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Abstract

What follows is a pathway; a sequence of individual events, which together

form a story. Yet it is still only a small part of what has come before. Biological

structures also have individual stories; each composed of simple events in

sequence. One story does not tell the whole, for that we must observe many

stories, sample them if you will. Together, they bring understanding.

Assembly is an emergent property of many individual binding events. Through

this, all of the structures that make up life are created. Understanding the

regime of possibilities provides insight into both the breadth and tendencies

of the system. Cells contain numerous types of individual proteins many of

which come together to form larger complexes. I will begin by introducing

the elementary building blocks of those protein complexes. An introductory

example will provide the first perspective, it will form common ground and

allow the telling of the larger story with a shared perspective. Then a case

study, a real biological complex and how understanding the progression of its

pathways provided insight into the states which it reached. With the elemen-

tary operations described, I will move on to laying out the landscape of possible

pathways; first for a specific case and then the structure of the assembly path-

ways themselves. Thus, providing a novel framework for the understanding

of the stochastic space of protein complex assembly. Finally, I will provide an

example of how making changes in the possible assembly pathways leads to

non-intuitive changes in the conclusion of the protein complexes’ stories.
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To the Universe; it’s always gazing back. . .
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Preface
“When you make a thing, a thing that is new, it is so

complicated making it that it is bound to be ugly. But those

that make it after you, they don’t have to worry about

making it. And they can make it pretty, and so everybody

can like it when others make it after you.”

— Pablo Picasso

0.1 On the First-Person Plural

We, the community.

We, the union of author and reader.

We, the in-group of collaborators.

I will take responsibility for what I say, but sometimes we will be in this together.

0.2 On the Recapitulation of Background Material

Many subjects have been expounded upon in treatises both elegant and enlightening.

Generally arising from decades of dedication and revision.

Recapitulation with an original simulacrum, obfuscates the concepts.

Henceforth, I will provide suggested reading material for those occurrences.
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“In the end, bored by the repetitions,

I conclude my exercise by eating him.”

— Natsume Sōseki, I am A Cat

Chapter 1
One to One

Protein Binding

A buildup exercise

At its heart, life is about interacting objects. We do not think of individual proteins as

alive; we see life as an emergent phenomenon of interactions. To this end, I will begin with

a discussion of a simple class of interactions, a protein encountering another protein. So,

how does a protein move? Theories of protein movement range from explicit descriptions

of their subcomponents’ wavefunctions up through averages of ensembles. I will be

approximating molecular motion as spherical particles moving due to thermal fluctuations.

While precision may be lost by using an approximation coarser than technically possible,

we must remember life exists in only a narrow range of possible physical and chemical

parameter space. This level of approximation provides general applicability, as more

explicit descriptions increase dependence on properties of the specific system. Physical

conditions demanding more explicit modeling exist in biological contexts, e.g., DNA

packed into viral capsids is suspected to exist in a glass-like state [1, 2]. On the other hand,

the currently known extremophiles remain within a reasonable regime [3].

2



Let us start with a case where there is a single protein surrounded by other molecules

which can collide with it, but that is all these other molecules do. Additionally, I consider

the density of these background molecules to be something reasonable for a living system.

For my purposes, this should end up looking a lot like a hard sphere moving around in

a water-like fluid. The other objects in the fluid do not have to be water molecules, they

just need to be something that does not break the biological fluid approximation. In a

real system, there would be small organic molecules, other proteins, and of course some

water molecules, just to name a few. The exact details of the environment are a matter of

some debate [4–10]. The primary result of changing the background environment, in this

approximation, is a change in the diffusion rate of the reference sphere.

I am describing a system in which the sphere’s movement is dominated by collisions

with the fluid, this naturally gives rise to Brownian motion [6, 11, 12]. At this point I will

add more moving spheres. Now, if the spheres just bounce off of one another it is not

going to change anything other than the movement dynamics of the reference spheres. Let

us add the chance to bind together on contact. Binding at just the right strength is one of

the keys to life. If everything binds together perfectly, the world eventually becomes one

giant aggregate. To balance that, I am going to also let things fall apart. The need for this

balance is part of why life works only in a small window of the energy.

I will now take a moment to explain why I have not mentioned energetics for the

system as a whole. The cellular environment is a coupling of complex reaction networks,

which itself is encapsulated within an external environment with constantly fluctuating

thermodynamic properties. Direct modeling of this system is both highly complex and

very coarse [13]. All of the properties extrinsic to the model end up being encapsulated in

the diffusion, as a coarse approximation, while the one intrinsic property will be treated in

the unbinding of the spheres. Thus, I am basically considering the fluid to be a heat bath.

Now it is time to get into some details. In many cases, binding is described by a

collision frequency combined with a Boltzmann factor based on the activation energy of
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the reaction [6]. While I could derive an approximation though activation energy-based

collision theory, two issues would render such an approach complex. One, only patches of

the sphere are bindable and those patches have alignment requirements. Two, in most real

cases the objects are flexible with dynamic motions, resulting in non-spherical behaviors

in the binding interaction. The net result is that derivations of the general association rate

tend to differ from the empirically determined values by around a factor of 101 − 104 [14–

17]. Note, the spherical assumption is quite good for describing the motion in a uniform

fluid; the problem is that when they collide, the collision alignment of non-spherical

objects tends to be highly dependent on the deviations from a sphere. If the goal is to

make predictions about a specific protein, I would recommend empirically determining

the association rates or if that is not an option, carefully creating a collision model that

accurately describes the particular systems of proteins’ association rates. Since my goal

is more general, I will fix the association rate used in all simulations to 106 (M−1s−1)*.

Values in the range of 105 − 106 M−1s−1 have been cited as empirically representative of

a reasonable breadth of proteins [14–19]. The formal system I am constructing is not

limited by the parameters I am choosing; they are only for the concrete examples that I

will provide.

OK, things can now come together, why do they fall apart? Elucidation of dissociation,

requires an enumeration of the energetics that bind them together. As the world is full

of ways for objects to be bound together, but only a couple are in the right energy scale

for life. Let us start by removing some forces, e.g., strong, weak, gravity, whose energetics

are clearly outside the domain of interest for macromolecular interactions. I will now

break the relevant forces into two primary categories. First, there is the electrostatic based

intermolecular forces: hydrogen bonding, Van der Waals, covalent, ionic, and metallic

bonds. Covalent, ionic, and metallic rarely apply, and in the special cases when they would

be applicable, considerations beyond the scope of this work are needed [20]. Second, there

*Molar Concentration (M = mol/liter = mol/dm3) is being used. The proper SI unit is mol/m3, but due
to its impracticality in experimental contexts, it is rarely seen in use in the biological sciences.
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is an entropy term due to the restriction in the rotational and positional freedom of a

protein when bound vs unbound [18]. Finally, the details of the fluid do come into play

at this point, assuming the fluid is polar, i.e., water. There is an entropic cost associated

with the interactions of water molecules with the protein’s surface area, as the polar fluid

will align itself in a shell to shield the bulk fluid from the protein [20, 21]. The average

rate of protein:protein bond dissociation, is determined by the net energy of these effects

[22, 23]. Association and dissociation form a dynamic balance from which life emerges.

Unfortunately, the sheer complexity of a network encompassing even a single platonic

human, is not only beyond the scale of this document, it is beyond the scale of my current

understanding. So, let us start with something a smidge more tractable.

1.1 A:B Binding

Let us take a collection of effectively identical proteins, A, and a collection of distinctly

different proteins, B, which can bind together to form into complexes of type AB. I can lay

out a scheme of their association and dissociation:

A + B
kon,AB


koff,AB

AB (1.1)

Using standard mass action kinetics [24], the likelihood that A binds B is proportional

to the concentration of A, the concentration of B and the association rate constant kon

(M−1s−1). Whereas, the likelihood of their dissociation is the concentration of the complex

AB times the dissociation rate, koff (s−1). All reactions in this work are considered to be

reversible, even if the rate of the reaction in one direction is minuscule, a dissociation

rate will always be assigned. Reversible reactions are represented by the 
 symbol. []

represent concentration of the included symbol. Additionally, a concentration without a

subscript implies time dependence. The total concentration, including both bound and

unbound states, will be denoted by subscript “Total.” “Steady State” concentrations will
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be denoted by a subscript SS. For complete clarity, kon, koff are nonnegative real valued

constants. It follows that for Scheme 1.1 the following equations fully describe the reaction

kinetics:
d[AB]

dt
= kon,AB[A][B]− koff,AB[AB]

d[A]
dt

= koff,AB[AB]− kon,AB[A][B]

d[B]
dt

= koff,AB[AB]− kon,AB[A][B]

[A]Total = [A] + [AB] [AB](0) = 0

[B]Total = [B] + [AB] [A](0) = [A]0

[B](0) = [B]0

(1.2)

Additionally, for this case, it is possible to provide a complete closed form solution of the

system [25]:

Kd B
koff,AB

kon,AB
=

[A]SS[B]SS

[AB]SS

zAB =
√

([A]0 − [B]0)2 +K2
d + 2Kd([A]0 + [B]0)

[AB] =
2[A]0[B]0

[A]0 + [B]0 +Kd + zAB coth
(

1
2zABkon t

)
[A] = [A]0 − [AB]

[B] = [B]0 − [AB]

(1.3)
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Time dependent closed form solutions for reaction kinetics are available for only a

few reaction patterns. Traditionally a steady state solution is considered. This can be

found quite easily from the limit of the time dependent equations or by exploiting the

total species constraint equations, in this case [A]Total and [B]Total, which yields:

d[AB]
dt

= 0

d[A]
dt

= 0

d[B]
dt

= 0


⇒



Kd B
koff,AB

kon,AB
=

[A]SS[B]SS

[AB]SS

[AB]SS =
[A]0 + [B]0 +Kd −

√
([A]0 + [B]0 +Kd)2 − 4[A]0[B]0

2

[A]SS = [A]0 − [AB]SS

[B]SS = [B]0 − [AB]SS

(1.4)

I have defined Kd (M) for three reasons. First, it is common to find kon and koff as a ratio.

Second, it tends to be technically quite difficult to experimentally determine kon and koff.

Third, Kd is the dominant way binding strength is described in the field. Many people

argue for Kd ’s importance, due to the relation, if [A] = Kd then [B] = [AB] thus half of B

is in a bound state, note this is only achievable when [A]0 > [B]0. Caution needs to be

exercised, as this relation is not ensured in reactions more complicated than this binary

binding reaction, e.g., coupled sequences of reactions and higher order reactions.

Kd is handy for comparing binding strength between reactions. The common form is to

describe a reaction as stronger if the Kd is smaller, as this results in a higher tendency to

be in the bound state. I will introduce one more term before I start discussing the results

of these equations. Yield is the ratio of the current quantity of a species to the maximum

possible quantity of the species, i.e., in the case of [AB] the maximum is the smaller of [A]0

or [B]0. Yield allows for a consistent trait that can be compared across multiple types of

binding relations.
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Figure 1.1: Species Yield in One to One Binding
Kd is commonly plotted from larger to smaller, as smaller values represent stronger binding.
(A) Time dependent species yield solutions for the A:B binding relationship (Eqs. 1.3)
shown with parameters kon = 106 M−1s−1, Kd = 10−7 M, [A]0 = 2 × 10−6 M, and [B]0 =
10−6 M. (B) Steady state species yield solutions for the A:B binding relationship (Eqs. 1.4)
shown with parameters [A]0 = 2× 10−6 M and [B]0 = 10−6 M. (C) Time dependent species
yield solutions for the A:A binding relationship (Eqs. 1.9) shown with parameters kon =
106 M−1s−1, koff = 10−1 s−1, Kd = 10−7 M, and [A]0 = 2× 10−6 M. (D) Steady state species
yield solutions for the A:A binding relationship (Eqs. 1.10) shown with [A]0 = 2× 10−6 M.
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Figure 1.1A illustrates several features that will be key throughout this discourse.

Equilibrium is not a complete conversion to either side of the reaction. There is always

a dynamic balance between both sides of the reaction. The equilibrium level can be

dominated by either Kd or by a limiting species. Figure 1.1B shows these regimes, when Kd

is substantially above 10−8 the equilibrium is determined primarily by Kd , whereas when

Kd is below 10−8 the reaction is limited by [B]. Clearly, the details of these regimes are

dictated by the particular parameters of the reaction, but the general behaviors will always

be present. All curves show a sigmoidal form; asymptotic approaches to equilibrium are

common to all reversible reactions.

A technicality: I will only be considering concentration, since the species are dis-

crete objects their behaviors at extremely low concentrations, in a finite volume, become

stochastic in nature. Dynamic equilibrium is still present, so at some points there could be

zero molecules of a species, but for some greater time point the species will be present.

Appropriate treatment of behavior in the stochastic regime is beyond the scope of this

work.

Equilibrium results, such as Fig. 1.1B and Fig. 1.2, are both simpler to calculate and

experimentally easier to measure. While equilibrium results are important, the transient

behavior can elucidate processes that are lost in the equilibrium. Biological systems do

not always reach equilibrium, within a relevant timescale. In Chapter 3, I will introduce

a model system that is still showing significant non-periodic transient behavior at 1012

seconds, far exceeding any known normal biological process. Thus, we must be careful in

the application of steady state solutions for biological contexts. Context should always be

the deciding factor in the application of simplifications.
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Figure 1.2: Species Yield vs Initial Concentration
Generated from Eqs. 1.4 with Kd = 10−6 M for all plots. Black regions represent a high
equilibrium yield of the species, whereas white is a depletion of the species. Contour lines
demarcate several points in the transition gradient. (A) Regions where the reaction is A
limited can be seen above the red contour line. (B) The system is symmetrical between A
and B, thus this plot illustrates both that relationship and the region where [A] and [B]
are below Kd . (C) Yield is normalized by the maximum possible quantity of the species.
As this is calculated at every point, AB is limited by A when [A]0 > [B]0 and limited by B
when [B]0 > [A]0
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1.2 A:A Binding

I will now introduce a binding relation that upon first glance, appears similar to Section 1.1.

These are the two elementary operations in the formalism I am presenting. It is important

to understand them in detail before I begin discussing the construction of general patterns

produced from these operations and the emergent properties of those patterns. As opposed

to the binding of two distinct species I will now present the behavior of a self-binding

species:

A + A
kon,AA



koff,AA

AA (1.5)

The symmetry of this system immediately leads to several differences in the construction

of the equations describing its behavior. Unlike AB, AA contains two copies of the same

protein, so the equation for [AA]Total becomes:

[A]Total = [A] + 2[AA] (1.6)

Now by differentiating both sides of Eq. 1.6, I can show a key difference in the relationship

between the rates of the system [26]:

[A]Total = [A] + 2[AA] ⇒ 0 =
d[A]
dt

+ 2
d[AA]

dt

⇒


d[AA]

dt
= kon,AA[A]2 − koff,AA[AA]

d[A]
dt

= 2koff,AA[AA]− 2kon,AA[A]2

(1.7)
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Determination of this ratio can be accomplished in many ways; this method was chosen

for its generality. With that, I now model reaction Scheme 1.5 with the equations:

d[AA]
dt

= kon,AA[A]2 − koff,AA[AA]

d[A]
dt

= 2koff,AA[AA]− 2kon,AA[A]2

[A]Total = [A] + 2[AA] [AA](0) = 0

[A](0) = [A]0

(1.8)

I will now present the time dependent solution of Eqs. 1.8 [25]:

Kd B
koff,AA

kon,AA
=

[A]2
SS

[AA]SS

zAA =
√
Kd (Kd + 8[A]0)

[AA] =
Kd + 4[A]0 − zAA tanh

(
1
2zAAkont + tanh−1

(
Kd+4[A]0
zAA

))
8

[A] = [A]0 − 2[AA]

(1.9)

A selection of solutions to Eqs. 1.9 are shown in Figs. 1.1C and 1.1D. There is no substantial

shift in general pattern, but the scaling has been shifted. As before, I will now derive the

steady state equations for Scheme 1.5:

d[AA]
dt

= 0

d[A]
dt

= 0

 ⇒



Kd B
koff,AA

kon,AA
=

[A]2
SS

[AA]SS

[AA]SS =
Kd + 4[A]0 −

√
Kd (Kd + 8[A]0)
8

[A]SS = [A]0 − 2[AA]SS

(1.10)

Note the relation, if [A]SS = Kd then [A]SS = [AA]SS, no longer implies half is in a bound

state, it results in a third of A is in a bound state. Additionally, this relation is uniquely

valid at [A]0 = 3Kd . Whereas, half bound is achieved when [A]SS = 1
2Kd resulting in
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[AA]SS = 1
4Kd and occurs when [A]0 = Kd . These details are especially important when

both reactions have related underlying kinetic parameters, such as kon and koff.

1.3 Synthesis and Degradation

In living systems, there is an introduction of species into the system and a removal of

species from the system. This constant cycling is a fundamental trait of life. The equations

I have presented up to this point describe systems more representative of systems we

would see in an experimental setting and thus I will refer to them as in vitro-like. To better

represent in vivo-like systems, I will be adding two concepts: Synthesis, QX (M−1s−1), to

represent a constant introduction of a specific species represented byX, and Degradation, δ

(s−1), to represent the constant removal of all species. Synthesis is primarily accomplished

by cellular functions introducing a species into the system, thus I will approximate this by

a constant term in the differential of the minimal structure for the system. Degradation in

living systems can take many forms, with a variety of mathematical descriptions being

admitted [18]. I will be using the model where loss is dominated by the dilution of the

system. Dilution is the dominant effect in rapidly dividing cells, which is also when

assembly efficiency is often critical to survival. Dilution is modeled as a rate, δ (s−1),

proportional to concentration, for every species. I have adjusted Scheme 1.5’s equations to

account for an in vivo-like system:

d[AA]
dt

= kon,AA[A]2 − koff,AA[AA]− δ[AA]

d[A]
dt

= 2koff,AA[AA]− 2kon,AA[A]2 +QA − δ[A]

[A]Total,SS = [A]SS + 2[AA]SS [AA](0) = 0

Kd B
koff,AA

kon,AA
=

[A]2
SS

[AA]SS
[A](0) = 0

[A]Total,SS =
Q
δ

(1.11)
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In the steady state limit, [A]Total,SS is equivalent to [A]0 from the in vitro-like formulation.

This relationship will be used when referring to concentration in in vivo-like experiments

to ease comparisons between the models. Care should be taken when considering [A]Total,SS

in pre-steady state conditions. For example, consider the regime when QA > t[A]Total,SS,

then [A]Total,SS > [A]Total as [A]Total,SS is greater than the concentration of A introduced

into the system at that point.

I have now introduced the two fundamental operations of the assembly pathway

formalism. In the next chapter I will be extending these operations to include chains and

branching of binding events, Chapter 2. In Chapters 3 and 4, I will demonstrate how to

form sets of assembly trees from these elementary operations. Then I will conclude with

an example of how an alternate binding partner can disrupt the system, Chapter 5.
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Chapter 2
ISWI:NCP

Binding

“Ten thousand times the web could be destroyed, and

ten thousand times the spider would rebuild it. There

was neither annoyance nor despair, nor any delight,

just as it had been for a billion years.”

— Cíxı̄n Liú, The Dark Forest

Let us consider the binding relationships introduced in Chapter 1. Envision the state

before binding as an island. Then the state after binding as a different island. Now the

option for binding can be thought of as a bridge between those islands with a capacity in

each direction proportional to the kinetic rates (kon and koff). Just having a bridge does

not imply that anything will traverse the bridge, there must be something on one side

which would favor being on the other. This metaphor may seem familiar, as the origin of

Graph Theory began with the Seven Bridges of Königsberg [27]. I will not be invoking

a full graph theoretic formalism, as geometric constraints will play a major role in the

determining of allowable connections, but I would like to invite the reader to apply the

same principles of abstraction to the flows and states within the dynamic system. With

this concept in mind, I will now begin construction of a second bridge on the first island.

To illustrate this iteration of the formalism, I will use an experimental project from

Dr. Fischer’s lab as a case study. Dr. Al-Ani led the experimental work, while I focused

on analysis of the results and modeling of the system [28–33]. The question on the table

was “How does ISWI bind to an NCP?” Imitation SWItch (ISWI) is a large chromatin

remodeling protein [34–37]. Whereas, Nucleosome Core Particles (NCPs) are highly
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stable macromolecular complexes combining proteins and DeoxyriboNucleic Acid (DNA)

[38–43]. The biological roles of both have been well covered in the literature, for this

document’s purposes, the importance is their binding relationships. The ISWI:NCP system

provides an excellent real-world example for the next two extensions to the formalism:

Sequential Binding Events (SBEs) and Branching.

2.1 Sequential Binding Events and Branching

First, I will extend the basic models from Chapter 1 to demonstrate these extensions. SBEs

admit a potential to have a sequence of binding relationships. A simple example of this

would be if AB from Eqs. 1.2 could bind to B, resulting in:

A + B
kon,AB

koff,AB
AB + B

kon,ABB

koff,ABB
ABB (2.1)

There is an important caveat to this scenario: AB must be an obligate precursor to ABB.

The problems arise from potential substructures and symmetries present in the structure

ABB. For example, if B can bind to B without A present then Scheme 2.1 should account

for that. This issue leads directly into the second extension: branching is the option for a

species to have more than one candidate for binding. For instance, branching of A + B to

either AB or BB, but not ABB, would look like this:

A + B
k
on,BBk

off,BB

BB

k off
,A

B

k on
,A

B

AB

(2.2)

Only the branching step is shown. If ABB were admitted without the AB obligate precursor

requirement, I would need to combine both extensions. For this particular example, both

branches end up returning to the same state, so in effect I will be using an SBE of a

branching with a reverse branch. Everything about binding in this formalism can be
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thought of as symmetric with respect to path, as all reactions are reversible. Thus, a

reverse branch is just a branching from the opposite point of view. Drawn in scheme form,

the scheme would appear as:

A + B
k
on,BBk

off,BB

BB + A

k off
,A

B

k on
,A

B

AB + B

k off
,A

B+B

k on
,A

B+B

ABB

k
on,BB+A

k
off,BB+A

(2.3)

As each of the four nodes in Scheme 2.3 are unique, this is the simplest way to draw this

reaction. Scheme 2.3 also happens to be the first time a cycle has appeared. Cycles provide

an opportunity to use the concept of detailed balance: at equilibrium, every elementary

process must be balanced by its reverse process [44, 45]. Now recall that rate constants are

independent of concentration, thus for this cycle, detailed balance gives the invariant [26,

46, 47]:

kon,BB kon,AB+B koff,BB+A koff,AB = kon,AB kon,BB+A koff,AB+B koff,BB (2.4)

As I am not allowing rate constants to be dependent on anything in the system that changes

between transient and steady state, this can be generalized to any time point in the system.
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2.2 Imitation SWItch (ISWI)

Now, I will return to the ISWI:NCP system. Experimental evidence led us to a model

in which a single NCP (N) has the capacity to bind two ISWIs (P). I have graphically

illustrated the four possible species:

P : N :

PN : PPN :
(2.5)

NCPs are shown in blue, ISWI is shown in red, and unfilled circles represent unoccupied

binding sites. Unlike the ABB example, here we have a symmetry. A priori we do not know

if there is a difference between binding to the two sites, hence there is only one species

PN. If I proceed as before and write the binding scheme, I once again will want a branch

followed by a reverse branch:

P + N
kon,PN

koff,PN
P + PN

kon,PPNkoff,PPNkon,PNkoff,PN

P + PN
kon,PPN

koff,PPN
PPN

(2.6)

Unlike last time, two of the nodes will be equal due to the symmetry of PN. This situation

is a special type of branch, as it is describing two ways to proceed to the same state. As

the endpoints are the same, this can be represented by collapsing the branch into a linear

sequence of binding reactions and doubling the rate constant towards the branch [18].

Remember, fully reversible reaction schemes do not include the concept of direction, so

branching can happen in a way that we may perceive as reversed. Therefore, both sides of
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the split can be collapsed in the same way:

P + N
2kon,PN

koff,PN
P + PN

kon,PPN

2koff,PPN
PPN (2.7)

There are several ways to interpret the introduction of the factors of two, introduced in the

collapsing of Scheme 2.7. Here are several of the most relevant options. First, I can invoke

the relation in Eqs. 1.7 as this system takes the same general form. Second, I can make a

symmetry argument: there are two ways for P to bind to PN, but only one way for P to

unbind. Additionally, the same is true for PPN: there are two ways for P to unbind from

PPN, but only one way for P to bind. Finally, the general approach within this formalism

is to consider all branches with identical endpoints to be collapsible: the links can be

replaced with a single link, by adding a coefficient to rate constant equal to the number of

links from before the collapsing action, i.e., in this case there is a factor of two added to

kon,PN and koff,PPN as they both have two links with P + PN at the other end that start from

the same place.

Determination of whether to incorporate these factors, such as the factor of two pro-

ceeding kon,PN and koff,PPN, into the rate constants or to leave them in the equation as

coefficients are a matter of what emphasis is intended. All methods are mathematically

equivalent, but the resulting equations and constants can generate different implied mean-

ings to the reader. For complete openness, my desire is to ensure the rate constants are

dominated by the site-to-site binding energetics, not the combinatorics of the system. This

is important in the upcoming chapters, as it allows an effective Kd to be varied in the

system to represent binding site strength. Although, it would also be reasonable to include

the factors in the term, as that would be more representative of what would be expected

in most experimental contexts. These variations are part of what leads to terminology

such as microscopic, macroscopic, step-wise. Usage of this terminology is often viewed in

different subgroups as being consistent across the field, but in my experience, the wide

adoption of consistent definitions is vastly overestimated. Hence, I define my terms by the
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mathematical descriptions I provide, as opposed to invoking a specific name. With that

clarification in mind, I present the equations governing the ISWI system:

d[PPN]
dt

= kon,PPN[P][PN]− 2koff,PPN[PPN]

d[PN]
dt

= 2koff,PPN[PPN] + 2kon,PN[P][N]− koff,PN[PN]− kon,PPN[P][PN]

d[P]
dt

= koff,PN[PN] + 2koff,PPN[PPN]− 2kon,PN[P][N]− kon,PPN[P][PN]

d[N]
dt

= koff,PN[PN]− 2kon,PN[P][N]

[P]Total = [P] + [PN] + 2[PPN] PPN(0) = 0

[N]Total = [N] + [PN] + [PPN] PN(0) = 0

Kd,PN B
koff,PN

kon,PN
= 2

[P]SS[N]SS

[PN]SS
P(0) = [P]0

Kd,PPN B
koff,PPN

kon,PPN
=

1
2

[P]SS[PN]SS

[PPN]SS
N(0) = [N]0

(2.8)

I have now reached the point where the determination and display of the explicit solution

for this and upcoming models is impractical. A closed form analytic solution for steady

state conditions was determined for use in the fitting of empirical data. Displaying it here

is impracticable at best and does not substantially improve understanding of the system.

As this case study comes from the experimental elucidation of the model, it is important

to present the linkage between the abstract model and the experimental observables. In

this case, I will only be covering the experimental evidence which is most relevant to the

dynamics of the reaction network. Fluorescence anisotropy is an experimental technique,

which measures the ratio of the intensities of perpendicularly polarized light [48]. The

experimental technique allows for the inference of the bound state of fluorophore labeled

species. For these experiments, the NCPs were labeled with Alexa Fluor™ 488. For details

about this experimental system please see Al-Ani et al. [28, 33]. General details on the

method of fluorescence anisotropy have been covered in detail by Dr. Lakowicz [48, 49].
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The key property of fluorescence anisotropy, for the relevance of this work, is the ability

to detect separate species in equilibrium. Results presented in this document are from

steady state ensemble measurements, which result in an average fluorescence anisotropy

value of [48]:

r̄ =
∑
i

firi (2.9)

Where i iterates over all fluorescent species, fi is the fractional fluorescence intensity, and

ri is the steady state fluorescence anisotropy of the species, resulting in fi acting as an

excellent proxy for the fractional concentration. Then, by defining ∆r to be ∆r = r̄ − r̄0,

where r̄0 is the measured value when [P] = 0 is added, I can remove the effect of [N], while

benefiting from r̄0 being an easy to accurately measure value. By not adding P to the initial

mixture, measurements of r̄ due only to N can be measured under a variety of conditions

and in an easily repeatable fashion. I now have a well-behaved experimental observable

for determining [PN] and [PPN]:

∆r =
[PN]
[N]0

rPN +
[PPN]
[N]0

rPPN (2.10)

For each data point, a known concentration of P and N were added together and allowed

to reach approximate equilibrium. The fluorescence anisotropy was then measured. This

completes the prerequisites to determine the remaining equilibrium constants and thus

elucidate the binding of ISWIs to NCPs.

The system’s parameters were fit with a custom application I wrote in Python and

WX, with the capabilities to preform: GUI driven, nonlinear data fitting, with Monte

Carlo uncertainty propagation for modular data models. The program was created, but

as colleagues completed their degrees and moved on, so did the needs of the lab, and the

project was ultimately abandoned. The source code will reside for a reasonable period

of time in the GitHub repository: https://github.com/vatir/tuva [50–58]. Figure 2.1A

shows the results of that fitting, while the parameters are shown in Table 2.1.
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Table 2.1: ISWI Binding Parameters with 68% Confidence Bounds

Kd,PN 2.6 ± 1.2 nM Dissociation Constant for PN

Kd,PPN 5.0 ± 1.4 nM Dissociation Constant for PPN

rPN 0.073 ± 0.008 Fluorescence Anisotropy for PN

rPPN 0.121 ± 0.003 Fluorescence Anisotropy for PPN

Table 2.1 combined with Eqs. 2.8 and 2.10 provides a complete model of the steady

state binding of ISWI. Kd,PN and Kd,PPN are within uncertainty of each other, as I kept the

combinatorial factors in the binding equations instead of the kinetic rates. This implies

that the difference in strength between the binding sites and the importance of binding

order is not significant for this system. Now, it is quite likely the site-specific binding

effects are somewhat different, just not significant. The result does support my assumption,

that for a general model we can treat the sites as independent. Though, care should be

taken if small molecule binding is involved, as this assumption does not hold even for ISWI.

In the same work that Dr. Al-Ani and I carried out, we determined interactions between

different binding sites when a small molecule was involved [28]. For a more general

treatment, see Supplementary Reading: Thermodynamics of Binding Site Interactions.

One of the many benefits of having a binding model for a system is the ability to

predict the binding state of species in the mixture. Figure 2.1B shows an example of

what can be predicted from knowing the initial concentrations of the species added to

an experiment. Thereby, one can tailor experiments by controlling the concentration of

species present. Additionally, results can be properly normalized for real concentration of

the target species. For example, it would be extremely difficult to measure an interaction

between something and the PN state as opposed to the PPN state without a model of this

type.
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Figure 2.1: ISWI:NCP Binding
All species fractions are determined using parameters from Table 2.1. Shaded regions
denote a 68% confidence range, where upper and lower bounds are derived from maximum
and minimum parameter bounds, respectively. (A) Change in Anisotropy vs Initial ISWI
with lines from Eq. 2.10. NCP is the starting concentration added to each experiment.
Experimental results collected by Dr. Al-Ani [28]. ∆r uncertainty is calculated at 68%
confidence, by experimental repetition. Protein concentration uncertainty is calculated at
68% confidence by analysis of experimental apparatus, as this was determined to be the
dominate source of uncertainty: error bars are smaller than data markers in most cases.
(B) Species Yield vs Initial ISWI concentration, as resulting from Eqs. 2.8.
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Chapter 3
Stacked Trimer

“I like silent pictures and I always have. They

are often so much more beautiful than sound

pictures are. Perhaps they had to be. At any rate

I wanted to restore some of this beauty. I thought

of it, I remember in this way: one of techniques

of modern art is simplification, and that I must

therefore simplify this film.”

— Kurosawa Akira

All the elementary operations are now available. It is time to put the operations together

and see what forms. By combining A:A (Section 1.2), A:B (Section 1.1), and SBEs (Sec-

tion 2.1) a countably infinite class of binding relations can be formed, covering the general

structure of all protein complexes. Now I need to start adding restrictions to reduce the

cardinality of the space and add structure. Without that, the system is far too general to

elucidate any specific system. These restrictions take two forms. First, by bounding the

possible complexes allowed in the system, the cardinality is reduced to finite. Second,

equivalence relations are used to form equivalence classes, e.g., collapsing of identical

branches as mentioned in Section 2.1. Bounding is required for most analysis methods

used on these systems, whereas equivalence classes are aids to the understanding and

computability of the system’s structure. As such, I will introduce several equivalence

classes that I feel are widely relevant, but others are not only possible, they may be critical

to the understanding of a specific system.
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Inter-Ring Bonds Intra-Ring BondsStacked Trimer

Figure 3.1: Stacked Trimer Diagram & Bond Types

3.1 Technical Description

Concepts in this chapter will be introduced through the use of the stacked trimer, illus-

trated in Fig. 3.1. Stacked trimers are protein complexes containing six identical proteins,

homo-hexameric. Stacked trimers are symmetric under the dihedral group of order three

symmetries (D3), the same as an equilateral prism [59]. D3 includes 3-fold rotation sym-

metry in the xy-plane and reflection symmetry across the z-plane (Table 3.1) [60, 61].

Subspecies of the stacked trimer can be reduced to a minimal number of classes by using

the equivalence relations in D3. Bond types in the stacked trimer are dictated by sym-

metry; each protein contains three binding interfaces. Protein interfaces come about by

alignment of patterns chemical relations within the binding proteins. Therefore, most

binding interfaces can not be arbitrarily rotated with respect to the axis central to the bond

[62]. Thus, I will impose the condition that these interfaces have the minimum conditions

that still admit the structural symmetries, i.e., there are three binding sites on each protein

(A, B, and C) which bind (A to B) and (C to C′) where C′ is the reflection of site C. D3 is

the union of the subgroup cyclic group of order three (C3) and a reflection symmetry.*

Thus, I will begin by describing the protein properties induced by C3; stacked trimers

contain a rotationally symmetric three-member ring, hence the name stacked trimer. To

form this ring I assign site A to be 120° from site B to naturally close the ring and yield the

*Protein complexes with dihedral symmetry can be bound entirely with isologous association sites or
a mix of bond types as in Table 3.1, such that intra-ring bonds are heterologous and inter-ring bonds are
isologous [60]. It should be noted, that the details of protein-protein binding can be very complicated in
practice, so even this distinction is falling out of favor due to its oversimplification of the issue [61].
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Symmetries of the Dihedral Group of Order 6 (D3)

ReflectionRotation (C1) Rotation (C2) Rotation (C3)Perspective

Table 3.1: Symmetries of the Stacked Trimer (D3)

desired C3 subgroup. Bonds of type A and B will henceforth be referred to as Intra-Ring

bonds, Fig. 3.1. Additionally, I assign site C to be 90° from both site A and site B. When the

z-plane reflection is considered the reflection relation of C to C′ becomes clear (Table 3.1).

Bonds of type C and thus C′ will henceforth be referred to as Inter-Ring bonds, Fig. 3.1.

Enumeration of substructures of the stacked trimer must be achieved before the re-

actions can be enumerated. The algorithmic details of how to accomplish substructure

enumeration are flexible and depend on the specific structure under investigation. For

conceptual clarity, I will describe the enumeration substructures in a fashion similar

to how a biological system would explore the possibilities. To begin, consider a single

protein: it can be represented as a substructure of the stacked trimer by considering the

complementary five proteins as missing/unbound. This will be illustrated by filled and

unfilled circles, as in Section 2.2. For a single protein there are six locations the protein

could be placed within the full structure. D3 symmetries provide an equivalence relation

rendering all six of these equivalent, thus I have my first equivalence class. Now, for

convenience, I will choose a single representative from the class to represent the class as a

whole; each of the class representatives are shown in Fig. 3.2. The single protein is the

minimal substructure in terms of protein count and will provide the starting point for all

assembly reactions. Additionally, the minimal subunits are the only species with synthesis.

Not all protein complexes have a unique minimal substructure; in Chapter 5 the system

will have up to three unique minimal substructures.
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Once the minimal substructure(s) have been determined, one can consider the possible

structures formed by binding two minimal structures together. Yielding my first assembly

intermediate(s), once again they are tested for D3 equivalences and reduced to equivalence

classes. At each step all possible combinations between substructures, both by type

of substructure and by symmetries of those substructures, must be tested to ensure

an exhaustive listing of all possible substructures. This process is effectively what is

happening in solution when the proteins are colliding with each other. This is clearly

not the algorithmically optimal method of determining the substructures, as I know a

priori the existing symmetries of the final structure, but a biological system does not have

that advantage. By continuing to generate new substructures through exhaustive pairwise

binding attempts between all structures known up to that point, the process will converge

to only binding events resulting in the maximal structure (all possible protein positions

are filled). It is important to note that not all intermediates can bind with each other, as a

filled protein slot cannot overlap another filled slot in the binding partner. For the case

1 2 3 4 5 6

7 8 9 10 11 12

Figure 3.2: Stacked Trimer Subspecies Chart
Canonical representations of each equivalence class for the stacked trimer. Red filled
circles mean a protein is present in that location, whereas empty circles represent potential
locations for a protein which are not occupied in that structure. They proceed from species
one, the minimal structure up through species 12 the complete stacked trimer. Additional
representations are discussed in Section 4.3 and listed in Table 4.4.
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of the stacked trimer this process results in 12 equivalence classes of protein complexes,

including the minimal subunit and the maximal structure, all 12 are shown in Fig. 3.2.

Exhaustive enumeration also happens to determine all possible reactions in the system,

one just needs to keep a tally of how many times each type of binding match is detected.

As the species are described using equivalence classes, the reactions can also be grouped

into binding relations between equivalence classes, but some reactions will be detected

more than once between the same classes. To account for this, a combinatorial factor must

be added equal to the number of times the same reaction is found. All binding relations

including combinatorial factors, number of intra-ring bonds (i), and number of inter-ring

bonds (j) for each relation are shown in Fig. 3.4. One goal of this approach is to look at the

effects of the assembly network’s layout, not just determine the result.

As such, I will introduce an effective Kd for binding relations that takes into account

the differences between the species involved, but is still related to previously defined

parameters. The first piece of this is to approximate all association events (kon) to be equal.

The second, will be choosing the Kd terms from the binding of two minimal subunits

as independent variables. Now, since there are two bonds which can join the minimal

subunits together, I need two Kd values: one related to the intra-ring bond (Kd,1) and the

second for the inter-ring bond (Kd,2). These are defined in the same way as in previous

chapters within the context of the first two reactions in Fig. 3.4. My final parameter for

this effective binding strength is an adjustment accounting for the differences between

complexes when more than one bond is involved in the binding relation. The term ∆G0
p is

a description of the change in energy due to positional entropy from the effects of multiple

bonds changing state in the binding relation. ∆G0
p has been previously described, used,

and ascribed an empirical value of 9 kcal M−1 [18, 63, 64]. Altogether, this yields an
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effective dissociation constant of:

keff
i,j = αkonK

i
d,1K

j
d,2e−(i+j−1)∆G0

p/RT

α = c−i−j+1
0

kon = 106 M−1s−1

(3.1)

c0 is a reference concentration added to correct the units, the standard value is 1 M. As

discussed in Chapter 1, kon’s value is set to a reasonable value for most proteins. Note, if

the substructure only contains one bond, keff
i,j reduces to koff for the relevant bond. Finally,

T = 300K is a common approximation for living systems. This results in RT ≈ 0.6 kcal M−1.

Full differential equations for the stacked trimer are in Appendix A. Their derivation

followed the same general process as Sections 1.1, 1.2 and 2.2.

Synthesis of minimal subunits and degradation of all species has been included in

the full equations using the same approach as Eqs. 1.11. Determination of an analytic

closed form solution for stacked trimers is at best not very enlightening and likely futile.

Therefore, I developed a platform using computational numerical analysis to determine

solutions for results related to the stacked trimer [65, 66]. The platform performed

all simulations and analysis using a Python based system for distributed processing,

analysis, high performance data storage, GUI based data exploration with both local display

and WebSocket based browser access [50, 54–57, 67]. The general approach is visually

represented in Fig. 3.3. Source code will reside for a reasonable period of time in the

GitHub repository: https://github.com/vatir/Protein-Complex-Assembly-Pathways.
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Figure 3.3: Assembly Network Workflow
General process work-flow for approaching protein complex assembly systems with my
level of approximation. The relationships between the objects are important, but the
experimental method of determining them is not. In this case a crystal structure is shown
as it provides a visual representation of the conversion. Structure shown is PDB entry
1EHW rendered in PyMOL [68, 69].
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Figure 3.4: Stacked Trimer Reactions
All 34 binding relations for the stacked trimer, including combinatorial coefficients for
repeated forward and reverse reactions. See Eq. 3.1 for the definition of keff

i,j , i is the number
of intra-ring bonds and j is the number of inter-ring bonds.
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3.2 Pathways

Elementary operations and the general formalism did not come up much in Section 3.1.

Well, I do not technically need them to run simulations in time and parameter space, but

the benefits to analysis are invaluable. First, I will give some perspective on the scale

of data generated; a single dataset produces values for the stacked trimer’s system in

a dense grid of log spaced points across 100 Kd,1 values × 100 Kd,2 values × 100 Initial

Concentrations × 112 Time Points × 12 Species, plus assorted metadata about the run to

improve data governance. This yields an approximately 12 gigabyte binary storage object

in the HDF5 format. Compounding this is one dataset was produced without synthesis

and degradation, but there are over 20 additional datasets with an effective cell division

period, the independent parameter controlling the synthesis/degradation rates. Hum, so I

am now sitting on about a quarter terabyte of binary64 floating point values. How can I

begin to extract patterns and meanings from this?

Boundary conditions often depict a system’s potential. I know the maximal and

minimal structures which the system admits, so I will start with those boundaries in place.

Additionally, I constructed the system’s bond patterns to preclude structures that are not

substructures of the maximal structure. Those constraints close the species space. Now,

I will consider the system’s structural properties. The system never utilizes elementary

operations other than bind self (Section 1.1) and bind other (Section 1.2). Next, branching

(Section 2.1) has already been accounted for by the grouping of reactions into reaction

classes and the additional of combinatorial factors. Thus, the only operation type which

can connect binding operations are SBEs (Section 2.1). With those points in mind, I will

consider the potential ways the stacked trimer can be built up through association. Note,

the system is fully described by the network formed from the reactions in Fig. 3.4, which

include the potential to cycle through both association and disassociation. My goal is to

enumerate possible paths by which stacked trimers can assemble, so I will consider only

association. Binary trees provide an excellent abstraction of the assembly process; they
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allow a complete representation of the association steps required to form the full protein

complex. Supplementary Reading: Trees (Data Structures) Within this chapter I will limit

my discussion to pathways relating to the stacked trimer. For details of the general process

of enumerating pathways please see Chapter 4. The reader may find the presentation

clearer to assume I have exhaustively enumerated all unique assembly pathways for the

stacked trimer by hand, as for a system this size it is quite possible. All 46 assembly

pathways are graphically shown in Table 3.3.

At this point, I will split the development of stacked trimer assembly and assembly

pathways into the remainder of the current chapter and Chapter 4, respectively. Stacked

trimer assembly and assembly pathways are intertwined concepts, so while there are

points of overlap between their development. Presentation of the formal underpinnings

of assembly pathways, at this point, may distract the reader from the analysis of stacked

trimer assembly. Several analysis methods for the stacked trimer will use both assembly

pathways and Pathway Contribution, which will formally be introduced in Chapter 4 and

Section 4.4. This will result in the use of equations for Pathway Contribution appearing in

the analysis of the stacked trimer before they are presented. Please bear with me, but I

prefer to present a coherent description of stacked trimer assembly before embroiling the

reader in the background and terminology required for the formal definition of assembly

pathways and Pathway Contribution. If the reader feels a strict adherence to the order of

introduction with regard to technical concepts is required, please jump ahead and read

Chapter 4 at this point, then return and enjoy the analysis of stacked trimer assembly.

3.3 Analysis

After writing an interactive data visualization system for the stacked trimer’s Chemical

Reaction Network (CRN) results, I spent quite a long time looking at all the correlations and

interesting patterns the system shows. Eventually I concluded the system is complicated

enough that I could find almost any pattern I wanted to if I looked long enough. The one
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Table 3.2: Default Stacked Trimer Properties

Time Concentration
Cell Division Period Degradation Rate (δ)

in vitro-like in vivo-like in vitro-like in vivo-like

≈ one day 4× 10−6 (M) ∞ hour 0 2.8× 10−4 (s−1)

unrelenting feature is a tendency to see higher yield in the maximal structure when the

Inter-Ring Kd < Intra-Ring Kd , i.e., the system has a higher tendency to form Inter-Ring

bonds when species capable of doing so are present. It is difficult to attribute this pattern to

a specific source. The symmetry of the structure is a strong possibility, but leaves on open

question: how does the symmetry result in that tendency? This is an excellent example of

the importance of having a background/comparison system(s). Determining causality or

meaning of the patterns found in the system becomes difficult, while it becomes worryingly

easy to present subjective results, probably with very nice statistics to provide credibility

due to the quantity of available data [70–72]. My direction of research after this work

was preliminarily completed took a quite radical turn, so I did not follow-up this project

by with development of possible reference systems. The intellectual descendant of this

project is Chapter 5, which was chosen to focus on predictions for experimental projects.

Associated with this transition, my focus shifted to developing and troubleshooting a

series of experimental projects. With that, onto some comments on the upcoming figures.

As I have mentioned, the range of the parameter space provides an expansive view of

the dynamics of assembly of the stacked trimer. My goal in Figs. 3.5–3.16 is to provide

a sampling of those dynamics, by showing several representative points and how the

system varies as each of the parameters are changed. As I am trying to give an overview,

the figures are quite dense to maximize the ability to compare several changes at once

within the same overall figure. In my opinion printed 3D surface meshes often do not

show data particularly well, and using them for only some of these plots would result in

a non-uniform presentation. Thus, I have relied heavily on gradient based plots. In the

following cases they are a top-down view with increasing height represented by darkness,
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with a reference bar on each page. The visibility of some low valued results may be poorly

resolved if your monitor or printer contrast is low. If a value is not represented in the

figure then it was taken from the default values listed in Table 3.2.

Figs. 3.17–3.18 represent the only case where non-simulated data is present for the

stacked trimer. 264 stacked trimer-like structures were determined from the Protein

Data Bank (PDB) [73], by writing code to parse structural data from PDBePISA [74],

which is available at https://github.com/vatir/Protein-Complex-Assembly-Pathways.

No parameter fitting related to the simulation model was used to create the BSASA plots.

The relationship between Buried Solvent-Accessible Surface Area (BSASA) and Kd was

used directly from Chen et al. [75]. Default parameters where chosen for unrelated

reasons. Yet, the alignment between PDB derived experimentally determined proteins

and the simulated system is quite good. Proteins were colored by domain, partly because

eukaryotic proteins may tend more towards longer term systems more like the in vitro-like

cases, whereas the bacterial proteins are more likely to be better approximated by my in

vivo-like simulations, as the in vivo-like system was derived from a bacterial based model

Section 1.3. It should be noted, there are many reasons why results from the PDB can

be biased, such as crystal contacts, protein crystallization tendencies and experimental

interest in specific systems over a uniform distribution for real proteins, just to name

a few. A tendency for eukaryotic proteins to cluster near the equal strength bonding

region is clear, but they still tend towards the bond strength range which aligns with the

model’s results. Whereas, the archaeal and bacterial proteins cover a wider range of bond

strengths, there is a noticeable lack of examples with high strength intra-ring bonds while

high strength inter-ring bonds are present. Therefore, these experimentally derived results

are consistent with the Inter-Ring Kd < Intra-Ring Kd trend.
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Table 3.3: Assembly Pathways for Stacked Trimers

1 2 3

4 5 6

7 8 9

10 11 12
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Table 3.3: Assembly Pathways for Stacked Trimers (Continued)

13 14 15

16 17 18

19 20 21

22 23 24
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Table 3.3: Assembly Pathways for Stacked Trimers (Continued)

25 26 27

28 29 30

31 32 33

34 35 36
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Table 3.3: Assembly Pathways for Stacked Trimers (Continued)

37 38 39

40 41 42

43 44 45

46
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Figure 3.5: Stacked Trimer Assembly Yield Overview
Caption is on following page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.5: Stacked Trimer Assembly Yield Overview
Comparison between in vitro-like and in vivo-like CRN results in the left and right columns
respectively. (A and B) are heatmaps with contour lines covering the intra-ring and inter-
ring binding strength parameter space. Scales are normalized to the data in the plot range,
so make sure to observe the indicators to the right of the plots. (B, C, E and F) display
the behavior of the system along two additional parameters, time and concentration. The
vertical dashed lines show the default values, which align with the values used for all
other plots in the figure. Whereas colored lines are the binding strengths as defined in the
legend at the base of the figure. Gray lines are 125 binding strengths uniformly distributed
among the 1000 used to generate the heatmaps. The objective of this plot is to provide an
overview of the range of behaviors observed in the simulated parameter regime.

Figure 3.6: Stacked Trimer Pathway Contribution (in vitro-like)
Subplot (C) is a modified version of Fig. 3.5A with colored markers for easy reference to the
bond strengths in the other plots. Subplots (A, B, D, E and F) correspond to five different
binding strengths for the bonds within the stacked trimer. Each shows the pathway
contribution, calculated as described in Eq. 4.1, at the default time and concentration for
the indicated binding strengths. Pathways are grouped by the final association reaction as
indicated by the graphics in the top of each chart and are ordered with the same indices as
in Table 3.3. Blue bars are the individual assembly pathways’ contributions, whereas the
red bars are the sum of each assembly pathway groups’ contributions. Assembly pathways
are indexed as displayed in Table 3.3.
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Figure 3.6: Stacked Trimer Pathway Contribution (in vitro-like)
Caption is on preceding page.
All parameters not specified are the default values enumerated in Table 3.2.

42



10−3 10−1 101 103 105 107 109 1011

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

Sp
ec

ie
s 

In
de

x

Inter−Ring Kd 10−12 (M) : Intra−Ring Kd 10−3 (M)

10−3 10−1 101 103 105 107 109 1011

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

Sp
ec

ie
s 

In
de

x

Inter−Ring Kd 10−12 (M) : Intra−Ring Kd 10−12 (M)

10−3 10−1 101 103 105 107 109 1011

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

Sp
ec

ie
s 

In
de

x

Inter−Ring Kd 10−8 (M) : Intra−Ring Kd 10−8 (M)

10−3 10−1 101 103 105 107 109 1011

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

Sp
ec

ie
s 

In
de

x

Inter−Ring Kd 10−3 (M) : Intra−Ring Kd 10−3 (M)

10−3 10−1 101 103 105 107 109 1011

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

Sp
ec

ie
s 

In
de

x

Inter−Ring Kd 10−3 (M) : Intra−Ring Kd 10−12 (M)

10−3 10−1 101 103 105 107 109 1011

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Yi
el

d 
of

 M
ax

im
al

 S
tru

ct
ur

e

in vitro-like

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Species Yield

BA

C D

E F

Figure 3.7: Stacked Trimer Species Fractions over Time (in vitro-like)
Caption is on following page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.7: Stacked Trimer Species Fractions over Time (in vitro-like)
Subplot (C) is a modified version of Fig. 3.5C with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the bar
height represented by the scale in the center. Each plot uses data from the five different
representative binding strengths for the bonds within the stacked trimer. Yield of each
of the 12 species is shown by the horizontal gradients, as indexed in Fig. 3.2. The central
“Species Yield” gradient bar indicates the intensity for all sub-figures. Yield is defined
such that it is normalized vertically due to the constant maximum available protein. This
may be obscured at short timescales as protein is spread out into multiple intermediates
at a level which is poorly displayed by this plot type, but the plot type is clearer than a 3D
histogram once biologically reasonable timescales have been reached.

Figure 3.8: Stacked Trimer Assembly Contributions over Time (in vitro-like)
Subplot (C) is a modified version of Fig. 3.5C with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the
bar height represented by the scale in the center. Each plot uses data from the five
different representative binding strengths for the bonds within the stacked trimer. Pathway
contribution, calculated as described in Eq. 4.1, is shown as the simulation progresses
in time. This shows how dominant pathways can switch as the system progresses. As a
reminder, pathway contribution is explicitly normalized. Assembly pathways are indexed
as displayed in Table 3.3.
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Figure 3.8: Stacked Trimer Assembly Contributions over Time (in vitro-like)
Caption is on preceding page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.9: Stacked Trimer Species Fractions over Concentration (in vitro-like)
Caption is on following page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.9: Stacked Trimer Species Fractions over Concentration (in vitro-like)
Subplot (C) is a modified version of Fig. 3.5E with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the bar
height represented by the scale in the center. Each plot uses data from the five different
representative binding strengths for the bonds within the stacked trimer. Yield of each
of the 12 species is shown by the horizontal gradients, as indexed in Fig. 3.2. The central
“Species Yield” gradient bar indicates the intensity for all sub-figures. Yield is defined
such that it is normalized vertically due to the constant maximum available protein.

Figure 3.10: Stacked Trimer Assembly Contributions over Concentration (in vitro-like)
Subplot (C) is a modified version of Fig. 3.5E with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the
bar height represented by the scale in the center. Each plot uses data from the five
different representative binding strengths for the bonds within the stacked trimer. Pathway
contribution, calculated as described in Eq. 4.1, is shown over a range of concentrations to
illustrate how initial monomer concentration can affect which pathway is utilized. As a
reminder, pathway contribution is explicitly normalized. Assembly pathways are indexed
as displayed in Table 3.3.
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Figure 3.10: Stacked Trimer Assembly Contributions over Concentration (in vitro-like)
Caption is on preceding page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.11: Stacked Trimer Pathway Contribution (in vivo-like)
Caption is on following page.
All parameters not specified are the default values enumerated in Table 3.2.

49



Figure 3.11: Stacked Trimer Pathway Contribution (in vivo-like)
Subplot (C) is the same plot as Fig. 3.5B with colored markers for easy reference to the
bond strengths in the other plots. (A, B, D, E and F) correspond to five different binding
strengths for the bonds within the stacked trimer. Each shows the pathway contribution,
calculated as described in Eq. 4.1, at the default time and concentration for the indicated
binding strengths. Pathways are grouped by the final association reaction as indicated by
the graphics in the top of each chart and are ordered with the same indices as in Table 3.3.
Blue bars are the individual assembly pathways’ contributions, whereas the red bars are
the sum of each assembly pathway groups’ contributions. Assembly pathways are indexed
as displayed in Table 3.3.

Figure 3.12: Stacked Trimer Species Fractions over Time (in vivo-like)
Subplot (C) is a modified version of Fig. 3.5D with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the bar
height represented by the scale in the center. Each plot uses data from the five different
representative binding strengths for the bonds within the stacked trimer. Yield of each
of the 12 species is shown by the horizontal gradients, as indexed in Fig. 3.2. The central
“Species Yield” gradient bar indicates the intensity for all sub-figures. As this is an in
vivo-like simulation total protein is not strictly conserved, but in practice the effective
initial monomer concentration, as described in Eqs. 1.11, can be considered constant. This
may be obscured at short timescales. As protein is present in multiple intermediates at
low concentration. Which, results in a light shade of gray that may display poorly on some
displays. Though, this plot type is overall clearer than a 3D histogram once biologically
reasonable timescales have been reached.
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Figure 3.12: Stacked Trimer Species Fractions over Time (in vivo-like)
Caption is on preceding page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.13: Stacked Trimer Assembly Contributions over Time (in vivo-like)
Caption is on following page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.13: Stacked Trimer Assembly Contributions over Time (in vivo-like)
Subplot (C) is a modified version of Fig. 3.5D with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the
bar height represented by the scale in the center. Each plot uses data from the five
different representative binding strengths for the bonds within the stacked trimer. Pathway
contribution, calculated as described in Eq. 4.1, is shown as the simulation progresses in
time. Showing how dominate pathways can switch as the system progresses. As this is an
in vivo-like simulation total protein is not strictly conserved, but in practice the effective
initial monomer concentration, as described in Eqs. 1.11, can be considered constant. As a
reminder, pathway contribution is explicitly normalized. Assembly pathways are indexed
as displayed in Table 3.3.

Figure 3.14: Stacked Trimer Species Fractions over Concentration (in vivo-like)
Subplot (C) is a modified version of Fig. 3.5F with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the bar
height represented by the scale in the center. Each plot uses data from the five different
representative binding strengths for the bonds within the stacked trimer. Yield of each
of the 12 species is shown by the horizontal gradients, as indexed in Fig. 3.2. The central
“Species Yield” gradient bar indicates the intensity for all sub-figures. As this is an in
vivo-like simulation total protein is not strictly conserved, but in practice the effective
initial monomer concentration, as described in Eqs. 1.11, can be considered constant. Thus,
the resulting yield is normalized for practical purposes.
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Figure 3.14: Stacked Trimer Species Fractions over Concentration (in vivo-like)
Caption is on preceding page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.15: Stacked Trimer Assembly Contributions over Concentration (in vivo-like)
Caption is on following page.
All parameters not specified are the default values enumerated in Table 3.2.
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Figure 3.15: Stacked Trimer Assembly Contributions over Concentration (in vivo-like)
Subplot (C) is a modified version of Fig. 3.5F with only the colored lines, for ease of
reference to the other subplots in this figure. Subplots (A, B, D, E and F) are faceted
heatmaps, which can be thought of as a top down view of a 3D histogram with the
bar height represented by the scale in the center. Each plot uses data from the five
different representative binding strengths for the bonds within the stacked trimer. Pathway
contribution, calculated as described in Eq. 4.1, is shown over a range of concentrations
to illustrate how effective initial monomer concentration can affect which pathway is
utilized. As this is an in vivo-like simulation total protein is not strictly conserved, but
in practice the effective initial monomer concentration, as described in Eqs. 1.11, can
be considered constant. Thus, the resulting yield is normalized for practical purposes.
Assembly pathways are indexed as displayed in Table 3.3.

Figure 3.16: Effects of Synthesis and Degradation Rate on Assembly Yield
Comparison of the effects due to synthesis/degradation rates. Figures in the left column
are generated from data at a point in time of ≈one day, whereas figures in the right column
are from a time point of 1011 (s). (A and B) Cell Division Period is the inverse of δ (s−1)
when synthesis and degradation are modeled as cell growth, as discussed in Section 1.3.
The CRN was simulated at 22 different δ values logarithmically spaced in the plotted
range. The in vitro-like case was added at the equivalent of the 1017 (s) location. Colored
lines match the binding strengths defined in Fig. 3.5’s legend, while the gray lines are
125 binding strengths uniformly distributed among the simulated 1000 binding strengths.
It can be clearly seen that the system’s range of yields narrows considerably as the time
elapsed approaches the cell division rate. Significantly larger yield ranges result from the
details of the slow cell division rates/in vitro-like systems, compared to the more quickly
dividing in vivo-like systems. I would also like to note that, as one might expect, for long
enough cell division periods the system approaches the in vitro-like case, but even for the
≈one day case the approach is still significantly proceeding at 107 (s). For reference, that
is approximately 115 days, which may or may not be meaningful in terms of biological
relevance. The specific system under investigation would be the determining factor. (C
and D) I have shown both in vivo-like (hour per division) heatmaps at the two time points
to illustrate the lack of difference between them. For the parameters involved in those
plots, the system is clearly at an equilibrium, as can also be seen in Fig. 3.5D. (E and F)
Contrastingly, the in vitro-like system is affected by the change in time. These phenomena
can be compared to the line plot in Fig. 3.5C. Though, the improvements in yield are still
correlated to Intra-Ring Kd > Inter-Ring Kd .
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Figure 3.16: Effects of Synthesis and Degradation Rate on Assembly Yield
Caption is on preceding page.
All parameters not specified are the default values enumerated in Table 3.2.

57



1000 2000 3000 4000 5000
Intra-Ring Interface BSASA ( Å² )

1000

2000

3000

4000

5000

In
te

r-
Ri

ng
 In

te
rfa

ce
 B

SA
SA

 ( 
Å²

 )

0.3
8

0.5
3

0.69
0.84

Eukaryotic
Bacterial
Archaeal

10−11

10−10

10−9

10−8

10−7

10−6

10−5

Approxim
ate Inter−

Ring Interface K
d  (M

)
10−1110−1010−910−810−710−610−5

Approximate Intra−Ring Interface Kd (M) in vitro-like

Figure 3.17: Buried Solvent-Accessible Surface Area (BSASA) (in vitro-like)
The goal of this figure is to convey the relationship between real proteins and the in
vitro-like model. BSASA can be used as a rough approximation for binding strength
[75]. Using parameters from Chen et al., an exponential relationship is used to align the
opposing axes allowing me to provide an overlay of the contour lines from Fig. 3.5A onto
this plot. I determined 264 stacked trimer-like proteins from the PDB [73], by writing
code to parse structural data from PDBePISA [74], available at https://github.com/
vatir/Protein-Complex-Assembly-Pathways. Redundancies where then removed based
on sequence alignment clustering using clusters made available by the PDB. Clustering of
results using sequence identities of 0%, 30%, 95% and 100% resulted in no qualitative
changes. 100% was chosen as it removes exact duplicates and uses the highest quality
structure when duplicates are present. Protein complexes are colored by domain, as
protein complexes from different domains may have different tendencies.
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Figure 3.18: Buried Solvent-Accessible Surface Area (BSASA) (in vivo-like)
The goal of this figure is to convey the relationship between real proteins and the in
vivo-like model. BSASA can be used as a rough approximation for binding strength
[75]. Using parameters from Chen et al., an exponential relationship is used to align the
opposing axes allowing me to provide an overlay of the contour lines from Fig. 3.5B onto
this plot. I determined 264 stacked trimer-like proteins from the PDB [73], by writing
code to parse structural data from PDBePISA [74], available at https://github.com/
vatir/Protein-Complex-Assembly-Pathways. Redundancies where then removed based
on sequence alignment clustering using clusters made available by the PDB. Clustering of
results using sequence identities of 0%, 30%, 95% and 100% resulted in no qualitative
changes. 100% was chosen as it removes exact duplicates and uses the highest quality
structure when duplicates are present. Protein complexes are colored by domain, as
protein complexes from different domains may have different tendencies.
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Chapter 4
Assembly Pathways

“I have come to believe that the whole world

is an enigma, a harmless enigma that is made

terrible by our own mad attempt to interpret

it as though it had an underlying truth.”

— Umberto Eco

Assembly pathways are labeled rooted binary tree-like structures, with nodes labeled by

species type. The binary nature of the structure represents the binary association reactions

in the CRN. Each assembly pathway is rooted by the maximal structure and all leaves

represent minimal structures. The set of all assembly pathways forms a set of binary trees

where each is a possible sequence of reactions capable of producing maximal structures.

Since every association reaction in these systems has two reactants and one product, the

binary trees will all form full binary trees. A full binary tree is defined as a binary tree

where: the root node has two neighbors, leaf nodes have one, and every other node has

three. This is illustrated in Table 3.3. The general binary tree structure is not the difficult

part of this system to formalize, the problems arise when one tries to define uniqueness,

isomorphisms, or exhaustive enumeration. On the upside, this formalism is not limited to

the stacked trimer or even Stacked Rings, it works (in some cases with minor extensions)

for all protein complexes.
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4.1 Trees: A Survey

This section will have a wide variety of terms which may be unfamiliar to the reader. I

will provide further reading suggestions and references where possible, but the key point

to understand is how an assembly pathway differs from other well-known structures, not

the details of all the other structures. My goal is to find common ground across disciplines

and clear up potential misunderstandings arising from terminology that harbors subtle

differences in meaning.

Trees are likely a familiar concept to most readers, but they are often defined differently

depending on the environment in which the definition was developed. I will now cover

several common and relevant definitions and how they relate to assembly pathways. I

distinguish between fields of study as if they are perfectly secluded from one another, but

this is purely for pedagogical benefit as attempting to describe both overlapping concepts

and words tends to result in great confusion. Amusingly, this concept of term inheritance

from one field to another maps rather well to the Method Resolution Order problem for

multiple inheritance in object-oriented programming. Originally it was intended to be a

Tree and was designed with restrictions related to Tree structures, then was generalized to

a Graph structure.

Within Mathematics, there are a variety of definitions for the term “Tree,” the earliest

being linked to a mixture of graph theory and enumerative combinatorics. Arthur Cayley

introduced the term “Tree” in 1857 to aid in counting patterns of differential operators [76].

Its relationship to graph theory actually comes from Kirchhoff’s work in developing early

spanning tree theories, which led to his eponymous laws [77, 78]. Cayley merged the use of

the word Tree into both fields with his eponymous formula, which counts the number of

spanning trees of a complete graph [79, 80]. In all of these approaches, and most variations

following them, node labels are required to be unique. Non-unique labels are found in

mathematics, but the implementation details of both the labeling and the definition of

isomorphism are very specific to the topic they are being used for, e.g., chemical graphs
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use atomic or substructure labels but require isomerisms to maintain chemical properties.

The term “Graph” was not even used in its modern form until 1878, derived from the term

chemical “graphic notation,” without an implication of trees being a type of graph. This

illustrates the lack of clarity in modern naming of these concepts, especially within the

field of Mathematics. Overall, the “homomorphic” nature of the node/edge structure of

Trees tends to be the same between Mathematical subfields, but the definition of structure

preserving “isomorphic” relations is often adjusted for the specific use case [81, 82].

Meanwhile, Computer Science has defined a distinctly different, but of course similarly

named collection of structures using implicit definitions which evolve as needed due to

changes in the use case. This is well summed up the following quote:

“The very nature of computer representation defines an implicit ordering for

any tree, so in most cases ordered trees are of greatest interest to us. We will

therefore tacitly assume that all trees we discuss are ordered, unless explicitly

stated otherwise.” - Donald Knuth (The Art of Programing)

I would describe Trees used in Computer Science as structures of convenience with

definitions customized to a use case, as opposed to an overarching general mathematical

formalism. It would appear to be a universal trait that trees are acyclic, but there are cases

of this rule being bent or dropped, e.g., functional programing language recursion trees,

relational database conflict trees, and automated theorem proving with cyclical references

[83, 84]. In Binary Search Trees, labels represent elements from another structure and

a partial ordering is required, but uniqueness is not. Binary Search Trees are a type of

Ranked tree, meaning that the child nodes have a defined left and right [81]. Overall, it is

common to define Trees in Computer Science though a recursive relationship [85]. First, a

Root Node is defined, then each child is defined as a disjoint subtree. The disjoint property

is very useful in accelerating traversal algorithms, but is not generally required. The

ability of computer representation to treat Tree-like structures as traversable collections of

pointers between abstract objects is both its most powerful property and its most insidious.
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4.2 General Assembly Pathways

Assembly pathways have the following properties:

Rooted: A node is defined as a unique starting point in the Tree.

Hierarchical: All child nodes have fewer objects than their parents.

Weighted: Edges can represent more than one CRN association path.

Full: Every non-leaf node has exactly two children.

Labeled: Each node is labeled with a canonical species.

Non-Unique: More than one node can be labeled with the same canonical species.

Partially Ranked: Left-Right child relationships are determined by label order,

except when children are equal.

Assembly pathways can be enumerated without all of these traits, but uniqueness requires

them all. Therefore, I proceeded by first enumerating the assembly pathways then reducing

them to a unique subset of equivalence classes, much in the same way as the species

enumeration in Section 3.1. For enumeration, I utilized a recursive Computer Science style

definition for assembly pathways, as non-unique labeling is largely undefined in other

descriptions. Most commonly, the right and left subtrees are disjoint in such definitions,

but it is not strictly required.

Enumeration of assembly pathways was carried out by a method laid out in Python

style pseudocode in Listing 1. Code presented in this document is intended for pedagogical

purposes, as such it is not optimized for runtime or programing style elegance. Full source

code used in the generation of these results will reside for a reasonable period of time in the

GitHub repository: https://github.com/vatir/Protein-Complex-Assembly-Pathways.

Methodologies in this chapter require only a listing of the canonical species and reac-

tions, meaning they must have already been determined. The reader may notice that this

algorithmic approach is an iterative form of a stack-based forest traversal. In essence, ad-
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Table 4.1: Tree Properties of Stacked Rings

Ring Size
# of Node Type Canonical

Terminal Internal Index Total Species Reactions

3 6 5 4 11 12 34
4 8 7 5 15 27 145
5 10 9 6 19 59 508
6 12 11 7 23 135 1,665
7 14 13 8 27 307 5,055
8 16 15 9 31 717 14,833
9 18 17 10 35 1,682 42,079

ditional trees are generated when multi-way choices in the reaction list allow for alternate

formation paths. Enumeration using this method generates a subset of possible assembly

pathways reduced by canonical equivalence. Each edge in the tree can represent multiple

equivalent CRN paths. The partially ranked property causes issues with distinguishing

between pathways where the left child equals the right child but the subtrees are different,

e.g., pathway three in Table 3.3. Removal of these equivalent assembly pathways is left to

the uniqueness step. Non-equal children are initially set to left or right based on the order

of the integer representation as defined in Section 4.3.

Uniqueness is more difficult; while many methods will accomplish the same result

as the enumeration algorithm, the uniqueness algorithm must be able to correctly group

assembly pathways with the same canonical index without leaving equivalent assembly

pathways with different indices. While it is potentially possible to a priori determine the

cardinality of the equivalence classes and their respective memberships, it is debatably a

more difficult task [81, 86].

I will first introduce a general method for determining canonical indices, then I will

comment on how to improve it into a minimum description and assembly pathway storage

system. To begin, one can describe a ranked rooted tree by the result of a traversal

algorithm. I will be using a Depth First Traversal (Prefix Order) (DFT). If an assembly

pathway was definitely ranked or had labels which fulfilled the requirements for a Binary
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Search Tree, this would be a brief undertaking, but in many ways, it is a rather unique and

challenging form of binary tree. Assembly pathways can have subtrees which are equal

and only become apparent after traversing multiple steps below a given right-left split,

and the ability of the children involved in the right-left split to be equal or non-equal only

makes it more problematic.

In the first simple form of the canonical indexing algorithm I will approach the prob-

lem from an exhaustive standpoint. Effectively, every right-left split will be considered a

potential point where the children could be swapped to generate an equivalent assembly

pathway. I refer to this as partially ranked because not every reversal creates a new as-

sembly pathway, but some do. Listing 2 provides a pseudocode description of a function

which takes in an assembly pathway and returns all possible unique DFTs as a set. Then

all prospective assembly pathways are compared and any intersection between sets of

canonical indices groups them together into an equivalence class. This method is com-

putationally expensive, but does catch several pesky patterns which start showing up in

structures larger than a stacked trimer.
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PathwaysWithTasks = Orderedict()
# Order preserving dictionary
# Keys : All Unfinished Pathways, Values : Todo deque for the Graph

CurrentPathway = Pathway()
# Instantiate first empty pathway object

CurrentPathway.add_root_node(RootNodeName)
# Add starting node

PathwaysWithTasks[CurrentPathway] = deque([RootNodeName, ])
# Add first root node to todo stack

CompletedPathways = list()
# List for holding completed Assembly Pathways

while len(PathwaysWithTasks) > 0:
# Run while pathway(s) have remaining task(s)
CurrentPathway = PathwaysWithTasks.keys()[0]

# Get first Pathway with tasks remaining
CurrentNode = PathwaysWithTasks.values()[0].pop()

# Pull next task off of the stack for the CurrentPathway
ReactionClasses = reactants_lookup(CurrentNode)

# All possible reactions resulting in CurrentNode as a list of 2-tuples

if len(ReactionClasses) > 1:
# If more than one way to form the CurrentNode save a copy of the Pathway and current todo stack
OriginalPathway = copy(CurrentPathway)
OriginalDeque = copy(PathwaysWithTasks[CurrentPathway])

# Create copy of OriginalPathway since there is more than one way to create CurrentNode
for Index, Children in enumerate(ReactionClasses):

if Index > 0:
CurrentPathway = copy(OriginalPathway)
PathwaysWithTasks[CurrentPathway] = copy(OriginalDeque)

# Add Children to CurrentNode with unique nodenames
NodeName1 = unique_node_name(Children[0])
CurrentPathway.add_node(NodeName1)
CurrentPathway.add_edge(CurrentNode, NodeName1)
NodeName2 = unique_node_name(Children[1])
CurrentPathway.add_node(NodeName2)
CurrentPathway.add_edge(CurrentNode, NodeName2)

# Add non-terminal nodes to the todo stack for CurrentPathway
if not_a_monomer(NodeName1):

PathwaysWithTasks[CurrentPathway].append(NodeName1)
if not_a_monomer(NodeName2):

PathwaysWithTasks[CurrentPathway].append(NodeName2)

# If Pathway is completed, remove from PathwaysWithTasks and add to CompletedPathways
if empty(PathwaysWithTasks[CurrentPathway]):

CompletedPathways.append(CurrentPathway)
del PathwaysWithTasks[CurrentPathway]

Listing 1: Assembly Pathway Enumeration
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def CannonicalIndex(Pathway, RootNode):
BranchingNumber = 0

# Number of possible Right/Left swaps
for Node in Pathway.nodes():

if is_not_monomer(Node):
BranchingNumber += 1

# Pathway can branch up to the number of non-monomeric nodes
Combinations = all_combinations(BranchingNumber)

# Returns all possible sequences of "Left" and "Right" of length BranchingNumber
TraversalCombinations = set()

# Holds all unique traversals
for Combination in Combinations:

Combination = deque(Combination)
Tasks = deque()
Tasks.append(RootNode)

# Starts each traversal with the RootNode
PreorderDFSTraversal = []

# Holds current traversal
while len(Tasks) > 0:

CurrentNode = Tasks.pop()
# Traversal order is controlled by the order of the Tasks stack

PreorderDFSTraversal.append(cannonical_species_representation(CurrentNode))
# Adds the CurrentNode to the PreorderDFSTraversal in order based on the Tasks stack

if is_not_monomer(CurrentNode):
# Monomers do not have children
ChildNodes = get_children(Pathway, CurrentNode)

# Gets children of the CurrentNode in species index order
BranchDirection = Combination.pop()
if BranchDirection == "Left":

Tasks.append(ChildNodes[0])
Tasks.append(ChildNodes[1])

elif BranchDirection == "Right":
Tasks.append(ChildNodes[1])
Tasks.append(ChildNodes[0])
# Adds Tasks to the stack based on traversal order Combination

TraversalCombinations.add(tuple(PreorderDFSTraversal))
# Adds the current completed traversal as a hashable object to the set

return TraversalCombinations

Listing 2: Unique Pathway Determination
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Several simplifications can be made to the canonical indexing process. Let us start by

assuming there exists a minimal canonical index which represents each equivalence class.

Then, if a representation can be used to uniquely regenerate all unique pathways and

cannot be reduced any further, it is a minimal canonical index. All assembly pathways

are rooted by the maximal structure, thus the first entry of every index will be the same,

so it can be dropped without loss of generality. Therefore, minimal will be defined as

a tuple containing one less entry than the number of internal nodes, see Table 4.1. All

intermediate species must be named to define an assembly pathway, hence the minimal

length definition.

The representative index will be chosen by selecting the maximal DFT from the gener-

ated options. By using the number of monomers in each species, it becomes unnecessary to

enumerate leaf nodes and retain information about branch points in the index sequences.

Thus, the pathway can be regenerated using only the monomer counts of the species, the

ring size and a tuple of non-leaf entries. This has been directly tested by comparison to the

original enumerations up though ring sizes of seven. If a pathway has no nodes with equal

children then the enumeration algorithm will not generate more than one member of the

equivalence class, i.e., if an assembly pathway is ranked (all children have a predetermined

left-right relationship) then it does not need to be checked for duplicates. I wrote the

accelerated algorithm in Cython with OpenMP based threading [87]. Enumeration of the

assembly pathways for the stacked trimer are shown in Table 4.3. Results of all pathways

generated can be found in Table 4.3.
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Table 4.2: Stacked Trimer Assembly Pathway Indices

Pathway
Pathway Index by Species Representation

Image Number Integer Representation

1 ( , , , ) (9, 3, 9, 3) (248, 176, 248, 176)

2 ( , , , ) (6, 2, 6, 2) (244, 164, 244, 164)

3 ( , , , ) (6, 3, 6, 2) (244, 176, 244, 164)

4 ( , , , ) (6, 3, 6, 3) (244, 176, 244, 176)

5 ( , , , ) (4, 2, 4, 2) (242, 164, 242, 164)

6 ( , , , ) (4, 3, 4, 2) (242, 176, 242, 164)

7 ( , , , ) (4, 3, 4, 3) (242, 176, 242, 176)

8 ( , , , ) (10, 3, 2, 3) (316, 176, 164, 176)

9 ( , , , ) (10, 9, 3, 3) (316, 248, 176, 176)

10 ( , , , ) (10, 6, 3, 3) (316, 244, 176, 176)

11 ( , , , ) (10, 6, 2, 3) (316, 244, 164, 176)

12 ( , , , ) (10, 4, 3, 3) (316, 242, 176, 176)

13 ( , , , ) (10, 4, 2, 3) (316, 242, 164, 176)

14 ( , , , ) (8, 3, 3, 2) (310, 176, 176, 164)

15 ( , , , ) (8, 2, 2, 2) (310, 164, 164, 164)

16 ( , , , ) (8, 6, 3, 2) (310, 244, 176, 164)

17 ( , , , ) (8, 6, 2, 2) (310, 244, 164, 164)

18 ( , , , ) (8, 4, 3, 2) (310, 242, 176, 164)

19 ( , , , ) (8, 4, 2, 2) (310, 242, 164, 164)

20 ( , , , ) (11, 9, 3, 3) (382, 248, 176, 176)

21 ( , , , ) (11, 6, 3, 3) (382, 244, 176, 176)

22 ( , , , ) (11, 6, 2, 3) (382, 244, 164, 176)

23 ( , , , ) (11, 4, 3, 3) (382, 242, 176, 176)

24 ( , , , ) (11, 4, 2, 3) (382, 242, 164, 176)

25 ( , , , ) (11, 6, 3, 2) (382, 244, 176, 164)

26 ( , , , ) (11, 6, 2, 2) (382, 244, 164, 164)

27 ( , , , ) (11, 4, 3, 2) (382, 242, 176, 164)

28 ( , , , ) (11, 4, 2, 2) (382, 242, 164, 164)

29 ( , , , ) (11, 10, 3, 2) (382, 316, 176, 164)

30 ( , , , ) (11, 10, 9, 3) (382, 316, 248, 176)

31 ( , , , ) (11, 10, 4, 3) (382, 316, 242, 176)
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Table. 4.2: Stacked Trimer Assembly Pathway Indices (Continued)

Pathway
Pathway Index by Species Representation

Image Number Integer Representation

32 ( , , , ) (11, 10, 4, 2) (382, 316, 242, 164)

33 ( , , , ) (11, 10, 6, 3) (382, 316, 244, 176)

34 ( , , , ) (11, 10, 6, 2) (382, 316, 244, 164)

35 ( , , , ) (11, 8, 3, 3) (382, 310, 176, 176)

36 ( , , , ) (11, 8, 2, 2) (382, 310, 164, 164)

37 ( , , , ) (11, 8, 6, 3) (382, 310, 244, 176)

38 ( , , , ) (11, 8, 6, 2) (382, 310, 244, 164)

39 ( , , , ) (11, 8, 4, 3) (382, 310, 242, 176)

40 ( , , , ) (11, 8, 4, 2) (382, 310, 242, 164)

41 ( , , , ) (11, 7, 3, 3) (382, 309, 176, 176)

42 ( , , , ) (11, 7, 6, 3) (382, 309, 244, 176)

43 ( , , , ) (11, 7, 6, 2) (382, 309, 244, 164)

44 ( , , , ) (11, 5, 3, 3) (382, 307, 176, 176)

45 ( , , , ) (11, 5, 4, 2) (382, 307, 242, 164)

46 ( , , , ) (11, 5, 4, 3) (382, 307, 242, 176)

Table 4.3: Assembly Pathway Properties of Stacked Rings

Ring
(Size)

Assembly Pathways Final Step
(Add Monomer)Enumerated Unique Duplicate % Duplicates

3 48 46 2 4.17% 59%

4 1,034 982 52 5.03% 62%

5 29,402 28,319 1,083 3.68% 65%

6 1,057,462 1,031,629 25,833 2.44% 68%

7 44,169,144 43,438,639 730,505 1.65% 71%

8 2,142,675,188 2,118,125,722 24,549,466 1.14% 74%
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Table 4.4: Representations of the Stacked Trimer

Species Monomer Count Monomer Location

Index Image Integer Integer Bit Array Integer Bit Array

1 96 1 0,0,1 32 1,0,0;0,0,0

2 164 2 0,1,0 36 1,0,0;1,0,0

3 176 2 0,1,0 48 1,1,0;0,0,0

4 242 3 0,1,1 50 1,1,0;0,1,0

5 307 4 1,0,0 51 1,1,0;0,1,1

6 244 3 0,1,1 52 1,1,0;1,0,0

7 309 4 1,0,0 53 1,1,0;1,0,1

8 310 4 1,0,0 54 1,1,0;1,1,0

9 248 3 0,1,1 56 1,1,1;0,0,0

10 316 4 1,0,0 60 1,1,1;1,0,0

11 382 5 1,0,1 62 1,1,1;1,1,0

12 447 6 1,1,0 63 1,1,1;1,1,1
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4.3 Integer Representation of Complexes

Since I am using a computational description of assembly pathways, I will provide a

computer intelligible description of a species. One way to describe any protein complex

is to assign each potential object in the structure an entry in a bit array. I will alternate

between using the term object and the term monomer in this section, where object refers

to any entity that can be a relevant substructure in a protein complex, and monomer

will refer to objects within the stacked trimer as it is solely formed of protein monomers.

Assembly pathways can be constructed for any definable protein complex, which may

contain more than one type of protein monomer, small organic molecules, DNA or many

other sub-objects. Table 4.4 contains an example of monomer locations for the stacked

trimer. The alignment of locations to the visual representation of the species is only for

human convenience; they can be arranged in any order as long as it is exhaustive.

The overall species index is ordered in terms of the integer representation of the

monomer location bit array. While this was part of the original implementation, it was

later realized that choosing an order which provides information to algorithmic processes

is useful. Assembly pathways only allow for association reactions, so every child node

must have strictly fewer objects than its parent. Therefore, maintaining an object count

in the most significant bits of the bit array generates an order such that if a species has a

smaller representation then it contains equal or fewer objects than other species. In the

case of the stacked trimer the following representation is used:

9 7 6 1

# of Monomers
(Integer Format)

Monomer Locations
(Bit Array Format)

Generalizing the bit array representation to arbitrary structures is accomplished by re-

peating the object location sequence once for each type of object that can be found in the

protein complex, as follows:
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# of Objects
(Integer Format)

Object Type N
(Bit Array Format)

· · · Object Type 1
(Bit Array Format)

I have found that using a single representation for all tasks is non-optimal. Using just the

object location bit array is useful in several stages for generating the systems, whereas

the full representation is best for definitive identification of the species. As such, it is a

better property to sort by when generating the arbitrary species index, which is the most

compact.

4.4 Pathway Contribution

Assembly pathways describe how a protein complex can assemble, but do they contribute

equally to that assembly? In Section 3.1, I covered equivalence classes of reactions. Just

as assembly pathways describe many ways for an assembly pathway to form a maximal

structure, there is often more than one way for two children to form a parent. I relate

each internal node in an assembly pathway to an association reaction, by choosing an

association reaction by using the child nodes’ labels. The cardinality of the reaction is

the number of ways the reaction could be created between non-canonical species, i.e., the

number of possible ways for the reaction to occur in the physical system, as opposed to my

equivalence classes canonical representations. Along this line, I consider what the relative

fractional contribution to the generation of a species is from all possible reactions which

result in that species. Following this logic, I define the following:

Association reaction with product P: AP

Binary reactants of AP: R1,AP
, R2,AP

Association rate of AP: kon,AP

Class of reactions resulting in product P: CP

Association reaction equivalence class cardinality: KAP
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Reaction Usage Factor: RU(AP) =
KAP

kon,AP
[R1,AP

][R2,AP
]∑

α∈CP

Kαkon,α[R1,α][R2,α]

All nodes in assembly pathway (i): Ni

Normalization factor for Pathway Contribution: PCNorm =
|PC|∑
i=1

∏
n∈Ni

RU(n)

Pathway Contribution for assembly pathway (i): PCi =
1

PCNorm

∏
n∈Ni

RU(n)

(4.1)

This results in a concept of relative pathway contribution by each assembly pathway. All

systems in this document use the same kon for all reactions, so they cancel in the reaction

usage factor whereas KAP
is effectively an edge weighting factor in the assembly pathways.

It is important to note that not all assembly pathways are equally important even if the

concentrations of the species are idealized away. Figure 4.1 shows four of the important

assembly pathways of the stacked trimer.

Figure 4.1: Illustrative Examples of Stacked Trimer Assembly Pathways
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Chapter 5
Proteasome

Assembly Modifiers

“The Information Age offers much to mankind,

and I would like to think that we will rise to the

challenges it presents. But it is vital to remember

that information — in the sense of raw data — is

not knowledge, that knowledge is not wisdom, and

that wisdom is not foresight. But information is

the first essential step to all of these.”

— Arthur C. Clarke

The final abstraction I will be adding is a replacement operation. Think about the stacked

trimer, then consider the possibility that a non-protein object(s) may be able to bind to

into the structure. This alternate object could have different binding sites than monomeric

proteins, e.g., DNA:ISWI binding as in Chapter 2. Alternately, it could bind in place of a

protein monomer thus precluding a protein at that location, potentially with a different

binding strength. If that object admits bonds that are not included in the original final

structure, then new assembly pathways and alternate final structures would be added.

While that would be an interesting path to follow, its abstraction tends to result in a

combinatorial explosion of possibilities, rendering analysis of the system difficult to

reconcile with real systems. Therefore, for this work I will only be allowing replacements

that can occlude a binding site. As they prevent “normal” binding, they are traditionally

referred to as inhibitors. I mention “traditionally” as they do inhibit binding, but they

do not necessarily inhibit assembly. For this work, I will consider only inhibitors that
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Table 5.1: # of Canonical Species and Reactions in the Modified Proteasome System

Inhibitor Class # of Species # of Reactions

None 876 18,150

α–α 2,623 51,459

β–β 2,623 51,459

α–β 4,600 88,884

β–α 4,600 88,884

bind to a site already available in the structure. However, the inhibitors will not satisfy

the same bonds as the original monomeric protein. This results in the binding kinetics

of the inhibitors following an A:B style of interaction as in Section 1.1, whereas the

protein follows kinetics as outlined in Chapter 3. Inhibitors are represented well by this

construction, as they tend to be far smaller than proteins, but large enough to interfere

with the normal protein:protein binding at that site.

I will use proteasome core particle formation as a case study for this abstraction, see

Fig. 5.1A. To be clear, I am only referring to the 20S proteasome complex made up of 28

proteins in a four-layer barrel configuration. The regulatory caps are not being considered

for this work. Also, α and β subunits are considered to only come in one type each. Similar

to ISWI, the proteasome is a critical part of many biological systems, including both

humans and human pathogens [88–93]. The most relevant detail about proteasomes, for

this discussion, is that both over and under abundance of proteasomes have been related

to human pathologies [94–101]. Hence, regulation of proteasome assembly has promise in

several important fields of human health.

5.1 Technical Description

Proteasomes very likely form by assembly of Half-Proteasomes (HP), see Fig. 5.1B, followed

by dimerization into the final complex [102]. Hence the CRN will be based on assembly of

the HP with a final reaction completing the proteasome. Using the same core formalism
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as the stacked trimer, I extended a previously existing codebase for generating canonical

species and reaction classes to include inhibitor binding. This allows for the modeling

of the HP, then the final dimerization step is added as a later step. Just as in the stacked

trimer the proteasome is considered to have dihedral symmetry, in this case it will be D7.

Note, that the HP only has C7 due to α and β not being interchangeable. These symmetries

lead to six natural classes of bonds, shown in Figs. 5.1C and 5.1D, four of which seemed to

be the best candidates for targeting with small molecule non-covalent bonding inhibitors.

I will not be considering inhibitors for the β ‡–β ‡, which bridges the two halves of the

completed proteasome. There is evidence that the HP dimerization interfacing process

is dominated by interactions which would be poorly represented by an inhibitor of this

type. Figure 5.1C does refer to a β–β class inhibitor: specifically it refers to an inhibitor

interfering with the intra-ring β–β bond. In both the β–β and α–α classes the system

is effectively symmetric so a clarification of bond type is unnecessary. Please note, in

the cases of α–β and β–α the physical interface to which the inhibitor is bound does

matter to the system, hence the definition of two separate classes for those bonds. A

collaborating research group, Dr. Karanicolas’s Lab, has the capability to identify drug

candidate compounds from analysis of the binding site of a protein’s crystal structure.

The choice to simulate α–β and β–α but not α′–β′ was based on the expedience of

determining if and which bonds might be suitable for them to target.

Unlike the stacked trimer software development process where I was able to develop

a robust simulation and analysis suite, the inherited codebase for this system was based

around running quickly, with minimal output and requiring substantial human interven-

tion. My stacked trimer system turned out to have poor memory scaling when extended

to systems with species and reaction counts in the range of the proteasome system, see

Table 5.1. As the project initially was very time constrained, I identified the critical devel-

opment priorities to be extending the species and reaction generation engine to include the

inhibitors and a lightweight command and control structure for Extracting, Transforming
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and Loading (ETL) the resultant data into a workable structure. Unfortunately, only the

final species fraction vs time is retained, so in-depth analysis of the type in Chapter 3

was unavailable. I also had to rely on the original codebase for generating stacked rings

with a different protein in each ring and a set of simulation parameters for the system

without inhibitors, see Table 5.2. The parameters were determined by fitting experimental

data prior to my involvement with Dr. Deeds’s lab. I should say that for the purpose

of this work, the exact parameters are not especially critical, as this work focuses more

on the emergent results of modifying those interactions. Additionally, all simulations

were performed with initial concentrations of 4×10−6 Molar α and β, with in vitro-like

conditions.

5.2 Analysis

Inhibition of protein-protein interactions can lead to increased yield of protein complexes.

This is without question the most important result of this analysis. Figs. 5.2–5.5 clearly

show inhibitor classes α–β and β–α can both increase and decrease yield, depending on

inhibitor binding strength and concentration. Under some conditions, localized concen-

tration in a biological system could be used to simultaneously modify protein complex

assembly by inhibiting in some cases and stimulating in others. While, these phenomena

Table 5.2: Bond Strengths of the Simulated Proteasome Core Particle

Bond Class kon (M−1s−1) Kd (M)

α–α 3,500 8.9×10−3

β–β 3,500 1.9×10−2

α–β 3,500 5.6×10−5

α′–β′ 3,500 3.4×10−3

β ‡–β ‡ 3,500 ≈ 0‡

‡Half-Proteasome dimerization in this model is considered an irreversible process. Recall from Chapter 1,
Kd = koff/kon thus if koff ≈ 0 then Kd is ≈ 0.
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could be exploited for research and clinical benefit. Serious questions are raised about

the widespread application of inhibitory compounds discovered by methods that do not

elucidate functional understanding, i.e., a compound discovered by high throughput

screening, tested in animal models and carefully administered in clinical trials, could have

the opposite effect in real world conditions when the effective concentration is lowered

or increased. Hence, I use the term Assembly Modifiers in relation to compounds which

inhibit a specific protein-protein interaction within a protein complex. As can be seen in

the structure of HP, Fig. 5.1B, the system has a high level of symmetry in the α–α /β–β

and α–β /β–α classes. While not equal due to bond strength differences, this is to be

expected.
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a : b :

Object Types

:

C

b‡b‡−

a −a

b −b

b −a

a −b

Class Normal Inhibited
D

b’a’−

Figure 5.1: Illustration of Proteasome, Half Proteasome and Bond Types
(A) Diagram of the full proteasome core particle, showing the seven rotational offsets
of the D7 symmetry. The magenta bonds between the β-rings are involved only in the
Half-Proteasome (HP) dimerization process in this model. That is also why there is not
an inhibitor class targeting the interface, as discussed in Section 5.1. (B) Half-Proteasome
(HP) diagram, note that it lacks the D7 symmetry but retains C7. (C) Table of objects
showing the alpha (α) and beta (β) protein representations as well as the inhibitor (I).
(D) Table of bond types found within the Half-Proteasome (HP), each showing both the
normal bond as found in (B) and the inhibited binding relationship, if there is one.
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Figure 5.2: Effects of Assembly Modifiers at 38.3 (s)
Caption is on following page.
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Figure 5.2: Effects of Assembly Modifiers at 38.3 (s)
All simulations are in vitro-like with 4×10−6 molar starting concentrations of both proteins,
α and β. (A, B, C and D) Heatmaps with contour lines showing the percent change in
assembly yield of the completed proteasome over a range of inhibitor binding strengths
and inhibitor concentrations. (E) Values are taken from the same data as the heatmap with
the corresponding assembly modifier class. Data is from the diagonal line starting at the
lower left and going to the top right, i.e., the trace of the transpose if you consider the
data a matrix. This layout allows for easy comparisons between the modifier classes over a
range of relevant parameters. (F) Yield of the systems vs time, note that this is the only
plot in this figure that is an absolute yield as opposed to a relative change. The “Normal”
line in this plot is the reference line against which all relative changes are determined.
The vertical dashed gray line represents the point in time at which (A, B, C, D and E) are
drawn from.

Figure 5.3: Effects of Assembly Modifiers at 1.0× 103 (s)
All simulations are in vitro-like with 4×10−6 molar starting concentrations of both proteins,
α and β. (A, B, C and D) Heatmaps with contour lines showing the percent change in
assembly yield of the completed proteasome over a range of inhibitor binding strengths
and inhibitor concentrations. (E) Values are taken from the same data as the heatmap with
the corresponding assembly modifier class. Data is from the diagonal line starting at the
lower left and going to the top right, i.e., the trace of the transpose if you consider the
data a matrix. This layout allows for easy comparisons between the modifier classes over a
range of relevant parameters. (F) Yield of the systems vs time, note that this is the only
plot in this figure that is an absolute yield as opposed to a relative change. The “Normal”
line in this plot is the reference line against which all relative changes are determined.
The vertical dashed gray line represents the point in time at which (A, B, C, D and E) are
drawn from.
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Figure 5.3: Effects of Assembly Modifiers at 1.0× 103 (s)
Caption is on preceding page.
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Figure 5.4: Effects of Assembly Modifiers at 3.3× 104 (s)
Caption is on following page.
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Figure 5.4: Effects of Assembly Modifiers at 3.3× 104 (s)
All simulations are in vitro-like with 4×10−6 molar starting concentrations of both proteins,
α and β. (A, B, C and D) Heatmaps with contour lines showing the percent change in
assembly yield of the completed proteasome over a range of inhibitor binding strengths
and inhibitor concentrations. (E) Values are taken from the same data as the heatmap with
the corresponding assembly modifier class. Data is from the diagonal line starting at the
lower left and going to the top right, i.e., the trace of the transpose if you consider the
data a matrix. This layout allows for easy comparisons between the modifier classes over a
range of relevant parameters. (F) Yield of the systems vs time, note that this is the only
plot in this figure that is an absolute yield as opposed to a relative change. The “Normal”
line in this plot is the reference line against which all relative changes are determined.
The vertical dashed gray line represents the point in time at which (A, B, C, D and E) are
drawn from.

Figure 5.5: Effects of Assembly Modifiers at 1.9× 107 (s)
All simulations are in vitro-like with 4×10−6 molar starting concentrations of both proteins,
α and β. (A, B, C and D) Heatmaps with contour lines showing the percent change in
assembly yield of the completed proteasome over a range of inhibitor binding strengths
and inhibitor concentrations. (E) Values are taken from the same data as the heatmap with
the corresponding assembly modifier class. Data is from the diagonal line starting at the
lower left and going to the top right, i.e., the trace of the transpose if you consider the
data a matrix. This layout allows for easy comparisons between the modifier classes over a
range of relevant parameters. (F) Yield of the systems vs time, note that this is the only
plot in this figure that is an absolute yield as opposed to a relative change. The “Normal”
line in this plot is the reference line against which all relative changes are determined.
The vertical dashed gray line represents the point in time at which (A, B, C, D and E) are
drawn from.
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Figure 5.5: Effects of Assembly Modifiers at 1.9× 107 (s)
Caption is on preceding page.
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Chapter 6
Conclusion

“Who knows who you are. . .

A person is a novel: you don’t know how it will end until

the very last page. Otherwise, it wouldn’t be worth reading

to the very end. . . ”

— Yevgeny Zamyatin, We

Details of ISWI:DNA binding have been elucidated.

Numerical results of the stacked trimer have been parsed.

Combinations of assembly pathways have been calculated.

Pathways have been disrupted.

This document has reached its maximal structure.

The future holds many stories. One has already begun, a story of experimental analysis

of proteasome assembly modifiers is in progress. Small molecules have been identified

and are being tested, but that is someone else’s story to tell.

Generation of the canonical species and reactions for arbitrary protein complexes is

another path into the future. Several fascinating challenges exist in the efficient determina-

tion of binding partners within an arbitrary protein complex. Personally, I find the static

determination of these systems combinatorics fascinating. Enumerative combinatorics of

Protein assembly can get tricky, as a composition of equivalence relations is often at play.

For a single assembly pathway, the displayed pathway is representative of an equivalence

class. Thus, there is a cardinality to that function to be considered. While that is fairly

87



straightforward, do not forget that each node is a member of another set of equivalence

classes. Additionally, each reaction pair is from another set, but in that case the reactions

draw their members from the species space as well. In Chapter 4, I mentioned the Method

Resolution Order problem for multiple inheritance in object-oriented programming. The

difficulties within that problem are not unrelated to the issue of determining the inher-

itance of equivalence classes in protein assembly. While writing this document I came

across the field of Combinatorial Species [86]. The field is specially equipped to dig into the

details of nested equivalences, such as those found in protein assembly.

Improvements in transmission electron cryomicroscopy (CryoEM) over the last 5-10

years have brought the possibility of direct observation of intermediate structures of the

proteasome into the realm of possibility [103, 104]. Of course, challenges remain in the

measurement of heterogeneous mixtures. Understanding the relative species concentra-

tions in a protein complex assembly experiment is usually critical to optimizing data

collection. One of the many ways this work may be the beginning of another story, is

through its improvements in determining experimental conditions.
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Appendix A
Stacked Trimer ODEs

keff
i,j = αkonK

i
d,1K

j
d,2e−(i+j−1)∆G0

p/RT

α = c−i−j+1
0

kon = 106 M−1s−1

d[S1]
dt

= kon(−6[S1]2 − 4[S1][S2]− 3[S1][S3]− 3[S1][S4]− 2[S1][S5]− 3[S1][S6]− 2[S1][S7]

− 2[S1][S8]− 3[S1][S9]− 2[S1][S10]− [S1][S11]) + 2[S2]keff
0,1 + 2[S3]keff

1,0

+ [S4]keff
1,0 + [S4]keff

0,1 + 2[S5]keff
1,0 + [S6]keff

1,0 + [S6]keff
0,1 + 2[S7]keff

1,0 + 4[S8]keff
1,1

+ 3[S9]keff
2,0 + 2[S10]keff

2,0 + [S10]keff
0,1 + 2[S11]keff

2,1 + [S11]keff
2,0 + 2[S11]keff

1,1

+ 6[S12]keff
2,1 − δ[S1] +Q

d[S2]
dt

= kon([S1]2 − 4[S1][S2]− 8[S2]2 − 2[S2][S3]− 2[S2][S4]− 2[S2][S6]− 2[S2][S8])

− [S2]keff
0,1 + [S4]keff

1,0 + [S6]keff
1,0 + 2[S8]keff

2,0 + [S10]keff
2,0 + 2[S11]keff

3,0

+ 3[S12]keff
4,0 − δ[S2]

d[S3]
dt

= kon(2[S1]2 − 3[S1][S3]− 2[S2][S3]− 6[S3]2 − [S3][S4]− [S3][S6]− 3[S3][S9]

− [S3][S10])− [S3]keff
1,0 + [S4]keff

0,1 + 2[S5]keff
0,1 + [S6]keff

0,1 + 2[S7]keff
0,1

+ 2[S8]keff
0,2 + 3[S9]keff

2,0 + [S10]keff
2,0 + 2[S11]keff

2,1 + [S11]keff
0,2 + 6[S12]keff

2,2 − δ[S3]
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d[S4]
dt

= kon(2[S1][S2] + [S1][S3]− 3[S1][S4]− 2[S2][S4]− [S3][S4]− 2[S4]2)− [S4]keff
1,0

− [S4]keff
0,1 + 2[S5]keff

1,0 + 2[S8]keff
1,1 + [S10]keff

2,0 + [S11]keff
3,0 + [S11]keff

2,1

+ 6[S12]keff
4,1 − δ[S4]

d[S5]
dt

= kon([S1][S4]− 2[S1][S5] + [S3]2)− 2[S5]keff
1,0 − [S5]keff

0,1 + [S11]keff
2,1 − δ[S5]

d[S6]
dt

= kon(2[S1][S2] + [S1][S3]− 3[S1][S6]− 2[S2][S6]− [S3][S6]− 2[S6]2)− [S6]keff
1,0

− [S6]keff
0,1 + 2[S7]keff

1,0 + 2[S8]keff
1,1 + [S10]keff

2,0 + [S11]keff
3,0 + [S11]keff

2,1

+ 6[S12]keff
4,1 − δ[S6]

d[S7]
dt

= kon([S1][S6]− 2[S1][S7] + [S3]2)− 2[S7]keff
1,0 − [S7]keff

0,1 + [S11]keff
2,1 − δ[S7]

d[S8]
dt

= kon([S1][S4] + [S1][S6]− 2[S1][S8] + 4[S2]2 − 2[S2][S8] + [S3]2)− 4[S8]keff
1,1

− [S8]keff
2,0 − [S8]keff

0,2 + [S11]keff
2,0 + 3[S12]keff

4,0 − δ[S8]

d[S9]
dt

= kon([S1][S3]− 3[S1][S9]− 3[S3][S9]− 6[S9]2)− 3[S9]keff
2,0 + [S10]keff

0,1

+ [S11]keff
0,2 + 2[S12]keff

0,3 − δ[S9]

d[S10]
dt

= kon([S1][S4] + [S1][S6] + 3[S1][S9]− 2[S1][S10] + 2[S2][S3]− [S3][S10])

− 3[S10]keff
2,0 − [S10]keff

0,1 + 2[S11]keff
1,1 + 6[S12]keff

2,2 − δ[S10]

d[S11]
dt

= kon(2[S1][S5] + 2[S1][S7] + 2[S1][S8] + 2[S1][S10]− [S1][S11] + 2[S2][S4]

+ 2[S2][S6] + [S3][S4] + [S3][S6] + 3[S3][S9])− 4[S11]keff
2,1 − [S11]keff

2,0

− 2[S11]keff
1,1 − 2[S11]keff

3,0 − [S11]keff
0,2 + 6[S12]keff

2,1 − δ[S11]

d[S12]
dt

= kon([S1][S11] + 2[S2][S8] + [S3][S10] + [S4]2 + [S6]2 + 3[S9]2)− 6[S12]keff
2,1

− 3[S12]keff
4,0 − 6[S12]keff

2,2 − 6[S12]keff
4,1 − [S12]keff

0,3 − δ[S12]
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