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ABSTRACT 
 

Derek C.W. Raisanen 
Department of Geology, 11 July 2018 

University of Kansas 
 

 Large-diameter structures in pedogenically modified floodplain deposits in the Salt Wash 

Member, Upper Jurassic Morrison Formation, in southeastern Utah, are interpreted as vertebrate 

burrows. Two morphotypes were identified. Morphotype 1 exhibits a vertical to subvertical 

helical shaft leading to a subhorizontal tunnel. This morphotype is named Daemonelix martini 

(n. isp.). The helical shaft has a mean depth of 71.4 cm from the interpreted paleosurface. The 

mean path length of the shaft is 99.4 cm; mean dip of the whorls in the helices is 39°. The mean 

tunnel length is 42.3 cm. Shafts and tunnels are ovoid in cross section with the horizontal 

diameter slightly larger than the vertical; shaft averages 9.2 cm wide and 7.3 cm tall, tunnel 

averages 10.7 cm wide and 10.7 cm tall. The tracemaker was likely a fossorial mammal that used 

the burrows as a shelter when not foraging above ground; burrows are assigned to domichnia. 

Morphotype 2 structures are networks of interconnected shafts and tunnels. This morphotype is 

named Fractussemita henrii (n. igen. and n. isp.). Shaft and tunnel segments are straight, curved, 

or helical. The segments are at different angles 0–89º; mean length of a section is 30.7 cm. The 

cross sections of all elements are ovoid; mean width is 6.3 cm and the mean height is 4.9 cm. 

The burrows are interpreted as the work of a social mammal and represent multiple tracemaker 

behaviors—protection, denning, foraging. Burrows are assigned to polychresichnia. Both 

morphotypes have ridges and knobs preserved on burrow walls. Some surficial morphology is 

interpreted as scratch marks from the claws and/or teeth of the tracemakers. All burrow types are 

found in pedogenically-modified mudstone overlain by sandstone channel deposits. The 

environment of deposition is interpreted as river channel and floodplain. Primitive mammals are  
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the most likely tracemakers for both morphotypes based on comparison to the architectural and 

surficial morphologies of fossil and extant vertebrate burrows and other structures. The burrows 

reveal the actions of small vertebrates not recorded by body fossils revealing evidence for 

denning and parental care in Jurassic age mammals. The burrows can also be used to help study 

local soil development and paleohydrologic conditions in the Salt Wash Member by showing 

stability of the floodplain and depth of the vadose zone. 
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CHAPTER ONE. INTRODUCTION 

This thesis presents evidence for large-diameter structures (LS) in the Salt Wash Member 

of the Upper Jurassic Morrison Formation interpreted as mammal burrows. This thesis will: (1) 

interpret the origin of the LS using morphologic criteria and comparative morphology to falsify 

as many hypothesized tracemakers as possible; (2) place the LS in a paleoenvironmental and 

paleohydrological context; and (3) name the structures using systematic ichnotaxonomy. 

This thesis is divided into two manuscripts. The first manuscript (Chapter 2) describes the 

architectural and surficial morphologies of the structures and how they allow for their 

interpretation as mammal burrows. The second manuscript (Chapter 3) describes the structures, 

interpreted as burrows, and places them into new ichnotaxa using the International Commission 

for Zoological Nomenclature, making comparisons to similar trace fossils. Both manuscripts 

address potential behavioral and paleoenvironmental significance of the burrows. 

The Morrison Formation has yielded an abundance of body and trace fossils since the late 

1800s, from giant sauropods to small invertebrates (e.g., Ostrom and McIntosh, 1966; Turner and 

Peterson, 1992; Gates, 2005; Foster, 2009). The mammal assemblage of the Morrison Formation 

is the most diverse in the world for the Late Jurassic but is geographically limited with the 

majority of species coming from Como Bluff, Wyoming (e.g., Prothero, 1981; Kielan-

Jaworowska et al., 2004; Carrano and Velez-Juarbe, 2006). The Morrison Formation has a 

variety of trace fossils, with those made by invertebrates most abundant (e.g., Hasiotis and 

Demko, 1996; Good, 2004; Hasiotis, 2004, 2008; Britt et al., 2008). Known trace fossils from the 

Salt Wash Member include rhizoliths, dinosaur tracks, and numerous types invertebrate nests and 

burrows (e.g., Lockley et al., 1992; Robinson and McCabe, 1998; Hasiotis 2004, 2008). Plant 

macrofossils from the Morrison Formation are limited with a noticeable paucity of wood and 
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mostly record herbaceous vegetation (Parrish et al., 2004; Turner and Peterson, 2004; Foster, 

2009). Conifers dominate palynomorph specimens (Hotton and Baghai-Riding, 2010). 

 Extant vertebrate burrows occur worldwide, except in mainland Antarctica, in most 

continental environments (e.g., Reichman and Smith, 1990; Abba et al., 2005; Knight, 2009; le 

Roux et al., 2011). All major vertebrate groups have species that produce burrows (e.g., 

Greenwood, 1986; Reichman and Smith, 1990; Bancroft et al., 2005; Tracy et al., 2007; McAlpin 

et al., 2011). Fossilized vertebrate burrows are most often found in floodplain, lacustrine, or 

palustrine deposits (e.g., Smith, 1987; Hasiotis, 2004; Voigt et al., 2011), and less often in eolian 

settings (e.g., Loope et al., 1998; Riese et al., 2011). Fossil burrows occur on all continents (e.g., 

Martin and Bennett, 1977; Krapovickas et al., 2012; Talanda et al., 2011; Liu and Li, 2013; 

Voigt et al., 2011; Martin, 2009; Hasiotis et al., 2004) and are dated from the Devonian 

(Hasiotis, 2002; Friedman and Daeschler, 2006) to the present. Vertebrate burrows are far less 

common than invertebrate burrows in continental deposits (e.g., Voorhies, 1975a; Hasiotis et al., 

2007). The burrow tracemaker may be identified by the occurrence of body fossils inside the 

burrow with features that match excavation marks (e.g., Martin and Bennett, 1977; Smith, 1987) 

or by comparison of architectural and surficial morphologies to known traces (e.g., Carroll, 

1965; Hasiotis et al., 1993, 2004; Gobetz, 2006). Discovered and interpreted ancient vertebrate 

burrowers include lungfish (Berman, 1976; Hasiotis et al., 1993), amphibians (Hembree et al., 

2004, 2005), therapsids (Smith, 1987: Groenwald et al., 2001), bear dogs (Hunt et al., 1983), 

beavers (Martin and Bennett, 1977), and kangaroo rats (Voorhies, 1975b). 

There is a tendency to place vertebrate burrows in an open nomenclature. Compared with 

the diversity of invertebrate burrows, vertebrate burrows may appear superficially similar due a 

shared body plan, (Häntzschel, 1975), but detailed study of architecture and surficial morphology 
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reveal many identifying distinctions between types. Giving a taxonomic name and description to 

two new vertebrate trace fossils makes these structures more useful as paleoenvironmental 

indicators and enhance scientific communication by increasing specificity and increasing the 

potential for recognition of these and similar structures in the field. 
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CHAPTER TWO:  

NEW VERTEBRATE BURROW MORPHOLOGIES IN THE SALT WASH MEMBER, 

UPPER JURASSIC MORRISON FORMATION, SOUTHEASTERN UTAH, USA: 

INTERPRETING BEHAVIOR AND ENVIRONMENT WITHOUT BODY FOSSILS 

 

Submitted to PALAIOS as: 

RAISANEN, D.C.W. and HASIOTIS, S.T., in review, New Vertebrate Burrow Morphologies in 

the Salt Wash Member, Upper Jurassic Morrison Formation, Southeastern Utah, USA: 

Interpreting Behavior and Environment Without Body Fossils. 

 

ABSTRACT 

 Large-diameter structures in the Salt Wash Member, Upper Jurassic Morrison Formation, 

in southeastern Utah, are interpreted as vertebrate burrows. Two types of burrows, found at two 

localities, reveal the hidden biodiversity of small vertebrates in an area with a paucity of such 

body fossils. Morphotype 1 exhibits a vertical to subvertical helical shaft leading to a 

subhorizontal tunnel. The mean helical shaft depth is 71.4 cm, and mean tunnel length is 42.3 

cm. Morphotype 2 burrows are networks of interconnected shafts and tunnels at angles 0–89º. 

Segments of the network shafts and tunnels are straight, curved, or helical. The mean length of a 

section is 30.7 cm. Both morphotypes have ridges and knobs preserved on burrow walls. Some 

surficial morphology is interpreted as scratch marks from the claws and/or teeth of the 

tracemakers. All burrow types are found in pedogenically-modified mudstone overlain by 

sandstone channel deposits. The environment of deposition is interpreted as river channel and 

floodplain. Primitive mammals are the most likely tracemakers for both morphotypes based on 
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comparison to the architectural and surficial morphologies of fossil and extant vertebrate 

burrows and other structures. These burrows reveal evidence for denning and parental care in 

Jurassic age mammals, and classified as polychresichnia. The burrows can also be used to help 

study local soil development and paleohydrologic conditions in the Salt Wash Member by 

showing stability of the floodplain and depth of the vadose zone. What is learned on the local 

level can be expanded to other localities where mammal burrows are identified. This paper 

presents two new morphologies to look for and will hopefully lead to the discovery of more. 

 

INTRODUCTION 

Modern vertebrate burrows are found nearly worldwide in most continental environments 

(e.g., Reichman and Smith, 1990; Abba et al., 2005; Knight, 2009; le Roux et al., 2011), and are 

produced by all major classes (e.g., Greenwood, 1986; Reichman and Smith, 1990; Bancroft et 

al., 2005; Tracy et al., 2007; McAlpin et al., 2011). Trace fossils representing vertebrate burrows 

are most often found in floodplain, lacustrine, or palustrine deposits (e.g., Smith, 1987; Hasiotis, 

2004, 2008; Hasiotis et al., 2004; Voigt et al., 2011), as well as in eolian settings (e.g., Loope et 

al., 1998; Riese et al., 2011). They are preserved on all continents (e.g., Martin and Bennett, 

1977; Krapovickas et al., 2012; Talanda et al., 2011; Liu and Li, 2013; Voigt et al., 2011; Martin, 

2009; Hasiotis et al., 2004) and date from the Devonian (Hasiotis, 2002; Friedman and 

Daeschler, 2006) to the present. Vertebrate burrows are far less common than invertebrate 

burrows in continental deposits (e.g., Voorhies, 1975a; Hasiotis et al., 2007). Tracemakers can be 

identified by the occurrence of body fossils preserved inside the burrow (e.g., Martin and 

Bennett, 1977; Smith, 1987), or by comparison of architectural and surficial morphologies to 

known traces (e.g. Carroll, 1965; Hasiotis et al., 1993, 2004; Gobetz, 2006). Discovered and 
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interpreted ancient vertebrate tracemakers are varied and include lungfish (Berman, 1976; 

Hasiotis et al., 1993), amphibians (Hembree et al., 2004, 2005), therapsids (Smith, 1987: 

Groenwald et al., 2001), bear dogs (Hunt et al., 1983), beavers (Martin and Bennett, 1977), and 

kangaroo rats (Voorhies, 1975b). 

This paper describes two morphotypes of large-diameter structures (LS) in the Salt Wash 

Member of the Upper Jurassic Morrison Formation in southeastern Utah, U.S.A. (Fig. 1), 

interpreted as vertebrate burrows. They record a part of the paleobiodiversity mostly not 

represented by body fossils. Some of these LS have previously been described generally as 

mammal burrows (e.g., Hasiotis, 2002, 2004; Hasiotis et al., 2004), but detailed analysis has not 

been undertaken until now. Different sized mammals are interpreted as potential tracemakers 

based on the architectural and surficial morphologies of the LS. The various morphologies 

described here can be used to identify other vertebrate burrows in continental deposits. There has 

been good research done identifying the range of therapsid and cynodont burrows in the Permian 

and Triassic (e.g., Smith, 1987: Groenwald et al., 2001; Hasiotis et al., 2004; Talanda et al., 

2011). Description of these new Jurassic structures will help in the recognition of previously 

unidentified mammal burrows in the Mesozoic and Cenozoic. 

This study increases understanding of alluvial ecosystems preserved in the Morrison 

Formation by revealing new information about the nondinosaurian inhabitants and expands on 

the range of identified trace fossils of primitive mammals. Although the Morrison Formation has 

produced a diverse assemblage of small vertebrates (e.g. Prothero, 1981; Evans and Milner 1993; 

Carrano and Velez-Juarbe, 2006), the majority of these fossils are found well away from the 

study area, such as in Fruita, Colorado (e.g. Luo and Wible, 2005), and at Como Bluff quarries in 

Wyoming (e.g. Prothero, 1981). How cosmopolitan species from these locations may have been 
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is not known. Being able to identify burrows in the Morrison or any formation is an aid in 

reconstructing the environment. Burrows and their method of preservation offer clues about the 

soil development and the groundwater profile. 

 

GEOLOGIC SETTING 

The Upper Jurassic Morrison Formation extends across more than 1x106 km2 of the 

western United States from New Mexico to Montana, and into southwest Canada (Turner and 

Peterson, 2004). The varied lithologies of the Morrison Formation represent mostly continental 

deposition after the Late Jurassic Western Interior seaway retreated northward out of the interior 

of North America (Turner and Peterson, 2004). Deposition of continental sediments followed the 

regressing shoreline as seen where the Sundance Formation grades into and intertongues with the 

base of the Morrison Formation in northern Utah and Colorado, and into southern Wyoming 

(Imlay, 1980; Turner and Peterson, 2004). The Morrison Formation is subdivided into 10 

members, some of which interfinger (Turner and Peterson, 2004). They do not all occur at any 

one location. These members pinch out northward and eastward away from the Colorado 

Plateau, where the Morrison Formation remains undivided at the perimeter as it pinches out 

(Imlay, 1980; Turner and Peterson, 2004). 

In the southern part of the basin, the base of the Morrison Formation is delineated by the 

J-5 unconformity (Piperingos and O’Sullivan, 1978; Turner and Peterson, 2004). Morrison 

Formation deposition began in the very latest Oxfordian based on palynomorphs from the Windy 

Hill Member and calcareous microfossils (Turner and Peterson, 2004). Deposition continued 

through the Kimmeridgian to the early Tithonian (Peterson, 1994). Radiometric age dates from 
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ash beds in the Tidwell Member at the base of the formation and the Brushy Basin Member at 

the top indicate deposition occurred between 155–148 Ma (Kowallis et al., 1998, 2007). 

Paleoenvironmental reconstructions of the Morrison Formation include depositional 

environments from the nearshore marine in the Windy Hill Member, fluvial in the Salt Wash 

Member to eolian in the Bluff Sandstone Member. The Morrison Formation is interpreted as a 

tropical wet-dry, savannahlike climate with periods of wetter conditions (e.g., Engelmann et al., 

2004; Demko et al., 2004; Hasiotis, 2004, 2008; Parrish et al., 2004; Platt, 2012). 

The Morrison Formation has abundant body fossils of dinosaurs and smaller vertebrates 

that have been described since the late 1800s (e.g., Ostrom and McIntosh, 1966; Turner and 

Peterson, 1992; Gates, 2005). The mammal assemblage of the Morrison Formation is the most 

diverse in the world for the Late Jurassic, but the majority of species come from Como Bluff, 

Wyoming (e.g., Prothero, 1981; Kielan-Jaworowska et al., 2004; Carrano and Velez-Juarbe, 

2006). Numerous trace fossils are also known from the Morrison Formation, most interpreted as 

invertebrate in origin (e.g., Hasiotis and Demko, 1996; Good, 2004; Hasiotis, 2004, 2008; Britt 

et al., 2008). Known trace fossils from the Salt Wash Member include rhizoliths, dinosaur tracks, 

and numerous types invertebrate nests and burrows (e.g., Lockley et al., 1992; Robinson and 

McCabe, 1998; Hasiotis 2004, 2008). 

 

Study Area 

The LS were investigated at two localities: Locality 1 in Shootaring Canyon ~9 km north 

of Ticaboo, Utah, and a second, smaller locality ~11 km east of Fruita, Utah (Fig. 1). Members 

of the Morrison Formation exposed at the field localities include the Tidwell, Salt Wash, and 

Brushy Basin. Both LS localities were near the top of the Salt Wash Member. 
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The Salt Wash Member is a laterally discontinuous unit that, where present, lies between 

the Tidwell and Brushy Basin members (Peterson, 1994). At various locations the Salt Wash 

Member interfingers with the lacustrine Tidwell Member, fluvial Westwater Canyon Member, 

and eolian Bluff Sandstone and Junction Creek Members (Peterson, 1994; Turner and Peterson, 

2004). The Salt Wash Member is up to 160-m thick in the Henry Mountains area (Robinson and 

McCabe, 1998). The Salt Wash Member is interpreted as a fluvial complex composed of channel 

deposits interbedded with floodplain and crevasse-splay deposits that prograded eastward with 

maximum extent in the middle Kimmeridgian (Peterson, 1994; Turner and Peterson, 2004; 

Kjemperud et al., 2008). Low-sinuosity braided streams flowing east, northeast, and southeast 

predominated with channels becoming straight and isolated downstream (Demko et al., 2004; 

Turner and Peterson, 2004). Wetland and lacustrine environments developed downstream and 

prograded eastward during Salt Wash Member deposition (Turner and Peterson, 2004). 

Streamflow was variable, indicated by interfingering between the Salt Wash Member and erg 

deposits of the Bluff Sandstone and Junction Creek Members to the east (Turner and Peterson, 

2004) and trace-fossil occurrences within coarse-grained- and fine-grained-dominated intervals 

(e.g., Hasiotis 2004, 2008). 

Outcrops of the Salt Wash Member at both localities are characterized by alternating 

layers of sandstone and mudstone interbedded with thin, discontinuous carbonate layers (Fig. 2–

4). Sandstones are interpreted as fluvial deposits. The interbedded mudstone-carbonates are 

interpreted as paleosols. Sandstones are buff colored at both outcrops. Grain size is medium sand 

with pebble lags at the bottom contacts. All sandstones have ~0.3-m thick tabular crossbedding 

and are interpreted as bars. At both localities the sandstone units were thicker than the mudstone-

carbonate units. Individual sandstone accumulated to ~ 4–12-m thick. The channels that 
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deposited the sandstones scoured the underlying paleosols. In many places the paleosol was 

completely eroded and the scour surface cuts through the paleosol to underlying sandstone. At 

both localities three mudstone-dominated beds contain LS. The mudstone is carbonate-cemented, 

clay rich, and red–brown or grey–green, interpreted as a record of dry, oxidizing and wet, 

reducing paleohydrologic conditions. Slickensides and pseudoanticlines were observed in all 

mudstone beds at both localities. The carbonate is beige and mostly massive. There are some 

small, recrystallized areas that appear without any pattern. The mudstone-carbonate units all 

have sharp upper contacts and gradual bottom contacts with the over- and underlying sandstones. 

Two LS-bearing mudstone-carbonate units at Locality 1 vary from ~1.5–3.5-m thick. Two LS-

bearing units at Locality 2 vary from 2.4–4.0-m thick.  

Other body and trace fossils were found during the course of this investigation. Discrete 

soft-sediment deformation patterns in mudstone-carbonate units at both localities are interpreted 

as dinosaur tracks (Fig. 5). Rhizoliths and rhizohaloes were observed in multiple mudstone-

carbonate units at Locality 1. The largest were nearly 1-m long and ~5-cm wide. Three vertebrae 

at Locality 2 and numerous bone fragments at both sites attributable to dinosaurs were found in 

sandstone beds. Locality 1 contains two enigmatic structures (Fig. 6) that may represent 

additional shallow tunnel burrows averaging 2.0 m long, but are too poorly preserved to provide 

identifying characteristics. 

 

MATERIALS AND METHODS 

 Stratigraphic columns for both localities were constructed and described the lithofacies 

(see Fig. 2). The section at Locality 1 was measured from several meters below the lowest 

horizon of the structures to the top of the outcrop. The section at Locality 2 was measured from 
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the river at the base of the outcrop to the top. LS-bearing units at both sites were followed 

laterally to determine the full areal extent of the layers and their relation to overlying and 

underlying sandstone units. 

 The LS were photographed in detail and their architectural and surficial morphology and 

sediment fill were described following the methods of Hasiotis and Mitchell (1993), Hasiotis et 

al. (1993), and Hembree and Hasiotis (2006). The length of segments was measured with 

measuring tape or calipers along the top of the LS following the midline. Penetration depth was 

measured vertically with tape from the highest point of the LS to the lowest. Diameters (widest 

and narrowest dimensions) were measured where a segment had broken exposing a cross section 

or around an intact segment with these dimensions exposed. The dip angle of shafts and helical 

elements was measured using a level (Fig. 7).  Surficial morphology was described for such 

features as longitudinal and transverse ridges and knobby or hummocky textures from the 

burrow walls. The fill lithology was compared with the lithology of the matrix, over and 

underlying beds, and thin interbedded carbonates to identify the source of the material. We 

calculated LS density (#/m2) of the most common morphotype in each layer where they were 

present. The LS-bearing layer and broken LS in float were examined for associated trace fossils 

and body fossils. 

 Vertebrate tracemakers for the LS are hypothesized to have been mammals. To test this 

hypothesis and rule out other potential tracemakers a database of LS features was constructed 

and compared with descriptions of identified trace fossils and abiotic constructions (Table 1; 

Riese et al., 2011). We compared the LS to fossil and modern burrows from different terrestrial 

vertebrates, rhizoliths, fluid-escape structures, and weathered rock remnants. 
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DESCRIPTION 

 Two distinct architectural morphologies of LS were identified. The most prevalent is 

designated Morphotype 1. The less common is Morphotype 2. All structures are preserved by 

muddy carbonate fill and many contain veins of recrystallized calcite. This fill weathered to a 

beige color that contrasted against the matrix mudstone and aided structure identification. 

Excavation of the structures beyond what was already exposed was not possible. The color 

contrast that made them stand out from the matrix had not occurred and the LS were 

indistinguishable from the matrix. How long the weathering contrast takes is not known at this 

time. No body fossils were found within the LS. 

 

Morphotype 1 

 Architectural Morphology.—Morphotype 1 (M1) structures are composed of two 

architectural elements: a vertical to subvertical helical shaft connecting at an L-shaped junction 

to a horizontal tunnel (Fig. 8) (Appendix A). The cross section of both the shaft and the tunnel 

elements is ovoid. Where present, a marked widening at the top of the shaft has a mean diameter 

of 24.2 cm; range 15.2–36 cm. The mean shaft depth is 71.4 cm; range 33.7–155.6 cm. Mean 

shaft length is 99.4 cm; range 55.6–143.5 cm. The majority of shafts are vertical. Of those that 

are subvertical the mean dip angle is 48.1º from horizontal; range 35–57º. Shaft cross sections 

have a mean vertical diameter of 8.5 cm; range 3–10.9 cm, and a horizontal diameter of 9.2 cm; 

range 2.3–14 cm. The mean dip of the helical whorls is 37º from the horizontal; range 26–67º. 

The mean tunnel length is 42.3 cm; range 24.1–86.6 cm. Tunnel cross sections have a mean 

vertical diameter of 10.5 cm; range 4.27–26.7 cm, and horizontal diameter of 10.7 cm; range 

4.9–20.2 cm. The majority of specimens are incomplete to some degree, lacking some or all of 
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one or both elements. At both localities, when the tops of structures can be identified, the 

burrows appear to originate from the same paleosurface, 10–15 cm below the top of the layer. 

The M1 structures occur in the lowermost paleosol at Locality 1 and the uppermost paleosol at 

Locality 2 (see Fig. 2). At Locality 1 the average density is 9 LS/10 m2. The smaller exposure at 

Locality 2 has a density of 10 LS/10 m2.  

Surficial Morphology.—The surficial morphology of M1 exhibits four surface 

textures—two types of ridges and two types of knobs. These surface morphologies appear evenly 

across both outcrops. On individual burrows the tops and sides of the helix and tunnel elements 

tend to preserve ridges, whereas knobs dominate the undersides of a burrow (Fig. 9). The larger 

ridge type runs longitudinally on the surface of the shaft and tunnel elements. The large ridges 

have rounded tops (Fig. 9A). Width is < 1 cm and length is 1 cm to 10 cm; height is < 0.5 cm. 

The small ridge type is made up of short segments < 1 cm long that join together at a variety of 

angles to create a jagged surface texture (Fig. 9B). The height is < 1 cm with steep sides. The 

large knobs are < 1cm tall and circle the circumference of the burrow surface, predominantly the 

shafts (Fig. 9C). Size of the knobs varies with the size of the shaft. Individual large knobs press 

against each other and are separated by thin cracks up to 1.5 cm deep. The small knob texture has 

individual knobs <1 cm tall and ~1 cm across, appearing together (Fig. 9D). Sometimes these 

would be present on the larger knobs. 

 

Morphotype 2 

Architectural Morphology—Morphotype 2 (M2) structures are composed of an 

interconnected network of shafts and tunnels at various angles (Fig. 10, 11) (Appendix A). 

Individual elements are straight (the most common), curved, or helical. The mean length of a 
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section is 30 cm; range <1–93.3 cm. The cross sections of all elements are ovoid. The mean 

vertical diameter is 4.9 cm; range 2.8–14 cm. The mean horizontal diameter is 6.3 cm; range 

4.5–8.7 cm. The segments vary from 0º to 89º from the horizontal and mean angle of inclination 

is 31º. The interconnected segments are joined randomly in a maze pattern. These LS are found 

at Locality 1 in the middle and lowest paleosols, at Locality 2 in the highest paleosol. 

Preservation is varied within the group with some specimens having segments fused together to 

the extent that the individual segments are not definitively discernible. 

Surficial Morphology.—The surficial morphology of M2 is varied (Fig. 12). There is 

one ridge and one knob texture similar to those on M1 and a second ridge and second knob 

texture unique to this morphotype. The shared ridge texture is formed by short, thin ridges <1 cm 

long and <1 cm high that join together at irregular angles to create a jagged, serrated appearance 

(Fig. 12A). This texture is most common on the ceiling of burrows. Unique to M2 there is a set 

of straight, parallel ridges 1.4 cm long within the jagged texture (Fig. 12B). Concentrated on the 

sides and bottom of M2 specimens are small knobby texture similar to that seen on M1 (Fig. 

12C). These knobs are up to 2-cm long and < 1-cm high. Arrangement of these knobs is random. 

A second knob texture seen on a single specimen is a series of vertically oriented knobs of 

roughly equal shape (Fig. 12D). They are < 1-cm tall, ~2-cm long, and ~1-cm wide. 

 

INTERPRETATIONS OF MORPHOTYPES 

Morphotype 1 

 The helical architecture of M1 burrows resembles corkscrew burrows produced by 

synapsids and mammals from the Permian to the recent (e.g., Martin and Bennett, 1977; Bown 

and Kraus, 1983; Smith, 1987; Butler, 1995) (Table 2). M1 is most similar to Daemonelix, 
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helical burrows produced by the Miocene beaver Palaeocastor (Martin and Bennett, 1977). The 

best-preserved specimens of M1 show a widening at the top of the helix, interpreted as a 

turnaround where the tracemaker might change position and scan the environment. This feature 

is also noted in Daemonelix and extant prairie dog burrows (e.g., King, 1955; Martin and 

Bennett, 1977). In cross section, M1 is most similar to burrows attributed to mammal excavators 

ancient and modern (e.g., Martin and Bennett, 1977; Bown and Kraus, 1983; Laundré, 1989). 

The ovoid, almost circular cross section with horizontal burrow diameters of the M1 burrows 

slightly larger than the vertical diameters contrasts with therapsid burrows, which are 

characterized typically by a W- or upside-down, U-shaped (bean- or kidney-shaped) cross 

section (e.g., Smith, 1987; Damiani et al., 2003; Riese, 2011). The helix of M1 maintains a 

uniform width until it reaches the tunnel as in Daemonelix (Martin and Bennet, 1977). Permian 

dicynodont burrows in South Africa also exhibit widening helical shafts and tunnels that gently 

grade into a terminal chamber (Smith, 1987). 

 The transverse and longitudinal, small ridges along the surface of M1 burrows are most 

similar to the surficial morphology of Daemonelix. These features on Daemonelix are interpreted 

as the tooth and claw marks produced by the excavator and can be seen as the distinct product of 

incisors on the top of the burrow or claws on the bottom (Martin and Bennett, 1977). Diagenesis 

and weathering have distorted the ridges on the M1 burrows. The carbonate that preserves the 

architecture has also covered some original surfaces. Both large and small knobby textures are 

interpreted as products of preservation and these pseudosurficial morphologies are not useful for 

diagnosing potential tracemakers or methods of excavation. While no surficial morphologic 

features can be identified as the work of teeth or claws with certainty, based on the interpretation 
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for Daemonelix, the small ridges on the top of the M1 burrow are more likely to be the marks 

produced by the teeth of the tracemaker. 

 A single individual or pair of tracemakers likely constructed and maintained M1 burrows, 

based on comparisons to extant mammalian burrowers. Permanent burrows are more complex 

than temporary shelters and require more effort to construct (e.g., Vleck, 1981, Reichman and 

Smith, 1990; Meyer, 1999). The helix and tunnel architecture has the complexity of a permanent 

structure, but is less complex than the elaborate networks that can be created by social or 

eusocial mammals (e.g., Lynch, 1980; Jarvis et al., 1994; Mankin and Getz, 1994; Skinner, 

2005). The more elaborate burrows of social and eusocial mammals are multiuse with chambers 

for resting, waste disposal, food storage, and foraging tunnels (e.g., Bennett and Faulkes, 2000; 

Scharff et al., 2001). The lower complexity indicates M1 burrows were primarily used for shelter 

and that the tracemakers went above ground to forage. Resting underground would protect the 

tracemakers from temperature changes (e.g., Reichman and Smith, 1990; Meyer, 1999). The 

tracemakers likely did not use M1 burrows for dry season estivation as hypothesized for 

therapsid helical burrows, based on lack of body fossils (Smith, 1987). The M1 burrows are 

categorized as polychresichnia as the architecture represents a burrow for the tracemaker that 

may have been used for multiple purposes, such as dwelling, reproduction, and sheltering from 

weather extremes. 

Worldwide there are eight (McKenna and Bell, 1997) to 13 (Kielan-Jaworowska et al., 

2004) mammal lineages at the ordinal or family level by the Late Jurassic. The major groups 

identified from the Morrison Formation are docodonts, multituberculates, eutriconodonts, 

“symmetrodonts,” paurodontids, and dryolestids (Kielan-Jaworowska et al., 2004). There is at 

least one species of eutriconodont, Fruitafossor windscheffeli, from western Colorado that is 
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interpreted as adapted for a fossorial lifestyle and scratch digging based on forelimbs and 

vertebrae, as well as peglike teeth—convergent with modern burrowing armadillos and 

aardvarks––for eating insects (Luo and Wible, 2005; Luo, 2007). This creature appears to be too 

small to have occupied M1 burrows (Foster, 2009), but supports the notion of a mammal 

tracemaker by showing that necessary burrowing adaptations were present at this time. A 

fossorial-adapted docodont, Docofossor brachydactylus, from the Late Jurassic in China further 

indicates that digging abilities were distributed across multiple mammal groups (Luo et al., 

2015). No therapsids have been recovered from the Morrison Formation; thus, the lack of burrow 

morphologic and body-fossil evidence suggests that they are unlikely candidates for the 

tracemaker. 

 

Morphotype 2 

 The networks preserved in M2 are interpreted as likely burrow systems for social 

mammals. Therapsids from the Permian to the Jurassic and mammals from the Triassic to the 

recent construct such complex networks (e.g. Mankin and Getz, 1994; Groenewald et al., 2001; 

Gobetz and Martin, 2006; Riese et al., 2011; Voigt et al., 2011). M2 burrows are best compared 

to the extant mammal burrows from such small rodents as ground squirrels or kangaroo rats (e.g., 

Ognev, 1947; Anderson and Allred, 1964; Reichman and Smith 1990). As with M1, the ovoid 

cross section with a horizontal diameter slightly wider than the vertical diameter matches best 

with mammal burrows (e.g., Martin and Bennett, 1977; Bown and Kraus, 1983; Laundré, 1989). 

 The surficial morphology of M2 is more enigmatic than the architectural morphology. 

The short ridges are most likely to have been produced by the tracemaker. The parallel ridges on 

the roof of the burrow also appear to have been produced by tracemaker. Both of these 
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morphologies are seen more prevalently in better-preserved trace fossils and modern burrows 

(e.g., Martin and Bennett, 1977; Burns et al., 1989; Gobetz and Martin, 2006). The random 

knobby texture is a pseudosurficial morphology that formed during preservation and is not useful 

for determining the tracemaker or mode of excavation. The repeating, parallel knob texture is 

similar to the scalloped walls preserved in other fossil burrows (Gobetz and Martin, 2006; Riese 

et al., 2011) and is interpreted as the scratch marks of a manus or pes excavating the burrow. 

Very similar features are seen in modern mole burrows (Gobetz, 2005) indicating the M2 

excavator may have used a similar lateral-thrust or humeral-rotation digging method (Turnbull 

and Reed, 1967; Hildebrand, 1985). 

Multiple individuals of a social group likely constructed M2 burrows. Such burrow 

systems require a great deal of work to construct and maintain (e.g., Vleck, 1981, Reichman and 

Smith, 1990). Upkeep is constant as the burrow systems are modified on a continuous or 

seasonal basis (e.g., Lovegrove and Jarvis, 1986; Sumbera et al., 2003; Knight, 2009). Network 

burrows can be used for multiple purposes: protection from both predators and weather (e.g. 

Kenagy, 1973, Kay and Whitford, 1978; Reichman and Smith, 1990); food storage (e.g. Skinner, 

2005; Smith and Reichman, 1984); foraging tunnels closer to the surface to feed on plant roots 

and soil biota (e.g. Duncan and Wrangham, 1971; Lovegrove and Jarvis, 1986); reproduction 

(e.g. Hall and Meyers, 1978; Hickman, 1983); and waste (Reichman and Smith, 1990). Some of 

these uses are interpreted for fossil burrows as well (e.g., Meyer, 1999; Hasiotis et al., 2004, 

2007; Riese et al., 2011). Network burrows produced by extant mammals vary greatly in size 

based on the size of the excavators and the degree to which the live underground. The largest 

burrow systems are made by species that spend the majority of their lives underground, such as 

moles and mole rats (e.g. Hickman, 1983; Davies and Jarvis, 1986; Reichman and Smith, 1990). 
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Mole rat burrows have segments tens of meters long and whole systems that can persist for over 

1000 m (e.g., Šumbera et al., 2011; Lövy, 2015). M2 burrows do not reach this size. The 

excavators are interpreted to come above ground to forage and interact with conspecifics. M2 

burrows are categorized as polychresichnia (Hasiotis, 2003) because the architecture represents 

multiple behaviors and uses from the tracemaker. 

The majority of mammals found in the Morrison Formation are small with an average 

mass of 48.5 g (Kielan-Jaworowska et al., 2004; Foster, 2009). This leaves many potential 

tracemakers for M2 burrows based on size. Fruitafossor windscheffeli is the smallest mammal 

found in the Morrison Formation and a likely tracemaker with many adaptations for scratch 

digging (Luo and Wible, 2005; Foster, 2009). Scratch digging is supported as a means for 

excavating M2 burrows based upon the repeating, parallel knob texture. 

 

Alternative Origins 

 There is no evidence to falsify the hypothesis that a mammal was the excavator of both 

the M1 and M2 burrows. The cross sections of both burrows are ovoid unlike a therapsid or 

reptile burrow giving no evidence for a tracemaker with splayed legs (e.g., Smith, 1987; 

Groenwald et al., 2001; Hasiotis et al., 2004; Hasiotis and Burke, 2006). The architecture is more 

complicated than any recorded amphibian burrow, which is simple shafts or tunnels used for 

aestivation or hibernation (Hembree et al., 2004, 2005). Rhizoliths display a branching pattern 

not seen in the M1 and M2 burrows (e.g., Klappa, 1980; Loope, 1988; Hasiotis, 2002). Both M1 

and M2 burrows are more well planned that any abiotic structures. Fluid escape pipes are 

typically found in sandstone as straight pillars with concentric rings in the fill (e.g., Netoff, 2002; 

Huuse et al., 2002; Hasiotis et al., 2007). Eroded rock remnants have highly variable architecture 
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and occur in flat area exposed to a lot of wind that produces a polished surficial morphology 

(Lancaster, 1984). None of these are features of the M1 or M2 burrows. 

 

Paleoenvironmental Implications 

 These burrows further support the interpretation of the Morrison Formation as a tropical 

wet-dry, savannah climate (Engelmann et al., 2004; Hasiotis, 2004, 2008; Parrish et al., 2004; 

Platt, 2012) and the Salt Wash Member being a fluvial-floodplain system within that 

environment (Peterson, 1994; Turner and Peterson, 2004; Kjemperud et al., 2008). That both 

burrow types are interpreted as living spaces is the first indicator of a stable floodplain 

environment with either gradual buildup of sediment or long periods between large depositional 

events. The depth of the M1 burrow type indicates a vadose zone >1-m deep. Root traces to a 

similar depth support this interpretation. The mode of preservation is indicative of a wet-dry 

climate. The accumulation of illuviated carbonate in burrows and in thin beds took place after the 

burrows were abandoned and filled with sediment. Through time, seasonal rain moved the 

minerals down through the soil for a period and deposited it during the dry season (e.g., Schaetzl 

and Anderson, 2009). This explains the lack of body fossils associated with the burrows, unlike 

burrows in other geologic deposits that were preserved by sudden filling during a flood (e.g., 

Martin and Bennett, 1977; Smith, 1987; Groenwald et al., 2001). The change from a dry to wet 

subsurface environment interpreted from the color change in the mudstone likely occurred after 

the burrows were preserved and was part of slow shifts in channel placement. The tracemakers of 

M1 and M2 burrows may have selected their burrow sites on the distal floodplain because it was 

such a stable environment. Correctly identifying burrows and their method of preservation in 

other formations will aid in paleoenvironmental interpretations of those rocks as these burrows 
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have for the Salt Wash Member. The M1 and M2 burrows represent two potential search images 

for others to seek in the field to identify more morphotypes at different localities from different 

times. 

 A number of traits in early mammals can be inferred from the burrows. If both burrow 

types could be used to shelter young, this would be an indication for the presence of parental care 

in Jurassic-age mammals, something already attributed to cynodonts and seen in extant mammals 

(e.g., Groenwald et al., 2001; Reynolds et al., 2002). The potential for communities and 

communal living is another trait interpreted for mammal ancestors (e.g., Groenwald et al., 2001) 

and remained a useful form of organization during the Mesozoic. Burrowing allows for an 

excavator to create a hospitable mircoclimate when the larger environment is unfavorable for 

some portion of the year (e.g., Reichman and Smith, 1990). This can take the extreme of 

hibernation or aestivation, but extends to organisms just keeping warm at night and cool in the 

day (e.g., Meyer, 1999; Voigt et al., 2011). The lack of evidence for interpreting either burrow as 

an aestivation shelter helps limit the extremes possible in this environment. 

 

CONCLUSIONS 

 Carbonate-preserved, large-diameter helical structures found in the Salt Wash Member of 

the Morrison Formation are interpreted as vertebrate burrows. The burrows occur in mudstone 

paleosols between fluvial sandstones. The M1 burrows, the most common, are composed of a 

helical shaft and horizontal tunnel both with ovoid cross sections. They are very similar to the 

Cenozoic trace fossil Daemonelix. These burrows are interpreted as being made by a mammal, 

either a single tracemaker or a pair. The M2 burrows are complex networks of shafts and tunnels 

with ovoid cross sections. They are similar to the burrows of small, social extant rodents. Both 
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burrow types are classified as polychresichnia as they represent multiple uses and behaviors. No 

body fossils were discovered during this study. These structures highlight a hidden biodiversity 

not visible in the body fossil record and indicate denning and parental care in Late Jurassic 

mammals. The presence of fossorial mammals enhances previous environmental interpretations 

for the Salt Wash Member and also provides details on the local paleoenvironment. These 

burrows allowed the excavators a suitable mircoclimate during the more inhospitable portions of 

the tropical wet-dry climate during Morrison Formation deposition 
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Figure 1—Location of study areas. Locality 1 in Shootaring Canyon (I) near Ticaboo, Utah and 

Locality 2 (II) near Fruita, Utah. Map image from Google Earth. 
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Figure 2—Stratigraphic sections through the upper part of the Salt Wash Member in the study 

areas. Grain size: cly = clay; slt = silt; fs = fine sand; ms = medium sand; cs = coarse sand; cng = 

conglomerate. 
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Figure 3—Locality 1. A) Outcrop of south-facing slope. B) Closer view of thickest LS-bearing 

mudstone. C) Thickest mudstone and overlying sandstone. D, E) Top of LS-bearing mudstone 

with debris beneath. 
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Figure 4—Locality 2. A) View of whole outcrop. B) Highest LS-bearing mudstone. C) Lowest 

LS-bearing mudstone with interbedded carbonate beds. 
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Figure 5—Associated trace fossils in outcrop. A) Rhizohalo at Locality 1. B) Rhizolith at 

Locality 1. C) Dinosaur tracks at Locality 2. 
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Figure 6—Examples of enigmatic structures that may be burrows. A) The majority of the 

surface has broken off the specimen. B) This specimen is also broken, but preserves more 

surface texture. Rock hammer 33 cm long. 
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Figure 7—Schematic of burrow measurements. Show that total helix length wasn’t measured. 
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Figure 8—Examples of Morphotype 1 burrows. A, B) Individual specimens from Locality 1 

showing helix and tunnel. C) Cluster of specimens from Locality 1 also showing heavy 

accumulation of carbonate. D, E, F) Specimens from Locality 2 showing helix and tunnel. Rock 

hammer for scale 33 cm long. 
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Figure 9—Examples of surficial morphology of Morphotype 1 burrows. A) Large ridges. B) 

Small ridges. C) Large knobs. D) Small knobs.  
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Figure 10—Examples of Morphotype 2 burrows with distinct segments. A) Smaller, fragmented 

specimen of horizontal tunnel. B) Smaller, fragmented specimen of helical tunnel. C) Large, 
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complete specimen with multiple segments. D) Smaller, fragmented vertical forking tunnel. E) 

Smaller, fragmented vertical tunnel. Rock hammer 33 cm long. 
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Figure 11—Examples of Morphotype 2 burrows with fused segments. A) Longer specimen with 

collapsed features. B) Close up showing separated burrow elements. C) Fused specimen with 

highlighting on potential shaft and tunnel. Rock hammer 33 cm long. 
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Figure 12—Examples of surficial morphology of Morphotype 2 burrows. A) Small ridges, some 

highlighted. B) Small ridges and parallel ridges, circled. C) Random knobs, some highlighted. D) 

Parallel knobs. 
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Table 1—Features of biotic and abiotic structures used to identify LS tracemaker. Modified from 

Riese et al. (2011). 
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Table 2—Other fossilized vertebrate burrows with a helical shaft similar to Morphotype 1. 
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CHAPTER THREE: DAEMONELIX MARTINI AND FRACTUSSEMITA HENRII - NEW 

ICHNOTAXA OF VERTEBRATE BURROWS FROM THE SALT WASH MEMBER, 

UPPER JURASSIC MORRISON FORMATION, USA 

Submitted to Journal of Paleontology as: 

RAISANEN, D.C.W. and HASIOTIS, S.T., in review, Daemonelix martini and Fractussemita 

henrii––new ichnotaxa of vertebrate burrows from the Salt Wash Member, Upper Jurassic 

Morrison Formation, USA. 

 

ABSTRACT 

 Large-diameter burrows in pedogenically modified floodplain deposits in the Salt Wash 

Member, Upper Jurassic Morrison Formation in southeast Utah, U.S.A., are interpreted as 

mammal burrows. Daemonelix martini (n. isp.) exhibits a helical shaft down to a horizontal 

tunnel with mean depth of 71.4 cm from the interpreted paleosurface. The mean path length of 

the shaft is 99.4 cm; mean dip of the whorls in the helices is 39°. The mean tunnel length is 42.3 

cm. Shafts and tunnels are ovoid in cross section with the horizontal diameter slightly larger than 

the vertical; shaft averages 9.2 cm wide and 7.3 cm tall, tunnel averages 10.7 cm wide and 10.7 

cm tall. The tracemaker was likely a fossorial mammal that used the burrows as a shelter when 

not foraging above ground; burrows are assigned to domichnia. Fractussemita henrii (n. igen. 

and n. isp.) is a network of interconnected shafts and tunnels; shaft and tunnel segments are 

straight, curved, or helical. The segments are at different angles 0–89º; mean length of a section 

is 30.7 cm. The cross sections of all elements are ovoid; mean width is 6.3 cm and the mean 

height is 4.9 cm. The burrows are interpreted as the work of a social mammal and represent 

multiple tracemaker behaviors—protection, denning, foraging. Burrows are assigned to 
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polychresichnia. Surficial morphologic features on both types preserved on the burrow walls are 

interpreted as scratch marks from tracemaker claws or teeth. The burrows reveal the actions of 

small vertebrates not recorded by body fossils showing potential partitioning of the environment 

and availability of resources for small vertebrates. 

 

INTRODUCTION 

 This paper presents the new ichnotaxa, Daemonelix martini n. isp. and Fractussemita 

henrii n. igen. and n. isp. for vertebrate burrows in the Salt Wash Member of the Upper Jurassic 

Morrison Formation in southeast Utah, USA. These structures have previously been interpreted 

as vertebrate burrows (Hasiotis, 2002, 2004, 2008; Hasiotis et al., 2004), but have not been 

ichnotaxonomically treated. We present possible behaviors and tracemakers represented by D. 

martini and F. henrii, and comparisons are made with other burrows attributed to synapsids. 

 Vertebrate burrows are tentatively identified in the fossil record as far back as the 

Devonian (Woodrow and Fletcher, 1969; Hasiotis, 2002; Friedman and Daeschler, 2006) and 

occur in a variety of environments—floodplain, eolian, lacustrine, and palustrine (e.g. Smith, 

1987; Groenwald et al., 2001; Hasiotis, 2002; Hasiotis et al., 2007; Riese et al., 2011; 

Krapovickas et al., 2012; McCahon and Miller, 2015; Bordy and Krummeck, 2016; Bordy et al., 

2017). Vertebrate burrow diversity may seem limited when compared with invertebrate burrow 

diversity (Häntzschel, 1975), but closer analysis of architectural and surficial burrow 

morphology reveal significant identifying characteristics of ichnospecies. Providing an 

ichnotaxonomic assessment of Daemonelix martini, Fractussemita henrii, and other vertebrate 

trace fossils formalizes unique morphologies with a specific ichnotaxonomic designation. This 
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specificity will enhance communication and understanding among researchers studying 

vertebrate burrows in deep time. 

Daemonelix martini occurs in terrestrial environments in the vadose zone. They are 

compared with other helical burrows interpreted as therapsid and mammal in origin (Martin and 

Bennett, 1977; Bown and Kraus, 1983; Smith, 1987; Krapovickas et al., 2012). Fractussemita 

henrii also occur in the vadose zone and are compared with network burrows interpreted as 

therapsid and mammal in origin (Groenwald et al., 2001; Hasiotis et al., 2004; Gobetz, 2006; 

Gobetz and Martin, 2006; Riese et al., 2011; Colombi et al., 2012; Bordy and Krummeck, 2016, 

2017). 

 

GEOLOGICAL SETTING 

The Morrison Formation extends over 1x106 km2 in the western United States and 

records mostly continental environments (Turner and Peterson, 2004). The Salt Wash Member is 

composed of channel deposits interbedded with floodplain and crevasse-splay deposits and is 

interpreted as a braided river system (Turner and Peterson, 2004; Kjemperud et al., 2008). 

Channel deposits of sandstones and floodplain deposits of mudstone, siltstone, and sandstone 

occur in approximately equal amounts (Kjemperud et al., 2008). 

Daemonelix martini n. isp. and Fractussemita henrii n. igen. and n. isp. are found at two 

localities. Locality 1 is ~9 km north of Ticaboo, Utah, and locality 2 is ~11 km east of Fruita, 

Utah (Fig. 1). The Ticaboo locality is more laterally extensive than the Fruita locality and 

yielded over 80% of the described burrows. Both localities are composed of alternating beds of 

sandstone and mudstone interbedded with carbonate. The sandstones are buff colored and 

medium grained with coarser pebble lag deposits at the bottom contacts. All sandstones have 
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~0.3-m long crossbeds and are interpreted as channel deposits. The mudstones are carbonate 

cemented, clay rich, and exhibit slickensides and pseudoanticlines. Mudstone is red–brown or 

gray–green with differences occurring within a single bed. The red–brown is interpreted as well 

drained, oxidative conditions and the gray–green represents poorly drained, reducing conditions. 

The carbonate beds are beige. The interbedded mudstone-carbonate intervals are interpreted as 

floodplain paleosols. The lower contacts of the mudstones are gradational and the upper contacts 

are sharp scour surfaces. There are three mudstone layers at each site. The burrows are present in 

the lowest and middle paleosol at Locality 1 and the uppermost and middle paleosol at Locality 2 

(Fig. 2). The two localities represent different locations in the same environment, but beds 

cannot be positively correlated due to local variation in scouring and deposition. 

The Morrison Formation has produced a wealth of trace and body fossils from a variety 

of sites (e.g. Ostrom and McIntosh, 1966; Turner and Peterson, 1992; Hasiotis, 2004, 2008; 

Gates, 2005). Trace fossils already identified in the Salt Wash Member include rhizoliths, 

dinosaur tracks, pterosaur tracks, and numerous types of invertebrate nests and burrows (Stokes, 

1957; Lockley, 1992; Robinson and McCabe, 1998; Hasiotis 2004, 2008). Besides burrows of D. 

martini n. isp. and Fractussemita henrii n. igen. and n. isp., we identified bone fragments, 

dinosaur tracks, and rhizoliths at both localities. 

 

METHODS 

 Over 150 structures were examined and 85 were interpreted as burrows. Potential 

burrows were measured with vinyl measuring tape and mechanical calipers (Fig. 3), 

photographed, and described to produce a database of qualitative descriptions and quantitative 

measurements to account for a full range of architectural and surficial morphologies following 
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the methods of Hasiotis and Mitchell (1993), Hasiotis et al. (1993), and Hembree and Hasiotis 

(2006) (Appendix A). Stratigraphic columns were constructed for both localities (Fig. 2). The 

column for Locality 1 was measured from below the lowest burrow-bearing layer to the top of 

the outcrop. The column for Locality 2 was measured from the base to the top of the outcrop.  

 

SYSTEMATIC ICHNOLOGY 

DAEMONELIX ichnogenus, Barbour, 1896 

Diagnosis.—Terrestrial unlined helical shaft with basal expansion. 

Description.—A helical shaft down from a surface that exhibits an expansion at the base 

that may be a small chamber, tunnel, or both (Barbour, 1896; Martin and Bennett, 1977; Smith, 

1987). There is space between the whorls of the helix. The cross section of the structures may be 

ovoid to bean shaped. The structures are unlined. Surface features may record marks from 

excavators. 

Etymology.—Latin daemon=demon, helix=corkscrew. 

 

DAEMONELIX MARTINI new ichnospecies 

Fig. 4 for major architecture, Fig. 5–7 for in situ examples, Fig. 8 for surficial morphology 

Diagnosis.—Unlined vertical to slightly subvertical, ovoid, helical shaft with basal 

horizontal, ovoid tunnel; wide flare at top of helix narrows to smaller constant diameter through 

rest of helix and tunnel. 

Description.—Full relief casts in situ and in float preserved by carbonate, sometimes 

recrystallized, without a lining or internal structures. Composed of a vertical to subvertical 

helical shaft extending down from the paleosurface that joins a horizontal tunnel at an L-shaped 
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junction. The majority of shafts were vertical. Of those that were subvertical, the dip angle was 

35–57° from the horizontal surface. A widening at the top of some shafts is present. Where 

present, this expansion has a diameter of 15.2 cm to 36 cm. Helices penetrated 33.7 cm to 155.6 

cm below the paleosurface and have a path length of 54.6 cm to 143.5 cm. The dip of the helical 

whorls is 26–67° from the horizontal. The cross section of both the shaft and the tunnel is ovoid. 

Shaft cross sections have a vertical diameter of 3–11 cm and a horizontal diameter of 2.3–14 cm. 

Tunnels range from 24.1–86.6 cm long. Tunnel cross sections have a vertical diameter of 4.3–

26.7 cm and horizontal diameter of 4.9–20.2 cm. At Locality 1, mean burrow density is 9 

burrows per 10 m of laterally exposed outcrop surface. Locality 2 has a density of 10 burrows per 

10 m. The majority of specimens are incomplete, lacking some of one or both elements, due to 

expression in outcrop. 

Four surface textures—two types of ridges and two types of knobs—comprise the 

surficial morphology that appear on burrows in both outcrops. The tops and sides of helix and 

tunnel elements in individual burrows tend to preserve ridges, whereas the burrow undersides are 

more dominated by knobs (Fig. 8). The larger ridge type––<1 cm wide, 1–10 cm long, <0.5 cm 

high––runs longitudinally on the surface of the shaft and tunnel elements. These ridges have 

rounded tops. Smaller ridges are composed of short segments < 1 cm long that join at a variety of 

angles to create a jagged surface texture; their height is < 1 cm, but has a steeper slope from the 

surface compared with the larger, smoother ridges. The larger knobs circle the circumference of 

the burrow surface, predominantly on the shafts. Size varies with the size of the shaft. They have 

expanded into each other and these large knobs are separated by thin cracks up to 1.5 cm deep. 

The small knob texture has individual knobs occurring together and ~1 cm in diameter. 

Sometimes these are present on the larger knobs. 
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Etymology.—Named after the late paleontologist Dr. Larry Martin, for his contribution to 

the study of Daemonelix and its tracemakers. 

Types.—Holotype is represented in Fig. 4 and may be viewed in the field. Paratypes are 

represented in Fig. 6 and 7. 

Occurrence.—Upper Jurassic Morrison Formation, Salt Wash Member, Locality 1 

37°45’N and 110°42’W, Locality 2 38°17’N and 111°7’W. More detailed coordinates and meter 

levels are available upon request to protect the site. 

 

Similar ancient vertebrate burrows 

 Multiple types of fossil burrows exhibit a similar helical architecture. Two of these 

burrows are already included in Daemonelix.  

 Martin and Bennett (1978).—Structures found in early Miocene deposits of western 

Nebraska and eastern Wyoming are interpreted as the burrows of three beaver taxa (Martin and 

Bennett, 1977; Martin 1987). These burrows were the first to be called Daemonelix (Barbour, 

1892, 1895). Body fossils of the excavators are found preserved in the terminal chambers of 

some burrows (Peterson, 1905). Surficial features left by the incisors and claws of the tracemaker 

during excavation are used to identify other burrows. Fossils of carnivores (e.g., Zodiolestes) 

have also been found in some daemonelices (Riggs, 1945) and are, therefore, interpreted as 

predators searching the burrow system for prey. 

 Burrows produced by Palaeocastor sp. are composed of a helical shaft down from the 

paleosurface to a horizontal or upward inclined living chamber. They are found in groups 

interpreted as colonies, with one containing 186 burrows. Helixes have six to 12 coils at an angle 

of 25–30°. Helixes are 210–275 cm long. Depth of the helix is consistent across a locality. Helix 
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cross sections vary from 5–21 cm, with small, medium, and large groupings for each of the three 

taxa of burrowing beavers, and are nearly circular with a widening diameter at the living 

chamber. The living chamber is 14–22 cm in diameter. The upward incline of the living 

chambers is 2–37°. There is no relationship between diameter and inclination. The living 

chambers are randomly oriented within a group, but never intersect. The features on the upper 

half of the burrow surface are interpreted mostly as incisor marks from excavation and the 

features on the bottom half are interpreted mostly as claw marks from moving out soil and 

general use. 

 Daemonelix martini is most similar to this original Daemonelix burrow type, but martini 

is smaller on average. The most important difference is the nature of the tunnel. Burrows of 

Daemonelix typically have a tunnel at the bottom of the helix angled above the horizontal and a 

distinct terminal chamber, whereas D. martini have a subhorizontal tunnel and no defined 

chamber. The tunnel itself in D. martini may be viewed as a chamber. 

Smith (1987).—Structures found in Teekloof Formation of the Permian Beaufort Group 

in the Karoo Basin of South Africa are interpreted as the burrows of the dicynodont Diictodon 

(Smith, 1987). These burrows are informally assigned to the ichnogenus Daemonelix. Body 

fossils of the excavators are found preserved in the terminal chamber of some burrows.  

Diictodon burrows are helixes composed of three sections—an upper decline, a middle 

spiral of 2 to 3 whorls, and a terminal chamber. The helix widens as it descends from 6 cm at the 

paleosurface to 16 cm at the end of the whorls to 25 cm in the terminal chamber. The cross 

section at the top of the helix is planoconvex. The cross section becomes more elliptical in the 

spiral with a width/height ratio of 2. The living chamber cross section is flattened biconvex. 

Individual burrows decline at a consistent angle, but between burrows the angle varies 10–32°. 
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Burrows reach an average depth of 0.5 m and few go deeper than 0.75 m. The surface of the 

burrows preserves parallel ridges on the outer wall of the spiral. These form a chevron pattern on 

the sides and roof of the terminal chamber. The bottom of the terminal chamber has similar 

ridges along the long axis and thin casts interpreted as rootlets. 

Daemonelix martini differs from Diictodon burrows assigned to Daemonelix sp.in the 

shape of the helix by staying a uniform diameter from top to bottom and not expanding as the 

helix goes deeper. Daemonelix martini has a distinct separate tunnel coming off the last whorl of 

the helix at an L-junction, not a termination that is a greatly expanded, but smooth extension of 

the last whorl. The cross section of D. martini is more uniform and round. 

 Bown and Kraus (1983).—A structure found in the lower Eocene Willwood Formation 

in Wyoming, U.S.A., is interpreted as the burrow of a small mammal and designated Ichnogyrus 

nididens based on the architecture (Bown and Kraus, 1983). No body fossils are found associated 

with the burrow. 

 Ichnogyrus nididens is composed of a tight, symmetrical helix of 5.5–6 whorls. Each 

whorl is in contact with the one above and below. Unfortunately, both ends have been broken 

off. The helix is 22.2 cm tall and 3.5–4.6 cm in diameter. The whorls increase gradually in height 

and width from one end to the other. The specimen was found in float. The orientation is 

hypothesized to be vertical based on other types of helical burrows. The helix is hypothesized to 

increase in size from top to bottom and enlarge further in a terminal chamber. The fill shows no 

internal structures. The surface is smooth and preserves no excavation marks of the tracemaker. 

 Daemonelix martini is considerably larger than Ichnogyrus nididen in all measures, and 

D. martini lacks very tight whorls. There is space between the whorls of the D. martini helix. 
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Krapovickas et al. (2013).—Structures found in the Middle Triassic Tarjados Formation 

in northwest Argentina are interpreted as the burrows of nonmammalian cynodonts. The burrows 

are composed of a surface opening, inclined tunnel, and terminal chamber. The tunnel is up to 

130 cm long, 8–14 cm tall. The incline of the tunnel varies 22–30° and the tunnel goes to a depth 

of 49–63 cm. Some portions of the tunnel have a bilobate cross section. 

Surficial morphology produced during excavation is scarce and not described in detail. 

Those present are interpreted as scratch marks. They are most commonly preserved on burrow 

base and lateral walls and align with the long axis of the burrow. 

Daemonelix martini differs from these burrows by having a helical, not straight, shaft that 

penetrates deeper than the Argentinian burrows. Daemonelix martini has a distinct separate 

horizontal tunnel with minimal widening, nothing bulbous defined as a horizontal chamber. 

Daemonelix martini has a round and uniform cross section. 

 

Possible behaviors and tracemakers 

 Daemonelix martini likely preserves dens excavated by an individual or a pair of animals 

based on size and complexity. Architecture with limited branching is exhibited in extant and 

fossil synapsid burrows typically produced for use by only a few individuals (e.g., Martin and 

Bennett, 1977; Reynolds and Wakkinen, 1987; Smith, 1987; Zimmerman, 1990; Kinlaw, 1999). 

Daemonelix martini were likely used for shelter from predators and weather. Species that make 

helical burrows spend most their day within, but come aboveground to forage and interact with 

other members of the species (Reichman and Smith, 1990; Kinlaw, 1999). The similarity 

between D. martini and the daemonelices produced by the Miocene beaver Paleocastor suggest 

that the tracemaker used D. martini in a similar way—sheltering in the burrow when not foraging 
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aboveground (Martin and Bennett, 1977). Daemonelix martini is, therefore, assigned to the 

behavioral category domichnia. 

There are eight (McKenna and Bell, 1997) to 13 (Kielan-Jaworowska et al., 2004) 

mammal lineages at the ordinal or family level identified from the Late Jurassic. Many of these 

mammals are known from the Morrison Formation (Prothero, 1981; Foster, 2007), but none were 

discovered close to the field area. Fruitafossor windscheffeli, discovered in Fruita, Colorado, 

U.S.A., is interpreted as having many adaptations for a fossorial lifestyle (Luo and Wible, 2005). 

This is to date, however, the smallest mammal from the Morrison Formation (Foster, 2009) and 

was likely too small to have constructed D. martini. Docofossor brachydactylus, a docodontan 

(mammalilaform) from Late Jurassic China with fossorial adaptations, indicates that these 

features were dispersed across lineages by the time the Morrison Formation was deposited (Luo 

et al., 2015). Daemonelix martini was probably constructed by an as yet undiscovered 

tracemaker or a known species that had no fossorial adaptations of its anatomy preserved. 

 

FRACTUSSEMITA new ichnogenus 

Type Ichnospecies.—FRACTUSSEMITA HENRII new ichnospecies 

Diagnosis.—Unlined, low density maze of Y-branched tunnels and shafts. 

Etymology.—Latin, fractus = broken, semita = path. 

FRACTUSSEMITA HENRII new ichnospecies 

Figures 9–12 

Diagnosis.—Only known ichnospecies, same for ichnogenotype. 

Description.—Fractussemita henrii is found in full relief casts in situ and in float. The 

burrows are unlined with no internal structures. Specimens are composed of an interconnected 
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network of shafts and tunnels oriented at various angles. Individual elements are straight, curved, 

or helical. Mean length of a section is 29.97 cm; range ~1.00–93.27 cm. Cross sections of all 

elements are ovoid. Mean vertical diameter is 4.87 cm; range 2.84–14.04 cm. Mean horizontal 

diameter is 6.33 cm; range 4.47–8.66 cm. Segments vary from 0º to 89º from the horizontal and 

mean angle of inclination is 31º. Interconnected segments are joined randomly in a maze pattern. 

These burrows are found at Locality 1 in the middle and lowest paleosols and in the highest 

paleosol at Locality 2. Preservation is varied within the group with some specimens having 

segments fused together to the extent that the individual segments are not clearly discernible. 

The surficial morphology exhibits two ridge textures and two knob textures. The first 

ridge texture is formed by short, thin ridges < 1 cm long and < 1 cm high that join together at 

odd angles to create a jagged, serrated appearance. This texture is most common on the ceiling of 

burrows. The second, larger ridge texture is a set of straight, parallel ridges 1.4 cm long within 

the jagged texture. Concentrated on the sides and bottom are small knobby texture. These knobs 

are up to 2 cm long and < 1 cm high. Arrangement of these knobs is random. A second knob 

texture seen on a single specimen is a series of vertically oriented knobs of roughly equal shape. 

They are < 1-cm tall, ~2-cm long, and ~1-cm wide. 

Etymology.—Named for the Henry Mountains area in which the fossils were discovered. 

Type.— Holotype is represented by E in Fig. 9 and may be viewed in the field. Paratypes 

are represented A—D in Fig. 9 and Fig. 10 and 11. 

Occurrence.— Upper Jurassic Morrison Formation, Salt Wash Member, Site 1 37°46’“N 

and 110°42’”W, Site 2 38°17’”N and 111°7’W. More detailed coordinates and meter levels are 

available upon request to protect the site. 
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Similar ancient vertebrate burrows 

Gobetz and Martin (2006).—Structures found in the early Miocene upper Harrison 

Formation of Nebraska are interpreted as the burrows of digging rodents, potentially Gregorymys 

sp., a gopherlike rodent found in the area (Gobetz and Martin, 2006). The burrows are assigned 

to the ichnotaxon Alezichnos trogodont. They are composed of sinuous tubes with varied 

direction and orientation. The elements can form a complex tunnel system with multiple 

branches. Some tunnels are weakly helical. Burrow cross sections are 5.6–6.7 cm in diameter and 

varies from being wider horizontally to wider vertically. 

 The surface of A. trogodont preserves incisor and claw traces produced during 

excavation. The 5.4-mm-wide incisor marks are dominant on the roof and sides of the burrows. 

The claw marks––3.9 mm wide and spaced up to 6 mm between grooves––are dominant on the 

floor, some low sides, and turns of the burrow tunnels; as well as small chambers. Both incisor 

and claw marks tend to parallel the long axis of the burrow. 

 Fractussemita henrii is like Alezichnos trogodont in being a network of tunnels at varied 

orientation, but with some important differences. The tunnel segments in F. henrii are less 

sinuous than in Alezichnos trogodont.  Only one segment in F. henrii is described as helical, but 

many segments of A. trogodont are described as weakly helical. The holotype of A. trogodont 

has a bilobate chamber while no chambers are identified as part of F. henrii. 

Gobetz (2006).—Alezichnos chelecharatos is found in the upper Miocene Pawnee Creek 

Formation of northeast Colorado are interpreted as the burrows of the mylagaulid rodent 

Pterogaulus [= Mylagaulus] laevis (Gobetz, 2006). They consist of a sinuous main tunnel with 

occasional branching of secondary tunnels. The primary tunnel is up to 7 m long with an ovate 

cross section 11–18 cm in diameter. 
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 The surface of A. chelecharatos preserves ridges 3.7 mm wide and up to 9.3 mm high 

interpreted as claw marks produced during excavation. They occur as sets of two to three parallel 

ridges. 

 Fractussemita henrii has a similar architecture, but is smaller than these burrows in every 

way. The tunnel system formed by these Miocene burrows is an order of magnitude larger in 

total length than anything recorded for F. henrii. The cross sections of F. henrii tunnels are about 

half. The textures interpreted as excavation marks on F. henrii are smaller than their equivalent 

on the Miocene burrows. 

Hasiotis et al. (2004).—Structures found in the Owl Rock Member of the Upper Triassic 

Chinle Formation in southeast Utah are interpreted as vertebrate burrows (Hasiotis et al., 2004). 

A network of horizontal tunnels, vertical and helical shafts, and chambers characterize these 

burrows. Burrow diameter ranges 4–15 cm with a circular to subcircular cross section. Shorter 

segments 10–35 cm long with smaller cross sections connect the longer and wider segments. 

Chambers are two to three times wider than the tunnels or shafts. A dicynodont is the 

hypothesized tracemaker. 

The surface of these structures is largely obscured by precipitated carbonate. Visible 

features include thin longitudinal ridges interpreted as claw marks and a covering of fine 

rhizoliths. 

Fractussemita henrii is a simpler, less-varied burrow system than these Triassic burrows. 

The tunnels more uniform in diameter within each network of F. henrii. There were no chambers 

identified among the connected tunnels of F. henrii. 



 74 

Colombi et al. (2012).—Three types of structures from the Upper Triassic Ischigualasto 

and Los Colorados formations of northwest Argentina are interpreted as the burrows of various 

therapsids. 

Morphotype 1 burrows are composed of T-branched, horizontal and subhorizontal 

tunnels, chambers, and short vertical shafts. The burrow cross section is elliptical with a mean 

diameter of 10 cm. Some tunnel floors have a longitudinal medial groove. The chambers have a 

mean diameter of 25 cm. The shafts are < 20 cm long and come down at tunnel beginnings and 

intersections. Individual burrows cover up to 2 m2. Some poorly preserved 2–3 cm wide ridges 

on the burrow surface are interpreted as scratch marks. 

Morphotype 2 burrows are composed of simple networks with one or two tunnels and 

several vertical shafts. Tunnels are straight to slightly curved. The cross section is elliptical with 

a mean width of 35 cm and mean height of 20 cm. Tunnels are enlarged at intersections with 

shafts. The shafts are up to 1 m long. The burrows cover 4–8 m2 and have a high density with 

some newer burrows cutting through old. 

Morphotype 3 burrows are composed of a complex network of straight tunnels that join 

obliquely at ~40° and a limited number of shafts. Cross-sectional shape and diameter is highly 

variable within and between burrows. Mean diameter is 7 cm. Burrow tunnels are >2.5 m long. 

Shafts are >50 cm long and up to 10 cm wide. These burrows are interpreted as the result of 

animals burrowing along an already present system of plant roots. 

Fractussemita henrii shares traits with all three morphotypes, but is distinct from each 

one. Morphotype 1 is different from F. henrii in having several chambers as part of the network 

and medial groove occurring in some of the tunnels. Morphotype 2 has much larger shafts and 

tunnels in both length and diameter than anything recorded for F. henrii. Morphotype 2 also has 
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a higher density. Fractussemita henrii shows no crosscutting within or between burrows. 

Morphotype 3 has some similar diameters to F. henrii, but overall exhibits more variability in 

size and cross section shape. The tunnels are longer than segments than in F. henrii. 

Riese et al. (2011).—Structures found in the Lower Jurassic Navajo Sandstone in 

southeast Utah are interpreted as burrows of social mammals or therapsids (Riese et al., 2011). 

The burrows are composed of a network of chambers and sinuous ramps and tunnels joined at Y 

and T branches. The burrow cross section is bean shaped with a mean width of 9.3 cm and a 

mean height of 4.2 cm. The ramps dip 6–60° from the horizontal. 

The surface of the burrows is mostly smooth with few exhibiting scalloped walls. The 

scallops are 5–7 cm wide and rise 0.5–1.5 cm above the burrow surface. The scallops are 

interpreted as the marks from a tracemaker’s manus. 

Fractussemita henrii can be differentiated from these Jurassic burrows by an ovoid cross 

section in all its segments rather than bean shaped. The angle of the F. henrii tunnel segments 

have greater variability than what is recorded in the other Jurassic burrows. 

Groenwald et al. (2001).—Structures found in the Lower Triassic Driekoppen 

Formation of northeast Free State, South Africa are interpreted as burrows produced by the 

therapsid Trirachodon. The burrows are a network of branching tunnels, chambers, and funnel-

shaped entrance shafts. The tunnels and chambers dip 1–23°. The cross section of the burrow is 

bean shaped or W shaped with a bilobate floor and arched roof. Although the shape flattens out 

as the tunnels move away from an entrance towards chambers that are also flattened. Tunnel 

diameter is 5–12 cm. 

The surface of the burrows preserves diagonal and transverse markings on the base and 

sides that are interpreted as scratch marks from the tracemaker. The scratches become more 
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distinct moving into the burrow away from the entrance. The scratches converge towards the 

center of the burrow. 

Fractussemita henrii is distinguished from tunnels of a similar size by having an ovoid 

cross section, distinct from a bean- or W-shaped cross section. The Trirachodon burrows exhibit 

significantly less variation in the dip of tunnels than F. henrii. 

 

Possible behaviors and tracemakers 

 The networks preserved in Fractussemita henrii are interpreted as burrow systems for 

social mammals. Therapsids from the Permian to the Jurassic and mammals from the Triassic to 

the recent construct such complex networks (e.g. Mankin and Getz, 1994; Groenewald et al., 

2001; Gobetz and Martin, 2006; Riese et al., 2011; Joeckel and Tucker, 2013). Fractussemita 

henrii burrows are best compared to the extant mammal burrows from such small rodents as 

ground squirrels or kangaroo rats (e.g., Ognev, 1947; Anderson and Allred, 1964; Reichman and 

Smith 1990; Joeckel and Tucker, 2013). The ovoid cross section with a horizontal diameter 

slightly wider than the vertical diameter matches best with mammal burrows (Martin and 

Bennett, 1977; Bown and Kraus, 1983; Laundré, 1989). 

 The surficial morphology of F. henrii is more enigmatic than the architectural 

morphology. The short ridges are most likely to have been produced by the tracemaker. The 

parallel ridges on the roof of the burrow also appear to have been produced by tracemaker. Both 

of these morphologies are seen more prevalently in better-preserved trace fossils and modern 

burrows (e.g. Martin and Bennett, 1977; Burns et al., 1989; Gobetz and Martin, 2006). The 

random knobby texture is a pseudosurficial morphology that formed during preservation and is 

not useful for determining the tracemaker or mode of excavation. The repeating, parallel knob 
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texture is similar to the scalloped walls preserved in other fossil burrows attributed to both 

Mesozoic therapsids and Cenozoic mammals (Gobetz and Martin, 2006; Riese et al., 2011) and 

is interpreted as the scratch marks of a paw excavating the burrow. Very similar features are seen 

in modern mole burrows (Gobetz, 2005) indicating a potential digging method for F. henrii. 

Fractussemita henrii are likely the work of multiple individuals, all part of a social group. 

Such burrow systems require a great deal of work to construct (e.g., Vleck, 1981, Reichman and 

Smith, 1990). Upkeep is constant as the systems are modified on a continuous or seasonal basis 

(e.g., Lovegrove and Jarvis, 1986; Sumbera et al., 2003; Knight, 2009). Network burrows can be 

used for multiple purposes: protection from both predators and weather (e.g. Kenagy, 1973, Kay 

and Whitford, 1978; Reichman and Smith, 1990); food storage (e.g. Skinner, 2005; Smith and 

Reichman, 1984); foraging tunnels closer to the surface to feed on plant roots and soil biota (e.g. 

Duncan and Wrangham, 1971; Lovegrove and Jarvis, 1986); denning (e.g. Hall and Meyers, 

1978; Hickman, 1983); and waste (Reichman and Smith, 1990). Some of these uses are 

interpreted for fossil burrows as well (e.g. Meyer, 1999; Hasiotis et al., 2007; Riese et al., 2011, 

Krapovickas et al., 2012). Network burrows produced by extant mammals vary greatly in size 

based on the size of the excavators and the degree to which the live underground. The largest 

burrow systems are made by species that spend most of their lives underground, such as moles 

(Talpidae) and mole rats (Bathyergidae) (e.g. Hickman, 1983; Davies and Jarvis, 1986; 

Reichman and Smith, 1990). Mole rat burrows have segments tens of meters long and whole 

systems that can reach over 1 km (Šumbera et al., 2011; Lövy, 2015). Fractussemita henrii 

burrows do not reach this size. The excavators are not interpreted as spending their lives 

underground and would perhaps come aboveground for some foraging and interaction with 

conspecifics. Fractussemita henrii is categorized as polychresichnia (Hasiotis, 2003) because the 
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architecture represents multiple behaviors and uses from the tracemaker, such as protection from 

predators and weather, food storage, foraging tunnels, reproduction, and waste disposal. 

The majority of mammals found in the Morrison Formation are small with an average 

mass of 48.5 g (Kielan-Jaworowska et al., 2004; Foster, 2009). This leaves many potential 

tracemakers based on size. Fruitafossor windscheffeli is the smallest mammal found in the 

Morrison Formation and a likely tracemaker with many adaptations for scratch digging (Luo and 

Wible, 2005; Foster, 2009). Scratch digging is supported as a means for excavating F. henrii 

based upon the repeating, parallel knob texture. 

 

PALEOECOLOGICAL AND EVOLUTIONARY IMPLICATIONS 

These burrows are useful in creating a more complete picture of the Salt Wash ecosystem 

given the paucity of mammalian and other small vertebrate body fossils from southeast Utah. 

Following the example of identified tracemakers, the excavators of both Daemonelix martini and 

Fractussemita henrii are assumed to be herbivorous or omnivorous. Complex burrows have not 

been attributed to carnivores. There is though the strong likelihood that predators, also yet 

unknown, were adapted to entering the burrows and preying on the excavators. There is the 

ancient predator-prey example of Zodiolestes and Paleocastor or the modern pair of prairie dogs 

(Cynomys ludovicianus) and ferrets (Mustela nigripes) (Riggs, 1945; King, 1955). The Morrison 

Formation predators may have included other synapsids or reptiles. If tracemakers were 

omnivorous, there would be a community of invertebrates and smaller vertebrates to consume. 

Both groups have limited representation from body fossils, but invertebrates leave a robust trace 

fossil record in the Morrison (e.g., Hasiotis, 2004, 2008; Foster, 2007). There may have also 

been neutral burrow occupants who shared the burrow with the excavators or entered after the 
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excavators had left. The commensalism may have been a normal behavior, such as burrowing 

owls (Athene cunicularia) making use of different rodent dens across the Americas (Haug et al., 

1993), or a more unique occasion, such as the amphibian (Broomistega) found in a burrow with 

an estivating therapsid (Thrinaxodon) (Fernandez et al., 2013). 

The extant comparisons for the Daemonelix martini and Fractussemita henrii 

tracemakers are herbivorous or omnivorous. Such diets would require a diverse plant community 

near the burrows able to sustain the different feeding habits in a time before flowering plants. 

Ground cover at the time of the Morrison Formation is interpreted as ferns, ginkgophytes, 

cycads, tree ferns, horsetails, and tree litter (e.g., Ash and Tidwell, 1998; Chin and Kirkland, 

1998; Turner and Peterson, 2004), but only limited wood and rhizoliths were found preserved in 

the study area. All the softer plants could provide nourishment to trackmakers with above and 

below ground growth. In turn, if the tracemakers were caching seeds in their burrows, the 

unconsumed seeds may have helped continue the plant community. Roots are known to 

preferentially follow already opened paths through the soil and can have improved nutrient 

uptake in burrows (e.g., Pankhurst et al., 2002; Kautz et al., 2014; Kautz, 2015). The macropores 

created by the burrows, in association with smaller invertebrate work, would help aerate the soil, 

move up nutrients, and increase water infiltration all allowing plants to expand their root 

systems. A healthy, robust plant community would help keep the environment stable. The 

lithology of the study area shows that the local fluvial system could move and wipe out large 

area of formerly well-drained terrain, but by helping spread plants and keeping them healthy the 

tracemakers ensured there was a reserve of dry environment growth when the landscape 

changed. 
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The helical burrow architecture of Daemonelix martini and the network of Fractussemita 

henrii appear as products of cynodont and mammal excavation multiple times over millions of 

years. The common shapes can thus have implications for when mammalian-associated 

behaviors evolved and persisted in the synapsid lineage. Some burrowing behaviors appear to be 

genetic (Weber et al., 2013) and could be passed through a lineage over time if the burrowing 

behavior confers reproductive success. Architectural similarities may also be the result of a 

common solution to recurring environmental problems. Convergent burrow morphologies 

dictated by environmental conditions may explain the recurrence of helical architecture. Meyer 

(1999) calculates that this design is well suited for maintaining a constant temperate environment 

when the weather outside the burrow becomes too hot or cold. Networks offer a similar 

environmental constancy and multiple entrances and exits increases chances to escape predators. 

Networks typically have a more stifling atmosphere with higher levels of carbon dioxide and 

lower levels of oxygen that excavators must be physiologically able to tolerate (e.g., Lovegrove, 

1989; Reichman and Smith, 1990). The different burrow types found in the Morrison Formation 

indicate tracemakers not only adapted for fossoriality in skeletons that may be found in further 

study, but also in unpreserved soft tissues. This shows a convergence in form across synapsid 

groups through time. 

 

CONCLUSIONS 

 The new inchnospecies Daemonelix martini from the Salt Wash Member in the Morrison 

Formation represents vertebrate burrows in a distal floodplain environment. They are composed 

of a helical shaft and horizontal tunnel, both with an ovoid cross section. The burrows are 

interpreted as the permanent dwelling of an unknown primitive mammal that used them to 



 81 

shelter from the elements and predators, and raise their young. Daemonelix martini is assigned to 

the behavioral category domichnia. The new ichnogenus and ichnospecies Fractussemita henrii 

represents the burrows of a potentially social, primitive mammal. The burrows are composed of 

networks of tunnels and shafts without a pattern. Fractussemita henrii is assigned to 

polychresichnia as the burrows record multiple behaviors. The cross sections of both new 

ichnospecies are ovoid. As no body fossils of the tracemakers are preserved, both new 

ichnospecies represent hidden biodiversity in the Salt Wash Member landscape. This extends 

beyond the tracemakers to their potential predators and prey, and the plant community of the 

floodplain environment. The burrows also fill in some mammalian fossorial behavior for the late 

Jurassic illustrating how synapsid excavators continue to converge on helical and network 

architecture from the Permian to the present. 
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Figure 1—Location of study areas. Locality 1, Shootaring Canyon near Ticaboo, Utah; Locality 

2, near Fruita, Utah. Satellite image courtesy of Google Earth. 
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Figure 2—Stratigraphic sections through upper part of Salt Wash Member in study areas. 
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Figure 3—Schematic of burrow measurements. 
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Figure 4—Example of Daemonelix martini with major architectural elements labeled. Rock 

hammer 28 cm long. 
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Figure 5—Daemonelix martini in outcrop. A) Burrows seen at a distance in lower paleosol at 

Locality 1. B) Burrows in upper paleosol at Locality 2. 
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Figure 6—Examples of Daemonelix martini at Locality 1 near Ticaboo, Utah. Hammer 32 cm 

long. 
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Figure 7—Examples of Daemonelix martini at Locality 2 near Fruita, Utah. Hammer 32 cm 

long. 
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Figure 8—Surficial morphologies of Daemonelix martini. A) Large ridges. B) Small ridges. C) 

Large knobs. D) Small knobs. 
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Figure 9—Examples of Fractussemita henrii with distinct segments at Locality 1 near Ticaboo, 

Utah. Hammer 32 cm long. 
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Figure 10—Examples of Fractussemita henrii with merged segments at Locality 1 near 

Ticaboo, Utah. Hammer 32 cm long. 
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Figure 11—Examples of Fractussemita henrii at Locality 2 near Fruita, Utah. A) All specimens 

in outcrop. B, C, D) Closer view of specimens. Hammer 32 cm long. Notebook 19 cm tall. 
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Figure 12—Surficial morphologies of Fractussemita henrii. A) Small ridges. B) Parallel ridges 

with small ridges. C) Small knobs. D) Parallel knobs. 
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CHAPTER FOUR. CONCLUSIONS 

This thesis refined identification of structures previously identified as vertebrate burrows 

using criteria based on architectural and surficial morphology. The burrows are from two 

localities in southeast Utah, USA, in the Salt Wash Member of the Upper Jurassic Morrison 

Formation. The burrows were preserved by illuviated carbonate in multiple mudstone layers 

interpreted as paleosols. Thicker sandstone layers interpreted as channel deposits separate 

individual paleosols. Two types of major burrow types were identified and each named a new 

ichnospeices––Daemonelix matini and Fractussemita henrii. 

Daemonelix matini is constructed of two architectural elements: a vertical to subvertical 

helical shaft that connects at an L-shaped junction to a horizontal tunnel. The cross section of the 

shaft and the tunnel elements is ovoid with the width being slightly larger than the height. The 

top of the shaft flares wider than the rest of the helix. The majority of shafts are vertical with 

some being subvertical. A minority of specimens preserve all parts of the burrow due to both the 

scour of overlying sandstones and the erosion of preserved trace fossils. When the tops of 

structures can be identified, the burrows appear to originate from the same paleosurface. The 

surface morphology of D. martini records features interpreted as scratch and/or tooth marks from 

excavation as well as accumulations of precipitated carbonate. 

 Daemonelix martini likely preserves dens excavated by an individual or pair based on 

size and complexity. Extant and ancient burrows with limited branching are typically produced 

for use by only a few individuals (e.g., Martin and Bennett, 1977; Smith, 1987; Reynolds and 

Wakkinen, 1987; Zimmerman, 1990; Kinlaw, 1999). The similarity between D. martini and the 

daemonelices produced by the Miocene beaver Paleocastor suggest that D. martini was utilized 

by its tracemaker in a similar way—foraging above ground and using the burrow to rest and 
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shelter from the elements and predators (Martin and Bennett, 1977). Daemonelix martini is 

assigned to the behavioral category domichnia. 

There were no body fossils found associated with Daemonelix martini. Although 

numerous mammal species are found in the Morrison Formation, none have been uncovered near 

the field area (e.g., Prothero, 1981; Kielan-Jaworowska et al., 2004; Foster, 2007). Jurassic 

mammals were a diverse assemblage with members of different groups exhibiting adaptations for 

a fossorial lifestyle (e.g., Luo and Wible, 2005; Luo, 2007; Luo et al., 2015). Daemonelix martini 

was probably constructed by a yet undiscovered tracemaker. 

Fractussemita henrii is constructed of an interconnected network of shafts and tunnels at 

various angles. Individual burrow elements may be straight, curved, or helical. The cross 

sections of all elements are ovoid with the width being slightly larger than the height. The 

interconnected segments are joined randomly in a maze pattern. Some specimens are preserved 

by such massive accumulations of carbonate that individual segments are difficult to impossible 

to identify with certainty. The surficial morphology of F. henrii preserves the abiotic 

accumulation of carbonate as well as textures that are interpreted as the marks of teeth and claws 

used for excavation. 

  Fractussemita henrii is interpreted as a burrow system for social mammals. 

Synapsids from the Permian to the recent construct complex networks (e.g., Mankin and Getz, 

1994; Groenewald et al., 2001; Gobetz and Martin, 2006; Riese et al., 2011). Maze burrows can 

be used for multiple purposes: protection (e.g., Kenagy, 1973, Kay and Whitford, 1978; 

Reichman and Smith, 1990); food storage (e.g. Skinner, 2005; Smith and Reichman, 1984); 

foraging (e.g., Duncan and Wrangham, 1971; Lovegrove and Jarvis, 1986); denning (e.g. Hall 

and Meyers, 1978; Hickman, 1983); and waste (Reichman and Smith, 1990). Some of these uses 
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are interpreted for fossil burrows (e.g., Meyer, 1999; Hasiotis et al., 2007; Riese et al., 2011, 

Krapovickas et al., 2012). The excavators are not interpreted as spending their lives totally 

underground and would perhaps come above ground for foraging. Fractussemita henrii is 

categorized as polychresichnia (Hasiotis, 2003). 

The majority of mammals found in the Morrison Formation are small (e.g., Kielan-

Jaworowska et al., 2004; Foster, 2009), so there are multiple potential tracemakers based on size. 

Fruitafossor windscheffeli is the smallest mammal found in the Morrison Formation and a likely 

tracemaker with many adaptations for scratch digging (Luo and Wible, 2005; Foster, 2009). 

Without any body fossils in the area, Daemonelix matini and Fractussemita henrii extend 

knowledge of the Morrison Formation biota to reveal hidden biodiversity. They expand the 

image of the floodplain beyond the dinosaurs to the small vertebrate and invertebrates. Both 

ichnospecies contribute to interpretations of the Salt Wash Member recording a wet-dry 

savannah climate (e.g. Engelmann et al., 2004; Hasiotis, 2004, 2008; Parrish et al., 2004; Platt, 

2012) and indicate local paleohydrologic conditions. 
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   -­‐	
   -­‐	
   -­‐	
  

28e	
   53.04	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

32e	
   95.02	
   112.78	
   37	
   29	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

6f	
   36.88	
   -­‐	
   none	
   45	
   30.48	
   -­‐	
   10.50	
   -­‐	
   -­‐	
   -­‐	
  

7f	
   77.42	
   -­‐	
   none	
   39	
   -­‐	
   -­‐	
   -­‐	
   38.71	
   8.58	
   -­‐	
  

14f	
   -­‐	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   26.21	
   4.27	
   6.20	
  

18f	
   84.12	
   110.95	
   57	
   45	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

19f	
   82.91	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

20f	
   63.70	
   -­‐	
   none	
   -­‐	
   -­‐	
   4.86	
   6.32	
   -­‐	
   -­‐	
   -­‐	
  

21f	
   -­‐	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   39.01	
   -­‐	
   17.37	
  

4i	
   48.16	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

5i	
   71.63	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

	
   	
   	
   	
   	
   	
  
	
   	
  

	
   	
   	
  Site	
  2	
  Locality	
  
	
   	
   	
  

	
   	
  
	
   	
   	
  2a	
   119.38	
   -­‐	
   none	
   -­‐	
   15.20	
   3.20	
   8.70	
   -­‐	
   -­‐	
   -­‐	
  

2b	
   106.68	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

2c	
   102.87	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

2d	
   155.58	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

2e	
   134.62	
   -­‐	
   none	
   52	
   -­‐	
   -­‐	
   12.47	
   -­‐	
   -­‐	
   -­‐	
  

2f	
   120.02	
   143.51	
   50	
   49	
   -­‐	
   9.40	
   10.84	
   -­‐	
   -­‐	
   -­‐	
  

2g	
   74.93	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   13.50	
   40.01	
   20.32	
   -­‐	
  

2h	
   83.82	
   -­‐	
   none	
   -­‐	
   -­‐	
   8.54	
   9.27	
   33.02	
   14.04	
   -­‐	
  

2i	
   116.84	
   -­‐	
   none	
   -­‐	
   -­‐	
   8.22	
   8.65	
   -­‐	
   -­‐	
   -­‐	
  

2j	
   63.50	
   -­‐	
   none	
   -­‐	
   -­‐	
   -­‐	
   9.26	
   -­‐	
   -­‐	
   -­‐	
  

2k	
   116.84	
   -­‐	
   none	
   33	
   -­‐	
   -­‐	
   10.04	
   48.26	
   26.67	
   -­‐	
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2l	
   60.33	
   -­‐	
   none	
   -­‐	
   -­‐	
   10.28	
   12.11	
   -­‐	
   -­‐	
   -­‐	
  

2n	
   43.18	
   54.61	
   none	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Overall	
  
Mean	
   72.13	
   99.42	
   48.10	
   39.17	
   23.97	
   7.34	
   9.21	
   42.29	
   10.71	
   10.73	
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Fractussemita henrii Architectural Morphologies 

Site	
  1	
  Locality	
  
	
   	
   	
   	
   	
  Distinct	
  Segments	
  
	
   	
   	
   	
   	
  

Structure	
  ID	
   Segment	
   Length	
  	
  	
  
(cm)	
  

Width	
  	
  	
  
(cm)	
  

Height	
  	
  	
  
(cm)	
  

Incline	
  of	
  
Segment	
  
(degrees	
  
from	
  

horizontal)	
  

Path	
  (straight,	
  
curved,	
  
helical)	
  

16d	
   i	
   13.03	
   -­‐	
   2.84	
   85	
   helical	
  

	
   ii	
   25.06	
   8.06	
   3.90	
   0	
   curved	
  

14f	
   i	
   <1.00	
   4.47	
   3.98	
   -­‐	
   straight	
  

	
   ii	
   <1.00	
   8.66	
   5.31	
   -­‐	
   straight	
  

	
   iii	
   47.13	
   6.15	
   5.13	
   0	
   curved	
  

1g	
   i	
   93.27	
   6.26	
   4.10	
   23	
   helical	
  

	
   ii	
   17.65	
   5.52	
   5.45	
   25	
   curved	
  

	
   iii	
   <1.00	
   5.74	
   6.52	
   -­‐	
   straight	
  

3i	
   i	
   73.91	
   -­‐	
   6.65	
   0	
   straight	
  

	
   ii	
   14.39	
   -­‐	
   14.04*	
   89	
   straight	
  

	
   iii	
   21.31	
   5.22	
   -­‐	
   43	
   straight	
  

	
   iv	
   30.52	
   4.92	
   4.80	
   38	
   straight	
  

	
   v	
   13.47	
   7.38	
   -­‐	
   31	
   straight	
  

	
   vi	
   5.01	
   6.24	
   -­‐	
   14	
   straight	
  

	
   vii	
   4.92	
   7.34	
   -­‐	
   21	
   straight	
  

	
   	
   	
   	
   	
   	
   	
  
Site	
  2	
  Locality	
  

	
  
	
   	
   	
   	
  

2I	
   i	
   49.53	
   6.73	
   -­‐	
   80	
   curved	
  

2II	
   i	
   -­‐	
   7.47	
   -­‐	
   -­‐	
   straight	
  

2III	
   i	
   20.32	
   7.08	
   -­‐	
   89	
   curved	
  

	
  
	
  

	
   	
   	
   	
   	
  
Mean	
   	
   30.68	
   6.48	
   4.87	
   38	
   	
  

	
   	
   	
   	
   	
   	
   	
  
Merged	
  Segments	
   	
   	
   	
   	
   	
  

Structure	
  ID	
  

Length	
  
Along	
  

Outcrop	
  
(cm)	
  

Depth	
  	
  	
  	
  
(cm)	
   	
   	
   	
   	
  

1i	
   280.50	
   -­‐	
   	
   	
   	
   	
  
2i	
   134.72	
   46.33	
  

	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
  *	
  Potentially	
  two	
  merged	
  shafts.	
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