGA and tools used for implementation. Finally, Chapter 6 summarizes 
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the thesis and the challenges faced in the implementation and discusses the future work that can be 

accomplished.   
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Chapter 2  

Literature Review 

Frequency modulated continuous wave (FMCW) radars are capable of performing target 

detection and ranging in the frequency domain, this makes them different from conventional radars 

which operate in the time domain. The use of FMCW radars with doppler capability in remote sensing 

applied to atmospheric applications was first demonstrated by Strauch et al in 1976 [19].The radar 

was designed at Colorado State University and was used to detect atmospheric precipitation (rain and 

snow).However, the demonstration was based on an analog frequency chirp and the received signal 

was analyzed analytically in analog form without involving the principles of discretization as well as 

digitization [20]. 

With the emergence of digital data acquisition systems (DAQs), the analog to digital converter 

(ADC) came into existence and this changed the entire perspective of signal analysis. The received 

signals could now be digitally sampled at a predefined sample rate and sample resolution (number of 

bits per sample).Digital acquisition of the received signals enabled the signal processing and analysis 

of the received data using numerical methods like Fast Fourier Transforms (FFT) [21].As the 

numerical analysis of the signals gained popularity, these methods imposed added restrictions on 

signal analysis such as sample rate limit and length owing to the digitization. This is how the digital 

mode of operation came into existence and FMCW radars also exploit this capability. The next section 

describes the principles of FMCW radars and the theory behind their mode of operation.  
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2.1 FMCW Radars -Theory and Background  

 
Frequency Modulated Continuous Wave radars (FMCW) are a special category of radar 

sensors which transmit a continuous wave signal whose frequency content varies with time, therefore 

the signal is frequency modulated. The frequency of the RF signal changes over time in a sweep across 

a set bandwidth, i.e. the frequency changes linearly with respect to time. FMCW radars typically have 

a separate transmitter that transmits the signal continuously and a separate receiver for signal reception 

during transmission, this feature enables a zero blind range as the receiver is not off during transmission. 

This differentiates FMCW radars from the conventional pulsed radars which are characterized by their 

duty factor D given by: 

𝐷 =  𝜏 ∗ 𝑃𝑅𝐹 …………………………………… (2.1)    

Where  𝜏 stands for pulse duration and PRF is the pulse repetition frequency. The duty factor 

for pulsed radar typically ranges from 1% to 20%, whereas for continuous wave radars the duty 

factor is 100% [17]. 

The transmit signal typically used in an FMCW radar is a chirp waveform, which is given by 

equation: 

                                             𝑠(𝑡) = 𝐴 cos (2 𝜋(𝑓𝑐𝑡 + 0.5𝑘𝑡2) + 𝜙𝑐  )    ………………………. (2.2) 

 Where  𝑓𝑐 is the starting frequency in Hz, 𝑘 is the chirp rate in Hz/sec, 𝜙𝑐 is the starting phase in 

radians, t is the time which ranges from 0 t   ,  being the pulse duration, the chirp bandwidth is 

given by B=k. 

 

Figure 2.1 A linear frequency modulated chirp waveform [22]. 
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The FMCW radar block diagram is given in figure 2.2, the steps of basic FMCW radar 

operation are described below: 

 

Figure 2.2 FMCW radar block diagram [22]. 

 The waveform generator generates an FMCW signal (Chirp in this case). 

 The signal is radiated into free space by the transmitting antenna. 

 Signal propagates through free space towards the target, gets reflected back and travels towards 

the radar. 

 The reflected signal is collected by the receiving antenna and amplified. 

 The received signal is then mixed with the transmitted signal, also known as the ‘dechirping’ 

operation. 

 The difference in frequency between the transmitted and received signal, also known as the IF 

(Intermediate Frequency) signal is generated by mixing the two signals and then amplified. 

 A spectrum analyzer is used to analyze the IF or the beat frequency signal. 

The dechirping operation is given by equation 2.3: 

𝑠(𝑡)𝑠(𝑡 − 𝑇) = acos(2𝜋(𝑓𝑐𝑡 + 0.5𝑘𝑡2) + 𝜙𝑐 ) 𝑎𝑐𝑜𝑠(2𝜋(𝑓𝑐(𝑡 − 𝑇) + 0.5𝑘(𝑡 − 𝑇)2) + 𝜙𝑐  ). ..(2.3) 

Where T is the two way propagation time of the signal. 

After low pass filtering to reject the harmonics, the above equation simplifies to: 

                                             𝑞(𝑡) =
𝑎2

2
cos (2𝜋(𝑓𝑐𝑇 + 𝑘𝑇𝑡 − 0.5𝑘𝑇2))…………………… (2.4) 
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The two way propagation time of the signal T (sec) is given by the equation: 

                                                   𝑇 =
2𝑅

𝑐
……………………………………………… (2.5)   

Where R is the Range of the target in meters and c is the speed of light which is 3e8 m/sec. Therefore, 

if the two-way propagation time of a signal is known, the exact range of the target can be calculated 

by the above equation.  

The beat frequency is the difference of the transmitted and the received signal frequencies and is 

given by the following equation: 

                                                         𝑅 =
𝑐𝑇𝑠𝑓𝑏

2𝐵𝑠𝑤𝑒𝑒𝑝
………………………………………………. (2.6) 

Where 𝑇𝑠 is the sweep time of the signal, 𝑓𝑏 is the beat frequency, and 𝐵𝑠𝑤𝑒𝑒𝑝 is the sweep bandwidth 

of the signal. The beat frequency directly maps to the range given by equation 2.6. The details of the 

mapping are given in the figure: 

 

Figure 2.3 Extracting the beat frequency and converting it into range [23]. 

When a target moves relative to the radar, a Doppler frequency shift is introduced which can also be 
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calculated by performing several sweeps and storing the data into a matrix and then performing a 2D 

FFT on the matrix. 

To improve my understanding of FMCW radar operation, I simulated an FMCW radar 

operation in MATLAB capable of detecting the range and velocity of two point targets. The design 

considerations are given in the table below: 

 

PARAMETER VALUES 

Radar Center Frequency 77GHz 

Propagation Free space 

Maximum range monitored 100m and 450m for two point targets. 

Radial velocity 
Kept the first target as stationary and the second target moving at a 

velocity of 50m/s 

Range resolution ΔR 1m 

Operating Bandwidth B=c/2 ΔR 

 

150MHz 

 

 

Table 2.1 Radar simulation parameters. 

 

RCS of the 2 targets are given as follows: 

Targets RCS(m2) RCS (dB) 

Target 1 1 0 

Target 2 100 20 

 

Table 2.2 Radar cross section of two targets. 
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2.1.1 FMCW Radar Operation Simulation  

2.1.1.1 Beat Frequency Spectrum 

The beat frequency spectrum given in fig 2.4 clearly shows the return coming from two targets 

in the illuminated scene, first and second point targets return beat frequencies of approximately 13.6 

MHz and 61.3 MHz respectively. 

 

 

Figure 2.4: Beat frequency spectrum of received echoes. 

2.1.1.2 Range Ascope 

On converting the corresponding beat frequencies to the target ranges according to the equation 2.6, 

the target ranges are calculated to be 100 m and 450 m respectively which is in accordance with the plot given 

in figure 2.5. 
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Figure 2.5: Ascope showing the range of targets and the relative strength of their echoes. 

2.1.1.3 Range plot-slow time domain 

100 slow time samples were taken for the generation of the illuminated scene and 

figure 2.6 represents the exact ranges of the two targets in the slow time domain. As the 

displacement is very low with respect to the slow time, the target 2, appears to be stationary 

in the figure at the range of 450 m. 
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Figure 2.6: Range mapping in slow time domain 

2.1.1.4 Range Doppler Spectrum 

The range doppler spectrum is obtained by taking a 2D FFT of the received data matrix in 

which the superimposed signal is stored for several sweeps. A hanning window is also applied before 

taking the 2D FFT in order to suppress the sidelobes. We can clearly see from figure 2.7 that the 

target 1 appears to be stationary at the range of 100 m (velocity = 0 m/sec) and target 2 appears to 

move at a velocity of 50 m/sec which is in accordance to our expected estimation. 

 

 

 

 

 



17  

 

Figure 2.7: Mapping of the received data matrix in range and Doppler spectrum. 

Therefore, by creating unique data vectors for each transmit and receive intervals during the 

course of several sweeps and saving it to a two dimensional data matrix and performing a 2D FFT 

which maps the signal in both range and doppler domains would give us the exact position and the 

velocity of the target. The MATLAB code for simulating the 77 GHz FMCW Radar is listed in 

Appendix A of this thesis.  

2.2 Field Programmable Gate Arrays - Background and Principle 

The origin of the field programmable gate arrays could be accredited to its precursors, the 

programmable read only memory (PROM) and programmable logic devices (PLDs). Both of these 

devices had the ability to be reprogrammed on the field. However, the configurable logic blocks 

needed to be hard wired to each other [24]. Xilinx Inc. invented FPGA in 1985 [24]. The company 

built on the programmable logic concept and created a chip which was entirely field programmable.      

A field programmable gate array (FPGA) is an integrated circuit which can be programmed 
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by the designer according to the changing application needs after manufacturing. That is how the term 

‘field programmable’ relates to the name. The reprogramming ability makes them different from the 

application specific integrated circuits (ASICs) as the functionality of ASICs is fixed and cannot be 

altered after manufacturing. FPGA’s contain configurable logic blocks (CLBs) arranged in an array 

structure along with interconnects which are reconfigurable in nature to allow the CLBs to be wired 

together. Figure 2.8 describes the architecture of an FPGA. The CLBs can be configured to perform 

functions which are from implementing a simple logic gate function like AND or XOR to applications 

requiring complex combinational logic.    

 
 

                       Figure 2.8: Basic architecture of a field programmable gate array [25]. 

The basic building block of an FPGA is a Look up Table (LUT). LUT is basically a truth table 

which has different combination of inputs to yield output values. Any combinatorial logic can be 

implemented in an FPGA by initializing a look up table. FPGAs also have storage elements for storing 

sequential logic states for every clock cycle such as flip flops (registers) and latches. Apart from 

LUTs, FPGAs also have dedicated Block RAMs, DSP blocks (are Arithmetic Logic Units), PCI 

Express supported to provide higher storage and computation speed. Also, FPGAs may have 
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additional elements such as Multiply Accumulate Blocks (MACs),High-speed serial transceivers, 

Phase locked loops (PLLs) which are used for operating the FPGA logic at multiple different clock 

rates. These components help in pipelining the implemented logic as well as providing inherent 

parallelism across multiple applications.   

2.3 Peak Detection 

In this thesis, the property of Fast Fourier transforms (FFT) has been utilized for analyzing 

the beat frequency of the chirp signal in the frequency domain. Fast Fourier transform (FFT) is the 

name given to an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence. FFT 

is a fast computational algorithm for DFT which reduces the computational complexity of DFT from 

O (N2) to O (NlogN). 

In 1965, James Cooley and John Tukey published a journal article named “An Algorithm for 

the Machine Calculation of Complex Fourier Series” published in the journal Mathematics of 

Computation [21]. This algorithm is considered to be the most popular and generalized algorithm for 

calculating the fast fourier transform. Also known as the Cooley-Tukey algorithm dramatically 

reduced the computational cost of the regular DFT algorithm and became one of the indispensable 

algorithms in digital signal processing.  

2.4 Review of Peak Tracking Algorithms 

Implementing a real time surface tracker has to have two components, the first being signal 

detection, i.e. detection of the beat frequency corresponding to the return signal. Owing to the 

roughness of the surface snow cover, the backscatter from the snow surface would consist of a 

superposition of specularly reflected pulses from various points on the snow surface [26]. Therefore, 

a robust surface tracking algorithm needs to be implemented which can keep track of the return 

coming from the snow surface and therefore avoid any errors arising due to tracking wrong peak 
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occurring due to a glitch or noise. 

In literature, there are various tracking algorithms used for different radar altimeters and there 

is no specific universal algorithm used for range tracking. The tracking algorithm depends on 

operating environment of the radar altimeter and several other factors. Next section gives an overview 

of some of the tracking algorithms used in radar altimeters. 

2.4.1 Adaptive Linear Prediction based Tracking 

Adaptive linear prediction is used to estimate and predict the future values of a signal based 

on its past values. This technique is widely used in speech and image compression. Figure 2.9 shows 

how the adaptive filter is used to predict the next value of the signal on the basis of its past values. 

 

Figure 2.9: Adaptive linear prediction [27]. 

In figure 2.9, s(n) is a time series signal at time n. x(n) is the delayed version of s(n) and x(n) 

acts as an input to the Adaptive Filter, y(n) is the output from the adaptive filter. The difference 

between the output of the adaptive filter y(n) and the input signal s(n) is calculated by the linear 

prediction system and an error signal e(n) is produced. The prediction system adjusts the adaptive 

filter coefficients iteratively according to an adaptive algorithm such as to minimize the error e(n). 

The system predicts the future values based on past signal values when the error e(n) reaches the 

minimum value [27]. Thus, linear prediction could be used in estimating the next location of snow 

surface on the basis of past samples. 
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2.4.2 Kalman Filter Based Tracking 

As the name suggests, Kalman filter is named after Rudolf E. Kálmán [28]. The filter works 

in two steps: 

 Prediction  

 Correction 

It is a mathematical model which uses measurements observed over time which can contain random 

errors, noise or other variations and predicts values which are closer to the correct values of the 

quantity under measurement. Kalman filter has been widely used in radar tracking systems and has 

enormous applications in navigation, guidance and control of spacecrafts, aircrafts, etc. 

Kalman filter works as a recursive estimator [29]. It is a set of mathematical equations which 

recursively estimate the state of the process in such a way that it minimizes the mean of the squared 

error. 

The goal of the filter is to estimate the state 𝑥 ∈  ℜn of a discrete time-controlled process which is 

given by the linear stochastic difference equation: 

                                            𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1………………………………………. (2.7) 

And with a measurement z ∈ ℜm given by 

                                              𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘……………………………………………………. (2.8) 

Where wk and vk represent the process and measurement noise respectively [29]. 

Both are assumed independent from each other with probability distributions 

p(w) ~ N(0,Q),……………………………………………………(2.9) 

p(v) ~ N(0,R)…………………………………………………….(2.10) 

where Q is the process noise covariance and R is the measurement noise covariance, they are assumed 

to be constant. 

We take 𝑥̂− ∈  ℜn to be the a priori state estimate at step k where we assume that we have the 
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knowledge of the process prior to step k, and 𝑥̂ ∈  ℜn is the a posteriori state estimate at step k with 

the given measurement zk. Therefore, the a priori and a posteriori estimate errors are given by, 

                                                      𝑒𝑘
− = 𝑥𝑘 − 𝑥̂𝑘

−………………………………………………… (2.11) 

                                                     𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘
 …………………………………………………. (2.12) 

The a priori estimate error covariance is given as  

                                                  𝑃𝑘
− = 𝐸[(𝑒𝑘

−𝑒𝑘
−𝑇)] ……………………………………………… (2.13) 

And the a posteriori estimate error covariance is 

                                                  𝑃𝑘 = 𝐸[(𝑒𝑘𝑒𝑘
𝑇)]………………………………………………….. (2.14) 

The Kalman filter estimates and predicts the state of the process and then acquires feedback 

in the form of measurements embedded with noise. There are two sets of equations for Kalman filter, 

 Time update equations 

 Measurement Update equations 

The time update equations are basically the equations that predict a value, they project the 

current state forward in time and error covariance estimates in order to get the a priori estimates for 

the next time step, whereas the measurement update equations provide feedback (correction), thus 

incorporating a new measurement into the earlier calculated apriori estimate to obtain an improved 

version of a posteriori estimate.  
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Discrete Kalman filter time update equations 

𝒙̂𝒌 = 𝑨𝒙̂𝒌−𝟏 + 𝑩𝒖𝒌−𝟏
 

  𝑷𝒌
− = APk-1AT + Q 

 

Table 2.3: Discrete Kalman filter time update equations [30]. 

 

Discrete Kalman filter measurement update equations 

 𝑲𝒌 =  𝑷𝒌
−𝑯𝑻(𝑯 𝑷𝒌

−𝑯𝑻 + 𝑹)−𝟏 

𝒙𝒌 = 𝒙𝒌̂
− + 𝑲𝒌(𝒛𝒌 − 𝑯𝒙𝒌̂

−) 

𝑷𝒌 = (𝑰 − 𝑲𝑲𝑯) 𝑷𝒌
− 

 

Table 2.4: Discrete Kalman filter measurement update equations [30]. 

 

 Table 2.1 contains equations that gives the current state and covariance estimates of time step 

k from time step k-1.Table 2.2 has equations that provide correction, i.e., first equation updates and 

computes the Kalman gain, second equation gives a posteriori state estimate and the third equation 

gives a posteriori error covariance estimate. Figure 2.9 shows the complete operation of the Kalman 

filter by the set of equations. Therefore, the previous a posteriori estimates are used to predict the new 

a priori estimates. 



24  

 

Figure 2.10 Kalman filter Operation [30] 

2.4.3 Offset Center of Gravity Algorithm (OCOG) 

Offset Center of Gravity Algorithm (OCOG) was developed by Mullard Space science 

Laboratory [31]. OCOG first tries to estimate the shape of the echo waveform parameters. This 

algorithm uses an estimation of pulse width to track the return waveform from the target. The width 

of the pulse is given by W in equation 2.15 as, 

                                                        𝑊 =
(∑ 𝑝𝑛

𝑘−1
𝑛=0 )

2

∑ 𝑝𝑛
2𝑘−1

𝑛=0
.……………………………………… (2.15) 

Where pn is the power corresponding to range bin n, i.e the value of nth element in an array. The 

middle point of the tracking window is assumed to be at half of W, i.e, W/2 and to the left of the 

gravity center of the return waveform. Assuming a pulse is defined as, 

      𝑝𝑛 = {
𝐴, 𝑚 ≤ 𝑛 < 𝑚 + 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

…………………………………... (2.16) 

 Getting the gravity center of the return waveform in a tracking window, the error signal is as shown 

in equation 2.17. The error output would then be sent to the next processing unit. 

                                                   𝐸 =
∑ 𝑛𝑝𝑛

𝑘−1
𝑛=0

(∑ 𝑝𝑛)𝑘−1
𝑛=0

−
𝑊
2

 ………………………………..………… (2.17) 

In a scenario where the tracking window position changes, a series of errors E can be obtained by 
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which the tracking compensation could be achieved [32]. 

The kind of tracking algorithms used for FMCW radars depend on the operating environment, 

physical properties of the target, for example whether the reflecting surface is ocean or land, etc. 

Moreover, the algorithm has to be implemented on a field programmable gate array which has limited 

hardware resources and has computational restraints due to its high operating speed and hardware 

parallelism. Thus, the tracking algorithm chosen should be computationally efficient such that it does 

not utilize a large number of resources which may not be possible to implement on an FPGA with 

limited hardware specifications.  

 

 

 

 

 

 

 

 



26  

Chapter 3  

Peak Detection 

Peak detection refers to the detection of the strongest returned chirp signal frequency when 

analyzing the signal in frequency domain. Frequency domain analysis is one of the tools in signal 

processing which is of utmost importance. It has wide range of applications in the area of remote 

sensing, image processing, control systems, communication systems, etc. The difference between 

time domain analysis and frequency domain analysis is that, time domain analysis gives an idea of 

how the signal changes with respect to time, whereas frequency domain analysis gives an idea how 

signal’s energy is distributed amongst a range of frequencies. Along with the energy information, 

frequency domain analysis also provides information on how much phase shift should be applied to 

each of the frequency components such that the original time signal would be recovered having a 

combination of all the individual frequency components of the signal. Let us look at the basics of 

spectral or frequency domain analysis of a signal.  

3.1 Spectrum Analysis 
 

A signal could be converted between time and frequency domains using mathematical 

operators known as transforms. The signal can be processed within these two domains and the process 

translation of most importance is convolution because convolution in the time domain is equivalent 

to multiplication in the frequency domain and vice versa. Figure 3.1 describes the various transforms 

which are used for different applications. 
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Figure 3.1: Different types of Transforms [33]. 

 

3.2 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) is a primary tool of digital signal processing. It is used to 

perform Fourier analysis of many applications. DFT is also used for solving partial differential 

equations and to perform complex operations such as convolution. 

  To further understand the DFT, let’s look at the numerical representation, the z-transform of 

a periodically finite sequence is given as: 

                              𝑋(𝑧) =  ∑ 𝑥(𝑛)𝑧−𝑛𝑁−1
𝑛=0  ……………………………………. (3.1) 

If we periodically extend x (n) such that: 

              𝑥(𝑛) =  {{
𝑥̂(𝑛),    0 ≤ 𝑛 ≤ 𝑁 − 1

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
}……………………………..…… (3.2) 

The discrete fourier transform of a periodically extended signal is given by, 

𝑋̂(𝑘) = ∑ 𝑥̂(𝑛)𝑒
−

𝑗2𝜋𝑘𝑛

𝑁
𝑁−1
𝑛=0 = ∑ 𝑥̂(𝑛) [𝑒

𝑗2𝜋𝑘

𝑁 ]
−𝑛

𝑁−1
𝑛=0 ...........................… (3.3) 

On comparing equations (3.1) and (3.3) we get a relationship between z-transform of the finite 

sequence and the discrete fourier transform of a periodically extended sequence given as, 

  

𝑋̂(𝑘) = 𝑋(𝑧)|𝑧=𝑒𝑗2𝜋𝑘/𝑁  ………………………………. (3.4) 
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The relationship between discrete fourier series (DFS) and discrete time fourier transform (DTFT) is 

given as, 

𝑋̂(𝑘) = 𝑋(𝛺)|𝛺=𝑒𝑗2𝜋𝑘/𝑁……………………….... (3.5) 

Therefore, as we can see, the DFS can be obtained by sampling the DTFT at equal intervals along the 

unit circle  

𝛺 =
2𝜋

𝑁
.............................................................. (3.6) 

Assuming that the input signal is periodic, but we only analyze N points, and moreover, 

assume that the output signal is also periodic only observing N points, then we obtain a mathematical 

entity which is known as the Discrete Fourier Transform (DFT). 

The DFT is described by equations, 

𝑋(𝑘) =  ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘𝑁−1

𝑛=0     0 ≤ 𝑘 ≤ 𝑁 − 1 ………………………. (3.7) 

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘𝑁−1
𝑛=0     0 ≤ 𝑛 ≤ 𝑁 − 1……………….……. (3.8) 

Therefore, DFT can be given as: 

𝑋(𝑘) = 𝐷𝐹𝑇{𝑥(𝑛)}………………………………….. (3.9) 

Figure 3.2 shows input signals being transformed using various transforming techniques.  
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3.3 Fast Fourier Transform 

Fast Fourier Transform is basically a fast-computational algorithm for discrete fourier 

transform (DFT). To understand the FFT algorithm, it is essential to first understand the 

computational complexity of the DFT. The number of multiplies and adds which are required to 

compute the discrete fourier transform of a length N signal, equation 3.7 gives the DFT of a signal, 

which could be further given as, 

𝑋(𝑘) = ∑[𝑅𝑒 𝑥(𝑛) + 𝑗𝐼𝑚 𝑥(𝑛)]. [𝑅𝑒𝑊𝑁
𝑘𝑛 + 𝑗 𝐼𝑚𝑊𝑁

𝑘𝑛]

𝑁−1

𝑛=0

    0 ≤ 𝑘 ≤ 𝑁 − 1 

 ∑ {𝑅𝑒 𝑥(𝑛)𝑅𝑒𝑊𝑁
𝑘𝑛 − 𝐼𝑚 𝑥(𝑛)𝐼𝑚𝑊𝑁

𝑘𝑛 +  𝑗𝑅𝑒 𝑥(𝑛)𝐼𝑚𝑊𝑁
𝑘𝑛 + 𝑗𝐼𝑚𝑥(𝑛)𝑅𝑒𝑊𝑁

𝑘𝑛 }  0 ≤ 𝑘 ≤ 𝑁 − 1 𝑁−1
𝑛=0      

                                                                                                                                   (3.10) 

If we compute the complexity of the DFT algorithm, we see that for each k and n, we have 4 real 

multiplications and 2 real additions, and for each k there are N values of n, therefore, we get 4N real 

multiplications and 4N-2 additions. For N values of k, there are  

4N2 multiplications ~N2, 

N (4N-2) additions ~ N2 

Therefore, DFT is computationally intensive algorithm and some other efficient way of performing 

the transform was required. 

Cooley and Tukey invented the FFT algorithm back in 1965, they exploited the conjugate symmetry 

and periodicity properties of the DFT, 

𝑊𝑁
𝑘(𝑁−𝑛) 

= (𝑊𝑁
𝑘𝑛 )∗  Conjugate symmetry    …………………… (3.11) 

𝑊𝑁
((𝑘𝑛))𝑁 

= 𝑊𝑁
𝑘𝑛     Periodicity ……………..…………………. (3.12) 

So, for a 4-point FFT, 

𝑋(𝑘) =  ∑ 𝑥(𝑛)𝑊4
𝑘𝑛

3

𝑛=0
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When we expand it using DFT algorithm, we have, 

𝑋(0) = 𝑥(0)𝑊4
0 + 𝑥(1)𝑊4

0 + 𝑥(2)𝑊4
0 + 𝑥(3)𝑊4

0 

𝑋(1) = 𝑥(0)𝑊4
0 + 𝑥(1)𝑊4

1 + 𝑥(2)𝑊4
2 + 𝑥(3)𝑊4

3 

𝑋(2) = 𝑥(0)𝑊4
0 + 𝑥(1)𝑊4

2 + 𝑥(2)𝑊4
4 + 𝑥(3)𝑊4

6 

𝑋(3) = 𝑥(0)𝑊4
0 + 𝑥(1)𝑊4

3 + 𝑥(2)𝑊4
6 + 𝑥(3)𝑊4

9 

The above operation requires 64 real multiplies and 56 real additions. Using the properties of 

symmetry and periodicity we have, 

𝑊4
0 = −𝑊4

2 

𝑊4
1 = −𝑊4

3 

𝑊4
0 = 𝑊4

0 

𝑊4
6 = 𝑊4

2 = −𝑊4
0 

𝑊4
9 = 𝑊4

1 

From the above properties we have,  

𝑋(0) = 𝑥(0)𝑊4
0 + 𝑥(1)𝑊4

0 + 𝑥(2)𝑊4
0 + 𝑥(3)𝑊4

0 

𝑋(1) = 𝑥(0)𝑊4
0 + 𝑥(1)𝑊4

1 − 𝑥(2)𝑊4
0 − 𝑥(3)𝑊4

1 

𝑋(2) = 𝑥(0)𝑊4
0 − 𝑥(1)𝑊4

0 + 𝑥(2)𝑊4
0 − 𝑥(3)𝑊4

0 

𝑋(3) = 𝑥(0)𝑊4
0 − 𝑥(1)𝑊4

1 − 𝑥(2)𝑊4
0 + 𝑥(3)𝑊4

1 

 

𝑋(0) = [𝑥(0) + 𝑥(2)]𝑊4
0 + [𝑥(1) + 𝑥(3)]𝑊4

0 

𝑋(1) = [𝑥(0) − 𝑥(2)]𝑊4
0 + [𝑥(1) − 𝑥(3)]𝑊4

1 

𝑋(2) = [𝑥(0) + 𝑥(2)]𝑊4
0 − [𝑥(1) + 𝑥(3)]𝑊4

0 

𝑋(3) = [𝑥(0) − 𝑥(2)]𝑊4
0 − [𝑥(1) − 𝑥(3)]𝑊4

1 

If we draw a flowgraph for the above equations, we get a butterfly structure given by, 
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Figure 3.2: A 4-point FFT implementation, note that it requires  

8 complex additions and 4 complex multiplies [34]. 

Thus, the computational complexity in terms of big O notation is given as, 

DFT - O [N2] 

FFT – O [N log2 N] 
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3.4 Spectrum Analysis using FFT 

FFT is used to find the components of a signal which is buried in a noisy time domain signal 

and to analyze the frequency components of a signal. Let us understand how FFT algorithm is 

implemented and can be used to get signal information from a noisy signal. In order to model a 

scenario, 2 sinusoidal signals of amplitude =1 and frequency f1=10 Hz and f2=50 Hz are added 

together and the signal is shown in figure 3.3. 

   

Figure 3.3: Signal containing 2 sinusoids of frequency 10 Hz and 50 Hz. 

 
Next, random noise is added to the above signal and the signal now looks like as given in figure 3.4. 
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Figure 3.4: Random noise added to signal. 

Now, we take the FFT of the signal and plot it on the frequency axis. In the power spectral density 

plot given in figure 3.5, 2 peaks representing two signals with frequency components 10 Hz and 50 

Hz can be clearly seen in the figure and that is how we could effectively determine the frequency 

components of a signal embedded in noise through the FFT algorithm. 
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Figure 3.5: Power spectral density plot of the noisy signal. 

The MATLAB code for the above implementation is given in table 3.1. 

 

 Table 3.1                            MATLAB code for FFT implementation    
%----------%% MATLAB Code for FFT implementation %%------------ 
clear all; 
close all; 

  
A=1; %amplitude 

  
f1=10;%frequency 1 
f2 = 50;%frequency 2 
fs=200;%sampling frequency 
t=0:1/fs:1;%time axis 
S=A*sin(2*pi*f1*t)+A*sin(2*pi*f2*t); 

  
figure(1); 
plot(t,S); 
xlim([0 0.5]); 
title('Signal','Color','k'); 
ylabel('Amplitude'); 
xlabel('Time'); 

  
y = S + randn(size(t));%adding noise 
figure(2) 
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plot(y) 
xlim([0 100]); 
title('Noise added to Signal','Color','k'); 
ylabel('Amplitude'); 
xlabel('Time'); 

  
nfft=2^nextpow2(length(S)); 
w=fft(y,nfft);%taking fft 
w=w(1:nfft/2); 
z=abs(w); 

  
fre_axis=(0:nfft/2-1)*fs/nfft; 

  
figure(3); 
plot(fre_axis,z); 
title('Power spectral Density showing peaks at 10Hz and 

50Hz','Color','k'); 
ylabel('Amplitude'); 
xlabel('Frequency(Hz)'); 

 

 

 

3.5 Implementing Peak Detection on FPGA 

As stated earlier, FFT is a faster way of performing spectral analysis of signals. In order to 

provide real time measurement analysis, FPGAs offer the desired computational performance 

required for FFT analysis. The data acquisition system for the Snow radar uses National instruments 

(NI) software LabVIEW and LabVIEW FPGA. NI FlexRIO FPGA provide high performance Xilinx 

Virtex class FPGAs which can be programmed with NI LabVIEW design software [35]. The software 

provides a built-in FFT IP for LabVIEW FPGA which can be used to implement the FFT logic as 

shown in figure 3.6. However, the inherent hardware parallelism which one gets with field 

programmable gate arrays (FPGAs), also introduces added complexity of synchronizing the data 

between operations being performed at different rates and clock cycles. Different types of algorithms 

need different number of clock cycles to complete, therefore if an IP core is expecting the input data 

before it is actually made available, all the data might get corrupted without an actual warning 

[36].Therefore, the FFT IP has different Boolean lines which are used as handshaking signals to pass 

data between different functions and loops within the FPGA block diagram. These handshaking 
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signals are named ‘ready for input’, ’input valid’ and ‘ready for output’. 

 

Figure 3.6: FFT IP Core in LabVIEW FPGA [37]. 

The FFT algorithm uses fixed point number representation (FXP) as inputs to calculate the FFT owing 

to its limited resources. It uses ‘Continuous input indexes/continuous output indexes’ which makes 

the FFT continuous to both input and output data, also referred as ‘Single Channel Single Sample’. 

When implementing FFT inside a single cycle timed loop (SCTL), the FFT works as shown in figure 

3.7 where throughput is not equal to one cycle per input. 

 

Figure 3.7: FFT implementation mode inside a single cycle timed loop [38]. 

This is how we utilize the FFT IP core for implementing the fast fourier transform algorithm 

on the FPGA.As the FPGA has limited resources, and really fast performance speed, the FFT IP core 

handshaking signals need to be used carefully to ensure smooth data transfer between the input and 

output FIFOs. Also, another fact to be considered is that the FFT block has a latency which depends 

on the length of the FFT, i.e., the latency increases with the FFT length. Therefore, while designing 

an application on the FPGA, the requirements need to be carefully considered beforehand for efficient 

implementation and execution.  
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Chapter 4  

Surface Tracking 

Peak detection is the way through which we detect the backscattered signal of interest and 

can extract the important information such as the range of the target and the two-way propagation 

time of the signal. But only peak detection is not enough as the aircraft on which the radar is 

deployed moves up and down and therefore gains or loses in altitude. In order to continuously 

acquire the signal, the snow radar currently uses the different Nyquist zones to store the spectral 

power in each band of interest. Therefore, as the range of the aircraft increases from the surface, the 

beat frequency also increases and the radar operator has to switch different Nyquist zones one by 

one so that the spectral energy is stored in different bands without encountering data loss. The next 

section describes the importance of surface tracking in the radar operation and what would be the 

benefits of implementing a real time surface tracking algorithm for the snow radar. 

4.1 Surface Tracking Importance 

Real time signal peak detection also requires continuous peak tracking which implies tracking 

the surface in real time. Peak detection detects echoes of the target in range against a background of 

noise. The role of a radar surface tracker would be to monitor consecutive updates from the radar 

system and to determine that the sequences of plots obtained are from the target that was initially 

being tracked. Surface tracking also has its own challenges as there is noise along with the signal of 

interest and there might be glitches in data acquisition, etc. Therefore, a robust surface tracking 

algorithm is required which would ensure that the radar tracks the ice surface precisely and makes 

the radar operation fully autonomous, i.e., no more manual Nyquist zone switching would be required 

by the radar operator. 
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Surface tracking involves a delayed dechirping operation, i.e. adjusting the delay of the 

reference chirp going to the local oscillator. By delaying the local oscillator reference chirp, the IF 

frequency would be constant as the range of the aircraft increases from the surface. Furthermore, the 

need of storing spectral energy in different bands would not be needed as the IF would not increase 

with respect to increasing range of the surface because the increase in the IF would be compensated 

by the delay fed to the local oscillator reference chirp signal.   

4.2 Tracking Approach 

There is no single fixed algorithm used by conventional radars for surface tracking. The 

algorithm depends on the kind of surface being tracked, the radar requirements, etc. In this thesis, the 

tracking approach followed was to analyze the beat frequency IF signal and delay the reference chirp 

with respect to the acquired IF of the echo from the target. A module was developed which generates 

a trigger for the transmit chirp, also called as the pulse repetition interval trigger. The PRI trigger is 

sent to the arbitrary waveform generator (AWG) which transmits the chirp signal. The module 

assumes a default beat frequency initially and transmits another trigger after a delay amounting to the 

propagation time calculated from the default initial beat frequency. The delayed trigger goes to the 

arbitrary waveform generator and triggers the AWG to transmit a reference chirp to the local 

oscillator. The transmit chirp is received by the receiver after a propagation delay equivalent to the 

range of the target and finally mixed with the reference chirp through a process known as dechirping. 

The resultant beat frequency signal is detected by the peak detector or the fast fourier transform 

algorithm implemented in the module. As the target range varies relative to the radar, the beat 

frequency of the signal changes, this change is compensated by the adding more delay (if the beat 

frequency of the signal is greater than the default assumed beat frequency) or reducing the delay (if 

the beat frequency of the signal is less than the default assumed beat frequency).Therefore, the local 

oscillator reference chirp trigger is adjusted in accordance to the acquired beat frequency at that 
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particular instant.  

The tracking algorithm works in a way which tries to compensate the increase or decrease in 

the instantaneous beat frequency with respect to the default assumed beat frequency by adjusting the 

delay in transmitting the local oscillator reference chirp trigger. The algorithm tries to maintain a 

constant default beat frequency by adjusting the delay of the LO signal and thereby trying to achieve 

a constant range which eliminates the need to store the spectral power in different Nyquist zones. 

Figure 4.1 shows the current operation of the snow radar where the transmit and LO chirps are emitted 

at the same time, therefore, as range of the target increases, it increases the time delay of the received 

signal which ultimately increases the beat frequency. Figure 4.2 shows the proposed solution which 

works by delaying the LO reference chirp signal by which the beat frequency can be adjusted and 

made constant according the operating range. This way, the FMCW radar can work for increased 

ranges or altitudes at a constant beat frequency. 

 

                    Figure 4.1 Current Radar Operation. 
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                     Figure 4.2 Operation with delayed LO reference chirp. 

 

4.3 Implementing Surface Tracking on FPGA 

Implementing a surface tracking algorithm real time has its own challenges as there are limited 

amount of hardware resources available. However, field programmable gate arrays provide the 

needed hardware resources required for efficiently implementing a surface tracking algorithm. 

The algorithm was implemented using a single cycle timed loop (SCTL) and separate counters 

were used for generating the transmit trigger and the delayed LO trigger signal. The counters were 

used for calculation of the delay and adjusting and calculating the limit of the counter with respect to 

the beat frequency at a particular instant. Every operation occurring inside the field programmable 

gate array is synchronized with respect to the AWG external sampling clock. The steps mentioned 

below describe how the module was created explaining the requirements one by one: 

 First, the Fast Fourier transform algorithm was implemented on the FPGA and all the 

handshaking signals were implemented for correct real time operation. 

 The bin index containing the maximum value in an FFT output block represents the highest 
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signal energy or the beat frequency of the signal. Maximum value bin index was extracted 

from the FFT output. 

 The logic to convert the bin index to beat frequency was implemented in the module. 

 The beat frequency and the two way propagation time of the signal are related by the formula: 

𝑇 =
𝑓𝑏𝑇𝑆

𝐵
   ………………………………………………. (4.1) 

Where T is the two way propagation time, TS is the chirp sweep time and B is the chirp 

bandwidth.  

 The propagation time is calculated from the beat frequency and is converted into the number 

of loop cycles of the single cycle timed loop needed for generating that particular delay with 

the help of a counter. 

 A PRI trigger logic was implemented using a counter which sends a PRI signal continuously 

to the Arbitrary Waveform Generator in order to transmit a chirp signal. 

 The local oscillator reference chirp trigger logic was implemented using counter that counts 

a fixed number of loop cycles to generate a delay with respect to the instantaneous beat 

frequency. 

 The module is implemented in such a way that every time a PRI trigger is generated, the LO 

trigger is calculated using the instantaneous beat frequency obtained from the FFT algorithm. 

Therefore, the LO trigger is synced to the PRI trigger. 

Changing the delay of the local oscillator reference chirp signal and adjusting it according to 

the increase or decrease in the range (altitude) dramatically increases the operating range of the radar. 

The idea of maintaining a constant beat frequency is achieved by increasing or decreasing the local 

oscillator chirp delay with the changing range (altitude) of the aircraft with respect to the reflecting 

surface. Maintaining a constant beat frequency eliminates the limit on the operating range of the radar. 
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This also eliminates the manual switching of the Nyquist zones which has to be done as the beat 

frequency increases with increasing range of the radar. Therefore, implementing surface detection 

and tracking for the snow radar equips the radar with the ability to operate autonomously dramatically 

increasing the operating range. 
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Chapter 5  

Implementation and Results 

5.1  System Information 

The snow radar typically operates at 2-18 GHz frequency range. The waveform generator 

used to generate a chirp waveform is a high-speed Arbitrary Waveform Generator from a commercial 

vendor [39]. The Data Acquisition System used is NI PXIe-1075 chassis which has the following 

components: 

 System Controller Slot (slot 1) 

 Hybrid Peripheral Slots (8: slots 2-5 and slots 15-18) 

 PXI Express Peripheral Slots (8: slots 6 to 9 and 11 to 14) 

 System Timing Slot (slot 10)  

 System Reference Clock 

The PXIe-1075 chassis supplies PXI_CLK10, PXIe_CLK100 and PXIe_SYNC100 to every 

peripheral slot with an independent driver for each signal [40]. FlexRIO is the name of the product 

from NI which has user-programmable FPGAs along with high speed analog, digital as well as RF 

I/O. FlexRIO’s can be programmed graphically by National Instruments graphical programming 

language LabVIEW. The architecture of FlexRIO is such that it has modular adapter modules that 

communicate with PXI FPGA modules over a parallel digital interface [41]. The FlexRIO digitizer 

module has a mezzanine IO Module which contains high-performance analog-to-digital converters 

(ADCs) and an FPGA backend for user defined signal processing. 
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Figure 5.1: NI FlexRIO Device [42]. 

 

5.2 High Level Block Diagram  

The process steps for surface detection and tracking can be understood by the high-level block 

diagram shown in figure 5.2. The process starts by giving an initial delay to the local oscillator 

transmit chirp signal and acquiring IF signal data samples and converting it into beat frequency by 

performing FFT. Once the instantaneous beat frequency is calculated, the number of loop cycles to 

be given to the Local oscillator delay trigger counter are calculated by the constant beat frequency 

loop and the delay is adjusted for transmitting the next LO chirp signal. The PRI Counter is fixed to 

a number of loop cycles needed to transmit the Tx chirp repeatedly after a fixed amount of time delay. 
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Figure 5.2: High level block diagram showing different processing steps. 

 

5.3 Simulations on Host Computer 

5.3.1 FFT Implementation on FPGA 

The simulations were done on the FPGA target with simulated IO. For the simulations on host 

computer, a sinewave generator was simulated on the FPGA target with a frequency of 400 Hz. 

Keeping in mind the Nyquist sampling theorem which states that the sampling rate must be at least 

twice the highest frequency component of the signal or greater, the sampling frequency of 1000 Hz 

was chosen as shown in Figure 5.3.The sinewave generator is capable of generating sine or cosine 

waveform with user programmable parameters. The samples of the sinewave were stored in FPGA 

FIFOs (First In First Out).The inbuilt fast fourier transform block was used for performing FFT on 

the FlexRIO FPGA device. The signal samples stored in the FIFO were read and FFT was performed 

on them. The FFT block configuration is shown in Figure 5.4.Two types of FIFOs were used to store 

sine wave samples, one was the target to host direct memory access FIFO for directly transferring the 

sinewave samples from FPGA target to host computer and the other one was dedicated FPGA FIFO.  
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Figure 5.3: Sine Wave Generator [43]. 

 

Figure 5.4: FFT IP configuration [44]. 
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On the host computer virtual interface, two FFT plots were displayed, the first one was named 

the Direct FFT where the FFT was taken on the host computer and the other one was the FPGA FFT 

where hardware FFT was taken on the FPGA target and displayed on the host virtual interface. Figure 

5.5 shows both the direct as well as FPGA fast fourier transform plots. From the plots it is evident 

that the 400 Hz sine wave signal is represented by a peak occurring at 400 Hz and a mirror image of 

the peak at 600 Hz respectively. 

 
Figure 5.5: 2 plots displaying Direct FFT taken on host computer and FPGA FFT. 
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5.3.2 Surface Tracking Implementation 

For implementing the surface tracking algorithm, a step by step procedure was adopted. 

1. The data coming out of the FFT block was scanned for the maximum value. The 

maximum value was extracted and stored. Figure 5.6 shows the FFT implementation and 

extraction of maximum values from FFT output. 

 
Figure 5.6: LabVIEW code for FFT implementation and extracting maximum FFT output value. 

 

2. The data index corresponding to the maximum value was extracted and stored. 

3. After all the samples for the FFT Length are acquired, the maximum data index 

represents the frequency of the input signal. Figure 5.7 shows the part of the LabVIEW 

code which stores maximum data index after every FFT output length (Assumed 1023 in 

the example). 
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Figure 5.7: LabVIEW code for extracting maximum value every 1023 data indexes. 
 

4. The data index is converted into beat frequency by the formula: 

𝐵𝑒𝑎𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑓𝑏) =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑛𝑑𝑒𝑥∗𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐹𝐹𝑇
…………………… (5.1) 

The LabVIEW code for this conversion is shown in figure 5.8. 

 

Figure 5.8: LabVIEW code which converts maximum data index into beat frequency. 
 

5. Assuming that the beat frequency obtained is in MHz (which is typically the case with 

snow radar), the Time delay is obtained by the beat frequency by the following formula: 

𝑇 =
𝑓𝑏∗𝑇𝑠

𝐵
…………………………….……………….. (5.2) 
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Where T is the Time delay (in nanosec), 𝑓𝑏 is the beat frequency (MHz), 𝑇𝑠 is the chirp 

sweep time (assumed 240 µsec) and B is the bandwidth of the chirp (assumed 16 GHz 

for a 2-18 GHz chirp). 

6. Now we calculate how many loop cycles are required to generate the time delay 

calculated by equation 5.3. Assuming that the single cycle timed loop (SCTL) works at 

250 MHz, a single loop cycle has a delay of 4 nano sec. Therefore in order to calculate 

the amount of loop cycles needed, we use the following formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑝𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑒𝑙𝑎𝑦 =
𝑇

1 𝑆𝐶𝑇𝐿 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦
…….…. (5.3) 

Where T is the Time delay calculated from equation 5.2. 

7. After having calculated the loop cycles, they are fed to the local oscillator counter limit 

and determines the amount of local oscillator delay that needs to be given. 

8. To maintain a constant beat frequency, a feedback loop is added. An initial constant delay 

is given to the local oscillator, the beat frequency corresponding to the initial delay and 

the range of the target is obtained and then is adjusted for the constant fixed beat 

frequency delay, which is converted to loop cycle count and becomes the next limit of 

the local oscillator delay trigger counter. Figure 5.9 shows the LabVIEW code for 

performing steps 5, 6, 7 and 8. 
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Figure 5.9: LabVIEW code for calculating the delay from the obtained beat frequency and calculating the corresponding 

loop cycles required. 

 

Figure 5.10: LabVIEW code for calculating the error required to fix the beat frequency at 350 loop cycles (100 MHz). 
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Figure 5.10 shows the constant beat frequency feedback loop which sends an initial delay of 

750(Assuming the SCTL to be operating at 250 MHz, 750 loop cycles correspond to 200 MHz), then 

calculating the error obtained from the acquired beat frequency and calculating the loop cycles 

required to fix the beat frequency to 100 MHz (i.e. 350 loop cycles). 

The working FPGA virtual interface is shown in Figure 5.11.The maximum index of the 1023 

point FFT is extracted from the FFT output, i.e. 410th  as shown in the figure, the corresponding beat 

frequency is calculated from the maximum index, shown as 400 Hz. We assume it to be 400 MHz to 

mimic the real scenario. Having given the initial delay of 750 loop cycles that corresponds to a delay 

of 200 MHz, the beat frequency peak comes at 400 MHz, therefore 400 MHz corresponds to 600 

MHz in real world. In order to keep the peak fixed at 100 MHz (which corresponds to a delay of  350 

loop cycles), we have to give a LO delay corresponding to 500 MHz, therefore the number of loop 

cycles needed would be 375*5 that gives 1875 loop cycles as LO counter limit. This is exactly what 

is calculated in figure 5.11. 
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Figure 5.11: Beat frequency 400 MHz corresponding to a delay of 1875 loop cycles to achieve a constant beat 

frequency of 100 MHz, assuming an initial delay of 750(200 MHz) loop cycles. 

Now we set the frequency of sinewave generator to 399 Hz with a sampling frequency of 1000 

Hz, we get the maximum index at 409th data index of the 1023 point FFT output. We assume the 

frequency to be 399 MHz for creating a real world scenario. Giving the same initial delay of 750 loop 

cycles (which corresponds to 200 MHz), a 399 MHz beat frequency corresponds to 599 MHz in real 

world. In order to achieve a constant beat frequency of 100 MHz, we have to give a delay 

corresponding to 499 MHz, i.e. calculated as 375*4.99 which comes out to be 1871 rounding to the 

nearest integer. The result is verified from figure 5.12 where the loop cycles match the calculated 

number of loop cycles needed. We verified the fixed beat frequency logic with different beat 

frequency inputs and the results were as expected. 
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Figure 5.12: Beat frequency 399 MHz corresponding to a delay of 1871 loop cycles to achieve a constant beat 

frequency of 100 MHz, assuming an initial delay of 750 (200 MHz) loop cycles. 

Figure 5.13 shows the counter logic created for the two counters namely the PRI Trigger counter and 

the LO delay trigger counter. The PRI trigger counter limit was fixed and the LO trigger counter limit 

was variable according to the fixed beat frequency feedback loop. 

Therefore, this is how the simulation logic was created and implemented on the FPGA target 

through simulations on the host computer. 
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Figure 5.13: PRI Trigger counter and LO Trigger counter logic in LabVIEW. 
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5.4 Hardware Implementation on FPGA Target 

5.4.1 Hardware Implementation Procedure 

The LabVIEW FPGA module enables the developers to design their logic and translate the 

design directly to the hardware. After simulation with simulated I/O as explained in section 5.3, in 

order to compile the design on the FPGA target, the option shown in Figure 5.14 is selected. 

  
Figure 5.14: Changing the design execution mode to ‘FPGA Target’ for hardware compilation. 

The result of the FPGA compilation is a bit file which is generated for the particular compiled design. 

Figure 5.15 lists various steps involved in the FPGA compilation process right from starting a 

compilation to the bit file generation. 
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Figure 5.15: FPGA Hardware compilation steps [45]. 

5.4.2 Artificial Target Simulation using Optical Delay Line 

An optical delay line was used for simulation of an artificial target. The delay line was used 

to induce a propagation delay in the signal path. The chirp signal was generated and transmitted by 

the arbitrary waveform generator, travelling through the optical delay line and then coming back 

through the receiver and was mixed with the local oscillator chirp. Therefore, the optical delay line 

simulated a target situated at a range corresponding to the length of the delay line. 

5.4.3 Implementation Results and Analysis 

Initial tests were done on the mini snow radar, the fast fourier transform algorithm was 

implemented on the FlexRIO FPGA target, the FFT on the FPGA is resource intensive and the logic 

was adjusted to fit in a single cycle timed loop (SCTL). The FFT was performed on the presummed 

chirp data with 8 presums and a sampling frequency of 125 MHz using the NI Low Sample CLIP. 

Figure 5.16 shows the FFT implementation on host computer as well as on the FPGA target. Both the 

plots show definite peaks at approximately 43 MHz. After testing initially on mini snow, the 

implementation was done to the KU Snow Radar. The settings of the KU Snow and the results are 

listed in the next sections.     
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Figure 5.16: Direct and FPGA FFT for 240µsec, 2-18 GHz Chirp with 8 presums.   

 

5.4.4 Arbitrary Waveform Generator Settings 

A 3µsec, 2-18 GHz chirp was used as a transmit signal for the high-speed AWG. The AWG 

was used in the Dual Channel mode where the chirp was loaded in memory segments of Channel 1 

and Channel 4. The AWG ports ‘Trigger In’ and ‘Event In’ were used for sending the PRI and LO 

triggers respectively as shown in Figure 5.17. NI Data Acquisition System was used to create PRI 

and LO counters which generated the two triggers.   
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Figure 5.17: High-speed AWG ports ‘Trigger In’ and ‘Event In’ were used for sending the PRI and LO triggers [38]. 
Two 3µsec chirps were loaded in the memory segments of Channel 1 and Channel 4 and the Trigger 

settings were made such that triggers at “Trigger In” and “Event In” triggered the transmission of the 

transmit and LO reference chirps respectively. The import waveform settings of the AWG are shown 

in figure 5.18 and the Trigger settings of used are shown in Figure 5.19 respectively. 

 

 

Figure 5.18: AWG import waveform settings [16]. 
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Figure 5.19: AWG Trigger settings [39]. 

 

5.4.5 Data Acquisition System Settings 

The PRI and LO triggers were routed from the FlexRIO FPGA module through NI PXIe 1075 

Backplane to PFI 2 and PFI 5 ports of the PXI Express Timing and Synchronization module NI PXIe-

6674T.Figure 5.20 shows the connection settings of NI PXIe-6674T.The DAQ was synchronized 

with the AWG’s 250 MHz external clock. The transmit chirp after getting transmitted from the AWG 

was fed to the optical delay line which simulated an artificial target at a given range. The delay from 

the delay line was 3.2µsec which is approximately 480 meters. The KU Snow radar is shown in figure 

5.21. All the components of the KU Snow are listed in the figure including the high-speed AWG, the 

optical delay line used to simulate an artificial target through which the transmit chirp travels, the NI 

DAQ which sends the triggers to AWG and acquires the dechirped data and the TR chassis where the 

transmit and LO reference chirps are mixed generating the resultant beat frequency which is low pass  
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Figure 5.20: NI PXIe 6674T settings [46]. 

  

Figure 5.21: KU Snow Radar in operation. 
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filtered with a cutoff frequency of 125 MHz. The beat frequency signal samples were acquired by the 

NI Data Acquisition System. Figure 5.22 shows the connection diagram of the AWG with the NI data 

acquisition system. 

Figure 5.22: Connection diagram of the setup. 

 

5.4.6 Hardware Implementation Results 

The FlexRIO ADC generates the beat frequency signal samples at a rate of 250 MHz and the FPGA 

single cycle timed loop operates at the rate of 125 MHz using the multiple sample clip. Figure 5.23 

shows the Data Acquisition LabVIEW virtual interface. The LO counter loop cycles are set to 409,i.e 

one single cycle timed loop takes 8 nano sec, thus the total delay after which the LO reference chirp 

is triggered is 409*8 = 3.272µ𝑠𝑒𝑐. Considering the signal propagation delay, a beat frequency of 75 

MHz is obtained at 409 loop cycles of LO counter. Figure 5.24 shows the IF signal obtained 

corresponding to the beat frequency of 75 MHz.  
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Figure 5.23: NI DAQ showing the beat frequency of 75 MHz at 409 LO loop cycles. 

 

Figure 5.24: NI DAQ showing the beat frequency of 75 MHz. 
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The constant beat frequency feedback loop was configured such that it would keep the beat 

frequency constant at approximately 42 MHz. As the limit of LO delay counter is decreased from 409 

to 408, the beat frequency becomes 116 MHz. Owing to the short length and high bandwidth of the 

chirp signal used in the experiment, 1 SCTL loop cycle corresponds to a beat frequency of approx. 

42 MHz. Therefore, the decrease of 1 loop cycle in the LO logic loop count implies decreasing the 

time delay by 8 nano sec which corresponds to an increase in the beat frequency of 42 MHz i.e 116 

MHz. Figure 5.25 shows the beat frequency increasing from 75 MHz to 116 MHz on decreasing the 

LO loop count to 408. As mentioned earlier, the feedback loop was configured to keep the beat 

frequency constant at 42 MHz, therefore as the beat frequency increases, the ‘LO logic loop cycles’ 

indicator value increases to 410 to compensate for increased beat frequency. 

 

Figure 5.25: NI DAQ showing the beat frequency of 116 MHz at 408 LO loop cycles. 
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Moreover, following the same logic, increasing the LO counter loop cycle by one causes the 

beat frequency to decrease by approximately 42 MHz. In order to decrease the beat frequency, the 

LO loop counter limit is increased to 410 loop cycles. The beat frequency obtained is 33 MHz. The 

feedback loop wants to again keep the beat frequency constant at 42 MHz, therefore it decreases the 

LO logic loop cycles to 408.Figure 5.26 shows how by increasing the loop cycles to 410, decreases 

the beat frequency to 33 MHz and the feedback loop decreases the value of “LO logic loop cycles” 

to 408 to maintain a constant beat frequency of 42 MHz. The intermediate frequency (IF) signals are 

also shown in Figure 5.27 and 5.28 for beat frequencies 116 MHz and 34 MHz respectively. 

 

Figure 5.26: NI DAQ showing the beat frequency of 33 MHz at 410 LO loop cycles. 
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Figure 5.27: NI DAQ showing the IF signal of frequency 116 MHz. 

 

Figure 5.28: NI DAQ showing the IF signal of frequency 34 MHz. 

 

This is how a constant beat frequency can be achieved by calculating the error between the 

current and the previous beat frequency information and translating them in terms of loop cycles and 

feeding it as the limit of the LO reference chirp delay counter. Therefore, by utilizing the fast 
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performance of the field programmable gate arrays, we can efficiently delay the LO reference chirp 

signal to obtain a constant beat frequency at any desired range.  
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Chapter 6 

 

Conclusion and Future Work 

 
6.1 Summary 

 
All the test results shown in the previous chapter were done in the Lab with the snow radar. 

As mentioned in earlier chapters, implementing onboard real time surface tracking and detection for 

the KU Snow radar would dramatically increase its operating range and would also eliminate the need 

of using bandpass and high pass filters for storing the spectral power in different Nyquist zones. 

Moreover, once deployed, it would also eliminate the need for the radar operator to manually switch 

the Nyquist zones one by one as the altitude of the aircraft increases from the surface. This would 

make the radar function autonomously eliminating any chance of loss of crucial data due to delay in 

manual switching operation.  

6.2 Future Work 

 
For surface detection and tracking, a separate module was designed and coded. Future work 

includes integrating the logic of the model into the actual existing snow radar code and making it 

work for a longer chirp sweep time. In order to increase the signal to noise ratio, presumming of IF 

signal data samples needs to be implemented. The current snow radar configuration uses presumming 

to increase the signal to noise ratio (SNR) of the incoming IF signal, likewise during the integration 

of this module into the actual snow radar code, presumming would be needed. 

Moreover, after integration, the logic would be required to be tested in actual field 

environment. Therefore, the radar needs to be deployed on test flights comprising of various different 

platforms to ensure that the radar is working as expected and the acquired data has to be field 
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processed as well as post processed to verify the correctness of the algorithm. 
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Appendices 

 
Appendix A 

MATLAB CODE FOR SIMULATION  

Matlab File 1: fmcw_simulation.m  

clear all;  

close all;  

%------------------------------------------------------------------------%  

% Parameter initialization  

%------------------------------------------------------------------------%  

c = 3*10^8;  

fc=77e9;  

lambda=c/fc;  

r_max=200;  

sweep_time=5.5*2*r_max/c; % 10 times the max range  

r_res=1;  

B_width= c/(2*r_res); % BW calculated using desired range res  

fs=2*B_width; % sampling fre  

t=0:1/fs:sweep_time- 1/fs; % sweep time vector  

k = B_width./sweep_time;  

%%  

%------------------------------------------------------------------------%  

% Generating a chirp  

%------------------------------------------------------------------------%  

ch =exp(1j*(2*pi*(fc*(t) + 0.5*k*(t).^2)));  

%%  

%------------------------------------------------------------------------%  

% Generate the scene  

%------------------------------------------------------------------------%  

tar_range = [100 450] ; % two target ranges in scene  

radial_vel =[0 50]; % m/s taking v large value for memory constraint  

RCS_targets = [1 100] ; % RCS of targets  

sim_slow_time =100*sweep_time; % slow time in s, total duration of the scene  

slow_time_samples = sim_slow_time /sweep_time ;  

slow_time = linspace(0, sim_slow_time, slow_time_samples);  

[Rx_matrix] = generate_scene(tar_range, radial_vel, slow_time, ch, t, 

RCS_targets, lambda, fs, B_width,fc,k);  

%%  

%------------------------------------------------------------------------%  

% Simulating mixer operation  

%------------------------------------------------------------------------%  

nfft = 2^nextpow2(length(ch));  

freq_axis=0:(fs/(nfft)):((fs/nfft)*nfft)-1; 

range=(freq_axis*sweep_time*c)/(2*B_width);  

rec_sig = zeros(nfft, slow_time_samples);  

h_b = hann(size(Rx_matrix, 1));  

for ii = 1: slow_time_samples  

m=dechirp(Rx_matrix(:,ii), ch.');  

rec_sig(:,ii) = fft(m.*h_b, nfft);  

% rec_sig(:,ii) = fft(m, nfft);  
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end  

%%  

%------------------------------------------------------------------------%  

% Doppler frequency computation  

%------------------------------------------------------------------------%  

nfft2 =256;  

fs_slow_time = 1/(slow_time(2)- slow_time(1));  

f_dopp= 0 :fs_slow_time/ nfft2: fs_slow_time * (nfft2 -1)/nfft2;  

rng_dopp = zeros (nfft, nfft2);  

h_D = hann(size(Rx_matrix, 2));  

for ii = 1: length (range)  

ss= rec_sig(ii,:).*h_D.';  

rng_dopp(ii, : ) = fftshift(fft(ss, nfft2));  

end  

%%  

%------------------------------------------------------------------------%  

% Generate plots  

%------------------------------------------------------------------------%  

figure (1);  

k1=20*log10(abs(rec_sig(:,10)./max(rec_sig(:,10))));  

plot(1e-6* freq_axis(1:length(freq_axis)/2),k1(1:length(k1)/2));  

ylabel('Normalized Power(dB)')  

xlabel ('Frequency (MHz)')  

title ('Beat frequency spectrum ( 0 to fs/2)')  

ylim([-50 0])  

figure (2);  

k1=20*log10(abs(rec_sig(:,10)./max(rec_sig(:,10))));  

plot(range(1:length(k1)/2),k1(1:length(k1)/2));  

ylabel('Normalized Power(dB)')  

xlabel ('Range (m)')  

title ('Range Ascope ')  

ylim([-50 0])  

xlim([0 600])  

figure (3);  

imagesc(slow_time, range, db(rec_sig./max(max(rec_sig))));  

xlabel('Slow time (s)')  

ylabel('Range (m)')  

title('Range - slow time domain')  

ylim([0 600]) 

caxis([-50 0])  

figure(4)  

imagesc( lambda*(f_dopp - fs_slow_time/2)/2, range, 

db(rng_dopp./max(max(rng_dopp))))  

ylabel('Range(m)')  

xlabel ('Velocity (m/s) ')  

title ('Range- Doppler Spectrum ')  

caxis ([-50 0])  

ylim ([0 600])  

% xlim([-500 500])  
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Matlab File 2: generate_scene.m  

 
function [Rx_matrix] = generate_scene(tar_range, radial_vel, slow_time, ch, t, 

RCS_targets, lambda, fs, B_width, fc,kk)  

%%  

c= 3e8;  

Rx_matrix = zeros (length (ch), length(slow_time));  

R0= tar_range;  

v= radial_vel;  

for i=1:length(slow_time)  

%------------------------------------------------------------------------%  

% code to include all the targets  

%------------------------------------------------------------------------%  

for jj= 1: length(tar_range)  

R = R0(jj) + v(jj).*t; % time-dep range to tgt (s)  

T0 = 2.*R0(jj)./c; % rnd-trip travel time at t = 0 (s)  

T = 2.*R./c;  

y= zeros(length(ch), 1);  

y= exp(1j*(2*pi*(fc*(t- T) + 0.5*kk*(t- T).^2))).*((t-T) >0);  

scaling_fact= calculate_return_power (RCS_targets(jj), tar_range(jj), lambda, 

ch);  

Rx_matrix(:,i)= Rx_matrix(:,i) + (y*scaling_fact).' ; % superimpose the return  

R0(jj)= R(end);  

end  

%------------------------------------------------------------------------%  

% simulate noise - receiver noise and propogation loss  

%---------------------------------------------------

---------------------% 

k=1.38e-23;  

T=290;  

F=2;  

sigma = k*T*B_width*F ;  

rec_noise=sigma*randn(length(ch),1);  

%loss_fac = (4*pi*mean(tar_range)/lambda)^2;  

prop_noise = 50e-7*randn(length(ch),1);  

%------------------------------------------------------------------------%  

% % add uncorrelated noise  

%------------------------------------------------------------------------%  

Rx_matrix(:, i) = Rx_matrix (:, i) + rec_noise + prop_noise;  

% update the position for the next slow time sample  

% tar_range = tar_range + radial_vel.* (slow_time(2)- slow_time(1));  

end  

end  
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Matlab File 3: calculate_return_power.m  

 
%------------------------------------------------------------------------%  

% calculating return power  

%------------------------------------------------------------------------%  

function scaling_fact= calculate_return_power (RCS_target, range, lambda, ch)  

antenna_aperture=6.06*10^-4;  

Gain_antenna=(4*pi*antenna_aperture)/lambda^2;  

Pt_rms=rms(ch)^2; %Transmit power in watts  

Pr_rms=((Pt_rms*(Gain_antenna^2)*(lambda^2)*RCS_target))/((4*pi)^3*(range)^4); 

fprintf('\n Power return for target at range = %d is %d W', range, Pr_rms);  

scaling_fact=sqrt(Pr_rms*2)/sqrt(Pt_rms*2);  

end 

 


