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Abstract 

 Current psychometrics tend to model response data hypothesized to arise from multiple 

attributes. As a result, the estimation complexity has been greatly increased so that traditional 

approaches such as the expected-maximization algorithm would fail to produce accurate results. 

To improve the estimation quality, high-dimensional models are estimated via a global 

optimization approach- particle swarm optimization (PSO), which is an efficient stochastic 

method of handling the complexity difficulties. The PSO has been widely used in machine 

learning fields but remains less-known in the psychometrics community. Details on the 

integration of the proposed approach to current psychometric model estimation practices are 

provided. The algorithm tuning process and the accuracy of the proposed approach are 

demonstrated with simulations. As an illustration, the proposed approach is applied to log-linear 

cognitive diagnosis models and multi-dimensional item response theory models. These two 

model families are fairly popular yet challenging frameworks used in assessment and evaluation 

research to explain how participants respond to item level stimuli. The aim of this dissertation is 

to fill the gap between the field of psychometric modeling and machine learning estimation 

techniques. 
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Chapter 1: Introduction 

Psychometrics is the field of study connecting statistical analyses with the theory of 

psychological measurement. In general, works of psychometrics can be categorized into (1) the 

instrument construction and measurement process and (2) the improvement of measurement 

theory. Broadly, most social science subjects, such as sociology, psychology, and education 

require psychometrics to conduct analyses. Among others, areas, such as the measurement of 

intelligence, personality, learning paths, and psychological diseases, deploy psychometrics more 

frequently and therefore tremendous contributions on psychometrics development have been 

stemmed from these fields. For instance, foundation psychometrics works are attributed to 

intelligence assessment scientists such as Charles Spearman, L.L. Thurstone, Karl Pearson, 

Georg Rasch, and Arthur Jensen (see Lyle, 2007 for the history of psychometrics).  

Modern psychometrics has devoted more to models with latent structures, for instance, 

exploratory factor analysis (Cudeck & MacCallum, 2007 ;Thurstone,1947), confirmatory factor 

analysis (Joreskog, 1969), covariance structure analysis (Bock & Bargmann, 1966; Bollen, 1989; 

Joreskog, 1970), item response theory (IRT; Lord & Novick, 1968; Thissen & Wainer, 2001), 

and finally diagnosis classification modeling (DCM; DiBello, Roussos, & Stout, 2007; Henson, 

Templin, & Willse, 2009). Among those, the latter two -DCMs and IRT- have gained substantive 

attention and contributions more recently for the reason that they have provided advanced 

modeling frameworks for research designs with categorical item responses.  

DCMs have been developed to identify whether a student masters each attribute required 

for solving corresponding items. For instance, addition, subtraction, multiplication, and division 

are four common attributes defined in math ability assessment practice, where test items such as 

“2+4-1” measure the first two attributes and “4x2/3” measure the last two attributes. In addition 
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to educational testing, DCMs are useful in psychological measurement. For example, literature 

indicates that neuro-vegetative symptoms (NS) are a general construct that contains three 

attributes: depression (DEP), fatigue (FAT), and sleeplessness (SLE) (Rabinowitz, Fisher, & 

Arnett, 2011). Using DCMs allows researchers/practitioners to investigate the attributes for a 

given patient. Applied works can be found in more topics, for example, Stefanutti, Anselmi, and 

Robusto (2011) uses the DCM framework to construct leaning map, and Svetina, Dai, and Wang 

(2017) study differential item functioning in accommodations via the DCM. 

IRT, on the other hand, has already become the preeminent modeling paradigm in 

educational and psychological measurement due to its longer development history. In large-scale 

testing, IRT has played a dominant role in operational calibration and scoring. The development 

and application of IRT models has been well-studied; for example, historical overviews can be 

found in van der Linden and Hambleton (1997), Embretson and Reise (2000), Thissen and 

Wainer (2001), among others. IRT models posit the probabilistic relationship between a person’s 

latent ability and the probability of an item response. The modeling process links the theory 

underlying the test, the administrative practices for distributing the test, and statistical modeling 

so that a test can be constructed fairly and scientifically.  

What distinguishes DCMs from IRT models is the latent variable assumption; IRT 

models are able to provide scores for ordering students along latent a continuum, where DCMs 

assume that the latent attributes are multiple categories (could be also binary). To be concrete, if 

an math item, 10/4+5, is created to measure respondents’ fraction and subtraction knowledge, 

IRT would produce numeric values based upon an artificial scale for each respondent, where 

DCMs could  provide the information about mastery or non-mastery on each attribute (i.e., 

subtraction and faction in this example). This discrepancy reflects on the specification of the 



 
 

8 
 

statistical models. That is, DCMs are essentially mixture models and IRT possesses integral part 

in its likelihood functions.  

Within each of the families, multi-dimensional item response theory (MIRT) models and 

log-linear cognitive diagnosis models (LCDMs) are known to be more flexible and informative 

than other variants of their kinds. However, as a trade-off, estimating these models tend to be 

more difficult due to a complicated latent structure and a large number of parameters of interest. 

These models are estimated in a number of ways. Perhaps the most often-used method is 

marginal maximum likelihood (MML) estimation using the expectation maximization (EM; 

Dempster, Laird, & Rubin, 1977) algorithm and some variants of this kind (e.g., Baker & Kim, 

2004, Bock & Aitkin, 1981). For consistency purpose, this type of algorithms are all named as 

the EM algorithm. The EM algorithm has been proved insufficient in multi-dimensional settings 

such as MIRT models and LCDMs. For example, to estimate MIRT models, the EM algorithm 

relies upon numerical integration to marginalize the likelihood function across the space of the 

latent attributes. The integration process requires a set of discrete quadrature to approximate the 

integral, so the number of quadrature points increases exponentially as the number of latent 

attributes increases linearly. As a result, models with numerous quadrature points take 

tremendous amounts of calculations to estimate yet often yield inaccurate results. Adaptive 

quadrature has been developed to handle the computational deficiency by using fewer points (see 

Schilling & Bock, 2005), but does not solve the problem completely. In terms of LCDM, the EM 

algorithm is likely to encounter (1) local maxima and (2) label switching problems (Lao, 2016). 

To be concrete, there will be multiple local maxima of the log-likelihood function that trap the 

algorithms. Particularly, the EM algorithm is known to converge at local maxima instead of 

global maxima, where only the latter provides legitimate estimates. Label switching, on the other 
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hand, leads to unreasonable interpretations of item parameters as well as disruption of the 

converging process. Following an estimation method similar to the EM algorithm, the Quasi-

Monte Carlo integration (QMCEM) algorithm replaces quadrature points with pseudorandom 

numbers (e.g., Niederreiter, 1978). Although the QMCEM algorithm is better suited to high-

dimensional integration, it is relatively slow in estimation time when compared with some fully 

Bayesian estimation algorithms. In addition, the QMCEM does not fit the LCDM framework, as 

the QMCEM is not devised to handle mixture models.  

Different from the frequentist methods mentioned above, Bayesian algorithms are based 

upon Markov Chain Monte Carlo (MCMC) process. The most frequently used Bayesian 

algorithms are based upon two fundamental mechanisms: Gibbs sampling and the Metropolis-

Hastings (MH) algorithm. Gibbs sampling is used in situations where full conditional posterior 

distributions of parameters can be derived in closed-form expressions, whereas the MH 

algorithm uses a proposal distribution substituting the real conditional distribution to enable the 

MCMC process (e.g., Lynch, 2010). In the current context, both Gibbs and the MH are not 

effective solutions for a few reasons: (1) logistic link functions which are the used to model the 

categorical responses given certain attribute(s) are difficult for constructing Gibbs samplers, (2) 

he MH algorithm requires a rejection/acceptance decision for each parameter at each step of the 

Markov chain and therefore the converging could be slow or nearly impossible at some 

situations, and (3) particularly in the field of DCMs, the Bayesian approaches are not as widely-

adopted as those in the field of IRT.  

Newer algorithms have combined Bayesian and maximum likelihood estimation with 

stochastic approximation methods such as the Metropolis–Hastings Robbins–Monroe (MHRM) 

Algorithm (e.g., Cai, 2010). Similarly, Hamiltonian Monte Carlo, a hybrid of the MH algorithm 
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and Hamiltonian dynamics stochastic process, has gained researchers’ attention in recent years 

(HMC; see Brooks, Gelman, Jones, & Meng, 2011; Hoffman & Gelman, 2014). In each iteration 

of the algorithm, the values of parameters are said to “leap frog” to states closer to their posterior 

densities, short-cutting the time the MH algorithm takes by avoiding proposal values that are 

ultimately rejected. Once new values are proposed, the HMC algorithm uses MH to accept/reject 

proposals. Both MHRM and HMC, compared with general MH algorithms, leads to a more 

efficient Monte Carlo sampler. The drawback is that these methods are mathematically difficult 

and therefore not as approachable as the EM algorithm. The estimation times for both 

approaches will be much larger for lower dimensional problems when compared to the EM 

algorithm. In addition, the log-likelihood calculation requires extra steps and can be unstable. 

Finally, the parameter estimates will not be identical between different estimations (Chalmers, 

2012).  

This dissertation proposes a global optimization approach- particle swarm optimization 

(PSO; Eberhart & Kennedy, 1995)- to handle the psychometric model estimations.  The PSO is 

an efficient stochastic method that has been widely used in machine learning field but remains 

less-known in the psychometrics community. The proposed technique is a “derive-free” mean 

that can be embedded to other algorithms such as the EM algorithms and the MH sampling. 

Overall, the hypotheses are 1) this novel estimation technique can be used in psychometric 

models, 2) the estimation results would be equally and/or more accurate the some traditional 

approaches. 3) parallel computing facilities can be applied to the proposed estimation, and 4) 

tunings of the proposed estimation approach would yield results differently in various ways such 

that customized guidelines can be provided in this particular case.   

  



 
 

11 
 

Chapter 2: Literature Review 

 Psychometric models of intelligence are generally concerned with the structure and 

organization of attributes of interest; they focus on conceptions of attributes that depend 

exclusively on the basis of designed tests as measures of individual differences, and the models 

are derived from statistical manipulations of scores obtained within and across the tests. In the 

past five decades, classical test theory has been rapidly expanded in various directions (Crocker 

& Algina, 1986). Specifically, as the focus in data analysis is moving from univariate to 

multivariate procedures, the statistical modeling of test data is becoming more complex 

involving structural equation modeling (SEM), or modeling with modern test theories such as 

item response theory (IRT) and diagnosis classification modeling (DCM). Fitting a complex 

psychometric model relies on the ability to accurately estimate the model parameters, which can 

be realized with the availability of enhanced computational technology and the emergence of 

advanced statistical estimation methods. The two psychometric models- log-linear cognitive 

diagnostic model and multidimensional item response theory model- are reviewed. In addition, 

particle swarm optimization is introduced in details. The concepts and mathematical expressions 

are presented along with the models and estimations.  

Log-linear Cognitive Diagnostic Model 

Recent advances in model development have produced general diagnostic models, for 

instance, generalized Deterministic Input; Noisy “And” gate model (G-DINA; de la Torre 2011), 

General Diagnostic Model (GDM; von Davier, 2005), and Log-linear Cognitive Diagnosis 

Model (LCDM; Henson, Templin, & Willse, 2009). A LCDM (G-DINA or GDM) provides great 

flexibility such as 1) subsuming most latent attributes, 2) enabling both additive and non‐

additive relationships between attributes and items simultaneously, and 3) syncing with other 
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psychometric models, increasing insightfulness. Rupp, Templin, and Henson (2010, p.163) 

proved that LCDM can be converted to core DCMs such as Deterministic Input; Noisy “And” 

gate (DINA; Junker & Sijtsma, 2001), Noisy Input; Deterministic “And” gate model (NIDA, 

Junker & Sijtsma, 2001), and the Reparameterized Unified Model (RUM, Hartz, 2002), whereas 

examples of disjunctive models include the Deterministic Input; Noisy “Or” gate model (DINO, 

Templin & Henson, 2006). Throughout the article, the general diagnostic model is referred as a 

LCDM for consistency purpose.  

As a member of latent class models, a LCDM is mathematically defined as: 

���� = ��� = 	 
�� 
 �������1 − ���������
��

��� ���
���  , (1) 

where �� = ����, �� , … , ��"�  is the correct/incorrect response vector of respondent p on a test 

comprised of #� items, and element ��� is the corresponding response on item i. �� is the 

probability of membership in latent class c, and ��� is the probability of correct response to item 

i by respondent p in the class. Extended from Equation 1, the log-likelihood function for a 

random sample of size #$ can be expressed: 

%&'% = 	 (&' )	 
�� 
 �������1 − ���������
��

��� ���
��� *�+

��� .  (2) 

To simplfy computational efforts, Equation 2 is often re-written as: 

%&'% = 	 (&' -	 ./01 
(&' ���� + (&' �
 �������1 − ���������
��

��� ��3��
��� 4�+

��� , (3) 
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where (&' �∏ �������1 − �������������� � can be further converted to ∑ (&' ��������1 − ��������������� . 

Suppose there are #7 attributes. The cognitive state of a respondent is denoted by 

attribute vector 8 = �9�, 9 , … , 9�:�, where each element in 8 is a 1/0 binary variable indicating 

whether a respondent has mastered ;th attribute 9>. There are a total number of 2�:  possible 

attribute patterns (i.e., classes). To illustrate, a respondent 1 with a pattern 8 = �0, 1, 1, 0 � has 

mastered the second and the third attributes, but not the first and the forth ones. Similarly, if the 

pattern becomes 8 = �1, 1, 1, 1 �, it means the respondent has mastered all attributes. To identify 

attributes that are required to solve each item, content experts provide a Q-matrix of size #� ∗ #7, 

where #� and #7 are the numbers of items and attributes in a test respectively. The �B, ;� entry of 

the Q-matrix C�> is 1 when item i is associated with attribute ;, and otherwise C�> = 0. Given 

respondent p’s attribute pattern is 8D, the conditional probability of item i can be stated as: 

��� = ����EF8D� = exp JK�,L + M�NO�8D, PQ�R1 + exp JK�,L + M�NO�8D, PQ�R , (4) 

Where PQ is the set of Q-matrix entries for item i, K�,L is the intercept parameter, where MQ 
represents a vector of size �2�: − 1� ∗ 1 that contains main effect and interaction effect 

parameters of item i, and O�8D, PQ� is a vector of size �2�: − 1� ∗ 1 with linear combinations of 

the 8D and PQ. Particularly, M�NO�8D, PQ� inside the exponent function can be expressed as: 

M�NO�8D, PQ� = 	 K�,�,�>�α�>C�>
�:

>�� + 	 	 K�, ,�>,>T�α�>α�>TC�>
�:

>TU�>�� C�>T + ⋯ , 
 

(5) 
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Where K�,�,�>� and K�, ,�>,>T� are the main effect for ;th attribute 9> and a two-way interaction 

effect for 9> and 9>T. Since elements of 8D and PQ are binary, O�8D, PQ� contains binary 

elements, which indicate effects needed to be estimated. For an item measuring A attributes, A-

way interaction effects should be specified in O�8D, PQ�. Table 1 shows a concrete example of a 

measure with three attributes: Item 1 that measures 9� only has two estimates, where Item 3 

measuring all three attributes has 8 estimates in total.  

The item parameters, however, do require monotonicity constraints; otherwise the LCDM 

estimation is likely to encounter (1) local maxima and (2) label switching problems (Lao & 

Templin, 2016). To be concrete, without the constraints, there will be multiple local maxima of 

the log-likelihood function that trap the estimation process. Particularly, the EM algorithm- a 

dominant method in DCM estimations- is known to converge at local maxima instead of global 

maxima, where only the latter provides legitimate estimates. Label switching, on the other hand, 

leads to unreasonable interpretations of item parameters as well as disruption of the converging 

process. Rupp, Templin, and Henson (2010) outlined the parameter constraint approach, for 

example, ensuring the positive-ness of MQ,Win Equation 5 and forcing the 2-way interaction effect 

K�, ,�>,>T� to be bigger than the corresponding negative main effects -K�,�,�>� and -K�,�,�>T�. 
Evidence suggests that the parameter constraint approach would decrease of risk of reaching 

local maxima and keeping label consistency (Lao & Templin, 2016), however, the constrained 

true sampling space remains unknown due to mathematical complexity. 
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Table 1. Formula Expression Example of a Log-linear Cognitive Diagnosis Model 

Item 9� 9  9X Complete K�,L + M�NO�8D, PQ� Expression Simplified Expression 

1 1 0 0 

K�,L + K�,��1� + K�, �0� + K�,X�0� + K�,� �1 ∗ 0�+ K�,�X�1 ∗ 0� + K�, X�0 ∗ 0�+ K�,� X�1 ∗ 0 ∗ 0� 

K�,L + K�,��1� 

2 0 1 1 

K ,L + K ,��0� + K , �1� + K ,X�1�+ K ,� �0 ∗ 1� + K ,�X�0 ∗ 1�+ K , X�1 ∗ 1�+ K ,� X�0 ∗ 1 ∗ 1� 

K ,L + K , �1� + K ,X�1� +K , X�1�  

3 1 1 1 

KX,L + KX,��1� + KX, �1� + KX,X�1�+ KX,� �1 ∗ 1� + KX,�X�1 ∗ 1�+ KX, X�1 ∗ 1�+ KX,� X�1 ∗ 1 ∗ 1� 

KX,L + KX,��1� + KX, �1� +KX,X�1� + KX,� �1� +KX,�X�1� + KX, X�1� +KX,� X�1�  

Multi-dimensional Item Response Theory 

Item Response Theory (IRT; Lord & Novick, 1968; Thissen & Wainer, 2001) has several 

variants in both unidimensional and multi-dimensional contexts: they are the Rasch model (i.e., 

1-PL), 2-PL, 3-PL, and finally 4-PL. What differentiates these variants is the number of 

parameters for each item. For example, 2-PL requires difficulty (intercept) and discrimination 

(main effect) parameters to be estimated for each item, where 3-PL has an extra parameter-

guessing-in addition to a 2-PL model. Practically, 2-PL has been a reasonable choice, and 

therefore, throughout the dissertation, the IRT model is referred as a 2-PL model, which is akin 

to the expressions defined in the LCDM context. In a MIRT model, since   
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According to the IRT definition that the latent attributes are assumed to follow a 

multivariate normal distribution, the equation for the probability of the score response for a 

respondent is defined as: 

���� = ��� = b 
 �������1 − �����������
���

cd
�d e�fg� dfg,  (6) 

where e�f� is the probability density function for a vector f, which is the latent attributes for 

respondent p. Other than f and its related terms, �� = ����, �� , … , ��"�  is again the 

correct/incorrect response vector of respondent p on a test comprised of #� items, element ��� is 

the corresponding response on item i, and finally ��� is the probability of correct response to 

item i by respondent p. It can be seen that, compared with Equation 1, the measurement part 

∏ �������1 − ��������������  remains identical where the structure part- '�f� and ��-are presented 

differently. In order to marginalize the likelihood function across the space of the latent 

attributes, the integral should be evaluated through an approximation procedure, as it has no 

closed-form solutions. The Q-matrix applies to MIRT models in an identical way to that of 

DCMs. However, to distinguish the LCDM whose attributes are in binary scale, the attributes in 

MIRT models are represented by f = �i�, i , … , i�:� where the number of attributes is #7. For 

the simplicity purpose, let f ~ kl#�m, ng� where MVN represents a multivariate normal 

distribution, m means that the latent attribute means are all zeros, and ng is a correlation matrix. 

When the number of attributes is small, for example, lower than five, Gauss-Hermite quadrature 

can be used to integrate f. The expression for the quadrature integral is: 
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���� = ��� ≈ 	 …�pq
r�s�� 	 	 
 �������1 − �����������

���
�pq

r��� t�ur��t�ur � … t�ur�s�,�pq
r ��  (7) 

where #rv is the number of quadrature points, ur> is the value of a quadrature point for attribute 

a, t�ur>� is a weight that is related to the height of the normal density function at the attribute 

a’s quadrature point value and the distance between the quadrature points.  

Given respondent p’s attribute vector is f�, the conditional probability of item i can be 

stated as: 

��� = ����EFf�� = exp JK�,L + M�NO�f�, PQ�R1 + exp JK�,L + M�NO�f�, PQ�R , (8) 

where PQ, K�,L , and MQ are identical to what are defined in Equation 3. Similarly, M�NO�f�, PQ� can 

be expressed as: 

M�NO�f�, PQ� = 	 K�,�,�>�i>C�>
�:

w�� + 	 	 K�, ,�>,>T�θ>θ�>TC�>
�:

>TU�>�� C�>T + ⋯ , 
 

(9) 

where K�,�,�>� and K�, ,�>,>T� are the main effect for ;th attribute i> and a two-way interaction 

effect for i> and i>T.  
Particle Swarm Optimization  

The Particle Swarm Optimization (PSO) is a stochastic algorithm that belongs to the 

Swarm Intelligence methods family. Inspired by the social behavior of bird flocking and fish 

schooling, Eberhart and Kennedy (1995) proposed PSO to find solutions to optimization 
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problems, such as numerical integration and the travelling salesman problem (see Dorigo & 

Gambardella, 1997; Djerou, Khelil, & Batouche, 2011 for details). The term ‘particle’ represents 

a natural agent that possesses swarm behaviors (i.e., the ability of performing social interaction). 

Examples of swarm behaviors include (1) improving the estimation accuracy of particle 

themselves to expected levels and (2) interacting with their neighborhood. In the sense of 

estimation, each particle stochastically explores permissible space to yield the optimal solution. 

The PSO is particularly useful when solutions do not exist analytically or specifically have been 

proven to be theoretically intractable.  

Table 2. Reference Labels for PSO Terminology 

PSO Terminology Meaning Reference 

Particle  A vector containing parameters 

estimates- a candidate solution vector  

Vector of the estimates 

(My� 

Velocity A vector updating the parameter 

estimates  

Vector of update steps 

(z1{;|/}� 

Inertia Weight Direction of the vector of update steps Update direction parameter 

(w) 

Learning/Acceleration 

Factor 

Coefficient for avoiding the premature 

convergence  

Update correction 

parameter (c) 

 

The concept of the PSO algorithm, although straightforward, is confusing when it is 

addressed with psychometric models. In particular, the terms and meanings of the PSO 

components are not familiar to researchers in the field of measurement if not all social sciences. 

To keep the reading flow consistent, Table 2 provides the references for the PSO components 

and therefore, for the rest of the dissertation, the components are called in accordance with the 

forth column of Table 2; for instance, the term “particle” would be called as “vector of the 



 
 

19 
 

estimates”. And similarly, the parameters used to alter the (1) direction and the (2) correction of 

the update steps for next iteration are called (1) update direction parameter and (2) update 

correction parameter, respectively. In addition to the reference names, mathematical symbols are 

often listed in Table 2 such that expressions in the next sections match Equations 1 to 9. 

Throughout the dissertation, given the parameters of interest is M, the same symbol is 

used represent a vector of the estimates for the sake of consistency. The strategy of the PSO 

algorithm is outlined as follows: each vector of the estimates l represents a candidate solution to 

the optimization problem in a D-dimensional space, where the current solution and the vector of 

update steps of the vector of the estimates are presented by M} = �K}�, K} , … , K}~� and 

���w��} = �z1{;|/}�, z1{;|/} , … , z1{;|/}~�. To be concrete, let’s assume there are three 

vectors of the estimates (i.e., three candidate solutions) and follow the similar fashion to Table 1, 

if at a certain step the computation is about estimating the second item’s parameters K ,L and 

K ,��, three vectors of the estimates  M}��, M}� , and M}�X would produce three sets of the 

estimates for M = �K ,L, K ,���. Similarly, the vectors of update steps (z1{;|/}� have the same 

vector format as the vectors of the estimates. Note that in parallel computing framework, each 

particle can be allocated to a processing unit such that multiple particles can be executed 

simultaneously. The vector of update steps (z1{;|/}� is the changing step of M} from its current 

solution to a future one. In addition, as the PSO algorithm stores information from its iteration 

history, the optimal solution of particle l (local best; M������) and the optimal solution across all 

particles (global best; M�����) are used to guide velocity updates. Mathematically the iterative 

updating of velocity and solution can be expressed as: 

 
z1{;|/}�� = �� ∗ z1{;|/}���� + ����� JK��������� − M}����R + � � � JM��������� − M}����R, (10) 
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K}�� = z1{;|/}�� + K}����, 
where K}�� and z1{;|/}��  are the vector l of the estimates and its corresponding vector of update 

steps at iteration t. Parameters �� and �  are learning/acceleration factors for the local and the 

global best solution vectors; these c exclusively situated in the range of 2 to 4. Parameter �� is 

called inertia weight �0 ≤ � ≤ 1� that can be adaptively changed along iterations. The function 

of w is, again, changing the direction of t z1{;|/. Finally, ��and � are random numbers sampled 

from 0 to 1 independently. Tremendous variants of the PSO (hybrid PSO) have been proposed to 

improve the algorithm performance, for example, manipulating parameters D and �, mutation of 

the vector of the estimates, and adaptively tuning the vector of the estimates (Guedria, 2016; Lee 

& Ko, 2009; Maitra & Chatterjee, 2008).  

 In this dissertation, the proposed estimation is based upon the PSO, which has been 

widely used in machine learning fields but remains less-known in the psychometrics community. 

As discussed in this chapter, psychometric models such as the two that are referred to here 

having complex model specifications, which result in certain estimation difficulties. In addition, 

traditional approaches always involved deriving processes for obtaining the first- and the second- 

derivatives of the parameters of interest, which are mathematically demanding per se; if there are 

constraints adding onto the models, the difficulty of deriving processes becomes substantive. In 

practice, although many researchers and psychometricians have solid statistics backgrounds, they 

are not necessarily skilled enough to derive the mathematical formulas needed for the estimation. 

The PSO can be used to circumvent the requirement and provide precise results. The objective is 

integrating the PSO into psychometric model estimations. As addressed previously, 

psychometric models, such as LCDMs and MIRT models, have difficulties in their item 
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parameter estimates due to the dimensionalities. The PSO is a stochastic derive-free technique 

that can be a feasible solution for the aforementioned problems. 
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Chapter 3: Method 

 The Particle swarm optimization (PSO) is also an important soft computing algorithm, 

which models the behavior of a flock of birds. It utilizes a population of particles to represent 

candidate solutions in a search space, and optimizes the problem by iteration to move these 

particles to the best solutions with regard to a given measure of quality. The PSO is customized 

to estimate the aforementioned models. Particularly, the details about embedding the PSO into 

the EM algorithm is provided with pseudo code and plain-text explanations. This customized 

PSO was constructed, tested, and compared via simulation studies in the R environment, in 

which multiple conditions were created through Monte Carlo approach and therefore the 

proposed algorithm is examined comprehensively such that instructional recommendations can 

be present.  

Hybrid PSO-EM Algorithm for LCDM Estimation 

The proposed algorithm is called the hybrid PSO-EM (HPSOEM) algorithm. As the 

name indicates, it integrates the properties of the hybrid PSO into the EM algorithm. That is, the 

hybrid PSO is used to replace the item parameter updates within the aforementioned M step. 

That is, not the entire M step is replaced by the PSO. Pseudocode of the HPSOEM algorithm for 

the LCDM is outlined in Figure 1. Explanation about the steps is present in the following 

paragraphs. 

Step 2 outlines user-defined configurations of the HPSOEM algorithm: Meeting either 

condition- (1) maximum iteration number or (2) minimum variance of log-likelihood of all 

solution vectors’ local optimum- would stop the estimation. Like any algorithm, setting the 

maximum iteration number is necessary in real estimation practice. The unique part of the 
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proposed algorithm is using the minimum variance of log-likelihood of all solution vectors’ local 

optimum to investigate converging status. The swarm effect brings particles to the space of the 

optimal solution such that eventually they all end up being identical.  

Providing appropriate initial values, as mentioned in Steps 3 and 4, is helpful for starting 

the HPSOEM algorithm. The results obtained from the EM algorithm can be used to serve as 

starting values of one vector of the estimates. This vector of the estimates allows update steps to 

start from numerical space better than that of arbitrary. Note ���w�� in Step 4 is essentially a 

matrix; each ���w��} for ( = 1, … , #}  within the matrix is a column vector contains a set of 

update step values. After obtaining item parameter estimates from PSO, M�, with Equations 4 and 

8 one can calculate ���� . Then the computation switches to E-step, that is, conditioning on �, the 

posterior class probability for a respondent ��� F ��� is updated as:  

��� F ��� = ����� ∏ ����1 − ���������"���∑ ����� ∏ ����1 − ���������"�������� , 
where again, subscripts t, i, c, and p represent the iteration, item, latent class, and person 

respectively; this is recorded in Step 6. Step 7 calculates the probability of membership �� based 

upon ��� F ����  from the previous step via: 

���� =  	 ��� F �����
��� . 

The marginal probability of class membership �� is obtained by aggregating distribution on 

individual level.    



 
 

24 
 

 

Figure 1. Hybrid PSO-EM Algorithm Pseudo Code  



 
 

25 
 

In addition, when a solution violates the model constraint, its corresponding log- 

likelihood will be penalized to a certain degree. The larger the penalty is set, the less frequently 

the algorithm explores the solution vector’s neighbor space. Update direction parameter (w) 

being set to be adaptive as Step 11 shows could “control the impact of the previous history of 

velocities on the current velocity and to influence the trade-off between global and local 

exploration abilities” of the updating particles (Kim & Li, 2011). In other words, balancing the 

explorations between global and local space, the adaptive strategy can effectively shorten 

converging time. The key element of the “hybrid” aspect is integrating the mutation idea, which 

is borrowed from evolutionary theory: mutation takes place when an organism needs to survive 

and have more offspring in a changing environment. In fact, this algorithm is named the 

evolutionary algorithm (EA). The essence is, if a vector of the estimates has violated the model 

constraint for a pre-defined count consecutively, as Step 14 shows, this solution vector will be 

replaced by mutating from its local optimum and global optimum estimates, while its vector of 

update steps will be reinitialized by random generation. The means of mutation can be found in 

EA literature (Zhang, Sun,& Tsang, 2005; Shukla, Hazela, Shukla, & Mishar, 2017). In this 

dissertation, mutation of a solution vector is created by randomly selecting a half of the solution 

vector from the local optimum and the other from the global optimum.  

To better understand how the algorithm works, a tutorial-based but also simplifed 

example is provided here. Let the situation to be simple as five items (#� = 5�, two attributes 

(#� = 4�, and four respondents (#� = 4�. The first two items measure the first attribute only, 

the third and the forth items measure the second attribute, and the last item measures both 

attributes. Given two attributes leading to three classes, the formula expressions can be seen from 

Table 3 and the parameters of interest M = �K�,L, K�,�, K ,L, K ,�, KX,L, KX, , K�,L, K�, , K�,L, K�,�, K�, , K�,�  �.  If 
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the number of candidate solution vector is 3 (#} = 3), each of the solution vector contains 

estimates for M. The algorithm starts from the first iteration (t=1) by assigning some random 

values to (1) M}�����, M}� ���, and M}�X���, (2) their vectors of update steps ���w��}�����, ���w��}� ���, and 

���w��}�X���, (3) ����� for c=1,…, 3. Assume the log-likelihood values of three vectors of the 

estimates at t=1 were -80,-90, and -70, then the global optimal solution was M}�X���, where the local 

optimal solutions were simply M}�����, M}� ���, and M}�X���, given there was only one record in each 

iteration history. The wining solution vector M}�X��� was proceeded to execute the E-step and M-

step at t=2; that is, ����  and ��� F ����� 
 for c=1,…, 3. The Update vectors were altered using the 

local and global optimal solution vectors, for example, ���w��}����  was changed by M}����� and M}�X���, in 

addition to c, r and w parameters. With the functionalities of ���w��}���� , M}����  was updated and 

similar idea applies to other two solution vectors. If the log-likelihood values of three vectors of 

the estimates at t=2 were -88,-60, and -65, the global optimal solution vector became M}� �� , where 

the local optimal solution vectors for (=1,2,3 became M}�����, M}� �� , and M}�X�� . Assume at iterations 

10 to 15 that M}�� had failed to yield a larger log-likelihood value than its local optimal solution 

in the iterating history, a new M}������ would be constructed via the aforementioned EA procedure.  

To emphasize, this paragraph skips several steps in Figure 1 for illustration purpose.   

Table 3. Formula Expression Example of a Log-linear Cognitive Diagnosis Model 

Item 9� 9  Simplified Expression 

1 1 0 K�,L + K�,� 

2 1 0 K ,L + K ,� 

3 0 1 KX,L + KX,   

4 0 1 K�,L + K�,  

5 1 1 K�,L + K�,� + K�, + K�,�  
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Hybrid PSO-EM Algorithm for MIRT Estimation 

 As mentioned earlier, MIRT models contains an integral over f� where closed-forms do 

not exist. To handle the issue, numerical approximation approach- generating and evaluating 

quadrature points-is adopted. In the uni-dimensional IRT framework, the quadrature points can 

be selected simply from -4 to 4 in increments of 0.2 such that 99.9% of the probability mass is 

covered. In other words, in the uni-dimensional case, ���� = ��� in Equation 7 can be re-

written as ∑ ∏ �������1 − ���������������pqr��� t�ur��, where #rv is 40. Similarly, in MIRT models, 

the quadrature points from multidimensional space should be generated and evaluated. However, 

instead of taking the values from a continuum, the quadrature points in MIRT should be sampled 

from a grid constructed by all attributes. If #>is two, the grid becomes a plane where x-axis 

holds the points of the first attribute and y-axis holds those of the second attribute. When #> is 

larger than three, the grid becomes a hyper-plane. As f is assumed to follow kl#�m, ng� which 

allows attributes across dimensions to be sampled simultaneously, the approximation of 

���� = ��� can be simplified to ∑ ∏ �������1 − ���������������pqr��  �¡P�, where  �¡P�, the 

corresponding weights as a set of normalized ordinates of the quadrature points from the 

population distribution e�f¢�, can be defined as e�¡P�/ ∑ e�¡P��pqr�� .  

 Bock and Aitkin (1981) further derived the height of the posterior distribution at 

quadrature point ¡P for a given respondent p at an item i can be approximated via: 

��¡r|��� ≈ �������1 − ��������� �¡P����� = ��� . (8) 
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On the other hand, give the complete data log-likelihood for the item parameters M can be 

expressed as: 

%&'%�M� ≈ 	 	 ��� log����� + 	 	�1 − ���� log�1 − ������
���

�+
���

��
��� ,�+

���  

 

(9) 

The conditional expected complete data likelihood given item parameters can be approximated 

by: 

% ≈ 	 	 	 ��� log��r�� ��¡r|��� + 	 	 	�1 − ���� log�1 − �r���pq
r��

��
���

�+
���

��
��� ��¡r|����pq

r�� .�+
���  (10) 

Note that in the MIRT context, the number of parameter constraints is less than that of the 

LCDMs. In particular, MIRT models merely require main effects to be non-negative, where the 

LCDMs also set dependencies on interaction terms, if there is any. Given there is no class 

membership in MIRT models, Step 20 in Figure 1becomes inappropriate; this line should, 

instead, be placed by  generating and evaluating quadrature points as Equations 8 and 9 illustrate. 

 

Data Generation 

Simulation studies were conducted to examine the application of the HPSOEM to 

psychometric model estimation. The simulations are based upon the Q-matrix provided in 

Templin and Bradshaw (2014; reproduced in Table 4). As one finds, there are four attributes and 

28 items in total. Each item measures one or more attributes; that is, indicators can be cross-

loaded in multiple latent traits simultaneously, for example, Item 1 measures the first attribute 

only, while Item 22 measures the second and the forth attributes. Provided the Q-matrix, LCDMs 

and MIRTs were selected to be the simulation frameworks.  
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In the first study, responses (i.e., simulated datasets) were generated via LCDMs. 

Particularly, item intercepts were randomly generated from [-1, 1], main effects were drew 

uniformly from [1.5, 3], and interaction terms were sampled from a uniform distribution of 

which range is [-1, 1.5]. The situations where item parameters violate the aforementioned 

constraint rules, the generation would re-start until the values produced are in permissible 

numeric space. The constraint rules for the Q-matrix can be found in Appendix 1. Given the 

number of attribute is 4 and the sum of membership probabilities is 1, there are 16 classes in total 

and the probability of membership was set equal (i.e.,  [1/16, 1/16, …, 1/16]). 

 The second study used MIRT models to generate responses. Item parameters were 

produced in an identical way to those of the first study. Different from LCDMs, MIRT models 

assume that attributes follow a multivariate normal distribution. Therefore, in the second 

simulation study, the latent attributes were generated from multivariate normal distributions. For 

simplicity purposes, the means of the distribution were all set to 0, the variance components were 

all set to 1, and all covariance components (i.e., correlations) were set to 0.6.  

 Note that the given Q-matrix in the LCDM context implies parameter constraints listed in 

Figure 2. The expression rules follow the conventions proposed by Rupp, Templin, and Hensen 

(2010, p. 206). That is, (1) l simply represents K, (2) the number before symbol _ indicates item 

number, (3) the first number after symbol _ represents item effect name, where 0,1,x are the 

labels of intercept, main effect, and x-way interaction effects respectively, (4) the remaining 

numbers identify items that contain attribute interaction, if there is any. To illustrate, l9_0 

represents the intercept of Item 9 and l9_213 represents the 2-way interaction effects between the 

first and the third attributes. According to Rupp, Templin, and Henson (2010), in addition to 

ensuring the non-negativity of the main effects that are shown in the left panel of Figure 2, the 
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interaction constraints are also set in the right panel. For the MIRT models, only left panel 

applies.  

 

Figure 2. Parameter Constraints of the Q-matrix 
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Table 4. Q-matrix used for the Simulation Study 

Item No. Attribute1 Attribute2 Attribute3 Attribute4 

1 1 0 0 0 

2 0 0 1 0 

3 0 1 0 0 

4 1 0 0 0 

5 1 0 0 1 

6 0 1 0 0 

7 1 0 0 0 

8 0 0 1 1 

9 0 0 1 0 

10 0 0 1 0 

11 0 0 1 0 

12 1 0 0 0 

13 1 0 0 1 

14 1 0 0 1 

15 1 0 0 1 

16 1 0 0 1 

17 1 0 0 0 

18 0 1 0 1 

19 1 1 0 0 

20 0 1 0 1 

21 0 1 0 1 

22 0 1 0 1 

23 1 0 0 0 

24 1 1 0 0 

25 1 1 0 0 

26 0 0 1 0 

27 1 0 0 0 

28 1 1 0 0 

 

Independent Variables 

The parameters consisted in the HPSOEM were controlled in the simulation studies: (1) 

the number of particles #�>¦, (2) the penalty of violating constraints %%��§>}��, and (3) the 

particle updating parameters ���, � ). Note that inertia weight IS NOT an independent variable in 
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the simulation studies, because it has been proved that setting to adaptive inertia weight works 

more efficient than other combinations across various computational tasks (Kessentini & 

Barchiesi, 2015; Rezaee & Jasni, 2013; Kim & Li, 2011). Let ��=�¨>© −
ª«¬¬­®¯°±²³´°±²³ ��¨>©, �¨�§), while ��¨>©, �¨�§� was set to (0.9, 0.4). To make simulation studies 

manageable as well as meaningful practically, the conditions of independent variables, listed in 

Table 5, were selected based upon configurations suggested by published works (Clarke, Al-

Abdeli, & Kothapalli, 2014; Malekpour, & Seifi, 2010). In particular, %%��§>}�� was presented as 

multipliers: the actual penalty was calculated by multiplying the pre-defined values to log-

likelihood of current iteration. Note that setting the multiplier to zero is equivalent to no penalty. 

In total, there are 3x3x3=27 simulation conditions. 

 Table 5. Independent Variables of the Simulation Studies 

Variable Pre-defined Values 

#�>¦ [50, 100, 200] 

%%��§>}�� Multiplier [0, 0.5, 1] 

���� =  � � [0.5, 1, 2] 

 

Software and Hardware 

 R environment (R Core Team, 2017) was used to conduct the simulation study. Currently 

R is one of the world's most popular programming languages due to its cost-free property, 

flexible extensions, rapid package updates, and active community supports (Robers, Best, Dunn, 

Treml, & Halpin, 2010). Throughout the paper, data generation and the algorithm comparisons 

were executed in R. The HPSOEM stopping criteria was set to either (1) the variance of particles 
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becomes less than 0.01 or (2) the number of iterations reaches to 10000.  On the other hand, 

Mplus, known as a toolkit for numerous statistical estimations, has been widely cited in a large 

body of published social and psychological research works (see DeMars, 2016; Eckes& Baghaei, 

2015; Matlock, Turner, & Gitchel, 2016). Appendix 2 shows the R code for the proposed 

algorithm. To verify the precisions and utility of the proposed algorithm, Mplus was used to 

estimate both LCDMs and MIRTs on the simulated data. The Mplus stopping criteria was set to 

either (1) the log-likelihood change from last iteration becomes less than 0.001 or (2) the number 

of iterations reaches to 10000. In order to execute Mplus in R environment, a packaged called 

MplusAutomation (Hallquist, & Wiley, 2011) was implemented. MplusAutomation enables R to 

communicate with Mplus such as streamlining Monte Carlo simulation studies and the 

comparisons of many models can become plausible. Specifically, MplusAutomation provides 

routines to 1) create and manage syntax for groups of related models, 2) automate the estimation 

of many models; and 3) provide tools to extract and compare model fit statistics, parameter 

estimates, and present model outputs. 

 In terms of hardware, the machine used in the simulation tasks was a Lenovo IdeaPad 

with 16GB RAM and a 2.6 GHz i7 6th Gen 4-core Intel processor as well as NVIDIA GeForce 

GTX 960M GPU. Given the availability of multiple cores, parallel computing was set default in 

both R and Mplus. Note that in R, the Graphic Processing Units (GPUs) were implemented to 

replace the Central Processing Units (CPUs) as recent studies have shown that the GPUs are 

more efficient when basic math calculation is executing in a parallel computing facility  

Dependent Variables 
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To understand the estimation accuracy of the proposed estimation method and 

constrained EM algorithm in Mplus, (1) model parameter bias and relative mean squared error 

(RMSE), (2) log-likelihood values, (3) the number of iteration to convergence and computational 

time were recorded for each replication. As each given condition was replicated 500 times, the 

results were represented by the means of the replications. In particular, the bias is calculated as: 

·B;¸¹ = ∑ ∑ �º»�¦ − º�������¼¦�� ½# = º»�̅¦ − º�. 
and RMSE is obtained by 

½k¿À¹ = Á∑ ∑ �º»�¦ − º�������¼¦��  ½#Â
 

where Ne is the number of elements in the set of º and R is the number of replication. Note that 

the number of iteration to convergence and computational time are essentially measuring the 

same quality- the speed of the proposed algorithm; these values would expected to have 

substantive differences on different machines. The results are present in the following chapter. 
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Chapter 4: Results 

Accordingly Table 5, there were 3x3x3=27 simulation conditions . This chapter begins 

with the LCDM simulation followed by those of the MIRT models. Using Monte Carlo 

simulation, a computerized mathematical technique that allows people to account for unknown 

qualities of an estimation or approach in quantitative analysis and decision-making, was 

implemented to examine the features of the proposed estimation. The outcomes are presented 

with the following order: (1) relative item parameter bias and relative mean squared error 

(RMSE), (2) log-likelihood, (3) the number of iteration to convergence as well as computational 

time. For reference purpose, Mplus results were demonstrated along with those of the proposed 

algorithm. The complete results can be found in Table 6. However, Table 6 is complex as the 

outcomes were listed in a multidimensional setting. To understand the results better, in this 

chapter, the results are be addressed case by case. Along with the results, recommendations are 

provided such that the instructional values of the current simulation could be emphasized.  

Table 6. Complete Simulation Across 27 Conditions and 3 Outcomes. 

Updating 
Parameter 

Penalty 
Multiplier 

Particle 
Number 

 Iteration Number  
Convergence Time 
(mins) 

 LCDM MIRT  LCDM MIRT 

c=0.5 %%��§>}�� = 0.0 #�>¦ = 50 
 

382 469  87.94 147.83 

c=0.5 %%��§>}�� = 0.0 #�>¦ = 100 
 

343 414  80.79 135.3 

c=0.5 %%��§>}�� = 0.0 #�>¦ = 200 
 

338 400  78.4 131.74 

c=0.5 %%��§>}�� = 0.5 #�>¦ = 50 
 

309 376  72.85 129.6 

c=0.5 %%��§>}�� = 0.5 #�>¦ = 100 
 

292 376  65.11 126.44 

c=0.5 %%��§>}�� = 0.5 #�>¦ = 200 
 

285 339  65.40 121.03 

c=0.5 %%��§>}�� = 1.0 #�>¦ = 50 
 

331 407  79.19 135.1 

c=0.5 %%��§>}�� = 1.0 #�>¦ = 100 
 

299 354  70.34 126.58 

c=0.5 %%��§>}�� = 1.0 #�>¦ = 200 
 

294 346  68.88 122.66 

c=1.0 %%��§>}�� = 0.0 #�>¦ = 50 
 

356 396  81.88 132.14 

c=1.0 %%��§>}�� = 0.0 #�>¦ = 100 
 

324 385  74.62 126.58 

c=1.0 %%��§>}�� = 0.0 #�>¦ = 200 
 

315 353  71.92 126.43 
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c=1.0 %%��§>}�� = 0.5 #�>¦ = 50 
 

289 354  65.52 123.52 

c=1.0 %%��§>}�� = 0.5 #�>¦ = 100 
 

255 309  58.00 115.97 

c=1.0 %%��§>}�� = 0.5 #�>¦ = 200 
 

252 308  59.32 112.2 

c=1.0 %%��§>}�� = 1.0 #�>¦ = 50 
 

305 357  67.84 123.88 

c=1.0 %%��§>}�� = 1.0 #�>¦ = 100 
 

271 356  62.14 124.59 

c=1.0 %%��§>}�� = 1.0 #�>¦ = 200 
 

268 316  62.04 118.41 

c=2.0 %%��§>}�� = 0.0 #�>¦ = 50 
 

362 451  84.53 143.14 

c=2.0 %%��§>}�� = 0.0 #�>¦ = 100 
 

324 383  75.41 127.84 

c=2.0 %%��§>}�� = 0.0 #�>¦ = 200 
 

319 356  72.26 121.8 

c=2.0 %%��§>}�� = 0.5 #�>¦ = 50 
 

273 316  63.07 115.73 

c=2.0 %%��§>}�� = 0.5 #�>¦ = 100 
 

253 291  57.19 108.06 

c=2.0 %%��§>}�� = 0.5 #�>¦ = 200 
 

244 301  61.51 112.29 

c=2.0 %%��§>}�� = 1.0 #�>¦ = 50 
 

312 350  74.59 124.53 

c=2.0 %%��§>}�� = 1.0 #�>¦ = 100 
 

273 357  64.93 122.43 

c=2.0 %%��§>}�� = 1.0 #�>¦ = 200 
 

270 311  67.77 118.01 

LCDM Results 

Across all 27 conditions, the biases and the RMSEs do not have systematic differences 

and therefore the results were collapsed into one set- HPSOEM as seen in Table 7. Overall both 

Mplus and the HPSOEM yielded similar item parameter estimates, while in some situations one 

is better than the other; to be concrete, the differences of the absolute values of biases for 

intercepts, main effects, and interactions effects are 0.001 (0.01-0.011), 0.002 (0.007-0.005), and 

0.027 (0.057-0.030). It can be seen that, although not substantively, the HPSOEM seems to 

handle the interaction effects slightly better. For both algorithms, all biases are below 0.06 and 

all RMSEs are lower than 0.2 As Table 7 shows. It can be seen that both intercept and main 

effect estimates have smaller biases than interaction effect ones; In particular, slightly 

unsatisfactory results were found in the interaction effects that led the bias to above 0.05. These 

findings are consistent with Templin and Bradshaw (2014). The biases of class membership 

probability estimates are even more negligible as the values are below 0.005.  Unsurprisingly the 
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corresponding RMSE is 0.009. From Table 5, one can claim that the HPSOEM can produce 

results as accurate as Mplus does.  

Table 7. Independent Variables of the LCDM Simulation Study 

 Intercepts  Main Effects  Interaction Effects 

  Mplus HPSOEM Mplus HPSOEM Mplus HPSOEM 

Bias -0.010 0.011  0.005 -0.007  0.057 0.030 

RMSE 0.151 0.184  0.212 0.155  0.178 0.209 

In addition to the investigation on parameters, log-likelihood difference between two algorithms 

was also monitored. Similar to the biases and the RMSEs, the log-likelihood values across 27 

conditions only showed ignorable differences and therefore were collapsed. Listed in Figure 3, 

within 95% confidence interval, the difference ranges from -1.47 to 1.65. That said, at 5% 9-

level, the HPSOEM log-likelihood is not statistically different from that of Mplus. 

 

Figure 3. Difference by Subtracting Mplus Log-likelihood from HPSOEM Log-likelihood for 
LCDM Simulation Study 
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 Compared with the previous two outcomes that do not have much variability across 

different conditions, the number of iteration to convergence and the computational time do show 

discrepancies from condition to condition. The upper, middle, and lower panel of Table 8 show 

the main effects of #�>¦, %%��§>}�� Multiplier, and D on both simulation dependent variables -the 

number of iterations to convergence and the computational time respectively. Start from the 

upper panel, one can find that #�>¦ = 50 requires more iterations and therefore longer time to 

converge than the other two conditions. In particular, to reach convergence, #�>¦ = 100 and 

#�>¦ = 200 need 31 less iterations and costs 7 less minutes than those of #�>¦ = 50. However, 

#�>¦ = 100 and #�>¦ = 200 do not differ significantly as their numbers of iterations to 

convergence and the computational time are nearly identical. It can be concluded that a larger 

#�>¦ leads to a faster convergence until it reaches a certain sufficient level (i.e., 100 at the 

current example).  

The second main effect of the independent variable is  %%��§>}�� Multiplier. It can be 

found that putting no penalties causes extra computational power and time in estimating models; 

it may due to the reason that an un-ignorable proportion of computation was spent on 

impermissible numeric space. On the other hand, setting the multiplier to 1 seems to be less 

efficient than 0.5 as the differences in the iteration number and convergence time are 20 and 6 

minutes respectively. That said, among three penalty choices, setting the multiplier to 0.5 yields 

the fastest speed. The impact of particle updating parameters Ã on iteration number follows a 

monotonic order: as Ã increases from 0.5 to 2.0, the iteration number decreases from 319 to 292. 

The convergence time, however, doesn’t show the same monotonicity consistency as the 

iteration number does.  
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Table 8. Computation Speed Results of the LCDM Simulation Study 

  #�>¦ = 50 #�>¦ = 100 #�>¦ = 200 

Iteration Number 
324 293 287 

Convergence 
Time(mins) 

75 68 68 

    

  %%��§>}�� Multiplier =0 %%��§>}�� Multiplier =0.5 %%��§>}�� Multiplier =1.0 

Iteration Number 
340 272 291 

Convergence 
Time(mins) 79 63 69 

    

  Ã = m. Ä Ã = W. m Ã = Å. m 

Iteration Number 
319 293 292 

Convergence 
Time(mins) 74 67 69 

 

MIRT Results 

Similar to LCDM results, the biases and the RMSEs were collapsed into one set named as 

HPSOEM as seen in Table 9, due to no systematic differences across all 27 conditions. Again, 

overall both Mplus and HPSOEM yielded similar item parameter estimates, while in some 

situations one was better than the other. For both algorithms, all biases are below 0.062 and 

RMSEs are lower than 0.281. The pattern that both intercept and main effect estimates have 

smaller biases than interaction effect ones is found again in the MIRT simulation. However, 

compared with those of the LCDM simulation, the values of both biases and RMSEs are larger, 

despite the discrepancies are relatively ignorable. The potential reason for the differences is the 

numerical approach for approximating the integral part. The biases of the correlation matrix 
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ng range from 0.007 to 0.012 and the maximum of RMSEs is 0.022. Overall, the HPSOEM can 

yield accurate and efficient estimates for both item parameters and latent structure parameters.  

Table 9. Independent Variables of the LCDM Simulation Study 

 Intercepts  Main Effects  Interaction Effects 

  Mplus HPSOEM Mplus HPSOEM Mplus HPSOEM 

Bias -0.020 0.032  -0.012 0.047  0.062 0.054 

RMSE 0.191 0.281  0.260 0.275  0.192 0.133 

 

 MIRT log-likelihood results were recorded as the LCDM simulation study did. Due to the 

same reason that the log-likelihood values across 27 conditions only show ignorable differences, 

these results were collapsed. Figure 4 shows the log-likelihood differences between two 

estimation approaches. Compared with that of the LCDM simulation, the distribution in Figure 4 

does not have a smooth bell-curve shape. Within 95% confidence interval, the HPSOEM log-

likelihood is not statistically different from that of Mplus because the difference ranges from -

5.16 to 1.44. That said, at 5% 9-level, the HPSOEM log-likelihood is not statistically different 

from that of Mplus. However, compared with that of the LCDM simulation, the log-likelihood 

gap in the current simulation is larger. Besides, a large proportion of HPSOEM log-likelihood 

ends up being lower than that of Mplus.  

It is not surprisingly that the independent variables have impact on the convergence and 

the computational time, similar to what was demonstrated in the LCDM simulation. Table 10 

lists the impacts on the two outcomes of interests; the upper panel shows the main effect of #�>¦, 

the middle panel is about %%��§>}�� Multiplier, finally the lower panel indicates the impact of 
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particle updating parameters-c.  The main effect of #�>¦ on iteration number has a monotonic 

trend: the iteration number decreases from 386 to 337 when #�>¦ = 50 boosts to #�>¦ = 200. 

On the other hand, the convergence time does not differ substantively; particularly the time for 

#�>¦=100 is nearly identical to #�>¦=200. This phenomena is reasonable because, even though 

#�>¦=200 takes only 337 iterations to converge averagely, the time of each iteration for a larger 

size of particles tend to be longer. The second main effect of the independent variable, 

%%��§>}�� Multiplier, shows the identical pattern as seen in the LCDM simulation. That is, both 

setting no penalties and oversized penalties could lead to extra computational power and time in 

estimating models. The iteration number and the convergence time for %%��§>}�� Multiplier =0 

are 401 and 133 minutes which are 49 more iterations and 9 more minutes than 

%%��§>}�� Multiplier=1.0, and 69 more iterations and 11 more minutes than 

%%��§>}�� Multiplier=0.5. The effect of particle updating parameters Ã on the iteration number 

follows a monotonic order: as Ã increases from 0.5 to 2.0, the iteration number decreases from 

387 to 346. Nevertheless, the convergence time again shows a different pattern from that of the 

iteration number as the time had nearly no changes between Ã = W. m and Ã = Å. 

 

Figure 4. Difference by Subtracting Mplus Log-likelihood from HPSOEM Log-likelihood for 
MIRT Simulation Study 
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Table 10. Computation Speed Results of the MIRT Simulation Study 

  #�>¦ = 50 #�>¦ = 100 #�>¦ = 200 

Iteration 
Number 

386 358 337 

Convergence 
Time(mins) 

131 124 121 

    

  %%��§>}�� Multiplier =0 %%��§>}�� Multiplier =0.5  %%��§>}�� Multiplier =1.0  

Iteration 
Number 

401 330 350 

Convergence 
Time(mins) 

133 118 124 

    

  Ã = m. Ä Ã = W. m Ã = Å. m 

Iteration 
Number 

387 348 346 

Convergence 
Time(mins) 

131 123 122 
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Chapter 5: Discussion 

In particle swarm optimization (PSO) the set of candidate solutions to the optimization 

problem is defined as a swarm of particles, which may flow through the parameter space 

defining trajectories that are driven by their own and neighbors' best performances. Integrating 

the PSO to the EM algorithm, the proposed estimation was shown to be an accurate approach for 

estimating both LCDMs and MIRT models through simulation studies. Taking stochastic process 

and swarm behavior into consideration, the HPSOEM is able to overcome the problems of local 

maxima and label switching that the EM algorithm (without constraints) encounters. Based upon 

the simulation results, recommendations about tuning the proposed algorithm and conclusions 

about the algorithmic utility are given below: 

• Increasing the number of particles #�>¦ doesn’t necessarily yields neither faster 

convergence nor more accurate estimations; it has a ceiling effect such that when 

#�>¦ reaches to a certain sufficient level, the computational speed becomes stable. 

• Setting no penalties for the parameter constraints of a model would waste 

computational efforts in exploring impermissible numeric space, where 

overwhelming penalties would also cause stochastic search jumps unexpectedly 

farer such that the optimal solutions could be skipped frequently. 

• Updating parameters work similar to #�>¦: that a larger updating parameter set is 

able to improve the estimation speed, while the ceiling effect does occur when the 

updating parameters become too large. 

• Iteration number doesn’t necessarily reflect convergence time as one can find 

from Table 6 and Table 8. For an estimation with a large size of particles, it takes 

longer time to complete an iteration. 
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• Estimating MIRT models takes longer time than estimating LCDMs because the 

integral approximation consumes computational power to evaluate.  

• The HPSOEM seems to produce more accurate results for LCDMs than for MIRT 

models. A primary reason is that the integral approximation implemented in the 

MIRT simulation study is a naïve version of the approximation technique.  

• In the current simulation studies, the combination that c=1 or 2, 

%%��§>}�� Multiplier =0.5, and #�>¦=100 is more appropriate than other 

configuration combinations. However, it is not necessarily the standard for all 

other models. With a less complicated model, the optimal combination may alter. 

Meanwhile, as mentioned previously, the naïve version of approximation technique was 

used in constructing the proposed algorithm. This practice is sufficiently useful for lower-

dimensional latent space, but often fails to produce satisfactory results for those with a larger 

dimension number. The reason is that, by evenly pining quadrature points from the latent space, 

the naïve approximation doesn’t take the importance of each quadrature point into consideration. 

To improve the approximation accuracy while maintain the number of quadrature points, 

Schilling and Bock (2005) demonstrated how adaptive quadrature could be used in a high-

dimensional model. Essentially, the adaptive quadrature points are produced with mean and 

covariance adjustments at each iteration of the EM algorithm such that latent space of more 

important area can be emphasized and that of less important area releases more efforts. As a 

result, fewer quadrature points are needed to yield an accurate fast-converging solution. More 

recently, stochastic estimation approaches have been deployed to replace the practice of using 

quadrature. In addition to aforementioned Bayesian approaches in Chapter 1, Delyon, Lavielle, 

and Moulines (1999) used a stochastic averaging procedure to replace the integration.  
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In addition to parameter recovery, the probability of Type I error was also calculated at 

0.05 nominal 9 level: using the standard errors of the estimates, one can construct confidence 

intervals for the estimated variance and covariance components. For example, multiplying the 

standard error of the estimate with 1.96, one can obtain a 95 % confidence interval. A criterion 

for examining the standard error is assuring that the true parameters are located within the 

confidence intervals. Both LCDMs and MIRT models are based upon logistic regression model 

whose standard errors of the coefficients are the square roots of the diagonal entries of the 

covariance matrix. For all simulation conditions via Mplus and the HPSOEM, the Type I error 

rates ranged from 0.059 to 0.042 which are fairly close to 0.05, although the interaction effects  

tend to have lower Type I error due to the larger standard errors they have. Expectedly, the 

standard errors do not differ between two estimation approaches as they are both maximizing the 

aforementioned likelihood values.   

As all other studies, this dissertation has several limitations. The simulation designs, 

although containing 27 conditions, still have large room to explore. Above all, the effect sizes 

that were used to generate responses were pre-defined. These effect sizes match the values 

demonstrated in literature (Harwell, Stone, Hsu, &Kirisci, 1996), but in certain situations such as 

extremely large and/or small effect size of the item parameters would still occur. In addition, 

there was only one Q-matrix being used for specifying item parameters. It is known that 

specifying different Q-matrices can dramatically change the estimation process: in practice, the 

Q-matrix for most tests should be estimated to specify the associations between items and 

attributes, otherwise, incorrect classification of examinees will occur (Köhn, Chiu, & Brusco, 

2015). In the present design, neither varying Q-matrix nor the effect of mis-specifying Q-matrix 

is taken into consideration. Missing data problem is not addressed in this dissertation either, but 
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it is a common problem in practice and therefore, being able to handle the missingness while 

estimating models sheds the lights on the future research direction. A potential solution to deal 

with the missingness is modifying the HPSOEM to maximize the full information likelihood 

function that is known as FIML.    

Mplus outperformed the proposed algorithm in all conditions in the LCDM simulation, 

but fell behind the HPSOEM in the MIRT simulation. The average computational time for 

LCDMs and MIRT models are 35 minutes and 452 minutes. Having difficulties in MIRT 

estimation, Mplus is not designed to fit IRT models and therefore IRT estimations tend to 

exhaust Mplus. On the other hand, there is large space for the improvement of the proposed 

algorithm. Although the HPSOEM was outperformed by Mplus in the LCDM simulation, this 

result could be due to how the HPSOEM algorithm was coded. Theoretically, HPSOEM can be 

many times faster than what it is now if the entire function is constructed in C++ or Fortran; 

currently the HPSOEM algorithm is written in base R software scripting language. Research has 

shown that using compiler package with R often takes less than half of time executing the same 

function than that of without packages (e.g., Aruoba & Fernández, 2014). 

 As a variant of PSO, the proposed algorithm lends itself better to rapidly developing 

computing resources related to parallel multiple processing, for example, multi-core processors, 

parallel graphics processing units (GPUs), and computing clusters (McNabb & Seppi, 2014). 

Algorithms designed on multiple processing framework could utilize parallel computing 

technique and therefore improve the convergence speed. In particular, particles updating at each 

iteration can be assigned to different computational units such that the inefficiency caused by 

sequential updating design is avoided. As one can find, when (1) the number of attributes and/or 

(2) the sample size increase, the number of parameters in both LCDMs and MIRT models would 
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exponentially grow. With the assistance of multiple processing, theoretically the HPSOEM 

would maximize the benefits of strong computational facility to estimate the psychometric 

models on large scale data sets and/or complex Q-matrices. Earlier works had focused on 

utilizing multi-core processors (e.g., MapReduce; Aljarah & Ludwig, 2012) to update particles. 

Recent studies have shed light on using the GPU architecture as a parallel computing framework 

in PSO algorithms  (Dali & Bouamama, 2015). Compared with CPUs, GPUs are known for (1) 

lower cost (2) more cores, and (3) faster in multiple matrix multiplications. In fact, estimating 

aforementioned LCDMs or tasks of this kind, a strong CPU with 16 cores tend to perform worse 

than a low-end GPU that contains 700 cores. In the present dissertation, the proposed algorithm 

was executed in a desktop because the simulation design is not overwhelmingly demanding, 

meaning the computation cannot be handled in a personal computer. However, if the estimation 

raises to a substantive situation, for example, a 500x50 Q-matrix with more than 1000 item 

parameters, the HPSOEM can be implemented in a cloud computing facility with strong GPUs 

and/or multi-core CPUs.  

 To sum, the purpose of this dissertation is to propose a machine-learning based algorithm 

for the estimation of psychometric models. In particular, the proposed estimator is a combination 

of the EM algorithm and the PSO techniques, which have been popular in neural networks and 

other similar fields. The performance of the proposed algorithm is evaluated through a 

straightforward simulation study of which the results indicate that it is an appropriate option to 

handle psychometric models estimation task. To handle many psychometric models with a few 

thousands of respondents and 20 to 40 items, which are frequently seen in pratice, setting c=1 or 

2, %%��§>}�� Multiplier =0.5, and #�>¦=100 can yield accurate and faster estimation than other 

configuration combination. The result cantions users that, setting parameters in the HPSOEM or 
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other similar algorithm frameworks should be tuned according to the datasets and model 

complexity. Although penality can be used to handle parameter constraint requirement, the 

penalty sizes need to be chosen via careful literature review or simulaiton studies. A powerful 

hardware environment, although mostly useful in estimation, is not always helping gain 

computational speed; from the simulation results, there are margin effects in utilizing the 

computational capacity for the implementation of the HPSOEM. The primary research direction 

in the future is integrating more advanced PSO techniques and other similar machine learning 

approaches into the field of measurement. The proposed estimation is still based upon the EM 

algorithm, which may lead to inconsistency in the updating process (i.e., the pure EM is all 

definitive). What is more, even though GPUs were implemented in the propsed estimation, users 

may not be satisfactory with the performace: fast calculation is partially cancelled-off by 

writing/reading via graphical memories; it will be useful to study how to balance the 

arrangement of GPUs and CPUs such that optimal estimation can be configured. The HPSOEM 

is a frequentist approach, despite that it involves stochastic components. There are other fast 

stochastic-based algorithms are not discussed here, for example, Hamiltonian dynamics 

stochastic process that is implemented in Stan program. Simulation studies for comparing 

different algorithms may be valuable for offering practitioners selection guidelines.  
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Appendix I 

Mplus Model Specification Syntax 
 
MODEL: 
%OVERALL% 
[c#1] (m1); ! Latent variable mean for class 1 
[c#2] (m2); ! Latent variable mean for class 2 
[c#3] (m3); ! Latent variable mean for class 3 
[c#4] (m4); ! Latent variable mean for class 4 
[c#5] (m5); ! Latent variable mean for class 5 
[c#6] (m6); ! Latent variable mean for class 6 
[c#7] (m7); ! Latent variable mean for class 7 
[c#8] (m8); ! Latent variable mean for class 8 
[c#9] (m9); ! Latent variable mean for class 9 
[c#10] (m10); ! Latent variable mean for class 10 
[c#11] (m11); ! Latent variable mean for class 11 
[c#12] (m12); ! Latent variable mean for class 12 
[c#13] (m13); ! Latent variable mean for class 13 
[c#14] (m14); ! Latent variable mean for class 14 
[c#15] (m15); ! Latent variable mean for class 15 
%c#1% 
[x1$1] (t1_1); 
[x2$1] (t2_1); 
[x3$1] (t3_1); 
[x4$1] (t4_1); 
[x5$1] (t5_1); 
[x6$1] (t6_1); 
[x7$1] (t7_1); 
[x8$1] (t8_1); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_1); 
[x13$1] (t13_1); 
[x14$1] (t14_1); 
[x15$1] (t15_1); 
[x16$1] (t16_1); 
[x17$1] (t17_1); 
[x18$1] (t18_1); 
[x19$1] (t19_1); 
[x20$1] (t20_1); 
[x21$1] (t21_1); 
[x22$1] (t22_1); 
[x23$1] (t23_1); 
[x24$1] (t24_1); 
[x25$1] (t25_1); 
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[x26$1] (t26_1); 
[x27$1] (t27_1); 
[x28$1] (t28_1); 
 
%c#2% 
[x1$1] (t1_1); 
[x2$1] (t2_1); 
[x3$1] (t3_1); 
[x4$1] (t4_1); 
[x5$1] (t5_2); 
[x6$1] (t6_1); 
[x7$1] (t7_1); 
[x8$1] (t8_2); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_1); 
[x13$1] (t13_2); 
[x14$1] (t14_2); 
[x15$1] (t15_2); 
[x16$1] (t16_2); 
[x17$1] (t17_1); 
[x18$1] (t18_2); 
[x19$1] (t19_1); 
[x20$1] (t20_2); 
[x21$1] (t21_2); 
[x22$1] (t22_2); 
[x23$1] (t23_1); 
[x24$1] (t24_1); 
[x25$1] (t25_1); 
[x26$1] (t26_1); 
[x27$1] (t27_1); 
[x28$1] (t28_1); 
 
%c#3% 
[x1$1] (t1_1); 
[x2$1] (t2_2); 
[x3$1] (t3_1); 
[x4$1] (t4_1); 
[x5$1] (t5_1); 
[x6$1] (t6_1); 
[x7$1] (t7_1); 
[x8$1] (t8_3); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
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[x12$1] (t12_1); 
[x13$1] (t13_1); 
[x14$1] (t14_1); 
[x15$1] (t15_1); 
[x16$1] (t16_1); 
[x17$1] (t17_1); 
[x18$1] (t18_1); 
[x19$1] (t19_1); 
[x20$1] (t20_1); 
[x21$1] (t21_1); 
[x22$1] (t22_1); 
[x23$1] (t23_1); 
[x24$1] (t24_1); 
[x25$1] (t25_1); 
[x26$1] (t26_2); 
[x27$1] (t27_1); 
[x28$1] (t28_1); 
 
%c#4% 
[x1$1] (t1_1); 
[x2$1] (t2_2); 
[x3$1] (t3_1); 
[x4$1] (t4_1); 
[x5$1] (t5_2); 
[x6$1] (t6_1); 
[x7$1] (t7_1); 
[x8$1] (t8_4); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_1); 
[x13$1] (t13_2); 
[x14$1] (t14_2); 
[x15$1] (t15_2); 
[x16$1] (t16_2); 
[x17$1] (t17_1); 
[x18$1] (t18_2); 
[x19$1] (t19_1); 
[x20$1] (t20_2); 
[x21$1] (t21_2); 
[x22$1] (t22_2); 
[x23$1] (t23_1); 
[x24$1] (t24_1); 
[x25$1] (t25_1); 
[x26$1] (t26_2); 
[x27$1] (t27_1); 
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[x28$1] (t28_1); 
 
%c#5% 
[x1$1] (t1_1); 
[x2$1] (t2_1); 
[x3$1] (t3_2); 
[x4$1] (t4_1); 
[x5$1] (t5_1); 
[x6$1] (t6_2); 
[x7$1] (t7_1); 
[x8$1] (t8_1); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_1); 
[x13$1] (t13_1); 
[x14$1] (t14_1); 
[x15$1] (t15_1); 
[x16$1] (t16_1); 
[x17$1] (t17_1); 
[x18$1] (t18_3); 
[x19$1] (t19_2); 
[x20$1] (t20_3); 
[x21$1] (t21_3); 
[x22$1] (t22_3); 
[x23$1] (t23_1); 
[x24$1] (t24_2); 
[x25$1] (t25_2); 
[x26$1] (t26_1); 
[x27$1] (t27_1); 
[x28$1] (t28_2); 
 
%c#6% 
[x1$1] (t1_1); 
[x2$1] (t2_1); 
[x3$1] (t3_2); 
[x4$1] (t4_1); 
[x5$1] (t5_2); 
[x6$1] (t6_2); 
[x7$1] (t7_1); 
[x8$1] (t8_2); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_1); 
[x13$1] (t13_2); 
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[x14$1] (t14_2); 
[x15$1] (t15_2); 
[x16$1] (t16_2); 
[x17$1] (t17_1); 
[x18$1] (t18_4); 
[x19$1] (t19_2); 
[x20$1] (t20_4); 
[x21$1] (t21_4); 
[x22$1] (t22_4); 
[x23$1] (t23_1); 
[x24$1] (t24_2); 
[x25$1] (t25_2); 
[x26$1] (t26_1); 
[x27$1] (t27_1); 
[x28$1] (t28_2); 
 
%c#7% 
[x1$1] (t1_1); 
[x2$1] (t2_2); 
[x3$1] (t3_2); 
[x4$1] (t4_1); 
[x5$1] (t5_1); 
[x6$1] (t6_2); 
[x7$1] (t7_1); 
[x8$1] (t8_3); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_1); 
[x13$1] (t13_1); 
[x14$1] (t14_1); 
[x15$1] (t15_1); 
[x16$1] (t16_1); 
[x17$1] (t17_1); 
[x18$1] (t18_3); 
[x19$1] (t19_2); 
[x20$1] (t20_3); 
[x21$1] (t21_3); 
[x22$1] (t22_3); 
[x23$1] (t23_1); 
[x24$1] (t24_2); 
[x25$1] (t25_2); 
[x26$1] (t26_2); 
[x27$1] (t27_1); 
[x28$1] (t28_2); 
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%c#8% 
[x1$1] (t1_1); 
[x2$1] (t2_2); 
[x3$1] (t3_2); 
[x4$1] (t4_1); 
[x5$1] (t5_2); 
[x6$1] (t6_2); 
[x7$1] (t7_1); 
[x8$1] (t8_4); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_1); 
[x13$1] (t13_2); 
[x14$1] (t14_2); 
[x15$1] (t15_2); 
[x16$1] (t16_2); 
[x17$1] (t17_1); 
[x18$1] (t18_4); 
[x19$1] (t19_2); 
[x20$1] (t20_4); 
[x21$1] (t21_4); 
[x22$1] (t22_4); 
[x23$1] (t23_1); 
[x24$1] (t24_2); 
[x25$1] (t25_2); 
[x26$1] (t26_2); 
[x27$1] (t27_1); 
[x28$1] (t28_2); 
 
%c#9% 
[x1$1] (t1_2); 
[x2$1] (t2_1); 
[x3$1] (t3_1); 
[x4$1] (t4_2); 
[x5$1] (t5_3); 
[x6$1] (t6_1); 
[x7$1] (t7_2); 
[x8$1] (t8_1); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_2); 
[x13$1] (t13_3); 
[x14$1] (t14_3); 
[x15$1] (t15_3); 
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[x16$1] (t16_3); 
[x17$1] (t17_2); 
[x18$1] (t18_1); 
[x19$1] (t19_3); 
[x20$1] (t20_1); 
[x21$1] (t21_1); 
[x22$1] (t22_1); 
[x23$1] (t23_2); 
[x24$1] (t24_3); 
[x25$1] (t25_3); 
[x26$1] (t26_1); 
[x27$1] (t27_2); 
[x28$1] (t28_3); 
 
%c#10% 
[x1$1] (t1_2); 
[x2$1] (t2_1); 
[x3$1] (t3_1); 
[x4$1] (t4_2); 
[x5$1] (t5_4); 
[x6$1] (t6_1); 
[x7$1] (t7_2); 
[x8$1] (t8_2); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_2); 
[x13$1] (t13_4); 
[x14$1] (t14_4); 
[x15$1] (t15_4); 
[x16$1] (t16_4); 
[x17$1] (t17_2); 
[x18$1] (t18_2); 
[x19$1] (t19_3); 
[x20$1] (t20_2); 
[x21$1] (t21_2); 
[x22$1] (t22_2); 
[x23$1] (t23_2); 
[x24$1] (t24_3); 
[x25$1] (t25_3); 
[x26$1] (t26_1); 
[x27$1] (t27_2); 
[x28$1] (t28_3); 
 
%c#11% 
[x1$1] (t1_2); 
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[x2$1] (t2_2); 
[x3$1] (t3_1); 
[x4$1] (t4_2); 
[x5$1] (t5_3); 
[x6$1] (t6_1); 
[x7$1] (t7_2); 
[x8$1] (t8_3); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_2); 
[x13$1] (t13_3); 
[x14$1] (t14_3); 
[x15$1] (t15_3); 
[x16$1] (t16_3); 
[x17$1] (t17_2); 
[x18$1] (t18_1); 
[x19$1] (t19_3); 
[x20$1] (t20_1); 
[x21$1] (t21_1); 
[x22$1] (t22_1); 
[x23$1] (t23_2); 
[x24$1] (t24_3); 
[x25$1] (t25_3); 
[x26$1] (t26_2); 
[x27$1] (t27_2); 
[x28$1] (t28_3); 
 
%c#12% 
[x1$1] (t1_2); 
[x2$1] (t2_2); 
[x3$1] (t3_1); 
[x4$1] (t4_2); 
[x5$1] (t5_4); 
[x6$1] (t6_1); 
[x7$1] (t7_2); 
[x8$1] (t8_4); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_2); 
[x13$1] (t13_4); 
[x14$1] (t14_4); 
[x15$1] (t15_4); 
[x16$1] (t16_4); 
[x17$1] (t17_2); 
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[x18$1] (t18_2); 
[x19$1] (t19_3); 
[x20$1] (t20_2); 
[x21$1] (t21_2); 
[x22$1] (t22_2); 
[x23$1] (t23_2); 
[x24$1] (t24_3); 
[x25$1] (t25_3); 
[x26$1] (t26_2); 
[x27$1] (t27_2); 
[x28$1] (t28_3); 
 
%c#13% 
[x1$1] (t1_2); 
[x2$1] (t2_1); 
[x3$1] (t3_2); 
[x4$1] (t4_2); 
[x5$1] (t5_3); 
[x6$1] (t6_2); 
[x7$1] (t7_2); 
[x8$1] (t8_1); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_2); 
[x13$1] (t13_3); 
[x14$1] (t14_3); 
[x15$1] (t15_3); 
[x16$1] (t16_3); 
[x17$1] (t17_2); 
[x18$1] (t18_3); 
[x19$1] (t19_4); 
[x20$1] (t20_3); 
[x21$1] (t21_3); 
[x22$1] (t22_3); 
[x23$1] (t23_2); 
[x24$1] (t24_4); 
[x25$1] (t25_4); 
[x26$1] (t26_1); 
[x27$1] (t27_2); 
[x28$1] (t28_4); 
 
%c#14% 
[x1$1] (t1_2); 
[x2$1] (t2_1); 
[x3$1] (t3_2); 
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[x4$1] (t4_2); 
[x5$1] (t5_4); 
[x6$1] (t6_2); 
[x7$1] (t7_2); 
[x8$1] (t8_2); 
[x9$1] (t9_1); 
[x10$1] (t10_1); 
[x11$1] (t11_1); 
[x12$1] (t12_2); 
[x13$1] (t13_4); 
[x14$1] (t14_4); 
[x15$1] (t15_4); 
[x16$1] (t16_4); 
[x17$1] (t17_2); 
[x18$1] (t18_4); 
[x19$1] (t19_4); 
[x20$1] (t20_4); 
[x21$1] (t21_4); 
[x22$1] (t22_4); 
[x23$1] (t23_2); 
[x24$1] (t24_4); 
[x25$1] (t25_4); 
[x26$1] (t26_1); 
[x27$1] (t27_2); 
[x28$1] (t28_4); 
 
%c#15% 
[x1$1] (t1_2); 
[x2$1] (t2_2); 
[x3$1] (t3_2); 
[x4$1] (t4_2); 
[x5$1] (t5_3); 
[x6$1] (t6_2); 
[x7$1] (t7_2); 
[x8$1] (t8_3); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_2); 
[x13$1] (t13_3); 
[x14$1] (t14_3); 
[x15$1] (t15_3); 
[x16$1] (t16_3); 
[x17$1] (t17_2); 
[x18$1] (t18_3); 
[x19$1] (t19_4); 
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[x20$1] (t20_3); 
[x21$1] (t21_3); 
[x22$1] (t22_3); 
[x23$1] (t23_2); 
[x24$1] (t24_4); 
[x25$1] (t25_4); 
[x26$1] (t26_2); 
[x27$1] (t27_2); 
[x28$1] (t28_4); 
 
%c#16% 
[x1$1] (t1_2); 
[x2$1] (t2_2); 
[x3$1] (t3_2); 
[x4$1] (t4_2); 
[x5$1] (t5_4); 
[x6$1] (t6_2); 
[x7$1] (t7_2); 
[x8$1] (t8_4); 
[x9$1] (t9_2); 
[x10$1] (t10_2); 
[x11$1] (t11_2); 
[x12$1] (t12_2); 
[x13$1] (t13_4); 
[x14$1] (t14_4); 
[x15$1] (t15_4); 
[x16$1] (t16_4); 
[x17$1] (t17_2); 
[x18$1] (t18_4); 
[x19$1] (t19_4); 
[x20$1] (t20_4); 
[x21$1] (t21_4); 
[x22$1] (t22_4); 
[x23$1] (t23_2); 
[x24$1] (t24_4); 
[x25$1] (t25_4); 
[x26$1] (t26_2); 
[x27$1] (t27_2); 
[x28$1] (t28_4); 
 
MODEL CONSTRAINT: 
m1>-15; 
m2>-15; 
m3>-15; 
m4>-15; 
m5>-15; 
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m6>-15; 
m7>-15; 
m8>-15; 
m9>-15; 
m10>-15; 
m11>-15; 
m12>-15; 
m13>-15; 
m14>-15; 
m15>-15; 
NEW( l1_11 );  
NEW( l2_13 );  
NEW( l3_12 );  
NEW( l4_11 );  
NEW( l5_11 );  
NEW( l5_14 );  
NEW( l5_214 );  
NEW( l6_12 );  
NEW( l7_11 );  
NEW( l8_13 );  
NEW( l8_14 );  
NEW( l8_234 );  
NEW( l9_13 );  
NEW( l10_13 );  
NEW( l11_13 );  
NEW( l12_11 );  
NEW( l13_11 );  
NEW( l13_14 );  
NEW( l13_214 );  
NEW( l14_11 );  
NEW( l14_14 );  
NEW( l14_214 );  
NEW( l15_11 );  
NEW( l15_14 );  
NEW( l15_214 );  
NEW( l16_11 );  
NEW( l16_14 );  
NEW( l16_214 );  
NEW( l17_11 );  
NEW( l18_12 );  
NEW( l18_14 );  
NEW( l18_224 );  
NEW( l19_11 );  
NEW( l19_12 );  
NEW( l19_212 );  
NEW( l20_12 );  
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NEW( l20_14 );  
NEW( l20_224 );  
NEW( l21_12 );  
NEW( l21_14 );  
NEW( l21_224 );  
NEW( l22_12 );  
NEW( l22_14 );  
NEW( l22_224 );  
NEW( l23_11 );  
NEW( l24_11 );  
NEW( l24_12 );  
NEW( l24_212 );  
NEW( l25_11 );  
NEW( l25_12 );  
NEW( l25_212 );  
NEW( l26_13 );  
NEW( l27_11 );  
NEW( l28_11 );  
NEW( l28_12 );  
NEW( l28_212 );  
NEW( l1_0 );  
NEW( l2_0 );  
NEW( l3_0 );  
NEW( l4_0 );  
NEW( l5_0 );  
NEW( l6_0 );  
NEW( l7_0 );  
NEW( l8_0 );  
NEW( l9_0 );  
NEW( l10_0 );  
NEW( l11_0 );  
NEW( l12_0 );  
NEW( l13_0 );  
NEW( l14_0 );  
NEW( l15_0 );  
NEW( l16_0 );  
NEW( l17_0 );  
NEW( l18_0 );  
NEW( l19_0 );  
NEW( l20_0 );  
NEW( l21_0 );  
NEW( l22_0 );  
NEW( l23_0 );  
NEW( l24_0 );  
NEW( l25_0 );  
NEW( l26_0 );  
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NEW( l27_0 );  
NEW( l28_0 );  
t1_1=-(l1_0); 
 t1_2=-(l1_0+l1_11); 
 t2_1=-(l2_0); 
 t2_2=-(l2_0+l2_13); 
 t3_1=-(l3_0); 
 t3_2=-(l3_0+l3_12); 
 t4_1=-(l4_0); 
 t4_2=-(l4_0+l4_11); 
 t5_1=-(l5_0); 
 t5_2=-(l5_0+l5_14); 
 t5_3=-(l5_0+l5_11); 
 t5_4=-(l5_0+l5_11+l5_14+l5_214); 
 t6_1=-(l6_0); 
 t6_2=-(l6_0+l6_12); 
 t7_1=-(l7_0); 
 t7_2=-(l7_0+l7_11); 
 t8_1=-(l8_0); 
 t8_2=-(l8_0+l8_14); 
 t8_3=-(l8_0+l8_13); 
 t8_4=-(l8_0+l8_13+l8_14+l8_234); 
 t9_1=-(l9_0); 
 t9_2=-(l9_0+l9_13); 
 t10_1=-(l10_0); 
 t10_2=-(l10_0+l10_13); 
 t11_1=-(l11_0); 
 t11_2=-(l11_0+l11_13); 
 t12_1=-(l12_0); 
 t12_2=-(l12_0+l12_11); 
 t13_1=-(l13_0); 
 t13_2=-(l13_0+l13_14); 
 t13_3=-(l13_0+l13_11); 
 t13_4=-(l13_0+l13_11+l13_14+l13_214); 
 t14_1=-(l14_0); 
 t14_2=-(l14_0+l14_14); 
 t14_3=-(l14_0+l14_11); 
 t14_4=-(l14_0+l14_11+l14_14+l14_214); 
 t15_1=-(l15_0); 
 t15_2=-(l15_0+l15_14); 
 t15_3=-(l15_0+l15_11); 
 t15_4=-(l15_0+l15_11+l15_14+l15_214); 
 t16_1=-(l16_0); 
 t16_2=-(l16_0+l16_14); 
 t16_3=-(l16_0+l16_11); 
 t16_4=-(l16_0+l16_11+l16_14+l16_214); 
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 t17_1=-(l17_0); 
 t17_2=-(l17_0+l17_11); 
 t18_1=-(l18_0); 
 t18_2=-(l18_0+l18_14); 
 t18_3=-(l18_0+l18_12); 
 t18_4=-(l18_0+l18_12+l18_14+l18_224); 
 t19_1=-(l19_0); 
 t19_2=-(l19_0+l19_12); 
 t19_3=-(l19_0+l19_11); 
 t19_4=-(l19_0+l19_11+l19_12+l19_212); 
 t20_1=-(l20_0); 
 t20_2=-(l20_0+l20_14); 
 t20_3=-(l20_0+l20_12); 
 t20_4=-(l20_0+l20_12+l20_14+l20_224); 
 t21_1=-(l21_0); 
 t21_2=-(l21_0+l21_14); 
 t21_3=-(l21_0+l21_12); 
 t21_4=-(l21_0+l21_12+l21_14+l21_224); 
 t22_1=-(l22_0); 
 t22_2=-(l22_0+l22_14); 
 t22_3=-(l22_0+l22_12); 
 t22_4=-(l22_0+l22_12+l22_14+l22_224); 
 t23_1=-(l23_0); 
 t23_2=-(l23_0+l23_11); 
 t24_1=-(l24_0); 
 t24_2=-(l24_0+l24_12); 
 t24_3=-(l24_0+l24_11); 
 t24_4=-(l24_0+l24_11+l24_12+l24_212); 
 t25_1=-(l25_0); 
 t25_2=-(l25_0+l25_12); 
 t25_3=-(l25_0+l25_11); 
 t25_4=-(l25_0+l25_11+l25_12+l25_212); 
 t26_1=-(l26_0); 
 t26_2=-(l26_0+l26_13); 
 t27_1=-(l27_0); 
 t27_2=-(l27_0+l27_11); 
 t28_1=-(l28_0); 
 t28_2=-(l28_0+l28_12); 
 t28_3=-(l28_0+l28_11); 
 t28_4=-(l28_0+l28_11+l28_12+l28_212); 
  
 l1_11>0; 
 l2_13>0; 
 l3_12>0; 
 l4_11>0; 
 l5_11>0; 
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 l5_14>0; 
 l6_12>0; 
 l7_11>0; 
 l8_13>0; 
 l8_14>0; 
 l9_13>0; 
 l10_13>0; 
 l11_13>0; 
 l12_11>0; 
 l13_11>0; 
 l13_14>0; 
 l14_11>0; 
 l14_14>0; 
 l15_11>0; 
 l15_14>0; 
 l16_11>0; 
  
 l16_14>0; 
 l17_11>0; 
 l18_12>0; 
 l18_14>0; 
 l19_11>0; 
 l19_12>0; 
 l20_12>0; 
 l20_14>0; 
 l21_12>0; 
 l21_14>0; 
 l22_12>0; 
 l22_14>0; 
 l23_11>0; 
 l24_11>0; 
 l24_12>0; 
 l25_11>0; 
 l25_12>0; 
 l26_13>0; 
 l27_11>0; 
 l28_11>0; 
 l28_12>0; 
 
l5_214>-l5_11; 
l5_214>-l5_14; 
l8_234>-l8_13; 
l8_234>-l8_14; 
l13_214>-l13_11; 
l13_214>-l13_14; 
l14_214>-l14_11; 
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l14_214>-l14_14; 
l15_214>-l15_11; 
l15_214>-l15_14; 
l16_214>-l16_11; 
l16_214>-l16_14; 
l18_224>-l18_12; 
l18_224>-l18_14; 
l19_212>-l19_11; 
l19_212>-l19_12; 
l20_224>-l20_12; 
l20_224>-l20_14; 
l21_224>-l21_12; 
l21_224>-l21_14; 
l22_224>-l22_12; 
l22_224>-l22_14; 
l24_212>-l24_11; 
l24_212>-l24_12; 
l25_212>-l25_11; 
l25_212>-l25_12; 
l28_212>-l28_11; 
l28_212>-l28_12; 
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Appendix II 

 
The HPSOEM R code 
 
##############################################################################
#############################PSOEM##########################################
############################################################################## 
 
Model.log.likelihood<-
function(loopParticle,Class.Probability.vec=Class.Probability.vec,Classp.exp1=Classp.exp1,Clas
sp.exp2=Classp.exp2){ 
  for(loopEffect in (1:num_Parm)){ 
    assign(itemParmName[loopEffect],(globalSolution[loopParticle,loopEffect])) 
  } 
  Kernel.vec<-matrix(0,nrow(Kernel.exp),ncol(Kernel.exp)) 
  for(j in 1:length(Classp.exp1)){ 
    for(i in 1:nrow(Kernel.exp)){ 
      Kernel.vec[i,j]<-eval(parse(text=Kernel.exp[i,j])) 
    } 
  } 
   
  z <- 1/(1+exp(-Kernel.vec)) 
  Z<-z[] 
  Np<-nrow(respMatrix) 
  Allperson.likelihood<-rep(0,Np) 
  for (i in 1:Np){ 
    Zprime<-Z 
    Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,] 
    Allperson.likelihood[i]<-apply(Zprime,2,prod)%*%Class.Probability.vec 
  } 
   
  sum(log(Allperson.likelihood)[]) 
} 
 
 
############################################################################## 
################GPU computation methods########################################  
############################################################################## 
 
#for a certain profile and a certain response vector test.resp<-rbinom(28,1,0.8) 
Class.Probability.vec<-NULL 
Kernel.vec<-matrix(0,nrow(Kernel.exp),ncol(Kernel.exp)) 
for(j in 1:length(Classp.exp1)){ 
  Class.Probability.vec<<-c(Class.Probability.vec,eval(parse(text=Classp.exp2[j]))) 
  for(i in 1:nrow(Kernel.exp)){ 
    Kernel.vec[i,j]<-eval(parse(text=Kernel.exp[i,j])) 
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  } 
} 
 
z <- 1/(1+exp(-Kernel.vec)) 
Z<-z 
Np<-nrow(respMatrix) 
Allperson.likelihood<-rep(0,Np) 
for (i in 1:Np){ 
  Zprime<-Z 
  Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,] 
  Allperson.likelihood[i]<-apply(Zprime,2,prod)%*%Class.Probability.vec 
} 
 
#Algorithm Specifications     
num_Iteration=1000;num_Particle=198;stop_Criterion=0.01;cVector=c(1.5,1.5) 
inertiaVector=c(0.95,0.4);dVector=c(0.2,7) 
num_Parm<-length(itemParmName) 
Np<-nrow(respMatrix) 
FAILparticlecount<-rep(0,num_Particle) 
globalSolution<-matrix(0,num_Particle,num_Parm) 
globalClassProb<-matrix(0,num_Particle,nclass) 
localOptimum<-matrix(0,num_Particle,num_Parm) 
optimSolution<-rep(0,num_Parm) 
globalVelocity<-matrix(0,num_Particle,num_Parm) 
globalLL<-rep(0,num_Particle) 
iterateLL<-rep(0,num_Iteration) 
prematureCount<-rep(0,num_Particle) 
w.max<-1 
w.min<-0 
#Initial Values 
for (loopParticle in 1:num_Particle){ 
  globalSolution[loopParticle,]<-runif(num_Parm,-2,2) 
  globalSolution[loopParticle,1:numMainEffect]<-runif((numMainEffect),0.1,2) 
} 
globalSolution[1,]<-parm.ini 
localOptimum<-globalSolution 
for (loopParticle in 1:num_Particle){ 
  globalVelocity[loopParticle,1:(num_Parm)]<-runif((num_Parm),-0.1,0.1) 
} 
 
globalLL<-foreach(exponent=1:num_Particle, 
                  .combine=c, 
                  .export=c(ls())) %dopar% 
  
Model.log.likelihood(exponent,Class.Probability.vec=Class.Probability.vec,Classp.exp1=Classp.
exp1,Classp.exp2=Classp.exp2) 
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ref.LL<-mean(globalLL) 
optimSolution<-localOptimum[which.max(globalLL),] 
 
##############################################################################  
###############################Updating function################################      
##############################################################################  
   
particle.update<-
function(w,loopParticle,FAILparticlecount=FAILparticlecount,globalLL=globalLL,globalSoluti
on=globalSolution,localOptimum=localOptimum,globalVelocity=globalVelocity,cVector=cVect
or,Class.Probability.vec=Class.Probability.vec){ 
  reshuffle<-FAILparticlecount[loopParticle] 
  if(FAILparticlecount[loopParticle]>0){ 
    firsthalf<-sample(1:length(optimSolution),round(length(optimSolution)/2,0),replace=F) 
    secondhalf<-c(1:length(optimSolution))[c(1:length(optimSolution))%in%firsthalf] 
    #stocahstically take a half genes from the global best solution  
    globalSolution[loopParticle,firsthalf]<-optimSolution[firsthalf] 
    #stocahstically take a half genes from the global 2nd best solution  
    globalSolution[loopParticle,secondhalf]<-localOptimum[order(globalLL*-1)[2],secondhalf] 
    globalVelocity[loopParticle,]<-runif(num_Parm,-1,1) 
    reshuffle<-0} 
   
  if(FAILparticlecount[loopParticle]==0){ 
    globalVelocity[loopParticle,]<-w*globalVelocity[loopParticle,]+ 
      cVector[1]*runif(1,0.001,0.999)*(localOptimum[loopParticle,]-
globalSolution[loopParticle,])+ 
      cVector[2]*runif(1,0.001,0.999) *(optimSolution-globalSolution[loopParticle,]) 
    #Use the new velocity to update the particle' selected variable 
    globalSolution[loopParticle,]<-globalSolution[loopParticle,]+globalVelocity[loopParticle,] 
  } 
  #Assign the particle's solution to model: MainEffect and OtherEffect for items 
  for(loopEffect in (1:num_Parm)){ 
    assign(itemParmName[loopEffect],(globalSolution[loopParticle,loopEffect])) 
  } 
  #See if the Item parameter constrans violation happens 
  LLpenalty<-Cons.Vio.Penalty(constrain.List=Constrain.List) 
   
  if(LLpenalty==0){ItemParm.constrainViolation<-0 
  #Take the last Class.Probability.vec, this step will update the new Class.Probability.vec 
  #1. since all Kernels were PSO updated, they should be assigned to their names   
  Kernel.vec<-matrix(0,nrow(Kernel.exp),ncol(Kernel.exp)) 
  for(j in 1:length(Classp.exp1)){ 
    for(i in 1:nrow(Kernel.exp)){ 
      Kernel.vec[i,j]<-eval(parse(text=Kernel.exp[i,j])) 
    } 
  } 
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  z <- 1/(1+exp(-Kernel.vec)) 
  Z<-z[] 
  Np<-nrow(respMatrix) 
  Allperson.likelihood<-rep(0,Np) 
  Allperson.conditional.class.probability<-matrix(0,Np,nclass) 
  for (i in 1:Np){ 
    Zprime<-Z 
    Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,] 
    each.class.likelihood<-apply(Zprime,2,prod) 
    Allperson.likelihood[i]<-t(each.class.likelihood)%*%Class.Probability.vec 
    Allperson.conditional.class.probability[i,]<-each.class.likelihood*Class.Probability.vec 
    Allperson.conditional.class.probability[i,]<-
Allperson.conditional.class.probability[i,]/Allperson.likelihood[i] 
  } 
  Update.Class.Probability.vec<-apply(Allperson.conditional.class.probability,2,sum)/Np 
  for (i in 1:Np){ 
    Zprime<-Z 
    Zprime[respMatrix[i,]==0,]<-1-Z[respMatrix[i,]==0,] 
    Allperson.likelihood[i]<-apply(Zprime,2,prod)%*%Update.Class.Probability.vec 
  } 
   
  currentLL<-sum(log(Allperson.likelihood)[]) 
  } 
  if(LLpenalty!=0){print('Item Parameter updates are unsuccessful') 
    currentLL<-LLpenalty+globalLL[loopParticle] 
  } 
  if(currentLL=='NaN'){currentLL<-1*ref.LL;reshuffle<-FAILparticlecount[loopParticle]+1} 
  if (currentLL>=globalLL[loopParticle]){ 
    localOptimum[loopParticle,]<-globalSolution[loopParticle,] 
    Class.Probability.vec<<-Update.Class.Probability.vec 
    globalLL[loopParticle]<-currentLL 
  }#else{globalSolution[loopParticle,]<-localOptimum[loopParticle,]} 
   
   
  particle.output<-list()  
  particle.output[[1]]<-globalLL[loopParticle] 
  particle.output[[2]]<-localOptimum[loopParticle,] 
  particle.output[[3]]<-globalSolution[loopParticle,] 
  particle.output[[4]]<-globalVelocity[loopParticle,] 
  particle.output[[5]]<-Class.Probability.vec 
  particle.output[[6]]<-reshuffle 
  particle.output[[7]]<-currentLL 
  particle.output 
} 
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for(loopIteration in 1:num_Iteration){ 
  if(var(globalLL)>stop_Criterion){ 
    w=w.max-((w.max-w.min)/num_Iteration)*loopIteration 
    Iter.result = foreach(exponent=1:num_Particle, 
                          .combine = list, 
                          .multicombine = TRUE, 
                          .export=ls(.GlobalEnv)) %dopar% 
      
particle.update(w,exponent,globalLL=globalLL,FAILparticlecount=FAILparticlecount,globalSol
ution=globalSolution,localOptimum=localOptimum,globalVelocity=globalVelocity,cVector=cV
ector,Class.Probability.vec=Class.Probability.vec) 
     
     
    if(num_Particle<=398&num_Particle>301){#num_particle:301-398 
      Iter.Result<-Iter.result[[1]][[1]][[1]][[1]] 
      for(loop.2nd in 2:(100)){Iter.Result[[loop.2nd+99]]<-Iter.result[[1]][[1]][[1]][[loop.2nd]]} 
      for(loop.2nd in 2:(100)){Iter.Result[[loop.2nd+199-1]]<-Iter.result[[1]][[1]][[loop.2nd]]} 
      for(loop.2nd in 2:(100)){Iter.Result[[loop.2nd+299-1]]<-Iter.result[[1]][[loop.2nd]]} 
      Iter.Result[[399]]<-Iter.result[[2]] 
      Iter.result<-Iter.Result} 
     
    if(num_Particle<=198&num_Particle>101){#num_particle:101-198 
      Iter.Result<-Iter.result[[1]] 
      for(loop.2nd in 2:(num_Particle-100+1)){Iter.Result[[loop.2nd+99]]<-
Iter.result[[loop.2nd]]} 
      Iter.result<-Iter.Result} 
     
    CURRENTLL<-unlist(lapply(Iter.result,function(x){unlist(x[[7]])})) 
    globalLL<<-unlist(lapply(Iter.result,function(x){unlist(x[[1]])})) 
    localOptimum<<- 
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[2]])})),num_Parm,num_Particle)) 
    globalSolution<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[3]])})),num_Parm,num_Particle)) 
    globalVelocity<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[4]])})),num_Parm,num_Particle)) 
    optimSolution<<-localOptimum[which.max(globalLL),] 
    Class.Probability.vec<<-
t(matrix(unlist(lapply(Iter.result,function(x){unlist(x[[5]])})),nclass,num_Particle))[which.max(g
lobalLL),] 
    FAILparticlecount<<-
FAILparticlecount+as.numeric(unlist(lapply(Iter.result,function(x){unlist(x[[6]])}))) 
    FAILparticlecount[FAILparticlecount>1]<-0 
    particle.partition<-round(num_Particle/2,0) 
    if(sum(FAILparticlecount[1:particle.partition])>=(num_Particle/2-
num_Particle/4)){FAILparticlecount[1:particle.partition]<-rep(0,num_Parm/2)} 
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    if(sum(FAILparticlecount[particle.partition:num_Particle])>=(num_Particle/2-
num_Particle/4)){FAILparticlecount[particle.partition:num_Particle]<-rep(0,num_Parm/2)} 
    iterateLL[loopIteration]<-max(globalLL) 
    print(c(max(globalLL),mod1[8]$loglike)) 
  } 
} 
if(max(iterateLL)<mod1[8]$loglike){ 
  optimSolution<-parm.ini 
  Class.Probability.vec<-prop.ini 
  PSOEM.loglik[rep.loop]<-mod1[8]$loglike 
} 


