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ABSTRACT 

Soil particles are often arranged into repeating patterns of aggregates with similar shapes, 

sizes, and degrees of expression. These repeating aggregates, known as ‘peds,’ are currently 

described using qualitative and subjective categories for type, size, and grade as follows. Peds 

are assigned a type class (e.g., platy, granular, prismatic, etc.) based on overall ped shape. Peds 

are classified into size categories (e.g., fine, medium, and coarse) based on quantitative ped 

width and thickness criteria. Peds are assigned a grade class (e.g., weak, moderate, or strong) 

which describes the degree of expression.  

Soil structure develops as a result of complex interactions with climate, organisms, relief, 

parent material, and time. However, our understanding of these interactions is limited by the 

categorical and subjective nature of ped descriptions and the lack of datasets that include a wide 

range of variability in the factors responsible for the development of soil structure. Therefore, the 

first objective of this dissertation was to develop a method to quantify soil structure using 

morphometric indices for ped shape by analyzing previously published digital photographs of 

soil profiles and structural specimens. The second objective of this dissertation was to assemble 

an easily-accessible, two-dimensional data matrix containing laboratory and field-based 

measurements of soil properties across the USA and integrate topographic, climatological, and 

ecological data to, ultimately, explore the response of soil structure to exogenous and 

endogenous factors in both surface A horizons and subsurface B horizons. To those ends, we 

assembled two databases: the Ped Shape Digital Morphometric (PSDM) database and the 

University of Kansas Research Dataset of Soils (KURDS).  

The PSDM database was used to develop new morphometric indices of ped silhouettes 

quantitatively describing ped shape. These morphometric indices were applied to a subset of 
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KURDS and used in conjunction with multinomial logistic regression and decision tree analyses 

of qualitative ped data to explore endogenous and exogenous controls on the development of soil 

structure. We found that the exogenous factor, climate, exhibited the greatest control over ped 

shape and size whereas clay content (endogenous) was the most important factor predicting ped 

grade. The finding that climate exhibits control over the evolution of soil structure represents an 

unexplored avenue for understanding how global climate change will affect morphological 

properties that control soil hydrology. Overall, this dissertation demonstrates the possibilities of 

describing peds in terms of quantitative variables and analyzing continental-scale databases of 

soil structure.  
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CHAPTER 1. INTRODUCTION 

Soils develop as a result of complex interactions between exogenous (external) factors 

such as, climate, relief, and time, and endogenous (internal) factors such as parent material and 

organisms, giving rise to soil morphological properties (Jenny, 1941). Examples of such 

morphological properties are soil structure, particle-size distribution, rupture resistance, root 

quantity, organic matter content, and color. For this study, we focus on the morphological 

property, soil structure, which can be defined as the arrangement of soil particles into repeating 

patterns of structural units within morphological horizons; these structural units (aka peds) 

typically have similar shapes, sizes, orientations, and degrees of expression (Nikiforoff, 1941; 

Hillel, 1998; Díaz-Zorita et al., 2002; Warrick, 2002).  

Soil structure is important because it has considerable influence over biological, physical, 

and chemical soil processes, such as water retention, infiltration, erosion, root penetration, and 

aquifer recharge (Warrick, 2002). In addition, soil structure is shaped by these processes. For 

example, soil organisms that act to develop or modify soil structure (e.g., earthworms), are 

affected by the distribution of soil air and water, which, in turn, are affected by the presence of 

soil structure (Rabot et al., 2018). Thus, the processes that form soil structure and the processes 

controlled by presence of structure are coupled.  

Despite its importance, our understanding of soil structure and the interactions between 

exogenous and endogenous factors in developing soil structure is limited by traditional 

categorical, subjective descriptions of peds. Such descriptions are more qualitative in nature than 

quantitative and, thus, suffer from investigator bias. That is, investigators must currently assign 

shape classes to peds using idealized diagrams or cognitive conceptualizations of ped shape, 

which many not conform to ‘real-world’ conditions. Researchers are, therefore, at risk of 
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assigning ped shape based on expectations rather than reliable and objective criteria. Because of 

the categorical nature of ped shape, subtle differences or variations remain unnoticed, 

unmeasured, and, ultimately, unaccounted for in pedological studies. Thus, basic questions such 

as, “How do prismatic and columnar peds compare in shape to platy and granular structure?,” 

cannot be answered at present using current descriptions of soil structure. In addition, the 

influence that soil structure has on exogenous and other endogenous variables, or what influence 

these variables have on the development of soil structure per se, is currently unknown, which is 

due, in part, to the limitations associated with these descriptions. Therefore, soil forming 

processes will remain poorly understood until soil structure can be quantitatively characterized 

and analyzed. For these reasons, studies examining the evolution of soil structure over time or 

across broad continental scales are currently limited.   

This dissertation aims to investigate soil structure and its relationship to exogenous and 

endogenous factors using quantitative methods developed as part of this project. Soil structure 

specimens were digitized from photographs and analyzed to obtain morphometric indices of ped 

shape; these indices were then applied to a large dataset of soils assembled in this dissertation. 

This dataset (approximately 95,000 observations and over 1,000 variables) was compiled from a 

database of field-based and laboratory soil properties from samples taken across the USA 

maintained by the USDA-Natural Resources Conservation Services (NRCS). We used a variety 

of statistical approaches to understand, over a wide range of environments and regions, the 

relationships between soil structure and exogenous and endogenous factors.  

Chapter 2 describes how we developed an approach to quantify ped shape using 

morphometric indices—including circularity, roundness, aspect ratio, angle, width to height 

ratio, and solidity—created from non-published and published digital photographs of soil profiles 
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and structural specimens (Aandahl, 1982). We examined ped types from heuristic diagrams, 

three-dimensional (3-D) scans of peds and high resolution photographs. The heuristic diagrams 

were quantified to assess ped shapes derived from common conceptualizations of soil structure. 

The 3--D scans were quantified to assess the effect of ped orientation on shape measurements 

from ped silhouettes. Peds were outlined manually by identifying distinct (i.e., clearly visible) 

examples in photographs and diagrams resulting in silhouettes that were used in image analysis 

software to calculate the morphometric indices in this study. A survey was designed to poll 

expert judgment in order to properly classify the shape of these peds (see Appendix A). The 

results were compiled into the Ped Shape Digital Morphometric (PSDM) dataset. We analyzed 

this dataset using several multivariate statistical approaches, including classification trees and 

random forest analysis. In addition, an unlikeability coefficient was used to examine variation 

among the survey responses for each ped shape and each shape parameter. This coefficient 

calculates the degree of disagreement among survey participants with respect to each ped. The 

morphometric indices used in this study represent continuous variables that allow differences 

between ped shapes to be detected and examined.  

Our goal in Chapter 3 was to understand how endogenous and exogenous factors 

influence the development of soil structure—specifically, the structural properties of ped shape, 

size, and grade over a continental scale. We assembled existing data into a single dataset known 

as the University of Kansas Research Dataset of Soils (KURDS). This dataset is the result of 

merging and cleaning more than 94,000 samples from the National Cooperative Soil Survey 

(NCSS) Soil Characterization database. Developed in the U.S. beginning in 1928, the NCSS 

database contains laboratory data and field-derived information such as depths, structure, rock 

fragments, pores, root distributions and landform properties for each soil sample from throughout 
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the US (all 50 states). Unfortunately, the complexity of the files in their original state precluded 

in-depth analysis of the data in their raw form. To reduce this complexity, we combined, cleaned, 

and filtered both field and laboratory soil data. Structural information from categorical 

descriptions was converted to quantitative ratio scales using values in the PSDM database for 

each of the common ped type classes. Ped size was calculated using the geometric mean 

diameter of the structure size class recorded for each horizon, and grade was placed on an ordinal 

scale ranging from structureless to strongly structured conditions. In addition, the dataset was 

combined with the USFS Ecoregions of the US and the Parameter-Elevation Regressions on 

Independent Slopes Model (PRISM) to add both climatological and ecological information. 

Finally, we put the data into a single two-dimensional data matrix to facilitate analysis.  

We examined the development of soil structure over a wide range of exogenous and 

endogenous factors. We calculated the probability of soil structural variables such as ped type, 

size, and grade classes for all individual endogenous and exogenous variables and used decision 

trees (DTs) to evaluate the relative importance of these variables in the prediction of soil 

structure. The DTs also allowed us to incorporate both categorical and continuous variables into 

the analysis. 

Chapter 4 concludes with a summary of the results of our analysis. Morphometric indices 

of ped shape, size, and grade can now be consistently assigned to structure class, regardless of 

depth or environment. Chapter 4 shows that quantitative descriptions and rigorous statistical 

analyses, even on qualitative descriptions, can open the door for investigations into endogenous 

and exogenous influences on the development of soil structure.   
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CHAPTER 2. A DIGITAL MORPHOMETRIC APPROACH FOR QUANTIFYING PED 

SHAPE 

 

ABSTRACT 

Ped shape is an important property with considerable influence over soil processes, such 

as root penetration, water infiltration, and solute transport. Despite the host of methods employed 

to quantify other soil morphological properties, ped shape quantification remains elusive. 

Existing methods attempting to quantify soil structure utilize laboratory techniques that have 

limitations on sample size and resolution. Our goal was to overcome these limitations by 

developing an approach to quantify ped shape using morphometrics created from published 

digital photographs of soil profiles and structure specimens. In addition, ped shapes from 

heuristic diagrams and three-dimensional (3D) scans of peds were examined. The heuristic 

diagrams were quantified to assess ped shapes derived from common conceptualizations of soil 

structure, while the 3-D scans were quantified to assess the effect of ped orientation on shape 

measurements. Ped shape was quantified by manually outlining distinct examples of soil peds 

from high-resolution photographs and heuristic diagrams, and then calculating several 

morphometrics from the resulting silhouettes using image analysis software. A survey was 

designed to poll expert judgment in order to properly classify the shape of these peds. Using this 

method, we were able to transform typical categorical and subjective descriptions of peds into 

continuous quantitative shape data. The shape metrics, circularity and width to height ratio, 

exemplify the type of continuous variables that allow significant differences between ped shapes 

to be detected. This approach opens the door to analyzing soil structure at regional and 

continental scales through the analysis of existing photographs without the need to resample.  
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INTRODUCTION  

Soil structure is the arrangement of soil particles into repeating patterns of aggregates 

with similar shape, size, orientation, and degree of expression that occur within morphological 

horizons (Nikiforoff, 1941; Arshad et al., 1996; Hillel, 1998; Díaz-Zorita et al., 2002; Kay and 

Angers, 2002). When these aggregates are large enough to be visible to the naked eye, they are 

known as ‘peds’ and their shapes have traditionally been described using qualitative shape 

classes such as platy, granular, blocky, or prismatic (Soil Survey Division Staff, 1993).  

Ped shape (also referred to in the literature as ped type) both responds to and exhibits 

influence over several important soil biological, physical, and chemical processes such as plant 

root extension, water infiltration, and solute transport (Kay and Angers, 2002). The shape of peds 

provides clues in reconstructing paleoenvironments and for understanding soil genesis (Schaetzl 

and Anderson, 2005). Granular (i.e., small spherical) peds, for instance, often indicate current or 

previous bioturbation by earthworms (Jouquet et al., 2011). Ped shape can also provide evidence 

for the age of a soil and the stability of a landform (Harden, 1982); an example of this is the 

growth and coalescence of vesicular pores which result in platy structure in arid V horizons (i.e., 

surface and near surface horizons characterized by the dominance of vesicular porosity; Soil 

Survey Staff, 2015,  which indicates land surface stability and strong soil development (Turk and 

Graham, 2011). Given sufficient pedogenic energy inputs, parent material at subsurface depths 

that are characterized by structureless conditions and lithogenic fabrics develop into 

morphological horizons that contain peds (Lin, 2011) exhibiting blocky and/or prismatic shapes, 

and, under sodic conditions, columnar shapes (Harden, 1982; Schaetzl and Anderson, 2005). Ped 

shapes tend to have more edges (angular) in younger soils than in older soils where peds are 

often more rounded and have larger numbers of faces (Dexter, 1985; Hartge et al., 1999).  
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Ped shape, through its effects on pore geometry, influences the rate of water movement 

into and through soil (Eck et al., 2016).  Granular peds permit downward water movement, 

whereas platy peds act as a barrier to flow by concentrating percolating water in longer and more 

tortuous interpedal macropores (e.g., Arshad et al., 1996; Pagliai et al., 2004; Sasal et al., 2006). 

Ped (and aggregate) shape also affects porosity and tensile strength through its effect on 

aggregate packing arrangements (Dexter and Kroesbergen, 1985; Brown et al., 1996; Seben et 

al., 2013; Munkholm et al., 2016).  

Despite what is known about the importance of soil structure, the usefulness of ped shape 

descriptions is limited by both the categorical and subjective nature of shape classes. This 

limitation arises for the following reasons. First, the absence of objective, consistent, and 

measurable shape criteria increases the uncertainty in assigning true shape class membership. 

Field soil scientists routinely assign peds to shape classes by comparing peds retrieved from 

excavation walls against idealized diagrams or cognitive conceptualizations of ped shape. The 

latter is likely influenced by experience and training and may give rise to considerable 

variability—both among soil scientists and over the course of a single career—in assigning ped 

shape. Second, the lack of definable shape criteria makes it difficult to assign structure classes on 

the basis of ped shape alone. Thus, in practice, ped shapes are often assigned after assessing 

other information, such as position in the profile, ped size, and/or soil color. This lack of 

independence may preclude accurate identification of ped shapes where they are not expected in 

the soil profile. Third and, perhaps, most importantly, the qualitative nature of the classification 

prevents the resulting nominal ped shape data from being compared on a quantitative scale and 

prohibits the detection of subtle differences in ped shapes that fall within a single class. For 
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instance, a question such as ‘how different are prismatic and columnar peds compared to 

granular and platy peds?’ cannot be answered with the current ped shape classification. 

Several imaging methods such as photography, thin-section microphotography, and X-

ray computed tomography have been applied to quantify either ped shape or corresponding pores 

(e.g., Dexter, 1985; Holden, 1992; Holden, 1993; Jangorzo et al., 2013; 2014). One drawback to 

these methods is sample size limitations. For example, aggregates and corresponding pore 

structures typically on the order of micrometers to centimeters are analyzed (e.g., Pagliai et al., 

2004; Zucca et al., 2013; Martinez et al., 2015), although a single ped might be several orders of 

magnitude larger. Image resolution also has a considerable influence on the quantification of ped 

shape. Relatively high image resolution (e.g., 70 µm pixel-1) is critical for accurately recording 

correct geometric ped shapes and can restrict the minimum size of peds used in studies of ped 

shape expression (Holden, 2001). A recently-developed method uses laser scanning to overcome 

these size limitations and shows promise in quantifying and linking macroscale soil structure in 

the field to hydraulic properties (Eck et al., 2013). This technique, however, is currently not 

widely used. Ped shape quantification, therefore, remains elusive (Hartemink and Minasny, 

2014), despite the host of modern methods routinely employed to quantify other soil 

morphological properties such as color and texture.  

The digitized images of peds and aggregates obtained in previous studies have been 

quantified with various metrics such as circularity and roundness that describe the geometry of 

the objects. As such, these metrics are described herein as ‘digital morphometrics’ since they 

quantitatively characterize shape from digitized images. This is a slight variation of the recently 

proposed term ‘digital soil morphometrics’ which is defined, in part, as the measurement and 

quantification of soil profile properties (Hartemink and Minasny, 2014). The application of 
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digital morphometrics to high-resolution photographs of soil profiles may allow the 

quantification of ped shape. Given the many collections of photographs of soil profiles (e.g., 

Aandahl, 1982; McDaniel et al., 1993) that exist for soils around the world, this approach may 

open up the opportunity for analyzing ped shapes at broader geographic scales than were 

previously possible and for reanalyzing existing photographs without the need to resample. 

In this work, we developed a method to quantify ped shape using digital morphometrics 

by analyzing digitized photographs of soil profiles, heuristic structure diagrams, and three-

dimensional (3-D) scans of peds. A secondary goal of this study was to assess to what degree 

years of experience and level of training influence the ability to identify ped shapes. To achieve 

these goals, we have assembled a database for quantifying ped shape referred to hereafter as the 

ped shape digital morphometrics (PSDM) database. The database consists of a collection of (1) 

photographs of individual peds (aka specimen photographs) and soil profiles (aka profile 

photographs) showing examples of soil structure from across the contiguous US; (2) multistripe 

laser triangulation (MLT) scans of individual peds, and (3) heuristic ped diagrams. We also 

solicited feedback from students, professionals, and faculty within the pedology community via 

an online survey in order to correctly classify digitized peds from the soil profile photographs 

(Fig. 1). Ultimately, our approach should allow typical categorical and subjective descriptions of 

ped shape to be transformed into continuous quantitative data.  

Although structure size and grade are also described in the field using categorical classes 

(e.g., Schoeneberger et al., 2012), these data are transitive. That is, size and grade can be ranked 

in order from smallest to largest or weakest to strongest, respectively. Since current field 

description data of ped shape are non-transitive, our objective was to improve the 

characterization of this structural parameter.  
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METHODS AND MATERIALS 

Digitizing Ped Shape 

Many of the photographs in the PSDM database were obtained from previously published 

35-mm film slides. A large fraction of the photographs (~62%) were taken from a photograph 

slide set by Aandahl (1982) of soils in the Great Plains (Fig. 2). These slides were scanned at 

extremely high resolution (3000 ppi). In addition to these, multiple photographs of individual 

ped specimens were obtained from published sources and Natural Resources Conservation 

Service (NRCS) field offices (Table 1); those obtained from published sources were digitally 

scanned and those obtained from field offices were already digitized. Heuristic diagrams from a 

variety of published sources illustrating idealized ped shapes were also identified and scanned.  

Easily recognizable ped specimens from the digitized color slides, individual specimen 

photographs, and scanned heuristic diagrams were outlined in Adobe® Illustrator® by hand 

using the pen tool to create a solid polygon (Fig. 3). Silhouettes of each ped type were created 

from these outlines. In addition, 3-D MLT scans of individual peds were imported into 

ObjViewer (http://people.eecs.ku.edu/~miller/NSF_TUES/NSF_TUES.html), rotated to multiple 

viewing angles, and saved as jpeg files in order to assess the effect of viewing angle on the 

morphometrics calculated from the 2-D ped silhouettes (Table 2). Figure 4 shows examples of 

MLT scans of subangular blocky, angular blocky, prismatic, wedge, platy, and granular peds. 

 In order to outline the ped specimens from each photograph or diagram accurately, the 

images were digitally magnified approximately 15 times. Peds in cross section that had easily 

definable boundaries on all sides and appeared to represent a repeating pattern of soil structure 

were chosen as candidates for digitization. Soil structure types were digitized following a similar 
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logic to Holden (2001); pixels with similar colors were considered to be part of the soil aggregate 

whereas pixels that fell between two distinguishable colors were considered to be interpedal 

pores (i.e., spaces between soil structures). All digitized silhouettes that were derived from 

photographs, diagrams, and 3-D MLT scans were subsequently analyzed using ImageJ (version 

1.48; http://imagej.nih.gov) to calculate morphometrics for each ped including circularity, 

roundness, major-axis ellipse angle, aspect ratio, solidity, and width to height ratio (Ferreira and 

Rasband, 2012; Eck et al., 2013).   

Circularity, C, is the ratio between object area, A, and the area of a perfect circle with 

circumference equivalent to the perimeter of the object, P, calculated as: 

  [1] 

Circularity values range between 0 and 1, with values near 1 indicating a smooth circular shape 

and values near 0 indicating a rougher and/or elongated shape. Thus, circularity is both a gross 

and fine-scale shape measurement (Stoyan and Stoyan, 1992; Ferreira and Rasband, 2012; Russ, 

2011; Rodriguez et al., 2012). Roundness, R, is calculated from the area of an object and the 

length of the major axis of an ellipse fit to the object, Emaj, as:  

  [2] 

Roundness (angularity) varies between 0 and 1; 1 indicates a perfect circle and lower values 

indicate angular shapes. Aspect ratio, AR, is the ratio of major to minor axes lengths of an ellipse 

fit to an object calculated as: 

 [3] 

where Emin is the length of the minor axis of the ellipse. Values for aspect ratio are equivalent to 

the inverse of roundness and range between 1 and ∞. Both roundness and aspect ratio were 

C = 4π A P2

R = 4A
πEmaj

2

AR = Emaj Emin
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calculated since they are commonly used morphometrics. Solidity, S, is the ratio between the 

area of an object and its convex area, V: 

  [4] 

where, the convex area is defined as the area of the convex hull (i.e., the polygon created by 

connecting outward vertices and all interior angles less than 180º). Solidity is a measurement of 

overall convexity (i.e., a measurement of the particle edge roughness) for a given object where 

an object becomes more solid when the area of the object and area of the convex hull are close to 

each other. Solidity is a proxy for roughness of the surface, with values close to 1 indicating a 

smooth surface and values less than 1 indicating an increase in surface roughness. Width to 

height ratio (WHratio) is the ratio between width (Wbox) and height (Hbox) of the bounding box or 

enclosing rectangle around a silhouette. This bounding box is oriented relative to the coordinate 

system of the image instead of the silhouette. As such it is both a gross shape and orientation 

measurement, which is measured as: 

                                                                                                                   [6] 

In addition, ped orientation was investigated using the angle of the major ellipse axis, which is 

the angle between the major axis of an ellipse fit to the ped silhouette and a line parallel to the x-

axis of the image. 

 

Survey 

In order to ensure that each ped from the profile photographs in the PSDM database was 

classified correctly with respect to ped shape, a survey was designed containing the original 

photograph of the profile from which each ped was digitized along with associated silhouettes 

(Fig. 3). Participants (N = 78) were given the following choices to categorize ped shape: platy, 

S = A V

WHratio =
Wbox

Hbox

13



   
 

 
 

granular, subangular blocky, angular blocky, wedge, prismatic, columnar or N/A if the shape did 

not fall into one of these ped shape categories. A total of 53 soil profile photographs yielding 262 

silhouettes was included in the survey. The heuristic diagrams (N = 145), MLT scans (N = 14), 

specimen photographs (N = 44), and soil profile photographs (N = 32) were not included in the 

survey because the peds from these sources were previously classified by their authors (e.g., Soil 

Survey Division Staff, 1993). Survey participants were asked to classify each photograph and 

silhouette pair into one of the 7 structure types (i.e., ped shape) listed above. In order to properly 

classify the shape of each ped in these photographs, the survey was distributed online using 

SurveyMonkey (http://www.surveymonkey.com) and advertised to the pedology community via 

the Soil Science Society of America Pedology Division list-serve as well as individual email 

solicitations to several NRCS soil scientists and university faculty currently teaching pedology.  

Participant responses were organized in a frequency table. The mode (i.e., the measure of 

central tendency for nominally-scaled data) was calculated for each ped to assess the most 

frequent shape class reported by the participants (Burt et al., 2009). Shape metrics (e.g., 

circularity, roundness, etc.) were plotted against the unalikeability coefficient (u2)—a measure of 

disagreement among the survey participants—in order to evaluate the effect of uncertainty on the 

value of each shape metric. Further details for the calculation and interpretation of u2 are given in 

the Statistical Analyses section below. 

 

Ped Shape Digital Morphometrics Database 

The results from the survey and the image analyses were combined and organized into 

the PSDM database. The PSDM database contains information for each ped (e.g., the source of 

the photograph, soil order, and ped type) and numeric morphometric values including: 
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circularity, roundness, major-axis ellipse angle, aspect ratio, solidity, and width to height ratio. A 

total of 294 profile photographs, 44 specimen photographs, 145 diagrams, and 14 MLT scans 

were collected and collated yielding a total of 497 digitized peds (Table 2; Fig. 5). 

 

Statistical Analyses 

All statistical analyses in this study were conducted using the R statistical language Ver. 

3.1.2 (R Core Team, 2014). Permutation tests as opposed to pairwise t-tests were conducted using a 

randomization t-test procedure to separate the means of each ped shape parameter at an α-level of 0.05 

following Logan (Logan, 2010). These tests were used when the parametric assumptions of 

homoscedasticity and normality were not met even after attempting multiple transformations of the data.  

A permutation test was also used in evaluating the effect of viewing angle on the shape 

parameters calculated from the 2-D silhouettes. Peds digitized by MLT were rotated in 3-D as 

follows. Equidimensional peds (i.e., angular blocky, subangular blocky, and granular) were 

rotated to nine different angles corresponding to nine possible viewing angles (i.e., 3 faces, 4 

edges, and 2 corners) from which peds can be observed in silhouette from a cleaned soil profile 

(Fig. 6c). Anisotropic peds (e.g., prismatic and platy) were rotated to four different angles (2 

faces and 2 edges; Fig. 6a,b). Because there was no obvious orientation for anisotropic wedge-

shaped peds, these were treated as equidimensional with respect to viewing angle. For each 

viewing angle (i.e., orientation), 2-D silhouettes were screen captured and shape parameters 

analyzed. A total of 14 MLT scans were used in this study: granular (3), subangular blocky (2), 

angular blocky (3), wedge (2), prismatic (2), and platy (2). For each shape class and shape 

parameter, one orientation from each ped was randomly chosen and used to compare to the other 

shape classes using a t-test. The permutation test was conducted 500 times to generate a 

population of P-values that resulted from each t-test. We calculated the proportion of P-values 
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that were less than 0.05 to assess the sensitivity in detecting differences between shape classes 

from 2-D silhouettes that arise from different possible orientations in the soil profile 

photographs. 

An unalikeability coefficient was calculated to examine the variation among the survey 

responses for each ped shape and each shape parameter. The unalikeability coefficient is a 

statistic that represents the variation in categorical data and was calculated for each silhouette 

following Kader and Perry (2007) as:  

 [5]   

where pi is the proportion of the total responses for the ith ped shape category (e.g., granular, 

subangular blocky, prismatic, etc.). Values of u2 near zero indicate that there was a high 

agreement among the survey participants in classifying a particular specimen; values near 0.8 

indicate low agreement among the participants. 

A random forest was used to determine the importance or prediction strength of the 

morphometrics in identifying ped shape class (Hastie et al., 2009). The technique generated 

multiple random classification trees (i.e., a forest; N = 500); each tree calculated the best 

predictor variable for each ped shape class. Random forests compare the results of each tree in 

the forest to calculate the most important predictor variables (Breiman, 2001; Liaw and Wiener, 

2002). Importance is assessed by examining the mean decrease in accuracy as a result of 

randomly permuting each variable separately in each classification tree. In other words, 

importance records the amount of prediction error that results when removing the effect of each 

variable separately while leaving the other predictors unchanged (Breiman, 2001; Liaw and 

Wiener, 2002; Hastie et al., 2009). Variables with large decreases in accuracy are taken to be 

more important for the classification of respective ped shapes than others with lower decreases in 

u2 =1− pi
2

i
∑

16



   
 

 
 

accuracy since the accuracy of the classification is sensitive to changes in that variable. 

The results of the random forest were tabulated into a confusion matrix to evaluate the 

overall performance of the classification of ped shape using the morphometrics in this study. A 

confusion matrix compares the observed number of objects (counts) of each class to the number 

of predictions for those classes; class error rates are calculated from incorrect predictions by the 

model. 

 

RESULTS AND DISCUSSION 

Identifying Ped Shape 

The mode class and the proportion of survey participants were calculated for each ped 

shape. Mean relative frequency (i.e., the average proportion of survey participants that agreed 

with the mode class) was calculated to assess how level of training (i.e., education) and years of 

experience influenced the ability of the participants to correctly identify ped shape (Fig. 7). Bars 

associated with identical letters in Fig. 7, indicate means that were not significantly different 

from each other. Educational level (i.e., bachelors, masters, and doctorate degree) was a 

significant factor in identifying prismatic peds. Prisms were more accurately recognized by 

participants holding doctorate degrees and less accurately identified by those with bachelors 

degrees. Other structure types, however, such as angular blocky, subangular blocky, and 

columnar, were more frequently identified by those with bachelors degrees, although these 

differences were not significant (P > 0.05). Similar to educational level, years of experience 

describing soil in the field also impacted participant ability to identify prisms, but did not appear 

to significantly affect the ability of participants to detect other structure types. In particular, 

participants who had more than 10 years of field experience more frequently described prismatic 
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structures correctly as determined by the mode class. These results suggest that the correct 

identification of prisms require more training and experience.  

 

Ped Silhouettes Morphometrics 

 Silhouette morphometrics were obtained from profile and individual ped photographs (N 

= 338) in the PSDM database and analyzed to compare their values by shape class. Figure 8 

shows the distribution of values for each shape parameter and the results of the permutation tests 

that were used to compare the means of the seven ped shapes (Fig. 8). Identical letters above the 

boxes indicate means that are not significantly different (P > 0.05) from each other. Platy 

structure significantly differs from the other ped shapes for each of the morphometrics 

calculated, whereas subangular and angular blocky structures are not significantly different (P > 

0.05) from each other with respect to any morphometric except circularity. Similarly, prismatic 

and columnar peds are not significantly different (P > 0.05) from each other except with respect 

to circularity. 

Circularity is the only shape parameter that distinguishes both equidimensional ped 

shapes (e.g., subangular and angular blocky, and granular) and anisotropic ped shapes (e.g., 

prismatic and columnar). Peds with small silhouette areas and high numbers of corners and edges 

will have low circularity values.  

Equidimensional shapes were easily distinguished from each other based on their 

circularity values. Granular structure has a high circularity mean value of (0.83) due to its small 

perimeter to area ratio that distinguishes it from other equidimensional peds. Subangular blocky, 

angular blocky, and wedge structures have mean circularity values of 0.68, 0.63, and 0.48 (Fig. 

8). Subangular blocky structure has a slightly lower perimeter to area ratio reflected in the higher 
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mean circularity value because its shape has fewer corners and edges and smoother boundaries 

compared to angular blocky.  

Anisotropic ped shapes are also separated by circularity values. A prismatic structure has 

a mean circularity value of 0.48, while the value for columnar is 0.56. Columnar has a higher 

mean circularity value than prismatic because it has a slightly smaller perimeter to area ratio due 

to its rounded tops which increases circularity compared to prismatic peds. Circularity values for 

prismatic and wedge structures, however, were not significantly different (P > 0.05) from each 

other. Although these structures have similar perimeter to area ratios yielding similar circularity 

values, circularity does not consider the orientation of the peds. Width to height ratios, which 

incorporate silhouette orientation, however, show significant differences between prismatic and 

wedge structures (Fig. 8).  

Using width to height ratio, we were able to distinguish equidimensional and anisotropic 

shapes with respect to ped orientation. Platy structure defined by flat, elongated and horizontally 

oriented shapes have a high width to height ratio mean value (4.6) compared to other anisotropic 

ped shapes, such as those vertically elongated (i.e., prismatic and columnar) that have lower 

width to high ratios. In addition, wedges can be separated from equidimensional ped shapes on 

the basis of width to height ratios due to orientations that create larger widths compared to 

subangular blocks, angular blocks, and granular. As mentioned above, the width to height ratios 

allowed wedges and prismatic structures to be distinguished from each other, which was not 

possible with circularity.   

The major-axis ellipse angle measures the orientations of peds, and as previously noted, 

is the angle between the major axis of an ellipse fit to a ped silhouette and the x-axis of the image 

(i.e., parallel to the land surface). The major-axis ellipse angle for equidimensional peds (i.e., 
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subangular blocky, angular blocky, and granular) ranges between 0 and 90° (Fig. 8). When the 

major axis angles of these peds are plotted as a histogram, granular structure shows a uniform 

distribution between 0 and 90° whereas subangular and angular blocky structures display 

bimodal distributions with central tendencies of the modes near 0 or 90° (data not shown). 

Wedge orientation ranges between 3 and approximately 30°, which distinguishes those structures 

from most equidimensional peds and other anisotropic peds (Fig. 8). As expected, prismatic and 

columnar peds are easily distinguishable from platy on the basis of ped orientation due to 

elongation in either the vertical (for columns and prisms) or horizontal (for platy) dimensions.  

Roundness and aspect ratio, as opposed to circularity, are measures of gross ped shape. 

Roundness and aspect ratio values close to one refer to peds that are rounded whereas roundness 

values less than one or aspect ratio values greater than one refer to peds that are more elongated. 

Granular structures are significantly (P < 0.05) more equidimensional (i.e., more round) than 

angular and subangular blocky structures (Fig. 8). An interesting consequence of this difference 

is that, as discussed above, the distribution of equidimensional ped orientations tends to be more 

strongly bimodal in angular blocky peds and more uniform in granular peds (data not shown). 

Subangular blocky peds display a bimodal distribution that is slightly less pronounced than 

angular blocky. The shape of blocky structure creates a preference for the ellipse fit to the 

silhouettes such that the orientation of the major axis tends to be either vertical (~ 90°) or 

horizontal (~0°), thereby yielding a bimodal distribution of ped orientations. Since angular 

blocky structures have sharper and better-defined edges than subangular blocky structures as 

evidenced by the lower circularity values, the effect of blocky shape on ped orientation is 

stronger with angular blocky peds. By contrast, the higher roundness of granular structures does 

not influence the orientation of the ellipse fit to the silhouette, thus yielding a uniform 
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distribution of ped orientations. With the exception of platy structure, anisotropic peds are 

similarly elongated, with mean roundness values of 0.41, 0.36, and 0.42, and mean aspect ratio 

values of 2.79, 3.22, and 2.64 for columnar, prismatic, and wedge structures, respectively (Fig. 

8).  

Solidity describes the fine-scale surface roughness (Rodriguez et al., 2012) of ped 

silhouettes. Most of the ped shapes were indistinguishable with respect to solidity (Fig. 8). 

However, platy structure appeared to be more sensitive to solidity (platy was significantly 

different from other ped shapes) likely due to their thin, elongated shapes.  

In addition to analyzing ped silhouettes digitized from profile photographs, we also 

analyzed the differences between ped shapes derived from several idealized ped diagrams (Table 

1). Nearly all the shape morphometrics from the idealized diagrams follow the same distribution 

as the silhouettes derived from profile photographs, but with less variability among ped shapes 

(Fig. 9). Results of the permutation test (i.e., mean differences) show few significant differences 

between ped shapes compared with silhouettes derived from profile photographs (compare Fig. 9 

with Fig. 8). Using shape parameters such as circularity, major-axis ellipse angle, and width to 

height ratio we were able to separate platy structure from other ped shapes. We were unable, 

however, to distinguish most of the other ped shapes using these parameters as was possible with 

the soil profile silhouettes (again, compare Figs. 8 and 9). The lack of irregular ped silhouette 

boundaries compared to field photographs of soil profiles is likely responsible for both the lower 

variability and difficulty in distinguishing ped shapes from each other in the diagram silhouettes. 

For example, while angular blocky is significantly (P < 0.05) lower than subangular blocky with 

respect to circularity in the silhouettes obtained from profile photographs (Fig. 8), circularity 

values are not significantly (P > 0.05) different from subangular blocky (Fig. 9). This lack of 
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variability is attributed to the fact that many of the diagrams represent angular blocky peds more 

smoothly than they appear in the field, thereby inflating their circularity values as the perimeter 

to area ratio decrease. This finding suggests that more careful attention to the geometric shape 

parameters that distinguish ped shape is needed when designing future heuristic ped shape 

diagrams.  

 

Converting 3-D Ped Shapes to 2-D Silhouettes 

As described above, the consequences of superimposing the 3-D nature of soil peds on 

2-D soil profile silhouettes was examined using permutation tests. High-resolution (120 μm) 3-D 

digital (MLT) models of several peds were used to create 2-D silhouettes. The results of the 

permutation tests are given in Table 3. These values represent the proportion of times that 

randomly-selected 2-D silhouettes of contrasting peds were determined to be significantly (P < 

0.05) different from each other. Values close to 1 indicate a high probability that significant 

differences will be detected between ped types regardless of the orientation of the 3-D scan when 

the 2-D silhouette was captured. We used an arbitrary critical value of 0.5 (i.e., 50%) as a 

breakpoint to separate peds whose results tend to be influenced by the conversion of 3-D to 2-D 

(< 0.5) from those that were robust to this conversion (> 0.5). Contrasting ped shapes that were 

not significantly different in Fig. 8 were not examined for the influences of 3-D ped orientation 

on 2-D silhouettes. 

Anisotropic peds (i.e., prismatic and platy peds) tended to show more frequent 

differences than equidimensional peds, although the most frequent differences were observed 

between platy and angular blocky, platy and granular, and prismatic and angular blocky (0.5). 
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Wedges appeared to be sensitive to the orientation at which the 2-D silhouettes were taken, as 

differences between contrasting peds were seldom observed (≤ 0.25).  

Prismatic peds show frequent differences (> 0.5) with all equidimensional ped shapes 

(i.e., angular blocky, subangular blocky, and granular) for the aspect ratio shape parameter. No 

other ped shape was observed to be frequently different (≤ 0.25) with respect to aspect ratio. 

These results suggest that aspect ratio may be sensitive to ped orientation for all but prismatic 

peds.  

For major-axis ellipse angle, platy and prismatic are consistently different from each 

other (1.0). Thus, for any viewing angle, these ped shapes are always different for the samples 

used in this study. Angle appears to be more robust than other shape parameters in distinguishing 

platy from prismatic despite orientation of the 2-D silhouette. In addition, platy and wedge 

shapes were frequently different (~ 0.7) regardless of the orientation of the 3-D peds when the 2-

D silhouettes were captured. 

 Roundness appears to be the least sensitive to ped orientation. Significant differences 

were frequently observed between angular blocky and platy, angular blocky and prismatic, 

prismatic and platy, granular and prismatic, and prismatic and subangular blocky (≥ 0.5). Width 

to height ratios were only frequently different between platy and angular blocky (0.53).  Solidity 

appeared to be sensitive to ped orientation when the 2-D silhouette was captured, given that low 

significant difference frequencies were observed for all contrasts (≤ 0.13). Our approach to 

evaluating the conversion of 3-D ped shapes to 2-D silhouettes was not successful in frequently 

detecting differences between ped shapes, especially between equidimensional and anisotropic 

peds, likely due to the limited sample size (degrees of freedom) of the 3-D models (14 MLT-

scans samples) used in the permutation tests. 
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Evaluating Ped Silhouette Morphometrics 

We evaluated the quality of peds digitized from soil profile photographs using an 

unalikeability coefficient (Fig. 10). As discussed above, the unalikeability coefficient is a 

statistic that calculates variability among categorical data such as survey responses. In this work, 

the unalikeability coefficient represents the variability in assigning ped shapes in our survey. The 

unalikeability coefficient allows for the quality of peds delineated in the digitization process to 

be evaluated by quantifying the level of disagreement between participants in assigning a ped 

shape category to each silhouette. Figure 10 illustrates a range of high quality (u2 = 0) to low 

quality (u2 = 0.8) peds, from left to right on the x-axis. 

The results showed that a majority of the survey participants agreed (0.09 ≤ u2 ≤ 0.52) on 

the designation of granular structure indicating granular peds chosen in this study were of high 

quality and easily recognized. Columnar structure (0.09 ≤ u2 ≤ 0.67) also showed relatively high 

agreement among the participants, probably because these shapes are easily distinguished from 

other peds based on morphological properties unrelated to geometric shape; for instance the 

bleached tops common to columns. Similarly, there is relatively high agreement for granular 

structure because the size of the ped and its depth position within the profile likely influenced the 

judgment of the participants. There was slightly less agreement among participants when 

assigning platy, prismatic, subangular blocky, and angular blocky shapes; the values of u2 ranged 

from 0.23 ≤ u2 ≤ 0.49, 0.27 ≤ u2 ≤ 0.66, 0.12 ≤ u2 ≤ 0.74, 0.29 ≤ u2 ≤ 0.74, respectively. The higher 

amount of disagreement of these peds compared to granular or columnar may reflect the 

continuum of real world ped shapes that adds error to participant judgment when comparing 

profile photographs of peds to mental conceptualizations of soil structure. Another reason for 
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disagreement could be associated with inherent difficulties in recognizing these ped shapes from 

2-D photographs and silhouettes.  

Wedges have relatively high unalikeability coefficient values (0.57 ≤ u2 ≤ 0.71) compared 

to other ped shapes and were, thus, clustered on the right side of the x-axes in Fig. 10. A possible 

reason for this is the difficulty in recognizing a wedge from 2-D photos. It is interesting to note 

that we had identified 23 wedges when the survey was first constructed. That number, however, 

declined to 8 based on participant responses. Thus, wedge structure appears to be inherently 

difficult to classify. This is also observed in the low frequency responses that indicated wedge 

structures in Figure 7. Among those peds that we had initially identified as wedges but were 

changed after the survey, 27% were identified as subangular blocky and 73% were angular 

blocky. This indicates that certain features of wedge-shaped peds, such as sharpness of the 

boundaries, may have more in common with angular blocky than other structures, adding to the 

difficulty of recognizing these peds correctly.  

By quantifying the level of disagreement between survey responses we were able to 

distinguish individual peds within a shape class in terms of the ease by which the ped was 

recognized. As u2 tended toward zero in Fig. 10, the shapes were recognized by a higher 

percentage of the participants, likely because the quality of the peds improved. By fitting a line 

to the data in Fig. 10, the y-intercept was determined and interpreted as the predicted value of the 

true metric if 100% of the participants agreed on the shape class of the ped. This provides an 

alternative to using the central tendency of the shape distribution when calculating the 

representative metrics since central tendency (e.g., mean or median) does not account for the 

quality of each specimen. Table 4 presents the predicted y-intercepts for the significant (P < 

0.05) linear and non-linear fits shown in Fig. 10. Linear regressions were used for most of the 
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data, except where y-intercept values would be predicted to fall outside the range of possible 

values for the metric (e.g., > 90° major–axis ellipse angles or aspect ratio < 1). In these cases, 

either logistic or exponential regressions were used to match the shape of the data. The y-

intercept values are probably more meaningful for peds that had a range of quality, including 

high-quality peds as indicated by the unalikeability coefficient. In this study, wedges did not 

have low u2 values and, therefore, y-intercept values for those peds are unlikely to be reliable.  

Predicted y-intercept values for major–axis ellipse angles show that angular blocky peds 

were taller than they were wide, which caused these peds to be vertically oriented (~90°), 

making them distinguishable from other equidimensional peds. This difference can also be seen 

with the predicted width to height ratio shape parameter (0.21), indicating that angular blocky 

peds in this database were relatively thinner and taller than other equidimensional peds.  

Similar slopes for the regression line illustrated in Fig. 10 for prismatic and columnar 

peds were observed for most of the shape parameters in this study (e.g., circularity, roundness, 

aspect ratio, and width to height ratio) over similar ranges of shape metric quality (i.e., u2 values). 

For example, both peds showed increasing circularity values as their quality decreased (Fig. 10).  

 

Relative Importance of Morphometrics in Distinguishing Ped Shape   

In order to evaluate the importance of each morphometric in distinguishing ped shape, a 

random forest was run using all measured shape parameters (i.e., circularity, roundness, etc.).  

Figure 11 shows the ordered relative importance or prediction strength of each variable for each 

ped shape (Liaw and Wiener, 2002). The results show that circularity is the most important 

variable for distinguishing equidimensional ped shapes (i.e., angular blocky, subangular blocky, 

and granular) (Fig. 11). The second most important shape metric after circularity is width to 
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height ratio for angular blocky and granular, and major-axis ellipse angle for subangular blocky. 

For prismatic, platy, and wedge shaped peds, width to height ratio was the most important shape 

parameter, followed by circularity for both prismatic and wedge shaped peds and aspect ratio for 

platy peds. Aspect ratio is the most important morphometric for describing columns; however, 

the width to height ratio is also important for identifying these peds. 

Subangular blocky, angular blocky, and granular (equidimensional) peds have relatively 

equal major to minor axis ellipse lengths of the peds. Those peds can best be identified based on 

their circularity values. As addressed in the methodology section, circularity is both a gross 

shape and fine-scale shape measurement (i.e., edges around ped). For subangular blocky, angular 

blocky, and granular peds, circularity is the most important shape parameter since circularity is a 

measurement of equidimensionality (area is equivalent or close to their perimeter) that also 

accounts for edges and corners around the ped. By contrast, platy, prismatic, columnar, and 

wedge (anisotropic) peds have relatively larger differences between major to minor axes ellipse 

lengths. In particular, prismatic, wedge, and platy are best distinguished by their width to height 

ratio; these peds are significantly elongated in their vertical dimension. Aspect ratio (i.e., aspect 

ratio is the ratio of major to minor axis ellipse lengths) was an important shape parameter for 

identifying columnar structure.  

We calculated a confusion matrix to assess the overall accuracy of the classification trees 

in the random forest (Table 5). High frequencies in the same modeled and observed categories 

refer to accurate predictions from the random forest using the five variables shown in the Fig. 11. 

The highest-class error rates were observed in columnar (0.87), wedge (0.75), and angular 

blocky (0.73), indicating these shapes are difficult to distinguish with these variables. In 

particular, angular blocky was most frequently misclassified as subangular blocky, columnar as 
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prismatic, and wedge as angular blocky. These types of soil structures may be sensitive to other 

soil morphological factors, such as color and/or depth within the profile.  

 

CONCLUSIONS 

 This study presents a method for quantifying ped shape using a variety of morphometrics. 

Results show that our method was able to transform typical categorical descriptions of soil 

structure into continuous quantitative data. Shape metrics such as circularity and width to height 

ratio are continuous variables that allow differences between ped shapes to be detected. By 

contrast, assigning categorical classes to ped shapes precludes the ability to observe 

morphological differences in soil structure. Digital shape metrics from this study can also be 

used to convert morphological descriptions of soil structure into numeric shape indices. 

Central tendency measures (i.e., mean and median) of shape metrics derived from 

populations of representative peds such as those used in this study can be used to quantitatively 

describe ped shape; however, these measures do not account for the quality or representativeness 

of each ped. Thus, we used the predicted shape metrics at a zero unalikeability coefficient, which 

accounts for the quality of each ped, to quantitatively describe ped shape. Numeric values from 

this study may open up the opportunity to study soil genesis and model hydrologic processes at 

regional and continental scales without the need to resample (i.e., using photographs of 

previously sampled soil pits). 

The results from our survey showed that participant ability to recognize prismatic 

structure was positively influenced by education and expertise suggesting that the correct 

identification of prisms requires more training and experience. Besides prismatic structures, 
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however, higher levels of education and more years of field experience did not make 

considerable differences in identifying ped shapes.  

For future studies that examine ped shape, we recommend removing a subset of peds 

from each horizon and taking photographs of these specimens to capture their silhouettes during 

a typical soil profile description. These specimens can be digitized more accurately and 

objectively when photographed as individual samples. Also, we recommend that photographs 

obtained by NRCS field offices be made accessible to examine structure on previously excavated 

profiles. 
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Media Sources† Ped Shape Number

Profile 
photographs

Aandahl, Nikiforoff, Soil Survey, 
Marbut, This study

Subangular blocky, angular block, 
granular, wedges, platy, prismatic, 
columnar

294

Specimen 
photographs

Nikiforoff, Soil Survey, NRCS Subangular blocky, angular blocky, 
granular, prismatic, columnar, platy

44

MLT scans KU Subangular blocky, angular block, 
granular, wedges, platy, prismatic, 
columnar

14

Ped diagrams Hillel, Jury, Kubiena, Fieldbook, 
Brady

Subangular blocky, angular block, 
granular, wedges, platy, prismatic, 
columnar

145

† Aandahl = Aandahl (1982); Marbut = McDaniel et al. (1993); Nikiforoff = Nikiforoff (1941); KU = 
University of Kansas; NRCS = NRCS field office photographs; Soil Survey = Soil Survey Division 
Staff (1993); Hillel = Hillel (1998); Jury = Jury and Horton (2004); Fieldbook = Schoeneberger et al. 
(2012); Kubiena = Kubiena (1954); Brady = Brady and Weil (2009).

Table 1. Summary of photographs and sources used to create the PSDM database. 
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Ped Type Abbreviation Profile Specimen Diagram MLT Total
Angular blocky abk 35 5 14 3 57
Columnar col 19 4 6 0 29
Granular gr 8 21 72 3 104
Platy pl 25 1 23 2 51
Prismatic pr 55 6 8 2 71
Subangular blocky sbk 87 7 20 2 116
Wedges wg 65 0 2 2 69
Total 294 44 145 14 497

Table 2. Summary of digitized peds from profile photographs, specimen 
photographs, diagrams, and multistripe laser triangulation (MLT) scans in the 
PSDM database. 
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Ped Type abk gr pl pr sbk

gr 0.052
pl 0.850 0.842
pr 0.536 0.354 0.042
sbk 0.020 0.098 0.484 0.428
wg 0.216 0.140 0.098 0.194

gr 0.084
pl 0.124 0.102
pr 0.648 0.692 0.000
sbk 0.072 0.000 0.508
wg 0.000

gr
pl 0.252 0.044
pr 0.182 0.156 1.000
sbk 0.098 0.312
wg 0.096 0.712 0.116 0.178

gr 0.066
pl 0.532 0.670
pr 0.534 0.598 0.000
sbk 0.060 0.144 0.496
wg 0.234 0.206 0.016 0.168

gr
pl 0.006 0.028
pr 0.004 0.004 0.000
sbk 0.132 0.024 0.020
wg 0.050 0.002

gr
pl 0.530 0.430
pr 0.454 0.266 0.326
sbk 0.034 0.400
wg 0.150 0.112 0.174 0.144 0.148

Width to Height Ratio

Table 3. The proportion of P -values that were less than an α-level of 0.05 
out of a population of 500  P -values reflecting the results of t -tests that 
compared silhouttes from randomly selected ped orientations derived from     
3-D models digitized using MLT. Values close to unity can be interpreted as 
a high probability of finding a significant difference despite the orientation of 
the 3-D ped when the 2-D silhoutte is captured. Mean differences that were 
not significantly different ( P  > 0.05) in Fig. 8 were not examined for the 
influences of 3-D ped orientation on 2-D silhouette-derived morphometrics  
and are left blank.

Circularity

Aspect ratio

Major-Axis Ellipse Angle

Roundness

Solidity

Ped Type
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Ped 
Type

abk 0.91 ± 0.06 88.1 0.21 ± 0.08 1.00 ± 0.29 0.97 0.90 ± 0.01
col 0.35 ± 0.08 84.0 ± 1.82 0.19 ± 0.14 4.37 ± 0.75 0.07 ± 0.12 0.82 ± 0.03
gr 1.01 ± 0.02 35.0 ± 3.32 1.13 ± 0.03 1.34 ± 0.03 0.76 ± 0.01 0.93 ± 0.01
pl 0.27 ± 0.03 5.73 ± 1.07 4.21 ± 0.46 6.77 ± 0.84 0.08 ± 0.10 0.74 ± 0.03
pr 0.27 ± 0.05 82.2 ± 0.90 0.14 ± 0.08 5.87 ± 0.72 0.04 ± 0.07 0.87 ± 0.01
sbk 0.75 ± 0.03 40.1 ± 2.94 1.13 ± 0.04 0.97 ± 0.16 0.82 ± 0.05 0.90 ± 0.00
wg 0.48 ± 0.02 15.4 ± 2.87 1.94 ± 0.13 1.00 ± 1.62 1.00 0.89 ± 0.01

Table 4. Intercept values for the regression models shown in Fig. 10 representing perfect 
theoretical agreement among survey participants (i.e., u2 = 0). Values following a ± symbol 
represent 1 standard error.

RoundnessCircularity

† Since the asymptotes of the logistic model were fixed, no standard errors are associated with 
these intercept values.

Major-Axis 
Ellipse Angle

Aspect Ratio
Width to 

Height Ratio
Solidity

 †

 †

 †
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abk col gr pl pr sbk wg
abk 11 0 1 1 0 26 1 0.725
col 1 3 0 0 16 3 0 0.870
gr 0 0 71 0 0 15 0 0.174
pl 0 0 0 25 0 0 1 0.038
pr 1 4 0 0 50 6 0 0.180
sbk 9 1 13 1 5 63 2 0.330
wg 3 0 0 1 0 2 2 0.750
Error rate 0.334

Table 5. Confusion matrix for the random forest prediction. Rows 
represent ped type determined from survey responses; columns 
represent ped type predicted from the random forest. Counts along the 
diagonal indicate number of correct predictions.

Modeled
Observed Class error
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 Fig. 3. Digitized peds from a profile photograph of the Cavour series (modified from Aandhal, 

1982). Red lines in the photograph indicate outlined edges of each digitized ped. Dashed black 
lines show the location of the solid black silhouette representing each ped on the excavation 
wall. Silhouettes were analyzed through ImageJ to calculate various morphometrics. A modified 
version of this figure was used in the survey which contained everything except the red outlines.
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Fig. 9. Boxplots of each shape parameter used in this study measured from silhouettes of ped 
diagrams in the PSDM database. Identical letters above the boxplots indicate means that are not 
significantly different at an α-level of 0.05. Boxes show the upper and lower quartiles, center 
bars show median values, whiskers extend to extreme data values, and points show very extreme 
values (greater than 1.5 times the interquartile range). Soil structure: abk = angular blocky; col = 
columnar; gr = granular; sbk = subangular blocky; pl = platy; pr = prismatic; and wg = wedge. 
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CHAPTER 3. EXOGENOUS AND ENDOGENOUS CONTROLS ON THE 

DEVELOPMENT OF SOIL STRUCTURE 

 

ABSTRACT 

The roles played by exogenous and endogenous factors in the development of soil 

structure (ped type, size, and grade) are poorly understood. Exogenous factors are those external 

to soil, such as climate and slope, whereas endogenous factors are internal, such as soil organic 

carbon and clay content. Unfortunately, the categorical and qualitative nature of currently 

available soil structural data along with the lack of a broad scale dataset containing wide ranges 

in the values of exogenous and endogenous factors, have impeded our understanding of the 

development of soil structure. In this study, we assembled a soil, climate, and ecological dataset 

for the USA, and used it to analyze relationships between soil structure and exogenous and 

endogenous variables. We simplified the format of the National Cooperative Soil Survey (NCSS) 

Soil Characterization database, which contains laboratory data and field-derived information, and 

analyzed a subset of the data after merging this information with climatological and ecological 

data. Additionally, we used a recently-developed method to quantify the description of ped 

shape. Quantitative ped sizes were calculated using the geometric mean diameter of the structure 

size class recorded for each horizon, and numerical values of ped grade were calculated using an 

ordinal scale ranging from structureless to strongly structured conditions. The merged and 

cleaned dataset is termed the University of Kansas Research Dataset of Soils (KURDS) and 

contains more than 94,000 observations from approximately 20,000 pedons. We found that the 

exogenous factor, climate, was the most important predictor for ped shape and size. Cold and/or 

dry climates promoted the development of larger anisotropic peds with rougher surfaces whereas 
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warmer, more humid climates promoted the development of finer equidimensional peds with 

smoother surfaces. These findings suggest that climate influences the development of soil 

structure through its control on mechanisms affecting soil aggregation. We argue that climate 

promotes the development of soil structure along either separation or aggregation pathways 

characterized, respectively, by largely mechanical mechanisms in cold, dry environments and 

predominately biological and chemical mechanisms in warmer, wet environments. This 

connection between climate and the development of soil structure represents a potentially 

important effect of climate on a morphological property strongly linked to soil hydrology. 

Overall, this study demonstrates the potential of utilizing continental-scale datasets in 

pedological research. 

 

INTRODUCTION 

Soil structure denotes the arrangement of soil particles, which are often arranged into 

repeating patterns of aggregates that occur within morphological horizons; these aggregates 

typically have similar shapes, sizes, orientations, and degrees of expression (Nikiforoff, 1941; 

Hillel, 1998; Díaz-Zorita et al., 2002; Warrick, 2002). When these repeating aggregates are large 

enough to be visible to the naked eye, they are known as ‘peds’ and their shapes have 

traditionally been described using qualitative and subjective categories for shape, size, and grade, 

although several studies have described peds in terms of quantifiable properties (Dexter, 1985; 

Mohammed et al., 2016; Hirmas and Giménez, 2017). 

Soil structure is an important property because it has considerable influence over 

biological, physical, and chemical soil processes, such as water retention, infiltration, erosion, 

root penetration, and aquifer recharge (Warrick, 2002). For example, Lin et al. (1999) showed 

51



 
 

that ped shape can significantly affect steady-state infiltration rates, although these effects 

depended on initial moisture conditions and particle-size distribution. Structure also influences 

soil climate through its effects on soil water evaporation, respiration, and the exchange of gases 

with the atmosphere (Davidson and Janssens, 2006). In general, the influence of soil structure on 

these processes occurs through modifications of soil macropores (Kutílek, 2004). 

Although numerous studies have investigated the effects of soil structure on physical or 

biogeochemical soil processes, few studies have focused on either the development of soil 

structure or the response of ped shape, size, and grade to either external (i.e., exogenous) and 

internal (i.e., endogenous) factors. Exceptions include the work of Dexter (1985), Hartge (1993), 

and Holden (1993; 1995). For example, Dexter (1985) found that soil aggregates sampled from 

the upper 10 to 20 cm became less round with increasing clay content and more round with soil 

organic matter (SOM) and time since reclamation. In contrast, Holden (1993) found that seasonal 

variation observed in ped shape was not significantly associated with either gross ped or soil 

physical properties. 

The limitations of these studies, however, were that samples were either taken only from 

surface layers of the soil profile (which restrict their representation of the whole profile), samples 

were composed only of fine peds/aggregates (less than a few centimeters), and/or these studies 

used only relatively small sample sizes (N ≈ 10) even in cases where quantitative approaches 

were used (Rabot et al., 2018). Thus, despite several previous studies and reviews (e.g., Bronick 

and Lal, 2005; Rabot et al., 2018), little is known about the role of exogenous factors (e.g., 

climate) or endogenous soil properties (e.g., clay content or SOM) on the expression of soil 

structure. In order to understand these roles, investigations should include a wide range of values 

of relevant exogenous and endogenous variables and examine their individual and combined 
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effects on soil structure development and expression. Utilizing a wide range of values, especially 

with exogenous variables, requires that studies be conducted over broad scales (e.g., continental 

scales) where this range of values would be realized. We argue that large, broad-scale datasets 

containing soil structural information could be used to overcome this limitation and allow 

investigations to be conducted at these broad scales.  

In fact, such broad-scale datasets do exist that contain either field-based morphological 

data, laboratory measurements, climatological information, topography, or ecological data (i.e., 

representing various exogenous and endogenous information). For example, the USDA-Natural 

Resources Conservation Service (USDA-NRCS) maintains a large, continental-scale, quality-

controlled database that contains both laboratory and field-based soil data covering much of the 

conterminous USA. To date, however, this information has not been integrated with other 

relevant data sources into a single, readily accessible dataset for investigation of soil structure. 

The overall goal of this study, therefore, was to understand how endogenous and 

exogenous factors influence the development of soil structure—specifically, the structural 

properties: ped shape, size, and grade. The key objectives of this work were to (1) assemble an 

easily-accessible, two-dimensional data matrix that contains laboratory and field-based 

measurements across the USA and integrates topographic, climatological, and ecological data 

useful for understanding soil structure; and (2) use these data to explore the response of soil 

structure to exogenous and endogenous factors in both surface and subsurface horizons. 
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METHODS AND MATERIALS 

Data 

We used the National Cooperative Soil Survey (NCSS) Soil Characterization Database 

maintained by the USDA-NRCS. This dataset contains information on soil properties from 

samples excavated mostly by NRCS personnel and measured at the Kellogg Soil Survey 

Laboratory (KSSL) in Lincoln, NE, as well as cooperative university laboratories. Notably, the 

dataset provides the geographic extent necessary to cover the range of exogenous and 

endogenous variables relevant to studying soil structure. The dataset also serves as the 

foundation for the national Soil Survey Geographic Database (SSURGO). These data are stored 

in 119 tables within two large Microsoft ACCESS database files—one for laboratory 

characterization data (577 MB) and one for field-based pedon data (648 MB; e.g., depths, 

structure, rock fragments, redoximorphic features, pores, root distributions, and landform 

properties). Because the structure of these data files is complex, we pre-processed the files to put 

them into an easily accessible format for further analysis as follows (Fig. 1). 

First, a query was performed to select the relevant soil chemical, physical, and 

mineralogical properties from the laboratory data. We also, separately, selected the relevant soil 

morphological, geographic, taxonomic, and site information from the pedon data files. Second, 

both the laboratory and pedon data files were read into R (R Core Team, 2017) as two separate R 

data.frame objects and the geographic coordinates for the laboratory samples were converted 

from a degrees-minutes-seconds format to decimal degrees to match the format in the pedon 

data. In addition, categorical pedon data were cleaned by tagging missing data as “NA” and 

inconsistencies in spelling or capitalization were fixed. For example, the dataset contained 

different entries for the same soil order such as “Mollisols” and “mollisols” which were 
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corrected to just “Mollisols.”  

A major drawback to the structure of the original pedon data files is how multiple values 

that describe a single soil horizon or pedon property are represented. In these cases, whole rows 

in the ACCESS data tables are duplicated as many times as there are values for that property. For 

instance, if a horizon was described as having weak, medium prismatic structure parting to 

strong, fine, angular blocky structure, the horizon would be represented by 2 rows in the 

ACCESS data table—one for each description of structure. If the same horizon was also 

described as having both many fine and common medium roots, then the horizon would be 

represented by 4 rows. We found that this data structure overrepresented the number of soil 

horizons in the original pedon data by more than a factor of 5 (i.e., 121,095 unique soil horizons 

were represented by 679,521 rows) and thus complicated the analysis. In order to simplify this 

structure and facilitate analysis, multiple values of the same variable described for a single 

horizon were moved into additional columns to keep each horizon represented by a single row. 

For example, multiple values of ped type (e.g., prismatic and angular blocky) were placed in 

additional ped type columns (e.g., ped type 2, ped type 3, etc.). 

The pedon and laboratory R data.frame objects were joined into a single data.frame using 

the unique pedon and horizon identifiers appropriate to each data table found in the original 

database (Fig. 1). The geographic coordinates provided separately in the pedon and laboratory 

data were checked via regression to independently verify the join process. The new, merged 

data.frame object was further cleaned by removing the variable-specific identifiers while 

retaining the unique pedon and horizon-level identifiers, removing duplicate columns (i.e., ones 

that contained the same information but occurred in both the laboratory and pedon datasets 

separately), resetting the levels of each column of R factor class in the data.frame, and renaming 
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several columns to facilitate analysis and clarity (e.g., 

“NCSS_Pedon_Taxonomy_latitude_decimal_degrees” was changed to “lat”).  

We then added several new columns to the dataset. We used the quantified ped shape 

values reported by Mohammed et al. (2016) to calculate new ped shape variables in the dataset. 

These variables included roundness, which measures bulk shape roundness between 1 (perfectly 

circular) and 0 (perfectly angular), and solidity, which measures surface roughness with values 

less than 1 indicating increasing roughness (Mohammed et al., 2016). We also transformed ped 

size from discrete classes into continuous quantitative data using the geometric midpoint of the 

appropriate size class recorded for each horizon following the definition of size classes provided 

by Schoeneberger et al. (2012). The ped size for the largest category (defined separately for each 

ped type) was assigned the lower boundary of that class since the upper boundary is undefined 

(Schoeneberger et al., 2012). In order to facilitate analysis of ped size, we used a standardized 

size class nomenclature by changing occurrences of “thin” or “thick” (used to describe platy 

peds; Schoeneberger et al., 2012) to “fine” or “coarse,” respectively. Structural grade 

values were transformed to an ordinal scale ranging from structureless (0) to strongly structured 

conditions (3). In cases of compound soil structure (i.e., structure characterized by nested peds), 

quantitative values of ped shape, size, and grade for each structural unit present were combined 

into a single numerical description using an approach developed by Hirmas and Giménez (2017). 

Quantitative values were also calculated for roots and added as new variables in the 

dataset. For each root size class recorded (i.e., very fine, fine, medium, coarse, or very coarse), 

the corresponding root quantity value (i.e., average number of roots recorded within the 

assessment area) was converted to root density, RD, following Eq. [1]: 

RDi	=	fiqi [1] 
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where qi is the root quantity value for the ith root size class, and fi is the fraction of the 

assessment area occupied by the cross-sectional area of a single root of size i assuming the 

assessment area bisects the root. This assumption makes the quantity a conservative estimate. 

The ith fraction is calculated as: 

fi	=	
di

2π
4Ai

 [2] 

where di is the root diameter calculated as the geometric midpoint of the ith root size class and Ai 

is the assessment area assigned to the ith size class following Schoeneberger et al. (2012). For 

very fine and fine root size classes, Ai is 0.0001 m2; for medium and coarse size classes, Ai is 

0.01 m2. Very coarse roots are assigned Ai values of 1 m2. Root diameters were calculated for 

each root size as 0.00032 m (very fine), 0.00141 m (fine), 0.00316 m (medium), and 0.00707 m 

(coarse). Because the upper bound is undefined for the very coarse size class, we assigned the di 

for that class to be equal to its lower bound (0.01 m), further making these estimates 

conservative. The combined cross-sectional areal density of all roots was calculated as the sum 

of the RD values across all size classes recorded for each horizon.  Because the cross-sectional 

profile (the 2-D structure) is assumed to represent the morphological properties of the pedon (the 

3-D structure), the RD values can be taken as volumetric estimates of root density (i.e., volume 

of roots per volume of soil; m3 m-3). 

In addition to quantitative metrics for soil structure and roots, several climatological 

variables including mean annual precipitation (MAP) and mean annual temperature (MAT) from 

the Parameter-Elevation Regressions on Independent Slopes Model (PRISM Climate Group, 

2016), were added to the dataset. The PRISM data comprised 30 years of gridded data at a 4-km 

resolution across the conterminous USA. These data were used to calculate a relative proxy 

metric (effective energy and mass transfer, EEMT) representing the energy available for 
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pedogenesis in units of MJ m-2 y-1 following Rasmussen and Tabor (2007). Because this 

pedogenic energy proxy relies on both MAP and MAT in its calculation, we used it in this study 

as a convenient climatological parameter that integrates both precipitation and temperature into a 

single numerical value. 

Next, we used ArcGIS (ArcGIS Desktop ver. 10.2, ESRI, Redlands, CA) to assign 

individual samples in the dataset to US Forest Service (USFS) ecoregions of the USA 

(https://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/) and Köppen-

Geiger climate classes (Peel et al., 2007) to add further ecological and climatological information 

(Table 1; Fig. 2). The USFS ecoregions data used in this study contains three hierarchical 

ecosystem levels. The largest ecosystem levels are domains, which represent groups of related 

climates differentiated on the basis of MAP and MAT. Domains are divided into divisions 

differentiated by seasonal patterns of precipitation and temperature. Divisions are further 

subdivided into provinces differentiated by natural land cover (Baily, 1989). The Köppen-Geiger 

climate classification divides climate into five main climate groups: A (tropical), B (dry), C 

(temperate), D (cold), and E (polar) (Peel et al., 2007). The second letter (i.e., f, m, s, w, W, S, T 

and F) indicates the type of seasonal variability in precipitation, while the third letter (i.e., a, b, 

and c) indicates the type of seasonal variability in temperature. 

Finally, the dataset was read back into R, saved as a final R data.frame object, and output 

as an RData file for analysis. This final 2-D data matrix is known as the University of Kansas 

Research Dataset of Soils (KURDS) and contains information on 1,035 variables measured on 

94,189 unique horizons distributed across 19,732 pedons. These data include taxonomic, 

morphological, physical, chemical, mineralogical, geographical, geomorphological, 

climatological, and ecological information. After assembling the dataset, 30 pedons were 
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randomly selected within KURDS and compared to online records from the NRCS 

(https://ncsslabdatamart.sc.egov.usda.gov) to verify the consistency of the dataset. No 

inconsistencies were observed during this verification process.  

In this study, we selected pedons (N = 1,602) and soil horizons (N = 4,431) in KURDS 

based on parent material, taxonomy, horizon nomenclature, depth, and drainage class (Table 2). 

We selected only the parent materials that were most common in the dataset (i.e., alluvium, 

residuum, till, and loess). Soil orders were selected to avoid young or poorly developed soils 

(i.e., Entisols and Inceptisols), limited geographical distributions within the US (i.e., Spodosols 

and Oxisols), highly-localized environmental settings (i.e., Histosols), or unique pedogenic 

pathways (i.e., Andisols, Gelisols, and Vertisols). Thus, only Ultisols, Mollisols, Alfisols, and 

Aridisols were selected. We also grouped soil samples by horizons into surface layers (A 

horizons) with midpoint depths between 0−25 cm and subsurface layers (B horizons) with 

midpoint depths <25 cm. We excluded plowed layers (e.g., Ap horizons) and horizons below 

lithologic discontinuities in order to minimize the influence of confounding factors. Soils with 

poor or very poor drainage classes were removed from the dataset to separate effects of 

exogenous climatological variables from site-specific hydrology. Figure 2 shows the geographic 

distribution of the pedons selected after filtering the data for this study.  

 

Statistical Analyses 

The distribution of each continuous variable used in this study was checked for normality 

by visually inspecting histograms of those variables.  Because many of these variables violated 

assumptions of normality, they were transformed following Table 3. In this study, we analyzed 

many of the relationships with depth; however, we considered depth to be neither an exogenous 
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nor endogenous variable, but simply the vertical location with respect to the land surface where 

endogenous variables occurred. 

We used multinomial logistic regression (MLR) to calculate the probability of categorical 

soil structure variables such as ped type, size, and grade classes across a range of values for the 

individual endogenous and exogenous variables listed in Table 3. Multinomial logistic regression 

is an extension of binary logistic regression that allows for more than two categories of the 

dependent or outcome variable and uses a maximum likelihood estimation to evaluate the 

probability of the categorical data (Borooah, 2002; Hosmer and Lemeshow, 2000, 2013; Malone 

et al., 2017). We analyzed the data with MLR using the nnet R package (Venables and Ripley, 

2002).  

In addition to MLR, decision trees (DTs) were utilized to evaluate the relative importance 

of the exogenous and endogenous variables in predicting soil structure. We used DTs in order to 

incorporate both categorical and continuous variables simultaneously in the analysis (Logan, 

2010). In general, DTs are often used as an alternative to regression analysis in determining how 

a series of explanatory variables will impact a dependent variable (Lander, 2014). Trees were 

created using the rpart R package (Therneau et al., 2017). In order to prevent overfitting, trees 

were pruned by selecting a minimum value of the complexity parameter that minimized the 

standard deviation of the errors calculated from cross-validation predictions generated from a set 

of cost-complexity prunings (Therneau et al., 2017).  

In order to evaluate depth dependence in the relative importance of the endogenous 

variables in predicting soil structure, we examined the data using the following procedure. First, 

pedons were selected from the dataset (N = 1,086) that contained contiguous horizons (beginning 

with the surface horizon) meeting the criteria listed in Table 2. Second, an equal-area 
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spline function (Bishop et al., 1999) was applied to the quantified structure variables and 

endogenous soil variables indicated in Table 3 using the GSIF R package (Hengl et al., 2017) in 

order to predict the values of those variables at a 1-cm depth increment. The equal-area spline 

consists of a series of quadratic polynomials fitted piecewise through the sampling layer depths 

with a constraint that preserves the area under the curve (Odgers et al., 2012). Third, we 

predicted the quantified soil structure variables (i.e., ped roundness, solidity, etc.) using DTs for 

each 1-cm depth increment separately in order to calculate a normalized importance value 

representing an aggregated goodness of split measure of each independent variable, which was 

then scaled to sum to 100. The calculation of this importance value is described in detail by 

Therneau et al. (2018). Finally, we used a spline function to smooth the resulting depth functions 

with a moving 25-cm depth window in order to reduce high-frequency noise in the predicted soil 

variable importance and aid the visual interpretation of the trends. 

 

RESULTS AND DISCUSSION 

Ped Type, Size, and Grade Interactions 

We examined the interactions between the qualitative soil structural variables in the 

dataset with mosaic plots (Fig. 3). These plots show the proportion (i.e., probability) of each 

class value of either ped size (Fig. 3a) or grade (Fig. 3b) occurring within each ped type (read 

from the box heights) as well as the relative proportions of horizons in the dataset that were 

contained in each ped type (read from the box widths). In order to eliminate the complexity 

associated with horizons where multiple ped types, sizes, or grades were recorded, these samples 

were removed from the MLR analysis. Medium was the most commonly recorded size class for 
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both angular blocky (71%) and prismatic (53%) peds. Granular peds occurred predominantly as 

fine sizes (65%) while subangular blocky occurred mostly as medium sizes (52%).  

Although the data in Fig. 3 show the results across all depths used in this study, structures 

in the surface horizons (i.e., non-plowed, A horizons with midpoint depths ≤25 cm)—which 

made up 23% of these data—were largely characterized by fine (67%) granular and fine (51%) 

subangular blocky, with these two structures making up 60% and 30% of all surface ped types, 

respectively (Appendix B Fig. B1a). By contrast, subsurface horizons (i.e., B horizons with 

midpoint depths >25 cm), composing 77% of the data shown in Fig. 3, were predominantly 

characterized by medium (55%) subangular blocky structure, which alone made up 79% of all 

subsurface ped types (Appendix B Fig. B1b). Thus, the distribution of probabilities in Fig. 3a are 

more strongly weighted by the frequency of subangular blocky structure in the subsurface 

horizons and the coarser size classes of those peds compared to the finer granular and subangular 

blocky size classes of the surface horizons. Similarly, the distribution of medium angular blocky 

and prismatic size classes is due to the occurrence of these peds almost exclusively in subsurface 

horizons; only 0.2 and 1% of surface horizons in the dataset were characterized by prismatic and 

angular blocky structure, respectively, and less than 1 and 3% of angular blocky and prismatic 

peds, respectively, were observed in surface horizons.  

The differences in ped size class between surface and subsurface horizons may be related 

to the relative position of these horizons with respect to the land surface. The mechanisms 

responsible for soil structural evolution are discussed below and include freezing and thawing, 

slaking, root growth, and organic bonding (Díaz-Zorita et al., 2002). These mechanisms are 

likely to have a stronger, more direct role in structural development in surface horizons, which 

are, comparatively, more exposed to atmospheric fluctuations than subsurface horizons, and may 
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explain the tendency toward finer ped sizes in these horizons as larger fluctuations in 

temperature and moisture from freeze/thaw or wet/dry cycles may induce weakness planes in soil 

structural units that can reduce ped size. 

Size class for platy structure occurred with a somewhat bimodal distribution—that is, 

most platy peds fell within fine (30%) or coarse (37%) size classes with fewer occurring as 

medium (25%) (Fig. 3a). Platy structure was concentrated at shallow depths with 83% of these 

peds occurring in surface horizons (only 0.6% of all subsurface horizons in the dataset were 

characterized as platy) (Appendix B Fig. B1). In addition, the majority of pedons (76%) 

containing surface horizons with platy structure occurred in either the Great Basin, Mojave, or 

Sonoran deserts (sensu Laity, 2002) of the southwest USA, with 87% of these pedons occurring 

in desert, semi-desert, or steppe ecoregion provinces and 72% of them occurring in dry Köppen-

Geiger climate classes (i.e., BSh, BSk, BWh, or BWk; see Table 1 for an explanation of these 

symbols) (Appendix B Table B2; B8). 

Because samples in the dataset were removed that indicated disturbance by plowing, 

these platy peds are largely the result of natural processes such as the development of vesicular 

horizons. Vesicular horizons form in arid and semi-arid environments from the addition of eolian 

sediment, establishment of physical or biological surface seals, and exposure to wet/dry cycles 

that create and grow vesicular pores (i.e., bubble-like, isolated soil pores) (Turk and Graham, 

2011). As the vesicular pores enlarge through this process, they ultimately coalesce and collapse 

to form platy structure (Anderson et al. 2002; Turk and Graham, 2014). Our finding that surface 

horizon platy structure occurs largely within dry environments is consistent with this formation 

process of vesicular horizons.  
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It is unclear what is driving the bimodal distribution in size classes for platy peds. 

However, we observed both physical and chemical differences between the medium compared to 

the fine and coarse sizes. For instance, mean silt content was lowest for horizons with medium 

platy peds at 30±5.0% (± standard error) with fine and coarse sizes containing 45±4.4% and 

36±3.8%, respectively (data not shown). Mean CaCO3 content was higher for medium platy peds 

(10.5±4.7%) compared to 7.0±2.6% for fine and 6.8±2.2% for coarse sizes while, interestingly, 

mean saturated-paste pH was lower for medium platy (7.24±0.41%) compared to 7.64±0.19% for 

fine and 7.76±0.26% for coarse sizes. Differences between the distribution of platy sizes may be 

linked to these physical and/or chemical differences although the link between these properties 

and vesicular horizon formation is unclear (Turk and Graham, 2011). 

Ped grades showed a relatively similar distribution for granular, platy, prismatic, and 

subangular blocky peds (weak grades ranged from 38 to 56%, moderate grades from 38 to 58%, 

and strong from 4 to 12%) compared to angular blocky peds, which exhibited stronger grades 

(i.e., 13% weak, 64% moderate, and 23% strong) (Fig. 3b). One reason for the shift toward 

stronger grades is the association between angular blocky peds and higher clay content (36±0.8% 

compared to 25±0.3% for all other ped types). This association is further discussed below. 

However, another reason for these stronger grades is that angular blocky structures tend to be 

identified by describers more easily (Mohammed et al., 2016), suggesting that they may be 

described more frequently in higher grade classes when compared to other ped types. 

 

Depth Distribution of Soil Structure 

Figure 4 presents the MLR results for soil structure class data (i.e., ped type, size and 

grade) as a function of depth for the subset of KURDS used in this study. Granular structure was 
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the most frequently observed ped type (i.e., highest predicted probability) between the surface 

where it occurred in 67% of the samples and a depth of 14 cm (reaching a 43% occurrence rate at 

that depth) (Fig. 4a). Below 14 cm, granular structure continued to decrease to <5% below 40 

cm. Platy structure was observed at a rate of 8.4% at the surface decreasing to <5% at a depth of 

21 cm. The second most frequent ped type observed at the surface was subangular blocky (18%), 

which became the dominant structure type below 14 cm peaking at an occurrence rate of 82% at 

48 cm. The frequency of subangular blocky structure decreased below that depth until being 

surpassed by prismatic structure (41%) at a depth of 224 cm. The occurrence of angular blocky 

increased from near zero to about 50 cm reaching a rate of 10% below which it flattened 

reaching its highest value of 16% at a depth of ~200 cm. Interestingly, the occurrence of 

prismatic structure increased relatively linearly from the surface to a depth of approximately 125 

cm increasing its slope below that point until reaching 56% at a depth of 275 cm and becoming 

the most common ped type below 224 cm. 

The depth distribution of size class frequency for angular and subangular blocky structure 

is shown in Fig. 4b. Medium angular and subangular blocky peds were observed on average at 

the highest rates throughout the soil profiles and ranged between 45% at the surface to a peak of 

61% at 147 cm. However, the overall trend of the size class data for these ped types was toward 

a monotonic increase of size with depth. That is, very fine and fine peds decreased from their 

surface occurrence rates of 12 and 37%, respectively, while coarse and very coarse increased 

with depth reaching probability values of 42% for coarse sizes at the deepest sampling points in 

this dataset (275 cm) surpassing fine peds below 158 cm. No significant trends between grade 

class and soil depth were observed; moderate grades were the most frequently described (~57%) 

followed by weak (~37%) and strong (~6%) (Fig. 4c). 

65



 
 

On average, the upper 25 cm of the soils examined in this dataset were dominated by 

granular and subangular blocky structure (Appendix B Fig. B1a) accounting for approximately 

90% of the ped types occurring within that depth. The granular structure decreased exponentially 

with depth likely reflecting an association with the depth distribution of soil biota and SOM. For 

example, the creation of randomly-oriented cracking patterns driven by soil drying from high 

concentrations of fine roots near the surface has been linked to the distribution of granular 

structure (Oades, 1993). Similarly, concentrations of endogeic earthworms at shallow depths can 

produce soil fabrics characterized by spherical macroaggregates (i.e., granular peds) through the 

combined effects of compaction and egestion (Blanchart et al., 1997; 1999). Soil organic carbon 

(OC), which follows a similar exponential decrease with depth (Jobbágy and Jackson, 2000), 

also encourages the formation of granular structure by increasing soil cohesion (Schaetzl and 

Anderson, 2005). 

The predominance of subangular blocky structure in subsurface horizons to an average 

depth of approximately 225 cm, may be due to a combination of concentration of silicate clays in 

B horizons through pedogenic translocational processes, which enhance cohesion of the soil 

material, and an increasing overburden pressure, which acts to consolidate and aggregate the 

primary particles with depth. As this pressure increases with depth through the weight of 

overlying material beyond the observed peak probability at approximately 50 cm, the formation 

of equidimensional peds, such as subangular blocky structure, becomes less favorable due to the 

asymmetrical development of weakness planes in response to soil shrinkage (Hartge and Horn, 

2016). That is, anisotropic peds, such as prisms, are formed through the separation of laterally-

adjacent structural units brought about by shrinkage-induced compression of drying soil material 

under conditions of increased vertical pressure with depth (Turk et al., 2012). This increase in 
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pressure with depth from the overlying soil material also explains the distribution of angular and 

subangular blocky ped sizes shown in Fig. 4b where the formation of larger peds are encouraged 

through the consolidation of soil material under this pressure. The rapid increase of subangular 

blocky structure in the upper 50 cm of the soil followed by a more gradual decline beyond that 

depth may also reflect the rate and/or frequency of drying of soil material; in general, rapid 

dewatering of the soil material tends to favor the formation of blocky structure (Turk et al., 

2012). 

 

Effects of Individual Exogenous and Endogenous Properties on Soil Structure 

Ped Type Class 

The MLR-predicted ped type probabilities for each exogenous and endogenous variable 

are shown in Fig. 5. In surface horizons, the probability of granular structure showed a positive 

association with OC content, root density, and EEMT (Fig. 5e,h,i). High EEMT values are 

associated with warm, wet climates and ecoregions with higher SOM and root densities that 

promote the formation of granular structure. Despite occurring with the highest probability over 

most of the sand range (i.e., ≲77% sand), granular structure was negatively correlated with sand 

content (Fig. 5b). This negative correlation may be due, perhaps, to the reduced shrinkage of 

coarse textured soils in response to drying by roots compared to fine-textured soils although 

granular structure did not show an obvious positive association with clay content (Fig. 5a). A 

negative association was observed between granular structure and high values of CEC/clay ratio 

(i.e., ≳4.5) with a concomitant increase in angular blocky structure above that value (Fig. 5d) 

likely reflecting the effects of shrink-swell, high-CEC clay minerals which encourage higher 

angularity in ped shape.  
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The two soil chemical dispersion indices, ESP and Ca/Mg ratio, showed opposite effects 

on granular structure in surface horizons (Fig. 5f,g). Granular structure was negatively correlated 

to higher ESP¾becoming less prominent than platy structure above ~3% and prismatic structure 

above ~12%¾reflecting a decrease in vegetation and root density with increasing sodicity (RD 

and ESP were negatively correlated: Pearson product-moment correlation coefficient, 

r = -0.24¾H0: r = 0, t = -7.50, P < 0.001; data not shown) (Dye et al., 1980). By contrast, lower 

values of Ca/Mg ratio, which indicate greater potential for dispersion, were associated with a 

higher probability of granular structure with values above ~25 favoring the formation of 

subangular blocky structure (Fig. 5g). The mechanism for this trend is unclear. Higher values of 

Ca/Mg ratio tend to encourage flocculation of clays (Dontsova and Norton, 2002), which may 

serve to bind granular structure into larger equidimensional structural units recognized in the 

field as subangular blocky peds. However, the probability of finer granular ped size classes did 

not decrease with increasing Ca/Mg as expected (data not shown).  

Platy structure showed several interesting trends in surface horizons. Drier and/or colder 

climates (EEMT ≲ 8 MJ m-2 y-1) were negatively associated with increasing probabilities of 

platy structure as were larger values of OC and RD (Fig. 5e,h,i) owing partly to the positive 

correlation between these variables (i.e., OC and EEMT: r = 0.32¾H0: r = 0, t = 7.21, 

P < 0.001; RD and EEMT: r = 0.22¾H0: r = 0, t = 5.61, P < 0.001; data not shown). Sodicity 

was positively correlated with platy structure, with platy peds becoming dominant between ESP 

values of ~2.7 and ~12% (Fig. 5f). Thus, platy peds were favored under drier/colder climates in 

soils with greater potential for dispersion and lower densities of roots and SOM (Anderson et al. 

2002; Schaefer and Dalrymple, 1995).  
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Compared with surface horizons (Fig. 5a-j), subsurface horizons (Fig. 5k-t) showed much 

less variability in the probability of most ped types, with subangular blocky structure dominating 

the majority of the range of the exogenous and endogenous variables examined (consistent with 

Figs. 4a and B1). The probability of subangular blocky structure decreased in soils with clay 

contents above ~25% with a corresponding increase in angular blocky structure, which became 

dominant above ~60% clay (Fig. 5k). Similar results were observed with CEC and CEC/clay 

ratio, with the former corresponding to an increase in angular blocky structure at CEC values 

above ~20 cmolc kg-1 and the latter corresponding to an increase in prismatic structure at 

CEC/clay ratios above ~1 (Fig. 5m, n). Subangular blocky and prismatic structures in subsurface 

horizons showed opposite trends below ~0.1% OC content (Fig. 5o); the probability of 

subangular blocky structure increased with larger OC values in that range while the probability 

of prismatic structure decreased. Increasing values of ESP above ~7.5% were associated with 

decreasing subangular blocky structure and increasing columnar structure probabilities (Fig. 5p). 

Warmer, wetter climates (increasing values of EEMT) were associated with increasingly 

common subangular blocky structure (Fig. 5s).  

In general, these results indicate that the development of subangular blocky structure is 

favored under conditions of sufficient clay content provided that the clay is dominated by lower 

CEC minerals (Southard and Buol, 1988). Additionally, the subsurface development of angular 

blocky structure is favored by high clay content (≳60%) and high CEC, although the individual 

effects of these variables on the frequency of ped types is unclear given that clay content and 

CEC were strongly positively correlated (i.e., r = 0.61¾H0: r = 0, t = 33.10, P < 0.001; data not 

shown). Prismatic structure development appears to be encouraged by high CEC/clay ratios but 

this effect can be partly explained by the effect of depth or weight of the overlying material as 
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shown in Fig. 4a since CEC/clay and horizon midpoint depth were positively correlated (i.e., 

r = 0.05¾H0: r = 0, t = 2.26, P = 0.012; data not shown). A similar statement can be made for 

the relationship observed between OC and the ped types subangular blocky structure and 

prismatic (i.e., OC and depth: r = -0.30¾H0: r = 0, t = -11.54, P < 0.001; data not shown). The 

positive relationship between EEMT and subsurface subangular blocky structure likely reflects 

the influence of climate on clay formation and the production of SOM (clay content and EEMT: 

r = 0.074¾H0: r = 0, t = 3.53, P < 0.001; OC and EEMT: r = -0.090¾H0: r = 0, t = -3.29, 

P < 0.001; data not shown). As expected, high soil sodicity in the subsurface promotes the 

development of columnar structure through the dispersion of the tops of otherwise prismatic peds 

(Schaefer and Dalrymple, 1995) although actual morphological differences between prismatic 

and columnar structure due to the rounding of the ped tops is largely imperceptible (Mohammed 

et al., 2016). 

 

Ped Size Class 

The MLR-derived ped size class probabilities for only angular and subangular blocky 

structure is shown in Fig. 6. Surface horizons show a general trend toward increasing probability 

of coarser peds with increasing clay content—that is, fine (i.e., 5-10 mm) peds became more 

frequent with larger clay content at the expense of very fine (i.e., <5 mm) peds (Fig. 6a). A 

similar relationship was observed in subsurface horizons where medium (i.e., 10-20 mm) peds 

became more frequent at the expense of fine peds with increasing clay content (Fig. 6k). 

Increased frequencies of coarser ped sizes at the expense of finer peds were also observed for 

increasing sand content and sodicity in both surface and subsurface horizons (Fig. 6b,f,l,q). Root 

density, OC, and EEMT in surface horizons showed a positive trend with the probability of fine 
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structure at the expense of medium (Fig. 6e,h,i). Perhaps the most dramatic trends toward ped 

size fining were observed in Fig. 6d,n where ped size decreased with increasing CEC/clay ratio 

in surface and subsurface horizons. 

Overall, increasing RD and biological activity reflected in the production of SOM and 

supported by increasingly warmer and wetter climates (i.e., increasing EEMT), promotes the 

separation of the soil groundmass into finer peds. This tendency toward the reduction of ped size 

may represent a combination of the creation of dense patterns of weakness planes by roots and 

subsequent soil drying (Oades, 1993), increased bioturbation processes such as the egestion of 

soil particles by earthworms or the enhanced creation of pore networks by ants (Jongmans et al., 

2003; Leveque et al., 2014; Drager et al., 2016), and/or increased turnover of SOM through 

stimulation of the soil microflora by environments characterized as warmer and more humid 

(Carvalhais et al., 2014). The decrease in ped size is further promoted by 2:1 clays with higher 

CECs and, likely, higher propensity to shrink and swell as reported for soil aggregates 

(Fernández-Ugalde et al., 2013), especially in subsurface horizons where these clays are more 

abundant. By contrast, increased clay content in both surface and subsurface horizons promotes 

the aggregation of both soil particles and smaller structural units. The reason sand showed the 

same relationship as clay may be due to an overall reduction in the presence of shrink-swell clays 

with increasing sand content, which if present would tend to fragment the soil into smaller ped 

sizes. It is unclear why the potential for more dispersion represented by larger ESP values 

increased the probability of ped size nor why increased dispersion potential indicated by the 

Ca/Mg ratio showed the opposite trend (Fig. 6g). Adding to this confusion, the values of the two 

dispersion potential indices for surface horizons were negatively correlated (i.e., r = -0.18¾H0: 

r = 0, t = -2.66, P = 0.004; data not shown). However, surface horizons with ESP values > 3 
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were concentrated in deserts of the southwestern US while Ca/Mg ratios < 1 were concentrated 

east of the 100th meridian (data not shown) in the humid subtropical hot-summer (Cfa) Köppen-

Geiger climate class (Table 1; Fig. 2) suggesting that different processes may be at work under 

conditions of high ESP compared to low Ca/Mg ratio.  

 

Ped Grade Class 

Structural grade class probabilities showed a positive relationship with clay and OC in 

surface horizons where moderate grades increased at the expense of weak grades (Fig. 7a,e). 

Although CEC showed a similar relationship (Fig. 7c), this is likely a reflection of both clay 

content and OC as opposed to a mineralogical effect since only a slight trend was observed with 

CEC/clay ratio and grade (Fig. 7d). As effective aggregating agents, clay content and OC are 

likely acting to form better defined structural units reflected in the higher-grade classes. This was 

true in subsurface horizons as well where clay content showed a similar positive relationship 

with grade (Fig. 7k) and CEC following a similar but somewhat muted pattern (Fig. 7m). Sand 

content was inversely related to grade likely reflecting a diluting effect of the increased sand on 

clay content (Fig. 7b,l).  

The dispersion potential indices, ESP and CEC/clay ratio, were also negatively related to 

structure grade where increased dispersion (i.e., increasing ESP and decreasing CEC/clay) 

yielded weaker grades in surface horizons (Fig. 7f,g). A closer look at the data revealed that the 

trend with dispersion potential was entirely driven by angular and subangular blocky peds; no 

trend was detected between dispersion potential and grade for granular peds (data not shown). 

Because, the effects of increased dispersion potential near the land surface is concentrated on the 

outside of peds, soil particles at ped faces and edges tend to disperse and erode into interpedal 
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pore spaces likely reducing the visibility and, thus, the expression of individual structural units. 

However, grade probabilities and ESP were not associated in subsurface horizons (Fig. 7p) 

although increasing dispersion potential represented by decreasing Ca/Mg ratio in subsurface 

horizons corresponded to better ped expression (Fig. 7q). The reason for the reversal in the trend 

from that observed in surface horizons with Ca/Mg ratio is unclear.  

Increasing CEC/clay ratio (corresponding to an increase in expansive clay minerals) 

showed a stronger effect of reducing ped grade in the subsurface than in surface horizons (Fig. 

7d,n). However, the surface trend is somewhat obscured by the opposite effects of granular and 

combined angular and subangular blocky peds at that depth (data not shown). Granular peds 

showed an increasing tendency toward strengthening of structural grade with increasing 

CEC/clay ratio while angular and subangular blocky peds showed a weakening of grade. It is 

likely that the increased tendency toward fragmentation of soils at the surface characterized by 

high CEC/clay ratios helped strengthened the distinctness of individual granular peds while 

decreasing the stability of larger structural units (i.e., angular and subangular blocky peds; Fig. 

6d,n) leading to an overall decrease in visual assessments of grade for those peds. 

Surprisingly, no clear relationships between ped grade and the exogenous variables—

EEMT and slope—were observed in surface horizons despite the relationship observed between 

OC and grade and the known relationship between climate and OC (Fig. 7i,j) (Rasmussen et al., 

2018). In subsurface horizons, however, increasing EEMT corresponded to a tendency toward 

moderate grades at the expense of weaker and stronger grade classes whereas increasing surface 

slope corresponded to an increased probability of stronger grades (Fig. 7s,t). The relationship 

between EEMT and grade may reflect an accommodation between strengthening effects of 

increased clay content in the subsurface and weakening effects of increasing expansive clay 
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minerals (represented by the relationship with CEC/clay ratio) concentrated in the subsurface. 

The strengthening trend in grade with increasing surface slope is unclear but may be due to soil 

movement in response to increased gravitational potentials under increasing pressure from 

overlying soil horizons, which can fracture the soil groundmass leading to more visually distinct 

peds. 

 

Influence of Parent Material on Soil Structure 

We examined the relationships between qualitative soil structures (ped type, size and 

grade class) with parent materials for surface and subsurface horizons using MLR. Across all 

parent materials, the most dominant type of soil structure in surface horizons was granular. Loess 

exhibited the highest proportion of granular (84%), followed by till (75%) and residuum (68%) 

(Fig. 8a). The second most dominant structure type in surface horizons was subangular blocky, 

which accounted for 35% of alluvium and 30% of residuum parent materials. Platy structure 

accounted for 18% in alluvium.  

The high probability of granular occurring in loess might be due to the high composition 

of silt in these soils (69.4%; data not shown) and the climate or ecoregions in which these soils 

are found. Pedons formed in loess parent material in KURDS tend to cluster mostly in the Prairie 

Parkland (Temperate) ecoprovince (Fig. 2) and contain root systems that are deep and extensive. 

As discussed above, these prairie rooting systems promote the development of granular structure 

to the depth of maximum root development (Oades, 1992). 

Figure 8b shows the results of MLR for all parent materials in subsurface horizons. The 

most frequently observed soil structure was subangular blocky (82%) for both alluvium and 

residuum; subangular blocky also occurred at a rate of 75% for loess and 70% for till. The 
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second most common ped type observed was angular blocky, with a higher predicted value in till 

(23%) as compared to other parent materials. Prismatic structure was observed at a higher 

probability in both loess (17%) and till (5%) compared to alluvium and residuum. The reason for 

these higher percentages may be the combination of high clay content and slope in loess (28% 

clay and 21.6% slope) and till (32% clay and 17.9% slope) in subsurface horizons. The higher 

occurrence of prismatic structure in these parent materials might be explained by the increased 

effects of wet/dry or freeze/thaw cycles in soils with higher slopes and sufficient clay content. As 

slope increases, soils tend to move via gravitational processes induced by pedoturbation, which 

may form planes of weakness orthogonal to the land surface promoting the formation prismatic 

structures. 

Fine peds were observed in surface horizons with the highest probability observed in 

loess (67%) compared to other parent materials (Fig. 9a). Medium ped sizes were observed at a 

rate of 38% in alluvium. Till showed the highest proportion of very fine ped sizes (39%) 

compared to other parent materials. Coarse ped sizes were observed with the highest frequency 

in loess (8%). Loess showed a bimodal distribution of ped sizes from fine to coarse with very 

few medium ped sizes recorded for these surface horizons. The high RD (0.03) observed in loess 

soils in our dataset might explain the high probability of very fine and fine ped sizes occurring in 

loess compared to other parent materials. This is because of the tendency for high fine RD to 

promote finer structures through the development of randomly oriented planes of weakness (e.g., 

Oades, 1992). 

Medium ped sizes were the most common in subsurface horizons (Fig. 9b), occurring 

mostly in soils developed in residuum parent materials (69%). Fine peds occurred predominately 
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in loess (35%) and very coarse peds showed the highest occurrence in alluvium (1.1%). Overall, 

no clear trend in subsurface ped sizes of angular and subangular blocky structure was observed.  

In addition to ped type and size, we also examined the relationships between ped grade 

and parent material (Fig. 10a,b) for both surface and subsurface using MLR. Weak and moderate 

ped grades occurred in high proportions across all parent materials. The proportion of strong ped 

grades in surface horizons was lower than in subsurface horizons. However, loess, compared to 

other parent materials, showed the highest proportion of strong ped grades (10.3%) and the 

lowest proportion of weak ped grades (34.5%) in surface horizons. Till had a higher proportion 

of weak grades (62.7%) in surface horizons compared to other parent materials. In subsurface 

horizons, a higher proportion of weak ped classes (38.2%) were observed in alluvium. With the 

exception of loess in surface horizons, as with ped sizes, no clear trend was observed in ped 

grade classes across the four parent materials examined in this study. 

 

Relative Importance of Exogenous and Endogenous Variables on Soil Structure   

Pruned DTs were used to assess the relative importance and effects of exogenous 

(including EEMT, slope, and parent material) and endogenous variables on the prediction of 

each categorical and quantitative description of soil structure (i.e., the response variables in 

Table 3). We included depth in these models as a categorical variable to indicate whether a 

sample was collected from a surface horizon or subsurface horizon.  

Figure 11 presents the results of this analysis for ped type, roundness, and solidity. The 

first values displayed in the shaded boxes correspond to the central tendency (mode for 

categorical variables—Fig. 11a—and mean for continuous variables—Fig. 11b,c) of the data 

subset defined by the criteria given in the previous splits; the second values correspond to 

76



 
 

percentages of all samples that fall in the respective subset.  The only significant predictor of ped 

type in the dataset used in this study was depth (Fig. 11a). Granular peds were predicted from 

surface horizons and subangular blocky peds were predicted from subsurface horizons likely 

reflecting the abundance of these two ped types in surface and subsurface horizons, respectively 

(Appendix B Fig. B1). Ped type (on a nominal scale) was transformed into more meaningful 

continuous variables—ped roundness and solidity, both on a ratio scale—adding the property of 

transitivity (or “rankableness”) and placing it on a metric scale such that the degree of difference 

between two ped types could be assessed (Kachigan, 1991). Climate (i.e., EEMT) was the most 

important predictor for ped roundness followed by slope, OC, and parent material (Fig. 11b). 

Values of EEMT ≥36 MJ m-2 y-1 (i.e., relatively warm and humid climates) produced ped shapes 

that were more round (0.80) whereas EEMT values <36 MJ m-2 y-1 (i.e., colder and/or drier 

climates) were associated with peds that were less round (0.64). For soils within climates 

characterized by EEMT values <36 MJ m-2 y-1, gently sloping land surfaces (<13%) were 

associated with higher roundness (0.67) than more steeply sloping surfaces (0.47). Values of OC 

≥0.64% corresponded to higher values of roundness (0.76) compared to OC values <0.64% 

(0.36) for steeply sloping soils under relatively cold and/or dry climates (EEMT < 36 MJ m-2 y-

1). For soils under these climates and slopes that were characterized by low OC, much lower 

values of ped roundness (0.25) were associated with loess and till parent materials compared to 

alluvium and residuum (0.75).  

Climate was also the best predictor for solidity where dry climates (EEMT < 10 MJ m-2 

y-1) characterized by BSh, BWh, and BWk Köppen-Geiger climate classes were associated with 

slightly rougher peds with mean solidity values of 0.87 compared to 0.90 in more humid climates 

(Fig. 11c). Depth and OC were the second most important variables with rougher ped shapes 
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observed for soils with OC values <1.4% (0.89) and smoother peds observed in soils with higher 

OC (0.91) under climates characterized by EEMT values ≥10 MJ m-2 y-1. Surface horizons, 

which were associated with slightly higher solidity values (0.85) than subsurface horizons (0.88), 

were partitioned by RD for soils under dry climates. In these soils, low RDs (<0.002) promoted 

the development of rougher peds (0.79) compared to higher RDs (0.87) likely reflecting the 

increased probability of platy structure in arid surface horizons with low RDs (Fig. 5; Appendix 

B Table B1 and B7) since platy peds are associated with lower solidity values (Mohammed et al., 

2016). 

Overall, exogenous variables (EEMT and/or slope) were more important in detecting 

differences in the quantitative ped shape metrics (roundness and solidity) than any of the other 

variables used in this analysis. Soils in warmer, more humid environments characterized by 

higher SOM content promoted the development of peds that were, in general, smoother and more 

equidimensional (i.e., represented by higher roundness values). By contrast, anisotropic peds 

with higher surface roughness are produced under warmer, drier environments. This tendency 

toward either smoother, equidimensional peds or rougher, anisotropic peds may reflect a forcing 

by climate toward one of two dominant pathways of soil structural evolution. According to the 

paradigm for soil structure proposed by Díaz-Zorita et al. (2002), soil structural units develop as 

a result of either (1) ‘building up processes’ by which soil particles and smaller aggregates 

agglomerate or (2) ‘breaking down processes’ by which unstructured, cohesive soil material or 

larger aggregates fracture into smaller units. Although it is likely that both of these processes are 

operating simultaneously (Díaz-Zoritz et al., 2002), the results in Fig. 11 suggest that one of 

these two types of processes may be dominant in a given environment. Using the idea of 

pedogenic pathways proposed by Johnson and Watson-Stegner (1987) and defined by Schaetzl 
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and Anderson (2005) as ‘a set of pedogenic processes leading to a given soil morphology,’ here 

we define two pedogenic pathways related to soil structure—aggregation and separation—that 

result, respectively, from either a dominance of building up processes (e.g., organic bonding, or 

enmeshing of soil particles/aggregates by roots or fungal hyphae) or a dominance of breaking 

down processes (e.g., freezing/thawing or shrinking/swelling). Because climate can strongly 

influence dominant weathering processes in a landscape (Peltier, 1950), in the absence of other 

strong forcings (e.g., land use), these pathways are likely controlled by prevailing climate such 

that soil structure evolves via either separation pathways through largely mechanical processes 

such as wet/dry or freeze/thaw cycles under colder/drier climates, or aggregation pathways 

through dominantly biological or chemical processes such as root growth or the precipitation and 

translocation of authigenic clays under warmer/wetter climates. 

Pruned DTs for qualitative ped size class data of angular and subangular blocky structure 

and quantitative ped size data (i.e., geometric mean of each size class) for all ped types are 

shown in Fig. 12. Climate, represented by EEMT, was the only important variable for predicting 

ped size class (Fig. 12a).  Fine angular and subangular blocky peds were predicted for 

environments characterized by EEMT values between approximately 33 and 50 MJ m-2 y-1; 

medium peds were predicted outside that range. Although the reason for this tendency toward 

finer ped size classes in angular and subangular blocky structure under moderate climates is 

unclear, we note that the majority of the data (84%) were from samples with EEMT values less 

than 50 MJ m-2 y-1. Thus, this finding might reflect more of a general tendency toward the 

development of finer peds in soils under warm, humid climates compared to cold, dry climates as 

(observed in Fig. 6i) instead of a tendency toward fine peds under moderate climates and coarse 

peds under more extreme climates. This finding appears to be consistent with Baver (1934) who 
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reported that the percentage of silt and clay particles in surface horizons that were aggregated in 

a given soil mass decreased with increasing precipitation along a constant isotherm. This was 

attributed to the loss of inorganic aggregating agents in surface horizons under increasing 

precipitation. However, temperature relationships with aggregation were more ambiguous in that 

study with a decrease in percent aggregation observed with increasing temperature under humid 

climates and an increase in aggregation observed for increasing temperature for semi-arid 

environments (Baver, 1934). The best predictor for quantitative ped size class was depth 

(Fig. 12b) where surface horizons were associated with smaller peds (4.6 mm) and subsurface 

horizons with larger peds (19 mm). This result is consistent with the results in Fig. 4 where an 

average continuous drop in ped size (albeit qualitative class data) was observed with depth from 

the surface to over 2.5 m. However, the results in Fig. 12b are likely driven by the predominance 

of subangular blocky peds in subsurface horizons, which represent considerably larger structural 

units compared to the granular peds at the surface (Appendix B Fig. B1). 

The DTs in Fig. 13 show that clay was the only important variable for predicting both 

ped grade class (qualitative) and ped grade data (quantitative) where increasing values of clay 

were associated with stronger grade classes and larger numerical grade values. These results are 

consistent with Fig. 7a,k that show increasing frequencies of stronger classes with increasing 

clay content for both surface and subsurface horizons and likely reflect the effectiveness of clay 

as an aggregating agent strengthening ped expression. 

We also used DTs for each 1-cm soil depth interval to examine the importance of various 

endogenous factors (i.e., clay content, sand content, OC, CEC, CEC/ clay ratio, RD, ESP, Ca/Mg 

ratio) on quantified soil structure properties. Figure 14 plots the normalized variable importance 

metrics calculated from the DTs against depth. Organic carbon was the most important variable 
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at the surface with respect to ped size, steeply dropping below other endogenous variables within 

approximately the upper 10 cm. Between approximately 10 cm to 30 cm, Ca/Mg ratio was the 

most important factor influencing ped size with clay content becoming important below 30 cm. 

Below approximately 80 cm, both CEC and clay content were the most important variables for 

predicting ped size likely reflecting combined effects of texture and clay mineralogy on the 

development of ped sizes.  

Clay content was the most important factor for ped grade, which is consistent with the 

results presented in Fig. 13. Both roundness and solidity showed similar importance distributions 

with depth. Organic carbon was the most important predictor near the surface (0 to ~30 cm). 

Texture (i.e., clay and sand content) was the most important factor accounting for roundness and 

solidity between approximately 30 and 75 cm with CEC becoming important below that depth. 

We interpret this pattern as follows. Ped shape is controlled predominately by SOM near the 

surface with clay becoming important due to increased cohesiveness below approximately 30 

cm. This finding is consistent with Dexter (1985) who found clay and SOM to be correlated with 

ped roundness and roughness. Clay mineralogy controls ped shape at deeper depths likely 

because of increased pressures of the overlying soil material as discussed previously. 

Surprisingly, plant roots were not distinguished from other variables influencing ped grade, size, 

or shape. 

 

CONCLUSIONS 

The most influential factors determining ped shape were the exogenous variables, climate 

and slope, along with depth. The most important endogenous variables for predicting ped shape 

were OC, clay content, and mineralogy. Platy, prismatic, and angular blocky peds decreased 
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under more humid conditions, whereas granular peds in surface horizons and subangular blocky 

peds in subsurface horizons increased with increasing EEMT (i.e., warmer, more humid 

climates). These changes were reflected in anisotropic (less round) peds with rougher surfaces in 

cold and/or dry climates and more equidimensional peds with smoother surfaces in warmer, 

wetter climates. 

Overall, the exogenous variable, EEMT, played the most important role in the 

development of ped size in surface and subsurface horizons. Warmer, more humid climates 

(increasing EEMT) promoted the development of smaller ped sizes. In general, ped size was also 

a function of depth with smaller peds occurring in surface horizons (4.6 mm on average above 25 

cm) and larger peds occurring in subsurface horizons (19 mm on average below 25 cm). Clay 

content was the only important variable affecting ped grade.  

Given the importance of soil structure in controlling soil hydraulic properties, our 

findings suggest that the relationship between soil structure and exogeneous variables such as 

climate should be further investigated to predict the effect of global climate forcings on soil and 

near-surface hydrology. We have demonstrated that the development of the large soil dataset in 

this work (KURDS) opens the door to a rigorous analysis by combining both field- and 

laboratory-based observations and measurements with ecological and climatological information 

at a continental scale. Future work using KURDS should benefit from a combined qualitative 

and quantitative analysis approach similar to that used in this study. 
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Mean 
EEMT

Mean 
MAP

Mean
MAT

KG Climate Region Symbol [MJ m-2 y-1]  [mm] [ºC] Ecoregion Province
Tropical Monsoon Am 72.57 1435 24 Everglades
Tropical Savanna Aw 67.49 1354 24 Everglades
Hot Low-Latitude Steppe BSh 19.21 363 19 American Semi-Desert and 

Desert
Cold Midlatitude Steppe BSk 11.83 372 11 California Dry Steppe 

Hot Low-Latitude Desert BWh 15.34 203 20 American Semi-Desert and 
Desert

Cold Midlatitude Desert BWk 10.74 238 12 Intermountain Semi-Desert and 
Desert

Humid Subtropical Hot-
Summer

Cfa 46.77 1174 15 Eastern Broadleaf Forest 
(Continental) 

Marine West-Coast Cfb 71.54 2035 11 Central Appalachian Broadleaf 
Forest – Coniferous Forest – 
MeadowMediterranean Dry-

Summer Hot
Csa 31.66 907 14 Sierran Steppe – Mixed Forest 

– Coniferous Forest – Alpine 
MeadowMediterranean Dry-

Summer warm
Csb 49.83 1406 12 Sierran Steppe – Mixed Forest 

– Coniferous Forest – Alpine 
MeadowHumid Continental Hot-

Summer
Dfa 30.87 1021 12 Eastern Broadleaf Forest 

(Continental) 
Humid Continental Mild-
Summer

Dfb 13.03 786 6 Laurentian Mixed Forest

Marine West-Coast Cool 
Summer

Dfc 6.70 738 3 Southern Rocky Mountains 
Steppe – Open Woodland – 
Coniferous Forest – Alpine 

Warm Continental- 
Mediterranean 
Continenteal

Dsa 13.74 682 8 Northren Rocky Mountains 
Forest – Steppe – Coniferous 
Forest – Alpine Meadow

Temperate Continental- 
Mediterraneant 
Continental

Dsb 13.30 720 8 Sierran Steppe – Mixed Forest 
– Coniferous Forest – Alpine 
Meadow

Cool Continental Dsc 14.27 841 6 Central Appalachian Broadleaf 
Forest – Coniferous Forest – 
Meadow

Humid Continental Hot-
Summer

Dwa 9.97 639 7 Prairie Parkland (Temperate)

Subarctic Dwb 7.10 520 5 Great Plains-Palouse Dry 
Steppe

Tundra ET 5.58 812 2 Southern Rocky Mountains 
Steppe – Open Woodland – 
Coniferous Forest – Alpine 
Meadow 

Table 1. Köppen-Geiger (KG) climate classification, mean effective energy and mass transfer (EEMT), 
mean annual precipitation (MAP), mean annual temperature (MAT), and the ecoregion province in 
each KG climate region of the USA that occurred the most frequently (mode) for the University of 
Kansas Research Dataset of Soils (KURDS).
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Selection Criteria N Notes

Alluvium 26,352 Values of "slope alluvium", "valley side alluvium", 
and " alluvium" were selected  

Residuum 15,774 Values of "residuum" were selected 
Till 9,705 Values of "ablation till", "basal till", "flow till", 

"lodgement till", "melt-out till", "subglacial till", 
"supraglacial till", and "till" were selected  

Loess 12,908 Values of "calcareous loess", "non-calcareous 
loess", and "loess" were selected

Alfisols 21,848
Aridisols 2,097
Mollisols 16,073
Ultisols 1,905

A horizon 5,857 Excluded buried horizons, lithologic discontinuities, 
and plowed layers; midpoint depth less than or equal 
to 25 cm of the mineral soil surface were selected

B horizon 1,609 Excluded buried horizons and lithologic 
discontinuities; midpoint depth greater than 25 cm of 
the mineral soil surface were selected

Somewhat poorly drained 10,454
Moderately well drained 17,877
Well drained 41,589
Somewhat excessively 
drained

3,063

Excessively drained 1,603

Parent Material

Taxonomy

Horizons

Drainage Class

Table 2. Summary of the selection criteria used to create the dataset investigating soil structure 
in this study. The N column represents the total number of the respective feature in KURDS.
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Variables† Variable Type
Cont. Data 

Trans.‡ Norm. Trans.§
Statistical 
Analyses¶

Ped type class Response MLR, DT
Ped roundess Response PSDM DT
Ped solidity Response PSDM DT
Ped size class Response MLR, DT
Ped size [mm] Response GM DT
Ped grade class Response MLR, DT
Ped grade Response OV DT
Clay [%] Endogenous x 1/2 MLR, DT
Sand [%] Endogenous x 1/2 MLR, DT
OC [%] Endogenous ln (x  + 0.01) MLR, DT
CEC [cmolc kg-1] Endogenous x 1/2 MLR, DT
CEC/Clay Endogenous ln (x  + 0.01) MLR, DT
ESP [%] Endogenous ln (x  + 0.01) MLR, DT
Ca/Mg Endogenous ln (x  + 0.01) MLR, DT
RD Endogenous ln (x  + 0.00001) MLR, DT
Köppen-Gieger class Exogenous MLR#
EEMT [MJ m-2 y-1] Exogenous ln (x  + 0.01) MLR, DT

Ecoregion province Exogenous MLR#
Slope [%] Exogenous ln (x + 0.01) MLR, DT
Parent material Exogenous MLR, DT

Table 3. Summary of the variables, transformations, and statistical analyses used in this 
study. Response variables in this study are also endogenous variables.

§ Normality transformation. Values of either 0.01 or 0.00001 were added to the 
respective variable ( x ) prior to taking the natural logarithm to avoid taking the logarithm 
of zero. Any normality transformations were used for both multinomial logistic 
regression and decision trees.

‡ Continuous data transformation. Ped shape data were converted from categorical 
variables to continuous using the predicted values presented in Mohammed et al. (2016) 
at an unalikeability coefficient equal to zero using the Ped Shape Digital Morphometric 
(PSDM) database. Size was converted to continuous data using the geometric mean 
(GM) of the size class for each size category. Grade values were assigned arbitrary 
ordinal values (OV) between 1 and 3 for weak and strong structure, respectively.

# Results of these analyses are presented in Appendix B.
¶  MLR, multinomial logistic regression; DT, decision tree.

† Clay, sand, and organic carbon (OC) percentages are given on a weight basis. Root 
density (RD) is given as a volumetric fraction. CEC, cation exchange capacity; ESP, 
exchangeable sodium percentage; EEMT, effective energy and mass transfer.  
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Fig. 1. Flowchart illustrating the procedure for assembling the University of Kansas Research 
Dataset of Soils (KURDS) and subset used in this study. See text for more explanation.
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Fig. 2. Geographical distribution of the pedons (N = 1,602) used in this study (selected from 
KURDS) overlain on Köppen-Geiger climate regions in the conterminous USA. The color of 
points correspond to broad soil parent material classes. See Table 1 for an explanation of the 
Köppen-Geiger climate classes. For simplification, two pedons are omitted from this map that 
occurred in the Hawaii.
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Fig. 3. Mosaic plots showing the multinomial logistic regression predicted probabilities of (a) 
ped size and (b) grade for each ped type (abk = angular blocky; gr = granular; pl = platy; pr = 
prismatic; sbk = subangular blocky). Intermediate ped size and grade classes were removed prior 
to analyzing the data with multinomial logistic regression. Width of the boxes corresponds to 
how many observations fall into the category.
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Fig. 4. Multinomial logistic regression predicted probabilities of (a) ped type class, (b) size class, 
and (c) grade class as a function of depth. Intermediate ped size and grade classes (e.g., very fine 
to fine or weak to moderate) were removed prior to multinomial logistic regression analysis. 
Only angular and subangular blocky peds are considered in (b).   
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Fig. 5. Multinomial logistic regression plots showing the probability of predicting ped type 
given endogenous (a-h and k-r) and exogenous (i-j and s-t) variables for both surface (a-j) and 
subsurface (k-t) soil horizons.  
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Fig. 6. Multinomial logistic regression plots showing the probability of predicting angular and 
subangular blocky ped sizes given endogenous (a-h and k-r) and exogenous (i-j and s-t) vari-
ables for both surface (a-j) and subsurface (from k-t) soil horizons. Intermediate size classes 
(e.g., very fine to fine) were removed prior to analyzing the data with multinomial logistic 
regression. 
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Fig. 7. Multinomial logistic regression plots showing the probability of predicting ped grade 
class given endogenous (a-h and k-r) and exogenous (i-j and s-t) variables for both surface (a-j) 
and subsurface (from k-t) soil horizons. Intermediate grade classes (e.g., weak to moderate) were 
removed prior to analyzing the data with mulinomial logistic regression.  
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Fig. 8. Mosaic plots showing the multinomial logistic regression predicted probabilities of ped 
types for both (a) surface and (b) subsurface horizons for each parent material considered in this 
study. Width of the boxes corresponds to how many observations fall into the category. 
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Fig. 9. Mosaic plots showing the multinomial logistic regression predicted probabilities of 
angular and subangular blocky ped sizes for both (a) surface and (b) subsurface horizons for 
each parent material considered in this study. Intermediate size classes (e.g., very fine to fine) 
were removed prior to analyzing the data with multinomial logistic regression. Width of the 
boxes corresponds to how many observations fall into the category. 

a

b

Very �ne

Fine

Medium

Coarse

Very coarse

Pr
ob

ab
ili

ty

0.00

0.25

0.50

0.75

1.00

Alluvium Loess Residuum Till

0.00

0.25

0.50

0.75

1.00

Alluvium Loess Residuum Till

Pr
ob

ab
ili

ty

99



Fig. 10. Mosaic plots showing the multinomial logistic regression predicted probabilities of 
structural grade classes for both (a) surface and (b) subsurface horizons for each parent material 
considered in this study. Intermediate grade classes (e.g., weak to moderate) were removed prior 
to analyzing the data with mulinomial logistic regression. Width of the boxes corresponds to 
how many observations fall into the category.
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Fig. 11. Pruned decision trees showing predicted (a) ped types (gr = granular; sbk = subangular 
blocky), (b) ped roundness, and (c) ped solidity across all parent materials (PM) for both surface 
and subsurface horizons used in this study. All endogenous variables and the exogenous vari-
ables—EEMT, slope, and parent material—were included as predictors in these decision trees.
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Fig. 12. Pruned decision trees showing predicted (a) ped size (includes only angular and suban-
gular blocky peds) and (b) quantified ped size (includes all ped types) across all parent materials 
for both surface and subsurface horizons used in this study. All endogenous variables and the 
exogenous variables—EEMT, slope, and parent material—were included as predictors in these 
decision trees. 
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Fig. 13. Pruned decision trees showing predicted (a) grade class and (b) structural grade (ordinal 
scale) across all parent materials for both surface and subsurface horizons used in this study. All 
endogenous variables and the exogenous variables—EEMT, slope, and parent material—were 
included as predictors in these decision trees.  
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Fig. 14. Plots of the normalized variable importance metric derived from decision tree analysis of 
each depth interval (1 cm). Decision trees were used to predict quantified ped size, grade, round-
ness, and solidity separately across all parent materials considered in this study. Only indepen-
dent variables that varied with depth (i.e., clay, sand, CEC, CEC/clay ratio, root denisty, ESP, and 
Ca/Mg ratio) were considered in this analysis. Only pedons with contiguous horizons beginning 
with the surface horizon that met the criteria listed in Table 2 were used in this analysis (N = 
1,086). We used an equal-area spline to place all variables on the same scale (i.e., 1 cm) prior to 
analysis. The resulting variable importance curves were plotted by depth and smoothed using the 
mean calculated from a 25-cm moving depth window.
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CHAPTER 4. CONCLUSIONS 

Soil structure is described by three morphological properties: size, shape, and grade. 

These morphological properties develop as a result of complex interactions between exogenous 

and endogenous properties and are important because they influence soil hydrological properties 

and processes through alterations in pore-size distributions. In this work, we develop a new 

method for quantitatively describing one of these morphological properties—ped shape—in the 

form of morphometric indices and demonstrate its usefulness in examining continental-scale soil 

structural development.  

We changed typical categorical and subjective descriptions of peds into continuous 

quantitative shape data in Chapter 2. Shape metrics such as circularity and width to height ratio 

were examples of the continuous variables allowing significant differences between ped shapes 

to be detected. We used the intercept of regressed unalikeability coefficients, which account for 

the quality of each ped, to predict idealized ped shape metrics. The results of the survey used in 

this study (Appendix A) showed that participant ability to recognize prismatic structure was 

positively influenced by education and expertise, suggesting that the correct identification of 

prisms requires more training and experience. The numerical values assigned to each ped shape 

in this study may open up the opportunity to study soil structure and model hydrologic processes 

at regional and continental scales without the need to resample (i.e., using photographs of 

previously sampled soil pits). We argue that digital shape metrics from this study could also be 

used to consistently convert morphological descriptions of soil structure into numeric shape 

indices. 

In Chapter 3, we assembled a large soil structure database called KURDS. The dataset 

included a wide range of environmental, morphological, physical, and chemical soil properties 
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for the USA. We show that exogenous variables such as climate and slope, were the best 

predictors of ped shape. When the effects of exogenous variables were removed, endogenous 

variables such as soil organic carbon, clay content, and the mineralogical proxy, CEC, best 

predicted ped shape. Platy, prismatic, and angular blocky peds decreased in frequency under 

warmer, more humid conditions, whereas granular peds in surface horizons and subangular 

blocky peds in subsurface horizons increased under these climates. In cold and/or dry climates, 

the proportion of anisotropic peds increased. Equidimensional peds increased in warmer, wetter 

climates. Effective energy and mass transfer (EEMT), a climatological parameter integrating 

mean annual precipitation (MAP) and mean annual temperature (MAT), was the best predictor 

for ped size in both surface and subsurface horizons. Warmer and wetter climates developed 

smaller peds, in general, for a given depth. Clay content was the only important variable 

affecting ped grade.  

The findings in this dissertation suggest that climate affects the development of soil 

structure by controlling the dominance of either ‘breaking down’ mechanisms (e.g., freeze/thaw 

or wet/dry cycles) or ‘building up’ mechanisms (e.g., fungal hyphae enmeshing or clay cohesion) 

that ultimately define either a separation or aggregation pedogenic pathway, respectively. The 

link between climate and the development of soil structure should be explored further, especially 

given the importance of this morphological property to soil hydrology.  

This dissertation demonstrates the importance of analyzing soil structure at a continental 

scale using quantitative and qualitative descriptions. The combination of field- and laboratory-

based observations and measurements with ecological and climatological information provided 

new insights into broad-scale pedogenic processes. 
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APPENDIX A. A SURVEY FOR QUANTIFYING PED TYPE FROM SOIL PROFILE 
PHOTOGRAPHS 
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In this survey you will see a series of photographs of digitized ped types. The silhouettes linked to each

photograph outline recognizable peds. The soil profile photographs you will see throughout the survey are

photographs taken of pit excavation walls. No edits have been made to the photos. Silhouettes outline peds

within each photograph and are marked by a dashed line that links the silhouette to the location where it

was outlined in the photograph.

Each participant will be given (53) questions. Four of these questions will ask about your background

and experience with soil structure. The rest of the questions will ask you to classify the ped types

represented in the photos. Please use your visual judgment and experience to complete this survey.

The survey is expected to take between 30 and 40 minutes to complete.

Please follow the instructions provided and click next to go to the next page. Please do not forget to click

"Done" once you answer all the questions. NOTE: Your answers will not be recorded if you close the

browser before clicking "Done."

Please feel free to contact the survey developer, Aoesta Mohammed (aoesta.k@ku.edu), or the PI, Daniel

Hirmas (hirmas@ku.edu) if you have any questions regarding this survey.

Thank you for your assistance with this research project.

Quantifying ped type from soil profile photographs

Quantifying ped shape from profile photographs

1
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Information Statement

The Department of Geography at the University of Kansas supports the practice of protection for human

subjects participating in research. The following information is provided for you to decide whether you wish

to participate in the present study. You should be aware that even if you agree to participate, you are free

to withdraw at any time without penalty.

We are conducting this study to better understand the shape of soil structure. This will entail your

completion of a survey. Your participation is expected to take approximately 30 minutes to complete. The

content of the survey should cause no more discomfort than you would experience in your everyday life.

Although participation may not benefit you directly, we believe that the information obtained from this study

will help us gain an ability to better quantify ped shape and understand how ped shape interacts with soil

forming processes. Your participation is solicited, although strictly voluntary. Your name will not be

associated in any way with the research findings and personally identifiable information will not be collected

in this survey. It is possible, however, with internet communications, that through intent or accident

someone other than the intended recipient may see your response. 

If you would like additional information concerning this study before or after it is completed, please feel free

to contact us by phone or mail.

Completion of the survey indicates your willingness to take part in this study and that you are at least 18

years old. If you have any additional questions about your rights as a research participant, you may call

(785) 864-7429 or write the Human Subjects Committee Lawrence Campus (HSCL), University of Kansas,

2385 Irving Hill Road, Lawrence, Kansas 66045-7563, email irb@ku.edu. 

Sincerely,

Aoesta Mohammed                                            Daniel Hirmas

Ph.D. Candidate                                                 Associate Professor

Investigator                                                         Faculty Supervisor

Department of Geography                                  Department of Geography

Lindley Hall                                                         Lindley Hall

University of Kansas                                           University of Kansas

Lawrence, KS 66045                                           Lawrence, KS 66045

(785) 864-5143                                                    (785) 864-5542

aoesta.k@ku.edu                                                 hirmas@ku.edu

Quantifying ped type from soil profile photographs

Quantifying ped shape from profile photographs

2

109



Background and Experience

Quantifying ped shape from profile photographs

1. Please indicate the highest level of education that you have completed:*

Doctorate

Masters

Bachelors

Other (please specify)

2. Please indicate the number of years of experience you have describing soils in the field:*

0-5 years

5-10 years

11-25 years

26 years or more

3. Which of following best describes your current sector of employment?*

K-12 Education

Higher Education (including faculty, post doctoral scholar, or student)

Government

Private Sector

Other (please specify)

3
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4. If you selected Higher Education in the last question, which of the following best describes your

current position:

Faculty member

Graduate student

Post doctoral researcher

Undergraduate student

Other (please specify)

4
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

39-1

5. Which of the following type categories BEST describes the peds represented in the photo above?*

5
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

19-1

19-2

19-3

19-4

19-5

6. Which of the following type categories BEST describes the peds represented in the photo above?*

6
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

17-1

17-2

17-3

17-4

17-5

17-6

17-7

17-8

7. Which of the following type categories BEST describes the peds represented in the photo above?*

7
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

25A-1

25A-2

25A-3

25A-4

25A-5

25A-6

25A-7

25A-8

25A-9

8. Which of the following type categories BEST describes the peds represented in the photo above?*

8
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

21-1

21-2

9. Which of the following type categories BEST describes the peds represented in the photo above?*

9
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

10
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 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

11-1

11-2

11-3

11-4

11-5

11-6

11-7

10. Which of the following type categories BEST describes the peds represented in the photo

above?

*

11
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Copy of page: What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

43-1

43-2

43-3

43-4

43-5

43-6

11. Which of the following type categories BEST describes the peds represented in the photo

above?

*

12
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43-7

43-8

43-9

43-10

43-11

43-12

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

13
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

27-1

27-2

27-3

27-4

27-5

27-6

27-7

27-8

27-9

27-10

12. Which of the following type categories BEST describes the peds represented in the photo

above?

*

14
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27-11

27-12

27-13

27-14

27-15

27-16

27-17

27-18

27-19

27-20

27-21

27-22

27-23

27-24

27-25

27-26

27-27

27-28

27-29

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

15
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

8-1

8-2

8-3

8-4

8-5

13. Which of the following type categories BEST describes the peds represented in the photo

above?

*

16
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

15-1

15-2

15-3

15-4

15-5

15-6

15-7

14. Which of the following type categories BEST describes the peds represented in the photo

above?

*

17

124



What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

10-1

10-2

10-3

10-4

10-5

15. Which of the following type categories BEST describes the peds represented in the photo

above?

*

18
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

28-1

28-2

28-3

28-4

28-5

28-6

28-7

28-8

28-9

28-10

16. Which of the following type categories BEST describes the peds represented in the photo

above?

*

19
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

7-1

7-2

7-3

7-4

7-5

7-6

7-7

17. Which of the following type categories BEST describes the peds represented in the photo

above?

*

20
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

5-1

5-2

5-3

18. Which of the following type categories BEST describes the peds represented in the photo

above?

*

21
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

38-1

38-2

19. Which of the following type categories BEST describes the peds represented in the photo

above?

*

22
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

23-1

20. Which of the following type categories BEST describes the peds represented in the photo

above?

*

23
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

32-1

32-2

32-3

21. Which of the following type categories BEST describes the peds represented in the photo

above?

*

24
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

36-1

36-2

36-3

36-4

22. Which of the following type categories BEST describes the peds represented in the photo

above?

*

25
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

33-1

33-2

33-3

33-4

23. Which of the following type categories BEST describes the peds represented in the photo

above?

*

27
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Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

44B-1

44B-2

44B-3

44B-4

24. Which of the following type categories BEST describes the peds represented in the photo

above?

*

28

134



What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

4A-1

4A-2

4A-3

4A-4

4A-5

25. Which of the following type categories BEST describes the peds represented in the photo

above?

*

30
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4A-6

4A-7

4A-8

4A-9

4A-10

4A-11

4A-12

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

31
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

29-1

26. Which of the following type categories BEST describes the peds represented in the photo

above?

*

32
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

20-1

20-2

20-3

27. Which of the following type categories BEST describes the peds represented in the photo

above?

*

33
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

21-3

28. Which of the following type categories BEST describes the peds represented in the photo

above?

*

34
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

22-1

22-2

29. Which of the following type categories BEST describes the peds represented in the photo

above?

*

35
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

12-1

12-2

12-3

12-4

12-5

30. Which of the following type categories BEST describes the peds represented in the photo

above?

*

36
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

30-1

30-2

30-3

31. Which of the following type categories BEST describes the peds represented in the photo

above?

*

37
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

32. Which of the following type categories BEST describes the peds represented in the photo

above?

*

38
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

16-1

16-2

33. Which of the following type categories BEST describes the peds represented in the photo

above?

*

39
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16-3

16-4

16-5

16-6

16-7

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

40
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

18-1

18-2

18-3

34. Which of the following type categories BEST describes the peds represented in the photo

above?

*

41
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

13-1

13-2

13-3

13-4

13-5

13-6

35. Which of the following type categories BEST describes the peds represented in the photo

above?

*

42
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

34-1

36. Which of the following type categories BEST describes the peds represented in the photo

above?

*

43
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Quantifying ped shape from profile photographs

37. Which of the following type categories BEST describes the peds represented in the photo

above?

*

44

149



 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

42-1

42-2

42-3

42-4

42-5

42-6

42-7

42-8

42-9

45
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

46
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 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

1-1

1-2

1-3

1-4

1-5

38. Which of the following type categories BEST describes the peds represented in the photo

above?

*

47
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

31-1

31-2

39. Which of the following type categories BEST describes the peds represented in the photo

above?

*

48
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

14-1

14-2

14-3

14-4

14-5

14-6

14-7

14-8

14-9

40. Which of the following type categories BEST describes the peds represented in the photo

above?

*

50
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

25B-1

41. Which of the following type categories BEST describes the peds represented in the photo

above?

*

52
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

53

156



 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

6A-1

6A-2

6A-3

42. Which of the following type categories BEST describes the peds represented in the photo

above?

*

54
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Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

44A-1

43. Which of the following type categories BEST describes the peds represented in the photo

above?

*

55
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44A-2

44A-3

44A-4

44A-5

44A-6

44A-7

44A-8

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

56
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

24-1

24-2

24-3

44. Which of the following type categories BEST describes the peds represented in the photo

above?

*

57
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

45. Which of the following type categories BEST describes the peds represented in the photo

above?

*

58

161



 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

59
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

35-1

35-2

46. Which of the following type categories BEST describes the peds represented in the photo

above?

*

60
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35-3

35-4

35-5

35-6

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

61
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

4B-1

47. Which of the following type categories BEST describes the peds represented in the photo

above?

*

62
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

26-1

26-2

26-3

26-4

26-5

26-6

48. Which of the following type categories BEST describes the peds represented in the photo

above?

*

63
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

49. Which of the following type categories BEST describes the peds represented in the photo

above?

*

64
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 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

40-1

40-2

40-3

40-4

40-5

65
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

37-1

50. Which of the following type categories BEST describes the peds represented in the photo

above?

*

66
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What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

9-1

9-2

51. Which of the following type categories BEST describes the peds represented in the photo

above?

*

67
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9-3

9-4

9-5

9-6

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

68
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Quantifying ped shape from profile photographs

 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

6B-1

6B-2

6B-3

52. Which of the following type categories BEST describes the peds represented in the photo

above?

*

69

172



Copy of page: What is the type of structure for the image bellow

Quantifying ped shape from profile photographs

53. Which of the following type categories BEST describes the peds represented in the photo

above?

*

70
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 platy

angular

blocky

subangular

blocky granular columnar prism wedge N/A

41-1

41-2

41-3

41-4

41-5

71
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APPENDIX B. MULTINOMIAL LOGISTIC REGRESSION RESULTS FOR SOIL 
STRUCTURE WITHIN EACH KÖPPEN-GEIGER CLIMATE REGION AND 
ECOREGION PROVINCE FOR BOTH SURFACE AND SUBSURFACE HORIZONS 
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Abk Gr Pl Pr Sbk Abk Col Gr Pl Pr Sbk Weg
Aw 0.00 0.00 0.00 0.00 0.00 1.00 0.00
BSh 0.00 0.09 0.64 0.00 0.27 0.08 0.15 0.00 0.00 0.08 0.69 0.00
BSk 0.01 0.43 0.24 0.00 0.32 0.10 0.00 0.09 0.03 0.13 0.64 0.00
BWh 0.09 0.00 0.45 0.00 0.45 0.17 0.00 0.00 0.00 0.00 0.83 0.00
BWk 0.00 0.00 0.75 0.06 0.19 0.28 0.00 0.00 0.00 0.28 0.44 0.00
Cfa 0.00 0.71 0.00 0.00 0.29 0.12 0.00 0.01 0.00 0.04 0.82 0.00
Cfb 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Csa 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Csb 0.04 0.30 0.00 0.00 0.67 0.29 0.00 0.04 0.00 0.00 0.67 0.00
Dfa 0.01 0.69 0.03 0.00 0.28 0.09 0.00 0.01 0.00 0.09 0.80 0.00
Dfb 0.03 0.76 0.07 0.00 0.14 0.13 0.01 0.02 0.01 0.05 0.77 0.00
Dfc 0.00 0.75 0.00 0.00 0.25 0.14 0.00 0.00 0.00 0.43 0.43 0.00
Dsa 0.25 0.00 0.00 0.00 0.00 0.75 0.00
Dsb 0.00 0.31 0.24 0.00 0.45 0.45 0.00 0.00 0.00 0.10 0.45 0.00
ET 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table B1. Distribution of ped type class probabilities determined by 
multinomial logistic regression within each Köppen-Geiger (KG) climate 
regions for surface and subsurface horizons, separately. (Row probabilities 
within either the surface or subsurface columns sum to 1.) Zero probabilities 
represent values < 0.01.                   

KG
Surface† Subsurface†

† Abk, Angular Blocky; Col, Columnar; Gr, Granular; Platy, Pl; Pr, Prismatic; 
Sbk, Subangular Blocky; Weg, Wedge.
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Abk Gr Pl Pr Sbk Abk Col Gr Pl Pr Sbk Weg
Aw 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BSh 0.00 0.00 0.12 0.00 0.02 0.00 0.33 0.00 0.00 0.01 0.00 0.00
BSk 0.17 0.09 0.32 0.00 0.13 0.06 0.00 0.41 0.42 0.12 0.05 0.00
BWh 0.17 0.00 0.08 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BWk 0.00 0.00 0.20 1.00 0.02 0.02 0.00 0.00 0.00 0.03 0.00 0.00
Cfa 0.00 0.38 0.02 0.00 0.31 0.43 0.00 0.25 0.00 0.26 0.42 1.00
Cfb 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Csa 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Csb 0.17 0.02 0.00 0.00 0.09 0.05 0.00 0.06 0.00 0.00 0.02 0.00
Dfa 0.17 0.34 0.08 0.00 0.28 0.30 0.33 0.16 0.33 0.48 0.37 0.00
Dfb 0.33 0.11 0.07 0.00 0.04 0.10 0.33 0.13 0.25 0.07 0.08 0.00
Dfc 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00
Dsa 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dsb 0.00 0.02 0.12 0.00 0.07 0.03 0.00 0.00 0.00 0.01 0.00 0.00
ET 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B2. Distribution of ped type class probabilities determined by 
multinomial logistic regression within each Köppen-Geiger (KG) climate 
regions for surface and subsurface horizons, separately. (Column probabilities 
sum to 1.) Zero probabilities represent values < 0.01.

KG
Surface† Subsurface†

† Abk, Angular Blocky; Col, Columnar; Gr, Granular; Platy, Pl; Pr, Prismatic; 
Sbk, Subangular Blocky; Weg, Wedge.
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VF F M C VC VF F M C VC EC
Aw 0.50 0.00 0.50 0.00 0.00 0.00
BSh 0.00 0.13 0.50 0.37 0.00 0.00 0.00 0.50 0.42 0.08 0.00
BSk 0.18 0.41 0.34 0.07 0.00 0.09 0.19 0.52 0.16 0.03 0.00
BWh 0.00 0.00 0.73 0.27 0.00 0.00 0.00 0.67 0.33 0.00 0.00
BWk 0.08 0.31 0.23 0.31 0.08 0.14 0.00 0.50 0.36 0.00 0.00
Cfa 0.09 0.68 0.21 0.01 0.00 0.07 0.22 0.62 0.07 0.02 0.00
Cfb 0.00 0.33 0.00 0.00 0.67 0.00 0.00 0.62 0.38 0.00 0.00
Csa 0.00 0.57 0.43 0.00 0.00 0.00 0.19 0.78 0.00 0.04 0.00
Csb 0.08 0.38 0.54 0.00 0.00 0.00 0.17 0.73 0.10 0.00 0.00
Dfa 0.15 0.70 0.15 0.01 0.00 0.09 0.36 0.48 0.06 0.01 0.00
Dfb 0.13 0.48 0.35 0.04 0.00 0.03 0.22 0.59 0.14 0.00 0.01
Dfc 0.00 0.75 0.00 0.25 0.00 0.00 0.00 0.43 0.43 0.14 0.00
Dsa 0.00 0.00 1.00 0.00 0.00 0.00
Dsb 0.11 0.63 0.16 0.11 0.00 0.00 0.29 0.57 0.14 0.00 0.00
ET 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

KG
Surface† Subsurface†

Table B3. Distribution of ped size class probabilities determined by 
multinomial logistic regression within each Köppen-Geiger (KG) climate 
regions for both surface and subsurface, separately. (Row probabilities 
within either the surface or subsurface columns sum to 1.) Horizons 
containing structures with intermediate size classes (e.g., fine to medium) 
or where multiple ped types, sizes, or grades were recorded were removed 
prior to data analysis. Zero probabilities represent values < 
0.01.                 

†VF, Very Fine; F, Fine; M, Medium; C, Coarse; VC, Very Coarse; EC, 
Extremely Coarse. 
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VF F M C VC VF F M C VC EC
Aw 0.01 0.00 0.00 0.00 0.00 0.00
BSh 0.00 0.00 0.03 0.12 0.00 0.00 0.00 0.01 0.03 0.04 0.00
BSk 0.19 0.09 0.17 0.21 0.00 0.08 0.05 0.06 0.11 0.14 0.00
BWh 0.00 0.00 0.06 0.13 0.00 0.00 0.00 0.00 0.01 0.00 0.00
BWk 0.01 0.01 0.02 0.17 0.33 0.01 0.00 0.01 0.03 0.00 0.00
Cfa 0.25 0.37 0.28 0.08 0.00 0.40 0.34 0.46 0.34 0.57 0.00
Cfb 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.01 0.03 0.00 0.00
Csa 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.02 0.00 0.04 0.00
Csb 0.03 0.03 0.10 0.00 0.00 0.00 0.01 0.03 0.02 0.00 0.00
Dfa 0.38 0.36 0.18 0.08 0.00 0.45 0.50 0.31 0.25 0.18 0.00
Dfb 0.10 0.07 0.13 0.08 0.00 0.04 0.08 0.09 0.15 0.00 1.00
Dfc 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.02 0.04 0.00
Dsa 0.00 0.00 0.00 0.00 0.00 0.00
Dsb 0.03 0.03 0.02 0.08 0.00 0.00 0.01 0.01 0.01 0.00 0.00
ET 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KG
Surface† Subsurface†

Table B4. Distribution of ped size class probabilities determined by 
multinomial logistic regression with each Köppen-Geiger (KG) climate 
regions for both surface and subsurface horizons, separately. (Column 
probabilities sum to 1.) Horizons containing structures with intermediate size 
classes (e.g., fine to medium) or where multiple ped types, sizes, or grades 
were recorded were removed prior to data analysis. Zero probabilities 
represent values < 0.01.      

†VF, Very Fine; F, Fine; M, Medium; C, Coarse; VC, Very Coarse; EC, 
Extremely Coarse. 
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W M S W M S
Aw 0.00 1.00 0.00
BSh 0.55 0.36 0.09 0.31 0.46 0.23
BSk 0.53 0.44 0.03 0.51 0.40 0.09
BWh 0.73 0.27 0.00 0.67 0.17 0.17
BWk 0.50 0.31 0.19 0.44 0.39 0.17
Cfa 0.51 0.47 0.01 0.28 0.67 0.05
Cfb 1.00 0.00 0.00 0.33 0.67 0.00
Csa 0.40 0.40 0.20 0.16 0.81 0.03
Csb 0.26 0.63 0.11 0.37 0.52 0.10
Dfa 0.52 0.41 0.06 0.36 0.54 0.10
Dfb 0.57 0.33 0.10 0.35 0.57 0.08
Dfc 0.75 0.25 0.00 0.00 0.86 0.14
Dsa 0.00 0.75 0.25
Dsb 0.55 0.45 0.00 0.35 0.50 0.15
ET 0.50 0.50 0.00 0.33 0.67 0.00

Table B5. Distribution of ped grade class probabilities 
determined by multinomial logistic regression within each 
Köppen-Geiger (KG) climate regions for both surface and 
subsurface horizons, separately. (Row probabilities within either 
the surface or subsurface columns sum to 1.) Horizons 
containing structures with intermediate grade classes (e.g., weak 
to moderate) or where multiple ped types, sizes, or grades were 
recorded were removed prior to data analysis. Zero probabilities 
represent values < 0.01.

KG
Surface† Subsurface†

† W, Weak; M, Moderate; S, Strong.
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W M S W M S
Aw 0.00 0.00 0.00
BSh 0.02 0.01 0.03 0.01 0.00 0.02
BSk 0.13 0.13 0.06 0.10 0.04 0.07
BWh 0.02 0.01 0.00 0.01 0.00 0.01
BWk 0.02 0.02 0.09 0.01 0.01 0.02
Cfa 0.32 0.35 0.09 0.35 0.46 0.27
Cfb 0.00 0.00 0.00 0.00 0.00 0.00
Csa 0.01 0.01 0.06 0.01 0.02 0.01
Csb 0.02 0.06 0.09 0.02 0.02 0.03
Dfa 0.29 0.28 0.38 0.40 0.34 0.47
Dfb 0.10 0.07 0.19 0.09 0.08 0.09
Dfc 0.01 0.00 0.00 0.00 0.00 0.01
Dsa 0.00 0.00 0.01
Dsb 0.05 0.05 0.00 0.01 0.01 0.02
ET 0.00 0.00 0.00 0.00 0.00 0.00

Table B6. Distribution of ped grade class probabilities determined by 
multinomial logistic regression within each Köppen-Geiger (KG) 
climate regions for both surface and subsurface horizons, separately. 
(Column probabilities sum to 1.) Horizons containing structures with 
intermediate grade classes (e.g., weak to moderate) or where multiple 
ped types, sizes, or grades were recorded were removed prior to data 
analysis. Zero probabilities represent values < 0.01.      

KG
Surface† Subsurface†

† W, Weak; M, Moderate; S, Strong.
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Abk Gr Pl Pr Sbk Abk Col Gr Pl Pr Sbk Weg
Laurentian Mixed Forest 212 0.08 0.83 0.00 0.00 0.08 0.24 0.00 0.00 0.08 0.12 0.56 0.00
Central Appalachian Broadleaf Forest – 
Coniferous Forest – Meadow

M221 0.00 0.90 0.00 0.00 0.10 0.10 0.00 0.02 0.02 0.02 0.85 0.00

Eastern Broadleaf Forest (Oceanic) 221 0.00 0.76 0.05 0.00 0.19 0.02 0.00 0.00 0.00 0.05 0.93 0.00
Eastern Broadleaf Forest (Continental) 222 0.00 0.80 0.01 0.00 0.18 0.12 0.00 0.01 0.00 0.06 0.81 0.00
Southeastern Mixed Forest 231 0.00 0.89 0.00 0.00 0.11 0.05 0.00 0.00 0.00 0.02 0.93 0.00
Outer Coastal Plain Mixed Forest 232 0.09 0.00 0.00 0.00 0.04 0.87 0.00
Lower Mississippi Riverine Forest 234 0.00 0.42 0.00 0.00 0.58 0.00 0.00 0.02 0.00 0.08 0.90 0.00
Pacific Lowland Mixed Forest 242 0.00 0.33 0.00 0.00 0.67 0.11 0.00 0.00 0.00 0.00 0.89 0.00
Prairie Parkland (Temperate) 251 0.00 0.58 0.01 0.00 0.41 0.05 0.00 0.01 0.00 0.10 0.84 0.00
Prairie Parkland (Subtropical) 255 0.00 0.33 0.00 0.00 0.67 0.60 0.00 0.00 0.00 0.00 0.38 0.01
Sierran Steppe – Mixed Forest – 
Coniferous Forest – Alpine Meadow

M261 0.00 0.33 0.13 0.00 0.54 0.17 0.00 0.00 0.00 0.02 0.81 0.00

California Coastal Chaparral Forest and 
Shrub

261 0.10 0.10 0.20 0.00 0.60 0.40 0.00 0.00 0.00 0.10 0.50 0.00

California Coastal Range Open 
Woodland – Shrub – Coniferous Forest 
– Meadow

M262 0.00 0.25 0.00 0.00 0.75 0.33 0.00 0.00 0.00 0.00 0.67 0.00

California Dry Steppe 262 0.00 0.00 0.00 0.00 0.18 0.82 0.00
California Coastal Steppe, Mixed Forest, 
and Redwood Forest

263 0.00 0.33 0.00 0.00 0.67 0.40 0.00 0.00 0.00 0.00 0.60 0.00

Colorado Plateau Semi-Desert 313 0.00 0.50 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Southwest Plateau and Plains Dry 
Steppe and Shrub 

315 0.00 0.21 0.04 0.00 0.75 0.10 0.03 0.01 0.00 0.15 0.71 0.00

American Semi-Desert and Desert 322 0.05 0.05 0.65 0.00 0.25 0.14 0.00 0.00 0.00 0.21 0.64 0.00
Southern Rocky Mountains Steppe – 
Open Woodland – Coniferous Forest – 
Alpine Meadow 

M331 0.00 0.88 0.00 0.00 0.12 0.03 0.09 0.06 0.00 0.00 0.82 0.00

Great Plains-Palouse Dry Steppe 331 0.00 0.75 0.04 0.00 0.21 0.11 0.00 0.00 0.00 0.18 0.72 0.00
Middle Rocky Mountains Steppe – 
Coniferous Forest – Alpine Meadow

M332 0.00 0.43 0.29 0.00 0.29 0.56 0.00 0.00 0.00 0.11 0.33 0.00

Great Plains Steppe 332 0.06 0.06 0.00 0.00 0.19 0.69 0.00
Nevada-Utah Mountains Semi-Desert – 
Coniferous Forest – Alpine Meadow

M341 0.06 0.11 0.50 0.00 0.33 0.06 0.00 0.00 0.00 0.53 0.41 0.00

Intermountain Semi-Desert and Desert 341 0.00 0.12 0.46 0.04 0.37 0.09 0.00 0.00 0.05 0.18 0.68 0.00
Intermountain Semi-Desert 342 0.02 0.35 0.28 0.00 0.35 0.12 0.00 0.17 0.05 0.07 0.59 0.00

Surface‡ Subsurface‡
Ecoregion Province

Table B7. Distribution of ped type class probabilities determined by multinomial logistic regression within each ecoregion 
province for surface and subsurface horizons, separately. (Row probabilities within either the surface or subsurface columns 
sum to 1.) Ecoregion provinces not well represented by observations in the dataset (N  ≤ 5 horizons) were not considered in 
this analysis. Zero probabilities represent values < 0.01.           

‡  Abk; Angular Blocky, Col; Columnar, Gr; Granular, Platy; Pl, Pr; Prismatic, Sbk; Subangular Blocky, Weg; Wedge.
† PC, Province Code.

PC†
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Abk Gr Pl Pr Sbk Abk Col Gr Pl Pr Sbk Weg
Laurentian Mixed Forest 212 0.17 0.03 0.00 0.00 0.01 0.02 0.00 0.00 0.17 0.02 0.01 0.00
Central Appalachian Broadleaf Forest – 
Coniferous Forest – Meadow

M221 0.00 0.07 0.00 0.00 0.02 0.04 0.00 0.06 0.17 0.01 0.06 0.00

Eastern Broadleaf Forest (Oceanic) 221 0.17 0.43 0.05 0.00 0.19 0.42 0.00 0.34 0.25 0.35 0.43 0.00
Eastern Broadleaf Forest (Continental) 222 0.01 0.00 0.00 0.00 0.01 0.01 0.00
Southeastern Mixed Forest 231 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Outer Coastal Plain Mixed Forest 232 0.00 0.04 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.03 0.04 0.00
Lower Mississippi Riverine Forest 234 0.00 0.01 0.00 0.00 0.04 0.00 0.00 0.03 0.00 0.03 0.03 0.00
Pacific Lowland Mixed Forest 242 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Prairie Parkland (Temperate) 251 0.00 0.15 0.02 0.00 0.21 0.06 0.00 0.06 0.00 0.20 0.14 0.00
Prairie Parkland (Subtropical) 255 0.00 0.00 0.00 0.00 0.01 0.19 0.00 0.00 0.00 0.00 0.02 1.00
Sierran Steppe – Mixed Forest – 
Coniferous Forest – Alpine Meadow

M261 0.00 0.02 0.05 0.00 0.07 0.03 0.00 0.00 0.00 0.01 0.02 0.00

California Coastal Chaparral Forest and 
Shrub

261 0.17 0.00 0.03 0.00 0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.00

California Coastal Range Open 
Woodland – Shrub – Coniferous Forest 
– Meadow

M262 0.00 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

California Dry Steppe 262 0.00 0.05 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.01 0.00
California Coastal Steppe, Mixed Forest, 
and Redwood Forest

263 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Colorado Plateau Semi-Desert 313 0.00 0.06 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.03 0.11 0.00
Southwest Plateau and Plains Dry 
Steppe and Shrub 

315 0.00 0.02 0.02 0.00 0.11 0.03 0.33 0.03 0.00 0.06 0.03 0.00

American Semi-Desert and Desert 322 0.17 0.00 0.22 0.00 0.03 0.01 0.00 0.00 0.00 0.02 0.00 0.00
Southern Rocky Mountains Steppe – 
Open Woodland – Coniferous Forest – 
Alpine Meadow 

M331 0.00 0.04 0.00 0.00 0.01 0.00 0.50 0.06 0.00 0.00 0.02 0.00

Great Plains-Palouse Dry Steppe 331 0.02 0.00 0.00 0.00 0.06 0.02 0.00
Middle Rocky Mountains Steppe – 
Coniferous Forest – Alpine Meadow

M332 0.00 0.01 0.03 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00

Great Plains Steppe 332 0.00 0.17 0.00 0.00 0.02 0.01 0.00
Nevada-Utah Mountains Semi-Desert – 
Coniferous Forest – Alpine Meadow

M341 0.17 0.01 0.15 0.00 0.03 0.00 0.00 0.00 0.00 0.06 0.00 0.00

Intermountain Semi-Desert and Desert 341 0.00 0.01 0.18 1.00 0.05 0.01 0.00 0.00 0.08 0.03 0.01 0.00
Intermountain Semi-Desert 342 0.17 0.04 0.20 0.00 0.08 0.03 0.00 0.41 0.33 0.03 0.02 0.00

Table B8. Distribution of ped type class probabilities determined by multinomial logistic regression within each 
ecoregion province for surface and subsurface horizons, separately. (Column probabilities sum to 1.) Ecoregion 
provinces not well represented by observations in the dataset (N  ≤ 5 horizons) were not considered in this analysis. Zero 
probabilities represent values < 0.01.   

† PC, Province Code.
‡  Abk; Angular Blocky, Col; Columnar, Gr; Granular, Platy; Pl, Pr; Prismatic, Sbk; Subangular Blocky, Weg; Wedge.

Surface‡ Subsurface‡
Ecoregion Province PC†
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VF F M C VC VF F M C VC EC
Laurentian Mixed Forest 212 0.00 0.82 0.18 0.00 0.00 0.00 0.18 0.73 0.09 0.00 0.00
Central Appalachian Broadleaf 
Forest – Coniferous Forest – 
Meadow

M221 0.23 0.62 0.08 0.00 0.08 0.00 0.16 0.71 0.11 0.01 0.00

Eastern Broadleaf Forest 
(Oceanic)

221 0.05 0.47 0.42 0.05 0.00 0.01 0.11 0.70 0.11 0.06 0.00

Eastern Broadleaf Forest 
(Continental) 

222 0.12 0.76 0.11 0.01 0.00 0.14 0.36 0.43 0.06 0.01 0.00

Southeastern Mixed Forest 231 0.00 0.61 0.39 0.00 0.00 0.00 0.02 0.93 0.03 0.02 0.00
Outer Coastal Plain Mixed Forest 232 0.00 0.00 0.86 0.09 0.05 0.00
Lower Mississippi Riverine Forest 234 0.08 0.75 0.17 0.00 0.00 0.02 0.49 0.44 0.04 0.00 0.00
Pacific Lowland Mixed Forest 242 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.89 0.11 0.00 0.00
Prairie Parkland (Temperate) 251 0.18 0.65 0.17 0.00 0.00 0.06 0.45 0.42 0.07 0.00 0.00
Prairie Parkland (Subtropical) 255 0.00 0.33 0.67 0.00 0.00 0.00 0.03 0.81 0.15 0.00 0.00
Sierran Steppe – Mixed Forest – 
Coniferous Forest – Alpine 
Meadow

M261 0.00 0.42 0.58 0.00 0.00 0.00 0.21 0.70 0.09 0.00 0.00

California Coastal Chaparral 
Forest and Shrub

261 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.80 0.10 0.10 0.00

California Coastal Range Open 
Woodland – Shrub – Coniferous 
Forest – Meadow

M262 0.12 0.63 0.25 0.00 0.00 0.00 0.00 0.78 0.22 0.00 0.00

California Dry Steppe 262 0.00 0.00 0.57 0.29 0.14 0.00
California Coastal Steppe, Mixed 
Forest, and Redwood Forest

263 0.00 0.50 0.50 0.00 0.00 0.00 0.50 0.38 0.12 0.00 0.00

Colorado Plateau Semi-Desert 313 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Southwest Plateau and Plains Dry 
Steppe and Shrub 

315 0.11 0.41 0.41 0.07 0.00 0.03 0.09 0.61 0.22 0.05 0.00

American Semi-Desert and Desert 322 0.00 0.13 0.50 0.37 0.00 0.00 0.00 0.64 0.36 0.00 0.00
Southern Rocky Mountains 
Steppe – Open Woodland – 
Coniferous Forest – Alpine 
Meadow 

M331 0.00 0.57 0.43 0.00 0.00 0.03 0.06 0.58 0.23 0.03 0.06

Great Plains-Palouse Dry Steppe 331 0.09 0.41 0.50 0.00 0.00 0.00 0.08 0.69 0.20 0.02 0.00
Middle Rocky Mountains Steppe 
– Coniferous Forest – Alpine 
Meadow

M332 0.00 0.86 0.14 0.00 0.00 0.00 0.83 0.00 0.17 0.00 0.00

Great Plains Steppe 332 0.00 0.20 0.67 0.00 0.13 0.00
Nevada-Utah Mountains Semi-
Desert – Coniferous Forest – 
Alpine Meadow

M341 0.25 0.44 0.13 0.19 0.00 0.00 0.25 0.42 0.25 0.08 0.00

Intermountain Semi-Desert and 
Desert

341 0.09 0.27 0.32 0.32 0.00 0.13 0.33 0.47 0.07 0.00 0.00

Intermountain Semi-Desert 342 0.23 0.37 0.28 0.10 0.03 0.19 0.16 0.48 0.16 0.02 0.00

Table B9. Distribution of ped size class probabilities determined by multinomial logistic regression within 
each ecoregion province for surface and subsurface horizons, separately. (Row probabilities within either the 
surface or subsurface columns sum to 1.) Horizons containing structures with intermediate size classes (e.g., 
fine to medium) or where multiple ped types, sizes, or grades were recorded were removed prior to data 
analysis. Ecoregion provinces not well represented by observations in the dataset (N  ≤ 5 horizons) were not 
considered in this analysis. Zero probabilities represent values < 0.01.

† PC, Province Code.
‡ VF; Very Fine, F; Fine, M; Medium, C; Coarse, VC; Very Coarse, EC; Extremely Coarse.

Ecoregion Province PC†
Surface‡ Subsurface‡
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VF F M C VC VF F M C VC EC
Laurentian Mixed Forest 212 0.00 0.03 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00
Central Appalachian Broadleaf 
Forest – Coniferous Forest – 
Meadow

M221 0.09 0.05 0.01 0.00 0.67 0.03 0.04 0.05 0.05 0.10 0.00

Eastern Broadleaf Forest 
(Oceanic)

221 0.32 0.41 0.15 0.04 0.00 0.62 0.49 0.28 0.23 0.16 0.00

Eastern Broadleaf Forest 
(Continental) 

222 0.00 0.00 0.02 0.01 0.03 0.00

Southeastern Mixed Forest 231 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Outer Coastal Plain Mixed Forest 232 0.01 0.03 0.06 0.04 0.00 0.01 0.02 0.05 0.05 0.13 0.00
Lower Mississippi Riverine Forest 234 0.01 0.03 0.01 0.00 0.00 0.01 0.04 0.02 0.01 0.00 0.00
Pacific Lowland Mixed Forest 242 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Prairie Parkland (Temperate) 251 0.25 0.18 0.11 0.00 0.00 0.15 0.22 0.11 0.09 0.00 0.00
Prairie Parkland (Subtropical) 255 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.06 0.07 0.00 0.00
Sierran Steppe – Mixed Forest – 
Coniferous Forest – Alpine 
Meadow

M261 0.00 0.01 0.05 0.00 0.00 0.00 0.01 0.02 0.02 0.00 0.00

California Coastal Chaparral 
Forest and Shrub

261 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.00

California Coastal Range Open 
Woodland – Shrub – Coniferous 
Forest – Meadow

M262 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00

California Dry Steppe 262 0.03 0.03 0.08 0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.00
California Coastal Steppe, Mixed 
Forest, and Redwood Forest

263 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

Colorado Plateau Semi-Desert 313 0.00 0.05 0.08 0.00 0.00 0.00 0.03 0.17 0.03 0.16 0.00
Southwest Plateau and Plains Dry 
Steppe and Shrub 

315 0.04 0.03 0.08 0.08 0.00 0.02 0.02 0.04 0.08 0.10 0.00

American Semi-Desert and Desert 322 0.00 0.01 0.06 0.25 0.00 0.00 0.00 0.01 0.06 0.00 0.00
Southern Rocky Mountains 
Steppe – Open Woodland – 
Coniferous Forest – Alpine 
Meadow 

M331 0.00 0.02 0.04 0.00 0.00 0.00 0.01 0.02 0.04 0.03 1.00

Great Plains-Palouse Dry Steppe 331 0.01 0.02 0.04 0.05 0.03 0.00
Middle Rocky Mountains Steppe 
– Coniferous Forest – Alpine 
Meadow

M332 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

Great Plains Steppe 332 0.00 0.00 0.01 0.00 0.06 0.00
Nevada-Utah Mountains Semi-
Desert – Coniferous Forest – 
Alpine Meadow

M341 0.06 0.02 0.01 0.13 0.00 0.02 0.01 0.01 0.03 0.03 0.00

Intermountain Semi-Desert and 
Desert

341 0.03 0.02 0.05 0.29 0.00 0.02 0.01 0.01 0.04 0.00 0.00

Intermountain Semi-Desert 342 0.13 0.04 0.08 0.17 0.33 0.10 0.03 0.03 0.07 0.06 0.00

Table B10. Distribution of ped size class probabilities determined by multinomial logistic regression within 
each ecoregion province for surface and subsurface horizons, separately. (Column probabilities sum to 1.) 
Horizons containing structures with intermediate size classes (e.g., fine to medium) or where multiple ped 
types, sizes, or grades were recorded were removed prior to data analysis. Ecoregion provinces not well 
represented by observations in the dataset (N  ≤ 5 horizons) were not considered in this analysis. Zero 
probabilities represent values < 0.01.

PC†

† PC, Province Code.
‡ VF; Very Fine, F; Fine, M; Medium, C; Coarse, VC; Very Coarse, EC; Extremely Coarse.

Ecoregion Province
Surface‡ Subsurface‡
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W M S W M S
Laurentian Mixed Forest 212 0.83 0.17 0.00 0.28 0.60 0.12
Central Appalachian Broadleaf Forest – 
Coniferous Forest – Meadow

M221 0.50 0.29 0.21 0.35 0.54 0.12

Eastern Broadleaf Forest (Oceanic) 221 0.62 0.38 0.00 0.23 0.67 0.10
Eastern Broadleaf Forest (Continental) 222 0.52 0.44 0.04 0.33 0.59 0.08
Southeastern Mixed Forest 231 0.96 0.04 0.00 0.25 0.70 0.05
Outer Coastal Plain Mixed Forest 232 0.39 0.52 0.09
Lower Mississippi Riverine Forest 234 0.33 0.67 0.00 0.36 0.63 0.02
Pacific Lowland Mixed Forest 242 0.33 0.67 0.00 0.00 0.89 0.11
Prairie Parkland (Temperate) 251 0.43 0.49 0.07 0.38 0.57 0.05
Prairie Parkland (Subtropical) 255 0.33 0.67 0.00 0.21 0.78 0.01
Sierran Steppe – Mixed Forest – Coniferous 
Forest – Alpine Meadow

M261 0.50 0.38 0.13 0.24 0.66 0.10

California Coastal Chaparral Forest and 
Shrub

261 0.30 0.60 0.10 0.20 0.70 0.10

California Coastal Range Open Woodland – 
Shrub – Coniferous Forest – Meadow

M262 0.50 0.50 0.00 0.44 0.33 0.22

California Dry Steppe 262 0.24 0.76 0.00
California Coastal Steppe, Mixed Forest, and 
Redwood Forest

263 0.00 0.67 0.33 0.80 0.20 0.00

Colorado Plateau Semi-Desert 313 1.00 0.00 0.00 0.00 1.00 0.00
Southwest Plateau and Plains Dry Steppe and 
Shrub 

315 0.43 0.57 0.00 0.34 0.50 0.16

American Semi-Desert and Desert 322 0.70 0.25 0.05 0.57 0.14 0.29
Southern Rocky Mountains Steppe – Open 
Woodland – Coniferous Forest – Alpine 
Meadow 

M331 0.25 0.69 0.06 0.32 0.50 0.18

Great Plains-Palouse Dry Steppe 331 0.46 0.46 0.08 0.32 0.56 0.12
Middle Rocky Mountains Steppe – 
Coniferous Forest – Alpine Meadow

M332 0.57 0.43 0.00 0.67 0.33 0.00

Great Plains Steppe 332 0.37 0.63 0.00
Nevada-Utah Mountains Semi-Desert – 
Coniferous Forest – Alpine Meadow

M341 0.72 0.28 0.00 0.35 0.41 0.24

Intermountain Semi-Desert and Desert 341 0.54 0.42 0.04 0.52 0.38 0.10
Intermountain Semi-Desert 342 0.44 0.53 0.02 0.49 0.41 0.09

Table B11. Distribution of ped grade class probabilities determined by multinomial 
logistic regression within each ecoregion province for surface and subsurface horizons, 
separately. (Row probabilities within either the surface or subsurface columns sum to 1.) 
Horizons containing structures with intermediate grade classes (e.g., weak to moderate) or 
where multiple ped types, sizes, or grades were recorded were removed prior to data 
analysis. Ecoregion provinces not well represented by observations in the dataset (N  ≤ 5 
horizons) were also not considered in this analysis. Zero probabilities represent values < 
0.01. 

Ecoregion Province
Surface‡ Subsurface‡

PC†

† PC, Province Code.
‡ W, Weak; M, Moderate; S, Strong.
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W M S W M S
Laurentian Mixed Forest 212 0.03 0.01 0.00 0.02 0.01 0.01
Central Appalachian Broadleaf Forest – 
Coniferous Forest – Meadow

M221 0.04 0.03 0.19 0.05 0.04 0.09

Eastern Broadleaf Forest (Oceanic) 221 0.32 0.33 0.25 0.39 0.40 0.40
Eastern Broadleaf Forest (Continental) 222 0.01 0.01 0.01
Southeastern Mixed Forest 231 0.01 0.00 0.00 0.00 0.00 0.00
Outer Coastal Plain Mixed Forest 232 0.04 0.03 0.00 0.03 0.04 0.04
Lower Mississippi Riverine Forest 234 0.01 0.03 0.00 0.02 0.03 0.00
Pacific Lowland Mixed Forest 242 0.01 0.01 0.00 0.00 0.01 0.00
Prairie Parkland (Temperate) 251 0.13 0.17 0.22 0.15 0.14 0.10
Prairie Parkland (Subtropical) 255 0.00 0.01 0.00 0.02 0.04 0.00
Sierran Steppe – Mixed Forest – Coniferous 
Forest – Alpine Meadow

M261 0.04 0.03 0.09 0.02 0.02 0.03

California Coastal Chaparral Forest and 
Shrub

261 0.01 0.02 0.03 0.00 0.01 0.01

California Coastal Range Open Woodland – 
Shrub – Coniferous Forest – Meadow

M262 0.01 0.01 0.00 0.01 0.00 0.01

California Dry Steppe 262 0.00 0.01 0.00
California Coastal Steppe, Mixed Forest, and 
Redwood Forest

263 0.00 0.01 0.03 0.01 0.00 0.00

Colorado Plateau Semi-Desert 313 0.08 0.00 0.00 0.07 0.10 0.05
Southwest Plateau and Plains Dry Steppe and 
Shrub 

315 0.04 0.06 0.00 0.03 0.03 0.05

American Semi-Desert and Desert 322 0.04 0.02 0.03 0.02 0.00 0.02
Southern Rocky Mountains Steppe – Open 
Woodland – Coniferous Forest – Alpine 
Meadow 

M331 0.01 0.04 0.03 0.01 0.02 0.03

Great Plains-Palouse Dry Steppe 331 0.03 0.04 0.06 0.03 0.03 0.04
Middle Rocky Mountains Steppe – 
Coniferous Forest – Alpine Meadow

M332 0.01 0.01 0.00 0.01 0.00 0.00

Great Plains Steppe 332 0.01 0.01 0.00
Nevada-Utah Mountains Semi-Desert – 
Coniferous Forest – Alpine Meadow

M341 0.04 0.02 0.00 0.02 0.01 0.02

Intermountain Semi-Desert and Desert 341 0.04 0.04 0.03 0.02 0.01 0.01
Intermountain Semi-Desert 342 0.06 0.08 0.03 0.05 0.03 0.04

Table B12. Distribution of ped grade class probabilities determined by multinomial logistic 
regression within each ecoregion province for surface and subsurface horizons, separately. 
(Column probabilities sum to 1.) Horizons containing structures with intermediate grade 
classes (e.g., weak to moderate) or where multiple ped types, sizes, or grades were recorded 
were removed prior to data analysis. Ecoregion provinces not well represented by 
observations in the dataset (N  ≤ 5 horizons) were not considered in this analysis. Zero 
probabilities represent values < 0.01.        

† PC, Province Code.
‡ W, Weak; M, Moderate; S, Strong.

Surface‡ Subsurface‡
Ecoregion Province PC†
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Fig. B1. Mosaic plots showing the multinomial logistic regression predicted probabilities of ped 
type (abk = angular blocky; gr = granular; pl = platy; pr = prismatic; sbk = subangular blocky) 
for both (a) surface and (b) subsurface horizons. Intermediate size classes (e.g., very fine to fine) 
were removed prior to analyzing the data with multinomial logistic regression. Width of the 
boxes corresponds to how many observations fall into the category. 
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