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Abstract 

Vector-borne Chagas disease is endemic to the Americas and imposes significant economic and 

social burdens on public health. In a previous contribution, we presented an automated identification 

system that was able to identify 12 Mexican and 39 Brazilian triatomine (Hemiptera: Reduviidae) species 

from digital images. To explore the same data more deeply using machine-learning approaches, hoping 

for improvements in classification, we employed TensorFlow, an open-source software platform for a 

deep-learning algorithm. We trained the algorithm based on 405 images for Mexican triatomine species 
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and 1584 images for Brazilian triatomine species. Our system achieved 83.0 and 86.7% correct 

identification rates across all Mexican and Brazilian species, respectively, an impressive improvement over 

comparable rates from statistical classifiers (80.3 and 83.9%, respectively). Incorporating distributional 

information to reduce numbers of species in analyses improved identification rates to 95.8% for Mexican 

species and 98.9% for Brazilian species. Given the “taxonomic impediment” and difficulties in providing 

entomological expertise necessary to control such diseases, automating the identification process offers 

a potential partial solution to crucial challenges.   
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Introduction 

Vector-borne diseases, such as malaria, Zika, dengue fever, Chagas disease, and chikungunya, 

impose enormous economic and social burdens on public health (Sinkins and Gould 2006), and rank 

among the most serious threats to human health (Nauen 2007). An important element in predicting risk 

of such diseases, and developing strategies to control them, is detailed surveillance of arthropod vector 

species (Mukundarajan et al. 2017). Identifying vectors can be challenging, requiring significant training 

and increasingly uncommon taxonomic expertise (Drew 2011), a phenomenon termed the “taxonomic 

impediment” (de Carvalho et al. 2007). As a result, providing broad regions with necessary arthropod 

vector identification expertise by traditional means is often not feasible given political boundaries, 

logistical obstacles, and variability of country-specific human health resources (Schofield et al. 2006). One 

promising potential solution involves developing automated species identification systems that can aid in 

meeting these important challenges.  



Chagas disease occurs in most countries in the Americas, causing serious cardiac morbidity and 

mortality among infected individuals over years or decades if untreated (Coura and Viñas 2010). The 

disease is caused by the unicellular parasitic protozoan, Trypanosoma cruzi (Trypanosomatida: 

Trypanosomatidae), transmitted mainly through feces of blood-sucking true bugs belonging to the 

hemipteran subfamily Triatominae (Hemiptera: Reduviidae) (Coura and Viñas 2010). Estimates suggest 

that 8 million people exhibit symptoms of the disease, and that >100 million people are at risk of infection 

worldwide (Coura and Viñas 2010, WHO 2018). Given failings in many public health systems across the 

Americas, epidemiological surveillance for Chagas disease is either minimal (e.g., in Mexico) or incomplete 

(e.g., in Brazil), and diagnosis and treatment are often too late and therefore less effective (Martins-Melo 

et al. 2012, Ramsey et al. 2014).  

Many efforts have tested diverse inferential approaches in the challenge of identifying insects 

accurately. Recently, a new set of machine-learning classifiers, called deep neural networks (DNNs), have 

been designed; they are similar to artificial neural networks (ANNs; Dayhoff and DeLeo 2001), but with 

multiple hidden layers between the input and output layers, instead of having only three layers total (i.e., 

input, one hidden layer, and output). The high capability of DNNs has resulted in widespread use of these 

techniques in other such inference challenges (Schmidhuber 2015). DNNs have outperformed traditional 

methods (e.g., linear discriminant analyses) in various classification tasks (Schmidhuber 2015). Here, we 

used TensorFlow (Abadi et al. 2016), an open-source software platform, representing the most recent 

addition to the deep-learning toolbox (Rampasek and Goldenberg 2016; Google Brain Team; 

https://research.google.com/teams/brain/), to explore the challenge of automated Chagas disease vector 

identification. 

The purpose of this study was to test whether deep-learning techniques can improve abilities to 

identify Chagas disease vectors of Mexico and Brazil successfully, using a collection of digital images of 

triatomines from our previous work (Gurgel-Gonçalves et al. 2017). To address this question, we designed 



an automated, DNN-based species identification system for 12 Mexican and 38 Brazilian species, which 

we tested using images withheld from the calibration process. This study thereby lays a foundation for 

many automated identification capabilities in medical entomology, and more broadly in biodiversity 

science. 

 

Materials and Methods 

We tested whether state-of-the-art, deep-learning techniques (TensorFlow; Abadi et al. 2016) can 

successfully identify digital images of 12 Mexican triatomine species and 38 Brazilian triatomine species. 

We implemented four steps: (1) adapt and configure TensorFlow to the needs of this analysis; (2) create 

different sets of images, based on different levels of automated pre-processing, from available images, as 

inputs; (3) apply and test TensorFlow under diverse circumstances; and (4) use secondary information 

(i.e., distributional information) to reduce numbers of species in our identification exercises. We 

implemented all analyses in Python (version 2.7, available at http://www.python.org/). These steps are 

described in greater detail below.  

Previously (Gurgel-Gonçalves et al. 2017), we presented work on automated identification of 

triatomine species from Mexico (12 species) and Brazil (39 species). That work involved full automation 

of processing of images before analysis into a set of landmarks and distances among them, and then 

analysis using traditional statistical classifiers, such as linear discriminant analysis (Fisher 1936) and 

artificial neural networks (Dayhoff and DeLeo 2001). Identifying the Mexican species was a particular 

challenge to our classifiers, and of course we were interested in improving identification rates for Brazilian 

species also. Therefore, we decided to use more advanced classifiers for both Mexican and Brazilian 

triatomines. To be able to compare our results, we used the same species and same images for this study 

(Appendix 1, Appendix 2); however, given small numbers of images available for Eratyrus mucronatus 

(Stål) (Hemiptera: Reduviidae) (n=11), we removed this species from the Brazilian pool.   

http://www.python.org/


 

Photographs as input 

In our previous study, we had observed that most triatomine images then available were of poor 

quality, such that the resulting identifications were not reliable. Consequently, project personnel designed 

a photo apparatus that would permit taking consistent, high quality, repeatable photographs of 

triatomines at low cost (Gurgel-Gonçalves et al. 2017). This apparatus allows users to employ iPods or cell 

phones for taking photographs. Team members photographed triatomine species from various 

institutions across Mexico (Centro Regional de Investigación en Salud, Instituto Nacional de Salud Pública 

México; Laboratorio Estatal de Salud Pública de Guanajuato; Universidad Autónoma Benito Juárez, 

Oaxaca; Universidad Autónoma de Nuevo León, Monterrey), and Brazil (Universidade de Brasília, FIOCRUZ 

Bahia, FIOCRUZ Rio de Janeiro, FIOCRUZ Minas Gerais, Universidade Estadual Paulista), using the 5th and 

6th generations of iPods. Detailed information about the apparatus and protocols for capturing images is 

provided in Gurgel-Gonçalves et al. (2017). 

The photographs that we used as our “reference library” for our identifications are of high-quality, 

and are openly available at http://dx.doi.org/10.5061/dryad.br14k; they are described in great detail by 

Gurgel-Gonçalves et al. (2017). These photographs are consistent in orientation, background color, pixel 

resolution, and quality, which made automation of their processing feasible. Subsequent steps were 

automated (Gurgel-Gonçalves et al. 2017), including removing (digitally) the background from the images, 

and identifying the body edge, yielding two sets of images (raw photographs, and images cleaned to 

remove background) to understand how deep-learning would perform with different quality levels of 

images as input (Fig. 1). The processing step was automated fully and the program code is openly available 

in the appendices of our previous paper (Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.br14k; Gurgel-Gonçalves et al. 2017). 
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Fig. 1. An example image of an individual of Triatoma dimidiata Hg1. (A) raw image, (B) final image with 
background removed digitally. 
 
TensorFlow 

TensorFlow is an open-source software platform (Abadi et al. 2016) that supports deep-learning 

research and applications, having been released by researchers at Google (Google Brain Team; 

https://research.google.com/teams/brain/). We adapted and configured TensorFlow for application and 

use in our project via Python. We adjusted two parameters from their default values: validation 

percentage and number of training steps. Although the default setting for validation percentage was 10%, 

given small numbers of images available for some species, we had to increase this number to 16%. For 

number of training steps, although the default value was 4000 steps, we explored different numbers and 

compared the results to find the optimum balance between computing time and classification efficiency.  



To evaluate the classifier, it is necessary to set some images aside from classifier development 

entirely. Given the limited numbers of photographs available for some of the species, we used a leave-

one-out cross-validation approach for evaluation. That is to say, as a trade-off between maximizing 

numbers of samples for training the classifier and optimizing computing time, in each round, we left out 

n images, or one image from among the n species in that country, with which to evaluate the model.  

 

Identifying faunal subsets based on distributional information 

Generally, classifier accuracy decreases as the number of classes that must be distinguished 

increases. In the preliminary work, triatomine species were immediately separated into two independent 

groups; those occurring in Mexico and those in Brazil. This separation is natural since almost no triatomine 

species occur naturally in both countries, exception for Panstrongylus rufotuberculatus (Champion) 

(Hemiptera: Reduviidae). Independent classifiers were created for the two groups. Within these two 

groups, we applied the same technique on a finer scale, to determine if using a specialized classifier that 

discriminates only among species known to be present near the location at which a sample is taken will 

improve the ability to correctly classify triatomine samples. We used the same binary maps as in our 

previous study (Gurgel-Gonçalves et al. 2017), summarizing potential geographic distributions for each of 

the 12 Mexican and 38 Brazilian species. Ecological niche modeling techniques and data sources are 

described in detail in Gurgel-Gonçalves et al. (2012), Ramsey et al. (2015), and Gurgel-Gonçalves et al. 

(2017). Hence, in Python 2.7, we created 399 and 2019 local fauna sets for the Mexican and Brazilian 

triatomine species, respectively, using the distributional information to create subsets of species that co-

occur at the same sites. We trained and tested the classifier employing samples restricted to those local 

faunas. The range of numbers of species in local fauna subsets was 2-11 for Mexican species and 2-12 for 

Brazilian species.  

 



Results 

As a preliminary step, we tested identification success for raw versus cleaned images for Mexican 

species, to see whether TensorFlow shows reduced correct identification rates using raw images. The 

identification rate for raw images was almost the same as that obtained using the cleaned images (i.e., 

82.9% overall identification rate for raw images, versus 83.0% for cleaned images); since our goal was to 

compare the results of TensorFlow with those deriving from the statistical classifiers used in our previous 

study (Gurgel-Gonçalves et al. 2017), for all succeeding analyses in this study, we elected to use cleaned 

images, only noting the potential for simpler processing in future work.   

We calibrated our models for Mexican and Brazilian species using different numbers of training 

steps, and considered two factors to find optima for training TensorFlow (Fig. 2): (1) correct identification 

rate, which improved up to a certain point, but then reached a plateau, beyond which we saw no 

significant improvement, and (2) processing time (in hours), which showed a positive linear relationship 

with number of training steps. For the Mexican dataset, with 12 species, 2000 emerged as an optimum 

number of training steps, which resulted in an 83.0% overall identification rate (Fig. 2); the largest gap 

between the processing time trace and identification rate occurred following this number of steps. Above 

this number of training steps, subtle improvements in identification rate were possible (up to 83.1%), but 

processing time was significantly longer (7 hours instead of 3.5 hours). Based on the same logic, we chose 

12,000 training steps as an optimum number for Brazilian species, at which we achieved an 86.7% overall 

identification rate (Fig. 2). The Brazilian dataset had a plateau that was more obvious: overall identification 

rate barely reached a maximum 87.0%, yet processing time increased from 30 to 80 hours. It should be 

noted that the amount of time discussed above is only for training TensorFlow over all images in the 

reference library with multiple replicate analyses; for identification of a single image, it only takes a few 

seconds. 



 

Fig. 2. Effects of different numbers of training steps on identification rate (%) and processing time (h) 
using TensorFlow for Mexican (top) and Brazilian (bottom) triatomine species. 



We plotted and compared the results of TensorFlow with those from our previous study (Gurgel-

Gonçalves et al. 2017), at the species level (Fig. 3). We applied a paired t-test on outcomes, which 

produced p-values of 0.028 and 0.025 for Mexican and Brazilian triatomines, respectively; given that the 

p-values were <0.05, we concluded that the DNN-based results are statistically significantly better than 

our previous results. For Mexican species, we noted improvement in identification rate for 9 out of 12 

species using TensorFlow (Fig. 3). Although T. mazzottii Usinger correct identification rates declined from 

77.3% to 63.6% using deep learning, we noted significant improvement for the T. dimidiata (Latreille) 

complex (T. dimidiata Hg1 increased from 70.5% to 84.1%, T. dimidiata Hg2 from 76.7% to 86.7%, and T. 

dimidiata Hg3 from 82.5% to 87.5%), T. mexicana (Herrich-Schaeffer) from 80.0% to 97.8%, and T. barberi 

from 72.4% to 80.0%. Most notably, we saw improvements for T. nitida Usinger and T. phyllosoma 

(Burmeister, 1835), which were very challenging for our previous classifiers, from 46.7% to 73.3% and 

46.6% to 69.0%, respectively. For Brazilian species, identification rate improved for 23 out of 38 species, 

including 6 with major improvements: T. vandae Carcavallo, Jurberg, Rocha, Galvão, Noireau & Lent from 

69.0% to 79.3%, T. sordida (Stål, 1859) from 81.2% to 92.7%, T. rubrovaria (Blanchard, 1843) from 59.3% 

to 79.6%, T. melanica Neiva & Lent from 79.3% to 89.3%, T. circummaculata (Stål) from 85.7% to 95.5%, 

and T. brasiliensis Neiva from 76.6% to 92.2%; identification rates for 5 out of 38 species stayed the same 

(Fig. 3). A highlight was that T. rubrovaria had shown the weakest classification success with statistical 

classifiers, but with deep learning improved dramatically. However, 3 species showed major declines: R. 

milesi Carcavallo, Rocha, Galvão & Jurberg (Hemiptera: Reduviidae) from 89.2% to 74.4%, T. delpontei 

Romana & Abalos from 86.7% to 74.2%, and T. maculata (Erichson) from 89.7% to 77.5%, compared with 

the results of the statistical classifiers. The confusion matrices for both Mexican and Brazilian species, 

summarizing numbers of images for each species identified correctly or misidentified as another species, 

are presented in the supplementary data of this paper.  

  



 

 

Fig. 3. Comparison of identification rates (%) between TensorFlow and statistical classifiers (Gurgel-
Gonçalves et al. 2017) at species level for Mexican and Brazilian triatomines. 

 



Faunal Subsets 

Because classifier accuracy improves when fewer classes are compared, to reduce numbers of 

species being compared, we used geographic information for the distributions of Mexican and Brazilian 

triatomines to refine identification efforts, testing 399 and 2019 faunal subsets for the two countries, 

respectively. For Mexican species, faunal subsets ranged 2-11 species (Fig. 4). TensorFlow was able to 

increase the overall identification rate for comparing two species up to 95.8%; average identification rates 

for most local faunas (25 out of 31) were in the range of 95-100%. As expected, increasing the number of 

species compared, the overall identification rate declined gradually, and leveled off at around 83.0% for 

8 to 11 Mexican species. For Brazilian species, the overall identification rate for comparing two species 

was 98.9% (Fig. 4). Adding more species to the Brazilian pool, the overall identification rate decreased to 

a plateau of about 94.0% with 11 species. For 1853 out of 2019 Brazilian local fauna subsets, TensorFlow’s 

identification performance was 95% or better.  



 

Fig. 4. Summary of identification rates (%) for various combinations of species: 2-11 different species 
combinations for Mexican faunas with 399 faunal subsets, and 2-12 species combinations for Brazilian 
faunas with 2019 faunal subsets, using the distributional information. Gray triangles represent average 
identification rates for each Brazilian local fauna, and large black triangles show the overall average of 
identification rate for each fauna size. Black dots represent average identification rates for each Mexican 
local fauna, and large blank circles show the overall average of identification rate for each fauna size.  

 

  



Discussion 

Chagas disease causes serious cardiac morbidity and mortality among infected individuals over 

the course of years or decades (Coura and Viñas 2010), yet epidemiological surveillance, diagnosis, and 

treatment are often late or inefficient owing to shortage of expertise and failings in many public health 

systems (Martins-Melo et al. 2012, Ramsey et al. 2014). Arriving at such diagnoses depends rather 

crucially on vector awareness and correct identification, which is the focus of our work. To that end, we 

have explored deep neural networks (Schmidhuber 2015) to automate several key inferential tasks. We 

successfully identified both Mexican and Brazilian triatomine species with considerable improvement in 

overall identification rates, compared to our previous results (Gurgel-Gonçalves et al. 2017). Incorporating 

distributional information for species allowed us to reduce local fauna sizes in analyses, making 

identification easier, which increased overall identification rates for local faunas still more. 

A crucial advantage of using TensorFlow was eliminating the need for pre-processing images for 

our identification system. That is, we compared TensorFlow classification performance based on the 

cleaned and raw images for the Mexican species, which were the most challenging to our statistical 

classifiers (Gurgel-Gonçalves et al. 2017). TensorFlow achieved almost the same overall identification rate 

using the raw images, which opens important future possibilities, such as developing identification based 

on photos taken by local residents with mobile phone cameras. Including geographic information to create 

local faunas or faunal subsets (Gurgel-Gonçalves et al. 2012, Ramsey et al. 2015) significantly improved 

our results, reaching an average accuracy of 95.8% for Mexican triatomines and 98.9% for Brazilian 

triatomines. Another advantage of TensorFlow is that it is open source software: TensorFlow’s flexible 

architecture allows easy adaptation and deployment of the software on different platforms including 

desktops, clusters of servers, edge devices, and mobile phones (https://www.tensorflow.org/).  

 

https://www.tensorflow.org/


Deep neural networks 

Applying TensorFlow to our dataset presented some challenges, a major one was the number of 

images available for each species. To the best of our knowledge, this is the first study using TensorFlow to 

identify triatomines. To take advantage of deep learning algorithms to improve identification rates at the 

species level, we would ideally have access to many more images for each species. We are working along 

several lines to build such photographic resources, but clearly small sample sizes will be a continuing 

challenge in this work. A second major challenge, a consequence of the first, was the model validation 

method. We would have been happier with our results if we had enough images for each species to follow 

k-fold cross validation approaches (Kohavi 1995), instead of leave-one-out approaches to evaluate our 

model, as the former offer greater independence between calibration data and evaluation datasets. 

 Photo quality could constitute a limitation in future analysis. These problems could derive from 

characteristics of the photographed specimens, such as how dirty it is, the mounting orientation of the 

specimen, or whether or not the specimen has a pin through its thorax. Other variables that must be 

considered before full implementation, such as in a “citizen scientist” setting, with photographs captured 

with ordinary mobile phone cameras, could be evenness of lighting, distance between camera and insect, 

and how well focused is the image. Future experiments will evaluate the degree to which these factors 

compromise identification ability, to verify how robust and reliable our automated identifications can be 

under different circumstances. 

 

Problem species 

Although we were impressed by the improved correct identification rates that we obtained, 

several “problem species” remained, which need to be discussed in more detail. To identify “problem 

species”, we considered a threshold for each dataset relative to overall country-specific identification 



rates. For Mexican species, we chose 70.0% as the threshold, which resulted in having two problem 

species, T. mazzottii and T. phyllosoma, with 63.6% and 69.0% overall identification rates, respectively. 

Total sample size for T. mazzottii was 22 images, of which 8 were misidentified, and for T. phyllosoma of 

58 images, 18 were misidentified. Out of 8 incorrectly identified samples for T. mazzottii, 2 were identified 

as T. longipennis Usinger, and 6 as T. phyllosoma. For the 18 misidentified records of T. phyllosoma, 2 

were identified as T. pallidipennis Stål, 8 as T. mazzottii, and 8 as T. longipennis. The difficulty of 

TensorFlow to identify these species may be related to the morphological similarity between them, as 

they all belong to the phyllosoma complex (Lent and Wygodzinsky 1979). However, neither morphological 

identity nor more recent evolution of the dimidiata complex haplogroups affected the ability to 

distinguish among them. Future experiments with more images should improve correct identification 

rates. 

For Brazilian triatomine species, we selected a 75.0% correct identification threshold, below 

which five species had lower identification accuracy of 70-74%: R. milesi, T. delpontei, T. guazu Lent & 

Wygodzinsky, T. platensis Neiva, and T. williami Galvão, Souza & Lima. All 7 incorrectly identified images 

of T. delpontei were identified as T. platensis; other problem species were confused with 2-4 other species. 

Again, TensorFlow limitation to distinguish between T. delpontei and T. platensis may be related to 

morphological similarities (Monteiro et al. 2018). 

 

Future perspectives  

In the future, we anticipate deployment of these systems more broadly in terms of both user 

communities and species under study. The ability to use raw images makes the process of collecting 

images from different sources (e.g., public health service personnel, citizen scientists) feasible, while 

maintaining the high accuracy of identification. Our next steps will make this technology available for 



photographs captured with ordinary mobile phone cameras, and thus broadly accessible to all via a 

mobile-phone application. The system will (1) permit distinguishing triatomines from non-triatomines, 

and (2) extend triatomine taxonomic coverage to the whole of the Americas. Extension of such 

approaches to other medically important arthropod groups is eminently feasible, and could be 

implemented with relatively little effort, at least in terms of computation. Taxa such as ticks, in particular, 

are significant vectors of many human and livestock pathogens (Parola et al. 2005), and could be the most 

suitable candidates for immediate future studies as they are larger, relatively two-dimensional and can 

be characterized via a single dorsal-view image. Extending the methodology to mosquitoes and other 

dipterans may not be too far off (Giordani et al. 2017). 
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Appendix 1. Summary of species analyzed, sample size in terms of numbers of photographs, and 

successful identification rates (%), in our previous analyses (Gurgel-Gonçalves et al. 2017) versus using 

deep learning techniques, for the 12 Mexican species in this study. Hg1 – Hg3 represent three distinct 

haplogroups of Triatoma dimidiata complex. 

Species Sample size 

Statistical 
classifiers 

success rate 
(%) 

Deep 
learning 

success rate 
(%) 

Panstrongylus rufotuberculatus (Champion, 1899) 13 100.0 100.0 

Triatoma barberi Usinger, 1939 30 72.4 80.0 

Triatoma dimidiata (Latreille, 1811) Hg1 44 70.5 84.1 

Triatoma dimidiata (Latreille, 1811) Hg2 30 76.7 86.7 

Triatoma dimidiata (Latreille, 1811) Hg3 40 82.5 87.5 

Triatoma gerstaeckeri (Stål, 1859) 12 83.3 83.3 

Triatoma longipennis Usinger, 1939 52 72.5 76.9 

Triatoma mazzottii Usinger, 1941 22 77.3 63.6 

Triatoma mexicana (Herrich-Schaeffer, 1848) 45 80.0 97.8 

Triatoma nitida Usinger, 1939 15 46.7 73.3 

Triatoma pallidipennis Stål, 1872 44 90.7 93.2 

Triatoma phyllosoma (Burmeister, 1835) 58 46.6 69.0 

Total sample size and average success rates 405 80.3 83.0 



Appendix 2. Summary of species analyzed, sample size in terms of numbers of photographs, and 

successful identification rates (%), in our previous analyses (Gurgel-Gonçalves et al. 2017) versus using 

deep learning techniques, for the 38 Brazilian species assessed in this study. 

Species Sample size 

Statistical 
classifiers 

success rate 
(%) 

Deep 
learning 

success rate 
(%) 

Cavernicola lenti Barrett & Arias, 1985 32 93.3 100.0 

Panstrongylus diasi Pinto & Lent, 1946 30 96.7 100.0 

Panstrongylus geniculatus (Latreille, 1811) 45 93.3 100.0 

Panstrongylus lignarius (Walker, 1873) 30 85.7 93.3 

Panstrongylus lutzi Neiva & Pinto, 1923 35 88.2 88.2 

Panstrongylus megistus Burmeister, 1835 85 91.7 96.5 

Psammolestes tertius Lent & Jurberg, 1965 36 100.0 97.2 

Rhodnius brethesi Matta, 1919 28 96.4 96.4 

Rhodnius domesticus Neiva & Pinto, 1923 30 96.3 96.7 

Rhodnius milesi Carcavallo, Rocha, Galvão & Jurberg, 2001 43 89.2 74.4 

Rhodnius montenegrensis Rosa et al. 2012 43 84.6 88.1 

Rhodnius nasutus Stål, 1859 80 82.2 88.8 

Rhodnius neglectus Lent, 1954 67 83.3 90.9 

Rhodnius pictipes Stål, 1872 43 95.3 97.7 

Triatoma arthurneivai Lent & Martins, 1940 32 78.1 84.4 

Triatoma baratai Carcavallo & Jurberg, 2000 29 82.8 89.7 

Triatoma brasiliensis Neiva, 1911 64 76.6 92.2 

Triatoma carcavalloi Jurberg, Rocha & Lent, 1998 38 86.8 89.5 

Triatoma circummaculata (Stål, 1859) 22 85.7 95.5 

Triatoma costalimai Verano & Galvão, 1958 64 85.7 90.6 

Triatoma delpontei Romana & Abalos, 1947 31 86.7 74.2 

Triatoma guazu Lent & Wygodzinsky, 1979 29 64.3 72.4 

Triatoma infestans (Klug, 1834) 55 83.3 87.3 

Triatoma juazeirensis Costa & Felix, 2007 20 81.0 81.0 

Triatoma lenti Sherlock & Serafim, 1967 39 78.9 77.5 

Triatoma maculata (Erichson, 1848) 40 89.7 77.5 

Triatoma matogrossensis Leite & Barbosa, 1953 33 75.0 81.8 

Triatoma melanica Neiva & Lent, 1941 29 79.3 89.3 



Species Sample size 

Statistical 
classifiers 

success rate 
(%) 

Deep 
learning 

success rate 
(%) 

Triatoma pintodiasi Jurberg, Cunha & Rocha, 2013 26 88.0 84.0 

Triatoma platensis Neiva, 1913 28 74.1 71.4 

Triatoma pseudomaculata Correa & Espínola, 1964 56 70.9 75.0 

Triatoma rubrovaria (Blanchard, 1843) 55 59.3 79.6 
Triatoma sherlocki Papa, Jurberg, Carcavallo, Cerqueira & 

Barata, 2002 32 93.5 90.6 

Triatoma sordida (Stål, 1859) 96 81.2 92.7 

Triatoma tibiamaculata (Pinto, 1926) 41 92.7 85.4 
Triatoma vandae Carcavallo, Jurberg, Rocha, Galvão, Noireau 

& Lent, 2002 30 69.0 79.3 

Triatoma vitticeps (Stål, 1859) 48 85.1 80.9 

Triatoma williami Galvão, Souza & Lima, 1965 20 70.6 70.0 

Total sample size and average success rates 1584 83.9 86.7 
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	Abstract
	Vector-borne Chagas disease is endemic to the Americas and imposes significant economic and social burdens on public health. In a previous contribution, we presented an automated identification system that was able to identify 12 Mexican and 39 Brazilian triatomine (Hemiptera: Reduviidae) species from digital images. To explore the same data more deeply using machine-learning approaches, hoping for improvements in classification, we employed TensorFlow, an open-source software platform for a deep-learning algorithm. We trained the algorithm based on 405 images for Mexican triatomine species and 1584 images for Brazilian triatomine species. Our system achieved 83.0 and 86.7% correct identification rates across all Mexican and Brazilian species, respectively, an impressive improvement over comparable rates from statistical classifiers (80.3 and 83.9%, respectively). Incorporating distributional information to reduce numbers of species in analyses improved identification rates to 95.8% for Mexican species and 98.9% for Brazilian species. Given the “taxonomic impediment” and difficulties in providing entomological expertise necessary to control such diseases, automating the identification process offers a potential partial solution to crucial challenges.  
	Key words: Chagas disease, TensorFlow, Deep learning, Triatominae, Automated species identification
	Introduction
	Vector-borne diseases, such as malaria, Zika, dengue fever, Chagas disease, and chikungunya, impose enormous economic and social burdens on public health (Sinkins and Gould 2006), and rank among the most serious threats to human health (Nauen 2007). An important element in predicting risk of such diseases, and developing strategies to control them, is detailed surveillance of arthropod vector species (Mukundarajan et al. 2017). Identifying vectors can be challenging, requiring significant training and increasingly uncommon taxonomic expertise (Drew 2011), a phenomenon termed the “taxonomic impediment” (de Carvalho et al. 2007). As a result, providing broad regions with necessary arthropod vector identification expertise by traditional means is often not feasible given political boundaries, logistical obstacles, and variability of country-specific human health resources (Schofield et al. 2006). One promising potential solution involves developing automated species identification systems that can aid in meeting these important challenges. 
	Chagas disease occurs in most countries in the Americas, causing serious cardiac morbidity and mortality among infected individuals over years or decades if untreated (Coura and Viñas 2010). The disease is caused by the unicellular parasitic protozoan, Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae), transmitted mainly through feces of blood-sucking true bugs belonging to the hemipteran subfamily Triatominae (Hemiptera: Reduviidae) (Coura and Viñas 2010). Estimates suggest that 8 million people exhibit symptoms of the disease, and that >100 million people are at risk of infection worldwide (Coura and Viñas 2010, WHO 2018). Given failings in many public health systems across the Americas, epidemiological surveillance for Chagas disease is either minimal (e.g., in Mexico) or incomplete (e.g., in Brazil), and diagnosis and treatment are often too late and therefore less effective (Martins-Melo et al. 2012, Ramsey et al. 2014). 
	Many efforts have tested diverse inferential approaches in the challenge of identifying insects accurately. Recently, a new set of machine-learning classifiers, called deep neural networks (DNNs), have been designed; they are similar to artificial neural networks (ANNs; Dayhoff and DeLeo 2001), but with multiple hidden layers between the input and output layers, instead of having only three layers total (i.e., input, one hidden layer, and output). The high capability of DNNs has resulted in widespread use of these techniques in other such inference challenges (Schmidhuber 2015). DNNs have outperformed traditional methods (e.g., linear discriminant analyses) in various classification tasks (Schmidhuber 2015). Here, we used TensorFlow (Abadi et al. 2016), an open-source software platform, representing the most recent addition to the deep-learning toolbox (Rampasek and Goldenberg 2016; Google Brain Team; https://research.google.com/teams/brain/), to explore the challenge of automated Chagas disease vector identification.
	The purpose of this study was to test whether deep-learning techniques can improve abilities to identify Chagas disease vectors of Mexico and Brazil successfully, using a collection of digital images of triatomines from our previous work (Gurgel-Gonçalves et al. 2017). To address this question, we designed an automated, DNN-based species identification system for 12 Mexican and 38 Brazilian species, which we tested using images withheld from the calibration process. This study thereby lays a foundation for many automated identification capabilities in medical entomology, and more broadly in biodiversity science.
	Materials and Methods
	We tested whether state-of-the-art, deep-learning techniques (TensorFlow; Abadi et al. 2016) can successfully identify digital images of 12 Mexican triatomine species and 38 Brazilian triatomine species. We implemented four steps: (1) adapt and configure TensorFlow to the needs of this analysis; (2) create different sets of images, based on different levels of automated pre-processing, from available images, as inputs; (3) apply and test TensorFlow under diverse circumstances; and (4) use secondary information (i.e., distributional information) to reduce numbers of species in our identification exercises. We implemented all analyses in Python (version 2.7, available at http://www.python.org/). These steps are described in greater detail below. 
	Previously (Gurgel-Gonçalves et al. 2017), we presented work on automated identification of triatomine species from Mexico (12 species) and Brazil (39 species). That work involved full automation of processing of images before analysis into a set of landmarks and distances among them, and then analysis using traditional statistical classifiers, such as linear discriminant analysis (Fisher 1936) and artificial neural networks (Dayhoff and DeLeo 2001). Identifying the Mexican species was a particular challenge to our classifiers, and of course we were interested in improving identification rates for Brazilian species also. Therefore, we decided to use more advanced classifiers for both Mexican and Brazilian triatomines. To be able to compare our results, we used the same species and same images for this study (Appendix 1, Appendix 2); however, given small numbers of images available for Eratyrus mucronatus (Stål) (Hemiptera: Reduviidae) (n=11), we removed this species from the Brazilian pool.  
	Photographs as input
	In our previous study, we had observed that most triatomine images then available were of poor quality, such that the resulting identifications were not reliable. Consequently, project personnel designed a photo apparatus that would permit taking consistent, high quality, repeatable photographs of triatomines at low cost (Gurgel-Gonçalves et al. 2017). This apparatus allows users to employ iPods or cell phones for taking photographs. Team members photographed triatomine species from various institutions across Mexico (Centro Regional de Investigación en Salud, Instituto Nacional de Salud Pública México; Laboratorio Estatal de Salud Pública de Guanajuato; Universidad Autónoma Benito Juárez, Oaxaca; Universidad Autónoma de Nuevo León, Monterrey), and Brazil (Universidade de Brasília, FIOCRUZ Bahia, FIOCRUZ Rio de Janeiro, FIOCRUZ Minas Gerais, Universidade Estadual Paulista), using the 5th and 6th generations of iPods. Detailed information about the apparatus and protocols for capturing images is provided in Gurgel-Gonçalves et al. (2017).
	The photographs that we used as our “reference library” for our identifications are of high-quality, and are openly available at http://dx.doi.org/10.5061/dryad.br14k; they are described in great detail by Gurgel-Gonçalves et al. (2017). These photographs are consistent in orientation, background color, pixel resolution, and quality, which made automation of their processing feasible. Subsequent steps were automated (Gurgel-Gonçalves et al. 2017), including removing (digitally) the background from the images, and identifying the body edge, yielding two sets of images (raw photographs, and images cleaned to remove background) to understand how deep-learning would perform with different quality levels of images as input (Fig. 1). The processing step was automated fully and the program code is openly available in the appendices of our previous paper (Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.br14k; Gurgel-Gonçalves et al. 2017).
	Fig. 1. An example image of an individual of Triatoma dimidiata Hg1. (A) raw image, (B) final image with background removed digitally.
	TensorFlow
	TensorFlow is an open-source software platform (Abadi et al. 2016) that supports deep-learning research and applications, having been released by researchers at Google (Google Brain Team; https://research.google.com/teams/brain/). We adapted and configured TensorFlow for application and use in our project via Python. We adjusted two parameters from their default values: validation percentage and number of training steps. Although the default setting for validation percentage was 10%, given small numbers of images available for some species, we had to increase this number to 16%. For number of training steps, although the default value was 4000 steps, we explored different numbers and compared the results to find the optimum balance between computing time and classification efficiency. 
	To evaluate the classifier, it is necessary to set some images aside from classifier development entirely. Given the limited numbers of photographs available for some of the species, we used a leave-one-out cross-validation approach for evaluation. That is to say, as a trade-off between maximizing numbers of samples for training the classifier and optimizing computing time, in each round, we left out n images, or one image from among the n species in that country, with which to evaluate the model. 
	Identifying faunal subsets based on distributional information
	Generally, classifier accuracy decreases as the number of classes that must be distinguished increases. In the preliminary work, triatomine species were immediately separated into two independent groups; those occurring in Mexico and those in Brazil. This separation is natural since almost no triatomine species occur naturally in both countries, exception for Panstrongylus rufotuberculatus (Champion) (Hemiptera: Reduviidae). Independent classifiers were created for the two groups. Within these two groups, we applied the same technique on a finer scale, to determine if using a specialized classifier that discriminates only among species known to be present near the location at which a sample is taken will improve the ability to correctly classify triatomine samples. We used the same binary maps as in our previous study (Gurgel-Gonçalves et al. 2017), summarizing potential geographic distributions for each of the 12 Mexican and 38 Brazilian species. Ecological niche modeling techniques and data sources are described in detail in Gurgel-Gonçalves et al. (2012), Ramsey et al. (2015), and Gurgel-Gonçalves et al. (2017). Hence, in Python 2.7, we created 399 and 2019 local fauna sets for the Mexican and Brazilian triatomine species, respectively, using the distributional information to create subsets of species that co-occur at the same sites. We trained and tested the classifier employing samples restricted to those local faunas. The range of numbers of species in local fauna subsets was 2-11 for Mexican species and 2-12 for Brazilian species. 
	Results
	As a preliminary step, we tested identification success for raw versus cleaned images for Mexican species, to see whether TensorFlow shows reduced correct identification rates using raw images. The identification rate for raw images was almost the same as that obtained using the cleaned images (i.e., 82.9% overall identification rate for raw images, versus 83.0% for cleaned images); since our goal was to compare the results of TensorFlow with those deriving from the statistical classifiers used in our previous study (Gurgel-Gonçalves et al. 2017), for all succeeding analyses in this study, we elected to use cleaned images, only noting the potential for simpler processing in future work.  
	We calibrated our models for Mexican and Brazilian species using different numbers of training steps, and considered two factors to find optima for training TensorFlow (Fig. 2): (1) correct identification rate, which improved up to a certain point, but then reached a plateau, beyond which we saw no significant improvement, and (2) processing time (in hours), which showed a positive linear relationship with number of training steps. For the Mexican dataset, with 12 species, 2000 emerged as an optimum number of training steps, which resulted in an 83.0% overall identification rate (Fig. 2); the largest gap between the processing time trace and identification rate occurred following this number of steps. Above this number of training steps, subtle improvements in identification rate were possible (up to 83.1%), but processing time was significantly longer (7 hours instead of 3.5 hours). Based on the same logic, we chose 12,000 training steps as an optimum number for Brazilian species, at which we achieved an 86.7% overall identification rate (Fig. 2). The Brazilian dataset had a plateau that was more obvious: overall identification rate barely reached a maximum 87.0%, yet processing time increased from 30 to 80 hours. It should be noted that the amount of time discussed above is only for training TensorFlow over all images in the reference library with multiple replicate analyses; for identification of a single image, it only takes a few seconds.
	Fig. 2. Effects of different numbers of training steps on identification rate (%) and processing time (h) using TensorFlow for Mexican (top) and Brazilian (bottom) triatomine species.
	We plotted and compared the results of TensorFlow with those from our previous study (Gurgel-Gonçalves et al. 2017), at the species level (Fig. 3). We applied a paired t-test on outcomes, which produced p-values of 0.028 and 0.025 for Mexican and Brazilian triatomines, respectively; given that the p-values were <0.05, we concluded that the DNN-based results are statistically significantly better than our previous results. For Mexican species, we noted improvement in identification rate for 9 out of 12 species using TensorFlow (Fig. 3). Although T. mazzottii Usinger correct identification rates declined from 77.3% to 63.6% using deep learning, we noted significant improvement for the T. dimidiata (Latreille) complex (T. dimidiata Hg1 increased from 70.5% to 84.1%, T. dimidiata Hg2 from 76.7% to 86.7%, and T. dimidiata Hg3 from 82.5% to 87.5%), T. mexicana (Herrich-Schaeffer) from 80.0% to 97.8%, and T. barberi from 72.4% to 80.0%. Most notably, we saw improvements for T. nitida Usinger and T. phyllosoma (Burmeister, 1835), which were very challenging for our previous classifiers, from 46.7% to 73.3% and 46.6% to 69.0%, respectively. For Brazilian species, identification rate improved for 23 out of 38 species, including 6 with major improvements: T. vandae Carcavallo, Jurberg, Rocha, Galvão, Noireau & Lent from 69.0% to 79.3%, T. sordida (Stål, 1859) from 81.2% to 92.7%, T. rubrovaria (Blanchard, 1843) from 59.3% to 79.6%, T. melanica Neiva & Lent from 79.3% to 89.3%, T. circummaculata (Stål) from 85.7% to 95.5%, and T. brasiliensis Neiva from 76.6% to 92.2%; identification rates for 5 out of 38 species stayed the same (Fig. 3). A highlight was that T. rubrovaria had shown the weakest classification success with statistical classifiers, but with deep learning improved dramatically. However, 3 species showed major declines: R. milesi Carcavallo, Rocha, Galvão & Jurberg (Hemiptera: Reduviidae) from 89.2% to 74.4%, T. delpontei Romana & Abalos from 86.7% to 74.2%, and T. maculata (Erichson) from 89.7% to 77.5%, compared with the results of the statistical classifiers. The confusion matrices for both Mexican and Brazilian species, summarizing numbers of images for each species identified correctly or misidentified as another species, are presented in the supplementary data of this paper. 
	Fig. 3. Comparison of identification rates (%) between TensorFlow and statistical classifiers (Gurgel-Gonçalves et al. 2017) at species level for Mexican and Brazilian triatomines.
	Faunal Subsets
	54BFaunal Subsets
	Because classifier accuracy improves when fewer classes are compared, to reduce numbers of species being compared, we used geographic information for the distributions of Mexican and Brazilian triatomines to refine identification efforts, testing 399 and 2019 faunal subsets for the two countries, respectively. For Mexican species, faunal subsets ranged 2-11 species (Fig. 4). TensorFlow was able to increase the overall identification rate for comparing two species up to 95.8%; average identification rates for most local faunas (25 out of 31) were in the range of 95-100%. As expected, increasing the number of species compared, the overall identification rate declined gradually, and leveled off at around 83.0% for 8 to 11 Mexican species. For Brazilian species, the overall identification rate for comparing two species was 98.9% (Fig. 4). Adding more species to the Brazilian pool, the overall identification rate decreased to a plateau of about 94.0% with 11 species. For 1853 out of 2019 Brazilian local fauna subsets, TensorFlow’s identification performance was 95% or better. 
	Fig. 4. Summary of identification rates (%) for various combinations of species: 2-11 different species combinations for Mexican faunas with 399 faunal subsets, and 2-12 species combinations for Brazilian faunas with 2019 faunal subsets, using the distributional information. Gray triangles represent average identification rates for each Brazilian local fauna, and large black triangles show the overall average of identification rate for each fauna size. Black dots represent average identification rates for each Mexican local fauna, and large blank circles show the overall average of identification rate for each fauna size. 
	Discussion
	Chagas disease causes serious cardiac morbidity and mortality among infected individuals over the course of years or decades (Coura and Viñas 2010), yet epidemiological surveillance, diagnosis, and treatment are often late or inefficient owing to shortage of expertise and failings in many public health systems (Martins-Melo et al. 2012, Ramsey et al. 2014). Arriving at such diagnoses depends rather crucially on vector awareness and correct identification, which is the focus of our work. To that end, we have explored deep neural networks (Schmidhuber 2015) to automate several key inferential tasks. We successfully identified both Mexican and Brazilian triatomine species with considerable improvement in overall identification rates, compared to our previous results (Gurgel-Gonçalves et al. 2017). Incorporating distributional information for species allowed us to reduce local fauna sizes in analyses, making identification easier, which increased overall identification rates for local faunas still more.
	A crucial advantage of using TensorFlow was eliminating the need for pre-processing images for our identification system. That is, we compared TensorFlow classification performance based on the cleaned and raw images for the Mexican species, which were the most challenging to our statistical classifiers (Gurgel-Gonçalves et al. 2017). TensorFlow achieved almost the same overall identification rate using the raw images, which opens important future possibilities, such as developing identification based on photos taken by local residents with mobile phone cameras. Including geographic information to create local faunas or faunal subsets (Gurgel-Gonçalves et al. 2012, Ramsey et al. 2015) significantly improved our results, reaching an average accuracy of 95.8% for Mexican triatomines and 98.9% for Brazilian triatomines. Another advantage of TensorFlow is that it is open source software: TensorFlow’s flexible architecture allows easy adaptation and deployment of the software on different platforms including desktops, clusters of servers, edge devices, and mobile phones (https://www.tensorflow.org/). 
	Deep neural networks
	Applying TensorFlow to our dataset presented some challenges, a major one was the number of images available for each species. To the best of our knowledge, this is the first study using TensorFlow to identify triatomines. To take advantage of deep learning algorithms to improve identification rates at the species level, we would ideally have access to many more images for each species. We are working along several lines to build such photographic resources, but clearly small sample sizes will be a continuing challenge in this work. A second major challenge, a consequence of the first, was the model validation method. We would have been happier with our results if we had enough images for each species to follow k-fold cross validation approaches (Kohavi 1995), instead of leave-one-out approaches to evaluate our model, as the former offer greater independence between calibration data and evaluation datasets.
	 Photo quality could constitute a limitation in future analysis. These problems could derive from characteristics of the photographed specimens, such as how dirty it is, the mounting orientation of the specimen, or whether or not the specimen has a pin through its thorax. Other variables that must be considered before full implementation, such as in a “citizen scientist” setting, with photographs captured with ordinary mobile phone cameras, could be evenness of lighting, distance between camera and insect, and how well focused is the image. Future experiments will evaluate the degree to which these factors compromise identification ability, to verify how robust and reliable our automated identifications can be under different circumstances.
	Problem species
	Although we were impressed by the improved correct identification rates that we obtained, several “problem species” remained, which need to be discussed in more detail. To identify “problem species”, we considered a threshold for each dataset relative to overall country-specific identification rates. For Mexican species, we chose 70.0% as the threshold, which resulted in having two problem species, T. mazzottii and T. phyllosoma, with 63.6% and 69.0% overall identification rates, respectively. Total sample size for T. mazzottii was 22 images, of which 8 were misidentified, and for T. phyllosoma of 58 images, 18 were misidentified. Out of 8 incorrectly identified samples for T. mazzottii, 2 were identified as T. longipennis Usinger, and 6 as T. phyllosoma. For the 18 misidentified records of T. phyllosoma, 2 were identified as T. pallidipennis Stål, 8 as T. mazzottii, and 8 as T. longipennis. The difficulty of TensorFlow to identify these species may be related to the morphological similarity between them, as they all belong to the phyllosoma complex (Lent and Wygodzinsky 1979). However, neither morphological identity nor more recent evolution of the dimidiata complex haplogroups affected the ability to distinguish among them. Future experiments with more images should improve correct identification rates.
	For Brazilian triatomine species, we selected a 75.0% correct identification threshold, below which five species had lower identification accuracy of 70-74%: R. milesi, T. delpontei, T. guazu Lent & Wygodzinsky, T. platensis Neiva, and T. williami Galvão, Souza & Lima. All 7 incorrectly identified images of T. delpontei were identified as T. platensis; other problem species were confused with 2-4 other species. Again, TensorFlow limitation to distinguish between T. delpontei and T. platensis may be related to morphological similarities (Monteiro et al. 2018).
	Future perspectives 
	In the future, we anticipate deployment of these systems more broadly in terms of both user communities and species under study. The ability to use raw images makes the process of collecting images from different sources (e.g., public health service personnel, citizen scientists) feasible, while maintaining the high accuracy of identification. Our next steps will make this technology available for photographs captured with ordinary mobile phone cameras, and thus broadly accessible to all via a mobile-phone application. The system will (1) permit distinguishing triatomines from non-triatomines, and (2) extend triatomine taxonomic coverage to the whole of the Americas. Extension of such approaches to other medically important arthropod groups is eminently feasible, and could be implemented with relatively little effort, at least in terms of computation. Taxa such as ticks, in particular, are significant vectors of many human and livestock pathogens (Parola et al. 2005), and could be the most suitable candidates for immediate future studies as they are larger, relatively two-dimensional and can be characterized via a single dorsal-view image. Extending the methodology to mosquitoes and other dipterans may not be too far off (Giordani et al. 2017).
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