AUTONOMOUS SURFACE DETECTION AND TRACKING FOR
FMCW SNOW RADAR USING FIELD PROGRAMMABLE GATE
ARRAYS

Aishwarya Bhatnagar

Submitted to the Department of Electrical Engineering and Computer Science and the Graduate
Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of
Master of Science.

Thesis Committee:

Chairperson Dr. Carl Leuschen

Dr. Fernando Rodriguez-Morales

Dr. Christopher Allen

Date Defended: 01/30/2019

© 2019 Aishwarya Bhatnagar

The Thesis Committee for Aishwarya Bhatnagar
certifies that this is the approved version of the

following thesis:

AUTONOMOUS SURFACE DETECTION AND TRACKING FOR FMCW SNOW RADAR
USING FIELD PROGRAMMABLE GATE ARRAYS

Thesis Committee:

Chairperson Dr. Carl Leuschen

Dr. Fernando Rodriguez-Morales

Dr. Christopher Allen

Date approved: 01/30/2019

Abstract

Sea Ice in Polar Regions is typically covered with a layer of snow. The thermal insulation
properties and high albedo of the snow cover insulates the sea ice beneath it, maintaining low
temperatures and limiting ice melt, and thus affecting sea ice thickness and growth rates. Remote
sensing of snow cover thickness plays a major role in understanding the mass balance of sea ice, inter-
annual variability of snow depth, and other factors which directly impact climate change. Researchers
at the Center for Remote Sensing of Ice Sheets (CReSIS) at University of Kansas have developed an
ultra-wide band FMCW Snow Radar used to measure snow thickness and map internal layers of polar
firn from low and high-altitude. This system has shown outstanding performance, but it has some
limitations in terms of operational altitude and relies on the operator to make adjustments during
surveys to capture radar echoes if the altitude changes significantly. In this thesis, an automated
onboard real-time surface tracker for the snow radar is presented to detect snow surface elevation
from the aircraft and track changes in the surface elevation. A common technique for an FMCW radar
to have a long-range (high-altitude) capability relies on the system’s ability to delay the reference
chirp signal used for de-chirping to maintain a relatively constant beat frequency. Currently, the radar
uses an analog filter bank to condition the received IF signal over discrete altitude ranges and store
the spectral power in each band utilizing different Nyquist zones. During airborne missions in Polar
Regions with the radar, the operator has to manually switch the filter banks whenever there is a
significant change in aircraft elevation. The work done in this thesis aims at eliminating the manual
switching operation and providing the radar with surface detection, chirp delay, and a constant beat

frequency feedback loop to enhance its long-range capability and ensure autonomous operation.

Acknowledgements

I want to thank my advisor Dr. Carl Leuschen who offered continuous guidance and support
to me throughout the course of my master’s studies. This work would not have been possible
without Dr. Leuschen’s vision and continuous feedback on my work. I want to thank my committee
members Dr. Fernando Rodriguez-Morales and Dr. Christopher Allen for teaching me the
technical concepts and providing valuable suggestions for my thesis. | want to thank the EECS
department and all the faculty members who taught me during the course of my studies.

Most importantly, | would like to dedicate this work to my beloved father Mr. Sanjeev
Bhatnagar who passed away the previous year. Dad, | want to tell you that whatever | have
achieved is all because of your continuous motivation and confidence in me, | love you. | want to
thank my mother Mrs. Neelu Bhatnagar and brother, Harsh for their unconditional support. My
master’s journey has been a worthwhile experience and these two years have taught me a lot. | also
want to thank Akhilesh for letting me know about the amazing work done at CReSIS while he was
a student at KU and encouraging me to be a part of CReSIS. Finally, | would like to thank all the
staff members and students working at CReSIS who extended a helping hand whenever | needed

one.

Table of Contents

ACCEPTANCE PAJE........ecueiiiieiie ettt ettt e et e e te e te e te s st e saeesteaseesteesbeaneesteeseesneenreaneens ii
AADSTFACT. ...t bbbttt bbb anes ii
ACKNOWIBAGEMENTS ...ttt b bbbt 1\
TADIE OF CONTENTS. ... ettt et b e be et e aneesbeeneesreesbeeneens v
LEST OF FIQUIES ...t bbbttt ettt b bbb vii
TS) = o LSRR IX
(@ gF=T o (=1l A o] 1 0o [1Tox 4 o] o PSSR 1
I AV T 1 Y21 [o OSSR 2
1.2 Objectives and APPIrOACIc.uiiiiiiiie et 5

1.3 CONIIDULION ...t bbbttt bbb beene e .6

1.4 THeSiS OrganiZaAtiONc.civeieiieiteee ettt ste e s reesteessesbaenteeneesneenras 7
Chapter 2 LItErature REVIEW.........cuiiiiiieiesie ettt bbbt 9
2.1 FMCW Radars-Theory and Background..............cccooeeiiiiiiii i 10
2.1.1 FMCW Radar Operation Simulation..............ooeviiiiiiiiiiiiieiieiieeineans. 14

2.1.1.1 Beat Frequency Spectruml...........c.oiiuuiiiiiiiiiiii i, 14

2.0, 2 RANGE AP, ..t ettt ettt ettt e et e e e e e 14

2.1.1.3 Range plot-slow time domain................ocoiiiiiiiiii e 15

2.1.1.4 Range Doppler SPectrum........c.coiriii i 16

2.2 Field Programmable Gate Arrays - Background and Principle.......................oovee. 17

2.3 PEAK DELECION ...viivieiieiieiesie ettt ettt sttt et st sbesbeerenneas 19

24 Review of Peak Tracking Algorithms.............coooiiiiiiiiii e, 14
2.4.1 Adaptive Linear Prediction based Trackingcccccoooeiveiiiniiiiiiniiiene e 20

2.4.2 Kalman Filter Based Tracking...........cccoovriiiiiiiiiiiiiii e e 21

2.4.3 Offset Centre of Gravity Algorithm (OCOG)..........ccevviiiiiiiiiiiiiiieenne 24
Chapter 3 Peak DETECTION.........iiiiiiieieie ettt 26

3.1 SPECEIUM ANAIYSIS ..ttt ettt bt r et et e e sbe e e e neesreenbeas 26

3.2 Discrete Fourier Transform............o.ooiiiiiiiiiii e 27

3.3 Fast FOUMIEr TraNSTOIMcoviiiiiice ettt sbe e 29

3.4 Spectrum ANalySiS USING FFT ...t 32
3.5 Implementing Peak Detection iN FPGA ..ot 35
Chapter 4 SUIface TraCKINGccoiviieiiese e te et sae e ennas 37
4.1 Surface TracKing IMPOIANCE.........cccueiieireie ettt sre e nas 37
4.2 TraCking APPIOACKoiiiiiiiiee ettt sb b eneas 38

4.3 Implementing Surface Tracking 0N FPGAccoooi e 40
Chapter 5 Implementation and RESUITSccoieiiiiiie e 43
5.1 SyStem INFOIMALION........coiiiieic e e et sre e 43
5.2 High Level Block Diagram..............ooiiiiiiii e 44

5.3 SIMulations 0N HOSt COMPULETcviiiiiiiieiierieeeeee e 45
5.3.1 FFT Implementation on FPGA...... ... 45

5.3.2 Surface Tracking Implementation................ooeviiiiiiiiiiiiiiiei e, 48

5.4 Hardware Implementation 0N FPGA Targel.........ccouveeieieneiisiseseseee e 56
54.1 Hardware Implementation ProCeAUreccoviieieeieiie e 56

5.4.2 Artificial Target Simulation using Optical Delay Linec.ccccocvveveiiieiicviecnnenn, 57

5.4.3 Implementation Results and Analysis............c.oovviiiiiiiiiiiiiiiiii, 57

5.4.4 Arbitrary Waveform Generator Settings.cooviviiiiiiiiiiniiiiiiininnne. 58

5.4.5 Data Acquisition System SettingsS.c.evuitintitirtiititiii i 60

54.6 Hardware Implementation Results.............cooviiiiiiiiiiiiiiiieeieeeen, 62
Chapter 6 Conclusion and FUTUFe WOTK...........cccoiiiiiiiiiiic e 68
0.1 SUMMIAIY ...ttt ettt ettt e e et e e s st e e e sab e e an b e e e sbb e e e snbeeenbbeeennbeeanneean 68

6.2 FULUIE WOTK. .. .ottt e e 68

] (] =] [0 ST PSPPSR 70
F AN o] o1 Lo [SRRSO 74

Vi

List of Figures

1.1 Sea Ice as seen from the window of DC-8 aircraft..............coooviiiiiiiiiiiiiiin, 3

2.1 A linear frequency modulated chirpwaveform.................coi 10
2.2 FMCW radar block diagram.............oooiiiriiiiiii i e e 11
2.3 Extracting the beat frequency and converting it into range.............coooviiiiiinnninnn 12

2.4 Beat frequency spectrum of received eChOes............ccooviiiiiiiiiiii e 14

2.5 Ascope showing the range of targets and the relative strength of their echoes................ 15
2.6 Range mapping in slow time domain..............oooiiiii e 16
2.7 Mapping of the received data matrix in range and Doppler spectrum........................... 17
2.8 Basic architecture of a field programmable gate array..............oooiiiiiiiiiiiiiiiee, 18
2.9 Adaptive linear PrediCtion.oouiiri i e e 20
2.10 Kalman filter Operation.ooueiuuitiinti e e 24
3.1 Different types of Transforms............ooiii i 27
3.2 A 4-point FFT implementation.c.ouiiuiititiit ettt et e e eae e eneeans 31
3.3 Signal containing 2 sinusoids of frequency 10 Hzand S0 Hz.......................coooiinin. 32
3.4 Random noise added to SIgnal............ooiiiiiiiii i 33
3.5 Power spectral density plot of the noisy signal..............cccooiiiiiiiiiie, 34
3B FFT IP Corein LAbVIEW FPGA ... oo e 36
3.7 FFT implementation mode inside a single cycle timed l00p.............ccccooviiiiiiinl. 36
4.1 Current Radar OPErationc.iiiirinit it ee e e 39
4.2 Operation with delayed LO reference chirp.............ooooiiiiiiiiiiiiiiiii 40
S.INIFIEXRIO DEVICE ...ttt et e et e et e e e e eeens 44
5.2 High level block diagram showing different processing Steps...........ccooevviviiiiiiininnnn.. 45
5.3 SINE WAVE GBNEIALOT. ...\ .t ettt et ettt e e e et et e ettt et e et e e e e e e e aaeneaa 46
5.4 FFT IP configuIation.o e e 46
5.5 2 plots displaying Direct FFT taken on host computer and FPGAFFT...........coivininn... 47

5.6 LabVIEW code for FFT implementation and extracting maximum FFT output value..........48
5.7 LabVIEW code for extracting maximum value every 1023 data indexes.........................49
5.8 LabVIEW code which converts maximum data index into beat frequency..................... 49

5.9 LabVIEW code for calculating the delay from the obtained beat frequency and calculating
vii

the corresponding 10op cycles requIred.oouieiiiiinii e o1
5.10 LabVIEW code for calculating the error required to fix the beat frequency at 350 loop cycles

(L00 HzZ) et 51
5.11 Beat frequency 400MHz corresponding to a delay of 1875 loop cycles to achieve a constant

beat frequency of 100Hz, assuming an initial delay of 750(200 MHz) loop cycles.............. 53
5.12 Beat frequency 399MHz corresponding to a delay of 1871 loop cycles to achieve a constant

beat frequency of 100Hz,assuming an initial delay of 750(200 MHz) loop cycles............... 54
5.13 PRI Trigger counter and LO Trigger counter logic in LabVIEW.....................................BD
5.14 Changing the design execution mode to ‘FPGA Target’ for hardware compilation.............. 56
5.15 FPGA Hardware compilation StePS.c.viuiirie e e, 57
5.16 Direct and FPGA FFT for 240usec, 2-18 GHz Chirp with 8 presums.............................. 58
5.17 Keysight M8195A ports ‘Trigger In’ and ‘Event In’ were used for sending the PRI and

(IO g To o =] £ S PRSP 59
5.18 Keysight M8195A import waveform Settings.oovoiiiiiiiii e 59
5.19 Keysight M8195A Trigger SEttiNgS.ovvirit i e e, 60
5.20 NI PXIE 66 74T SEtINGS. .. vt ettt 61
5.21 KU Snow Radar in OPeration...........oouirieit it 61
5.22 Connection diagram of the SEtUP.oiiri e 62
5.23 NI DAQ showing the beat frequency of 75MHz at 409 LO loop cycles............................63
5.24 NI DAQ showing the beat frequency of 75MHz............oooiiiiii e 63
5.25 NI DAQ showing the beat frequency of 116MHz at 408 LO loop cycles.......................... 64
5.26 NI DAQ showing the beat frequency of 33MHz at 410 LO loop cycles.............................65
5.27 NI DAQ showing the IF signal of frequencyl16 MHz..............cooiiiiiiiiiii 66
5.28 NI DAQ showing the IF signal of frequency 34 MHz.............cooiii i, 66

viii

List of Tables

1.1 Beat frequency range corresponding to different Nyquist zones..................c.cooevvennnn.)

2.1 Radar simulation Parameters.o.ueete ettt e e e e e e e e e e e e 13
2.2 Radar cross section Of tWO targets.o.oeiiiii i 13
2.3 Discrete Kalman filter time update equations............ooviiiiiiiiiiiii i eaeensn 23
2.4 Discrete Kalman filter measurement update equations.............c.oveeriirieeniirenneneenennn 23
3.1 MATLAB code for FFT implementation...............cooiiiiiiiiii e 34

Chapter 1

Introduction

Global mean sea level has been rising over the past century, and the rate of sea level rise has
been rapid in recent decades. The overall global rate of sea level rise during the last 100 years has
been nearly 2 mm/year [1] and continues to rise at a rate of about one eighth of an inch per year in
the 21% century [2]. Globally, this rise has led to thinning of coastlines, loss of agricultural land,
abandoned islands, loss of habitat in marshlands and severe storm vulnerabilities [3]. The two major
causes of sea level rise are thermal expansion due to warming of the ocean (since water expands as it
warms) and melting of ice sheets in Greenland and Antarctica [4]. Therefore, as around 37% of the
world's population lives within hundred kilometers of the coast [1], understanding as to why the sea
levels continue to increase rapidly is a matter of exigency. By apprehending the reason of this rapid
elevation in sea levels, scientists and geologists could develop prognostic and diagnostic models to
predict future trends in global sea level rise.

Sea ice in Polar Regions has a covering of snow at the top, which usually varies in thickness
between few centimeters to over one meter. This layer of snow over sea ice acts as a thermal insulator
which in turn modulates heat exchanges between the ocean and the atmosphere. The thermal
conductivity of snow is less than that of the sea ice beneath it, which in turn insulates the sea ice from
extremely cold polar winds [5]. Thermal insulation reduces the basal sea-ice accumulation rate and
high albedo (reflected solar energy) retards the sea ice melting during the summer [6]. The melting
of this insulating snow cover creates ponds on the ice surface which have a low albedo and therefore
absorb more heat than snow, which in turn increases the surface melting and initiates fresh water

supply into the ocean [7]. Remote sensing of the depth of snow cover over sea ice with the help of

1

radars provides efficient data for the scientists to understand and investigate the winter inter annual
snow depth, sea-ice mass balance, energy and surface heat budget [8]. High quality radar data also
helps to determine the inter-annual variability of precipitation rates in the region which discerns the
amount of freshwater input in Polar Regions.

The Center of Remote Sensing of Ice Sheets (CReSIS) is a science and technology center at
The University of Kansas which was established by the National Science Foundation (NSF) in 2005,
with a mission of developing new technologies and computer models to measure and predict the
response of sea level change to the mass balance of ice sheets in Greenland and Antarctica [9].At
CReSIS, researchers develop various radar sensors which are deployed in polar regions to provide
precise measurement of ice bed thickness, mapping of internal layers, sounding and imaging of ice
bed, etc. The data acquired from various radar sensors is provided to scientists and geologists and

helps them studying the rapidly changing characteristic of polar ice sheets.
1.1 Motivation

Radars operating at a wide range of frequency spectrum possess large signal bandwidth which
is essential for efficacious measurement of snow cover depth layers. Transmitting a signal which has
a broad range of different frequencies (large bandwidth) enables the radar to be sensitive to minute
changes in the snow microstructure. Frequency dependent radar signatures obtained from radars
operating at multiple bands identified essential snow cover features such as ice and depth hoar layers
[11]. Sub-band data processing utilizes the ultra-wideband nature of the FMCW radar to examine the
scattering characteristics of snow within a particular frequency band of interest [10] [12]. A frequency
modulated continuous wave radar operating at 2-18 GHz provides a large bandwidth which in turn
improves the range resolution of snow cover images to about 1.4 cm from a nominal survey altitude
of 500 meters [13] [14]. High operating bandwidth enables unambiguous detection of the underlying

stratum of snow cover including the rough, thin and thick layers of snow on sea ice. The unambiguous
2

detection is further fine-tuned by achieving small range resolution which enables efficient
differentiation of the air/snow and snow/ice interfaces.

Currently, as a part of NASA operation IceBridge, the frequency modulated continuous wave
(FMCW) radar also called the ‘Snow Radar’, is used to map near surface internal layers of polar firn
[12]. The ‘Snow Radar’ operates at a frequency of 2-18 GHz and is deployed on aircrafts to carry out
airborne measurements of the Polar Regions. A linear, frequency modulated chirp is transmitted
which impinges on the target, as a result a backscattered attenuated copy of the transmitted chirp
signal is propagated back to the radar receiver after a propagation delay. The transmitted and the
received chirps are multiplied together in the hardware and this process is called dechirping or
deramping. After dechirping, the signal is bandpass filtered to produce an IF signal known as the beat
frequency signal. The radar employs stretch chirp processing which supplies the reference chirp
waveform from the radar to the local oscillator (LO) at the same time as the signal transmits from the
antenna. Owing to the propagation delay of the received signal, the overlap between the transmitted
and received signal has to be significant in order to achieve high signal to noise ratio (SNR). Figure

1.1 shows a picture of sea ice taken from DC-8 aircraft for NASA OIB.

Figure 1.1: Sea Ice as seen from the window of DC-8 aircraft [15]

For the FMCW radar to exhibit a long range capability, the radar must have a reference chirp
delaying ability, i.e. the delayed and attenuated return signal should be mixed with a ‘delayed’ version
of the reference chirp signal in order to perform exact match filtering. The amount of time by which
the reference chirp signal has to be delayed would depend on the two way propagation time of the
transmitted chirp signal. Consequently, the two way propagation time determines the range of the
target and an FMCW radar maps range of the target to the IF or beat frequency. Therefore, a way of
delaying the reference chirp signal supplied to the local oscillator should be deciphered that results in
exact match filtering of the transmitted and received signals.

Currently, in order to achieve a longer range capability, the radar uses an analog filter bank to
condition the received IF signal over discrete altitude ranges and store the spectral power in each band,
utilizing Nyquist zones 1, 2, 3 and 4 as given in Table 1.1.During the airborne measurements, the
radar operator has to manually switch the filter banks whenever there is a significant change in aircraft
elevation in order to store the spectral power in each band. One way to bypass the manual switching
is to delay the reference chirp by an amount of time corresponding to the increase in the beat
frequency of the signal in each band. Thus, by delaying the reference chirp, manual switching of the
filter banks could be avoided and the resulting IF signal would only be low pass filtered.
Implementing this feature would fully automate the operation of the ‘Snow Radar’ and would no

longer require manual switching of filter banks as the aircraft gains or loses altitude.

Snow Radar (Bandwidth: 2-18GHz, Chirp Length : 240 psec)
Nyquist Zone | Range(meters) Beat Frequency(fy)(MHZz) Filter Type
1 23 - 281 10- 125 Low Pass
2 281 - 563 125 - 250 Band Pass
3 563 - 844 250 - 375 Band Pass
4 844 - 1125 375 - 500 High Pass

Table 1.1 Beat frequency range corresponding to different Nyquist zones [16].
1.2 Objectives and Approach

Frequency modulated continuous wave (FMCW) radars use the difference in the
frequency of the transmitted as well as the received signal, also known as the beat frequency, to
measure the range of the illuminating target. In order to delay the reference chirp fed to the local
oscillator (LO), there must be a way of determining the range of the illuminated target in real time in
order to determine the amount of time by which the reference chirp signal should be delayed and fed
to the local oscillator in order to perform exact match filtering.

The objective of this thesis is to spectrally analyze the returned IF signal in real time
and extract the beat frequency information from the signal. The FMCW radar maps the beat frequency

directly to the range of the target by the following equation:

__ CTsfp
R=S22 (1.1)

Where R is the range, f, the beat frequency, Tj is the sweep time, B is the Bandwidth,

and Cis the speed of light.
Thus, by determining the range of the target from the beat frequency, one can determine the

two-way propagation time of the chirp signal which in turn is equal to the amount of time required to
5

delay the reference deramping chirp signal sent to the local oscillator.

Moreover, along with calculating the delay for the reference chirp, a robust real time surface
tracking algorithm needs to be implemented such that range of the ice surface from the aircraft must
be tracked accurately. The tracking algorithm is necessary for the system as it shields the system from
tracking and interpreting a wrong waveform peak arising due to a sudden glitch or noise. In order to
maintain steady tracking of the ice surface, and to save the system from tracker errors arising due to
unforeseen circumstances, implementing a tracking algorithm is a necessity.

In this thesis, to implement signal detection, spectral analysis of the signal was done in real
time using fast fourier transforms and a peak tracking algorithm was implemented. The snow radar
uses field programmable gate arrays for data acquisition. Field programmable gate arrays (FPGAS)
are semiconductor devices which are designed to be configured and reprogrammed by the designer
to suit the desired application needs after manufacturing [17].Field programmable gate arrays have
an advantage over Application Specific Integrated Circuits (ASICs), as unlike ASICs which are
manufactured for a specific application and have a fixed functional aspect, FPGAs can be
programmed according to the changing needs of a system. In order to implement a peak detector and
tracker unit and make it work in real time, FPGAs are ideally suited due to their high operating speed

as well as software controlled reprogrammability [18].

1.3 Contribution

In this thesis, a module is developed which has two basic functions of signal peak detection
and consistent peak tracking. The module can be appropriately called the ‘Peak detection and
Tracking unit’. The unit will track the returned chirp signal from the ice sheet surface and would
consistently update the altitude of the aircraft from the ice surface. The beat frequency obtained from
the real time spectral analysis would correspond to the two way propagation time of the chirp and

also the amount of time delay by which the local oscillator should receive the reference chirp in order
6

to perform the dechirp operation.

As mentioned in Table 1.1, different range of beat frequencies would correspond to different
range of altitudes of the aircraft and the ‘Peak detection and Tracking unit” would automatically delay
the reference chirp without the need of manual switching of different filter banks. The radar operator
would no longer need to manually switch the filter banks whenever there is a change in the aircraft
altitude. This implementation would make the operation of the snow radar more autonomous and free

from errors caused in the data acquisition due to manual switching of the filter banks.
1.4 Thesis Organization

The thesis is divided into six chapters. Chapter two presents literature review which comprises
of the theory and background of frequency modulated continuous wave radars (FMCW). The next
section underlines the theory and principles of operation of field programmable gate arrays. The
chapter also reviews different tracking algorithms used for peak detection and tracking.

Chapter 3 discusses the method of peak detection using fourier transforms. It explains how a
signal is processed and analyzed in the frequency domain and how spectrum analysis is useful
specially in the case of frequency modulated continuous wave radars where the beat frequency of the
signal is used to extract the two-way propagation time information.

Chapter 4 presents the importance of surface tracking and how it can be achieved. It also
discusses how tracking can be achieved in real time using field programmable gate arrays and the
approach used in building a tracker. It also highlights the challenges involved in surface tracking in
real time.

Chapter 5 discusses the implementation of the peak detection and tracking module in the lab.
It presents how the simulations were done on the host computer followed by the hardware
implementation of the module. The chapter also highlights the process of synthesizing and

implementing the design on FPGA and tools used for implementation. Finally, Chapter 6 summarizes
7

the thesis and the challenges faced in the implementation and discusses the future work that can be

accomplished.

Chapter 2

Literature Review

Frequency modulated continuous wave (FMCW) radars are capable of performing target
detection and ranging in the frequency domain, this makes them different from conventional radars
which operate in the time domain. The use of FMCW radars with doppler capability in remote sensing
applied to atmospheric applications was first demonstrated by Strauch et al in 1976 [19].The radar
was designed at Colorado State University and was used to detect atmospheric precipitation (rain and
snow).However, the demonstration was based on an analog frequency chirp and the received signal
was analyzed analytically in analog form without involving the principles of discretization as well as
digitization [20].

With the emergence of digital data acquisition systems (DAQs), the analog to digital converter
(ADC) came into existence and this changed the entire perspective of signal analysis. The received
signals could now be digitally sampled at a predefined sample rate and sample resolution (number of
bits per sample).Digital acquisition of the received signals enabled the signal processing and analysis
of the received data using numerical methods like Fast Fourier Transforms (FFT) [21].As the
numerical analysis of the signals gained popularity, these methods imposed added restrictions on
signal analysis such as sample rate limit and length owing to the digitization. This is how the digital
mode of operation came into existence and FMCW radars also exploit this capability. The next section

describes the principles of FMCW radars and the theory behind their mode of operation.

2.1 FMCW Radars -Theory and Background

Frequency Modulated Continuous Wave radars (FMCW) are a special category of radar
sensors which transmit a continuous wave signal whose frequency content varies with time, therefore
the signal is frequency modulated. The frequency of the RF signal changes over time in a sweep across
a set bandwidth, i.e. the frequency changes linearly with respect to time. FMCW radars typically have
a separate transmitter that transmits the signal continuously and a separate receiver for signal reception

during transmission, this feature enables a zero blind range as the receiver is not off during transmission.

This differentiates FMCW radars from the conventional pulsed radars which are characterized by their

duty factor D given by:

Where t stands for pulse duration and PRF is the pulse repetition frequency. The duty factor
for pulsed radar typically ranges from 1% to 20%, whereas for continuous wave radars the duty
factor is 100% [17].

The transmit signal typically used in an FMCW radar is a chirp waveform, which is given by
equation:

s(t) =AcosRu(fet + 05Kkt?) +) oveviieiiee (2.2)
Where f . is the starting frequency in Hz, k is the chirp rate in Hz/sec, ¢, is the starting phase in

radians, t is the time which ranges from 0<t < t, t being the pulse duration, the chirp bandwidth is

given by B=Kkr.

voltage

time
Figure 2.1 A linear frequency modulated chirp waveform [22].

10

The FMCW radar block diagram is given in figure 2.2, the steps of basic FMCW radar

operation are described below:

- AVAYAVI'AVAVAY:
FM-CW t Amp
Transmitter
Coupler Antenna
Spectrum @ @
Analyzer @ Anterna
Mixer

Figure 2.2 FMCW radar block diagram [22].

e The waveform generator generates an FMCW signal (Chirp in this case).
e The signal is radiated into free space by the transmitting antenna.
o Signal propagates through free space towards the target, gets reflected back and travels towards
the radar.
e The reflected signal is collected by the receiving antenna and amplified.
e The received signal is then mixed with the transmitted signal, also known as the ‘dechirping’
operation.
e The difference in frequency between the transmitted and received signal, also known as the IF
(Intermediate Frequency) signal is generated by mixing the two signals and then amplified.
e A spectrum analyzer is used to analyze the IF or the beat frequency signal.
The dechirping operation is given by equation 2.3:
s(t)s(t = T) = acos(2m(f .t + 0.5kt?) + ¢,) acos 2n(f.(t — T) + 0.5k(t — T)?) + ¢,)...(2.3)
Where T is the two way propagation time of the signal.

After low pass filtering to reject the harmonics, the above equation simplifies to:

q(t) = %ZCOS(ZT[(fCT + kTt —0.5kT?)) i, (2.4)

11

The two way propagation time of the signal T (sec) is given by the equation:

Where R is the Range of the target in meters and c is the speed of light which is 3e8 m/sec. Therefore,
if the two-way propagation time of a signal is known, the exact range of the target can be calculated
by the above equation.

The beat frequency is the difference of the transmitted and the received signal frequencies and is

given by the following equation:

Where Ty is the sweep time of the signal, f}, is the beat frequency, and By, is the sweep bandwidth

of the signal. The beat frequency directly maps to the range given by equation 2.6. The details of the

mapping are given in the figure:

R
: < ol e
range R
frequency
r t, _ 1
/ 71\ B eep
.l A o h
Boeep > o beat frequency f, 2B, -
» il
' ; time
! | sweep time 7,
1 1
——p!
L} »-’ 1
t, = 25 modulus of
c the spectrum
receiverT AAT \AAAAAAAD L Fourier |
output I it transformation 1 range

£, frequency

Figure 2.3 Extracting the beat frequency and converting it into range [23].

When a target moves relative to the radar, a Doppler frequency shift is introduced which can also be

12

calculated by performing several sweeps and storing the data into a matrix and then performing a 2D
FFT on the matrix.

To improve my understanding of FMCW radar operation, | simulated an FMCW radar
operation in MATLAB capable of detecting the range and velocity of two point targets. The design

considerations are given in the table below:

PARAMETER VALUES
Radar Center Frequency T7GHz
Propagation Free space
Maximum range monitored 100m and 450m for two point targets.

Kept the first target as stationary and the second target moving at a

Radial velocity velocity of 50m/s

Range resolution AR Im
Operating Bandwidth B=c/2 AR 150MHz

Table 2.1 Radar simulation parameters.

RCS of the 2 targets are given as follows:

Targets RCS(m?) RCS (dB)
Target 1 1 0
Target 2 100 20

Table 2.2 Radar cross section of two targets.

13

2.1.1 FMCW Radar Operation Simulation

2.1.1.1 Beat Frequency Spectrum

The beat frequency spectrum given in fig 2.4 clearly shows the return coming from two targets
in the illuminated scene, first and second point targets return beat frequencies of approximately 13.6

MHz and 61.3 MHz respectively.

Beat frequency spectrum (0 to fs/2)

Normalized Power{dB)

-50 ' '
] a0 100 150
Frequency (MHz)

Figure 2.4: Beat frequency spectrum of received echoes.
2.1.1.2 Range Ascope

On converting the corresponding beat frequencies to the target ranges according to the equation 2.6,
the target ranges are calculated to be 100 m and 450 m respectively which is in accordance with the plot given

in figure 2.5.

14

Range Ascope

0 T

R
Q
T
1

Mormalized Fower(dB)

g T

—ED i i
0 100 200 300 400 500 600

Range (m)

Figure 2.5: Ascope showing the range of targets and the relative strength of their echoes.

2.1.1.3 Range plot-slow time domain

100 slow time samples were taken for the generation of the illuminated scene and
figure 2.6 represents the exact ranges of the two targets in the slow time domain. As the
displacement is very low with respect to the slow time, the target 2, appears to be stationary

in the figure at the range of 450 m.

15

Range - slow time domain

0 1 2 3 4 5 6 7
Slow time (s) %104

Figure 2.6: Range mapping in slow time domain
2.1.1.4 Range Doppler Spectrum
The range doppler spectrum is obtained by taking a 2D FFT of the received data matrix in
which the superimposed signal is stored for several sweeps. A hanning window is also applied before
taking the 2D FFT in order to suppress the sidelobes. We can clearly see from figure 2.7 that the
target 1 appears to be stationary at the range of 100 m (velocity = 0 m/sec) and target 2 appears to

move at a velocity of 50 m/sec which is in accordance to our expected estimation.

16

Range- Doppler Spectrum

100

200

Range(m)
(%]
=}

400

500

600
-100 -a0 0 50 100

Velocity (m/s)
Figure 2.7: Mapping of the received data matrix in range and Doppler spectrum.

Therefore, by creating unique data vectors for each transmit and receive intervals during the
course of several sweeps and saving it to a two dimensional data matrix and performing a 2D FFT
which maps the signal in both range and doppler domains would give us the exact position and the
velocity of the target. The MATLAB code for simulating the 77 GHz FMCW Radar is listed in

Appendix A of this thesis.

2.2 Field Programmable Gate Arrays - Background and Principle

The origin of the field programmable gate arrays could be accredited to its precursors, the
programmable read only memory (PROM) and programmable logic devices (PLDs). Both of these
devices had the ability to be reprogrammed on the field. However, the configurable logic blocks
needed to be hard wired to each other [24]. Xilinx Inc. invented FPGA in 1985 [24]. The company
built on the programmable logic concept and created a chip which was entirely field programmable.

A field programmable gate array (FPGA) is an integrated circuit which can be programmed
17

by the designer according to the changing application needs after manufacturing. That is how the term
‘field programmable’ relates to the name. The reprogramming ability makes them different from the
application specific integrated circuits (ASICs) as the functionality of ASICs is fixed and cannot be
altered after manufacturing. FPGA’s contain configurable logic blocks (CLBs) arranged in an array
structure along with interconnects which are reconfigurable in nature to allow the CLBs to be wired
together. Figure 2.8 describes the architecture of an FPGA. The CLBs can be configured to perform
functions which are from implementing a simple logic gate function like AND or XOR to applications

requiring complex combinational logic.

[Input!Output Blocks J

/]
mmﬂﬁh&mm

[Logic Blocks J

il

Programmable
nterconnect

a

Figure 2.8: Basic architecture of a field programmable gate array [25].

The basic building block of an FPGA is a Look up Table (LUT). LUT is basically a truth table
which has different combination of inputs to yield output values. Any combinatorial logic can be
implemented in an FPGA by initializing a look up table. FPGAs also have storage elements for storing
sequential logic states for every clock cycle such as flip flops (registers) and latches. Apart from
LUTs, FPGAs also have dedicated Block RAMs, DSP blocks (are Arithmetic Logic Units), PCI

Express supported to provide higher storage and computation speed. Also, FPGAs may have

18

additional elements such as Multiply Accumulate Blocks (MACSs),High-speed serial transceivers,
Phase locked loops (PLLs) which are used for operating the FPGA logic at multiple different clock
rates. These components help in pipelining the implemented logic as well as providing inherent

parallelism across multiple applications.

2.3 Peak Detection

In this thesis, the property of Fast Fourier transforms (FFT) has been utilized for analyzing
the beat frequency of the chirp signal in the frequency domain. Fast Fourier transform (FFT) is the
name given to an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence. FFT
is a fast computational algorithm for DFT which reduces the computational complexity of DFT from
O (N?) to O (NlogN).

In 1965, James Cooley and John Tukey published a journal article named “An Algorithm for
the Machine Calculation of Complex Fourier Series” published in the journal Mathematics of
Computation [21]. This algorithm is considered to be the most popular and generalized algorithm for
calculating the fast fourier transform. Also known as the Cooley-Tukey algorithm dramatically
reduced the computational cost of the regular DFT algorithm and became one of the indispensable

algorithms in digital signal processing.

2.4 Review of Peak Tracking Algorithms

Implementing a real time surface tracker has to have two components, the first being signal
detection, i.e. detection of the beat frequency corresponding to the return signal. Owing to the
roughness of the surface snow cover, the backscatter from the snow surface would consist of a
superposition of specularly reflected pulses from various points on the snow surface [26]. Therefore,
a robust surface tracking algorithm needs to be implemented which can keep track of the return

coming from the snow surface and therefore avoid any errors arising due to tracking wrong peak

19

occurring due to a glitch or noise.

In literature, there are various tracking algorithms used for different radar altimeters and there
iIs no specific universal algorithm used for range tracking. The tracking algorithm depends on
operating environment of the radar altimeter and several other factors. Next section gives an overview

of some of the tracking algorithms used in radar altimeters.

2.4.1 Adaptive Linear Prediction based Tracking

Adaptive linear prediction is used to estimate and predict the future values of a signal based
on its past values. This technique is widely used in speech and image compression. Figure 2.9 shows

how the adaptive filter is used to predict the next value of the signal on the basis of its past values.

(1) e}

o e
‘ N , ""‘r”lf Adaptive
Dalay Filter

/

Figure 2.9: Adaptive linear prediction [27].

In figure 2.9, s(n) is a time series signal at time n. x(n) is the delayed version of s(n) and x(n)
acts as an input to the Adaptive Filter, y(n) is the output from the adaptive filter. The difference
between the output of the adaptive filter y(n) and the input signal s(n) is calculated by the linear
prediction system and an error signal e(n) is produced. The prediction system adjusts the adaptive
filter coefficients iteratively according to an adaptive algorithm such as to minimize the error e(n).
The system predicts the future values based on past signal values when the error e(n) reaches the
minimum value [27]. Thus, linear prediction could be used in estimating the next location of snow

surface on the basis of past samples.

20

2.4.2 Kalman Filter Based Tracking

As the name suggests, Kalman filter is named after Rudolf E. K&lmén [28]. The filter works

in two steps:
e Prediction

e Correction

It is a mathematical model which uses measurements observed over time which can contain random
errors, noise or other variations and predicts values which are closer to the correct values of the
quantity under measurement. Kalman filter has been widely used in radar tracking systems and has
enormous applications in navigation, guidance and control of spacecrafts, aircrafts, etc.
Kalman filter works as a recursive estimator [29]. It is a set of mathematical equations which
recursively estimate the state of the process in such a way that it minimizes the mean of the squared
error.
The goal of the filter is to estimate the state x € R™ of a discrete time-controlled process which is
given by the linear stochastic difference equation:

X = AXpeq F BUp g F Wh g (2.7)

And with a measurement z € R™ given by

Where wy and vk represent the process and measurement noise respectively [29].
Both are assumed independent from each other with probability distributions
PW) ~ N(0,Q), ettt (2.9)
POV) ~N(O,R) .o (2.10)
where Q is the process noise covariance and R is the measurement noise covariance, they are assumed
to be constant.

We take £~ € R" to be the a priori state estimate at step k where we assume that we have the
21

knowledge of the process prior to step k, and X € R" is the a posteriori state estimate at step k with
the given measurement zx. Therefore, the a priori and a posteriori estimate errors are given by,

L T (2.11)

And the a posteriori estimate error covariance is
P = E[(€1el)] e, (2.14)
The Kalman filter estimates and predicts the state of the process and then acquires feedback
in the form of measurements embedded with noise. There are two sets of equations for Kalman filter,
e Time update equations
e Measurement Update equations
The time update equations are basically the equations that predict a value, they project the
current state forward in time and error covariance estimates in order to get the a priori estimates for
the next time step, whereas the measurement update equations provide feedback (correction), thus
incorporating a new measurement into the earlier calculated apriori estimate to obtain an improved

version of a posteriori estimate.

22

Discrete Kalman filter time update equations

5c\k = Ak\k_l + Buk_1

Py = APAT + Q

Table 2.3: Discrete Kalman filter time update equations [30].

Discrete Kalman filter measurement update equations

K, = P;H"(H P;HT + R)™1
X =X +Ky(z;, — Hxy)

Py = (I - KgH) P
Table 2.4: Discrete Kalman filter measurement update equations [30].

Table 2.1 contains equations that gives the current state and covariance estimates of time step
k from time step k-1.Table 2.2 has equations that provide correction, i.e., first equation updates and
computes the Kalman gain, second equation gives a posteriori state estimate and the third equation
gives a posteriori error covariance estimate. Figure 2.9 shows the complete operation of the Kalman
filter by the set of equations. Therefore, the previous a posteriori estimates are used to predict the new

a priori estimates.

23

muurumm Update (“Correct™)

(1) Compute the Kalman gain

(1} Project the state ahead — ST c g7 -1
et the s K, = PyHT(HP H + R)
i, = Ax,_ | +Bu, |

Time Update (*“Predict™)

(2) Update estimate with measurement 2y
(2) Praject the error covariance ahead i}. - -ﬂ + KR (S H’i.i}
P,{ = qpi - [Ar + Q (3) Update the error covariance

L/ P, = (I-K,H)P,

Initial estimates for %, | and Py,
Figure 2.10 Kalman filter Operation [30]

2.4.3 Offset Center of Gravity Algorithm (OCOG)

Offset Center of Gravity Algorithm (OCOG) was developed by Mullard Space science
Laboratory [31]. OCOG first tries to estimate the shape of the echo waveform parameters. This
algorithm uses an estimation of pulse width to track the return waveform from the target. The width

of the pulse is given by W in equation 2.15 as,

Sk p,)"
W = (Zk+p2) .. (2.15)

n=0Pn

Where pn is the power corresponding to range bin n, i.e the value of n'" element in an array. The
middle point of the tracking window is assumed to be at half of W, i.e, W/2 and to the left of the
gravity center of the return waveform. Assuming a pulse is defined as,

_ {A, m<n<m-+j
Pn = 0, otherwise

Getting the gravity center of the return waveform in a tracking window, the error signal is as shown
in equation 2.17. The error output would then be sent to the next processing unit.
E = Z‘{’(L;(l) Npn
CrZopn) 2

In a scenario where the tracking window position changes, a series of errors E can be obtained by
24

which the tracking compensation could be achieved [32].

The kind of tracking algorithms used for FMCW radars depend on the operating environment,
physical properties of the target, for example whether the reflecting surface is ocean or land, etc.
Moreover, the algorithm has to be implemented on a field programmable gate array which has limited
hardware resources and has computational restraints due to its high operating speed and hardware
parallelism. Thus, the tracking algorithm chosen should be computationally efficient such that it does
not utilize a large number of resources which may not be possible to implement on an FPGA with

limited hardware specifications.

25

Chapter 3

Peak Detection

Peak detection refers to the detection of the strongest returned chirp signal frequency when
analyzing the signal in frequency domain. Frequency domain analysis is one of the tools in signal
processing which is of utmost importance. It has wide range of applications in the area of remote
sensing, image processing, control systems, communication systems, etc. The difference between
time domain analysis and frequency domain analysis is that, time domain analysis gives an idea of
how the signal changes with respect to time, whereas frequency domain analysis gives an idea how
signal’s energy is distributed amongst a range of frequencies. Along with the energy information,
frequency domain analysis also provides information on how much phase shift should be applied to
each of the frequency components such that the original time signal would be recovered having a
combination of all the individual frequency components of the signal. Let us look at the basics of

spectral or frequency domain analysis of a signal.

3.1 Spectrum Analysis

A signal could be converted between time and frequency domains using mathematical
operators known as transforms. The signal can be processed within these two domains and the process
translation of most importance is convolution because convolution in the time domain is equivalent
to multiplication in the frequency domain and vice versa. Figure 3.1 describes the various transforms

which are used for different applications.

26

Time Domain

Impulse

Input Qutput
— Response —»
x(t) v yit)=h(t)x(t)
hit)
Laplace
Impulse
Input Output
Xis) N Vis) = His) Xes)

Frequency (Fourier)

Impulse
—A Response —*
Hijo)

Input
KJen)

Output
Y(jo) = Hijoo) Xjer)

Figure 3.1: Different types of Transforms [33].
3.2 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a primary tool of digital signal processing. It is used to
perform Fourier analysis of many applications. DFT is also used for solving partial differential
equations and to perform complex operations such as convolution.

To further understand the DFT, let’s look at the numerical representation, the z-transform of
a periodically finite sequence is given as:
X(2)= YN a(n)z™™ (3.1)

If we periodically extend x (n) such that:

x(n) = {{ﬁ(n), O<n<N- 1} ... (3.2)

0, elsewhere

The discrete fourier transform of a periodically extended signal is given by,

j2mkn jemkq— M

R0 = X2 2(m)e v =XV 220) [e w | o (33)

On comparing equations (3.1) and (3.3) we get a relationship between z-transform of the finite

sequence and the discrete fourier transform of a periodically extended sequence given as,

Xk = X(Z) | miamk/N coveiiiiiiiii 3.4)

27

The relationship between discrete fourier series (DFS) and discrete time fourier transform (DTFT) is

given as,
X(k) = X(UD)| g pi2mh/N oo (3.5)

Therefore, as we can see, the DFS can be obtained by sampling the DTFT at equal intervals along the

unit circle

Assuming that the input signal is periodic, but we only analyze N points, and moreover,
assume that the output signal is also periodic only observing N points, then we obtain a mathematical

entity which is known as the Discrete Fourier Transform (DFT).
The DFT is described by equations,
X(k)= INAxmWi* 0<k<N—1......cccoeeiiiiiiiiini.. (3.7)
x() =~ INAXUOWR™ 0<n<N—T............. (3.8)
Therefore, DFT can be given as:
X(k) = DFT{X(N)}. oo, (3.9)

Figure 3.2 shows input signals being transformed using various transforming techniques.

28

3.3 Fast Fourier Transform

Fast Fourier Transform is basically a fast-computational algorithm for discrete fourier
transform (DFT). To understand the FFT algorithm, it is essential to first understand the
computational complexity of the DFT. The number of multiplies and adds which are required to
compute the discrete fourier transform of a length N signal, equation 3.7 gives the DFT of a signal,

which could be further given as,

=

-1
X(k) =) [Rex(n)+jImx(n)].[ReWy™ +jImW§"] 0<k<N-1
0

S
Il

YN-H{Re x(M)ReW™ — Im x(n)ImWE™ + jRe x(M)ImW{™ + jimx(n)ReWy"} 0<k <N -1
(3.10)
If we compute the complexity of the DFT algorithm, we see that for each k and n, we have 4 real
multiplications and 2 real additions, and for each k there are N values of n, therefore, we get 4N real
multiplications and 4N-2 additions. For N values of k, there are
AN? multiplications ~N?,
N (4N-2) additions ~ N?
Therefore, DFT is computationally intensive algorithm and some other efficient way of performing
the transform was required.
Cooley and Tukey invented the FFT algorithm back in 1965, they exploited the conjugate symmetry

and periodicity properties of the DFT,

W;(N ™ = (WE™)* Conjugate symmetry (3.11)
WV = Wk Periodicityvooveseeeeeee e, (3.12)

So, for a 4-point FFT,

3

X(k) = Z X (M)W
n=0

29

When we expand it using DFT algorithm, we have,
X(0) = x(OO)WL + x(DWL + x(QW, + x(3)W,?
X(1D) = x(OOW2 + x(DWL + x(QWZ + x(3)W}
X(2) = x(OOWL + x(DW2 + x(QW,t + x(3)W?
X(3) = x(OOW2 + x(DW2 + x(2)WE + x(3)W)
The above operation requires 64 real multiplies and 56 real additions. Using the properties of

symmetry and periodicity we have,

W4_0 — —W42
W4_1 — —W43
W4_0 — W4_0

From the above properties we have,
X(0) = x(OOWL + x(DWL + x(QW,2 + x(3)W,?
X)) =x(OOWL + x(DWL —x(2QWQ — x(3)W,
X(2) = x(O)WL — x(DWR + x(QW, — x(3)W?

X(3) = x(OWQ — x(DWL — x(2QWQ + x(3)W,

X(0) = [x(0) + x(D]Wy + [x(1) + x(DIWy
X(1) = [x(0) = x(IW, + [x(1) — x(D)]W;
X(2) = [x(0) + x()IW, — [x(1) + x (D)W
X(3) = [x(0) — x(IWy — [x(1) — x(RD)]W;

If we draw a flowgraph for the above equations, we get a butterfly structure given by,

30

X(2)

x(3)

Figure 3.2: A 4-point FFT implementation, note that it requires
8 complex additions and 4 complex multiplies [34].

Thus, the computational complexity in terms of big O notation is given as,
DFT - O [N3]

FFT — O [N logz N]

31

3.4 Spectrum Analysis using FFT
FFT is used to find the components of a signal which is buried in a noisy time domain signal
and to analyze the frequency components of a signal. Let us understand how FFT algorithm is
implemented and can be used to get signal information from a noisy signal. In order to model a
scenario, 2 sinusoidal signals of amplitude =1 and frequency f1=10 Hz and f2=50 Hz are added

together and the signal is shown in figure 3.3.

151 || |
| ||'"| | ' |
u.5f||||| ||||| ||||| ||||| |'|||||||| ||||| |||||

'| Hil‘ﬁa Ml"m

05} |||||| || ||||| ||||| ||||||| |||M

Amplitude
=

15
||

Figure 3.3: Signal containing 2 sinusoids of frequency 10 Hz and 50 Hz.

Next, random noise is added to the above signal and the signal now looks like as given in figure 3.4.

32

Amplitude

r|

|
| ||."I|I |||
|u| |

50
Time

100

Figure 3.4: Random noise added to signal.

Now, we take the FFT of the signal and plot it on the frequency axis. In the power spectral density

plot given in figure 3.5, 2 peaks representing two signals with frequency components 10 Hz and 50

Hz can be clearly seen in the figure and that is how we could effectively determine the frequency

components of a signal embedded in noise through the FFT algorithm.

33

Power spectral Density showing peaks at 10Hz and 50Hz

120

100

Amplitude
2

40 1

|'|| Il'l h h

2of Jh 1A N on A | I\

| L TR \
|..N|| JII "ﬂ'llr.r.'lu IIIJ'IllIHI |'*.|||"'J|| WA |IJ 4 ,} LJ"”IIHl \"vajlﬁ J lll/lrlu'ﬂ | l

0 10 20 30 40 50 60 70 B0
Frequency(Hz)

Figure 3.5: Power spectral density plot of the noisy signal.

The MATLAB code for the above implementation is given in table 3.1.

20

100

Table 3.1 MATLAB code for FFT implementation

G- %% MATLAB Code for FFT implementation %%---------

clear all;
close all;

A=1; %amplitude

£1=10;%frequency 1

f2 = 50;%frequency 2

£s=200; $sampling frequency
t=0:1/fs:1;%time axis

S=A*sin (2*pi*fl*t)+A*sin (2*pi*f2*t) ;

figure (1) ;

plot(t,s);

x1im ([0 0.5]1);
title('Signal', 'Color','k");
ylabel ('Amplitude') ;

xlabel ('Time') ;

y = S + randn(size(t)) ;%adding noise
figure (2)

34

plot(y)

x1lim ([0 100]) ;

title('Noise added to Signal', 'Color','k');
ylabel ('Amplitude') ;

xlabel ('Time') ;

nfft=2nextpow2 (length(S)) ;
w=fft(y,nfft) ;%taking £fft
w=w(l:nfft/2);

z=abs (w) ;

fre axis=(0:nfft/2-1)*fs/nfft;

figure (3);

plot(fre_axis, z);

title('Power spectral Density showing peaks at 10Hz and
50Hz','Color','k"');

ylabel ('Amplitude') ;

xlabel ('Frequency (Hz) ') ;

3.5 Implementing Peak Detection on FPGA

As stated earlier, FFT is a faster way of performing spectral analysis of signals. In order to
provide real time measurement analysis, FPGAs offer the desired computational performance
required for FFT analysis. The data acquisition system for the Snow radar uses National instruments
(NI) software LabVIEW and LabVIEW FPGA. NI FlexRIO FPGA provide high performance Xilinx
Virtex class FPGAs which can be programmed with NI LabVIEW design software [35]. The software
provides a built-in FFT IP for LabVIEW FPGA which can be used to implement the FFT logic as
shown in figure 3.6. However, the inherent hardware parallelism which one gets with field
programmable gate arrays (FPGAS), also introduces added complexity of synchronizing the data
between operations being performed at different rates and clock cycles. Different types of algorithms
need different number of clock cycles to complete, therefore if an IP core is expecting the input data
before it is actually made available, all the data might get corrupted without an actual warning
[36]. Therefore, the FFT IP has different Boolean lines which are used as handshaking signals to pass

data between different functions and loops within the FPGA block diagram. These handshaking

35

signals are named ‘ready for input’, ’input valid’ and ‘ready for output’.

raset = ; data index
real data in S real data out
imaginary data in — ;- —imaginary data out
input valid - : “= pukput valid

e pgdy For input
Figure 3.6: FFT IP Core in LabVIEW FPGA [37].
The FFT algorithm uses fixed point number representation (FXP) as inputs to calculate the FFT owing
to its limited resources. It uses ‘Continuous input indexes/continuous output indexes’ which makes
the FFT continuous to both input and output data, also referred as ‘Single Channel Single Sample’.
When implementing FFT inside a single cycle timed loop (SCTL), the FFT works as shown in figure

3.7 where throughput is not equal to one cycle per input.

Frame 1 Frame 2
N Points M2 Cyclas = Paints
T J_||—|
Ingut Il wee | [eee |
T Frame 1
Latency M Poirits
Output T
Cruitput Walid

Figure 3.7: FFT implementation mode inside a single cycle timed loop [38].

This is how we utilize the FFT IP core for implementing the fast fourier transform algorithm
on the FPGA.As the FPGA has limited resources, and really fast performance speed, the FFT IP core
handshaking signals need to be used carefully to ensure smooth data transfer between the input and
output FIFOs. Also, another fact to be considered is that the FFT block has a latency which depends
on the length of the FFT, i.e., the latency increases with the FFT length. Therefore, while designing
an application on the FPGA, the requirements need to be carefully considered beforehand for efficient

implementation and execution.

36

Chapter 4

Surface Tracking

Peak detection is the way through which we detect the backscattered signal of interest and
can extract the important information such as the range of the target and the two-way propagation
time of the signal. But only peak detection is not enough as the aircraft on which the radar is
deployed moves up and down and therefore gains or loses in altitude. In order to continuously
acquire the signal, the snow radar currently uses the different Nyquist zones to store the spectral
power in each band of interest. Therefore, as the range of the aircraft increases from the surface, the
beat frequency also increases and the radar operator has to switch different Nyquist zones one by
one so that the spectral energy is stored in different bands without encountering data loss. The next
section describes the importance of surface tracking in the radar operation and what would be the
benefits of implementing a real time surface tracking algorithm for the snow radar.

4.1Surface Tracking Importance

Real time signal peak detection also requires continuous peak tracking which implies tracking
the surface in real time. Peak detection detects echoes of the target in range against a background of
noise. The role of a radar surface tracker would be to monitor consecutive updates from the radar
system and to determine that the sequences of plots obtained are from the target that was initially
being tracked. Surface tracking also has its own challenges as there is noise along with the signal of
interest and there might be glitches in data acquisition, etc. Therefore, a robust surface tracking
algorithm is required which would ensure that the radar tracks the ice surface precisely and makes
the radar operation fully autonomous, i.e., no more manual Nyquist zone switching would be required

by the radar operator.

37

Surface tracking involves a delayed dechirping operation, i.e. adjusting the delay of the
reference chirp going to the local oscillator. By delaying the local oscillator reference chirp, the IF
frequency would be constant as the range of the aircraft increases from the surface. Furthermore, the
need of storing spectral energy in different bands would not be needed as the IF would not increase
with respect to increasing range of the surface because the increase in the IF would be compensated

by the delay fed to the local oscillator reference chirp signal.
4.2 Tracking Approach

There is no single fixed algorithm used by conventional radars for surface tracking. The
algorithm depends on the kind of surface being tracked, the radar requirements, etc. In this thesis, the
tracking approach followed was to analyze the beat frequency IF signal and delay the reference chirp
with respect to the acquired IF of the echo from the target. A module was developed which generates
a trigger for the transmit chirp, also called as the pulse repetition interval trigger. The PRI trigger is
sent to the arbitrary waveform generator (AWG) which transmits the chirp signal. The module
assumes a default beat frequency initially and transmits another trigger after a delay amounting to the
propagation time calculated from the default initial beat frequency. The delayed trigger goes to the
arbitrary waveform generator and triggers the AWG to transmit a reference chirp to the local
oscillator. The transmit chirp is received by the receiver after a propagation delay equivalent to the
range of the target and finally mixed with the reference chirp through a process known as dechirping.
The resultant beat frequency signal is detected by the peak detector or the fast fourier transform
algorithm implemented in the module. As the target range varies relative to the radar, the beat
frequency of the signal changes, this change is compensated by the adding more delay (if the beat
frequency of the signal is greater than the default assumed beat frequency) or reducing the delay (if
the beat frequency of the signal is less than the default assumed beat frequency).Therefore, the local

oscillator reference chirp trigger is adjusted in accordance to the acquired beat frequency at that

38

particular instant.

The tracking algorithm works in a way which tries to compensate the increase or decrease in
the instantaneous beat frequency with respect to the default assumed beat frequency by adjusting the
delay in transmitting the local oscillator reference chirp trigger. The algorithm tries to maintain a
constant default beat frequency by adjusting the delay of the LO signal and thereby trying to achieve
a constant range which eliminates the need to store the spectral power in different Nyquist zones.
Figure 4.1 shows the current operation of the snow radar where the transmit and LO chirps are emitted
at the same time, therefore, as range of the target increases, it increases the time delay of the received
signal which ultimately increases the beat frequency. Figure 4.2 shows the proposed solution which
works by delaying the LO reference chirp signal by which the beat frequency can be adjusted and
made constant according the operating range. This way, the FMCW radar can work for increased

ranges or altitudes at a constant beat frequency.

fo

Frequency

Time

Figure 4.1 Current Radar Operation.

39

Adjusted
delayed
LO Rx

Frequency

Time

Figure 4.2 Operation with delayed LO reference chirp.

4.3Implementing Surface Tracking on FPGA

Implementing a surface tracking algorithm real time has its own challenges as there are limited
amount of hardware resources available. However, field programmable gate arrays provide the
needed hardware resources required for efficiently implementing a surface tracking algorithm.

The algorithm was implemented using a single cycle timed loop (SCTL) and separate counters
were used for generating the transmit trigger and the delayed LO trigger signal. The counters were
used for calculation of the delay and adjusting and calculating the limit of the counter with respect to
the beat frequency at a particular instant. Every operation occurring inside the field programmable
gate array is synchronized with respect to the AWG external sampling clock. The steps mentioned
below describe how the module was created explaining the requirements one by one:

e First, the Fast Fourier transform algorithm was implemented on the FPGA and all the
handshaking signals were implemented for correct real time operation.

e The bin index containing the maximum value in an FFT output block represents the highest

40

signal energy or the beat frequency of the signal. Maximum value bin index was extracted
from the FFT output.
e The logic to convert the bin index to beat frequency was implemented in the module.

e The beat frequency and the two way propagation time of the signal are related by the formula:

Where T is the two way propagation time, Ts is the chirp sweep time and B is the chirp

bandwidth.

e The propagation time is calculated from the beat frequency and is converted into the number
of loop cycles of the single cycle timed loop needed for generating that particular delay with
the help of a counter.

e APRItrigger logic was implemented using a counter which sends a PRI signal continuously
to the Arbitrary Waveform Generator in order to transmit a chirp signal.

e The local oscillator reference chirp trigger logic was implemented using counter that counts
a fixed number of loop cycles to generate a delay with respect to the instantaneous beat
frequency.

e The module is implemented in such a way that every time a PRI trigger is generated, the LO
trigger is calculated using the instantaneous beat frequency obtained from the FFT algorithm.
Therefore, the LO trigger is synced to the PRI trigger.

Changing the delay of the local oscillator reference chirp signal and adjusting it according to
the increase or decrease in the range (altitude) dramatically increases the operating range of the radar.
The idea of maintaining a constant beat frequency is achieved by increasing or decreasing the local
oscillator chirp delay with the changing range (altitude) of the aircraft with respect to the reflecting

surface. Maintaining a constant beat frequency eliminates the limit on the operating range of the radar.

41

This also eliminates the manual switching of the Nyquist zones which has to be done as the beat
frequency increases with increasing range of the radar. Therefore, implementing surface detection
and tracking for the snow radar equips the radar with the ability to operate autonomously dramatically

increasing the operating range.

42

Chapter 5

Implementation and Results

5.1 System Information

The snow radar typically operates at 2-18 GHz frequency range. The waveform generator
used to generate a chirp waveform is a high-speed Arbitrary Waveform Generator from a commercial
vendor [39]. The Data Acquisition System used is NI PXle-1075 chassis which has the following

components:

System Controller Slot (slot 1)

Hybrid Peripheral Slots (8: slots 2-5 and slots 15-18)

PXI1 Express Peripheral Slots (8: slots 6 to 9 and 11 to 14)

System Timing Slot (slot 10)

System Reference Clock

The PXle-1075 chassis supplies PXI_CLK10, PXle CLK100 and PXle_SYNC100 to every
peripheral slot with an independent driver for each signal [40]. FlexRI1O is the name of the product
from NI which has user-programmable FPGAs along with high speed analog, digital as well as RF
I/0. FlexRIO’s can be programmed graphically by National Instruments graphical programming
language LabVIEW. The architecture of FlexRIO is such that it has modular adapter modules that
communicate with PXI FPGA modules over a parallel digital interface [41]. The FlexRIO digitizer
module has a mezzanine 10 Module which contains high-performance analog-to-digital converters

(ADCs) and an FPGA backend for user defined signal processing.

43

===?=‘=.=-@\ = M n -.==;;??.¢ e I
= T P r
1,._,..)-'("}” w—-—"""’:L

NI FlexRIO NI FlexRIO

NI FlexRIO Device

Adapter Module * FPGA Module

Figure 5.1: NI FlexRIO Device [42].

5.2High Level Block Diagram

The process steps for surface detection and tracking can be understood by the high-level block
diagram shown in figure 5.2. The process starts by giving an initial delay to the local oscillator
transmit chirp signal and acquiring IF signal data samples and converting it into beat frequency by
performing FFT. Once the instantaneous beat frequency is calculated, the number of loop cycles to
be given to the Local oscillator delay trigger counter are calculated by the constant beat frequency
loop and the delay is adjusted for transmitting the next LO chirp signal. The PRI Counter is fixed to

a number of loop cycles needed to transmit the Tx chirp repeatedly after a fixed amount of time delay.

44

Rx Chirp Fast

.. . - Beat Surface
IF al g
- DeChll‘plng s Fourier Frequency elevation
Delayed LO Transform
Chirp
Constant
beat
Transmit next chirp with adjusted delay AdeSt LO Ch-‘.-rp d'ﬂay &equcncy
feedback
loop
Initial delay
to LO chirp

Figure 5.2: High level block diagram showing different processing steps.

5.3Simulations on Host Computer

5.3.1 FFT Implementation on FPGA

The simulations were done on the FPGA target with simulated 10. For the simulations on host
computer, a sinewave generator was simulated on the FPGA target with a frequency of 400 Hz.
Keeping in mind the Nyquist sampling theorem which states that the sampling rate must be at least
twice the highest frequency component of the signal or greater, the sampling frequency of 1000 Hz
was chosen as shown in Figure 5.3.The sinewave generator is capable of generating sine or cosine
waveform with user programmable parameters. The samples of the sinewave were stored in FPGA
FIFOs (First In First Out).The inbuilt fast fourier transform block was used for performing FFT on
the FlexRIO FPGA device. The signal samples stored in the FIFO were read and FFT was performed
on them. The FFT block configuration is shown in Figure 5.4.Two types of FIFOs were used to store
sine wave samples, one was the target to host direct memory access FIFO for directly transferring the

sinewave samples from FPGA target to host computer and the other one was dedicated FPGA FIFO.

45

Canfigure Sine Wave Generator [Sine Wave Generator]

Sine Parameters

Power Spectrum Preview

Frequency (Hz)
40,0000 L=
Amplitude Full scale -20-
500 i
Phase offset (deg) -
0.00
Implementation —
: & -100-
Look-up table size =
a
1024 [+ E -120-
Use linear interpolation §-. -140-
Arnplitude resolution = 160~
Zbit [«
-180-
FRGA clock rate (MHZ)
0.001 -200-
Use top-level clack ~2d=
Frequency (periods/ftick)
-250-7 \
0.4 i i
Phase offset (periods) Frequency (kHz}
0
Show frequency terminal
Showw offset terminal
Qutput sine and cosine QK | | Cancel | | Help
Figure 5.3: Sine Wave Generator [43].
Configure FFT
Input Format
Single Channel, Single Sarmple lz‘
Transform Parameters Execution Mode Input{Output Index Pattern
FFT size Outside single-cycle Timed Loop @ Continuous input indexes / continuous output indexes
1024 El @ Inside single-cycle Timed Loop i i i i i
Continuous input indexes £ M-interval output indexes
Clock rate
Direction y t-interval input indexes / continuous output indexes
@ Forward
TeEa Default High
Throughput
Output Data Type 6.01 cycles /input [=] Wo, Ko, X X, Yo Y. Y ¥,
. 0r A1r Rgs eor Ay FFT‘!" IEFT o Ve Voo i
Adaptto source Latency
5641 cycles
Wéord length
32 bits)
Implementation Goal L= FFT Length
Integerword length Arcuracy
35 hits Resource usage
Ok | | Cancel | | Help

Figure 5.4: FFT IP configuration [44].
46

On the host computer virtual interface, two FFT plots were displayed, the first one was named
the Direct FFT where the FFT was taken on the host computer and the other one was the FPGA FFT
where hardware FFT was taken on the FPGA target and displayed on the host virtual interface. Figure
5.5 shows both the direct as well as FPGA fast fourier transform plots. From the plots it is evident
that the 400 Hz sine wave signal is represented by a peak occurring at 400 Hz and a mirror image of
the peak at 600 Hz respectively.

FPGA FFT Graph Plot 0 AN |

1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Direct FFT | |

Amplitude

1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

HE el |

Figure 5.5: 2 plots displaying Direct FFT taken on host computer and FPGA FFT.
47

5.3.2 Surface Tracking Implementation

For implementing the surface tracking algorithm, a step by step procedure was adopted.
1. The data coming out of the FFT block was scanned for the maximum value. The

maximum value was extracted and stored. Figure 5.6 shows the FFT implementation and

extraction of maximum values from FFT output.

if the data
index of max_in feedback node

[Reset feedback node every 1023 data points|

.
1023|»j> ol F present(d> pastiyle
—]

H [f presentt)> pasty)AND data
-2 index less than half it length

A RTe -
B g target_to_host 1B
Get Number of Elements to Write | Number of Elements to Write
Num!| lements to Write
FIFQ After FFT
: MTue -bf [
Rl
Fifo elements FIFD Before FFT i W ™ ok targetto_hast AIp]
S FFO_Ap Y Bz dataindex H‘"”“Et
T = erne
Fernent - [tooo Timeout FFT FIFO timeout
@ Trmeout - L Tirned Out? o
Tirmed Out__§ 43> 4 - 3
Tnput valid — ;
i3] [GH

Figure 5.6: LabVIEW code for FFT implementation and extracting maximum FFT output value.

2. The data index corresponding to the maximum value was extracted and stored.
3. After all the samples for the FFT Length are acquired, the maximum data index
represents the frequency of the input signal. Figure 5.7 shows the part of the LabVIEW

code which stores maximum data index after every FFT output length (Assumed 1023 in

the example).

48

|_T_L Mlax index per point
[

Final Max index

After every 1023 points
If present(x) >pastiy)store the data

index of max in feedback node

[Reset feedback node every 1023 data points|

[f present(>pastiy) i

Max value

Figure 5.7: LabVIEW code for extracting maximum value every 1023 data indexes

4. The data index is converted into beat frequency by the formula:

Maximum Index*Sampling Frequency
Beat Frequenc S e e 5.1
q y(fb) Length of FFT ()

The LabVIEW code for this conversion is shown in figure 5.8.

[Divide by length of FFT(/1024 = *2~-10]

|fb = (Max index*sampling freq)/Length of]
| by Frequency(hHz)
F
Iﬂ Final bdax index After every 1023 points PI = @ L fzal
IbY

1000

Figure 5.8: LabVIEW code which converts maximum data index into beat frequency.

5. Assuming that the beat frequency obtained is in MHz (which is typically the case with

snow radar), the Time delay is obtained by the beat frequency by the following formula:

49

Where T is the Time delay (in nanosec), f;, is the beat frequency (MHz), T; is the chirp
sweep time (assumed 240 psec) and B is the bandwidth of the chirp (assumed 16 GHz
for a 2-18 GHz chirp).

Now we calculate how many loop cycles are required to generate the time delay
calculated by equation 5.3. Assuming that the single cycle timed loop (SCTL) works at
250 MHz, a single loop cycle has a delay of 4 nano sec. Therefore in order to calculate

the amount of loop cycles needed, we use the following formula:

T

Number of loops required to generate the delay = TSCTL time delay" """ (5.3)

Where T is the Time delay calculated from equation 5.2.

. After having calculated the loop cycles, they are fed to the local oscillator counter limit
and determines the amount of local oscillator delay that needs to be given.

. To maintain a constant beat frequency, a feedback loop is added. An initial constant delay
is given to the local oscillator, the beat frequency corresponding to the initial delay and
the range of the target is obtained and then is adjusted for the constant fixed beat
frequency delay, which is converted to loop cycle count and becomes the next limit of
the local oscillator delay trigger counter. Figure 5.9 shows the LabVIEW code for

performing steps 5, 6, 7 and 8.

50

loop cycleinput for lo dela
L0} yeTes

Gop

=

[rso]«

[FirstGnitial) LO
delay =750

[To fix the peak at 100Hz i.e
[375 loop cycles @250MHz loop rate]

[PRI counter starts from count=1
[Busec+3usec+ margin = 10usec

,

[Adding 750 to loop cycle input bcoz we alreadly delayed
LO_initially for 750 loop cycles

PRI counter

[Calculate LO delay counter loop cycles from beat frequency|

PRI Trigger Verification counter

PRI counts raset

[ISCTL=250MHz = & PRI Trigger
No of counter loops = delaylin ns)/éns|
[t every PRItrigger,the loopcycle count is fed to the lo delay counter]

[divide by chirp bandwidth(B) in GHz)
lex 16GHz —-> 1610%-9-->2%-4

[Beat Frequency (fb) in MHZ

delay in nano sec ns

Loop Cycle Verification counter
ey
lexa00MHz
B e Counter forlo dela]
#Frequency (M2
F=orrae]
Ch i LO delay counter count
T fW“pl""Emj finftial value of loop cycle =
S oesione
Delay(T) = 20066°240e-6/16¢9 = 3000 L0 trigger
loop cycle = 300074 = 750 cycles

[Verification counter for how many.
ftimes lo got triggered

Figure 5.9: LabVIEW code for calculating the delay from the obtained beat frequency and calculating the corresponding

loop cycles required.

|I00p cycle input forlo dela)r|
LO logic Toop cycles
iz X

1
— [i |

First(initial) LO
delay =750

B

750 |«

To fix the peak at 100 MHz i.e
?loop cycles @250 MHz loop rate
=(100e6*240e-6)/16e8=1500ns
1500ns/4ns=375 loop cycles

v

Adding 750 to loop cycle input beoz we already delayed
LO initially for 750 loop cycles

Figure 5.10: LabVIEW code for calculating the error required to fix the beat frequency at 350 loop cycles (100 MHz)

51

Figure 5.10 shows the constant beat frequency feedback loop which sends an initial delay of
750(Assuming the SCTL to be operating at 250 MHz, 750 loop cycles correspond to 200 MHz), then
calculating the error obtained from the acquired beat frequency and calculating the loop cycles
required to fix the beat frequency to 100 MHz (i.e. 350 loop cycles).

The working FPGA virtual interface is shown in Figure 5.11.The maximum index of the 1023
point FFT is extracted from the FFT output, i.e. 410" as shown in the figure, the corresponding beat
frequency is calculated from the maximum index, shown as 400 Hz. We assume it to be 400 MHz to
mimic the real scenario. Having given the initial delay of 750 loop cycles that corresponds to a delay
of 200 MHz, the beat frequency peak comes at 400 MHz, therefore 400 MHz corresponds to 600
MHz in real world. In order to keep the peak fixed at 100 MHz (which corresponds to a delay of 350
loop cycles), we have to give a LO delay corresponding to 500 MHz, therefore the number of loop
cycles needed would be 375*5 that gives 1875 loop cycles as LO counter limit. This is exactly what

is calculated in figure 5.11.

52

2 Copy_12.0Simple_sinewave_fft_fpga.

File Edit View Project Operate Tools Window Help]
w et
»lzEn :

ERESountss LO delay Counter

PRI counter

181

Loop Cycle Verification counter

1

PRI counter reset

PRI Trigger

PRI Trigger Verification counter
3

E

delay in nano sec ns LO delay counter count

6000 =L
LO trigger loop cycles
o 1500

LO logic loop cycles
Verification counter . P
1875

3

m

data index

498

409

Final Max index
After every 1023 points

410

Max index per point Max value

528280993596

$Frequen cy(MHz)
400

Input valid output valid
_J _J

[

12.0Simple_sinewaveTest_FFT.hvproj/FPGA Target| <

Figure 5.11: Beat frequency 400 MHz corresponding to a delay of 1875 loop cycles to achieve a constant beat

frequency of 100 MHz, assuming an initial delay of 750(200 MHz) loop cycles.

Now we set the frequency of sinewave generator to 399 Hz with a sampling frequency of 1000
Hz, we get the maximum index at 409" data index of the 1023 point FFT output. We assume the
frequency to be 399 MHz for creating a real world scenario. Giving the same initial delay of 750 loop
cycles (which corresponds to 200 MHz), a 399 MHz beat frequency corresponds to 599 MHz in real
world. In order to achieve a constant beat frequency of 100 MHz, we have to give a delay
corresponding to 499 MHz, i.e. calculated as 375*4.99 which comes out to be 1871 rounding to the
nearest integer. The result is verified from figure 5.12 where the loop cycles match the calculated

number of loop cycles needed. We verified the fixed beat frequency logic with different beat

frequency inputs and the results were as expected.

53

3 Copy_12.0Simple_sinewave_fft_fpga.vi

File Edit View Project Operate Tools Window Help g
u b g
=] @[n :

w LO delay Counter
PRI counter PRI Trigger delay in nano sec ns LO delay counter count
215 5985 213 =
PRI counter reset LO trigger loop cycles
@ < 1496

Loop Cycle Verification counter Tz T T e G

6 LO logic loop cycles
1 Verification counter ¢ L [
1871

5

E

Final Max index

data index After every 1023 points $Frequency(MHz]
409 399

862
Max index per point Max value el Tl
410 99059125707382 J J

I 2

12.05imple_sinewaveTest_FFT.lvproj/FPGA Target] ¢

Figure 5.12: Beat frequency 399 MHz corresponding to a delay of 1871 loop cycles to achieve a constant beat

frequency of 100 MHz, assuming an initial delay of 750 (200 MHz) loop cycles.

Figure 5.13 shows the counter logic created for the two counters namely the PRI Trigger counter and

the LO delay trigger counter. The PRI trigger counter limit was fixed and the LO trigger counter limit

was variable according to the fixed beat frequency feedback loop.

Therefore, this is how the simulation logic was created and implemented on the FPGA target

through simulations on the host computer.

54

ticks
v [0 hAndil
e

nter reset

PRITrigger start

TF

Counter for lo dela

r>*,.
lo counter limit
"

I

LD delay counter count

¥ oo U I _DiStariC ®

Figure 5.13: PRI Trigger counter and LO Trigger counter logic in LabVIEW.

55

5.4Hardware Implementation on FPGA Target

5.4.1 Hardware Implementation Procedure
The LabVIEW FPGA module enables the developers to design their logic and translate the
design directly to the hardware. After simulation with simulated I/O as explained in section 5.3, in

order to compile the design on the FPGA target, the option shown in Figure 5.14 is selected.

(< FF =N
2 12.05imple_sinewaveTest_ FFT.lvproj - Project Explorer EI_IQ
File Edit View Project Operate Tools Window Help
3 o G
S| b X||ER | E-E e
Items | Files
= [kl Project 12.05imple_sinewaveTest_FFT.lvproj
2 B My Computer
. [ml 12.0Simple_sinewave fft_Host_fftwvi
|| O AT oo
= Mew 4
B PXT
-] 3usec_chirp_confi Start IP Generator...
- ml 12.0Simple_sinew
40 MHz Onboard Select Execution Mode J FPGA Target
i 200 MHz C|F,c|.; RIO Device Setup... ??mulatiun (%imu.lai:ed o)
- ml Copy_12.05imple_ Simulation (Real I/C
Bl -~ 4l DIRECT_DMA_FIF(Add » | Third-Party Simulation
-4l FFT FIFO
- Ik FIFO Find Project Items...
- ml FPGA_FFT_PRILO
= - = Arrange B 3
- ml FPGA_PRIN_LO_t = ani mr
~4lb Host-To-FPGA Cp” Al
- = 10 Module (NI 576 oflap=e
10 M'.:'d'-'le Clockl Remove from Project
- gl IP Builder Rename... B2
-l target_to_host B
- |, Untitled 2125Mhz) Help...
EE}-QE Dependencies Properties
- ;b_ Build Specifications -

Figure 5.14: Changing the design execution mode to ‘FPGA Target’ for hardware compilation.

The result of the FPGA compilation is a bit file which is generated for the particular compiled design.
Figure 5.15 lists various steps involved in the FPGA compilation process right from starting a

compilation to the bit file generation.

56

Start Compile

Figure 5.15: FPGA Hardware compilation steps [45].

5.4.2 Artificial Target Simulation using Optical Delay Line

An optical delay line was used for simulation of an artificial target. The delay line was used
to induce a propagation delay in the signal path. The chirp signal was generated and transmitted by
the arbitrary waveform generator, travelling through the optical delay line and then coming back
through the receiver and was mixed with the local oscillator chirp. Therefore, the optical delay line
simulated a target situated at a range corresponding to the length of the delay line.

5.4.3 Implementation Results and Analysis

Initial tests were done on the mini snow radar, the fast fourier transform algorithm was
implemented on the FlexRIO FPGA target, the FFT on the FPGA is resource intensive and the logic
was adjusted to fit in a single cycle timed loop (SCTL). The FFT was performed on the presummed
chirp data with 8 presums and a sampling frequency of 125 MHz using the NI Low Sample CLIP.
Figure 5.16 shows the FFT implementation on host computer as well as on the FPGA target. Both the
plots show definite peaks at approximately 43 MHz. After testing initially on mini snow, the
implementation was done to the KU Snow Radar. The settings of the KU Snow and the results are

listed in the next sections.

57

Pioto [ER |

kit

1E 1.25E+8

FPGA FFT Graph
100+

Amplitude

! il

I} 2.5E+7 SE+7 TSE+T
Frequency (Hz)

+Ew
Direct FFT Poto PR
130

120
110

Amplitude

| | 0 | 0 i
n 25E+7 SE+7 TSE+T 1E+8 1.25E+8

Frequency (Hz)

STOP

Figure 5.16: Direct and FPGA FFT for 240usec, 2-18 GHz Chirp with 8 presums.

5.4.4 Arbitrary Waveform Generator Settings

A 3pusec, 2-18 GHz chirp was used as a transmit signal for the high-speed AWG. The AWG
was used in the Dual Channel mode where the chirp was loaded in memory segments of Channel 1
and Channel 4. The AWG ports ‘Trigger In’ and ‘Event In’ were used for sending the PRI and LO

triggers respectively as shown in Figure 5.17. NI Data Acquisition System was used to create PRI

and LO counters which generated the two triggers.

58

Figure 5.17: High-speed AWG ports ‘Trigger In” and ‘Event In” were used for sending the PRI and LO triggers [38].

Two 3pusec chirps were loaded in the memory segments of Channel 1 and Channel 4 and the Trigger

settings were made such that triggers at “Trigger In” and “Event In” triggered the transmission of the

transmit and LO reference chirps respectively. The import waveform settings of the AWG are shown

in figure 5.18 and the Trigger settings of used are shown in Figure 5.19 respectively.

E M81954: Arbitrary Waveform Generator, MY33A00310
File View Utilities Tools Help

Clock | Output | Trigger | FIR Filter | Standard Waveform | Multi-Tone Waveform | Complex Modulated Waveform | Serial Data Waveform | Import Waveform | Sequence/Control

Input File

CiUsers\radar\Desktop\oldichl_3us_chirp.csv

N5110 Data With Embedded Marker Bits

Data Read From Input File Header

Sample Rate From File: 64 GSafs [T] Use As Source Sample Rate

Carrier Frequency From File: n.a.

Data Type: Single Spectrum Reversed
Data Columns: Y1, Y2
Marker Columns: M1M2

Waveform Destination

Channel Segment Number Channel Segment Number
1 ‘l | & Internal
A
2 Internal 4 1
Resampling

Resampling Mode: Waveform Length: 97536 Sample: :
32 Gsa/s A Wfm. Sample Rate: |32 GSa/s 2
A
I:l Stop Sample: 97535

Source Smpl Rate:

>

Start Sample:

Scaling
[[] Scale
DAC Max: =
DAC Min: 2

—
—
BEG o feodB

Show Next Waveform Preview

Save To F\lE..] lSem:I To lnstrumerrt] [Set Defaults|

Figure 5.18: AWG import waveform settings [16].

59

Clock | Qutput | Trigger | FIR Filter | Standard Waveform | Multi-Tone Waveform | Complex Modulated Waveform | Serial Data Waveform | Import Waveform | Sequence/Control

Arm Mode: Self v|
Trigger Mode: | Triggered '|

: Threshold: 100 mv =
goseh >leanl).r: Paositive v|
Operation: Asynchronous '| I . Trigger / GalE) @|
‘ o]
Internal Trigger d Advance Event
Frequency: 1.0 Hz E: M—z (o—/‘\—o—o—[) Force Event |

Enable Event

Threshold: 100 mv = &
Event In
’Folarily: Pasitive | ———%

Operation: Asynchronous

Figure 5.19: AWG Trigger settings [39].

5.4.5 Data Acquisition System Settings

The PRI and LO triggers were routed from the FlexRIO FPGA module through NI PXle 1075
Backplane to PFI 2 and PFI 5 ports of the PXI Express Timing and Synchronization module NI PXle-
6674T.Figure 5.20 shows the connection settings of NI PXle-6674T.The DAQ was synchronized
with the AWG’s 250 MHz external clock. The transmit chirp after getting transmitted from the AWG
was fed to the optical delay line which simulated an artificial target at a given range. The delay from
the delay line was 3.2usec which is approximately 480 meters. The KU Snow radar is shown in figure
5.21. All the components of the KU Snow are listed in the figure including the high-speed AWG, the
optical delay line used to simulate an artificial target through which the transmit chirp travels, the NI
DAQ which sends the triggers to AWG and acquires the dechirped data and the TR chassis where the

transmit and LO reference chirps are mixed generating the resultant beat frequency which is low pass

60

@ e

HATIOMNAL
INSTRUMENTS

Optical delay line

Keysight AWG

NI DAQ

TR chassis
(where
dechirping
occurs)
and filter
bank

Figure 5.21: KU Snow Radar in operation.

61

filtered with a cutoff frequency of 125 MHz. The beat frequency signal samples were acquired by the
NI Data Acquisition System. Figure 5.22 shows the connection diagram of the AWG with the NI data

acquisition system.

o0 00 00 oo O O O O

Figure 5.22: Connection diagram of the setup.

5.4.6 Hardware Implementation Results

The FlexRIO ADC generates the beat frequency signal samples at a rate of 250 MHz and the FPGA
single cycle timed loop operates at the rate of 125 MHz using the multiple sample clip. Figure 5.23
shows the Data Acquisition LabVIEW virtual interface. The LO counter loop cycles are set to 409,i.e
one single cycle timed loop takes 8 nano sec, thus the total delay after which the LO reference chirp
is triggered is 409*8 = 3.272usec. Considering the signal propagation delay, a beat frequency of 75
MHz is obtained at 409 loop cycles of LO counter. Figure 5.24 shows the IF signal obtained

corresponding to the beat frequency of 75 MHz.

62

LO delay Counter
409 loop cycles

PRI Counter
1200 loop cycles

Amphtede (e8]

meo 0

Beat Frequency 75 MHz

Figure 5.23: NI DAQ showing the beat frequency of 75 MHz at 409 LO loop cycles.

T3 WholePrarFFT_DAQHo:t PRINLO vi Frant Panel on Snaw_Io_delay.luproj/My Computer *

File Edit “iew Project Operate Tools Window Help
10 [S5pt Apicaton Font |~ |[fa

0 3750 4000 4250

el L]

T signal
800}

600-]

Beat frequency =
Signal 75MHz

Amplitude

1000
-1200-|
-1400-|
16008

R

PRLand LO Counter Logic Displa

125648 LSEeB LTSEeB ZEed 22SEE 25Eed

Io counter fimit
’J 409

PRI Counter lirmit
g un

10 Module\Data N-1
40

10 Modulel Data N
Ell

1 14 409

1. ” w J.'}
il

1035 160 180 100 1230 140 1060 1250 1300 1320 1341 130 1380 1400 1430 1440 1460 140 1500 1520 1500 1560 150 1600 1630 1540 1660 1680 1698
Time

un‘

Pt [N

Figure 5.24: NI DAQ showing the beat frequency of 75 MHz.

The constant beat frequency feedback loop was configured such that it would keep the beat
frequency constant at approximately 42 MHz. As the limit of LO delay counter is decreased from 409
to 408, the beat frequency becomes 116 MHz. Owing to the short length and high bandwidth of the
chirp signal used in the experiment, 1 SCTL loop cycle corresponds to a beat frequency of approx.
42 MHz. Therefore, the decrease of 1 loop cycle in the LO logic loop count implies decreasing the
time delay by 8 nano sec which corresponds to an increase in the beat frequency of 42 MHz i.e 116
MHz. Figure 5.25 shows the beat frequency increasing from 75 MHz to 116 MHz on decreasing the
LO loop count to 408. As mentioned earlier, the feedback loop was configured to keep the beat
frequency constant at 42 MHz, therefore as the beat frequency increases, the ‘LO logic loop cycles’

indicator value increases to 410 to compensate for increased beat frequency.

T3 WholePrgrmFFT_DAQHost PRINLO vi SRR
File Edit Yiew Project Operate Tools Window Help
.
B [@n |
FFT pot [E0%
110y
100
H
H
1640 L25Ee8 L1SEeD LISEeR ZEed 225648 2568
Frequency (Hz)
HEw
PRIand LO Counter Logic Display|
Decreasing the lo [Pcounter L0 day counter couns PRI .
I I 408 o - N FRGAFFT
Oop CyC e to PRI Counter fimit PRI Trigger Verification counter L0 Werification counter ‘anm“m diy 05 LOLEE (oap 80
"j‘ 1200 2036979 2036982 0
10 Module\Data N-1 A Channel 10 Modul\SPIIdle 19 g dulevinitializstion Done @
56 A1 » J .
Beat frequenc g
10 Moduleh Data N Elements Rernainin g By
. 116 MHz .
LO logic loop cycles increase
o
410 to lower beat frequency to
Fewnlopoelidoro MHz :
e e e = — £ . =

Figure 5.25: NI DAQ showing the beat frequency of 116 MHz at 408 LO loop cycles.

64

Moreover, following the same logic, increasing the LO counter loop cycle by one causes the
beat frequency to decrease by approximately 42 MHz. In order to decrease the beat frequency, the
LO loop counter limit is increased to 410 loop cycles. The beat frequency obtained is 33 MHz. The
feedback loop wants to again keep the beat frequency constant at 42 MHz, therefore it decreases the
LO logic loop cycles to 408.Figure 5.26 shows how by increasing the loop cycles to 410, decreases
the beat frequency to 33 MHz and the feedback loop decreases the value of “LO logic loop cycles”
to 408 to maintain a constant beat frequency of 42 MHz. The intermediate frequency (IF) signals are

also shown in Figure 5.27 and 5.28 for beat frequencies 116 MHz and 34 MHz respectively.

=& =i

WhlePrgrmFFT_DAQHost PRInLO i
= g

File Edit View Project Operste Tools Window Help

iz o]

]

To decrease the beat
frequency, LO counter
limit increased to 410

Flot) NG

190 125548 1SEe L7548 2648 2258 25048
Frequency (H2)

PRIand LO Counter Logic Display|

lo counter limit

A
v 410 440
PRI Counter limit PRITrigger Verifi
A
5] 1200 2036079
10 Module\Data -1 yAICharmtl
36 A0

10 Modulel, Data N
18

ication counter

2036082

10 Module\SPIIdle 16 pioye

. _J

El

LO Verification counter

e reieins BEAL frequenc
33 MHz

PRITrigger start

08

nitialization Done

LO logic loop cycles decrease to 4081

to keep beat frequency at
42 MHz_

FPGAFFT
80-)

-
0

Snow_lo_delaylvproj/My Computer] <
= —

Figure 5.26: NI DAQ showing the beat frequency of 33 MHz at 410 LO loop cycles.

65

T3 WholPrgeFT_DAQHost PR O Froe Panel on Srom Jo_deay hproj/by Computer* =]
Fle Edt Wiew Proct Operste Window Help T
i

& @] 0] | Bpt Epplicaion Font |+ | T [v | 8-

1 ISII

Loy T g 3 g o o o g i
0 25 ST MES 1 L4 1SEE LSRG 4 LEEG LE4
Frequency ()

+@w |

PRLand L0 Counter Logic Dizply]

Fezd Best Frequen

Feadback Loop Logic

PAlTigger tart masveue macindedes) Freouenoidbe eror

Io zaueser i Phtcsumer L0 ey caumerount

4 - @ STV 16 i
- 5 1

np - 0T ioopcourk. delayin nann secs L0 logic loop cycks

Pl Counter it PRI Trigger Verfication counter L0 Verfication counter . o

w1200 BT i

10 MagudetDita N1 A Channel 10 ModuleSPlide 11 oguepitiakzztion Done

i =] v J

10 Moddel DataH Hements femaiing

o s

gaa st

IF Signal

116 MHz =

£.
B

ﬂ"ﬂhl*\l' AU n‘lﬁ‘ﬁﬁ.‘ﬁ.;l\lfnm v L'J'l}q“f Wﬁl

Snow o_deleyhproj/ify Computer] «
S

Figure 5.27: NI DAQ showing the IF signal of frequency 116 MHz.

TH Vi G o ceng ey Cargr™

s |

IF|{Signal
34 MHz

Figure 5.28: NI DAQ showing the IF signal of frequency 34 MHz.

This is how a constant beat frequency can be achieved by calculating the error between the
current and the previous beat frequency information and translating them in terms of loop cycles and

feeding it as the limit of the LO reference chirp delay counter. Therefore, by utilizing the fast

66

performance of the field programmable gate arrays, we can efficiently delay the LO reference chirp

signal to obtain a constant beat frequency at any desired range.

67

Chapter 6

Conclusion and Future Work

6.1Summary

All the test results shown in the previous chapter were done in the Lab with the snow radar.
As mentioned in earlier chapters, implementing onboard real time surface tracking and detection for
the KU Snow radar would dramatically increase its operating range and would also eliminate the need
of using bandpass and high pass filters for storing the spectral power in different Nyquist zones.
Moreover, once deployed, it would also eliminate the need for the radar operator to manually switch
the Nyquist zones one by one as the altitude of the aircraft increases from the surface. This would
make the radar function autonomously eliminating any chance of loss of crucial data due to delay in
manual switching operation.

6.2 Future Work

For surface detection and tracking, a separate module was designed and coded. Future work
includes integrating the logic of the model into the actual existing snow radar code and making it
work for a longer chirp sweep time. In order to increase the signal to noise ratio, presumming of IF
signal data samples needs to be implemented. The current snow radar configuration uses presumming
to increase the signal to noise ratio (SNR) of the incoming IF signal, likewise during the integration
of this module into the actual snow radar code, presumming would be needed.

Moreover, after integration, the logic would be required to be tested in actual field
environment. Therefore, the radar needs to be deployed on test flights comprising of various different

platforms to ensure that the radar is working as expected and the acquired data has to be field

68

processed as well as post processed to verify the correctness of the algorithm.

69

References

[1] Douglas, Bruce C., Michael S. Kearney, and Stephen P. Leatherman, “Sea Level

Rise: History and Consequences”, International Geophysics Series Vol. 75,

Academic Press, San Diego, 2001.

[2] National Ocean and Atmospheric Administration, United States Department of Commerce:
https://oceanservice.noaa.gov/facts/sealevel.html

[3] Douglas, Bruce C., and W. Richard Peltier, “The puzzle of global sea-level rise,”

Physics Today, pp. 35-40, March 2002.

[4] The union of concerned scientists (UCS),
http://www.ucsusa.org/global_warming/science_and_impacts/impacts/causes-of-sea-level-
rise.html#.WWMnPuvyvIU

[5] Matthew Sturm, Glen E. Liston, “The snow cover on lakes of the Arctic Coastal Plain of Alaska,
U.S.A”, Journal of Glaciology, Vol. 49, No.166, 2003.

[6] Gary A. Maykut and Nobert Untersteiner, “Some results from a Time Dependent
Thermodynamic Model of Sea Ice.”, Journal of Geophysical Research, Vol. 76, No.6, 1971.

[7] Thomas Newman , Sinead L. Farrell, Jacqueline Richter-Menge, Laurence N. Connor, Nathan
T. Kurtz, Bruce C. Elder, David McAdoo, “Assessment of radar-derived snow depth over Arctic sea
ice”, Journal of Geophysical Research: Oceans ,15 December,2014.

[8] Gary Koh,Norbert E. Yankielun, Ana I. Baptista “Snow cover characterization using Multiband
FMCW radars”, Hydrological Processes, Vol. 10, 1996.

[9] Centre of Remote Sensing of Ice Sheets (CReSIS),

https://www.cresis.ku.edu/content/about-us

[10] Ben Panzer, Carl Leuschen, Agsa Patel, Thorsten Markus, Sivaprasad Gogineni ,* Ultra-

70

https://www.cresis.ku.edu/content/about-us

wideband radar measurements of snow thickness over sea ice” , 2010 IEEE International
Geoscience and Remote Sensing Symposium.

[11] Jie-Bang Yan, Daniel Gomez-Garcia Alvestegui, Jay W. McDaniel, Yan Li, Sivaprasad
Gogineni, Fernando Rodriguez-Morales, John Brozena, Carlton J. Leuschen ,“Ultrawideband
FMCW Radar for Airborne Measurements of Snow Over Sea Ice and Land”, IEEE Transactions on
Geoscience and Remote Sensing (Volume: 55, Issue: 2, Feb. 2017).

[12] Ben panzer,1 Daniel Gomez-Garcia, Carlton J. Leuschen, John Paden, Fernando Rodriguez-
Morales, Agsa Patel, Thorsten Markus, Benjamin Holt, Prasad Gogineni, “An ultra-wideband,
microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers
in polar firn”, Journal of Glaciology, Vol. 59, No. 214, 2013.

[13] F. Rodriguez-Morales, C. Leuschen, A. Feathers, J. McDaniel, A. Wolf, & S. Garrison.
“Packaging and Miniaturization of a 2-18 GHz UWB Radar for Measurements of Snow and Ice:
Initial Results.” In International Symposium on Microelectronics, 1st ed., Vol. 2017, pp. 36-39,
2017.

[14] F. Rodriguez-Morales, C. Leuschen, A. Feathers, J. McDaniel, A. Wolf, & S. Garrison,
"Measurements of Snow Cover Using an Improved UWB 2-18 GHz Airborne Radar Testbed",
Proc. 2018 IEEE Radar Conference, Oklahoma City, USA April 23-27, 2018.

[15] CReSIS Newsletters, https://www.cresis.ku.edu/content/news/newsletter/1294

[16] The CReSIS Snow radar user’s manual.
[17] Xilinx product website,

https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

[18] EDN website

https://www.edn.com/design/test-and-measurement/4334609/Choosing-a-Real-Time-Platform-

FPGAs-vs-Real-Time-Operating-Systems

71

https://www.cresis.ku.edu/content/news/newsletter/1294
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.edn.com/design/test-and-measurement/4334609/Choosing-a-Real-Time-Platform-FPGAs-vs-Real-Time-Operating-Systems
https://www.edn.com/design/test-and-measurement/4334609/Choosing-a-Real-Time-Platform-FPGAs-vs-Real-Time-Operating-Systems

[19] R. G. Strauch, W. C. Campbell, R. B. Chadwick, K. P. Moran,” Microwave FM-CW Doppler
radar for boundary layer probing”, Geophysical Research Letters 3(3):193-196 - March 1976.

[20] Dirk Klugmann, “FMCW radar in the digital age”, 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS).

[21] James W. Cooley and John W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series”, Mathematics of Computation 19(90):297-301 - January 1965

[22] Dr. Christopher Allen’s powerpoint slides, EECS 725 Introduction to radar systems.

[23] Extraction of range from beat frequency: https://www.slideshare.net/tobiasotto/principle-of-
fmcw-radars.

[24] “History of FPGASs”,
https://web.archive.org/web/20070412183416/http://filebox.vt.edu/users/tmagin/history.htm

[25] FPGA architecture, http://microcontrollerslab.com/fpga-introduction-block-diagram/

[26] Dudley B. Chelton, Edward J. Walsh, and John L. MacArthur, “Pulse Compression and Sea
Level Tracking in Satellite Altimetry”, Journal of Atmospheric and Oceanic Technology, July 1989.

[27] Adaptive Linear Prediction, http://zone.ni.com/reference/en-XX/help/371988G-

01/lvaftconcepts/aft prediction/

[28] Kalman filter, https://en.wikipedia.org/wiki/Kalman_filter.

[29] Track smoothing, http://www.radartutorial.eu/10.processing/sp23.en.html

[30] Greg Welch and Gary Bishop, “An Introduction to the Kalman Filter”, Department of
Computer Science University of North Carolina at Chapel Hill, NC.

[31] Ellen J. Ferraro, and Calvin T. Swift, “Comparison of Retracking Algorithms Using Airborne
Radar and Laser Altimeter Measurements of the Greenland Ice Sheet”, IEEE Transactions on
Geoscience and Remote Sensing; p. 700-707; (ISSN 0196-2892); Volume 33; No. 3.

[32] Zhisen Wang, Yunhua Zhang, Jingshan Jiang, “A robust tracking system for imaging radar

72

https://www.slideshare.net/tobiasotto/principle-of-fmcw-radars
https://www.slideshare.net/tobiasotto/principle-of-fmcw-radars
http://microcontrollerslab.com/fpga-introduction-block-diagram/
http://zone.ni.com/reference/en-XX/help/371988G-01/lvaftconcepts/aft_prediction/
http://zone.ni.com/reference/en-XX/help/371988G-01/lvaftconcepts/aft_prediction/
file:///C:/Users/a767b801/OneDrive%20-%20The%20University%20of%20Kansas/Kalman
https://en.wikipedia.org/wiki/Kalman_filter
http://www.radartutorial.eu/10.processing/sp23.en.html

altimeter”, 2000 5th International Symposium on Antennas, Propagation, and EM Theory.

[33] Frequency domain theory and applications, http://www.numerix-

dsp.com/tutorials/DSP/FrequencyDomainProcessing.pdf

[34] Dr. Glenn Prescott’s lecture slides, Introduction to digital signal processing.
[35] “Make your Measurements Faster with FPGA Technology”,

http://www.ni.com/newsletter/51513/en/.

[36] “Tip: FFTs in LabVIEW FPGA”, https://www.embedded.com/print/4017633

[37] FFT IP Core in LabVIEW FPGA, https://www.eetimes.com/document.asp?doc_id=1275552
[38] FFT Express VI LabVIEW Help.

[39] Keysight M8195A Arbitrary Waveform Generator user manual.

[40] NI PXle-1075 user manual,” http://www.ni.com/pdf/manuals/372537c.pdf”.

[41] FlexRIO from National Instruments, http://www.ni.com/pdf/product-flyers/flexrio-custom-

instrumentation.pdf.

[42] NI 5761 user manual, http://www.ni.com/pdf/manuals/375509a.pdf

[43] LabVIEW FPGA, Configure sinewave generator.
[44] LabVIEW FPGA, Express FPGA FFT configuration.

[45] LabVIEW FPGA Compilation Process: From Run Button to Bitfile, http://www.ni.com/white-

paper/9381/en/.

[46] NI PXle 6674T User Manual, http://www.ni.com/pdf/manuals/

73

http://www.numerix-dsp.com/tutorials/DSP/FrequencyDomainProcessing.pdf
http://www.numerix-dsp.com/tutorials/DSP/FrequencyDomainProcessing.pdf
http://www.ni.com/newsletter/51513/en/
http://www.ni.com/pdf/manuals/372537c.pdf
http://www.ni.com/pdf/product-flyers/flexrio-custom-instrumentation.pdf
http://www.ni.com/pdf/product-flyers/flexrio-custom-instrumentation.pdf
http://www.ni.com/pdf/manuals/375509a.pdf
http://www.ni.com/white-paper/9381/en/
http://www.ni.com/white-paper/9381/en/
http://www.ni.com/pdf/manuals/372537c.pdf

Appendices

Appendix A

MATLAB CODE FOR SIMULATION

Matlab File 1: fmcw_simulation.m

clear all;
close all;

e %
% Parameter initialization

e $
c = 3*1078;

fc=77e9;

lambda=c/fc;

r_max=200;

sweep_time=5.5*2*r max/c; % 10 times the max range

r _res=l;

B width= c/(2*r_res); % BW calculated using desired range res
fs=2*B width; % sampling fre

t=0:1/fs:sweep_time- 1/fs; % sweep time vector

k = B width./sweep_time;

g e e —— %
ch =exp (1lj* (2*pi* (fc*(t) + 0.5*k*(t).”*2)));

%%

g %
% Generate the scene

B e %
tar_range = [100 450] ; % two target ranges in scene

radial vel =[0 50]; % m/s taking v large value for memory constraint
RCS_targets = [1 100] ; % RCS of targets

sim slow_time =100*sweep time; % slow time in s, total duration of the scene
slow_time samples = sim slow_time /sweep_time ;

slow_time = linspace (0, sim slow_time, slow_time_samples);

[Rx matrix] = generate_ scene(tar_range, radial vel, slow_time, ch, t,
RCS_targets, lambda, fs, B width,fc,k);

[}
)

nfft = 2%nextpow2 (length(ch)) ;

freq axis=0:(fs/ (nfft)): ((fs/nfft)*nfft)-1;
range=(freq _axis*sweep time*c)/(2*B_width);
rec_sig = zeros (nfft, slow time samples);

h b = hann(size(Rx matrix, 1));

for ii = 1: slow time samples
m=dechirp (Rx matrix(:,ii), ch.');

rec sig(:,ii) = fft(m.*h b, nfft);

o)

% rec_sig(:,ii) = fft(m, nfft);
74

nfft2 =256;
fs slow time = 1/ (slow time(2)- slow_time(1));

f dopp= 0 :fs slow time/ nfft2: fs slow time * (nfft2 -1)/nfft2;
rng dopp = zeros (nfft, nfft2);
h D = hann(size(Rx matrix, 2));

for ii = 1: length (range)

ss= rec_sig(ii,:).*h D.';

rng dopp(ii, :) = fftshift(fft(ss, nfft2));

end

% Generate plots

figure (1);

k1=20*10ogl0 (abs(rec_sig(:,10)./max(rec_sig(:,10))));

plot (le-6* freq axis(l:length(freq axis)/2),kl(l:length(kl)/2));
ylabel ('Normalized Power (dB) ')

xlabel ('Frequency (MHz) ')

title ('Beat frequency spectrum (0 to fs/2)")

ylim ([-50 01])

figure (2);

k1=20*1ogl0 (abs (rec_sig(:,10)./max(rec_sig(:,10))));
plot (range (l:1length (k1) /2),kl(1:1length(kl)/2));
ylabel ('Normalized Power (dB) ')

xlabel ('Range (m)"')

title ('Range Ascope ')

ylim([-50 0])

x1im ([0 600])

figure (3);

imagesc(slow_time, range, db(rec sig./max(max(rec_sig))));
xlabel ('Slow time (s)')

ylabel ('"Range (m) ")

title('Range - slow time domain')

ylim ([0 6007)

caxis ([-50 01)

figure (4)

imagesc(lambda* (f dopp - fs slow time/2)/2, range,
db (rng dopp./max (max (rng dopp))))

ylabel ('Range (m) ")

xlabel ('Velocity (m/s) ")

title ('Range- Doppler Spectrum ')
caxis ([-50 01)

ylim ([0 6007)

% x1im([-500 5007)

75

Matlab File 2: generate_scene.m

function [Rx matrix] = generate scene(tar range, radial vel, slow time, ch, t,
RCS targets, lambda, fs, B width, fc, kk)

c= 3e8;

Rx matrix = zeros (length (ch), length(slow_time));

RO= tar range;

v= radial vel;

for i=l:length(slow_time)

for jj= 1: length(tar range)

R = RO(jj) + v(jj).*t; % time-dep range to tgt (s)

TO = 2.*R0O(jJ)./c; % rnd-trip travel time at t = 0 (s)

T = 2.*R./c;

y= zeros (length(ch), 1);

y= exp (1j* (2*pi* (fc* (t- T) + 0.5*kk*(t- T)."2))).*((t-T) >0);

scaling fact= calculate return power (RCS targets(jj), tar range(jj), lambda,
ch);

Rx matrix(:,i)= Rx matrix(:,1i) + (y*scaling fact).' ; % superimpose the return
RO(JJj)= R(end);

end

% simulate noise - receiver noise and propogation loss

k=1.38e-23;

T=290;

F=2;

sigma = k*T*B width*F ;

rec noise=sigma*randn (length(ch),1);

$loss fac = (4*pi*mean(tar range)/lambda)"2;
prop _noise = 50e-7*randn(length(ch),1);

S —— X

Rx matrix(:, 1) = Rx matrix (:, 1) + rec noise + prop noise;

% update the position for the next slow time sample

% tar range = tar range + radial vel.* (slow_time(2)- slow time(1l));
end

end

76

Matlab File 3: calculate_return_power.m

function scaling fact= calculate return power (RCS target, range, lambda, ch)
antenna_ aperture=6.06*10"-4;

Gain antenna=(4*pi*antenna aperture)/lambda”2;

Pt rms=rms(ch)"2; $Transmit power in watts

Pr rms=((Pt _rms* (Gain antenna”2)* (lambda”2)*RCS_target))/ ((4*pi)"3* (range) "4);
fprintf ('\n Power return for target at range = %d is %d W', range, Pr_rms);
scaling fact=sqrt (Pr_rms*2)/sqrt (Pt _rms*2);

end

77

