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Abstract
The asymptotic behavior as ¢ — oo of the solution to the following stochastic heat
equations
But 1 d (9211,,5
EZEZW—FMOU“ 0<t<oo, z€R, up(z) =1

1=1 2

is investigated, where w is a space-time white noise or a space white noise. The use of
o means that the stochastic integral of It6 (Skorohod) type is considered. When d = 1,
the exact L9 Lyapunov exponents of the solution are studied. When the noise is space
white and when d < 4 it is shown that the solution is in some “flat” L9 distribution
spaces. The Lyapunov exponents of the solution in these spaces are also estimated.
The exact rate of convergence of the solution by its first finite chaos terms are also
obtained.

1 Introduction

The Schrédinger operators with random potential have been widely studied (see [3], [4] and
the references therein).

Let (2, F, P) be a probability space. The expectation on this probability space is denoted
by E . The set of all square integrable random variables on (2, F, P) is denoted by Ly :=
L?(Q, F, P). Let R¢ be the d dimensional Euclidean space. Let w;(z) be a (generalized)
Gaussian random field with parameters ¢t € R, and = € R%, i.e. wy(z) is a (generalized)
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Gaussian random variable on (2, F, P) for t € R, and z € R?. If w,(z) satisfies formally the
following equation:

E (/mmdf(s,x)ws(x)dsdx /}R+XRdg(s,x)ws(x)dsd:v> = /12+XRdf(s,x)g(s,x)dsd3:

for all f,g € L*(R; x R% dsdx), then wy(x) is called a space-time white noise. If w(z)
is a (generalized) Gaussian random field with parameters z € R’ satisfying that for all
fig € L*(®?, da),

B ([, f@w@ds [ g@u@dr) = [ f@gdz,

then w(x) is called a space white noise. The rigorous definitions of various kinds of white
noise are discussed in many references (see for instance [12] and [17]). In those books,
the stochastic integrals of 1t6 type, the multiple stochastic integrals of It type, and the
chaos expansions are discussed (see also [22], [21], [16]). These concepts will be used freely.
However, in this paper only these two types of noise will be discussed and are denoted
generically by a single w.
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Denote Af(z) = g ‘é(x) The following stochastic partial differential equation
i=1 0%
ouy 1
a—tt = §Aut+w<>ut (11)

is called stochastic heat equation with white noise potential, where ¢ means that the stochas-
tic integrals involved in (1.1) is of It6 (Skorohod) type. For instance, [u(s,y) ¢ ws(y)dsdy
is the same as [u(z)W(dz) in [22], where z = (s,y). We assume that ug(z) = 1 in this
introduction.

When w is space-time white, this equation was studied by several authors, for example, in
[20], [21], [22], and the the references therein. It is known that when d = 1 the solution exists
for all ¢ > 0. In this case the exact Lo Lyapunov exponent of the solution is investigated
and it is shown that

.1 2
Jim — log (E [u(2)?) = 1/4.
The main topics of this paper is stochastic heat equation with space white noise potential.

Till the end of this section we assume that the noise is space white unless stated otherwise.
When d = 1, it is known [28] that the solution is in £?

. . 1 2 . 1 2
0< htrgéglft—glogE lug(z)]” < hirisogpt—?)logE lug(z)]” < o0

The above upper bound and lower bounds will be improved. Moreover, my approach allows
to find the exact rate of convergence of the solution by finite chaos expansion. Let u;(z) =
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3%, I.(fa(t, 7)) be the chaos expansion of the solution and let ul (z) = SN, I.(f,.(¢, ).
Then roughly speaking, E |u;(z) — ul (7)|? is of the order N~/2 as N — oco. This is
a surprisingly high rate of convergence. The same rate of convergence of u)' (z) to uy(x)
holds when the noise is space-time white. Professor Shiga communicated to me that he
obtained limit lim sup, , , % logE log |u;(z)[? for all p > 1 if the initial condition is bounded,
nonnegative, continuous (and is not identically zero). However, his paper has not been
written yet. I am not sure if his approach can be applied to obtaining more precise rate
estimate.

Since the noise is not white in time, we expect nicer property of the solution. In fact
this is the case. We will show that the solution is more “regular”. When d = 2, it is known
that the solution is not in L? when the noise is space-time white. However, when the noise
is space-white, the following interesting phenomena is shown: the solution to (1.1) exists in
L£? when t < 2 and is not in £, when ¢ > 27. Nevertheless, the solution is shown to be in
some nicer distribution spaces (see the explanation below).

The main tool of this paper is the It6-Wiener chaos expansion, which is also used in [12],
[13], [14], [15], [16], [18], [19], [21], [22] and the references therein.

It is noted that if uy(x) = 300, In(fn(t, z)) is the formal chaos expansion of u(z) (the
solution to (1.1) when the noise is space white), then when d < 4, each chaos I,,(f,(¢,z)) is
in L. Hence, the stochastic heat equation with space white noise potential is more regular
than people presumed. This phenomenon seems to be very encouraging: our living space
has 3 dimensions. What a magnificent coincidence!

We introduce a new type of Hilbert space formally defined by

S, ={F= Z E, ; Z(n!)ﬁE \F,|? < o0},
n=0 n=0

where v € R and F}, is the n-th chaos of F'. It is clear that these spaces are subspaces of the
distribution space introduced in [12]. Since we do not introduce weights as in [21], we shall
call these spaces “flat” L, type of distribution (or test) spaces. An element in S, has the
following property: each of its chaos is in L. It is shown that when d < 4 and when the
noise is space white, there is a vy, such that
1) wy(z) isin S, for all v < 7y, ¢ € (0,00) and z € R%;
2) uy(z) is not in S, for all v > vy, ¢t € (0,00) and z € R?;
3) uy(z) is in S, for small ¢ and us(x) is not in S,, for large .
Therefore, the regularity of the solution with respect to the noise is completely determined
from the point of view of chaos expansion. Moreover, the Lyapunov exponents of the solution
in S, for all v < 7, are also estimated.

When the noise is space-time white and d > 2, or when the noise is space white and
d > 4, none of the chaos of the solution to (1.1) is in £5. A renormalization procedure is
proposed. It is an extension of those dealt with in [15].
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The results obtained are extended to general elliptic operators by a comparison argument.

To end this introduction, let us mention some relevant results.

When w is white with respect to time ¢ (but not white with respect to space variable ),
Carmona, Molchanov, Viens, [5], [6], [7] have studied the almost sure Lyapunov exponent
of the solution, i.e. the upper bound and lower bound of }logu,(z) as t — oo. If (1.1) is
replaced by its discrete analogue, then the moment Lyaponuv exponents were also studied
in [5].

When wy(z) is space-time white and when d > 2, Nualart, Rozovskii, Zakai, Holden,
(Oksendal, Ubge, Zhang, Potthoff, Vage, Watanabe [21], [22], [12], [23] studied the solution
to (1.1) in some other types of generalized distribution spaces.

Piatnitski, Zheng, and Zhao [24] applied a discretization procedure to show the regularity
of the solution with respect to x for a class of nonlinear stochastic heat equation.

In most of our estimates, d can also be a real number. Since it is popular to study
fractional dimensions, we write d < 4 instead of d < 3. Throughout the paper, C' denotes a
generic positive constant whose value may be different in different appearances.

2 Space-Time White Noise: d =1

In this section we consider the stochastic heat equation with d = 1. We also study the £,
asymptotic behavior of the solutions as ¢t goes to infinity. Throughout the paper we assume
that ug is deterministic and we denote

mZ
Pi(z) = (27Tt)_d/26_% , tER,, T €R".

Definition 2.1 A measurable function u : [0,T] x R¢ X @ — R is called a solution to Eq.
(1.1) if [ foa Prs(z — y)us(y) o wy(y)dsdy ewists as an element in L* (or in S, for some
v € R) for every z € R? and t € (0,T] and the following equation is satisfied

t
’U,t(-fU) = PtuO(x) +/0 /Rd Pt—s(x - y)us(y) Ows(y)deya Vot € R—F y L € Rd ’ (21)

where ¢ denotes the stochastic integral of Ité type, i.e. the same integral as in [22] (see also
[17], [12]).

Let us consider the following formal chaos expansion of the solution
ui(w) = Pan(e) + 3 L(fult,2)) (2.2)
n=1
where

fn(t,x;Sh"',Sn;y1,"',yn) = Sym[/]RdPt—sn(x_yn)Psn—sn_l(yn_yn—l)

T Pszfs1 (yQ - yl)Pén (yl o g)uo(g)dg] (23)
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and

In(fn(t’ x)) = /[0 n xR fn(ta Z;81,° " ySp3Y1, ", yn)w81 (yl) N RRRY an(yn)dsldyl T dsndyn

’ (2.4)

is the multiple It6 integral with respect to the deterministic kernel f, (¢, z). Here Sym denotes

the symmetrization with respect to the (d + 1 dimensional) variables (s1,y1), (S2,y2), -
and (S, Yn)-

In this paper we will not go into details of the existence and uniqueness of the solution.

Readers are referred to [9], [21], [22], and the references therein. In this section us(x) given
by (2.2) (when d = 1) will be discussed.

bl

Theorem 2.1 When d =1, each I,(f,(t,x)) is well-defined as an element of Lo and (2.2)
is convergent in Lo.

1) If the initial value ug(x) is identically equal to 1, then the Ly norm of u.(x) defined
by (2.2) is independent of x and the following estimate holds:

logE 51
lim —8 (‘:t(x)‘ ) =1 Vx€eR. (2.5)

t—o0

2) If ug is uniformly bounded away from oo, i.e. there is a positive constant C' such that
SUPzerd |U0(Z')| < C, then

logE 2
i sup 12BE ((2) )

t—o00 t

1

3) If ug is uniformly bounded away from 0, i.e. there is a positive constant C such that
inf,cgaug(x) > C, then

2
L 0gE (Ju(@)?)

t—o00 t

1

Proof Denote v(t,z) = E (|us(x)|?). Then it is easy to see that v (¢, x) satisfies the following
(deterministic) equation:

v(t,x) = |Pauo(z) > + /Ot/RPfs(g: —y)v(s,y)dsdy.

When the initial condition uy(z) = 1, v(t, x) satisfies

v(t,z) =1+ /Ot/RPf_s(ac —y)v(s,y)dsdy.

By iteration, we obtain
o

v(t,x) = Z O,,

n=0



where

0, = / (A7) ™2 (t — 5,) Y2 (55 — Sp_1) M2 (50— s1) "V 2ds

e T2
(4m) Tn/2+1)" /

1 t n/2
~ T(n/2+1) <Z)

Thus when ug(z) =1,

B @)=Y, (t)n/z (2.8)

w(z)* =) —— |- : :
! ~T(n/2+1) \4

This means that the Lo norm of the solution to Eq (1.1) is independent of x when the initial
condition is identically 1. The summation in (2.8) is given by the Mittag-Leffler function
E%( t/4), whose asymptotic behavior as ¢ — oo of this function is known (see [10]), i.e.

E |uy(z)]> = E1(y/t/4) = 2exp(£) + O(%) , (as t— 00).

3
This proves (2.5).
(2.6) and (2.7) can be proved in a similar way. O
Let u(x) be the sum of first finite terms, u (z) = Pug(z) + XN, L, (fu(t,2)). Then
from (2.8) it follows that

Theorem 2.2 (1) If there is a positive constant C such that sup cga |uo(z)| < C, then there
1S a finite positive constant C, such that

TN
E N 2 < C
Oﬁtzlél?mek |Ut(m) K (x)| - 14NF(N/2 + 1)

(2.9)
3) If there is a positive constant C' such that infycgaug(x) > C, then there is a finite positive
constant Cy, such that

TN
ANT(N/2+ 1)

:1EI€1£1E lugp(z) — uf (z)]* > O (2.10)

Remark 1 It is a direct consequence of (2.6) and (2.7) that if there are positive constants
c and C such that ¢ < ug(z) < C for all x € R%, then for all x € RY,
L 10gE (ju(x)) _ 1

t—00 t 4 '




3 Space-Time White Noise: d > 2

It is obvious that when d > 2, the formal expansion (2.2) is not convergent in £, when
ug = 1. In fact, one can check that the £5 norm of each chaos is co. In physics, it is usual to
obtain something meaningful out of infinity by renormalization (see [11], [25], [26]). In this
section we shall renormalize the solution following the idea of [15], where we dealt with the
renormalization of the self-intersection local time of Brownian motions.

Let us consider the following stochastic heat equation with approximate space-time white
noise

ou; 1
GUZ = §Au§ + wj ouj (3.1)

where uj(z) = up(z) is given and is deterministic. For simplicity, we consider the regular-
ization only in space variable, i.e.

wi@) = [ Pz —yuwiy)dy.

Since w§(x) exists only in the distribution sense (there is singularity with respect to time),
we need to give meaning to the solution to the above equation. Let us denote

Pie(@)f(@) = [ Pila = )Py = 2)F ()dy.

Definition 3.1 u§(x) is called a solution to (3.1) if

t
ui = Pyug + /d/ Py (2)uf o wy(z)dsdz, (3.2)
re Jo
where ¢ means that the It type of stochastic integral is considered.

Let I,,(f,(t,x)) be defined by (2.4) and

f;(taxa 81,80y %1, " '7Zn)
= Sym [Rf—sn,s(Zn)Psn—sn_l,s(Zn—l) te PSQ—sl,s(zl)Psluo(x)]

= Sym[/R(nH)d P, (3" - yn)Psn—sn—1(yn - yn—l) " 'P32—51(y2 - yl)
Ps(yn - Zn) o Ps(yl - Zl)Psl (yl - g)uﬂ(g)dyl e dyndg] 3 (33)

where Sym is the symmetrization with respect to (s1,21), - -+, (Sn—1, 2n—1) and (sp, z,). It is
easy to verify that the following chaos expansion

o0

e (t,z) = Puo(z) + Y L(f2(t, 7)), (3.4)

n=1

is in S, for some v € R. Moreover, u(t,z) is a solution to (3.1) in S,. If we formally let
e — 0 in (3.3), we obtain (2.3). Let us compute E |I,,(f,,(t,z))|* for ug(xr) = 1. Denote it
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by ©, (©, will be different in different sections. But it is the same in each section. It will
always be relevant to the £, norm of the solution to stochastic heat equation.) To compute
©, here and later in Section 5, the following will be used.

Lemma 3.1 Let s,t,a,b be positive numbers. Then

[, Pale = 2)P.(e =) Pz = ) Poly = )dyd = (2m(a+b+s+1) " Pla = ),

where
alb+s+1)
c= ————.
a+b+s+t
Let us return to the computation of ©,,. Integrating with respect to zy, - - -, z,, we obtain

®n = /Ptfsn(z - yn) e Pszfsl (y2 - yl)P)tfsn (3: - gn) o PS2731 (gZ - gl)
Poc(Yn = §n) - - Poc(y1 — 1) dsdydy .

It follows from Lemma 3.1
n—1
O = [ TIEr(e+ri+ 250 = 25 2 [2r (e + 2t = 5))]¥2ds,  (3.5)
Tn =1
where xk; = 2¢ and

26(/@' —+ 28i+1 — 281)
2 + K; + 281'_1_1 — 28i ’

Ri+1 =

It is obvious that

S 2ek;
K; .
= 2e + K
From this it follows that

ki > €fi.

Therefore

n—1
On < (47T)7nd/2/ H (e+ Sip1 — Si)_d/2 (e/(2n) +t — Sn)fd/st.

T i=1

When d > 2, it is easy to see that for all ¢ > 0

/t(/<;+t— )2 dy < #K—d/zﬂ
0 —d/2-1 '

Thus we see that when d > 2,
0, < Crel=d/2Hin (3.6)



When d =2 and when a < 1/e, b > e,
t
/ (a/b+t—u)"'du < —loga+logh+ log(t+ a/b)
0

It is easy to see that when a,b,¢ > 1, a+b < 2ab and a + b+ ¢ < 3abc. Thus when € < 1/e,
we obtain

t
/0 (e +t—u)"'du < 2log(e + T)(—loge)

and
t
/ (e/(2n) +t —u) 'du < 3log(2n)log(e + T)(—loge) .
0
When € < e !,
0, < 3log(2n)2" 'log(e + T)™(—loge)™.
Hence s
Cre=(5)n If d > 2
O < (3.7)
C™(—loge)™(log(e+T))" Ifd=2.
We introduce the following generalized second quantization operator I'(), ) as follows
P\ F =) (n)"F,
n=0

if =3 2° , F, is the Wiener-It&’s chaos expansion of F. Introduce also I'(y)F = I'(1,v)F.
By (3.7), it follows

Theorem 3.2 1) Let d > 2 and let ug be bounded on R%. Then for all A <0, T (A,s%) u;
is a uniformly bounded sequence in L* with respect to € € (0,e 1], t € (0,00) and z € R?.

2) Let d = 2 and let ug be bounded on R:. Then for all A\ < 0, T € (0,00) and z € R?,
r ()\, \/Tge) ué is a uniformly bounded sequence in L? with respect toe € (0,e7'], ¢t € (0, 7]
and z € R%.

It is known that when d > 2, us(x) is in general not a square integrable random variable.
Thus we expect that when ¢ — 0, uj is not bounded in £,. In fact a more precise result is
stated.

Theorem 3.3 Let the initial condition f(z) > ¢, where ¢ € (0,00) is a constant. Then
1) When d > 2, for all continuous function y(g) on (0,00) with %412 = o(y(¢)) as
e — 0,
lim inf E [ (), v(¢)) ué(z)]> = o0 (3.8)

e—0 zcRr4

forall X eR, t>0.



2) When d = 2, for all continuous function y(g) on (0,00) with —l(l)gg = o(y(¢)) as

e — 0,

lim inf E [T (), v(¢)) ué(z)> = 00 (3.9)
e—0 zcRrd

forall X € R, t>0.

Proof 1t suffices to show this theorem for uy = 1. Let us consider the first chaos of u$(z):
I = /df(t,x;s,z) o ws(z)dsdz ,
R

where ; .
flt,x;8,2) = / P, s(x —y)P.(y — 2)dyds = / P osic(z—2)ds.
0 0

By definition of I'(y(¢)) and the orthogonality of different chaos, we have that
E |T(y(e))u; (@)[* > v(e)°E [11(f1(t,2)) [
It is easy to check that
t
E|L(f(t,2)]* = (27r)’d/2/ (2t — 25 + 2¢)~Y2ds
0
(=d/2+1) " [(26)~¥*1 — (2t + 2¢)~¥**1]  when d > 4
log 15 when d = 4.
Thus the theorem follows. a

4 Space White Noise: d < 4

From now on let w = w(z),z € R? be a space white noise. Consider the following stochastic
heat equation with space white noise potential:

Ouy(z) 1
5 = g Au(@) + (@) oua), (4.1)

where the initial condition ug is a given deterministic function. Consider the following formal

expansion of the solution

w(a) = Pf(@)+ 3 (e ). (12)
where
Fultwiv,v) =[] P @ = ) P (= 0)
Py, (Y2 — y1) Ps, (y1 — ) f(9)dyds (4.3)
and
L(fats) = [ fa(b @iy, umw(y) oo wlyn)dys - dyn. (4.4)
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Theorem 4.1 When d < 4, each I,(f.(t,x)) is well-defined as an element in L2.

1) Letd <2 and let a =1 —d/4. If |ue(z)| < C < oo, then

. 1 o
llmsupmlog{sup]E |Ut($)|2} S (U(O[))l/(2 1) )

t—o0 TERY

where
(2 — 1)207!

Ula) = ARz (a)?.

If ug(z) > C >0, then

1
lim infilog{ inf E |ut($)|2} > (L())®*Y
(2a—1) ZERY

t—o0  t20/

where
(2a — 1)?%7'T(20)

Le) = =i ey

(4.6)

2) Let d = 2. If |up(z)| < C < oo, then when t < 2, uy(z) is defined as an element in L?

for all x € RY. If ug(z) > C > 0, then when t > 2,

E |u(z)]? =00, VazeR.

(4.7)

3) When d > 2, E |uy(z)]* = oo for all t > 0 and x € R if ug(x) > C > 0 for some

constant C > 0.

Remark 2 When d = 1, the upper bound U(1/2) ~ 0.1381 and L(1/2) ~ 0.0145. In [28],

the upper is given by 1/4 and lower bound is 1/(81me3) =~ 0.0002.

Remark 3 7o get a better idea about the difference between the two bounds let us divide the
above upper bound by the lower bound ((4.5) and (4.6)) and denote this number by Ratio.

Thus

220 ( ()2 1/(2a-1)
Ratio = ( () >

2427 (2cx)
When d =1, we have o = 3/4, 2 — 1 = 1/2. Hence

1
From [1], T'(3/4) ~ 1.2254, T'(3/2) = 5[‘(1/2) = /7/2 ~ 0.8862. Thus Ratio ~ 11.4844.
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Proof 1In this section we denote

2
@n = /Rnd { T Ptfsn (.’L’ - yn)Psnfsn_1(yn - ynfl) U P52751 (y2 - yl)ds} dy (48)
which is E (I,(f,(t, )))* /n! when uo(z) = 1. It is easy to see that

E (In(fa(t, 2)))* < 0]l f1|3On -

Using the semigroup property [, Ps(z — y)Pi(y — 2)dy = Py s(z — z), we have

Gn = / Pt—sn (-7; - yn)Psn—sn_l(yn - yn—l) T P32—51 (y2 - yl)
T xXTy, JRT
Pt—rn(x - yn)Prn—rn_1(yn - yn—l) o Prz—m (y2 - yl)dy

- (2w)—"d/2/T (sara—s— )T
nX1ln

(Sn 4 Tn — Sn—1 — Tno1) Y2 (2t — 5, — 1)~ 2dsdr . (4.9)

This shows that E u(z)? is independent of z if uo(x) = 1. We shall bound ©,, from above
and from below. Let us bound ©,, from above first. From 2vab < a + b, it follows that
(a+ b)~4? < 2742g=4/4p=4/* Thus

@n S 2—nd/2(2,n_)—nd/2/ (82 . 81)7d/4 L. (Sn . Sn_l)fd/él

n

(t —5,) Y (ry — ) Y4 (ry = 1) YAt — 1) Y Adsdr

= (47r)*nd/2 {/ (59 — 81)*d/4 (8 — Sn,l)’d/‘*(t _ Sn)d/4d5}2

n

— (42 {M}Q , (4.10)

F(na+1

This shows that when d < 4, I,,(f,(¢,x)) is a well-defined square integrable random variable.
Throughout this paper C, denotes a generic function of z such that there are constants py,
p2, C1 > 0, and Cy > 0 such that Ciz”* < C, < Chzx® for all x > 1, where p;, po, C1, and
C5 > 0 may depend on the dimension d (i.e. ). C, may be different in different appearances.
From the Stirling’s formula, i.e. there is a constant C, such that ['(x + 1) = Cpz%e 7, it
follows
n! n"e "
[ (2a—=1)%\" Ch
o ( o2a ) ((2a — 1)n)(2a*1)n e (2a-1)n

- <(2a ;21632&_1)71 T((2a —CTlL)n T1)°
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For all p and all € > 1, there are constants C; and Cy such that n” < C} + Csee™. Thus for
all € > 1, there are constants Cy, C', Cy, and N depending on ¢, dimension, and sup norm
of the initial condition, such that the £, norm of the solution is bounded as follows

00
E Juy(2)[? < luoll5 Y- n'On
n=0

n! —MN. n an
= ol 3 o () D ()
—~T'(na+1)

e Cy (2a—1)
72) I'((2a—1)n+1) e

N > 1 e(2a — 1)1
Cot CtT+C2 ) FGa s 1)

n=0

= Co+ Ot + CyEpey <

IN

20—1\ "
) (47T)—nd/2r(a)2nt2om

IN

o2
el (a)*(2a — 1) 142
(47T)d/2a2a ’

) (47r)—nd/2r(a)2nt20m

where Fs, ; is the Mittag-Leffler function.
Thus we see that ¢ — oo,

(20 — 1)2a—1r(a)2t2a> 1/(2a-1)

E |uy(7)]* < Co + C1t"Y + Caexp ( (dm) 7207

Consequently we have

_ /(2a-1)
| 1 )| (£(20 =)™ 'T(a))!
lim supm log{sup E |u(z)] } < ( (474220 )

t—o0 TERA

Since € > 1 is arbitrary, we have

| 1 )| o (20— 1) T(@)?) Ve
lim ilolp W log {Sup E ‘Ut($)| } < ( (47T)d/2a2a ’

t— TERD

proving (4.5).
Now let us bound O, from below. This will be slightly more complicated. Let § =
2 — d/2 = 2. By a simple substitution,

0, = (QW)fnd/Qtﬂn/ (82 oy — 5 — Tl)fd/2 L
n(1)xTn (1)
(8n +7Tn — Sp_1 — Tn_1)_d/2(2 — Sp — Tn)_d/stdr,
where

T,(1) :=={(s1,---,8n); 0<s31<---<s,<1}.
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To bound ©,, from below, let us make the following substitution,

Ty=T1+81, Ta=To+tS—Ti—S5, -, Tn=Tp+t5 —Tn1— Sp-1
Y1 = S1, Ya = S2 — 81, T Yn = Sp — Sn—1
It is easy to notice that if z1,---, 2, and y,,--- ,¥, are in

Vn = {(‘rb”"mnayla"'ayn); i<z, x; >0,
7;:172:"'377’, $1+$2++$n<1},

then 0 < < -+ <r, <land 0 < 51 < --- < s, < 1. Namely, if z,y € ),, then
(s1,---,8,) and (rqy,---,r,) arein T,(1). It is also easy to check that the Jacobi determinant
of the above substitution is 1. Thus

@n 2 (QW)nd/tﬂnL ./Eg_2x§_2 .. '$£72(2 — L1 — Ty — - — xn)B72dy1 ce dyndl‘l e dl‘n
> Qfd/2(27r)—nd/2tﬂn/ x§_2x§_2 .. -azﬁ’Qdyl - dypdzy - - - dzy,
_ _ 1 B-1 _
2 2 d/2(2ﬂ-) nd/2tﬂn 21>0,+ >0 371,’135 ‘,L.g T '/L‘g 1d.’E1 U dmn
z1+zot---+ro<l

It follows then

—d/2 —nd/2 F(ﬁ)nil n
0, > 2 ¥%(2x) nd/ P((n—1)5+3)tﬂ : (4.11)

Thus when ug > ¢ > 0,

o
Eu(z)? > &> nlO,
n=0

> g(%)”dﬂr ( (Z!F_(f ));_+ 3) thm. (4.12)

On the other hand, by the Stirling’s formula, we have (using the generic notation C, intro-
duced earlier),

n! n!
T@ni3-p) — “"T(en)
nne—n

((ﬁ - 1)ﬂ1>” Cn
3P ((8 = 1)n)B=Dne—(6-Dn
((ﬂ B 1)ﬂ_1>n n
B L((B=Dn+1)

v

v

14



Thus for all € < 1, there is an N such that when n > N,

n! e(B—1)F1\" 1
F(ﬁn+3—ﬁ)2< B? ) N((B-Dn+1)"

Thus when ug > ¢ for some constant ¢ > 0,

2 N o 1 et?(8—-1)P'T(B)\"
E [u(z)]* > Co+Cit +027;)F((5_1)n+1)< (@r)i/257 )

(5 - 1>ﬂ—1r(ﬁ>>
Gr)

Etﬁ(ﬁ _ 1)’3_1P(ﬁ)>1/(’3_1)}

= Cy+ CltN + CgEﬂ,l <

N
Z C()+Clt +026Xp{( (27T)d/2ﬂf8

Thus when ¢ — o0, it follows

_ /(B-1)
1 . ) 8(ﬂ - 1)ﬂ 1]_‘\(5)
htn_1>g)1f SBI=D) log {zléng uy ()| } > ( (2m)4/238 :

Let ¢ — 1, it follows

- /(B-1)
L o (-0 TEHY
i g os { i i)} > (Ui -

Replacing 5 by 2« we show (4.6).

From the Stirling’s formula as shown previously, it follows

n!

- <Cc2"
T2+ 17 = O

for some constant C,, as defined earlier this section. Thus by (4.10) we have when d = 2 and
lup(z)] < C < o0,

E |u(z)]* < C? 2(47?) % = ioc ( )

This series is convergent when ¢ < 2, which proves the first part of 2) in Theorem 4.1.
On the other hand, 8 = 1 when d = 2. By (4.12), when uy > C for some constant C' > 0,

E |uy(z)|* >

This shows that when ¢ > 27, E |u(z)|? = oo, proving (4.7).
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It is also easy to see from the estimate that when d > 2, E |uy(z)|? = oo for all ¢ > 0 if

ug > C for some constant C' > 0. This completes the proof of Theorem 4.1. O
Let
N
ui\l(x) == Ptf(x) + Z In(fn(ta l‘)) .
n=1

The above estimate can be used to find the exact rate of convergence of approximating u;(zx)

by the finite sum uX ().

Theorem 4.2 There are constants C1(N) and Co(N) of polynomial growth or polynomial
decay such that

U(a)NT?N , N oo
< fE —
I'22a—1)n+1) — perd fur(z) = ur (z)]

C1(N)

U(a)NTQaN
< S E —uMN(z)]? < Co(N :
ogtg;lgcemd furl) =i (@) < Cal )F((Qa - 1)n+1)

Proof Since E |up(z) — u¥(z)[* > (N + 1)!©y11. The lower bound follows easily from
(4.11). On the other hand, we have

00 U(a)ntZan

E |ut(x) - U%N(x)|2 = :;_H C(n)r((QOé — 1)TL+ 1)
< CZ(N) U(a)NtQQN

(2 —1)N+1)’
proving the theorem. O

Remark 4 The above theorem implies in particular that when d = 1, E |uy(z) — ul¥ (z)[? is
of order N~N2. This is a very good approzimation.

Let us recall the distribution and test functional spaces of Meyer-Watanabe type.
Let F' € L5. Then F admits an Ito-Wiener chaos expansion

F=YF,. (4.13)

Let us denote by G the set of all finite sum of chaos, i.e. G; ={F: F=Y%_ F,}. Gsis a
dense subset of £,. We denote by D, the completion of Gy under the norm

k k
[F|2:=) (n+1)E (F?), where F=) F,.
n=0 n=0
Since the radius of convergence and the asymptotics as ¢ — oo of the series > 2 a,n"t" do
not depend on 7, the asymptotics of U(x) defined by (4.2) in the Meyer-Watanabe spaces
will be the same as in £2. Namely, we can extend Theorem 4.1 to the following theorem.
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Theorem 4.3 Let d < 4.
1) Letd <2, v€ R and let o =1 —df4. If |up(z)| < C < o0, then u(x) € D, for all
t>0 and

1 ) (2& _ 1)2a 1 ) 1/(2a-1)
hm Sup t?/(Tl) log {Séllgi ‘Ut(ﬂf) ‘7} S (WF(Q) . (414)
If up(xz) > C > 0, then

. 1 _ , (20 — 1)2717(2a) /> 7Y

2) Let d = 2. If |ug(z)| < C < oo, then when t < 2, u(x) is defined as an element in
D.,. If ug(xz) > C > 0, then when t > 2,

lug(z)|y =00 (4.16)
3) When d > 2, |u(z)|, = oo for allt > 0 if up(xz) > ¢ > 0 for some constant ¢ > 0.

Now we introduce a class of “flat” Ly type of spaces.
Let S, denote the completion of Gy under the norm
k k
IFN =D (n!)"E (F7), where F=)F,.
n=0 n=0
These spaces are not weighted (compare these with the distribution spaces introduced in
[21], [22]). For each element in this space, its n-th chaos is in L.
The following theorem deals with the solutions of (4.1) in S,

Theorem 4.4 Let d < 4. Then
1) Let vy <2a—1=1-4d/2. Then u(z) € S, for all t € [0,00) and x € R?. Moreover,
when |ug(z)| < C' < oo,

1 ) [(a)? =1

imsup s tog fsup @2 < Ga—1-) (i) - @)
When ug(xz) > C > 0,

1 ['(2c) 2=y

o log{ inf |[[us(2)]]12 } (20— 1) (W) L (4a18)
2) Let y =20 —1=1-—d/2. Then when |ug(z)| < C < oo and
o(4m) 4/ (4e)
< e
F(a)l/a
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the solution uy(z) exists in S, for all x € RY. When uo(z) > C > 0 and

20 (2m) /1)
” T(2a)700)
ui(z) is not an element of S, for any v € RC.
3) Let v > 2a—1 =1—d/2. If up(z) > C > 0, then w(x) is not in S, for any
(t,x) € Ry x R

Proof 'The proof is similar to that of Theorem 4.1 and is omitted. O

5 Space White Noise: d > 4

When d > 4, it is easy to see that f,(¢,z) defined by (4.3) is not in L*(T?) if ug(z) > C > 0.
Thus none of the chaos I,,(f,(t, x)) of ui(x) defined by (4.2) is in L.
Therefore we shall introduce a renormalization procedure. Let

wi(@) = [ Pz —yuly)dy.
Consider the following approximation of the stochastic heat equation

ou, 1
a—tt = §Aut + 'LUE(.’E) S Uyt - (51)

The initial condition ug(x) is given and is deterministic.
For all ¢ > 0, the solution to the above approximated equation exists in some S,. Its
Wiener chaos expansion is given by

i (&) = Prsolz) + i L(f2(t,7)). (5.2)
where
fitwiz,z) = Sy [ Pr@ =y P 0= ) P (2 = 00)
Po(y1 = 21) - Po(n — 20) Poy (1 — §)u0(§)dijdyds] (5.3)
and
Lfata) = [ faltzim,- mw(a) o ow(zn)da - dz. (5.4)

Theorem 5.1 1) Let d > 4. Let ug be bounded on R. Then for all A\ < 0, T’ ()\, \/Sd/Z_l) uf
is a uniformly bounded sequence in L2 with respect to € € (0,e ], t € (0,00) and x € R?.

2) Let d = 4. Let ug be bounded on R?. Then for all A < 0, T € (0,00) and x € R?,
r ()\, \/Tge) us is a uniformly bounded sequence in L? with respect toe € (0,e7'], ¢t € (0, 7]
and z € R%.
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Proof Let k1 = 2¢ and let

QE(K,Z' + Si+1 — Si + Ti+1 — T’i)
264+ Ki+ Siv1— Si+Tip1 — T

KRi+1 = i=1,2,---,n—1.

Similar to (3.5), we have

n—1
0, = AZ H (271'(/% + 26 4 841 — S + i1 — Ti))*d/2 (27_‘_(&” TSt — 8+ Tip1 — ,ri))*d/2 dsdr .

n =1

Similar to (3.7),

CretTin when d > 4
0, <

C™(—loge)™log(e +T)™ when d =4
The theorem then follows. o
An theorem analogous to Theorem 3.3 can be also stated and proved.

6 General Stochastic Heat Equations

In this section we will discuss the stochastic Heat equations when the Laplacian A is replaced
by a general elliptic operator. For simplicity we assume that the operator is of divergence
form.

Let a;;(x), 1 <4,j < d be measurable functions on R¢ and let A(z) = (aij(2))1<i j<a De
symmetric positive matrices for all z € R? such that

M<A@)<upl, V zerR,

where [ is the d dimensional unit matrix; A and g are two positive numbers. Let L =
>4, (% (aij (x)%) be the second order elliptic operator of divergence form with coefficient
A. Tt is known that the semigroup associated with L is given by a kernel of the form Q;(z—y).
Moreover the following Nash’s estimate holds (see [8], [27])

C1Pu1(z) < Qi(x) < CyPyuy(w), (6.1)

where p1, C1, pg, and Cy are positive constants; P; is defined as in the beginning of Section
2.
Consider the following stochastic heat equation

0
%:Luﬁ-wout, (6.2)

where w is a space white or space-time white noise, ug(z) is a given deterministic function.
All results obtained for Eq. (1.1) can be extended to (6.2) by (6.1). For instance, we can
state the following theorem
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Theorem 6.1 (1) If ws(x) is a space-time white noise, if d = 1 and if there is positive
constant > 0 such that |ug(z)| < py for all z € R, then

logE 2
i sup 108 E ()2

t—o0 t

<C, Vz€ER. (6.3)

If there is positive constant i, such that ug(xz) > py for all z € R, then

2
L JogE (ufo)]?)
t—o0 t

>C, VzeR. (6.4)

(2) Let ws(x) be a space white noise.
i) Let d <2 and let o =1 —d/4. If |up(z)| < C < o0, then

: 1 2
If ug(x) > C > 0, then
. 1 : 2
hgg)églft?a/(T—l) log {mléIRde |U/t($)| } 2 C. (66)

i) Let d = 2. If lup(z)| < C1 < o0, then there is a constant o > 0 when t < «, uy(x) is
defined as an element in L2. If ug(z) > Cy > 0, then when t > 3,

E |u(z)* = 00. (6.7)
i1) When d > 2, E |uy(z)|? = oo for all t > 0 if ug(z) > C > 0 for some constant C > 0.

Other results may be stated in a similar way.
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