

APPLYING PARTICLE SWARM OPTIMIZATION TO ESTIMATE PSYCHOMETRIC

MODELS WITH CATEGORICAL RESPONSES

BY

Zhehan Jiang

Submitted to the graduate degree program in the Department of Educational Psychology and the

Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Education.

John Poggio, Committee Chairman

William Skorupski, Committee Member

Lisa Wolf-Wendel, Committee Member

Jonathan Templin, Committee Member

Changming Duan, Committee Member

Date defended: Dec 11th , 2017

ii

The Doctoral Committee for Zhehan Jiang

certifies that this is the approved version of the following thesis:

APPLYING PARTICLE SWARM OPTIMIZATION TO ESTIMATE PSYCHOMETRIC
MODELS WITH CATEGORICAL RESPONSES

John Poggio, Committee Chairman

Date approved: Dec 11th , 2017

iii

Abstract

 Current psychometrics tend to model response data hypothesized to arise from multiple

attributes. As a result, the estimation complexity has been greatly increased so that traditional

approaches such as the expected-maximization algorithm would fail to produce accurate results.

To improve the estimation quality, high-dimensional models are estimated via a global

optimization approach- particle swarm optimization (PSO), which is an efficient stochastic

method of handling the complexity difficulties. The PSO has been widely used in machine

learning fields but remains less-known in the psychometrics community. Details on the

integration of the proposed approach to current psychometric model estimation practices are

provided. The algorithm tuning process and the accuracy of the proposed approach are

demonstrated with simulations. As an illustration, the proposed approach is applied to log-linear

cognitive diagnosis models and multi-dimensional item response theory models. These two

model families are fairly popular yet challenging frameworks used in assessment and evaluation

research to explain how participants respond to item level stimuli. The aim of this dissertation is

to fill the gap between the field of psychometric modeling and machine learning estimation

techniques.

iv

Acknowledgements

This work would not have been possible without the support of my family, faculty

members, and friends. I am grateful to all of those with whom I have had the pleasure to work

during my graduate study. This dissertation is a milestone from which I am to work hard and

delicately to become a better researcher.

v

Table of Contents
Abstract ... iii

Acknowledgements ... iv

Table of Contents .. v

Chapter 1: Introduction .. 6

Chapter 2: Literature Review .. 11

Log-linear Cognitive Diagnostic Model .. 11

 Multi-dimensional Item Response Theory ... 15

 Particle Swarm Optimization ... 17

Chapter 3: Method .. 22

 Hybrid PSO-EM Algorithm for LCDM Estimation ... 22

 Hybrid PSO-EM Algorithm for MIRT Estimation .. 27

Data Generation ... 28

Independent Variables ... 31

Software and Hardware ... 32

Dependent Variables.. 34

Chapter 4: Results ... 35

LCDM Results ... 36

 MIRT Results .. 39

Chapter 5: Discussion ... 43

References .. 49

Appendices ... 53

Tables ...

 Table 1 ... 15

 Table 2 ... 18

 Table 3 ... 26

 Table 4 ... 32

 Table 5 ... 32

 Table 6 ... 35

 Table 7 ... 37

 Table 8 ... 39

 Table 9 ... 40

 Table 10 .. 42

Figures ..

 Figure 1 .. 24

 Figure 2 .. 30

 Figure 3 .. 37

 Figure 4 .. 41

6

Chapter 1: Introduction

Psychometrics is the field of study connecting statistical analyses with the theory of

psychological measurement. In general, works of psychometrics can be categorized into (1) the

instrument construction and measurement process and (2) the improvement of measurement

theory. Broadly, most social science subjects, such as sociology, psychology, and education

require psychometrics to conduct analyses. Among others, areas, such as the measurement of

intelligence, personality, learning paths, and psychological diseases, deploy psychometrics more

frequently and therefore tremendous contributions on psychometrics development have been

stemmed from these fields. For instance, foundation psychometrics works are attributed to

intelligence assessment scientists such as Charles Spearman, L.L. Thurstone, Karl Pearson,

Georg Rasch, and Arthur Jensen (see Lyle, 2007 for the history of psychometrics).

Modern psychometrics has devoted more to models with latent structures, for instance,

exploratory factor analysis (Cudeck & MacCallum, 2007 ;Thurstone,1947), confirmatory factor

analysis (Joreskog, 1969), covariance structure analysis (Bock & Bargmann, 1966; Bollen, 1989;

Joreskog, 1970), item response theory (IRT; Lord & Novick, 1968; Thissen & Wainer, 2001),

and finally diagnosis classification modeling (DCM; DiBello, Roussos, & Stout, 2007; Henson,

Templin, & Willse, 2009). Among those, the latter two -DCMs and IRT- have gained substantive

attention and contributions more recently for the reason that they have provided advanced

modeling frameworks for research designs with categorical item responses.

DCMs have been developed to identify whether a student masters each attribute required

for solving corresponding items. For instance, addition, subtraction, multiplication, and division

are four common attributes defined in math ability assessment practice, where test items such as

“2+4-1” measure the first two attributes and “4x2/3” measure the last two attributes. In addition

7

to educational testing, DCMs are useful in psychological measurement. For example, literature

indicates that neuro-vegetative symptoms (NS) are a general construct that contains three

attributes: depression (DEP), fatigue (FAT), and sleeplessness (SLE) (Rabinowitz, Fisher, &

Arnett, 2011). Using DCMs allows researchers/practitioners to investigate the attributes for a

given patient. Applied works can be found in more topics, for example, Stefanutti, Anselmi, and

Robusto (2011) uses the DCM framework to construct leaning map, and Svetina, Dai, and Wang

(2017) study differential item functioning in accommodations via the DCM.

IRT, on the other hand, has already become the preeminent modeling paradigm in

educational and psychological measurement due to its longer development history. In large-scale

testing, IRT has played a dominant role in operational calibration and scoring. The development

and application of IRT models has been well-studied; for example, historical overviews can be

found in van der Linden and Hambleton (1997), Embretson and Reise (2000), Thissen and

Wainer (2001), among others. IRT models posit the probabilistic relationship between a person’s

latent ability and the probability of an item response. The modeling process links the theory

underlying the test, the administrative practices for distributing the test, and statistical modeling

so that a test can be constructed fairly and scientifically.

What distinguishes DCMs from IRT models is the latent variable assumption; IRT

models are able to provide scores for ordering students along latent a continuum, where DCMs

assume that the latent attributes are multiple categories (could be also binary). To be concrete, if

an math item, 10/4+5, is created to measure respondents’ fraction and subtraction knowledge,

IRT would produce numeric values based upon an artificial scale for each respondent, where

DCMs could provide the information about mastery or non-mastery on each attribute (i.e.,

subtraction and faction in this example). This discrepancy reflects on the specification of the

8

statistical models. That is, DCMs are essentially mixture models and IRT possesses integral part

in its likelihood functions.

Within each of the families, multi-dimensional item response theory (MIRT) models and

log-linear cognitive diagnosis models (LCDMs) are known to be more flexible and informative

than other variants of their kinds. However, as a trade-off, estimating these models tend to be

more difficult due to a complicated latent structure and a large number of parameters of interest.

These models are estimated in a number of ways. Perhaps the most often-used method is

marginal maximum likelihood (MML) estimation using the expectation maximization (EM;

Dempster, Laird, & Rubin, 1977) algorithm and some variants of this kind (e.g., Baker & Kim,

2004, Bock & Aitkin, 1981). For consistency purpose, this type of algorithms are all named as

the EM algorithm. The EM algorithm has been proved insufficient in multi-dimensional settings

such as MIRT models and LCDMs. For example, to estimate MIRT models, the EM algorithm

relies upon numerical integration to marginalize the likelihood function across the space of the

latent attributes. The integration process requires a set of discrete quadrature to approximate the

integral, so the number of quadrature points increases exponentially as the number of latent

attributes increases linearly. As a result, models with numerous quadrature points take

tremendous amounts of calculations to estimate yet often yield inaccurate results. Adaptive

quadrature has been developed to handle the computational deficiency by using fewer points (see

Schilling & Bock, 2005), but does not solve the problem completely. In terms of LCDM, the EM

algorithm is likely to encounter (1) local maxima and (2) label switching problems (Lao, 2016).

To be concrete, there will be multiple local maxima of the log-likelihood function that trap the

algorithms. Particularly, the EM algorithm is known to converge at local maxima instead of

global maxima, where only the latter provides legitimate estimates. Label switching, on the other

9

hand, leads to unreasonable interpretations of item parameters as well as disruption of the

converging process. Following an estimation method similar to the EM algorithm, the Quasi-

Monte Carlo integration (QMCEM) algorithm replaces quadrature points with pseudorandom

numbers (e.g., Niederreiter, 1978). Although the QMCEM algorithm is better suited to high-

dimensional integration, it is relatively slow in estimation time when compared with some fully

Bayesian estimation algorithms. In addition, the QMCEM does not fit the LCDM framework, as

the QMCEM is not devised to handle mixture models.

Different from the frequentist methods mentioned above, Bayesian algorithms are based

upon Markov Chain Monte Carlo (MCMC) process. The most frequently used Bayesian

algorithms are based upon two fundamental mechanisms: Gibbs sampling and the Metropolis-

Hastings (MH) algorithm. Gibbs sampling is used in situations where full conditional posterior

distributions of parameters can be derived in closed-form expressions, whereas the MH

algorithm uses a proposal distribution substituting the real conditional distribution to enable the

MCMC process (e.g., Lynch, 2010). In the current context, both Gibbs and the MH are not

effective solutions for a few reasons: (1) logistic link functions which are the used to model the

categorical responses given certain attribute(s) are difficult for constructing Gibbs samplers, (2)

he MH algorithm requires a rejection/acceptance decision for each parameter at each step of the

Markov chain and therefore the converging could be slow or nearly impossible at some

situations, and (3) particularly in the field of DCMs, the Bayesian approaches are not as widely-

adopted as those in the field of IRT.

Newer algorithms have combined Bayesian and maximum likelihood estimation with

stochastic approximation methods such as the Metropolis–Hastings Robbins–Monroe (MHRM)

Algorithm (e.g., Cai, 2010). Similarly, Hamiltonian Monte Carlo, a hybrid of the MH algorithm

10

and Hamiltonian dynamics stochastic process, has gained researchers’ attention in recent years

(HMC; see Brooks, Gelman, Jones, & Meng, 2011; Hoffman & Gelman, 2014). In each iteration

of the algorithm, the values of parameters are said to “leap frog” to states closer to their posterior

densities, short-cutting the time the MH algorithm takes by avoiding proposal values that are

ultimately rejected. Once new values are proposed, the HMC algorithm uses MH to accept/reject

proposals. Both MHRM and HMC, compared with general MH algorithms, leads to a more

efficient Monte Carlo sampler. The drawback is that these methods are mathematically difficult

and therefore not as approachable as the EM algorithm. The estimation times for both

approaches will be much larger for lower dimensional problems when compared to the EM

algorithm. In addition, the log-likelihood calculation requires extra steps and can be unstable.

Finally, the parameter estimates will not be identical between different estimations (Chalmers,

2012).

This dissertation proposes a global optimization approach- particle swarm optimization

(PSO; Eberhart & Kennedy, 1995)- to handle the psychometric model estimations. The PSO is

an efficient stochastic method that has been widely used in machine learning field but remains

less-known in the psychometrics community. The proposed technique is a “derive-free” mean

that can be embedded to other algorithms such as the EM algorithms and the MH sampling.

Overall, the hypotheses are 1) this novel estimation technique can be used in psychometric

models, 2) the estimation results would be equally and/or more accurate the some traditional

approaches. 3) parallel computing facilities can be applied to the proposed estimation, and 4)

tunings of the proposed estimation approach would yield results differently in various ways such

that customized guidelines can be provided in this particular case.

11

Chapter 2: Literature Review

 Psychometric models of intelligence are generally concerned with the structure and

organization of attributes of interest; they focus on conceptions of attributes that depend

exclusively on the basis of designed tests as measures of individual differences, and the models

are derived from statistical manipulations of scores obtained within and across the tests. In the

past five decades, classical test theory has been rapidly expanded in various directions (Crocker

& Algina, 1986). Specifically, as the focus in data analysis is moving from univariate to

multivariate procedures, the statistical modeling of test data is becoming more complex

involving structural equation modeling (SEM), or modeling with modern test theories such as

item response theory (IRT) and diagnosis classification modeling (DCM). Fitting a complex

psychometric model relies on the ability to accurately estimate the model parameters, which can

be realized with the availability of enhanced computational technology and the emergence of

advanced statistical estimation methods. The two psychometric models- log-linear cognitive

diagnostic model and multidimensional item response theory model- are reviewed. In addition,

particle swarm optimization is introduced in details. The concepts and mathematical expressions

are presented along with the models and estimations.

Log-linear Cognitive Diagnostic Model

Recent advances in model development have produced general diagnostic models, for

instance, generalized Deterministic Input; Noisy “And” gate model (G-DINA; de la Torre 2011),

General Diagnostic Model (GDM; von Davier, 2005), and Log-linear Cognitive Diagnosis

Model (LCDM; Henson, Templin, & Willse, 2009). A LCDM (G-DINA or GDM) provides great

flexibility such as 1) subsuming most latent attributes, 2) enabling both additive and non‐

additive relationships between attributes and items simultaneously, and 3) syncing with other

12

psychometric models, increasing insightfulness. Rupp, Templin, and Henson (2010, p.163)

proved that LCDM can be converted to core DCMs such as Deterministic Input; Noisy “And”

gate (DINA; Junker & Sijtsma, 2001), Noisy Input; Deterministic “And” gate model (NIDA,

Junker & Sijtsma, 2001), and the Reparameterized Unified Model (RUM, Hartz, 2002), whereas

examples of disjunctive models include the Deterministic Input; Noisy “Or” gate model (DINO,

Templin & Henson, 2006). Throughout the article, the general diagnostic model is referred as a

LCDM for consistency purpose.

As a member of latent class models, a LCDM is mathematically defined as:

���� = ��� = 	
��
 �������1 − ���������
��

��� ���
��� , (1)

where �� = ����, �� , … , ��"� is the correct/incorrect response vector of respondent p on a test

comprised of #� items, and element ��� is the corresponding response on item i. �� is the

probability of membership in latent class c, and ��� is the probability of correct response to item

i by respondent p in the class. Extended from Equation 1, the log-likelihood function for a

random sample of size #$ can be expressed:

%&'% = 	 (&')	
��
 �������1 − ���������
��

��� ���
��� *�+

��� . (2)

To simplfy computational efforts, Equation 2 is often re-written as:

%&'% = 	 (&' -	 ./01
(&' ���� + (&' �
 �������1 − ���������
��

��� ��3��
��� 4�+

��� , (3)

13

where (&' �∏ �������1 − �������������� � can be further converted to ∑ (&' ��������1 − ��������������� .

Suppose there are #7 attributes. The cognitive state of a respondent is denoted by

attribute vector 8 = �9�, 9 , … , 9�:�, where each element in 8 is a 1/0 binary variable indicating

whether a respondent has mastered ;th attribute 9>. There are a total number of 2�: possible

attribute patterns (i.e., classes). To illustrate, a respondent 1 with a pattern 8 = �0, 1, 1, 0 � has

mastered the second and the third attributes, but not the first and the forth ones. Similarly, if the

pattern becomes 8 = �1, 1, 1, 1 �, it means the respondent has mastered all attributes. To identify

attributes that are required to solve each item, content experts provide a Q-matrix of size #� ∗ #7,

where #� and #7 are the numbers of items and attributes in a test respectively. The �B, ;� entry of

the Q-matrix C�> is 1 when item i is associated with attribute ;, and otherwise C�> = 0. Given

respondent p’s attribute pattern is 8D, the conditional probability of item i can be stated as:

��� = ����EF8D� = exp JK�,L + M�NO�8D, PQ�R1 + exp JK�,L + M�NO�8D, PQ�R , (4)

Where PQ is the set of Q-matrix entries for item i, K�,L is the intercept parameter, where MQ
represents a vector of size �2�: − 1� ∗ 1 that contains main effect and interaction effect

parameters of item i, and O�8D, PQ� is a vector of size �2�: − 1� ∗ 1 with linear combinations of

the 8D and PQ. Particularly, M�NO�8D, PQ� inside the exponent function can be expressed as:

M�NO�8D, PQ� = 	 K�,�,�>�α�>C�>
�:

>�� + 	 	 K�, ,�>,>T�α�>α�>TC�>
�:

>TU�>�� C�>T + ⋯ ,

(5)

14

Where K�,�,�>� and K�, ,�>,>T� are the main effect for ;th attribute 9> and a two-way interaction

effect for 9> and 9>T. Since elements of 8D and PQ are binary, O�8D, PQ� contains binary

elements, which indicate effects needed to be estimated. For an item measuring A attributes, A-

way interaction effects should be specified in O�8D, PQ�. Table 1 shows a concrete example of a

measure with three attributes: Item 1 that measures 9� only has two estimates, where Item 3

measuring all three attributes has 8 estimates in total.

The item parameters, however, do require monotonicity constraints; otherwise the LCDM

estimation is likely to encounter (1) local maxima and (2) label switching problems (Lao &

Templin, 2016). To be concrete, without the constraints, there will be multiple local maxima of

the log-likelihood function that trap the estimation process. Particularly, the EM algorithm- a

dominant method in DCM estimations- is known to converge at local maxima instead of global

maxima, where only the latter provides legitimate estimates. Label switching, on the other hand,

leads to unreasonable interpretations of item parameters as well as disruption of the converging

process. Rupp, Templin, and Henson (2010) outlined the parameter constraint approach, for

example, ensuring the positive-ness of MQ,Win Equation 5 and forcing the 2-way interaction effect

K�, ,�>,>T� to be bigger than the corresponding negative main effects -K�,�,�>� and -K�,�,�>T�.
Evidence suggests that the parameter constraint approach would decrease of risk of reaching

local maxima and keeping label consistency (Lao & Templin, 2016), however, the constrained

true sampling space remains unknown due to mathematical complexity.

15

Table 1. Formula Expression Example of a Log-linear Cognitive Diagnosis Model

Item 9� 9 9X Complete K�,L + M�NO�8D, PQ� Expression Simplified Expression

1 1 0 0

K�,L + K�,��1� + K�, �0� + K�,X�0� + K�,� �1 ∗ 0�+ K�,�X�1 ∗ 0� + K�, X�0 ∗ 0�+ K�,� X�1 ∗ 0 ∗ 0�

K�,L + K�,��1�

2 0 1 1

K ,L + K ,��0� + K , �1� + K ,X�1�+ K ,� �0 ∗ 1� + K ,�X�0 ∗ 1�+ K , X�1 ∗ 1�+ K ,� X�0 ∗ 1 ∗ 1�

K ,L + K , �1� + K ,X�1� +K , X�1�

3 1 1 1

KX,L + KX,��1� + KX, �1� + KX,X�1�+ KX,� �1 ∗ 1� + KX,�X�1 ∗ 1�+ KX, X�1 ∗ 1�+ KX,� X�1 ∗ 1 ∗ 1�

KX,L + KX,��1� + KX, �1� +KX,X�1� + KX,� �1� +KX,�X�1� + KX, X�1� +KX,� X�1�

Multi-dimensional Item Response Theory

Item Response Theory (IRT; Lord & Novick, 1968; Thissen & Wainer, 2001) has several

variants in both unidimensional and multi-dimensional contexts: they are the Rasch model (i.e.,

1-PL), 2-PL, 3-PL, and finally 4-PL. What differentiates these variants is the number of

parameters for each item. For example, 2-PL requires difficulty (intercept) and discrimination

(main effect) parameters to be estimated for each item, where 3-PL has an extra parameter-

guessing-in addition to a 2-PL model. Practically, 2-PL has been a reasonable choice, and

therefore, throughout the dissertation, the IRT model is referred as a 2-PL model, which is akin

to the expressions defined in the LCDM context. In a MIRT model, since

16

According to the IRT definition that the latent attributes are assumed to follow a

multivariate normal distribution, the equation for the probability of the score response for a

respondent is defined as:

���� = ��� = b
 �������1 − �����������
���

cd
�d e�fg� dfg, (6)

where e�f� is the probability density function for a vector f, which is the latent attributes for

respondent p. Other than f and its related terms, �� = ����, �� , … , ��"� is again the

correct/incorrect response vector of respondent p on a test comprised of #� items, element ��� is

the corresponding response on item i, and finally ��� is the probability of correct response to

item i by respondent p. It can be seen that, compared with Equation 1, the measurement part

∏ �������1 − �������������� remains identical where the structure part- '�f� and ��-are presented

differently. In order to marginalize the likelihood function across the space of the latent

attributes, the integral should be evaluated through an approximation procedure, as it has no

closed-form solutions. The Q-matrix applies to MIRT models in an identical way to that of

DCMs. However, to distinguish the LCDM whose attributes are in binary scale, the attributes in

MIRT models are represented by f = �i�, i , … , i�:� where the number of attributes is #7. For

the simplicity purpose, let f ~ kl#�m, ng� where MVN represents a multivariate normal

distribution, m means that the latent attribute means are all zeros, and ng is a correlation matrix.

When the number of attributes is small, for example, lower than five, Gauss-Hermite quadrature

can be used to integrate f. The expression for the quadrature integral is:

17

���� = ��� ≈ 	 …�pq
r�s�� 	 	
 �������1 − �����������

���
�pq

r��� t�ur��t�ur � … t�ur�s�,�pq
r �� (7)

where #rv is the number of quadrature points, ur> is the value of a quadrature point for attribute

a, t�ur>� is a weight that is related to the height of the normal density function at the attribute

a’s quadrature point value and the distance between the quadrature points.

Given respondent p’s attribute vector is f�, the conditional probability of item i can be

stated as:

��� = ����EFf�� = exp JK�,L + M�NO�f�, PQ�R1 + exp JK�,L + M�NO�f�, PQ�R , (8)

where PQ, K�,L , and MQ are identical to what are defined in Equation 3. Similarly, M�NO�f�, PQ� can

be expressed as:

M�NO�f�, PQ� = 	 K�,�,�>�i>C�>
�:

w�� + 	 	 K�, ,�>,>T�θ>θ�>TC�>
�:

>TU�>�� C�>T + ⋯ ,

(9)

where K�,�,�>� and K�, ,�>,>T� are the main effect for ;th attribute i> and a two-way interaction

effect for i> and i>T.
Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a stochastic algorithm that belongs to the

Swarm Intelligence methods family. Inspired by the social behavior of bird flocking and fish

schooling, Eberhart and Kennedy (1995) proposed PSO to find solutions to optimization

18

problems, such as numerical integration and the travelling salesman problem (see Dorigo &

Gambardella, 1997; Djerou, Khelil, & Batouche, 2011 for details). The term ‘particle’ represents

a natural agent that possesses swarm behaviors (i.e., the ability of performing social interaction).

Examples of swarm behaviors include (1) improving the estimation accuracy of particle

themselves to expected levels and (2) interacting with their neighborhood. In the sense of

estimation, each particle stochastically explores permissible space to yield the optimal solution.

The PSO is particularly useful when solutions do not exist analytically or specifically have been

proven to be theoretically intractable.

Table 2. Reference Labels for PSO Terminology

PSO Terminology Meaning Reference

Particle A vector containing parameters

estimates- a candidate solution vector

Vector of the estimates

(My�

Velocity A vector updating the parameter

estimates

Vector of update steps

(z1{;|/}�

Inertia Weight Direction of the vector of update steps Update direction parameter

(w)

Learning/Acceleration

Factor

Coefficient for avoiding the premature

convergence

Update correction

parameter (c)

The concept of the PSO algorithm, although straightforward, is confusing when it is

addressed with psychometric models. In particular, the terms and meanings of the PSO

components are not familiar to researchers in the field of measurement if not all social sciences.

To keep the reading flow consistent, Table 2 provides the references for the PSO components

and therefore, for the rest of the dissertation, the components are called in accordance with the

forth column of Table 2; for instance, the term “particle” would be called as “vector of the

19

estimates”. And similarly, the parameters used to alter the (1) direction and the (2) correction of

the update steps for next iteration are called (1) update direction parameter and (2) update

correction parameter, respectively. In addition to the reference names, mathematical symbols are

often listed in Table 2 such that expressions in the next sections match Equations 1 to 9.

Throughout the dissertation, given the parameters of interest is M, the same symbol is

used represent a vector of the estimates for the sake of consistency. The strategy of the PSO

algorithm is outlined as follows: each vector of the estimates l represents a candidate solution to

the optimization problem in a D-dimensional space, where the current solution and the vector of

update steps of the vector of the estimates are presented by M} = �K}�, K} , … , K}~� and

���w��} = �z1{;|/}�, z1{;|/} , … , z1{;|/}~�. To be concrete, let’s assume there are three

vectors of the estimates (i.e., three candidate solutions) and follow the similar fashion to Table 1,

if at a certain step the computation is about estimating the second item’s parameters K ,L and

K ,��, three vectors of the estimates M}��, M}� , and M}�X would produce three sets of the

estimates for M = �K ,L, K ,���. Similarly, the vectors of update steps (z1{;|/}� have the same

vector format as the vectors of the estimates. Note that in parallel computing framework, each

particle can be allocated to a processing unit such that multiple particles can be executed

simultaneously. The vector of update steps (z1{;|/}� is the changing step of M} from its current

solution to a future one. In addition, as the PSO algorithm stores information from its iteration

history, the optimal solution of particle l (local best; M������) and the optimal solution across all

particles (global best; M�����) are used to guide velocity updates. Mathematically the iterative

updating of velocity and solution can be expressed as:

z1{;|/}�� = �� ∗ z1{;|/}���� + ����� JK��������� − M}����R + � � � JM��������� − M}����R, (10)

20

K}�� = z1{;|/}�� + K}����,
where K}�� and z1{;|/}�� are the vector l of the estimates and its corresponding vector of update

steps at iteration t. Parameters �� and � are learning/acceleration factors for the local and the

global best solution vectors; these c exclusively situated in the range of 2 to 4. Parameter �� is

called inertia weight �0 ≤ � ≤ 1� that can be adaptively changed along iterations. The function

of w is, again, changing the direction of t z1{;|/. Finally, ��and � are random numbers sampled

from 0 to 1 independently. Tremendous variants of the PSO (hybrid PSO) have been proposed to

improve the algorithm performance, for example, manipulating parameters D and �, mutation of

the vector of the estimates, and adaptively tuning the vector of the estimates (Guedria, 2016; Lee

& Ko, 2009; Maitra & Chatterjee, 2008).

 In this dissertation, the proposed estimation is based upon the PSO, which has been

widely used in machine learning fields but remains less-known in the psychometrics community.

As discussed in this chapter, psychometric models such as the two that are referred to here

having complex model specifications, which result in certain estimation difficulties. In addition,

traditional approaches always involved deriving processes for obtaining the first- and the second-

derivatives of the parameters of interest, which are mathematically demanding per se; if there are

constraints adding onto the models, the difficulty of deriving processes becomes substantive. In

practice, although many researchers and psychometricians have solid statistics backgrounds, they

are not necessarily skilled enough to derive the mathematical formulas needed for the estimation.

The PSO can be used to circumvent the requirement and provide precise results. The objective is

integrating the PSO into psychometric model estimations. As addressed previously,

psychometric models, such as LCDMs and MIRT models, have difficulties in their item

21

parameter estimates due to the dimensionalities. The PSO is a stochastic derive-free technique

that can be a feasible solution for the aforementioned problems.

22

Chapter 3: Method

 The Particle swarm optimization (PSO) is also an important soft computing algorithm,

which models the behavior of a flock of birds. It utilizes a population of particles to represent

candidate solutions in a search space, and optimizes the problem by iteration to move these

particles to the best solutions with regard to a given measure of quality. The PSO is customized

to estimate the aforementioned models. Particularly, the details about embedding the PSO into

the EM algorithm is provided with pseudo code and plain-text explanations. This customized

PSO was constructed, tested, and compared via simulation studies in the R environment, in

which multiple conditions were created through Monte Carlo approach and therefore the

proposed algorithm is examined comprehensively such that instructional recommendations can

be present.

Hybrid PSO-EM Algorithm for LCDM Estimation

The proposed algorithm is called the hybrid PSO-EM (HPSOEM) algorithm. As the

name indicates, it integrates the properties of the hybrid PSO into the EM algorithm. That is, the

hybrid PSO is used to replace the item parameter updates within the aforementioned M step.

That is, not the entire M step is replaced by the PSO. Pseudocode of the HPSOEM algorithm for

the LCDM is outlined in Figure 1. Explanation about the steps is present in the following

paragraphs.

Step 2 outlines user-defined configurations of the HPSOEM algorithm: Meeting either

condition- (1) maximum iteration number or (2) minimum variance of log-likelihood of all

solution vectors’ local optimum- would stop the estimation. Like any algorithm, setting the

maximum iteration number is necessary in real estimation practice. The unique part of the

23

proposed algorithm is using the minimum variance of log-likelihood of all solution vectors’ local

optimum to investigate converging status. The swarm effect brings particles to the space of the

optimal solution such that eventually they all end up being identical.

Providing appropriate initial values, as mentioned in Steps 3 and 4, is helpful for starting

the HPSOEM algorithm. The results obtained from the EM algorithm can be used to serve as

starting values of one vector of the estimates. This vector of the estimates allows update steps to

start from numerical space better than that of arbitrary. Note ���w�� in Step 4 is essentially a

matrix; each ���w��} for (= 1, … , #} within the matrix is a column vector contains a set of

update step values. After obtaining item parameter estimates from PSO, M�, with Equations 4 and

8 one can calculate ���� . Then the computation switches to E-step, that is, conditioning on �, the

posterior class probability for a respondent ��� F ��� is updated as:

��� F ��� = ����� ∏ ����1 − ���������"���∑ ����� ∏ ����1 − ���������"�������� ,
where again, subscripts t, i, c, and p represent the iteration, item, latent class, and person

respectively; this is recorded in Step 6. Step 7 calculates the probability of membership �� based

upon ��� F ���� from the previous step via:

���� = 	 ��� F �����
��� .

The marginal probability of class membership �� is obtained by aggregating distribution on

individual level.

24

Figure 1. Hybrid PSO-EM Algorithm Pseudo Code

25

In addition, when a solution violates the model constraint, its corresponding log-

likelihood will be penalized to a certain degree. The larger the penalty is set, the less frequently

the algorithm explores the solution vector’s neighbor space. Update direction parameter (w)

being set to be adaptive as Step 11 shows could “control the impact of the previous history of

velocities on the current velocity and to influence the trade-off between global and local

exploration abilities” of the updating particles (Kim & Li, 2011). In other words, balancing the

explorations between global and local space, the adaptive strategy can effectively shorten

converging time. The key element of the “hybrid” aspect is integrating the mutation idea, which

is borrowed from evolutionary theory: mutation takes place when an organism needs to survive

and have more offspring in a changing environment. In fact, this algorithm is named the

evolutionary algorithm (EA). The essence is, if a vector of the estimates has violated the model

constraint for a pre-defined count consecutively, as Step 14 shows, this solution vector will be

replaced by mutating from its local optimum and global optimum estimates, while its vector of

update steps will be reinitialized by random generation. The means of mutation can be found in

EA literature (Zhang, Sun,& Tsang, 2005; Shukla, Hazela, Shukla, & Mishar, 2017). In this

dissertation, mutation of a solution vector is created by randomly selecting a half of the solution

vector from the local optimum and the other from the global optimum.

To better understand how the algorithm works, a tutorial-based but also simplifed

example is provided here. Let the situation to be simple as five items (#� = 5�, two attributes

(#� = 4�, and four respondents (#� = 4�. The first two items measure the first attribute only,

the third and the forth items measure the second attribute, and the last item measures both

attributes. Given two attributes leading to three classes, the formula expressions can be seen from

Table 3 and the parameters of interest M = �K�,L, K�,�, K ,L, K ,�, KX,L, KX, , K�,L, K�, , K�,L, K�,�, K�, , K�,� �. If

26

the number of candidate solution vector is 3 (#} = 3), each of the solution vector contains

estimates for M. The algorithm starts from the first iteration (t=1) by assigning some random

values to (1) M}�����, M}� ���, and M}�X���, (2) their vectors of update steps ���w��}�����, ���w��}� ���, and

���w��}�X���, (3) ����� for c=1,…, 3. Assume the log-likelihood values of three vectors of the

estimates at t=1 were -80,-90, and -70, then the global optimal solution was M}�X���, where the local

optimal solutions were simply M}�����, M}� ���, and M}�X���, given there was only one record in each

iteration history. The wining solution vector M}�X��� was proceeded to execute the E-step and M-

step at t=2; that is, ���� and ��� F �����
 for c=1,…, 3. The Update vectors were altered using the

local and global optimal solution vectors, for example, ���w��}���� was changed by M}����� and M}�X���, in

addition to c, r and w parameters. With the functionalities of ���w��}���� , M}���� was updated and

similar idea applies to other two solution vectors. If the log-likelihood values of three vectors of

the estimates at t=2 were -88,-60, and -65, the global optimal solution vector became M}� �� , where

the local optimal solution vectors for (=1,2,3 became M}�����, M}� �� , and M}�X�� . Assume at iterations

10 to 15 that M}�� had failed to yield a larger log-likelihood value than its local optimal solution

in the iterating history, a new M}������ would be constructed via the aforementioned EA procedure.

To emphasize, this paragraph skips several steps in Figure 1 for illustration purpose.

Table 3. Formula Expression Example of a Log-linear Cognitive Diagnosis Model

Item 9� 9 Simplified Expression

1 1 0 K�,L + K�,�

2 1 0 K ,L + K ,�

3 0 1 KX,L + KX,

4 0 1 K�,L + K�,

5 1 1 K�,L + K�,� + K�, + K�,�

27

Hybrid PSO-EM Algorithm for MIRT Estimation

 As mentioned earlier, MIRT models contains an integral over f� where closed-forms do

not exist. To handle the issue, numerical approximation approach- generating and evaluating

quadrature points-is adopted. In the uni-dimensional IRT framework, the quadrature points can

be selected simply from -4 to 4 in increments of 0.2 such that 99.9% of the probability mass is

covered. In other words, in the uni-dimensional case, ���� = ��� in Equation 7 can be re-

written as ∑ ∏ �������1 − ���������������pqr��� t�ur��, where #rv is 40. Similarly, in MIRT models,

the quadrature points from multidimensional space should be generated and evaluated. However,

instead of taking the values from a continuum, the quadrature points in MIRT should be sampled

from a grid constructed by all attributes. If #>is two, the grid becomes a plane where x-axis

holds the points of the first attribute and y-axis holds those of the second attribute. When #> is

larger than three, the grid becomes a hyper-plane. As f is assumed to follow kl#�m, ng� which

allows attributes across dimensions to be sampled simultaneously, the approximation of

���� = ��� can be simplified to ∑ ∏ �������1 − ���������������pqr�� �¡P�, where �¡P�, the

corresponding weights as a set of normalized ordinates of the quadrature points from the

population distribution e�f¢�, can be defined as e�¡P�/ ∑ e�¡P��pqr�� .

 Bock and Aitkin (1981) further derived the height of the posterior distribution at

quadrature point ¡P for a given respondent p at an item i can be approximated via:

��¡r|��� ≈ �������1 − ��������� �¡P����� = ��� . (8)

28

On the other hand, give the complete data log-likelihood for the item parameters M can be

expressed as:

%&'%�M� ≈ 	 	 ��� log����� + 	 	�1 − ���� log�1 − ������
���

�+
���

��
��� ,�+

���

(9)

The conditional expected complete data likelihood given item parameters can be approximated

by:

% ≈ 	 	 	 ��� log��r�� ��¡r|��� + 	 	 	�1 − ���� log�1 − �r���pq
r��

��
���

�+
���

��
��� ��¡r|����pq

r�� .�+
��� (10)

Note that in the MIRT context, the number of parameter constraints is less than that of the

LCDMs. In particular, MIRT models merely require main effects to be non-negative, where the

LCDMs also set dependencies on interaction terms, if there is any. Given there is no class

membership in MIRT models, Step 20 in Figure 1becomes inappropriate; this line should,

instead, be placed by generating and evaluating quadrature points as Equations 8 and 9 illustrate.

Data Generation

Simulation studies were conducted to examine the application of the HPSOEM to

psychometric model estimation. The simulations are based upon the Q-matrix provided in

Templin and Bradshaw (2014; reproduced in Table 4). As one finds, there are four attributes and

28 items in total. Each item measures one or more attributes; that is, indicators can be cross-

loaded in multiple latent traits simultaneously, for example, Item 1 measures the first attribute

only, while Item 22 measures the second and the forth attributes. Provided the Q-matrix, LCDMs

and MIRTs were selected to be the simulation frameworks.

29

In the first study, responses (i.e., simulated datasets) were generated via LCDMs.

Particularly, item intercepts were randomly generated from [-1, 1], main effects were drew

uniformly from [1.5, 3], and interaction terms were sampled from a uniform distribution of

which range is [-1, 1.5]. The situations where item parameters violate the aforementioned

constraint rules, the generation would re-start until the values produced are in permissible

numeric space. The constraint rules for the Q-matrix can be found in Appendix 1. Given the

number of attribute is 4 and the sum of membership probabilities is 1, there are 16 classes in total

and the probability of membership was set equal (i.e., [1/16, 1/16, …, 1/16]).

 The second study used MIRT models to generate responses. Item parameters were

produced in an identical way to those of the first study. Different from LCDMs, MIRT models

assume that attributes follow a multivariate normal distribution. Therefore, in the second

simulation study, the latent attributes were generated from multivariate normal distributions. For

simplicity purposes, the means of the distribution were all set to 0, the variance components were

all set to 1, and all covariance components (i.e., correlations) were set to 0.6.

 Note that the given Q-matrix in the LCDM context implies parameter constraints listed in

Figure 2. The expression rules follow the conventions proposed by Rupp, Templin, and Hensen

(2010, p. 206). That is, (1) l simply represents K, (2) the number before symbol _ indicates item

number, (3) the first number after symbol _ represents item effect name, where 0,1,x are the

labels of intercept, main effect, and x-way interaction effects respectively, (4) the remaining

numbers identify items that contain attribute interaction, if there is any. To illustrate, l9_0

represents the intercept of Item 9 and l9_213 represents the 2-way interaction effects between the

first and the third attributes. According to Rupp, Templin, and Henson (2010), in addition to

ensuring the non-negativity of the main effects that are shown in the left panel of Figure 2, the

30

interaction constraints are also set in the right panel. For the MIRT models, only left panel

applies.

Figure 2. Parameter Constraints of the Q-matrix

31

Table 4. Q-matrix used for the Simulation Study

Item No. Attribute1 Attribute2 Attribute3 Attribute4

1 1 0 0 0

2 0 0 1 0

3 0 1 0 0

4 1 0 0 0

5 1 0 0 1

6 0 1 0 0

7 1 0 0 0

8 0 0 1 1

9 0 0 1 0

10 0 0 1 0

11 0 0 1 0

12 1 0 0 0

13 1 0 0 1

14 1 0 0 1

15 1 0 0 1

16 1 0 0 1

17 1 0 0 0

18 0 1 0 1

19 1 1 0 0

20 0 1 0 1

21 0 1 0 1

22 0 1 0 1

23 1 0 0 0

24 1 1 0 0

25 1 1 0 0

26 0 0 1 0

27 1 0 0 0

28 1 1 0 0

Independent Variables

The parameters consisted in the HPSOEM were controlled in the simulation studies: (1)

the number of particles #�>¦, (2) the penalty of violating constraints %%��§>}��, and (3) the

particle updating parameters ���, �). Note that inertia weight IS NOT an independent variable in

32

the simulation studies, because it has been proved that setting to adaptive inertia weight works

more efficient than other combinations across various computational tasks (Kessentini &

Barchiesi, 2015; Rezaee & Jasni, 2013; Kim & Li, 2011). Let ��=�¨>© −
ª«¬¬­®¯°±²³´°±²³ ��¨>©, �¨�§), while ��¨>©, �¨�§� was set to (0.9, 0.4). To make simulation studies

manageable as well as meaningful practically, the conditions of independent variables, listed in

Table 5, were selected based upon configurations suggested by published works (Clarke, Al-

Abdeli, & Kothapalli, 2014; Malekpour, & Seifi, 2010). In particular, %%��§>}�� was presented as

multipliers: the actual penalty was calculated by multiplying the pre-defined values to log-

likelihood of current iteration. Note that setting the multiplier to zero is equivalent to no penalty.

In total, there are 3x3x3=27 simulation conditions.

 Table 5. Independent Variables of the Simulation Studies

Variable Pre-defined Values

#�>¦ [50, 100, 200]

%%��§>}�� Multiplier [0, 0.5, 1]

���� = � � [0.5, 1, 2]

Software and Hardware

 R environment (R Core Team, 2017) was used to conduct the simulation study. Currently

R is one of the world's most popular programming languages due to its cost-free property,

flexible extensions, rapid package updates, and active community supports (Robers, Best, Dunn,

Treml, & Halpin, 2010). Throughout the paper, data generation and the algorithm comparisons

were executed in R. The HPSOEM stopping criteria was set to either (1) the variance of particles

33

becomes less than 0.01 or (2) the number of iterations reaches to 10000. On the other hand,

Mplus, known as a toolkit for numerous statistical estimations, has been widely cited in a large

body of published social and psychological research works (see DeMars, 2016; Eckes& Baghaei,

2015; Matlock, Turner, & Gitchel, 2016). Appendix 2 shows the R code for the proposed

algorithm. To verify the precisions and utility of the proposed algorithm, Mplus was used to

estimate both LCDMs and MIRTs on the simulated data. The Mplus stopping criteria was set to

either (1) the log-likelihood change from last iteration becomes less than 0.001 or (2) the number

of iterations reaches to 10000. In order to execute Mplus in R environment, a packaged called

MplusAutomation (Hallquist, & Wiley, 2011) was implemented. MplusAutomation enables R to

communicate with Mplus such as streamlining Monte Carlo simulation studies and the

comparisons of many models can become plausible. Specifically, MplusAutomation provides

routines to 1) create and manage syntax for groups of related models, 2) automate the estimation

of many models; and 3) provide tools to extract and compare model fit statistics, parameter

estimates, and present model outputs.

 In terms of hardware, the machine used in the simulation tasks was a Lenovo IdeaPad

with 16GB RAM and a 2.6 GHz i7 6th Gen 4-core Intel processor as well as NVIDIA GeForce

GTX 960M GPU. Given the availability of multiple cores, parallel computing was set default in

both R and Mplus. Note that in R, the Graphic Processing Units (GPUs) were implemented to

replace the Central Processing Units (CPUs) as recent studies have shown that the GPUs are

more efficient when basic math calculation is executing in a parallel computing facility

Dependent Variables

34

To understand the estimation accuracy of the proposed estimation method and

constrained EM algorithm in Mplus, (1) model parameter bias and relative mean squared error

(RMSE), (2) log-likelihood values, (3) the number of iteration to convergence and computational

time were recorded for each replication. As each given condition was replicated 500 times, the

results were represented by the means of the replications. In particular, the bias is calculated as:

·B;¸¹ = ∑ ∑ �º»�¦ − º�������¼¦�� ½# = º»�̅¦ − º�.
and RMSE is obtained by

½k¿À¹ = Á∑ ∑ �º»�¦ − º�������¼¦�� ½#Â

where Ne is the number of elements in the set of º and R is the number of replication. Note that

the number of iteration to convergence and computational time are essentially measuring the

same quality- the speed of the proposed algorithm; these values would expected to have

substantive differences on different machines. The results are present in the following chapter.

35

Chapter 4: Results

Accordingly Table 5, there were 3x3x3=27 simulation conditions . This chapter begins

with the LCDM simulation followed by those of the MIRT models. Using Monte Carlo

simulation, a computerized mathematical technique that allows people to account for unknown

qualities of an estimation or approach in quantitative analysis and decision-making, was

implemented to examine the features of the proposed estimation. The outcomes are presented

with the following order: (1) relative item parameter bias and relative mean squared error

(RMSE), (2) log-likelihood, (3) the number of iteration to convergence as well as computational

time. For reference purpose, Mplus results were demonstrated along with those of the proposed

algorithm. The complete results can be found in Table 6. However, Table 6 is complex as the

outcomes were listed in a multidimensional setting. To understand the results better, in this

chapter, the results are be addressed case by case. Along with the results, recommendations are

provided such that the instructional values of the current simulation could be emphasized.

Table 6. Complete Simulation Across 27 Conditions and 3 Outcomes.

Updating
Parameter

Penalty
Multiplier

Particle
Number

 Iteration Number
Convergence Time
(mins)

 LCDM MIRT LCDM MIRT

c=0.5 %%��§>}�� = 0.0 #�>¦ = 50

382 469 87.94 147.83

c=0.5 %%��§>}�� = 0.0 #�>¦ = 100

343 414 80.79 135.3

c=0.5 %%��§>}�� = 0.0 #�>¦ = 200

338 400 78.4 131.74

c=0.5 %%��§>}�� = 0.5 #�>¦ = 50

309 376 72.85 129.6

c=0.5 %%��§>}�� = 0.5 #�>¦ = 100

292 376 65.11 126.44

c=0.5 %%��§>}�� = 0.5 #�>¦ = 200

285 339 65.40 121.03

c=0.5 %%��§>}�� = 1.0 #�>¦ = 50

331 407 79.19 135.1

c=0.5 %%��§>}�� = 1.0 #�>¦ = 100

299 354 70.34 126.58

c=0.5 %%��§>}�� = 1.0 #�>¦ = 200

294 346 68.88 122.66

c=1.0 %%��§>}�� = 0.0 #�>¦ = 50

356 396 81.88 132.14

c=1.0 %%��§>}�� = 0.0 #�>¦ = 100

324 385 74.62 126.58

c=1.0 %%��§>}�� = 0.0 #�>¦ = 200

315 353 71.92 126.43

36

c=1.0 %%��§>}�� = 0.5 #�>¦ = 50

289 354 65.52 123.52

c=1.0 %%��§>}�� = 0.5 #�>¦ = 100

255 309 58.00 115.97

c=1.0 %%��§>}�� = 0.5 #�>¦ = 200

252 308 59.32 112.2

c=1.0 %%��§>}�� = 1.0 #�>¦ = 50

305 357 67.84 123.88

c=1.0 %%��§>}�� = 1.0 #�>¦ = 100

271 356 62.14 124.59

c=1.0 %%��§>}�� = 1.0 #�>¦ = 200

268 316 62.04 118.41

c=2.0 %%��§>}�� = 0.0 #�>¦ = 50

362 451 84.53 143.14

c=2.0 %%��§>}�� = 0.0 #�>¦ = 100

324 383 75.41 127.84

c=2.0 %%��§>}�� = 0.0 #�>¦ = 200

319 356 72.26 121.8

c=2.0 %%��§>}�� = 0.5 #�>¦ = 50

273 316 63.07 115.73

c=2.0 %%��§>}�� = 0.5 #�>¦ = 100

253 291 57.19 108.06

c=2.0 %%��§>}�� = 0.5 #�>¦ = 200

244 301 61.51 112.29

c=2.0 %%��§>}�� = 1.0 #�>¦ = 50

312 350 74.59 124.53

c=2.0 %%��§>}�� = 1.0 #�>¦ = 100

273 357 64.93 122.43

c=2.0 %%��§>}�� = 1.0 #�>¦ = 200

270 311 67.77 118.01

LCDM Results

Across all 27 conditions, the biases and the RMSEs do not have systematic differences

and therefore the results were collapsed into one set- HPSOEM as seen in Table 7. Overall both

Mplus and the HPSOEM yielded similar item parameter estimates, while in some situations one

is better than the other; to be concrete, the differences of the absolute values of biases for

intercepts, main effects, and interactions effects are 0.001 (0.01-0.011), 0.002 (0.007-0.005), and

0.027 (0.057-0.030). It can be seen that, although not substantively, the HPSOEM seems to

handle the interaction effects slightly better. For both algorithms, all biases are below 0.06 and

all RMSEs are lower than 0.2 As Table 7 shows. It can be seen that both intercept and main

effect estimates have smaller biases than interaction effect ones; In particular, slightly

unsatisfactory results were found in the interaction effects that led the bias to above 0.05. These

findings are consistent with Templin and Bradshaw (2014). The biases of class membership

probability estimates are even more negligible as the values are below 0.005. Unsurprisingly the

37

corresponding RMSE is 0.009. From Table 5, one can claim that the HPSOEM can produce

results as accurate as Mplus does.

Table 7. Independent Variables of the LCDM Simulation Study

 Intercepts Main Effects Interaction Effects

 Mplus HPSOEM Mplus HPSOEM Mplus HPSOEM

Bias -0.010 0.011 0.005 -0.007 0.057 0.030

RMSE 0.151 0.184 0.212 0.155 0.178 0.209

In addition to the investigation on parameters, log-likelihood difference between two algorithms

was also monitored. Similar to the biases and the RMSEs, the log-likelihood values across 27

conditions only showed ignorable differences and therefore were collapsed. Listed in Figure 3,

within 95% confidence interval, the difference ranges from -1.47 to 1.65. That said, at 5% 9-

level, the HPSOEM log-likelihood is not statistically different from that of Mplus.

Figure 3. Difference by Subtracting Mplus Log-likelihood from HPSOEM Log-likelihood for
LCDM Simulation Study

38

 Compared with the previous two outcomes that do not have much variability across

different conditions, the number of iteration to convergence and the computational time do show

discrepancies from condition to condition. The upper, middle, and lower panel of Table 8 show

the main effects of #�>¦, %%��§>}�� Multiplier, and D on both simulation dependent variables -the

number of iterations to convergence and the computational time respectively. Start from the

upper panel, one can find that #�>¦ = 50 requires more iterations and therefore longer time to

converge than the other two conditions. In particular, to reach convergence, #�>¦ = 100 and

#�>¦ = 200 need 31 less iterations and costs 7 less minutes than those of #�>¦ = 50. However,

#�>¦ = 100 and #�>¦ = 200 do not differ significantly as their numbers of iterations to

convergence and the computational time are nearly identical. It can be concluded that a larger

#�>¦ leads to a faster convergence until it reaches a certain sufficient level (i.e., 100 at the

current example).

The second main effect of the independent variable is %%��§>}�� Multiplier. It can be

found that putting no penalties causes extra computational power and time in estimating models;

it may due to the reason that an un-ignorable proportion of computation was spent on

impermissible numeric space. On the other hand, setting the multiplier to 1 seems to be less

efficient than 0.5 as the differences in the iteration number and convergence time are 20 and 6

minutes respectively. That said, among three penalty choices, setting the multiplier to 0.5 yields

the fastest speed. The impact of particle updating parameters Ã on iteration number follows a

monotonic order: as Ã increases from 0.5 to 2.0, the iteration number decreases from 319 to 292.

The convergence time, however, doesn’t show the same monotonicity consistency as the

iteration number does.

39

Table 8. Computation Speed Results of the LCDM Simulation Study

 #�>¦ = 50 #�>¦ = 100 #�>¦ = 200

Iteration Number
324 293 287

Convergence
Time(mins)

75 68 68

 %%��§>}�� Multiplier =0 %%��§>}�� Multiplier =0.5 %%��§>}�� Multiplier =1.0

Iteration Number
340 272 291

Convergence
Time(mins) 79 63 69

 Ã = m. Ä Ã = W. m Ã = Å. m

Iteration Number
319 293 292

Convergence
Time(mins) 74 67 69

MIRT Results

Similar to LCDM results, the biases and the RMSEs were collapsed into one set named as

HPSOEM as seen in Table 9, due to no systematic differences across all 27 conditions. Again,

overall both Mplus and HPSOEM yielded similar item parameter estimates, while in some

situations one was better than the other. For both algorithms, all biases are below 0.062 and

RMSEs are lower than 0.281. The pattern that both intercept and main effect estimates have

smaller biases than interaction effect ones is found again in the MIRT simulation. However,

compared with those of the LCDM simulation, the values of both biases and RMSEs are larger,

despite the discrepancies are relatively ignorable. The potential reason for the differences is the

numerical approach for approximating the integral part. The biases of the correlation matrix

40

ng range from 0.007 to 0.012 and the maximum of RMSEs is 0.022. Overall, the HPSOEM can

yield accurate and efficient estimates for both item parameters and latent structure parameters.

Table 9. Independent Variables of the LCDM Simulation Study

 Intercepts Main Effects Interaction Effects

 Mplus HPSOEM Mplus HPSOEM Mplus HPSOEM

Bias -0.020 0.032 -0.012 0.047 0.062 0.054

RMSE 0.191 0.281 0.260 0.275 0.192 0.133

 MIRT log-likelihood results were recorded as the LCDM simulation study did. Due to the

same reason that the log-likelihood values across 27 conditions only show ignorable differences,

these results were collapsed. Figure 4 shows the log-likelihood differences between two

estimation approaches. Compared with that of the LCDM simulation, the distribution in Figure 4

does not have a smooth bell-curve shape. Within 95% confidence interval, the HPSOEM log-

likelihood is not statistically different from that of Mplus because the difference ranges from -

5.16 to 1.44. That said, at 5% 9-level, the HPSOEM log-likelihood is not statistically different

from that of Mplus. However, compared with that of the LCDM simulation, the log-likelihood

gap in the current simulation is larger. Besides, a large proportion of HPSOEM log-likelihood

ends up being lower than that of Mplus.

It is not surprisingly that the independent variables have impact on the convergence and

the computational time, similar to what was demonstrated in the LCDM simulation. Table 10

lists the impacts on the two outcomes of interests; the upper panel shows the main effect of #�>¦,

the middle panel is about %%��§>}�� Multiplier, finally the lower panel indicates the impact of

41

particle updating parameters-c. The main effect of #�>¦ on iteration number has a monotonic

trend: the iteration number decreases from 386 to 337 when #�>¦ = 50 boosts to #�>¦ = 200.

On the other hand, the convergence time does not differ substantively; particularly the time for

#�>¦=100 is nearly identical to #�>¦=200. This phenomena is reasonable because, even though

#�>¦=200 takes only 337 iterations to converge averagely, the time of each iteration for a larger

size of particles tend to be longer. The second main effect of the independent variable,

%%��§>}�� Multiplier, shows the identical pattern as seen in the LCDM simulation. That is, both

setting no penalties and oversized penalties could lead to extra computational power and time in

estimating models. The iteration number and the convergence time for %%��§>}�� Multiplier =0

are 401 and 133 minutes which are 49 more iterations and 9 more minutes than

%%��§>}�� Multiplier=1.0, and 69 more iterations and 11 more minutes than

%%��§>}�� Multiplier=0.5. The effect of particle updating parameters Ã on the iteration number

follows a monotonic order: as Ã increases from 0.5 to 2.0, the iteration number decreases from

387 to 346. Nevertheless, the convergence time again shows a different pattern from that of the

iteration number as the time had nearly no changes between Ã = W. m and Ã = Å.

Figure 4. Difference by Subtracting Mplus Log-likelihood from HPSOEM Log-likelihood for
MIRT Simulation Study

42

Table 10. Computation Speed Results of the MIRT Simulation Study

 #�>¦ = 50 #�>¦ = 100 #�>¦ = 200

Iteration
Number

386 358 337

Convergence
Time(mins)

131 124 121

 %%��§>}�� Multiplier =0 %%��§>}�� Multiplier =0.5 %%��§>}�� Multiplier =1.0

Iteration
Number

401 330 350

Convergence
Time(mins)

133 118 124

 Ã = m. Ä Ã = W. m Ã = Å. m

Iteration
Number

387 348 346

Convergence
Time(mins)

131 123 122

43

Chapter 5: Discussion

In particle swarm optimization (PSO) the set of candidate solutions to the optimization

problem is defined as a swarm of particles, which may flow through the parameter space

defining trajectories that are driven by their own and neighbors' best performances. Integrating

the PSO to the EM algorithm, the proposed estimation was shown to be an accurate approach for

estimating both LCDMs and MIRT models through simulation studies. Taking stochastic process

and swarm behavior into consideration, the HPSOEM is able to overcome the problems of local

maxima and label switching that the EM algorithm (without constraints) encounters. Based upon

the simulation results, recommendations about tuning the proposed algorithm and conclusions

about the algorithmic utility are given below:

• Increasing the number of particles #�>¦ doesn’t necessarily yields neither faster

convergence nor more accurate estimations; it has a ceiling effect such that when

#�>¦ reaches to a certain sufficient level, the computational speed becomes stable.

• Setting no penalties for the parameter constraints of a model would waste

computational efforts in exploring impermissible numeric space, where

overwhelming penalties would also cause stochastic search jumps unexpectedly

farer such that the optimal solutions could be skipped frequently.

• Updating parameters work similar to #�>¦: that a larger updating parameter set is

able to improve the estimation speed, while the ceiling effect does occur when the

updating parameters become too large.

• Iteration number doesn’t necessarily reflect convergence time as one can find

from Table 6 and Table 8. For an estimation with a large size of particles, it takes

longer time to complete an iteration.

44

• Estimating MIRT models takes longer time than estimating LCDMs because the

integral approximation consumes computational power to evaluate.

• The HPSOEM seems to produce more accurate results for LCDMs than for MIRT

models. A primary reason is that the integral approximation implemented in the

MIRT simulation study is a naïve version of the approximation technique.

• In the current simulation studies, the combination that c=1 or 2,

%%��§>}�� Multiplier =0.5, and #�>¦=100 is more appropriate than other

configuration combinations. However, it is not necessarily the standard for all

other models. With a less complicated model, the optimal combination may alter.

Meanwhile, as mentioned previously, the naïve version of approximation technique was

used in constructing the proposed algorithm. This practice is sufficiently useful for lower-

dimensional latent space, but often fails to produce satisfactory results for those with a larger

dimension number. The reason is that, by evenly pining quadrature points from the latent space,

the naïve approximation doesn’t take the importance of each quadrature point into consideration.

To improve the approximation accuracy while maintain the number of quadrature points,

Schilling and Bock (2005) demonstrated how adaptive quadrature could be used in a high-

dimensional model. Essentially, the adaptive quadrature points are produced with mean and

covariance adjustments at each iteration of the EM algorithm such that latent space of more

important area can be emphasized and that of less important area releases more efforts. As a

result, fewer quadrature points are needed to yield an accurate fast-converging solution. More

recently, stochastic estimation approaches have been deployed to replace the practice of using

quadrature. In addition to aforementioned Bayesian approaches in Chapter 1, Delyon, Lavielle,

and Moulines (1999) used a stochastic averaging procedure to replace the integration.

45

In addition to parameter recovery, the probability of Type I error was also calculated at

0.05 nominal 9 level: using the standard errors of the estimates, one can construct confidence

intervals for the estimated variance and covariance components. For example, multiplying the

standard error of the estimate with 1.96, one can obtain a 95 % confidence interval. A criterion

for examining the standard error is assuring that the true parameters are located within the

confidence intervals. Both LCDMs and MIRT models are based upon logistic regression model

whose standard errors of the coefficients are the square roots of the diagonal entries of the

covariance matrix. For all simulation conditions via Mplus and the HPSOEM, the Type I error

rates ranged from 0.059 to 0.042 which are fairly close to 0.05, although the interaction effects

tend to have lower Type I error due to the larger standard errors they have. Expectedly, the

standard errors do not differ between two estimation approaches as they are both maximizing the

aforementioned likelihood values.

As all other studies, this dissertation has several limitations. The simulation designs,

although containing 27 conditions, still have large room to explore. Above all, the effect sizes

that were used to generate responses were pre-defined. These effect sizes match the values

demonstrated in literature (Harwell, Stone, Hsu, &Kirisci, 1996), but in certain situations such as

extremely large and/or small effect size of the item parameters would still occur. In addition,

there was only one Q-matrix being used for specifying item parameters. It is known that

specifying different Q-matrices can dramatically change the estimation process: in practice, the

Q-matrix for most tests should be estimated to specify the associations between items and

attributes, otherwise, incorrect classification of examinees will occur (Köhn, Chiu, & Brusco,

2015). In the present design, neither varying Q-matrix nor the effect of mis-specifying Q-matrix

is taken into consideration. Missing data problem is not addressed in this dissertation either, but

46

it is a common problem in practice and therefore, being able to handle the missingness while

estimating models sheds the lights on the future research direction. A potential solution to deal

with the missingness is modifying the HPSOEM to maximize the full information likelihood

function that is known as FIML.

Mplus outperformed the proposed algorithm in all conditions in the LCDM simulation,

but fell behind the HPSOEM in the MIRT simulation. The average computational time for

LCDMs and MIRT models are 35 minutes and 452 minutes. Having difficulties in MIRT

estimation, Mplus is not designed to fit IRT models and therefore IRT estimations tend to

exhaust Mplus. On the other hand, there is large space for the improvement of the proposed

algorithm. Although the HPSOEM was outperformed by Mplus in the LCDM simulation, this

result could be due to how the HPSOEM algorithm was coded. Theoretically, HPSOEM can be

many times faster than what it is now if the entire function is constructed in C++ or Fortran;

currently the HPSOEM algorithm is written in base R software scripting language. Research has

shown that using compiler package with R often takes less than half of time executing the same

function than that of without packages (e.g., Aruoba & Fernández, 2014).

 As a variant of PSO, the proposed algorithm lends itself better to rapidly developing

computing resources related to parallel multiple processing, for example, multi-core processors,

parallel graphics processing units (GPUs), and computing clusters (McNabb & Seppi, 2014).

Algorithms designed on multiple processing framework could utilize parallel computing

technique and therefore improve the convergence speed. In particular, particles updating at each

iteration can be assigned to different computational units such that the inefficiency caused by

sequential updating design is avoided. As one can find, when (1) the number of attributes and/or

(2) the sample size increase, the number of parameters in both LCDMs and MIRT models would

47

exponentially grow. With the assistance of multiple processing, theoretically the HPSOEM

would maximize the benefits of strong computational facility to estimate the psychometric

models on large scale data sets and/or complex Q-matrices. Earlier works had focused on

utilizing multi-core processors (e.g., MapReduce; Aljarah & Ludwig, 2012) to update particles.

Recent studies have shed light on using the GPU architecture as a parallel computing framework

in PSO algorithms (Dali & Bouamama, 2015). Compared with CPUs, GPUs are known for (1)

lower cost (2) more cores, and (3) faster in multiple matrix multiplications. In fact, estimating

aforementioned LCDMs or tasks of this kind, a strong CPU with 16 cores tend to perform worse

than a low-end GPU that contains 700 cores. In the present dissertation, the proposed algorithm

was executed in a desktop because the simulation design is not overwhelmingly demanding,

meaning the computation cannot be handled in a personal computer. However, if the estimation

raises to a substantive situation, for example, a 500x50 Q-matrix with more than 1000 item

parameters, the HPSOEM can be implemented in a cloud computing facility with strong GPUs

and/or multi-core CPUs.

 To sum, the purpose of this dissertation is to propose a machine-learning based algorithm

for the estimation of psychometric models. In particular, the proposed estimator is a combination

of the EM algorithm and the PSO techniques, which have been popular in neural networks and

other similar fields. The performance of the proposed algorithm is evaluated through a

straightforward simulation study of which the results indicate that it is an appropriate option to

handle psychometric models estimation task. To handle many psychometric models with a few

thousands of respondents and 20 to 40 items, which are frequently seen in pratice, setting c=1 or

2, %%��§>}�� Multiplier =0.5, and #�>¦=100 can yield accurate and faster estimation than other

configuration combination. The result cantions users that, setting parameters in the HPSOEM or

48

other similar algorithm frameworks should be tuned according to the datasets and model

complexity. Although penality can be used to handle parameter constraint requirement, the

penalty sizes need to be chosen via careful literature review or simulaiton studies. A powerful

hardware environment, although mostly useful in estimation, is not always helping gain

computational speed; from the simulation results, there are margin effects in utilizing the

computational capacity for the implementation of the HPSOEM. The primary research direction

in the future is integrating more advanced PSO techniques and other similar machine learning

approaches into the field of measurement. The proposed estimation is still based upon the EM

algorithm, which may lead to inconsistency in the updating process (i.e., the pure EM is all

definitive). What is more, even though GPUs were implemented in the propsed estimation, users

may not be satisfactory with the performace: fast calculation is partially cancelled-off by

writing/reading via graphical memories; it will be useful to study how to balance the

arrangement of GPUs and CPUs such that optimal estimation can be configured. The HPSOEM

is a frequentist approach, despite that it involves stochastic components. There are other fast

stochastic-based algorithms are not discussed here, for example, Hamiltonian dynamics

stochastic process that is implemented in Stan program. Simulation studies for comparing

different algorithms may be valuable for offering practitioners selection guidelines.

49

References

Aljarah, I., & Ludwig, S. A. (2012, November). Parallel particle swarm optimization

clustering algorithm based on mapreduce methodology. In Nature and biologically inspired

computing (NaBIC), 2012 fourth world congress on(pp. 104-111). IEEE.

Clarke, D. P., Al-Abdeli, Y. M., & Kothapalli, G. (2014). The impact of using Particle

Swarm Optimisation on the operational characteristics of a stand-alone hydrogen system with

on-site water production. International Journal of Hydrogen Energy, 39(28), 15307-15319.

Dali, N., & Bouamama, S. (2015). GPU-PSO: parallel particle swarm optimization

approaches on graphical processing unit for constraint reasoning: case of Max-CSPs. Procedia

Computer Science, 60, 1070-1080.

Davier, M. (2005). A general diagnostic model applied to language testing data. ETS

Research Report Series, 2005(2).

Delyon, B., Lavielle, M., & Moulines, E. (1999). Convergence of a stochastic

approximation version of the EM algorithm. Annals of statistics, 94-128.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the royal statistical society. Series B

(methodological), 1-38.

DiBello, L. V., & Stout, W. (2003). Student profile scoring for formative assessment.

In New developments in psychometrics (pp. 81-92). Springer, Tokyo.

Djerou, L., Khelil, N., & Batouche, M. (2011). Numerical integration method based on

particle swarm optimization. Advances in Swarm Intelligence, 221-226.

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman

problem. biosystems, 43(2), 73-81.

Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering

optimization problems. Applied Soft Computing, 40, 455-467.

50

Hallquist, M., & Wiley, J. (2011). MplusAutomation: Automating Mplus model

estimation and interpretation. R package version 0.6. Available online at: http://cran. r-project.

org/web/packages/MplusAutomation/index. html.

Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive

abilities: Blending theory with practicality (Doctoral dissertation, University of Illinois at

Urbana-Champaign).

Harwell, M., Stone, C. A., Hsu, T. C., & Kirisci, L. (1996). Monte Carlo studies in item

response theory. Applied psychological measurement, 20(2), 101-125.

Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive

diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210.

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions,

and connections with nonparametric item response theory. Applied Psychological

Measurement, 25(3), 258-272.

Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary version of the particle

swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and

Simulation., 1997 IEEE International Conference on (Vol. 5, pp. 4104-4108). IEEE.

Kessentini, S., & Barchiesi, D. (2015). Particle Swarm Optimization with Adaptive

Inertia Weight. International Journal of Machine Learning and Computing, 5(5), 368.

Kim, S., & Li, L. (2011). A novel global search algorithm for nonlinear mixed-effects

models using particle swarm optimization. Journal of pharmacokinetics and

pharmacodynamics, 38(4), 471-495.

Köhn, H. F., Chiu, C. Y., & Brusco, M. J. (2015). Heuristic cognitive diagnosis when the

Q‐matrix is unknown. British Journal of Mathematical and Statistical Psychology, 68(2), 268-

291.

Lao, H., and Templin, J. (2016). Estimation of Diagnostic Classification Models without

Constraints: Issues with Class Label Switching. Paper presented at Annual Meeting of the

National Council on Measurement in Education,, Washington, District of Columbia.

51

Lee, C. M., & Ko, C. N. (2009). Time series prediction using RBF neural networks with a

nonlinear time-varying evolution PSO algorithm. Neurocomputing, 73(1), 449-460.

Malekpour, A. R., & Seifi, A. R. (2010). Application of constriction factor particle

swarm optimization to optimum load shedding in power system. Modern Applied Science, 4(7),

188.

Maitra, M., & Chatterjee, A. (2008). A hybrid cooperative–comprehensive learning based

PSO algorithm for image segmentation using multilevel thresholding. Expert Systems with

Applications, 34(2), 1341-1350.

McNabb, A., & Seppi, K. (2014, July). Serial PSO results are irrelevant in a multi-core

parallel world. In Evolutionary Computation (CEC), 2014 IEEE Congress on (pp. 3143-3150).

IEEE.

Muthén, L. K., & Muthén, B. O. (2007). Mplus. Statistical analysis with latent variables.

Version, 3.

R Core Team. (2017). R: a language and environment for statistical computing. R

Foundation for Statistical Computing. Vienna, Austria. Retrieved from http://www. R-

project.org/

Rezaee Jordehi, A., & Jasni, J. (2013). Parameter selection in particle swarm

optimisation: a survey. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 527-

542.

Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood

item factor analysis by adaptive quadrature. Psychometrika, 70(3), 533-555
Shukla, R., Hazela, B., Shukla, S., Prakash, R., & Mishra, K. K. (2017). Variant of

Differential Evolution Algorithm. In Advances in Computer and Computational Sciences (pp.

601-608). Springer, Singapore.

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using

cognitive diagnosis models. Psychological methods, 11(3), 287.

52

Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A

family of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317-339.

Zhang, Q., Sun, J., & Tsang, E. (2005). An evolutionary algorithm with guided mutation

for the maximum clique problem. IEEE Transactions on Evolutionary Computation, 9(2), 192-

200.

.

53

Appendix I

Mplus Model Specification Syntax

MODEL:
%OVERALL%
[c#1] (m1); ! Latent variable mean for class 1
[c#2] (m2); ! Latent variable mean for class 2
[c#3] (m3); ! Latent variable mean for class 3
[c#4] (m4); ! Latent variable mean for class 4
[c#5] (m5); ! Latent variable mean for class 5
[c#6] (m6); ! Latent variable mean for class 6
[c#7] (m7); ! Latent variable mean for class 7
[c#8] (m8); ! Latent variable mean for class 8
[c#9] (m9); ! Latent variable mean for class 9
[c#10] (m10); ! Latent variable mean for class 10
[c#11] (m11); ! Latent variable mean for class 11
[c#12] (m12); ! Latent variable mean for class 12
[c#13] (m13); ! Latent variable mean for class 13
[c#14] (m14); ! Latent variable mean for class 14
[c#15] (m15); ! Latent variable mean for class 15
%c#1%
[x1$1] (t1_1);
[x2$1] (t2_1);
[x3$1] (t3_1);
[x4$1] (t4_1);
[x5$1] (t5_1);
[x6$1] (t6_1);
[x7$1] (t7_1);
[x8$1] (t8_1);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_1);
[x13$1] (t13_1);
[x14$1] (t14_1);
[x15$1] (t15_1);
[x16$1] (t16_1);
[x17$1] (t17_1);
[x18$1] (t18_1);
[x19$1] (t19_1);
[x20$1] (t20_1);
[x21$1] (t21_1);
[x22$1] (t22_1);
[x23$1] (t23_1);
[x24$1] (t24_1);
[x25$1] (t25_1);

54

[x26$1] (t26_1);
[x27$1] (t27_1);
[x28$1] (t28_1);

%c#2%
[x1$1] (t1_1);
[x2$1] (t2_1);
[x3$1] (t3_1);
[x4$1] (t4_1);
[x5$1] (t5_2);
[x6$1] (t6_1);
[x7$1] (t7_1);
[x8$1] (t8_2);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_1);
[x13$1] (t13_2);
[x14$1] (t14_2);
[x15$1] (t15_2);
[x16$1] (t16_2);
[x17$1] (t17_1);
[x18$1] (t18_2);
[x19$1] (t19_1);
[x20$1] (t20_2);
[x21$1] (t21_2);
[x22$1] (t22_2);
[x23$1] (t23_1);
[x24$1] (t24_1);
[x25$1] (t25_1);
[x26$1] (t26_1);
[x27$1] (t27_1);
[x28$1] (t28_1);

%c#3%
[x1$1] (t1_1);
[x2$1] (t2_2);
[x3$1] (t3_1);
[x4$1] (t4_1);
[x5$1] (t5_1);
[x6$1] (t6_1);
[x7$1] (t7_1);
[x8$1] (t8_3);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);

55

[x12$1] (t12_1);
[x13$1] (t13_1);
[x14$1] (t14_1);
[x15$1] (t15_1);
[x16$1] (t16_1);
[x17$1] (t17_1);
[x18$1] (t18_1);
[x19$1] (t19_1);
[x20$1] (t20_1);
[x21$1] (t21_1);
[x22$1] (t22_1);
[x23$1] (t23_1);
[x24$1] (t24_1);
[x25$1] (t25_1);
[x26$1] (t26_2);
[x27$1] (t27_1);
[x28$1] (t28_1);

%c#4%
[x1$1] (t1_1);
[x2$1] (t2_2);
[x3$1] (t3_1);
[x4$1] (t4_1);
[x5$1] (t5_2);
[x6$1] (t6_1);
[x7$1] (t7_1);
[x8$1] (t8_4);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_1);
[x13$1] (t13_2);
[x14$1] (t14_2);
[x15$1] (t15_2);
[x16$1] (t16_2);
[x17$1] (t17_1);
[x18$1] (t18_2);
[x19$1] (t19_1);
[x20$1] (t20_2);
[x21$1] (t21_2);
[x22$1] (t22_2);
[x23$1] (t23_1);
[x24$1] (t24_1);
[x25$1] (t25_1);
[x26$1] (t26_2);
[x27$1] (t27_1);

56

[x28$1] (t28_1);

%c#5%
[x1$1] (t1_1);
[x2$1] (t2_1);
[x3$1] (t3_2);
[x4$1] (t4_1);
[x5$1] (t5_1);
[x6$1] (t6_2);
[x7$1] (t7_1);
[x8$1] (t8_1);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_1);
[x13$1] (t13_1);
[x14$1] (t14_1);
[x15$1] (t15_1);
[x16$1] (t16_1);
[x17$1] (t17_1);
[x18$1] (t18_3);
[x19$1] (t19_2);
[x20$1] (t20_3);
[x21$1] (t21_3);
[x22$1] (t22_3);
[x23$1] (t23_1);
[x24$1] (t24_2);
[x25$1] (t25_2);
[x26$1] (t26_1);
[x27$1] (t27_1);
[x28$1] (t28_2);

%c#6%
[x1$1] (t1_1);
[x2$1] (t2_1);
[x3$1] (t3_2);
[x4$1] (t4_1);
[x5$1] (t5_2);
[x6$1] (t6_2);
[x7$1] (t7_1);
[x8$1] (t8_2);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_1);
[x13$1] (t13_2);

57

[x14$1] (t14_2);
[x15$1] (t15_2);
[x16$1] (t16_2);
[x17$1] (t17_1);
[x18$1] (t18_4);
[x19$1] (t19_2);
[x20$1] (t20_4);
[x21$1] (t21_4);
[x22$1] (t22_4);
[x23$1] (t23_1);
[x24$1] (t24_2);
[x25$1] (t25_2);
[x26$1] (t26_1);
[x27$1] (t27_1);
[x28$1] (t28_2);

%c#7%
[x1$1] (t1_1);
[x2$1] (t2_2);
[x3$1] (t3_2);
[x4$1] (t4_1);
[x5$1] (t5_1);
[x6$1] (t6_2);
[x7$1] (t7_1);
[x8$1] (t8_3);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_1);
[x13$1] (t13_1);
[x14$1] (t14_1);
[x15$1] (t15_1);
[x16$1] (t16_1);
[x17$1] (t17_1);
[x18$1] (t18_3);
[x19$1] (t19_2);
[x20$1] (t20_3);
[x21$1] (t21_3);
[x22$1] (t22_3);
[x23$1] (t23_1);
[x24$1] (t24_2);
[x25$1] (t25_2);
[x26$1] (t26_2);
[x27$1] (t27_1);
[x28$1] (t28_2);

58

%c#8%
[x1$1] (t1_1);
[x2$1] (t2_2);
[x3$1] (t3_2);
[x4$1] (t4_1);
[x5$1] (t5_2);
[x6$1] (t6_2);
[x7$1] (t7_1);
[x8$1] (t8_4);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_1);
[x13$1] (t13_2);
[x14$1] (t14_2);
[x15$1] (t15_2);
[x16$1] (t16_2);
[x17$1] (t17_1);
[x18$1] (t18_4);
[x19$1] (t19_2);
[x20$1] (t20_4);
[x21$1] (t21_4);
[x22$1] (t22_4);
[x23$1] (t23_1);
[x24$1] (t24_2);
[x25$1] (t25_2);
[x26$1] (t26_2);
[x27$1] (t27_1);
[x28$1] (t28_2);

%c#9%
[x1$1] (t1_2);
[x2$1] (t2_1);
[x3$1] (t3_1);
[x4$1] (t4_2);
[x5$1] (t5_3);
[x6$1] (t6_1);
[x7$1] (t7_2);
[x8$1] (t8_1);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_2);
[x13$1] (t13_3);
[x14$1] (t14_3);
[x15$1] (t15_3);

59

[x16$1] (t16_3);
[x17$1] (t17_2);
[x18$1] (t18_1);
[x19$1] (t19_3);
[x20$1] (t20_1);
[x21$1] (t21_1);
[x22$1] (t22_1);
[x23$1] (t23_2);
[x24$1] (t24_3);
[x25$1] (t25_3);
[x26$1] (t26_1);
[x27$1] (t27_2);
[x28$1] (t28_3);

%c#10%
[x1$1] (t1_2);
[x2$1] (t2_1);
[x3$1] (t3_1);
[x4$1] (t4_2);
[x5$1] (t5_4);
[x6$1] (t6_1);
[x7$1] (t7_2);
[x8$1] (t8_2);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_2);
[x13$1] (t13_4);
[x14$1] (t14_4);
[x15$1] (t15_4);
[x16$1] (t16_4);
[x17$1] (t17_2);
[x18$1] (t18_2);
[x19$1] (t19_3);
[x20$1] (t20_2);
[x21$1] (t21_2);
[x22$1] (t22_2);
[x23$1] (t23_2);
[x24$1] (t24_3);
[x25$1] (t25_3);
[x26$1] (t26_1);
[x27$1] (t27_2);
[x28$1] (t28_3);

%c#11%
[x1$1] (t1_2);

60

[x2$1] (t2_2);
[x3$1] (t3_1);
[x4$1] (t4_2);
[x5$1] (t5_3);
[x6$1] (t6_1);
[x7$1] (t7_2);
[x8$1] (t8_3);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_2);
[x13$1] (t13_3);
[x14$1] (t14_3);
[x15$1] (t15_3);
[x16$1] (t16_3);
[x17$1] (t17_2);
[x18$1] (t18_1);
[x19$1] (t19_3);
[x20$1] (t20_1);
[x21$1] (t21_1);
[x22$1] (t22_1);
[x23$1] (t23_2);
[x24$1] (t24_3);
[x25$1] (t25_3);
[x26$1] (t26_2);
[x27$1] (t27_2);
[x28$1] (t28_3);

%c#12%
[x1$1] (t1_2);
[x2$1] (t2_2);
[x3$1] (t3_1);
[x4$1] (t4_2);
[x5$1] (t5_4);
[x6$1] (t6_1);
[x7$1] (t7_2);
[x8$1] (t8_4);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_2);
[x13$1] (t13_4);
[x14$1] (t14_4);
[x15$1] (t15_4);
[x16$1] (t16_4);
[x17$1] (t17_2);

61

[x18$1] (t18_2);
[x19$1] (t19_3);
[x20$1] (t20_2);
[x21$1] (t21_2);
[x22$1] (t22_2);
[x23$1] (t23_2);
[x24$1] (t24_3);
[x25$1] (t25_3);
[x26$1] (t26_2);
[x27$1] (t27_2);
[x28$1] (t28_3);

%c#13%
[x1$1] (t1_2);
[x2$1] (t2_1);
[x3$1] (t3_2);
[x4$1] (t4_2);
[x5$1] (t5_3);
[x6$1] (t6_2);
[x7$1] (t7_2);
[x8$1] (t8_1);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_2);
[x13$1] (t13_3);
[x14$1] (t14_3);
[x15$1] (t15_3);
[x16$1] (t16_3);
[x17$1] (t17_2);
[x18$1] (t18_3);
[x19$1] (t19_4);
[x20$1] (t20_3);
[x21$1] (t21_3);
[x22$1] (t22_3);
[x23$1] (t23_2);
[x24$1] (t24_4);
[x25$1] (t25_4);
[x26$1] (t26_1);
[x27$1] (t27_2);
[x28$1] (t28_4);

%c#14%
[x1$1] (t1_2);
[x2$1] (t2_1);
[x3$1] (t3_2);

62

[x4$1] (t4_2);
[x5$1] (t5_4);
[x6$1] (t6_2);
[x7$1] (t7_2);
[x8$1] (t8_2);
[x9$1] (t9_1);
[x10$1] (t10_1);
[x11$1] (t11_1);
[x12$1] (t12_2);
[x13$1] (t13_4);
[x14$1] (t14_4);
[x15$1] (t15_4);
[x16$1] (t16_4);
[x17$1] (t17_2);
[x18$1] (t18_4);
[x19$1] (t19_4);
[x20$1] (t20_4);
[x21$1] (t21_4);
[x22$1] (t22_4);
[x23$1] (t23_2);
[x24$1] (t24_4);
[x25$1] (t25_4);
[x26$1] (t26_1);
[x27$1] (t27_2);
[x28$1] (t28_4);

%c#15%
[x1$1] (t1_2);
[x2$1] (t2_2);
[x3$1] (t3_2);
[x4$1] (t4_2);
[x5$1] (t5_3);
[x6$1] (t6_2);
[x7$1] (t7_2);
[x8$1] (t8_3);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_2);
[x13$1] (t13_3);
[x14$1] (t14_3);
[x15$1] (t15_3);
[x16$1] (t16_3);
[x17$1] (t17_2);
[x18$1] (t18_3);
[x19$1] (t19_4);

63

[x20$1] (t20_3);
[x21$1] (t21_3);
[x22$1] (t22_3);
[x23$1] (t23_2);
[x24$1] (t24_4);
[x25$1] (t25_4);
[x26$1] (t26_2);
[x27$1] (t27_2);
[x28$1] (t28_4);

%c#16%
[x1$1] (t1_2);
[x2$1] (t2_2);
[x3$1] (t3_2);
[x4$1] (t4_2);
[x5$1] (t5_4);
[x6$1] (t6_2);
[x7$1] (t7_2);
[x8$1] (t8_4);
[x9$1] (t9_2);
[x10$1] (t10_2);
[x11$1] (t11_2);
[x12$1] (t12_2);
[x13$1] (t13_4);
[x14$1] (t14_4);
[x15$1] (t15_4);
[x16$1] (t16_4);
[x17$1] (t17_2);
[x18$1] (t18_4);
[x19$1] (t19_4);
[x20$1] (t20_4);
[x21$1] (t21_4);
[x22$1] (t22_4);
[x23$1] (t23_2);
[x24$1] (t24_4);
[x25$1] (t25_4);
[x26$1] (t26_2);
[x27$1] (t27_2);
[x28$1] (t28_4);

MODEL CONSTRAINT:
m1>-15;
m2>-15;
m3>-15;
m4>-15;
m5>-15;

64

m6>-15;
m7>-15;
m8>-15;
m9>-15;
m10>-15;
m11>-15;
m12>-15;
m13>-15;
m14>-15;
m15>-15;
NEW(l1_11);
NEW(l2_13);
NEW(l3_12);
NEW(l4_11);
NEW(l5_11);
NEW(l5_14);
NEW(l5_214);
NEW(l6_12);
NEW(l7_11);
NEW(l8_13);
NEW(l8_14);
NEW(l8_234);
NEW(l9_13);
NEW(l10_13);
NEW(l11_13);
NEW(l12_11);
NEW(l13_11);
NEW(l13_14);
NEW(l13_214);
NEW(l14_11);
NEW(l14_14);
NEW(l14_214);
NEW(l15_11);
NEW(l15_14);
NEW(l15_214);
NEW(l16_11);
NEW(l16_14);
NEW(l16_214);
NEW(l17_11);
NEW(l18_12);
NEW(l18_14);
NEW(l18_224);
NEW(l19_11);
NEW(l19_12);
NEW(l19_212);
NEW(l20_12);

65

NEW(l20_14);
NEW(l20_224);
NEW(l21_12);
NEW(l21_14);
NEW(l21_224);
NEW(l22_12);
NEW(l22_14);
NEW(l22_224);
NEW(l23_11);
NEW(l24_11);
NEW(l24_12);
NEW(l24_212);
NEW(l25_11);
NEW(l25_12);
NEW(l25_212);
NEW(l26_13);
NEW(l27_11);
NEW(l28_11);
NEW(l28_12);
NEW(l28_212);
NEW(l1_0);
NEW(l2_0);
NEW(l3_0);
NEW(l4_0);
NEW(l5_0);
NEW(l6_0);
NEW(l7_0);
NEW(l8_0);
NEW(l9_0);
NEW(l10_0);
NEW(l11_0);
NEW(l12_0);
NEW(l13_0);
NEW(l14_0);
NEW(l15_0);
NEW(l16_0);
NEW(l17_0);
NEW(l18_0);
NEW(l19_0);
NEW(l20_0);
NEW(l21_0);
NEW(l22_0);
NEW(l23_0);
NEW(l24_0);
NEW(l25_0);
NEW(l26_0);

66

NEW(l27_0);
NEW(l28_0);
t1_1=-(l1_0);
 t1_2=-(l1_0+l1_11);
 t2_1=-(l2_0);
 t2_2=-(l2_0+l2_13);
 t3_1=-(l3_0);
 t3_2=-(l3_0+l3_12);
 t4_1=-(l4_0);
 t4_2=-(l4_0+l4_11);
 t5_1=-(l5_0);
 t5_2=-(l5_0+l5_14);
 t5_3=-(l5_0+l5_11);
 t5_4=-(l5_0+l5_11+l5_14+l5_214);
 t6_1=-(l6_0);
 t6_2=-(l6_0+l6_12);
 t7_1=-(l7_0);
 t7_2=-(l7_0+l7_11);
 t8_1=-(l8_0);
 t8_2=-(l8_0+l8_14);
 t8_3=-(l8_0+l8_13);
 t8_4=-(l8_0+l8_13+l8_14+l8_234);
 t9_1=-(l9_0);
 t9_2=-(l9_0+l9_13);
 t10_1=-(l10_0);
 t10_2=-(l10_0+l10_13);
 t11_1=-(l11_0);
 t11_2=-(l11_0+l11_13);
 t12_1=-(l12_0);
 t12_2=-(l12_0+l12_11);
 t13_1=-(l13_0);
 t13_2=-(l13_0+l13_14);
 t13_3=-(l13_0+l13_11);
 t13_4=-(l13_0+l13_11+l13_14+l13_214);
 t14_1=-(l14_0);
 t14_2=-(l14_0+l14_14);
 t14_3=-(l14_0+l14_11);
 t14_4=-(l14_0+l14_11+l14_14+l14_214);
 t15_1=-(l15_0);
 t15_2=-(l15_0+l15_14);
 t15_3=-(l15_0+l15_11);
 t15_4=-(l15_0+l15_11+l15_14+l15_214);
 t16_1=-(l16_0);
 t16_2=-(l16_0+l16_14);
 t16_3=-(l16_0+l16_11);
 t16_4=-(l16_0+l16_11+l16_14+l16_214);

67

 t17_1=-(l17_0);
 t17_2=-(l17_0+l17_11);
 t18_1=-(l18_0);
 t18_2=-(l18_0+l18_14);
 t18_3=-(l18_0+l18_12);
 t18_4=-(l18_0+l18_12+l18_14+l18_224);
 t19_1=-(l19_0);
 t19_2=-(l19_0+l19_12);
 t19_3=-(l19_0+l19_11);
 t19_4=-(l19_0+l19_11+l19_12+l19_212);
 t20_1=-(l20_0);
 t20_2=-(l20_0+l20_14);
 t20_3=-(l20_0+l20_12);
 t20_4=-(l20_0+l20_12+l20_14+l20_224);
 t21_1=-(l21_0);
 t21_2=-(l21_0+l21_14);
 t21_3=-(l21_0+l21_12);
 t21_4=-(l21_0+l21_12+l21_14+l21_224);
 t22_1=-(l22_0);
 t22_2=-(l22_0+l22_14);
 t22_3=-(l22_0+l22_12);
 t22_4=-(l22_0+l22_12+l22_14+l22_224);
 t23_1=-(l23_0);
 t23_2=-(l23_0+l23_11);
 t24_1=-(l24_0);
 t24_2=-(l24_0+l24_12);
 t24_3=-(l24_0+l24_11);
 t24_4=-(l24_0+l24_11+l24_12+l24_212);
 t25_1=-(l25_0);
 t25_2=-(l25_0+l25_12);
 t25_3=-(l25_0+l25_11);
 t25_4=-(l25_0+l25_11+l25_12+l25_212);
 t26_1=-(l26_0);
 t26_2=-(l26_0+l26_13);
 t27_1=-(l27_0);
 t27_2=-(l27_0+l27_11);
 t28_1=-(l28_0);
 t28_2=-(l28_0+l28_12);
 t28_3=-(l28_0+l28_11);
 t28_4=-(l28_0+l28_11+l28_12+l28_212);

 l1_11>0;
 l2_13>0;
 l3_12>0;
 l4_11>0;
 l5_11>0;

68

 l5_14>0;
 l6_12>0;
 l7_11>0;
 l8_13>0;
 l8_14>0;
 l9_13>0;
 l10_13>0;
 l11_13>0;
 l12_11>0;
 l13_11>0;
 l13_14>0;
 l14_11>0;
 l14_14>0;
 l15_11>0;
 l15_14>0;
 l16_11>0;

 l16_14>0;
 l17_11>0;
 l18_12>0;
 l18_14>0;
 l19_11>0;
 l19_12>0;
 l20_12>0;
 l20_14>0;
 l21_12>0;
 l21_14>0;
 l22_12>0;
 l22_14>0;
 l23_11>0;
 l24_11>0;
 l24_12>0;
 l25_11>0;
 l25_12>0;
 l26_13>0;
 l27_11>0;
 l28_11>0;
 l28_12>0;

l5_214>-l5_11;
l5_214>-l5_14;
l8_234>-l8_13;
l8_234>-l8_14;
l13_214>-l13_11;
l13_214>-l13_14;
l14_214>-l14_11;

69

l14_214>-l14_14;
l15_214>-l15_11;
l15_214>-l15_14;
l16_214>-l16_11;
l16_214>-l16_14;
l18_224>-l18_12;
l18_224>-l18_14;
l19_212>-l19_11;
l19_212>-l19_12;
l20_224>-l20_12;
l20_224>-l20_14;
l21_224>-l21_12;
l21_224>-l21_14;
l22_224>-l22_12;
l22_224>-l22_14;
l24_212>-l24_11;
l24_212>-l24_12;
l25_212>-l25_11;
l25_212>-l25_12;
l28_212>-l28_11;
l28_212>-l28_12;

70

Appendix II

The HPSOEM R code

##
#############################PSOEM##

Model.log.likelihood<-
function(loopParticle,Class.Probability.vec=Class.Probability.vec,Classp.exp1=Classp.exp1,Clas
sp.exp2=Classp.exp2){
 for(loopEffect in (1:num_Parm)){
 assign(itemParmName[loopEffect],(globalSolution[loopParticle,loopEffect]))
 }
 Kernel.vec<-matrix(0,nrow(Kernel.exp),ncol(Kernel.exp))
 for(j in 1:length(Classp.exp1)){
 for(i in 1:nrow(Kernel.exp)){
 Kernel.vec[i,j]<-eval(parse(text=Kernel.exp[i,j]))
 }
 }

 z <- 1/(1+exp(-Kernel.vec))
 Z<-z[]
 Np<-nrow(respMatrix)
 Allperson.likelihood<-rep(0,Np)
 for (i in 1:Np){
 Zprime<-Z
 Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,]
 Allperson.likelihood[i]<-apply(Zprime,2,prod)%*%Class.Probability.vec
 }

 sum(log(Allperson.likelihood)[])
}

################GPU computation methods##

#for a certain profile and a certain response vector test.resp<-rbinom(28,1,0.8)
Class.Probability.vec<-NULL
Kernel.vec<-matrix(0,nrow(Kernel.exp),ncol(Kernel.exp))
for(j in 1:length(Classp.exp1)){
 Class.Probability.vec<<-c(Class.Probability.vec,eval(parse(text=Classp.exp2[j])))
 for(i in 1:nrow(Kernel.exp)){
 Kernel.vec[i,j]<-eval(parse(text=Kernel.exp[i,j]))

71

 }
}

z <- 1/(1+exp(-Kernel.vec))
Z<-z
Np<-nrow(respMatrix)
Allperson.likelihood<-rep(0,Np)
for (i in 1:Np){
 Zprime<-Z
 Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,]
 Allperson.likelihood[i]<-apply(Zprime,2,prod)%*%Class.Probability.vec
}

#Algorithm Specifications
num_Iteration=1000;num_Particle=198;stop_Criterion=0.01;cVector=c(1.5,1.5)
inertiaVector=c(0.95,0.4);dVector=c(0.2,7)
num_Parm<-length(itemParmName)
Np<-nrow(respMatrix)
FAILparticlecount<-rep(0,num_Particle)
globalSolution<-matrix(0,num_Particle,num_Parm)
globalClassProb<-matrix(0,num_Particle,nclass)
localOptimum<-matrix(0,num_Particle,num_Parm)
optimSolution<-rep(0,num_Parm)
globalVelocity<-matrix(0,num_Particle,num_Parm)
globalLL<-rep(0,num_Particle)
iterateLL<-rep(0,num_Iteration)
prematureCount<-rep(0,num_Particle)
w.max<-1
w.min<-0
#Initial Values
for (loopParticle in 1:num_Particle){
 globalSolution[loopParticle,]<-runif(num_Parm,-2,2)
 globalSolution[loopParticle,1:numMainEffect]<-runif((numMainEffect),0.1,2)
}
globalSolution[1,]<-parm.ini
localOptimum<-globalSolution
for (loopParticle in 1:num_Particle){
 globalVelocity[loopParticle,1:(num_Parm)]<-runif((num_Parm),-0.1,0.1)
}

globalLL<-foreach(exponent=1:num_Particle,
 .combine=c,
 .export=c(ls())) %dopar%

Model.log.likelihood(exponent,Class.Probability.vec=Class.Probability.vec,Classp.exp1=Classp.
exp1,Classp.exp2=Classp.exp2)

72

ref.LL<-mean(globalLL)
optimSolution<-localOptimum[which.max(globalLL),]

###############################Updating function################################

particle.update<-
function(w,loopParticle,FAILparticlecount=FAILparticlecount,globalLL=globalLL,globalSoluti
on=globalSolution,localOptimum=localOptimum,globalVelocity=globalVelocity,cVector=cVect
or,Class.Probability.vec=Class.Probability.vec){
 reshuffle<-FAILparticlecount[loopParticle]
 if(FAILparticlecount[loopParticle]>0){
 firsthalf<-sample(1:length(optimSolution),round(length(optimSolution)/2,0),replace=F)
 secondhalf<-c(1:length(optimSolution))[c(1:length(optimSolution))%in%firsthalf]
 #stocahstically take a half genes from the global best solution
 globalSolution[loopParticle,firsthalf]<-optimSolution[firsthalf]
 #stocahstically take a half genes from the global 2nd best solution
 globalSolution[loopParticle,secondhalf]<-localOptimum[order(globalLL*-1)[2],secondhalf]
 globalVelocity[loopParticle,]<-runif(num_Parm,-1,1)
 reshuffle<-0}

 if(FAILparticlecount[loopParticle]==0){
 globalVelocity[loopParticle,]<-w*globalVelocity[loopParticle,]+
 cVector[1]*runif(1,0.001,0.999)*(localOptimum[loopParticle,]-
globalSolution[loopParticle,])+
 cVector[2]*runif(1,0.001,0.999) *(optimSolution-globalSolution[loopParticle,])
 #Use the new velocity to update the particle' selected variable
 globalSolution[loopParticle,]<-globalSolution[loopParticle,]+globalVelocity[loopParticle,]
 }
 #Assign the particle's solution to model: MainEffect and OtherEffect for items
 for(loopEffect in (1:num_Parm)){
 assign(itemParmName[loopEffect],(globalSolution[loopParticle,loopEffect]))
 }
 #See if the Item parameter constrans violation happens
 LLpenalty<-Cons.Vio.Penalty(constrain.List=Constrain.List)

 if(LLpenalty==0){ItemParm.constrainViolation<-0
 #Take the last Class.Probability.vec, this step will update the new Class.Probability.vec
 #1. since all Kernels were PSO updated, they should be assigned to their names
 Kernel.vec<-matrix(0,nrow(Kernel.exp),ncol(Kernel.exp))
 for(j in 1:length(Classp.exp1)){
 for(i in 1:nrow(Kernel.exp)){
 Kernel.vec[i,j]<-eval(parse(text=Kernel.exp[i,j]))
 }
 }

73

 z <- 1/(1+exp(-Kernel.vec))
 Z<-z[]
 Np<-nrow(respMatrix)
 Allperson.likelihood<-rep(0,Np)
 Allperson.conditional.class.probability<-matrix(0,Np,nclass)
 for (i in 1:Np){
 Zprime<-Z
 Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,]
 each.class.likelihood<-apply(Zprime,2,prod)
 Allperson.likelihood[i]<-t(each.class.likelihood)%*%Class.Probability.vec
 Allperson.conditional.class.probability[i,]<-each.class.likelihood*Class.Probability.vec
 Allperson.conditional.class.probability[i,]<-
Allperson.conditional.class.probability[i,]/Allperson.likelihood[i]
 }
 Update.Class.Probability.vec<-apply(Allperson.conditional.class.probability,2,sum)/Np
 for (i in 1:Np){
 Zprime<-Z
 Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,]
 Allperson.likelihood[i]<-apply(Zprime,2,prod)%*%Update.Class.Probability.vec
 }

 currentLL<-sum(log(Allperson.likelihood)[])
 }
 if(LLpenalty!=0){print('Item Parameter updates are unsuccessful')
 currentLL<-LLpenalty+globalLL[loopParticle]
 }
 if(currentLL=='NaN'){currentLL<-1*ref.LL;reshuffle<-FAILparticlecount[loopParticle]+1}
 if (currentLL>=globalLL[loopParticle]){
 localOptimum[loopParticle,]<-globalSolution[loopParticle,]
 Class.Probability.vec<<-Update.Class.Probability.vec
 globalLL[loopParticle]<-currentLL
 }#else{globalSolution[loopParticle,]<-localOptimum[loopParticle,]}

 particle.output<-list()
 particle.output[[1]]<-globalLL[loopParticle]
 particle.output[[2]]<-localOptimum[loopParticle,]
 particle.output[[3]]<-globalSolution[loopParticle,]
 particle.output[[4]]<-globalVelocity[loopParticle,]
 particle.output[[5]]<-Class.Probability.vec
 particle.output[[6]]<-reshuffle
 particle.output[[7]]<-currentLL
 particle.output
}

74

for(loopIteration in 1:num_Iteration){
 if(var(globalLL)>stop_Criterion){
 w=w.max-((w.max-w.min)/num_Iteration)*loopIteration
 Iter.result = foreach(exponent=1:num_Particle,
 .combine = list,
 .multicombine = TRUE,
 .export=ls(.GlobalEnv)) %dopar%

particle.update(w,exponent,globalLL=globalLL,FAILparticlecount=FAILparticlecount,globalSol
ution=globalSolution,localOptimum=localOptimum,globalVelocity=globalVelocity,cVector=cV
ector,Class.Probability.vec=Class.Probability.vec)

 if(num_Particle<=398&num_Particle>301){#num_particle:301-398
 Iter.Result<-Iter.result[[1]][[1]][[1]][[1]]
 for(loop.2nd in 2:(100)){Iter.Result[[loop.2nd+99]]<-Iter.result[[1]][[1]][[1]][[loop.2nd]]}
 for(loop.2nd in 2:(100)){Iter.Result[[loop.2nd+199-1]]<-Iter.result[[1]][[1]][[loop.2nd]]}
 for(loop.2nd in 2:(100)){Iter.Result[[loop.2nd+299-1]]<-Iter.result[[1]][[loop.2nd]]}
 Iter.Result[[399]]<-Iter.result[[2]]
 Iter.result<-Iter.Result}

 if(num_Particle<=198&num_Particle>101){#num_particle:101-198
 Iter.Result<-Iter.result[[1]]
 for(loop.2nd in 2:(num_Particle-100+1)){Iter.Result[[loop.2nd+99]]<-
Iter.result[[loop.2nd]]}
 Iter.result<-Iter.Result}

 CURRENTLL<-unlist(lapply(Iter.result,function(x){unlist(x[[7]])}))
 globalLL<<-unlist(lapply(Iter.result,function(x){unlist(x[[1]])}))
 localOptimum<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[2]])})),num_Parm,num_Particle))
 globalSolution<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[3]])})),num_Parm,num_Particle))
 globalVelocity<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[4]])})),num_Parm,num_Particle))
 optimSolution<<-localOptimum[which.max(globalLL),]
 Class.Probability.vec<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[5]])})),nclass,num_Particle))[which.max(g
lobalLL),]
 FAILparticlecount<<-
FAILparticlecount+as.numeric(unlist(lapply(Iter.result,function(x){unlist(x[[6]])})))
 FAILparticlecount[FAILparticlecount>1]<-0
 particle.partition<-round(num_Particle/2,0)
 if(sum(FAILparticlecount[1:particle.partition])>=(num_Particle/2-
num_Particle/4)){FAILparticlecount[1:particle.partition]<-rep(0,num_Parm/2)}

75

 if(sum(FAILparticlecount[particle.partition:num_Particle])>=(num_Particle/2-
num_Particle/4)){FAILparticlecount[particle.partition:num_Particle]<-rep(0,num_Parm/2)}
 iterateLL[loopIteration]<-max(globalLL)
 print(c(max(globalLL),mod1[8]$loglike))
 }
}
if(max(iterateLL)<mod1[8]$loglike){
 optimSolution<-parm.ini
 Class.Probability.vec<-prop.ini
 PSOEM.loglik[rep.loop]<-mod1[8]$loglike
}

