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Abstract 
Peripheral neuropathies can be classified into two categories, demyelinating or 

axonal neuropathy. Demyelinating neuropathies are characterized by damaged myelin but 

intact axons. Recent evidence suggests that the leucine zipper transcription factor c-jun is 

at the center of driving demyelination. c-Jun is required for Schwann cells (SCs) to 

dedifferentiate after injury, and up-regulation of c-jun has been reported in human 

neuropathies. It remains to be tested whether c-jun would be a valid target for treating 

demyelinating neuropathies. Previously, our published work has shown that modulating 

the expression of heat shock protein 70 (Hsp70) using a novel small molecule drug called 

KU-32 attenuated the expression of c-jun and the extent of demyelination in SC-dorsal 

root ganglia (DRG) co-cultures in an Hsp70 dependent manner.  

To extend these data, this work examined the in vivo effects of modulating 

molecular chaperones using the next generation novologue KU-596 in two mouse models 

of demyelinating neuropathies. MPZ-Raf mice are a conditional transgenic mouse line 

that exhibits a demyelinating neuropathy due to the SC-specific induction of mitogen-

activated protein kinase (MAPK) and c-jun induction after tamoxifen (TMX) injections 

in adult mice. Five days of TMX treatment induced a severe motor deficits starting from 

day 8 and treating the MPZ-Raf mice with 20 mg/kg of KU-596 every other day reduced 

c-jun levels in the sciatic nerves. The decrease in c-jun correlated with an improvement in 

the myelination status of the nerves and motor function. In line with previous findings, 

the effects of KU-596 were Hsp70-dependent, as MPZ-RAF × Hsp70 knockout (KO) 

mice did not show improvement following drug treatment. This study provides proof of 

principal that modulating molecular chaperones would be beneficial in treating 

demyelinating neuropathies. However, as this model is less relevant to an actual disease, 
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we complemented our study using a model of human X-linked Charcot-Marie-Tooth 

disease (CMT1X).  

CMT1X is caused by the mutation of gap junction beta 1 gene (GJB1) that 

encodes the gap junction protein connexin 32 (Cx32). Recent evidence suggests an 

elevated c-jun expression is associated with the disease. Since c-jun could promote 

demyelination, targeting c-jun using KU-596 could provide a potential therapeutic 

strategy to treat CMT1X. The pathology of Cx32 deficient (Cx32def) mice occurs in two 

stages where young mice develop a pre-demyelinating axonopathy, which progresses to a 

more severe demyelinating neuropathy in older mice. We show that in young mice that 

exhibit a pre-demyelinating axonopathy, one-month of KU-596 treatment decreased c-jun 

expression and improved motor nerve conduction velocity (MNCV) and compound 

muscle action potential (CMAP). In older Cx32def mice that developed a demyelinating 

neuropathy, 3 months of KU-596 treatment decreased c-jun expression and improved grip 

strength, MNCV and CMAP. Hsp70 is required for drug efficacy as neither young nor 

old Cx32def × Hsp70 KO mice showed improvement following KU-596 treatment. 

Collectively, our data indicates that modulating molecular chaperones is beneficial in 

managing demyelinating neuropathies. 
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Chapter 1. Introduction 

1.1. Overview of Peripheral Myelination 

Myelin insulates the axons and enables the fast conduction of electrical signals along 

the length of the nerve fiber. Schwann cells (SCs) supply the myelin for the peripheral 

nervous system (PNS) and were first described by Theodor Schwann as the ensheathing 

structure around peripheral axons. SCs originate from neural crest cells, which segregate 

from the neural folds during neurulation and migrate either laterally and ventrally to form 

various neurons (Jessen & Mirsky 2005). SCs mature over three transitional periods 

(Figure 1.1.1.1) with Schwann cell precursors (SCPs) first differentiating from neural 

crest cells around embryonic day 12-13 (E12-13). Surprisingly, SCPs are not required for 

nerves to reach their targets (Grim et al 1992, Morris et al 1999) but are required for 

nerve fasciculation (Birchmeier 2009). SCPs provide trophic support for sensory and 

motor neurons and give rise to endoneurial fibroblasts, melanoblasts, and 

parasympathetic neurons in addition to SCs (Dyachuk et al 2014, Espinosa-Medina et al 

2014, Jessen & Mirsky 2005, Joseph et al 2004, Kaucka & Adameyko 2014, Nitzan et al 

2013).  

At E15-16, SCPs transition into immature SCs. A series of lineage-specific markers 

distinguishes SCPs from immature SCs. For example, SCPs express the low affinity p75 

neurotrophin receptor and growth-associated protein (GAP)-43, while immature SCs 

mainly express S100 and neuronal cellular adhesion molecules (NCAMs) (Kubu et al 

2002, White et al 2001). Immature SCs then differentiate into either myelinating or non-

myelinating SCs depending on the axons they ensheath. In particular, axons with a 
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diameter larger than 1µm are typically myelinated (Corfas et al 2004, Sherman & Brophy 

2005). Radial sorting enables immature SCs to form 1:1 relationships with axons and 

initiates a pro-myelinating stage, during which promyelinating proteins such as myelin-

associated glycoprotein (MAG), protein zero (P0), and octamer binding transcription 

factor (Oct-6) are expressed (Ogata et al 2006).  The myelination process initiates at birth 

and is characterized by the downregulation of Oct-6 and increased expression of Krox-

20, a key transcription factor that functions as a positive regulator of myelination (Jaegle 

& Meijer 1998).  

Myelinated SCs maintain a striking plasticity that enables them to switch off 

myelination, re-enter the cell cycle, and re-adopt a phenotype that is similar to immature 

SCs. Dedifferentiation of SCs often occurs in injured nerves, when they lose contact with 

the axons. Demyelinated axons are also a common feature in human neuropathies, such 

as Charcot-Marie-Tooth disease (CMT) and Refsun disease, even in the absence of direct 

nerve injury (Scherer & Wrabetz 2008). Dedifferentiated SCs can re-differentiate and 

remyelinate the axons under appropriate conditions. Since SC differentiation and 

dedifferentiation are tightly regulated by the interplay between different intracellular 

signals, elucidating the underpinning molecular events is the key to help understand SC 

biology and devise treatments for demyelinating neuropathies. 

1.1.1. Positive regulators of myelination 

Several transcription factors, including Krox-20, Oct-6, Brn-2, Sox-10 and NF-κB 

have been identified to be pro-myelinating. Krox-20 is a zinc finger transcription factor 

and is necessary for driving SC myelination as well as the formation and maintenance of 

the myelin sheath (Decker et al 2006). Specifically, Krox-20 activates myelin genes, 
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suppresses the expression of negative regulators of myelination (see below), helps SCs 

exit the cell cycle and blocks proliferation. Consistent with its important role in 

myelination, Krox-20 null mice fail to express genes necessary for myelin differentiation 

even after the SCs reach the promyelinating stage (Parkinson et al 2003). Enforced Krox-

20 expression is sufficient to induce expression of myelin gene P0 and periaxin in 

dedifferentiated SCs (Nagarajan et al 2001).  

Figure 1.1.1.1: Schematic illustraion of SC lineage and regulators of SC myelination.  
SC maturation is a three-phase process, including migration of neural crest cells, differentiation 
into immature SCs, and maturation into myelinating or non-myelinating SCs. Large fibers are 
ensheathed with myelinating SCs, and small caliber fibers form Remak bundles with non-
myelinating SCs. Red arrows indicate SC dedifferentiation upon injury or in pathological settings. 
Factors regulating each transition process are listed above. Factors in bold are evidenced with 
observations in mutant animals. Adapted from (Jessen & Mirsky 2005). 
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1.1.2. Negative regulators of myelination 

Negative regulators, such as c-jun, Notch, Sox-2, and Id2, inhibit myelination and 

can dedifferentiate SCs back into the immature phenotype in injured nerves. Since this 

transformation of SCs creates an environment that is preferable for axonal survival and 

regeneration, negative regulators are crucial for nerve recovery after injury. 

Mechanistically, Parkinson et al. suggested that c-jun and Notch may directly antagonize 

the myelin-promoting transcription factor, Krox-20 (Parkinson et al 2008). Therefore, 

negative and positive regulators maintain a dynamic balance between myelination and 

demyelination in peripheral nerves by functionally complementing each other. However, 

this balance may be disturbed and abnormal induction of negative signaling may cause 

pathological demyelination in a variety of human pathologies, including CMT. Hence, a 

clear elucidation of the molecular and cellular functions of the negative regulators in SCs 

will be particularly instructive for developing effective therapies for treating some 

myelin-related diseases.  

 c-Jun 1.1.2.1.

c-Jun, together with JunB and JunD, belongs to the mammalian Jun protein family 

and is a major component of the AP-1 transcription factor complex (Mechta-Grigoriou et 

al 2001). Although most of the activities of c-jun depend on its N-terminal 

phosphorylation by Jun-NH2-terminal kinase (JNK), c-jun-mediated myelin gene 

regulation appears to be independent of this pathway. In support of this, expression of a 

mutant c-jun that is resistant to JNK phosphorylation retained its inhibitory effects on 

myelin gene expression compared to wild-type c-jun (Parkinson et al 2008). c-Jun is 

highly expressed in immature SCs and is down regulated as SCs begin to myelinate and 
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Krox-20 expression increases. Overexpression of Krox-20 suppressed basal c-jun levels 

in cultured SCs in vitro (Parkinson et al 2004) and consistent with this observation, c-jun 

levels remained high in the postnatal nerves of Krox-20 null mice but were suppressed in 

wild type nerves (Mirsky et al 2008). Wild-type (WT) and mutant c-jun (resistant to JNK 

phosphorylation) also antagonized the expression of Krox-20 induced by another pro-

myelinating molecule, dibutryl cAMP (db-cAMP) (Parkinson et al 2008).  

The above data support that Krox-20 can block c-jun expression but c-jun also has 

a cross-inhibitory relationship with Krox-20. c-Jun inhibits myelin genes during 

development and in c-jun-null SCs, Krox-20-induced myelin gene expression was shown 

to be elevated. However, inhibition of c-jun pathway alone was not sufficient to induce 

differentiation in myelinated nerves (Parkinson et al 2008). Modest overexpression of c-

jun during development delays myelination, and higher expression of c-jun inhibits 

myelination (Fazal et al 2017).  

During nerve injury, loss of axonal contact causes myelinated SCs to arrest 

myelination and revert to a phenotype similar to the immature stage. This process is 

characterized by cessation of myelin gene expression and reactivation of genes 

characteristic of immature SCs, such as downregulation of Krox-20 levels and 

upregulation of c-jun levels. To characterize the role of c-jun in this process, researchers 

generated mice containing a SC specific, conditional knockout of c-jun. In these mice, 

there was a significant delay in injury-induced myelin sheath degradation and loss of 

myelin mRNA and protein expression. Particularly, while Krox-20 expression 

disappeared in WT mice 24h after the removal of axon contact, it remained detectable 2d 

after loss of axon contact in the c-jun null mice. Contrarily, c-jun expression is highly 
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upregulated following nerve cut in WT mice but remained low in the mutant mice with 

the conditional deletion. These results indicate that c-jun is necessary for SCs to re-adopt 

the immature phenotype (Parkinson et al 2008).  

The essential role of c-jun during regeneration after injury is also well illustrated 

using the slow Wallerian degeneration protein (WLDs) mice (Coleman & Freeman 2010). 

In WLDs mice, SCs remain differentiated, were unable to induce c-jun expression and the 

transected myelinated nerves degenerated much slower than wild-type nerve (Jessen & 

Mirsky 2008). However, this impaired nerve regeneration in WLDs mice was rescued by 

forcing c-jun expression (Arthur-Farraj et al 2012). Further investigation by Fontana and 

colleagues suggested that two genes that are directly targeted by c-jun, glial-derived 

neurotrophic factor (GDNF) and artemin, might mediate c-jun-dependent nerve 

regeneration, since exogenous delivery of GDNF and artemin to selectively deleted c-jun 

in SCs mice partially rescued axonal regeneration (Fontana et al 2012a). Therefore, it 

seems clear that c-jun negatively regulates myelination, and more importantly, c-jun 

drives the dedifferentiation program and guides axon regeneration after injury. 

 Notch 1.1.2.2.

Notch is a Type I transmembrane receptor and functions as another important 

negative regulator of SC myelination. The Notch receptor family includes four members 

(Notch 1-4) that can be activated by five endogenously expressed ligands: Jagged-1, -2 

and Delta-1, -3, -4. All four Notch receptors share a similar structure: an extracellular 

domain consisting of 36 epidermal growth-like repeats and an intracellular domain 

containing various sequences that are crucial for functions such as receptor 

transactivation and nuclear localization (Aparicio et al 2013, Deregowski et al 2006, 
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Jurynczyk & Selmaj 2010, Oberg et al 2001). Notch receptors form heterodimers on the 

plasma membrane and can be activated by two successive cleavages following ligand 

binding. Notch is first cleaved by a disintegrin and metalloproteinase (ADAM) at site 2, 

creating a membrane tethered intermediate, which is then further cleaved by γ-secretase, 

releasing the Notch intracellular domain (NICD). The NICD then translocates to the 

nucleus, where it associates with the DNA binding protein (recombination signal-binding 

protein Jκ (RBPJ) in mammals) and other transcriptional coactivators to bind and activate 

target genes (Kopan & Ilagan 2009). Notch signaling promotes SC development and 

aberrant Notch signaling could transform rat SCs (Li et al 2004).  

In the context of negatively regulating myelination, Notch appears to be 

independent of RBPJ, since the NICD suppressed cAMP-induced expression of myelin 

proteins and Krox-20 in the absence of RBPJ (Woodhoo et al 2009). Interestingly, Notch 

appears to be able to induce myelin loss even in uncut nerves in vitro and in vivo. In these 

studies, adenovirus overexpressing Notch (Ad-NICD) induced myelin damage in 

myelinated neuron-SCs co-cultures; the same result was obtained when injecting Ad-

NICD into intact nerves (Woodhoo et al 2009). Notch also functions in nerve repair. The 

addition of recombinant Jagged-1 (ligand for Notch 1) promoted nerve regeneration and 

recovery after nerve injury (Boerboom et al 2017, Wang et al 2015). This indicates that a 

tight control of Notch signaling is essential for maintaining myelin integrity.  

Similar to c-jun, the NICD can be suppressed by Krox-20 expression in vivo and in 

vitro. For example, Krox-20 inhibits expression of the NICD in myelinating SCs. 

Conversely, NICD levels remain high in Krox-20-/- animals (Woodhoo et al 2009).  All of 
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these findings indicate that Notch signaling is a potentially powerful negative regulator of 

myelination, yet it may play a minor role in comparison with c-jun. 

 Mitogen-activated protein kinases (MAPKs)  1.1.2.3.

Apart from the observation of c-jun and Notch described above, demyelination also 

requires the engagement of intracellular signaling pathways. The Ras/Raf/ERK pathway 

was demonstrated both in vitro (Harrisingh et al 2004) and in vivo (Napoli et al 2012b) to 

negatively regulate myelination. Raf activation blocks SC differentiation and induces 

dedifferentiation even in uninjured nerves (Harrisingh et al 2004). Using specially 

engineered mice with a tamoxifeninducible, Raf-kinase/estrogen receptor fusion protein 

(RafTR) expressed specifically in myelinating SCs, tamoxifen-induced Raf activation 

downregulated myelin protein expression and induced demyelination in sciatic nerves. c-

Jun and Notch ligand expression were strongly upregulated by Raf activation, placing 

both c-jun and Notch downstream of ERK signaling (Napoli et al 2012b). Conversely, 

another group demonstrated that Rac-MKK7-JNK pathway, but not the Raf-ERK 

pathway, functions as a negative regulator of myelination. They found that inhibition of 

Rac could suppress c-jun induction in injured nerves, but inhibition of ERK could not. 

Microarray analysis also showed that the expression of regeneration-associated genes is 

dependent on Rac but not ERK (Shin et al 2013). It is possible that Rac and Raf function 

as distinct pathways and the latter does not act through c-jun to regulate myelination.  

p38 MAPK has been shown to play a dual role in myelination. Both in vivo and in 

vitro inhibition of p38 MAPK blocks SC demyelination, while activation of p38 MAPK 

by MKK6, a direct and specific upstream activator of p38 MAPK, is sufficient to drive 

SC demyelination and dedifferentiation following injury.  In addition, activation of p38 
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MAPK suppresses the expression of Krox-20 and induces c-jun expression (Parkinson et 

al 2004). Therefore, it is possible that c-jun and p38 MAPK function in the same pathway 

regulating the adoption of an immature SC phenotype after injury (Yang et al 2012). 

However, using pharmacological inhibitors of p38, other groups reported that p38 MAPK 

pathway is pro-myelinating. Inhibition of p38 blocked vitamin C induced Krox-20 

expression, decreased myelin gene expression, blocked myelination, and these effects 

could be partially reversed by overexpressing Krox-20 (Haines et al 2008, Hossain et al 

2012, Salzer 2008).  This seemingly paradoxical role could be the result of differential 

conditions that trigger the action of p38 MAPK. Though many of the pathways function 

as upstream regulators of c-jun and Notch, relatively little is known about how the 

integration of transcriptional mechanisms and signaling pathways affect myelination. 

However, recent work helps illustrate the role c-jun plays in SC dedifferentiation and 

neuropathy in the context of a mixed neuropathy called X-linked CMT (CMT1X) (Klein 

et al 2014). 

1.1.3. CMT1X 

CMT1X is the second most common type of CMT disease, accounting for nearly 

20% of CMT1 cases (Braathen 2012). It is caused by mutations in the gap junction beta 1 

gene (GJB1) (Gal et al 1985), which encodes the gap junction protein connexin 32 

(Cx32). As CMT1X is an X-linked dominant disorder, males are typically more severely 

affected and manifest an earlier onset of neuromuscular weakness. Milder symptoms and 

later onset in females have been hypothesized to be associated with X-inactivation 

(Murphy et al 2012b, Siskind et al 2011). Similar with CMT Type 1A (CMT1A), patients 

of CMT1X present classic symptoms of muscle weakness and atrophy starting from the 
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distal leg muscles and slowly progressing to the upper limbs (Shy et al 2007). Foot drop, 

steppage gait, and pes cavus are common in CMT1X patients. In addition, males tend to 

have split hand syndrome where the intrinsic muscles of the hand become atrophied 

(Brennan et al 2015). Based on electrophysiological findings, males usually have 

intermediate (25-45m/s) motor nerve conduction velocity (MNCV) whereas the MNCV 

is usually >35m/s in females (Saporta et al 2011). Consistently, compound muscle action 

potentials (CMAP) are reduced in patients (Birouk et al 1998), indicative of axonal loss 

in addition to demyelination. 

The gap junction protein Cx32 is a four transmembrane spanning protein that 

localizes to the Schmidt-Lantermann incisures and non-compact myelin (Scherer et al 

1995). Six Cx32 monomers form a hemi-channel, and two hemi-channels form a gap 

junction channel. Depending on the cell specific expression of various connexin family 

members, hemi-channels can be homotypic, composed of identical hemichannels, or 

heterotypic (Abrams & Freidin 2015). In the PNS, Cx32 forms homotypic channels 

(Figure 1.1.3.1, right), whereas in the central nervous system (CNS), Cx32 may form 

heterotypic channels with other members from the connexin family (Kleopa & 

Sargiannidou 2015). Cx32 gap junctions form a radial pathway that allow molecules less 

than 1 kDa to pass through the SC cytoplasm with a thousand-fold shorter distance 

(Balice-Gordon et al 1998, Scherer et al 1995). 
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Figure 1.1.3.1 Cx32 gap junction channel and reported mutations. 

Illustrations of Cx32 gap junction channel (right) and all 420 Cx32 mutations reported (left). 
Adapted from (Kleopa & Sargiannidou 2015, Panosyan et al 2017). 

The loss of function of Cx32 accounts for the peripheral symptoms in CMT1X.  

Over 400 mutations (Figure 1.1.3.1, left) of the GJB1 gene have been reported to be 

associated with CMT1X (Kleopa et al 2012, Panosyan et al 2017). Although most 

mutations are solely linked to peripheral neuropathic symptoms, the T55I and R75W 

mutants cause symptoms only in the CNS, (Kleopa et al 2002). Patients with CNS 

symptoms exhibit pathological changes in visual, acoustic and motor pathways (Bahr et 

al 1999). It is suspected that a toxic gain of function underlies the symptoms in the CNS 

(Abrams & Freidin 2015). Moreover, mutations such as R142Q and R164W cause both 

PNS and CNS symptoms. From in vitro studies, the possibility of a mutation causing 

	
 

Cx32	 

Molecules	~	1kD 



 12 

CNS manifestations depends on the ability of the mutants to form a gap junction channel 

(Abrams et al 2017). 

Cx32 deficient (Cx32def) mice are used as a mouse model of human CMT1X. 

Besides an association with liver injury, initial discovery of Cx32def mice revealed that 

these mice exhibit a progressive neuropathology. The Willecke group did not observe any 

neurological changes when Cx32def mice were observed at three month of age (Nelles et 

al 1996). However, later findings showed that axonal pathology precedes demyelination 

in this model where axonal damage started to occur at 2 months of age (Vavlitou et al 

2010). This early predemyelinating axonopathy was associated with an increase in SC c-

jun expression and a decrease in the phosphorylation state of axonal neurofilaments, a 

marker of axon damage (Klein et al 2014). Morphologically, this biochemical damage is 

reflected by an increase in smaller diameter axons without overall axon dropout, 

suggesting a decrease in the diameter of existing axons (Vavlitou et al 2010). 

Functionally, a decrease in neurofilament phosphorylation and axon diameter is 

associated with decreased nerve conduction velocity (NCV) (Hoffman et al 1987). 

During the predemyelinating neuropathy, c-jun expression correlates with an increase in 

GDNF (Klein et al 2014) since c-jun transcriptionally induces GDNF (Arthur-Farraj et al 

2012). The precise mechanism of such axonal damage independent of demyelination is so 

far unknown. However, one possible candidate would be Ca2+ since its concentration 

changes during neural activity and regulates gap junction channel opening. (Anselmi et al 

2008, De Vuyst et al 2006, Lev-Ram & Ellisman 1995).  

The second stage of CMT1X is a progressive demyelinating neuropathy that 

begins evolving around 6 months of age in the Cx32def mice. This stage of the 
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neuropathy is associated with a robust increase in c-jun expression (Klein et al 2014) 

and is driven by a SC-dependent secondary inflammation that stimulates macrophage-

mediated demyelination (Groh et al 2010, Groh et al 2015). Two key proteins 

contribute to this secondary inflammation. C-C motif chemokine (CCL2) is derived 

from SCs, is induced transcriptionally by c-jun (Wolter et al 2008) and attracts 

macrophages to infiltrate the endoneurium (Kohl et al 2010). Colony stimulating 

factor-1 (CSF-1) is secreted by endoneurial fibroblasts (Groh et al 2016, Groh et al 

2015) and activates the macrophages to promote neurodegeneration. Importantly, 

macrophages directly contribute to myelin degeneration in CMT1X (Martini & 

Willison 2016) and their role is not secondary to myelin breakdown as seen in 

Wallerian degeneration (Martini et al 2013).  

Though it is unclear how a loss-of-function of Cx32 contributes to the neuropathic 

phenotype, it is the causal lesion (Scherer & Kleopa 2012) and somatic or embryonic 

gene therapy would be the gold standard treatment. However, these approaches are 

difficult to achieve practically or ethically. Alternatively, intrathecal gene delivery of 

Cx32 in Cx32def mice can markedly improve the motor neuropathy (Kagiava et al 

2016), but the clinical path for this approach also has many hurdles. Clearly, a more 

translationally friendly approach is needed to serve the immediate needs of this 

neglected patient population. To fill this significant gap, we have explored an 

innovative small molecule approach that is based on modulating molecular chaperones 

to decrease c-jun expression and neuroinflammation in CMT1X and other peripheral 

neuropathies. 
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1.2. Heat shock proteins (Hsps) 

Heat shock proteins (Hsps) are a group of highly conserved proteins that function 

as molecular chaperones to prevent inappropriate interaction within and between 

peptides, enhance de novo protein folding, as well as promoting the refolding of 

misfolded proteins (Hartl & Hayer-Hartl 2002). Hsps can be classified into six main 

families based on their molecular weight, i.e. small Hsps (sHsps), Hsp40, Hsp60, Hsp70, 

Hsp90, and Hsp100 (Saibil 2013). Certain stress conditions, such as temperature 

elevation, trigger a program known as the heat shock response (HSR) (Figure 1.2.1). 

Upon activation, heat shock factor 1 (HSF1) dissociates from Hsp90 and undergoes 

phosphorylation and trimerization. The released HSF1 then enters the nucleus and binds 

to heat shock elements (HSE) within the promoter region of heat shock genes, leading to 

the transcription of Hsps, such as Hsp70 (Calabrese et al 2003). The HSR and induction 

of Hsps serves as a crucial cellular protective mechanism and acts as a first line of 

defense against numerous conditions that promote proteotoxic stress. 
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Figure 1.2.1: Schematic illustration of HSR.  
Various cellular stresses dissociate HSF1 from the Hsp90-HSF1 complex. Released HSF1 goes 
through phosphorylation and trimerization before entering the nucleus. HSF1 binding with HSE 
leads to transcription of Hsps and subsequent changes in the protein quality control system.  

1.2.1. Small heat shock proteins (sHsps) 

sHsps range from 12-43kDa and they share a common structure containing a 

conserved α-crystallin domain (ACD) of 80-100 amino acids, a N-terminal domain 

(NTD) and a C-terminal extension (CTE) (Franck et al 2004, Kappe et al 2003, Kriehuber 

et al 2010). sHsps can be classified based on their distribution. Class I is widely 

distributed whereas Class II is restricted to specific tissues. Hsp27 is a stress-inducible 

Class I sHsp that is ubiquitously expressed, with highest expression in heart, striated and 

smooth muscles (Taylor & Benjamin, 2005).  Besides chaperone activity, Hsp27 is also 

involved in stabilizing the cytoskeleton, autophagy and exhibits anti-apoptotic and anti-

oxidant properties (Asthana et al 2014, Mehlen et al 1996, Perng et al 2009, Taylor & 

Benjamin 2005). Mutations of the gene encoding Hsp27 lead to neuropathies such as 

distal motor neuropathy and CMT2 (Muchowski & Wacker 2005). Hsp27 has also been 

found associated with diabetic peripheral neuropathy (DPN) and results from the 
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EURODIAB Prospective Complications Study have shown an association between serum 

Hsp27 levels and the presence of a distal symmetrical polyneuropathy (Gruden et al 

2008). 

1.2.2. Hsp70 

The Hsp70s are a family of ubiquitously expressed Hsps that are involved in a 

number of processes, including the folding of nascent peptides, refolding of misfolded 

peptides and protein trafficking (Lackie et al 2017). There are 13 gene products (Table 

1.2.2.1) in the human Hsp70 family and they are encoded by a multigene family, 

including 17 genes and 30 pseudogenes (Radons 2016). Widely studied forms include the 

cytosolic heat shock cognate 70 (Hsc70), stress-induced cytosolic Hsp72 (Hsp70 in 

mice), glucose-regulated protein 78 (Grp78) located in the endoplasmic reticulum (ER) 

and mitochondrial Grp75 (Fink 1999). 

Table 1.2.2.1: The human Hsp70 family. 
Protein Alternative 

names 

Gene Cellular localization Stress-

inducible 

Hsp70-1a Hsp70, Hsp72, 

Hsp70-1 

HSPA1A Cytosol, nucleus, cell 

membrane 

√ 

Hsp70-1b Hsp70, Hsp72, 

Hsp70-2 

HSPA1B Cytosol, nucleus √ 

Hsp70-1t Hsp70-hom, 

Hsp70-1L 

HSPA1L Cytosol, nucleus × 

Hsp70-2 Hsp70.2 HSPA2 Cytosol, nucleus,  

cell membrane 

× 

Hsp70-5 Bip, Grp78 HSPA5 ER × 
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Hsp70-6 Hsp70B’ HSPA6 Cytosol √ 

Hsp70-7 Hsp70B HSPA7 Blood microparticles √ 

Hsp70-8 Hsc70, Hsc71, 

Hsp71, Hsp73 

HSPA8 Cytosol, nucleus,  

cell membrane 

× 

Hsp70-9 Grp75, HspA9B, 

MOT, MOT2, 

PBP74, mot-2, 

mtHsp70, 

mortalin 

HSPA9 Mitochondria, nucleus × 

Hsp70-12A FLJ13874, 

KIAA0417 

HSPA12A Intracellular × 

Hsp70-12B RP23-32L15.1, 

2700081N06Rik 

HSPA12B Endothelial cells, intracellular, 

blood plasma 

× 

Hsp70-13 Stch HSPA13 ER, microsomes × 

Hsp70-14 Hsp70L1 HSPA14 Cytosol, membrane √ 

Modified from (Radons 2016) 

All Hsp70s share a conserved structure, an N-terminal ATPase domain and a C-

terminal substrate binding domain (Tavaria et al 1996), joined together by a short, 

flexible linker (Jiang et al 2005). The 40kDa N-terminus regulates client association and 

the 25kDa C-terminal recognizes the hydrophobic residues of substrate proteins (Bukau 

et al 2006, Rudiger et al 1997). Hsp70 is found in most cellular compartments, and 

together with its co-chaperone Hsp40, facilitates the stabilization and folding of 

numerous substrates (Bukau & Horwich 1998). Although Hsp70 is mostly found as a 

monomer (Bertelsen et al 2009), recent evidence suggests that it can form an antiparallel 

dimer and aid client protein transfer from Hsp70 to Hsp90. Hsp40 stabilizes the Hsp70 
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dimer and the transfer of client proteins to Hsp90. In addition, post-translational 

modifications, such as phosphorylation and acetylation stabilize the dimerization of 

Hsp70 (Morgner et al 2015).  

As Hsps play a role in refolding and degradation of denatured proteins, it is not 

surprising that Hsp70s levels are elevated in protein aggregation diseases, such as 

Alzheimer’s disease (AD) (Hamos et al 1991, Perez et al 1991). Substantial evidence 

suggests that an elevated level of Hsp70 could ameliorate the Aβ burden of AD. 

Overexpression of Hsp70 protects primary neurons against intracellular Aβ42-induced 

toxicity (Magrane et al 2004). Intranasal administration of Hsp70 ameliorated spatial 

memory deficits and cognitive abnormalities in AD mouse models (Bobkova et al 2014). 

GRP78, the ER isoform of Hsp70, binds to immature but not mature amyloid precursor 

protein (APP) and decreases the secretion of Aβ40 and Aβ42 (Yang et al 1998). Moreover, 

upregulation of GRP78 by acetyl-L-carnitine (ALCAR), an endogenous mitochondrial 

membrane compound that helps maintain mitochondrial function, reduced Aβ induced 

protein oxidation, lipid peroxidation and neuronal loss (Abdul et al 2006). Thus, 

modulating the expression of Hsp70 paralogs may provide an avenue to treat AD, as well 

as other neurodegenerative diseases as discussed below. 

1.2.3. Hsp70 cochaperones 

 Hsp40 1.2.3.1.

The Hsp40 family, often referred to as the J protein family, function as co-

chaperones of Hsp70. Structurally, they share the same conserved J domain that contains 

about 70 amino acids. Hsp40s can be classified into three classes based on their structure. 
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Class I proteins have an N-terminal J domain, a Gly Phe-rich region, a zinc finger motif 

and a C-terminal extension. Class II proteins lack the zinc finger motif and Class III 

contains all proteins with other structures (Kampinga & Craig 2010). As an Hsp70 

cochaperone, Hsp40 first binds to the client protein and prevents its degradation and then 

delivers it to Hsp70 for further processing. In addition, Hsp40 can simulate Hsp70 

ATPase activity. The His, Pro and Asp domain (HPD) is crucial for stimulation of Hsp70 

ATPase activity and aiding Hsp70 function. The exact mechanism is unknown but it is 

proposed that the J domain provides a surface for Hsp70 to interact with the substrate 

(Greene et al 1998, Jiang et al 2007). ATP hydrolysis can be stimulated by both Hsp40 

and the client and causes a conformational change of Hsp70 to stabilize client protein 

interaction. Hsp40 then leaves and nucleotide exchange factor (NEF) binds to ADP-

bound Hsp70 and dissociates ADP. ATP then binds to Hsp70 and the client protein is 

released following ATP hydrolysis. If the desired conformation of the client protein is not 

achieved, the above process is repeated (Kampinga & Craig 2010). Various members of 

the Hsp40 family have been identified to be involved in the progression of Parkinson’s 

Disease (PD) (Hasegawa et al 2017) and upregulation of Hsp40 or Hsp40/Hsp70 may 

provide a therapeutic strategy to these protein-folding diseases. 

 Heat shock cognate protein 70 (Hsc70) interacting protein (CHIP) 1.2.3.2.

Carboxy terminus of heat shock cognate protein 70 (Hsc70) interacting protein 

(CHIP) is an E3 ligase that mediates the proteasomal clearance of Hsp70 substrates by 

directly binding to the C-terminus of Hsp70 (Dickey et al 2007c). CHIP contains three 

tetratricopeptide repeat (TPR) motifs within its N-terminus, a middle domain and a C-

terminal U-box domain (Ballinger et al 1999, Zhang et al 2005). As an important member 
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of the ubiquitin-proteasome system (UPS), CHIP has dual functions; it is both a co-

chaperone of Hsp70 and an E3 ligase. CHIP associates with Hsp70 through the TPR 

domain, and facilitates the transfer of polyubiquitin chains to substrates (Jiang et al 

2001). CHIP also mediates the crosstalk between Hsps and the UPS through Bcl-2 

associated athanogene 1 (BAG1), a protein that binds to the 26S proteasome and assists 

in the degradation of specific Hsp substrates (Lüders et al 2000). Several lines of 

evidence suggest that CHIP and its associated chaperone complex play a key role in 

regulating Aβ and tau levels. Kumar et al. observed that CHIP could promote the 

association of ubiquitin with βAPP and forced CHIP and Hsp70/90 expression reduced 

steady state cellular Aβ levels and accelerated its degradation (Kumar et al 2007). CHIP 

can also interact with Hsp70/90 directly and promote the ubiquitination of tau (Petrucelli 

et al 2004). 

1.2.4. Hsp90 

Hsp90 is another important member of the Hsp family (Smith et al 1998), which 

helps stabilize misfolded proteins and regulates a variety of signaling proteins, including 

steroid hormone receptors, tyrosine receptors, nitric oxide synthase and calcineurin 

(Young & Hartl 2002). Humans have two HSP90 genes that encode constitutively 

expressed HSP90β and stress inducible HSP90α (Shen et al 1997, Zhang et al 1999). 
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Figure 1.2.4.1: The structure and conformational cycle of Hsp90.  
Hsp90 contains an NTD, a flexible linker, MD and CTD. The MEEVD within the CTD is 
important for interaction with co-chaperones. Upon ATP binding, Hsp90 homodimer transits 
from an open state to an intermediate state where the lid is closed. Closed 1 state refers to the 
interaction of NTDs of the monomers and then twisting of the monomers (closed state 2). ATP is 
then hydrolyzed, releasing ADP and Pi, and Hsp90 returns to the open state. Co-chaperones, 
HOP, PPIase, AHA-1, CDC37 and p23 assist at different stages. Adapted from (Schopf et al 
2017). 

Hsp90 contains three conserved domains, an NTD, which contains the ATPase 

activity a middle domain (MD) responsible for binding with clients, and a C-terminal 

domain (CTD), which is important for dimerization (Harris et al 2004, Prodromou et al 

1997). The Met-Glu-Glu-Val-Asp (MEEVD) motif within the C-terminal tail interacts 

with the TPR domains of co-chaperones (Buchner 1999). Binding with ATP induces a 

conformational change of Hsp90, to transit the protein from the V- shape open state to an 

intermediate state, where the lid is closed, followed by a closed 1 state where the NTDs 
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of the monomers interact. ATP hydrolysis takes place after the monomers twist in the 

closed 2 state. ADP and Pi are then released and Hsp90 returns to the open state 

(Cunningham et al 2008, Meyer et al 2003) (Figure 1.2.4.1).  

Co-chaperones interact with Hsp90 at different stages. Hsc70/Hsp90-organinzing 

protein (HOP) binds to Hsp90 and stabilizes the open state (Li et al 2011). HOP is also 

responsible for the transfer of clients between Hsp70 and Hsp90 (Wegele et al 2006). 

CDC37 binds to Hsp90 at the open state and is important for the recruitment of client 

kinases specifically (Li et al 2011, Taipale et al 2012, Taipale et al 2014). Peptidyl-prolyl 

cis-trans isomerases (PPIases) bind to Hsp90 at all stages whereas activator of Hsp90 

ATPase homologue1 (AHA1) binds at closed 1 state and p23 at closed 2 state to facilitate 

ATP hydrolysis (Li et al 2011).  

The expression and activity of Hsp90 can be regulated through multiple 

mechanisms. Stress dissociates Hsp90 from the Hsp90/HSF1 complex where HSF1 is 

released and leading to a subsequent increase in Hsp90 transcription and expression (Shi 

et al 1998). Not surprisingly, PTMs regulate the activity of Hsp90. Phosphorylation slows 

down the conformational cycle of Hsp90 and affects its interaction with clients and co-

chaperones (Mollapour & Neckers 2012, Soroka et al 2012). Acetylation of Hsp90 

inhibits its ability to bind co-chaperones (Kovacs et al 2005) while  S-nitrosylation 

impairs the ATPase activity of Hsp90 (Martinez-Ruiz et al 2005). SUMOylation of one 

Hsp90 protomer is crucial for the recruitment of AHA-1 but not other co-chaperones 

(Mayer & Le Breton 2015, Mollapour et al 2014).  

Hsp90 client proteins have been reported to be involved in a number of diseases, 

including cancer (Vartholomaiou et al 2016), neurodegenerative diseases (Dickey et al 
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2007a, Geller et al 2013, Geller et al 2012) and infectious diseases (Geller et al 2012, 

Roy et al 2012). The stabilization of certain client proteins by Hsp90 generally 

contributes to the progression of the disease, such as AD and cancer. Thus, inhibiting 

Hsp90 could serve as a therapeutic strategy in numerous diseases and we have focused on 

the role of modulating Hsp90 in treating peripheral neuropathies. 

1.3. Targeting Hsps to Treat Peripheral Neuropathies 

Peripheral neuropathies are generally classified as axonal or demyelinating and 

manifest from diverse etiologic backgrounds, e.g., genetic, metabolic, autoimmune, drug 

or trauma-induced. Axonal and demyelinating peripheral neuropathies form the most 

common group of neurologic disorders and their medical management continues to 

present a significant medical liability as they affect well over 20 million people in the US 

alone (Hoke 2012). Peripheral neuropathies are often associated with painful paresthesias 

that include tingling, prickling or burning sensations, as well as numbness and muscle 

weakness if motor fibers are involved (Edwards et al 2008). On the molecular side, loss 

of axonal contact during nerve injury causes myelinated SCs to arrest myelination and 

dedifferentiate into a phenotype similar to an immature premyelinating SC (Parkinson et 

al 2008). The dedifferentiated SCs express molecules distinct to this phenotype, such as 

L1, GDNF, and N-cadherin, in addition to the reactivation of the transcription factor c-

jun (Jessen & Mirsky 2008). Demyelinated axons are a common feature in human 

neuropathies, such as CMT1A and CMT1X (Hutton et al 2011), Refsun disease (Scherer 

& Wrabetz 2008), chronic inflammatory demyelinating polyneuropathy (Hur et al 2011) 

and diabetic peripheral neuropathy (Behse et al 1977). 
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1.3.1. Targeting Hsp90 to Modulate Hsp70 Expression and Treat Peripheral 

Neuropathies 

Since pharmacologically modulating the HSR can serve as a powerful approach to 

ameliorate neurodegenerative diseases, modulating molecular chaperones may prove 

beneficial in managing certain neuropathies (Pratt et al 2015). Multiple lines of evidence 

suggest that modulating Hsp70 is beneficial in a variety of diseases associated with 

abnormal protein aggregates, such as AD (Magrane et al 2004) and PD (Aridon et al 

2011). Unfortunately, small molecule approaches to directly activate or inhibit Hsp70 are 

not sufficiently evolved for clinical applications (Assimon et al 2013). On the other hand, 

Hsp70 expression can be indirectly modulated by exploiting Hsp90 as a drug target. 

However, effective pharmacologic control of Hsp90 to attain a specific therapeutic 

efficacy requires dissociating cytotoxicity, due to inhibiting the folding of client proteins, 

from cytoprotection induced by activation of the HSR. 

 Numerous small molecules have been designed that function as N-terminal 

Hsp90 inhibitors (Garg et al 2016). N-terminal Hsp90 inhibitors act by blocking the 

ATPase activity of Hsp90. Inhibiting ATP hydrolysis blocks protein folding and 

promotes client protein degradation. Since many Hsp90 client proteins are oncoproteins, 

incomplete folding promotes their degradation and N-terminal Hsp90 inhibitors are being 

evaluated as chemotherapeutics (Miyata et al 2013). Unfortunately, drug concentrations 

that induce client protein degradation and cytotoxicity also release HSF1 and induce a 

HSR. This upregulates the expression of chaperones, such as Hsp70 and Hsp90, which 
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can facilitate oncoprotein refolding and antagonize the goal of promoting tumor 

cytotoxicity (Peterson & Blagg 2009).  

While increasing Hsp70 may be a problem for chemotherapy, this aspect of 

targeting Hsp90 may be useful to improve neurodegenerative diseases associated with 

protein aggregation. In this respect, N-terminal Hsp90 inhibitors can decrease tau 

aggregation in AD (Dickey et al 2007a, Luo et al 2007b), huntingtin protein in motor 

neurons (Waza et al 2005) and peripheral myelin protein 22 (PMP22) aggregates in SCs 

of CMT1A mice (Chittoor-Vinod et al 2015). However, this efficacy does not avoid the 

issue related to dissociating client protein degradation from induction of the HSR. Now 

the converse caveat exists, promoting client protein degradation will antagonize the 

neuroprotective phenotype. Therefore, an effective Hsp90 modulator for treating 

neurodegeneration requires a drug with a sufficient therapeutic window that can 

upregulate Hsp70 but induce minimal client protein degradation to antagonize the 

protective HSR. Though current N-terminal chemotherapeutics have been unable to 

adequately divest these competing actions, the chemical biology of targeting the C-

terminus of Hsp90 has identified such compounds (Anyika et al 2016, Kusuma et al 

2012b). 

The antibiotic novobiocin weakly binds the Hsp90 C-terminal domain (Marcu et al 

2000) and systematic modification of the coumarin ring of novobiocin identified 

compounds such as KU-32 and KU-174 (Figure 1.3.1.1A and B). KU-174 is an effective 

cytotoxic compound that contains a biaryl ring system that is necessary to induce 

degradation of client proteins such as Akt, but without promoting the expression of 

Hsp70 (Samadi et al 2011). The noviose sugar is critical for these novobiocin derivatives 
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to interact with the C-terminal domain of Hsp90 (Ghosh et al 2015) but differences in the 

side chains dictate distinct biologic outcomes. In KU-174, its cytotoxicity is related to the 

presence of the bulky biaryl side chain that binds to the co-chaperone Aha 1. Aha 1 

increases the N-terminal ATPase activity of Hsp90 and disrupting this interaction blocks 

protein folding and facilitates client protein degradation (Ghosh et al 2015). In contrast, 

KU-32 contains an ethyl acetamide substitution and induces Hsp70 at concentrations 

~500 fold lower than those that promote client protein degradation (Urban et al 2010). 

The neuroprotective phenotype promoted by KU-32 is highly dependent on the length of 

the side chain; increasing the length of the alky chain inverts the biologic response 

leading to inhibition Hsp90-dependent refolding activity, disrupting the interaction 

between Hsp90 and Aha1 and producing a linear increase in anti-proliferative activity 

(Ghosh et al 2016).  

Figure 1.3.1.1: Structures of novologues. 
Structures of KU-32 (A), KU-174 (B) and KU-596 (C). 

Efforts to further optimize KU-32 led to substitution of a fluorinated biphenyl ring 

for the coumarin moiety and the identification of KU-596 (Figure 1.3.1.1C) as a new 

class of C-terminal analogs called novologues (Kusuma et al 2012b) Like KU-32, KU-

596 does not bind to Hsp70 and does not induce client protein degradation at 

concentrations necessary for neuroprotective efficacy. Thus, targeting the C-terminal of 

Hsp90 provides a sufficient therapeutic window that divests cytotoxicity from 



 27 

cytoprotection and may facilitate the development of potentially effective 

neurotherapeutics to treat peripheral neuropathies. 

1.3.2. Modulating Hsp70 to Attenuate Protein Aggregates in CMT1A 

Historically, targeting Hsp70 to treat neurodegenerative diseases has largely focused 

on disease etiologies associated with protein aggregation (Pratt et al 2015, Pratt et al 

2014). For example, decreasing PMP22 aggregates in CMT1A (Okamoto et al 2013, 

Rangaraju et al 2008a) or neurofilaments in CMT type 2E (CMT2E) (Gentil et al 2013, 

Tradewell et al 2009). CMT disease is the most prevalent inherited neuropathy, and is 

caused by mutations in over 50 genes involved in myelin formation and maintenance. 

About 90% of diagnosed CMT patients have a mutation in one of four genes, PMP22, 

MPZ, GJB1 and MFN2 (Latour et al 2006, Murphy et al 2012a, Saporta et al 2011). 

Depending on the neurophysiological manifestations, CMT can be divided into 

demyelinating (CMT1 and CMT4) and axonal CMT (CMT2) (Brennan et al 2015). 

Among all subtypes, the autosomal dominant CMT1A accounts for 60%-70% of all CMT 

patients (Saporta et al 2011). CMT1A is caused by duplication of a 1.5Mb region on the 

short arm of chromosome 17 that encodes a major component of the peripheral myelin, 

PMP22 (Lupski et al 1991, Lupski & Garcia 1992). As a demyelinating form of CMT, 

MNCV of CMT1A patients is often less than 38m/s while compound muscle action 

potential (CMAP) is rarely affected. Sensory action potentials are reduced or absent 

(Tazir et al 2014, Vallat et al 2004). Classical CMT symptoms include distal weakness, 

atrophy, and loss of sensation and foot deformities. Despite intensive research, there is 

currently no cure and treatment relies only on physical therapy, orthopedic surgeries, 

supportive braces and pain management (Brennan et al 2015). Though CMT1A is not 
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lethal, the quality of life of CMT1A patients is impacted in all dimensions. Many studies 

showed that patients with CMT have significantly lower health-related quality of life 

scores (El-Abassi et al 2014), which correlates with pain and muscle weakness (Abresch 

et al 2002, Abresch et al 2001, Burns et al 2010, Calvert et al 2013, Carter et al 1995, 

Padua et al 2010, Redmond et al 2008). Thus, a quest for potential target for 

pharmacological intervention is of importance. 

PMP22 is an indispensable component of the myelin. PMP22-deficient mice 

showed delayed onset of myelination, severe demyelination, and functional impairment 

similar to hereditary neuropathy with liability to pressure palsies (Chance et al 1993, 

Perea et al 2001). Overexpressed PMP22 will overload the trafficking system and 

proteasome degradation pathway and form aggregates in a late Golgi compartment 

(Goldberg 2003, Niemann et al 1999), resulting in demyelination as seen in CMT1A. 

Molecular chaperones, ubiquitin-proteasomal and lysosomal pathways are found 

consistently elevated in the affected nerves, but overtime, they fail to prevent the 

accumulation of PMP22 aggregates (Chittoor et al 2013, Fortun et al 2003, Ryan et al 

2002). Following this thought, one approach in trying to find a potential treatment for 

CMT1A focuses on clearing up the protein aggregates of PMP22 with the help of 

molecular chaperones.  

Geldanamycin, an N-terminal Hsp90 inhibitor, or simply heat shock treatment 

upregulated the expression levels of Hsps, especially Hsp70, and reduced aggresome 

formation (Fortun et al 2007, Rangaraju et al 2008b). Another Hsp90 inhibitor, EC137 

showed similar effects in SC-DRG co-cultures prepared from CMT1A mouse model 

(Rangaraju et al 2008b). Furthermore, the same lab reported that the Hsp90 inhibitor 
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BIIB021 helps attenuate the proteasome dysfunction in cells from a CMT1A patient in an 

Hsp70 dependent manner (Chittoor-Vinod et al 2015). Taken together, inducing Hsp70 

seems a promising therapeutic strategy for CMT1A.  

Though targeting Hsp70 to treat neurodegenerative diseases has been limited to 

etiologies associated with protein aggregation, over the last seven years, we have 

unambiguously demonstrated that novologue therapy decreases inflammation, increases 

the density of unmyelinated sensory fibers and reverses electrophysiologic, bioenergetic 

and psychosensory deficits of diabetic peripheral neuropathy (DPN) in an Hsp70-

dependent manner (Ma et al 2014, Ma et al 2015, Urban et al 2010, Urban et al 2012, 

Zhang et al 2012). Since the etiology of DPN is not linked to protein aggregation, this 

work has presented a new paradigm that modulating Hsp70 is inherently neuroprotective 

and may ameliorate DPN by increasing neuronal tolerance to diabetic stress (Calcutt 

2010). The ability of Hsp70 to treat neuropathies with differing etiologies is linked to 

its role in refolding and/or removing damaged or disease-modifying proteins in a cell 

distinct manner. This lack of mechanistic selectivity for neuroprotection by Hsp70 is not 

a drawback but represents a flexible paradigm for translational development. Thus, an 

effective therapeutic approach for treating complex, chronic neurodegenerative diseases 

may not require targeting a single pathway or protein that contributes to disease onset or 

progression (Dobrowsky 2016), but benefit from increasing the activity of inherently 

neuroprotective pathways associated with Hsp70. 

1.3.3. Modulating Chaperones to Treat Diabetic Peripheral Neuropathy 

According to the Center for Disease Control and Prevention, 30.3 million (about 

9.4% US population) people had diabetes in 2017. Diabetes is associated with the onset 
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of a variety of complications including autonomic neuropathy, retinopathy, nephropathy, 

and DPN (Balakumar et al 2009). DPN is the most prevalent complication of diabetes 

and often manifests as a distal, symmetric, sensorimotor neuropathy that exhibits a 

stocking-glove distribution since symptoms start in the feet or hands and progress 

proximally. DPN arises due to the degeneration of small, unmyelinated or thinly 

myelinated sensory fibers that mediate pain/temperature sensation (C and Aδ fibers) and 

larger myelinated fibers that are involved primarily in tactile sensation (Aβ fibers) 

(Zochodne 2007). Diabetes-induced changes in unmyelinated C-fibers lead to the 

development of small fiber neuropathy that often produces localized painful (positive) 

symptoms while degeneration of thinly myelinated Aδ fibers produces a more diffuse 

pain. Progressive neurodegeneration often resolves the neuropathic pain, but decreased 

response thresholds (Lennertz et al 2011) and loss of epidermal innervation of C-fibers in 

the feet (Beiswenger et al 2008) can contribute to insensate neuropathic symptoms such 

as thermal hypoalgesia. Similarly, degeneration of Aβ fibers leads to a loss of vibration 

and tactile sensation (Christianson et al 2007) with eventual segmental demyelination in 

long-term DPN (Zochodne 2007). Patients with insensate DPN are at high risk to develop 

foot ulcerations and DPN is the number one cause of non-traumatic lower-limb 

amputations (Callaghan et al 2012, Gordois et al 2003, Margolis et al 2011). Current 

FDA approved treatments for DPN target mainly painful neuropathy (Griebeler et al 

2014) but no FDA approved pharmacologic options are available for patients with 

insensate neuropathy (Calcutt et al 2009). 

In individuals with Type 1 diabetes, data from the Diabetes Control and 

Complications Trial provided substantial support for the hypothesis that DPN develops 
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because of increased blood glucose levels (DCCT  Research Group 1988, DCCT 

Research Group et al 1993). However, this relationship is not as central to the 

pathogenesis of DPN in individuals with Type 2 diabetes since insulin 

deficiency/resistance and dyslipidemia may be critical contributors (Kim & Feldman 

2012, Wiggin et al 2008). Moreover, hyperglycemia and dyslipidemia provoke 

downstream alterations in numerous pathways that have been well characterized to 

contribute to DPN. This includes enhanced activity of the polyol pathway, protein kinase 

C and poly(ADP-ribose) polymerase, an increase in inflammatory pathways, protein 

modification by advanced glycation end products and N-acetylglucosamine, increased 

oxidative and nitrosative stress, decreased neuronal mitochondrial bioenergetics and a 

reduction in neurotrophic factor support (Feldman et al 2017, Pop-Busui et al 2016).  

Although targeting any one of these pathways in animal models of DPN can 

improve neuropathic endpoints, this success has not resulted in any translational 

advancements in treating human DPN. One difficulty in treating DPN is that the 

contribution of these various metabolic insults to the onset of the neuropathy does not 

necessarily occur in a temporally and/or biochemically uniform fashion.  In the absence 

of identifying a convergent node critical to disease progression, it is likely that multiple 

pathways lead to the progressive distal axonopathy and poor regenerative potential that 

characterize diabetic neuropathy. Alternatively, an effective therapeutic approach for 

treating complex, chronic neurodegenerative diseases may benefit from increasing the 

activity of inherently neuroprotective pathways associated with molecular chaperone 

signaling.  For example, overexpression of Hsp70 can reduce reactive oxygen species 

(ROS) under hypoxia (Guo et al 2007) and improve mitochondrial function in neurons 
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after ischemia (Xu et al 2010). Similarly, we have shown C-terminal Hsp90 modulators 

can improve DPN in an Hsp70-dependent manner.  

KU-32 was the first C-terminal Hsp90 modulator shown to reverse a sensory 

hypoalgesia and loss of intra-epidermal nerve fibers in diabetic mice, a morphologic 

marker of small fiber damage in DPN (Urban et al 2010, Urban et al 2012). Using Hsp70 

knockout (KO) mice, this study also linked Hsp70 to drug efficacy. Although the absence 

of Hsp70 did not interfere with the development of DPN in Hsp70 KO mice, it did 

abrogate the ability of KU-32 to improve the sensory hypoalgesia. Mechanistically, KU-

32 improved mitochondrial bioenergetic deficits in models of type 1 and type 2 diabetes 

in an Hsp70 dependent manner (Ma et al 2014). In addition, Hsp70 induction correlated 

with decrease in inflammatory markers and improvement in painful neuropathy (Ortmann 

& Chattopadhyay 2014, Yoon et al 2015).  

KU-596 is a next generation novologue that showed greater Hsp70 induction and 

a 14-fold greater efficacy in preventing glucose induced toxicity of sensory neurons 

(Kusuma et al 2012b). RNA-sequencing results from diabetic mice receiving weekly 

doses of KU-596 showed that it reversed a diabetes-induced increase in inflammatory in 

a largely Hsp70-dependent manner (Ma et al 2015). Taken together, this indicates that 

Hsp70 inducers may provide a promising approach in the treatment of DPN and other 

neuropathies. 

1.3.4. Modulating Hsp70 to Treat Demyelinating Neuropathies 

The goal of this work was to assess whether KU-596 could improve a 

demyelinating neuropathy whose etiology was unassociated with protein aggregation, but 

linked to changes in c-jun expression and inflammation. To this end, we employed two 
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mouse models of demyelinating neuropathy to test the effects of in vivo treatment with 

KU-596 on biochemical, physiological and morphological measures of neuropathy. The 

first mouse model we used is the MPZ-Raf mice and is described in Chapter 2. These 

mice express a tamoxifen inducible, estrogen receptor fused with Raf kinase, downstream 

of the SC-specific promoter, P0. After a series of tamoxifen injections, MPZ-Raf mice 

displayed a demyelinating neuropathy induced specifically by SC c-jun. This mouse line 

was crossed with Hsp70KO mice to study the role of Hsp70 in drug action. Studies 

conducted with these models provided proof-of principle that KU-596 may be effective in 

treating demyelinating neuropathies. Though powerful, this transgenic mouse model has 

certain drawbacks. For example, the motor deficits occurred within the first 10 days, 

which makes it extremely difficult to optimize the experimental design to maximize the 

effects of KU-596. More importantly, this model does not mimic any complexities in 

axonal/demyelinating neuropathies, not to mention it does not recapitulate any real 

human diseases. To circumvent these issues, we complemented our study with Cx32def 

mice, a mouse model of CMT1X.  

As described in Section 1.1.3 and Chapter 3, recent evidence suggests that elevated 

c-jun expression is associated with the progression of the disease (Klein et al 2014). The 

mechanistic goal of these studies was to test whether KU-596 could ameliorate the 

neurodegeneration and examine if regulating c-jun expression was involved in the 

mechanism of drug action and determine if Hsp70 was also critical for drug efficacy in 

the context of the genetic deletion of Cx32.  Our translational goal is to identify if KU-

596 may provide an avenue for the therapeutic management of CMT1X since this 
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compound is poised to enter Phase 2 clinical trials for treating various peripheral 

neuropathies. 
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Chapter 2. Targeting Heat Shock Protein 70 to Ameliorate c-Jun 

Expression and Improve Demyelinating Neuropathy 

Reprinted (adapted) with permission from Zhang, Z., Li, C., Fowler, S. C., Zheng, Z., 

Blagg, B.S.J., and Dobrowsky, R.T. (2018) Targeting Heat Shock Protein 70 to 

Ameliorate c-Jun Expression and Improve Demyelinating Neuropathy. ACS Chem 

Neurosci. 9, 381-390. Copyright (2018) American Chemical Society. 

 

Abstract 

Increased expression of the c-jun transcription factor occurs in a variety of human 

neuropathies and is critical in promoting Schwann cell (SC) dedifferentiation and loss of 

the myelinated phenotype. Using cell culture models, we previously identified KU-32 as 

a novobiocin-based C-terminal heat shock protein 90 (Hsp90) inhibitor that decreased c-

jun expression and the extent of demyelination. Additional chemical optimization has 

yielded KU-596 as a neuroprotective novologue whose mechanistic efficacy to improve a 

metabolic neuropathy requires the expression of Hsp70. The current study examined 

whether KU-596 therapy could decrease c-jun expression and improve motor function in 

an inducible transgenic model of a SC-specific demyelinating neuropathy (MPZ-Raf 

mice). Treating MPZ-Raf mice with tamoxifen activates the MAPK kinase pathway, 

increases c-jun expression and produces a profound demyelinating neuropathy 

characterized by a loss of motor function and paraparesis. KU-596 therapy did not 

interfere with MAPK activation but reduced c-jun expression, significantly improved 

motor performance and ameliorated the extent of peripheral nerve demyelination in both 

prevention and intervention studies. Hsp70 was necessary for the drug’s neuroprotective 
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efficacy since MPZ-Raf × Hsp70 knockout mice did not respond to KU-596 therapy. 

Collectively, our data indicate that modulating Hsp70 may provide a novel therapeutic 

approach to attenuate SC c-jun expression and ameliorate the onset of certain 

demyelinating neuropathies in humans. 
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2.1. Introduction 

Peripheral neuropathies are generally classified as axonal or demyelinating and 

manifest from diverse etiologic backgrounds, e.g., genetic, metabolic, autoimmune, drug 

or trauma-induced. Demyelinating neuropathies are typically characterized by damaged 

myelin but intact axons. At the molecular level, recent evidence suggests that the c-jun 

transcription factor is a critical node in regulating demyelination (Parkinson et al 2008). 

Interestingly, upregulation of c-jun is reported in human axonal and demyelinating 

neuropathies including Charcot-Marie-Tooth disease (CMT) Type 1A (CMT1A), X-

linked CMT (CMT1X) and chronic inflammatory demyelinating polyneuropathy (Hur et 

al 2011, Hutton et al 2011).  However, it remains unclear if targeting c-jun may provide a 

viable approach to ameliorate certain neuropathies. 

c-Jun is highly expressed in immature Schwann cells (SC) and is downregulated as 

SC begin to myelinate (Mirsky et al 2008). Although c-jun is minimally expressed in 

healthy nerves, it is rapidly upregulated in pathological or injured nerves.  During nerve 

injury, loss of axonal contact causes myelinated SC to arrest myelination and 

dedifferentiate into an immature phenotype (Parkinson et al 2008). c-Jun is required for 

SC dedifferentiation since its SC-specific deletion results in a marked delay in the rate of 

myelin sheath degradation (Parkinson et al 2008). However, despite the role of c-jun-N-

terminal kinase (JNK) in regulating the transcriptional activity of c-jun by 

phosphorylation, c-jun-mediated demyelination appears to be independent of this 

pathway (Parkinson et al 2008, Raivich & Behrens 2006). Thus, pharmacological 

approaches that antagonize c-jun expression may yield a novel strategy to treat certain 

human neuropathies. To this end, we have found that modulating molecular chaperones 
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can antagonize the expression of c-jun and subsequent demyelination in SC-DRG (dorsal 

root ganglia) co-cultures (Li et al 2012b).  

Molecular chaperones, such as heat shock proteins 70 (Hsp70) and Hsp90, function 

in the folding of nascent polypeptides, refolding of misfolded proteins and the clearing of 

damaged proteins or protein aggregates (Pratt et al 2015, Pratt et al 2014). Hsp90 

contains N- and C-terminal nucleotide-binding domains that are joined by a middle 

domain, which binds co-chaperones, client proteins and the transcription factor, heat 

shock factor 1 (HSF1) (Ciglia et al 2014). The C-terminal domain is essential for forming 

a functional Hsp90 homodimer and the N-terminal ATPase is required for the protein’s 

chaperone activity (Ciglia et al 2014, Hall et al 2014). Through its intrinsic ATPase 

activity and interaction with co-chaperones, isomerases and immunophilins, Hsp90 

directs the folding of “client” proteins into their biologically active conformations 

(Assimon et al 2013, Dekker et al 2015, Peterson & Blagg 2009).  Inhibiting this ATPase 

activity can increase client protein degradation and may be useful in treating certain 

malignancies. However, Hsp90 also serves another important biologic role since it is a 

direct regulator of the cellular heat shock response (HSR) by binding to HSF1 and 

suppressing its transactivating capacity (Vihervaara & Sistonen 2014). Upon exposure to 

proteotoxic stress or binding of small molecules, conformational changes in Hsp90 

disrupt its interaction with HSF1 and lead to the transcriptional induction of 

cytoprotective proteins, such as Hsp70.  

Modulating Hsp70 expression is emerging as an attractive target to improve 

neurodegenerative diseases associated with protein aggregation. In this respect, N-

terminal Hsp90 inhibitors have been reported to decrease tau aggregation in Alzheimer’s 
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disease (Dickey et al 2007a, Luo et al 2007b), huntingtin protein in motor neurons (Waza 

et al 2005) and PMP22 aggregates in CMT1A mice (Chittoor-Vinod et al 2015). 

However, many N-terminal inhibitors are unable to dissociate client protein degradation 

from induction of the HSR. This limitation can increase the degradation of Hsp90 client 

proteins necessary for normal cell homeostasis and antagonize the neuroprotective 

phenotype. Therefore, an effective Hsp90 modulator for treating neurodegeneration 

requires a drug with a sufficient therapeutic window that can upregulate Hsp70 but 

induce minimal client protein degradation to antagonize the protective HSR. To this end, 

we have identified a series of compounds called novologues that bind to the C-terminal 

domain of Hsp90 and induce Hsp70 at concentrations ~500 fold lower than those that 

promote client protein degradation (Kusuma et al 2012b, Urban et al 2010).   

KU-596 (Figure 2.3.1.1A) is a highly bioavailable novologue that has shown 

efficacy in improving sensory deficits in models of diabetic peripheral neuropathy (Ma et 

al 2015). The current study assessed the ability of KU-596, to prevent c-jun-induced 

demyelination in two transgenic mouse models of a SC-specific demyelinating motor 

neuropathy (Napoli et al 2012a). These proof-of-concept data suggest that attenuating c-

jun induction may provide a novel therapeutic strategy in treating certain demyelinating 

neuropathies.   

2.2. Materials and Methods 

Corn oil (CO), p-phenylenediamine and dimethyl sulfoxide (DMSO) were purchased 

from Sigma-Aldrich (St. Louis, MO). Tamoxifen (TMX) was purchased from Cayman 

Chemical (Ann Arbor, MI). KU-596, N-(2-(5-(((3R,4S,5R)-3,4-dihydroxy-5-methoxy-

6,6-dimethyltetrahydro-2H-pyran-2-yl)oxy)-3′-fluoro-[1,1′-bi- phenyl]-2-yl)ethyl)-
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acetamide was synthesized as previously described (Kusuma et al 2012b). Compound 

purity routinely exceeded 95%. 

c-Jun antibody was purchased from Cell Signaling Technology (#9165, Danvers, 

MA). Biotinylated Hsp70 antibody was purchased from Enzo Life Sciences (#ADI-SPA-

810B, Farmingdale, NY). β-actin antibody, GAPDH antibody, goat anti-mouse HRP 

conjugated secondary antibody and goat anti-rabbit HRP conjugated secondary antibody 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Goat anti-rabbit Alexa 

Fluor-647 conjugated secondary antibody, streptavidin-HRP and Diamond prolong 

antifade mounting solution with 4',6-diamidino-2-phenylindole (DAPI) were purchased 

from Thermo-Fisher Scientific Inc. (Grand Island, NY).  

Tissue-Tek Optimum cutting temperature (OCT) was purchased from Electron 

Microscopy Sciences (Hatfield, PA). Captisol (CAP) was purchased from Cydex 

Pharmaceuticals Inc. (Lenexa, KS) 

2.2.1. Animals 

Hemizygous MPZ-Raf mice were obtained from Jackson Laboratory (Bar Harbor, 

ME) and bred to homozygosity. Hsp70.1/Hsp70.3 knockout (Hsp70 KO) were originally 

obtained from the Mutant Mouse Resource and Research Center (Davis, CA) and MPZ-

Raf+/+ × Hsp70 KO mice were generated by crossing the strains. The Raf transgene was 

confirmed using the following primers (forward:GCAGCCCACACTGAGGATA; 

reverse:TTGATCGAGTAATCCCCAGCAG,1.1kb). Hsp70 was detected using 

(forward:GTACACTTTAAACTCCCTCC; reverse:CTGCTTCTCTTGTCTTCG, 450bp) 

while the Hsp70 KO was verified using (forward: ATGGGATCGGCCATTGAACAAG 

and  reverse:ACTCGTCAAGAAGGCGATAGAAGG, 850 bp). The reactions contained 
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1x PCR buffer, 0.5 mM dNTPs, 0.5 mM of each primer, 200–300ng genomic DNA and 

0.2U Omni KlenTaq polymerase (DNA Polymerase Technology, St Louis, MO). PCR 

conditions were: (94oC for 5 min; 35 cycles of 94oC for 30s; 65oC for 30s; 72oC for 30s; 

72oC for 5 min). All animals were maintained on a 12h light/dark cycle and given ad 

libitum access to chow (NIH diet 7005) and water.  

Demyelination was induced by intraperitoneal injection of 2 mg of TMX in CO 

on administration schedules that are indicated in the text. A stock solution of 4 mg/ml 

KU-596 in 0.1M Captisol in phosphate-buffered saline (PBS) was prepared and animals 

were dosed by oral gavage (0.2 ml) with the dose and administration schedules indicated 

in the text. Control animals received identical doses of CO and 0.1M Captisol only. All 

animals were randomly assigned to each treatment group and both male and female mice 

were used in all experiments. TMX treated mice showing extensive limb paralysis were 

monitored closely with veterinary supervision, given moistened food directly on the cage 

floor and euthanized if they were unable to access food and water or reached a body 

condition score of 1 (Ullman-Cullere & Foltz 1999).  All procedures complied with 

protocols approved by the Institutional Animal Care and Use Committee and with 

National Institutes of Health standards and regulations for the care and use of laboratory 

rodents. 

2.2.2. Immunoblot analysis 

Sciatic nerves were homogenized and sonicated in lysis buffer containing 50mM 

Tris-HCl, pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP-40, 1% deoxycholate, 0.1% SDS, 

0.5 mM sodium orthovandate, 40mM NaF, 10mM β-glycerophosphate and 1X Complete 

Protease Inhibitors. Lysates were centrifuged at 10,000 x g for 10 min at 4oC and protein 
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concentration was determined using the DC (detergent compatible) protein assay (Bio-

Rad Laboratories, Inc.) with bovine serum albumin as the standard. 20µg of protein was 

separated by SDS/PAGE and transferred to nitrocellulose membrane for immunoblot 

analysis. The membranes were blocked for 1h with 5% non-fat milk in PBS with 0.1% 

Tween-20 (PBST) and incubated with primary antibodies overnight at 4oC. Membranes 

were washed 3 times with PBST and incubated with HRP-conjugated goat anti-rabbit or 

goat anti-mouse secondary antibodies for 2h at room temperature. Following 3 washes 

with PBST, immunoreactivity was visualized using enhanced chemiluminescence 

detection kit (GE Healthcare Life Sciences). The films were scanned and the density of 

each blot was analyzed using Image J.  

2.2.3. Immunofluorescence analysis 

Sciatic nerves were harvested from MPZ-Raf mice and immersed in Zamboni’s 

fixative overnight at 4°C. Nerves were washed with PBS and cryoprotected in 30% 

sucrose until the desired dehydration was achieved. Nerves were mounted in OCT and 

cut at 10 µm using a cryostat. Cryosections were collected onto charged slides and stored 

at -80oC until use. Sections were re-hydrated with PBS (3x for 5 min) and permeabilized 

with 0.1% Triton X-100 in PBS for 20 min at room temperature. Tissues were incubated 

overnight at 4oC with primary antibodies diluted in 10% normal goat serum in PBS. 

Sections were washed with PBS and incubated with goat anti-rabbit Alexa Fluor-647 

conjugated secondary antibody for 2h at room temperature. Slides were mounted with 

Diamond prolong antifade with DAPI and imaged on an Olympus/3I Spinning Disk 

Confocal/TRIF Inverted Microscope. 5 random sections were captured using SlideBook 

6.4 (Intelligent Imaging Innovations Inc.). The number of c-jun positive profiles per 
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section was quantified using CellProfiler. Individual nuclei with a diameter of 15-120 

pixels were identified using Otsu’s thresholding method. Identified nuclei with c-jun 

intensity greater than 0.03 were classified as positive.  

2.2.4. Teased Nerve fibers 

Teased nerves were prepared as previously described (Viader et al 2011). Sciatic 

nerves were harvested and fixed with 3% glutaraldehyde overnight at 4°C. Following 3 

washes with 0.1M phosphate buffer, nerves were secondarily fixed with 1% osmium 

tetroxide and 1.5% potassium ferricyanide in 0.5M phosphate buffer for 1 hour. Nerves 

were washed with PBS and incubated with a series of glycerol solutions (33%, 66%, 

100%) for 6h each. Nerves were stained with 0.6% Sudan Black in 70% ethanol for 30 

min, washed with 70% ethanol and water and stored in glycerol. Nerves were teased in 

glycerol on glass slides, allowed to dry and examined under a light microscope.   

2.2.5. Nerve Cross sections 

Sciatic nerves were fixed in 2.5% glutaraldehyde in 0.1M HEPES, pH 7.4 for 24h 

at 4oC. Nerves were then washed with 0.1M HEPES and secondarily fixed with 2% 

osmium tetroxide for 2h. After washing twice with distilled water, nerves were 

dehydrated with a series of 30%, 50%, 70% ethanol solutions for 10 min each. Nerves 

were then rinsed twice with 95% ethanol, 100% ethanol and propylene oxide for 15 min. 

The nerves were placed in a mixture of 50% propylene oxide and 50% resin for 2h, 

transferred into 100% resin and placed in a vacuum chamber overnight. Nerves were 

embedded in flat embedding molds (Ted Pella Inc.) with 100% resin and put in an oven 

overnight at 60oC. 1 µm sections were obtained using a Leica Ultratome system (Leica 

Microsystems Inc.).  Sections were collected onto glass slides and stained with 2% p-
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phenylenediamine in 50% ethanol for 10s on a hot plate at 65°C. Slides were washed, a 

coverslip adhered and examined by light microscopy.  

2.2.6. Behavioral Tests 

Mice were placed on an accelerating rotorod (4-40 rpm) (Med Associate Inc, 

Fairfax, VT) for 5 trials each day with a cutoff of 300s per trial. The latency to fall was 

recorded and the median of the 5 trials was determined. Mice were trained for 5 days 

before the start of a study and were tested every other day.  

As a second assessment of motor function, locomotor activity was quantified with 

high temporal (10 ms) and spatial (2 mm) resolution using a force-plate actometer (FPA) 

(Bioanalytical Systems Inc.) (Fowler et al 2009, McKerchar et al 2006). Mice were 

placed in the FPA chamber for a 10 min session as previously described (Fowler et al 

2001). Data was analyzed using custom-written Free Pascal software and the distance 

traveled in the chamber was calculated. The FPA also measures ambulation rhythmicity 

(stride) and force of paw placement during the strides. The resulting force-time waveform 

reflects the rhythmicity of ambulation while the amplitude of the wave measures the 

force of paw placement during the series of strides. The force data is normalized to body 

weight (%bw) so that variations in amplitude are independent of this variable (Fowler et 

al 2009). Max power and integrated power output were calculated after Fourier 

transformation of the force-time waveform data using a Hanning data window and 

Matlab’s Signal Processing Toolbox.  

2.2.7. Statistical Tests 

Data are presented as means ± standard error of the mean (SEM). After verifying 

equality of variance between groups, parametric data were assessed using a one-way 
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analysis of variance (ANOVA) and Tukey’s post-hoc test. Non-parametric data were 

analyzed using a Kruskal–Wallis and Dunn’s test. A p value < 0.05 was considered 

significant and for clarity, only this value is listed even if the significance was lower. All 

analyses were performed using Systat (v13.1), ProStat (v4.83) or R (v3.4.1) software. 

2.3. Results 

2.3.1. KU-596 decreased TMX-induced c-jun expression 

To investigate the in vivo efficacy of KU-596 to attenuate c-jun-induced 

demyelination, we utilized MPZ-Raf mice. MPZ-Raf mice express a human Raf kinase 

gene fused to a modified estrogen receptor ligand binding domain downstream of the 

myelin protein zero (MPZ) promoter (Napoli et al 2012a). MPZ is expressed specifically 

in SCs and is an important structural component of peripheral nerve myelin. TMX 

administration activates the Raf kinase-fusion protein in myelinated SCs and drives 

downstream activation of the p42/p44 mitogen-activated protein kinase (MAPK) 

pathway, which induces the expression of c-jun. MAPK activation and c-jun induction 

promotes a rapid and robust motor neuropathy characterized by severe demyelination of 

peripheral nerves (Napoli et al 2012a).  

Male and female MPZ-Raf mice were treated with 2 mg TMX dissolved in corn 

oil (CO) every other day for 14 days to induce MAPK activation.  KU-596 (20 mg/kg) or 

vehicle (0.1M Captisol, CAP) was given orally on alternate days starting from day 0 

(Figure 2.3.1.1B). The dose of KU-596 was chosen based on prior studies that 20 mg/kg 

of the drug could improve diabetic peripheral neuropathy. After 14 days, the mice were 

euthanized and immunoblot analysis of sciatic nerve lysates was performed. As expected, 

treating the MPZ-Raf mice with TMX induced the phosphorylation of MAPK (pMAPK) 
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and increased c-jun expression in sciatic nerve (Figure 2.3.1.1C and D). Although KU-

596 treatment did not alter the activation of MAPK, it significantly reduced the level of c-

jun (Figure 2.3.1.1D). Since KU-596 did not decrease pMAPK, the decline in c-jun 

expression is downstream of MAPK activation. Importantly, these results were confirmed 

using cross sections of sciatic nerves stained with antibodies against c-jun and myelin 

basic protein (MBP) (Figure 2.3.1.1E and F). TMX increased the number of c-jun 

positive nuclei and this was significantly attenuated by KU-596. Similarly, TMX also 

decreased MBP immunoreactivity, which was markedly improved by KU-596 treatment. 

No c-jun positive nuclei were noted in animals that received only CO and KU-596. 
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Figure 2.3.1.1: KU-596 decreases c-jun expression in TMX treated MPZ-RAF mice. 
A) Structure of KU-596. B) Dosing regimen of MPZ-RAF mice. Mice were treated with Captisol 
(CAP) or KU-596 (20mg/kg) every other day for 14 days starting from Day 0. Beginning on day 
1, mice received corn oil (CO) or 2 mg tamoxifen (TMX) every other day for 14 days. C) Mice 
were sacrificed on day 15, lysates of the sciatic nerves prepared and pMAPK, total MAPK, c-jun 
and β-actin levels determined by immunoblot analysis. D) Quantification of pMAPK (n=3 per 
group) and c-jun expression (CO+CAP, n=9; CO+KU-596, n=8; TMX+CAP, n=15; TMX+KU-
596, n=15). *, p<0.05 compared with CO+CAP. #, p<0.05 compared with TMX+CAP. E) 
Immunostaining of sciatic nerve cross-sections of MPZ-RAF mice. Frozen sections were stained 
for c-jun (green) and MBP (red). F) Frozen sections were stained for c-jun (green) and nuclei 
were visualized with DAPI. The number of c-jun positive nuclei were counted and normalized to 
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the total number of nuclei in two sections obtained from 3 animals per group. *, p<0.05 compared 
with CO+CAP. #, p<0.05 compared with TMX+CAP. Scale bar=20µm. 

 

2.3.2. KU-596 improves demyelination in MPZ-Raf mice 

To determine the effect of KU-596 on myelination profiles, MPZ-RAF mice were 

treated with TMX and KU-596 using the dosing schedule shown in Figure 2.3.1.1B. 

Sciatic nerves were fixed with osmium tetroxide, teased in glycerol and examined under a 

light microscope. Whereas control mice (CO+CAP, CO+KU-596) showed normal 

myelination with well demarcated nodes of Ranvier, nerves from TMX+CAP treated 

mice showed large regions denuded of myelin (Figure 2.3.2.1A). Although KU-596 

trended toward reducing the length of the demyelinated region, the effect was variable 

(Figure 2.3.2.1B). To further quantify the effect, a teased fiber was considered damaged 

if the distance between two myelinated sections was at least 10% greater than the average 

distance between internodes of CO+CAP treated animals (Figure 2.3.2.1B).  By this 

criterion, the drug significantly decreased the percentage of damaged fibers (Figure 

2.3.2.1C). In addition, cross sections of sciatic nerves indicated an increased number of 

abnormally myelinated fibers in the TMX+CAP group (Figure 2.3.2.2A). KU-596 

treatment reduced by 25% the number of abnormally myelinated fibers defined as those 

with a myelin sheath, exhibiting myelin splitting, having myelin debris, onion bulbs, 

myelin ovoids or presence of regeneration clusters (Figure 2.3.2.2B). Despite the rapid 

onset and robust level of demyelination induced by TMX, these data suggest that KU-596 

can ameliorate but not prevent the degeneration.  
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Figure 2.3.2.1: KU-596 improves myelin integrity. 
A) Representative pictures of the effect of TMX and KU-596 treatment on myelination in teased 
sciatic nerves of MPZ-RAF mice (scale bar= 10µm). B) Quantification of the demyelinated 
length of sciatic nerves in TMX and TMX+KU-596 treated MPZ-Raf mice. Columns represent 
individual animals and dots represent length of demyelinated regions in individual teased nerves.  
Bar indicates median. C) Quantification of percentage of damaged nerves in each group. Nerves 
with demyelinated distances that were at least 10% greater than the average distance between two 
internodes in the CO+CAP treated MPZ-RAF mice were classified as damaged. *, p<0.05 
compared with CO+CAP. #, p<0.05 compared with TMX+CAP.  
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Figure 2.3.2.2: KU-596 decreased abnormally myelinated fibers.  
A) Cross section of sciatic nerves of MPZ-RAF mice. Examples of myelin splitting (arrows) and 
demyelinated fibers (arrowheads) are indicated. Scale bar, 10µm. B) Quantification of 
abnormally myelinated nerves in each group. Abnormal myelination was defined as the presence 
of myelin splitting, myelin debris, onion bulbs, myelin ovoids and regeneration clusters. Each 
symbol represents the average from one section that was counted twice in separate sessions while 
blinded to treatment. The number of animals per group was CO+CAP (n=4), CO+KU-596 (n=3), 
TMX+CO (n=6) and TMX+KU-596 (n=5). Kruskal–Wallis non-parametric test, *, p<0.05 
compared with CO+CAP, #, p<0.05 compared with TMX+CAP. 
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2.3.3. KU-596 improves motor function in MPZ-Raf mice  

Since demyelination mainly affects large caliber motor nerves, we sought to test 

the effects of TMX and KU-596 on motor function by examining the ability of the mice 

to stay on a ramping rotorod. Animals were randomly assigned to each of the 4 treatment 

groups and given 5 training trials on the rotorod. MPZ-RAF mice were treated using an 

alternate day dosing schedule with day 0 serving as the baseline rotorod performance 

prior to any treatment. Animals were given 20 mg/kg KU-596 on alternate days 

beginning at day 0, while TMX was administered every other day beginning at day 1.  

As expected (Napoli et al 2012a), TMX+CAP treated mice developed an impaired 

motor coordination and showed a sharp decrease in the latency to fall beginning at day 10 

(after 4 TMX doses) (Figure 2.3.3.1A and B). Compared to mice treated with TMX+CAP 

mice, animals that received TMX+KU-596 showed a significantly delayed onset of the 

motor deficit and a preservation of motor function. Indeed, TMX+CAP mice showed an 

abnormal posture and rear limb positioning with the most severe mice exhibiting 

paraparesis (Figure 2.3.3.1C, top). In contrast, TMX+KU-596 treated mice had a 

relatively normal posture (Figure 2.3.3.1C, bottom), the limbs were able to support the 

body weight and the mice more effectively used all four limbs when ambulating, as 

discussed below.  
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Figure 2.3.3.1: KU-596 improves motor function of TMX treated MPZ-RAF mice. 
A) Latency to fall on the rotorod was assessed in 5 trials and the median was recorded. KU-596 
increased time on the rotorod indicating improved motor function (n = 8-13). *, p<0.05 compared 
with CO+CAP. #, p<0.05 compared with TMX+CAP. B) Latency to fall of individual mice from 
each group on Days 10, 12, and 14, respectively. C) Representative pictures of MPZ-Raf mice 
treated with TMX+CAP (top) or TMX+KU-596 (bottom) at the end of the study. D) Mice were 
placed in the FPA for 10 min and the distance traveled (Di) and paw placement forces (Diii) were 
recorded. Numerical data for distance traveled in meters are shown in the lower margin of Di for 
the three groups. The second row of panels (Dii) represents the corresponding Fourier transforms 
of the force-time waveforms shown in Diii. Together Dii and Diii establish the rhythmic character 
and power output of individual bursts of locomotion. The fourth row of panels (Div) show 
enlarged images of force-time waveforms for the indicated animal in each group to more clearly 
illustrate treatment-related differences in ambulation power and rhythmicity. *, p < 0.05 versus 
CO+CAP; # p< 0.05 vs TMX+CAP. 
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Since the rotorod test is a rather gross indication of motor coordination, we 

employed a force plate actometer (FPA) to quantify locomotor activity with high 

temporal (10 ms) and spatial (2 mm) resolution (Fowler et al 2009, McKerchar et al 

2006). No training of the animal is required since the FPA measures multiple movement 

parameters as the mouse freely explores the FPA chamber during a 10 min session. 

Animals were treated with TMX and KU-596 as discussed above and motor function in 

the FPA was assessed on day 14. Figure 2.3.3.1Di shows representative patterns of 

movement and overall distance traveled by the mice in the FPA chamber. Compared to 

control mice, TMX treated mice tended to restrict their movement around the perimeter 

of the chamber and showed a significant decrease in the total distance traveled from 25.4 

meters to 6.7 meters. This is likely due to the extensive paraparesis (Figure 2.3.3.1C) and 

not a behavioral deficit induced by TMX; WT mice treated with TMX showed normal 

exploratory behavior (data not shown). In contrast, the overall distance traveled by mice 

receiving TMX+ KU-596 was significantly increased compared to the TMX + CAP 

group, and approximated the exploratory behavior of the control mice, though it remained 

slightly decreased.  

The FPA also measures ambulation rhythmicity (stride) and force of paw 

placement during the strides. The panels in Figure 2.3.3.1Diii show representative force-

time waveforms of paw placement forces during a straight run in the FPA. The symmetry 

of the force-time peaks represents the rhythmicity of ambulation during the series of 

strides while the amplitude of the wave measures the force of paw placement (power 

output). To quantify power output, it is normalized to body weight (%bw) so that 

variations in amplitude are independent of this variable (Fowler et al 2009). TMX 
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treatment clearly abolished the peak symmetry (rhythmicity of the stride) and peak 

amplitude (force of the paw hitting the force plate). The panels in Figure 2.3.3.1Div are a 

magnified view of the force data from one animal per group to highlight the differences 

in movement. These deficits result from the loss of limb coordination (Figure 2.3.3.1C) 

and inability of the limbs to sustain the body weight.  Changes in force can be quantified 

following Fourier transformation of the waveforms which produces a power spectra 

(Figure 2.3.3.1Dii). The peak around 8-9 Hz in control mice represents normal 

ambulation rhythmicity and integration of the area under the curve (AUC) provides an 

indication of the force. TMX clearly abolished rhythmicity and significantly decreased 

the AUC in the power spectra. However, mice treated with KU-596 showed a significant 

improvement in ambulation rhythmicity and force. Together, these data indicate that 

decreased c-jun expression and the improved myelination following KU-596 treatment 

correlated with the development of a less severe motor neuropathy.  

2.3.4. KU-596 improves a pre-existing motor deficit in MPZ-Raf mice 

To test the ability of KU-596 to reverse a pre-existing motor deficit, rotorod 

performance was assessed every other day for 9 days in a group of 42 MPZ-Raf mice. 

After each session, the mice were administered TMX every other day for a total of 5 

doses over the 9 days (Figure 2.3.4.1A). By day 11, the latency to fall was approximately 

< 75% of the baseline on day 1. After assessing the rotorod latency on day 11, the mice 

were randomly assigned to one of four groups which received daily doses of 0 (n=12), 

0.1, 1 or 10 mg/kg of KU-596 (n=10 each) from days 11 to day 18. This log range was 

chosen since 0.1 mg/kg shows minimal efficacy in improving diabetic peripheral 

neuropathy. Performance on the rotorod was assessed every other day from days 13 - 19 
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(Figure 2.3.4.1B). The latency to fall in mice receiving 0.1 mg/kg of KU-596 remained 

significantly impaired compared to the control mice and was indistinguishable from the 

mice treated with TMX + CAP. Mice receiving 1 or 10 mg/kg KU-596 did show some 

improvement in the latency to fall since they were not significantly different from the CO 

control group at days 13, 15 and 19. However, the magnitude of this improvement was 

not sufficient to be statistically different relative to the TMX + CAP group at any of the 

time points. Analysis of the latency to fall responses of individual animals indicated a 

rather wide variability among those treated with either TMX + CAP or TMX + KU-596 

(data not shown). Therefore, to minimize the effect of animals that were either poor or 

good responders, the median fall latency in each group at each time was used to 

determine if the drug was having a significant effect over the duration of treatment. The 

median fall latencies for each treatment at days 13 – 19 were combined (4 time points per 

group) and analyzed by one-way ANOVA and Scheffe’s post-hoc test (Figure 2.3.4.1C). 

This analysis suggests that daily dosing with 1 and 10 mg/kg KU-596 from days 11-18 

significantly increased the fall latency over this treatment period.   
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Figure 2.3.4.1: KU-596 improves a pre-existing motor deficit.  

A) TMX was given every other day until the latency to fall dropped to about 75% of baseline by 
day 11. After the rotorod session on day 11, animals were randomly assigned to be treated daily 
with 0 – 10 mg/kg KU-596 and the dosing was initiated.  B) Latency to fall of MPZ-RAF mice on 
the rotorod. Each mouse received 5 trials and the median of latency to fall was recorded. The 
arrow points to the start of daily KU-596 or vehicle treatment. TMX produced a statistically 
significant decrease in response latency that was not improved by 0.1 mg KU-596. *, p<0.05 
compared with CO+CAP. Though the response latency in mice treated with 1 or 10 mg/kg KU-
596 was not significantly different from the control group, it was significantly improved from 
animals that only received Captisol.  C) The median of each treatment at days 13-19 were 
grouped and analyzed to minimize variability associated with good versus poor responders. One 
way ANOVA and Scheffe’s post-hoc test indicated that 1 and 10 mg/kg KU-596 improved motor 
function over the duration of treatment.  
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2.3.5. Hsp70 is required for drug efficacy 

Our previous work indicated that the ability of KU-596 to improve sensory 

deficits associated with the development of DPN is Hsp70-dependent (Li et al 2012b, Ma 

et al 2014, Ma et al 2015, Urban et al 2010). However, demyelination is not a hallmark of 

the sensory neuropathy that develops in diabetic rodents. Therefore, to determine if the 

ability of KU-596 to improve the demyelinating motor neuropathy in MPZ-Raf mice is 

also Hsp70-dependent, MPZ-Raf × Hsp70 KO mice were generated (Figure 2.3.5.1A). 

Importantly, deletion of Hsp70 had no effect in altering the expression of the constitutive 

isoform, Hsc70, in sciatic nerve.  

Deletion of Hsp70 did not affect basal motor coordination since untreated MPZ-

Raf × Hsp70 KO mice (Figure 2.3.5.1B) performed as well as the MPZ-Raf mice (Figure 

2.3.3.1A and B) on the rotorod. As described for Figure 2.3.1.1A, MPZ-Raf x Hsp70 KO 

mice were also given 20 mg/kg KU-596 on alternate days beginning at day 0, while TMX 

was administered every other day beginning at day 1. Treating the MPZ-Raf × Hsp70 KO 

mice with TMX induced a progressive decrease in the latency to fall from the rotorod 

indicating that Hsp70 is not necessary to develop the motor neuropathy. However, in 

contrast to the MPZ-Raf mice, 20 mg/kg of KU-596 was unable to improve rotorod 

performance (Figure 2.3.5.1B). Consistent with this result, KU-596 also did not improve 

the distance traveled in the FPA (Figure 2.3.5.1Ci and D) nor ambulation rhythmicity 

(Figure 2.3.5.1Cii). Lastly, although TMX increased c-jun levels in sciatic nerve (Figure 

2.3.5.1E), KU-596 was unable to decrease c-jun as occurred in the MPZ-Raf mice. These 

data indicate that KU-596 requires Hsp70 to improve the motor neuropathy and link 

Hsp70 to the decrease in c-jun.   
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Figure 2.3.5.1: KU-596 improves the motor deficit in an Hsp70 dependent manner. 
 

A) The left panel shows genotype analysis of the MPZ-Raf x Hsp70 KO mice. A- Raf transgene; 
B, Hsp70 WT; C, Hsp70 KO. The animal in white font was heterozygous for the Hsp70 KO while 
the animal in red font was homozygous. The right panel shows immunoblot analysis of sciatic 
nerve from 2 C57Bl/6 mice and four MPZ-Raf x Hsp70 KO mice. The mice lacked Hsp70 
expression and this had no effect on altering the expression of Hsc 70.  B) Mice were given 20 
mg/kg KU-596 on alternate days beginning at day 0, while TMX was administered every other 
day beginning at day 1. Mice were trained for 5 days on the accelerating rotorod and tested every 
other day. Each mouse received 5 trials and the median latency to fall was recorded. KU-596 
treatment showed no effect on the latency to fall compared with the TMX+CAP group. C) Mice 
were treated with TMX and KU-596 as described above and on day 15, and the total distance 
traveled (Ci) was quantified (D). (E) Sciatic nerves were analyzed for c-jun expression by 
immunoblot and equal loading was verified by immunoblotting for β-actin and via staining with 
Ponceau red. 
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2.4. Discussion 

c-Jun belongs to the AP-1 transcription factor family and was first discovered as an 

oncogene (Yamanishi et al 1991).  Although elevated c-jun is not the cause of all 

neuropathies, it may be an important culprit. Parkinson et al. were the first to demonstrate 

that c-jun is a negative regulator of myelination and is required for SC dedifferentiation 

(Parkinson et al 2008). Our data suggests that decreasing c-jun expression with KU-596 

therapy correlates with a decrease in demyelination and improved motor function in 

MPZ-Raf mice, a robust model of a rapid onset demyelinating neuropathy. Moreover, 

drug efficacy seems to require Hsp70 as improved motor function could not be 

recapitulated in MPZ-Raf x Hsp70 KO mice.  

Hsp70 is mechanistically known to inhibit the JNK pathway and protect neurons 

from apoptosis (Bienemann et al 2008, Lee et al 2005). However, the phosphorylation of 

c-jun by JNK is not necessary for c-jun to promote demyelination(Parkinson et al 2008). 

Our published work using an earlier generation C-terminal Hsp90 inhibitor, KU-32, 

indicated that an increase in the proteasomal clearance of c-jun and phospho-c-jun was 

linked to protecting against demyelination in SC-sensory neuron co-cultures (Li et al 

2012b). Thus, we anticipate that the decrease of c-jun expression is more likely due to 

increased clearance rather than decreased production, but this remains to be demonstrated 

in vivo. One possible mechanism for enhancing c-jun clearance via Hsp70 is through the 

carboxy terminus of heat shock cognate protein 70 (Hsc70) interacting protein (CHIP). 

CHIP is an Hsp70 interacting E3 ubiquitin ligase that mediates the proteasomal clearance 

of Hsp70 substrates by binding to a C-terminal EEVD sequence of the chaperone (Dickey 

et al 2007b). Since Hsp70 can co-immunoprecipitate c-jun, an Hsp70-CHIP complex may 
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be involved its clearance. However, no reports have linked CHIP as a critical mediator 

for c-jun degradation. On the other hand, the F-box protein, Fbw7, is known to enhance 

the clearance of c-jun by promoting its ubiquitination by the SCF ubiquitin E3 ligase 

complex (Hoeck et al 2010, Wang et al 2011). Phosphorylation of c-jun at T239 and S243 is 

required for its recognition by Fbw7 (Wei et al 2005) and TMX-treated mice showed an 

increase in c-jun phosphorylation at these residues (data not shown).  Fbw7 is readily 

detected in sciatic nerve extracts and can also co-immunoprecipitate with Hsp70 from 

cell extracts (data not shown). Little is known about how c-jun is cleared in SC and these 

observations suggest that Fbw7 may regulate c-jun function. The role of Fbw7 in 

regulating c-jun clearance via KU-596 and Hsp70 is currently being examined using mice 

with a SC-specific conditional deletion of Fbw7.  

Although KU-596 therapy could not decrease c-jun levels in the absence of 

Hsp70, it remains unclear if a decrease in c-jun is critical to mediating the improvement 

in nerve function or is a consequence of other mechanisms by which Hsp70 may 

ameliorate the neuropathy, i.e., enhancing mitochondrial bioenergetics or decreasing 

inflammation (Ma et al 2015).  Moreover, emerging data suggests that c-jun serves a 

complicated role in SC function. In response to injury or metabolic insults, robust 

induction of c-jun in myelinated adult SCs is recognized as essential for promoting 

dedifferentiation of the myelinated phenotype (Parkinson et al 2008). For instance, an 

increase in SC c-jun expression correlates with the extensive demyelination that occurs in 

a mouse model of human CMT1X (Klein et al 2014). Though high levels of c-jun 

expression are sufficient to drive SC dedifferentiation, c-jun levels decline after loss of 

the myelin membrane. Recent data supports that a low level of c-jun expression in 
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injured SCs may be important to produce trophic factors, such as glial derived 

neurotrophic factor, that can aid the survival of the desheathed sensory neurons 

(Arthur-Farraj et al 2012, Fontana et al 2012b).  For example, the C3 mouse model of 

CMT1A shows a decrease in the number of myelinated sensory axons compared to wild 

type mice (Hantke et al 2014). However, SC-specific deletion of c-jun in the C3 mouse 

exacerbated the loss of myelinated sensory axons, suggesting a supportive role of c-jun in 

axonal survival (Hantke et al 2014). While pharmacologic modulation of c-jun levels is 

distinctly different from its genetic deletion, it is translationally important to determine if 

the drug may interfere with, complement or supplant any trophic actions of c-jun in 

supporting desheathed axons in relevant disease models that have a SC-specific deletion 

of c-jun.  

A second caveat of our work is that the rapid onset demyelinating neuropathy 

shown by the MPZ-Raf mice does not mimic a human disease. Importantly, c-jun is 

elevated in several inherited neuropathies, such as CMT1A, CMT1B, and CMT1X 

(Hutton et al 2011, Klein et al 2014). The ability of KU-596 to improve motor function in 

this rapid and robust model of a demyelinating neuropathy suggest it may have clinical 

potential in these slower onset diseases since muscle weakness and limited mobility are 

major complaints from afflicted patients (Johnson et al 2014, Kelly et al 2015). Since 

induction of Hsp70 by N-terminal Hsp90 inhibitors can clear protein aggregates in 

models of CMT1A (Chittoor et al 2013, Rangaraju et al 2008a), KU-596 may be 

beneficial in treating this inherited neuropathy since it has a broader therapeutic window 

that promotes Hsp70 induction without increasing client protein degradation, which 

would be neurotoxic. The application of KU-596 in treating CMT1X would be intriguing 
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as well. Since CMT1X is a mixed axonal and demyelinating neuropathy, decreasing c-jun 

expression may help improve aspects of the demyelinating neuropathy while providing 

some support for the axonal neuropathy via its documented ability to improve at least 

sensory neuron mitochondrial bioenergetics.  Furthermore, a SC-dependent secondary 

inflammation that stimulates macrophage-mediated demyelination contributes to the 

progressive neuropathy in CMT1X (Groh et al 2010, Groh et al 2015). C-C motif 

chemokine (CCL2) is derived from SCs, and attracts macrophages to infiltrate the 

endoneurium and directly contribute to myelin degeneration in CMT1X (Martini & 

Willison 2015). Since c-jun can transcriptionally increase CCL2 (Wolter et al 2008), 

decreasing its levels may abrogate CCL2 production and decrease macrophage-

mediated myelin degeneration in CMT1X. Consistent with this premise, transcriptomic 

analysis found that KU-596 therapy broadly decreased the expression of inflammatory 

genes and was predicted to decrease CCL2 activation in diabetic dorsal root ganglia 

(Ma et al 2015). The potential utility of KU-596 and Hsp70 in improving physiologic 

read outs of nerve function in mouse models of CMT1X is currently being assessed.  

In summary, we show that novologue therapy can attenuate the severe 

morphologic and physiologic indices of a demyelinating neuropathy that rapidly 

occurs in the MPZ-Raf mice. Since human demyelinating neuropathies typically show 

a more gradual development, this bodes well for the drug’s translational potential. 

Combined with our extensive published data on the efficacy of novologues in 

attenuating a metabolic neuropathy (Ma et al 2014, Ma et al 2015, Urban et al 2010, 

Urban et al 2012), these data provide strong proof-of-principle that the upregulation of 

endogenous cytoprotective pathways can attenuate neuropathies of distinct etiologies.   



 63 

Chapter 3. Modulating Molecular Chaperones Improves Demyelinating 

Neuropathy in a Mouse Model of Charcot-Marie-Tooth 1X 

Abstract 

X-linked Charcot-Marie-Tooth (CMT1X) disease is the second most common 

form of CMT and is caused by mutations of the gap junction beta-1 gene (GJB1) which 

encodes the protein connexin 32 (Cx32). The loss of function of Cx32 accounts for the 

symptoms of CMT1X due to the development of a mixed axonal and demyelinating 

neuropathy. Cx32 deficient mice (Cx32def) are an accepted model of human CMT1X 

and are useful for evaluating novel pharmacologic approaches to treat CMT1X, which are 

desperately needed by patients. “Novologues” are orally bioavailable, non-toxic small 

molecules that improve metabolic and clinical indices of diabetic peripheral neuropathy 

by modulating the expression of the molecular chaperone heat shock protein 70 (Hsp70). 

We have also identified that novologue therapy has promising efficacy in improving 

neuromuscular function in the Cx32def animal model of CMT1X. Recent evidence 

suggests that c-jun could be a potential target for treating CMT1X since elevated levels of 

c-jun can promote demyelination. Young Cx32def mice exhibit an early axonopathy and 

treating 3-month-old Cx32def mice for 1 month with the novologue, KU-596, dose 

dependently decreased c-jun expression in Schwann cells of the femoral nerves and 

improved motor nerve conduction velocity (MNCV) and compound muscle action 

potential (CMAP). Older Cx32def mice develop a demyelinating neuropathy and treating 

6-month-old Cx32def mice for 3 months with KU-596 improved grip strength and 

MNCV. The therapeutic effects of KU-596 depend on Hsp70 since grip strength and 

MNCV were not improved by 3 months of drug therapy in Cx32def x Hsp70 knockout 
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mice. Collectively, our data indicate that modulating Hsp70 could be beneficial in 

treating CMT1X possibly due to effects on decreasing the expression of c-jun. Since 

novologues are entering Phase 2 trials, this therapy shows promise as a rapidly 

translatable treatment for CMT1X. 
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3.1. Introduction 

X-linked Charcot-Marie-Tooth disease (CMT1X) is caused by mutations in the 

gap junction beta 1 (GJB1) gene (Gal, Mucke et al. 1985). Over 400 mutations of the 

GJB1 gene have been reported to be associated with CMT1X (Kleopa et al 2012, 

Panosyan et al 2017). CMT1X is the second most common type of CMT, accounting for 

nearly 20% of CMT1 cases (Braathen 2012). Because CMT1X is an X-linked dominant 

disorder, males have an earlier onset, usually within the first two decades of life, and are 

more severely affected than female patients. CMT1X patients present classic 

neuromuscular symptoms including foot drop, steppage gait, and pes cavus. Symptoms 

first appear in the distal foot and leg muscles and gradually progress to the upper limbs 

(Shy, Siskind et al. 2007).  

The GJB1 gene encodes the gap junction protein connexin 32 (Cx32) that is found 

at the Schmidt-Lantermann incisures and within non-compact myelin (Scherer et al 

1995). Cx32 contains cytoplasmic amino and carboxy termini, four transmembrane 

domains, and one intra- and two extra-cellular loops. Hexamers of Cx32 form a 

hemichannel and in the peripheral nervous system (PNS), gap junction channels are 

formed by hemichannels that contain only Cx32 (Kleopa & Sargiannidou 2015). The 

Cx32 gap junction channels allow molecules less than 1 kDa to pass through the SC 

cytoplasm with a thousand-fold shorter distance than the circumferential pathway 

(Balice-Gordon et al 1998, Scherer et al 1995). The loss of function of Cx32 solely 

accounts for the peripheral symptoms in CMT1X and Cx32 deficient (Cx32def) mice 

mimic many features of the peripheral neuropathy that develop in humans. Thus, 
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Cx32def mice provide an excellent animal model for assessing mechanisms of disease 

development and exploring the efficacy of potential therapeutics.  

Though the mechanism by which a loss-of-function of Cx32 leads to the 

neuropathic phenotype is unknown, Cx32def mice clearly exhibit a two-stage neuropathy. 

In contrast to the initial discovery, where no neurological changes were observed at 3 

months of age (Nelles et al 1996), Vavlitou et al found that axonal damage started to 

occur at 2 months of age, prior to demyelination (Vavlitou et al 2010). This first stage of 

axonopathy is associated with an increase in the transcription factor c-jun, a decrease in 

phosphorylated neurofilament, and a decrease in axon diameter (Klein et al 2014). The 

second stage is a macrophage-mediated demyelinating neuropathy that evolves around 

6 months of age. It is hypothesized that the mutant SCs send an unidentified signal to 

fibroblasts, which then secrete colony stimulating factor-1 (CSF-1) that activates the 

macrophage-mediated neurodegeneration (Groh et al 2016, Groh et al 2015, Martini & 

Willison 2016). Mutant SCs also secrete C-C motif chemokine (CCL2) that guides 

macrophages to mutant SCs (Kohl et al 2010). This stage of the neuropathy is 

associated with a robust increase in c-jun expression (Klein et al 2014), which can 

induce the transcription of CCL2 (Wolter et al 2008). Since c-jun drives SC 

dedifferentiation (Jessen & Mirsky 2016) and promotes macrophage-mediated damage, 

attenuating the expression of c-jun may serve as a valid therapeutic strategy. To this 

end, we propose using an innovative small molecule chaperone modulator to 

pharmacologically manage CMT1X. 

Molecular chaperones such as Hsp70 and Hsp90 play important roles in protein 

folding, assembly, regulation and degradation. They also act as the first-line of defense 
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against stress (Feder & Hofmann 1999). Recent evidence suggests that modulating 

Hsp70 yields promising neuroprotective effects in neurodegenerative diseases 

associated with protein aggregation, such as Alzheimer’s disease (AD) and 

Parkinson’s disease (PD)(Dickey et al 2006, Dickey et al 2007a, Luo et al 2007a, 

Putcha et al 2010). However, the use of small molecules directly targeting Hsp70 has 

been shown to be challenging (Assimon et al 2013). Alternatively, Hsp70 expression 

could be regulated indirectly through the modulation of Hsp90 to induce an HSR. The 

binding of Hsp90 inhibitors to Hsp90 disrupts the Hsp90-HSF1 complex and releases 

HSF1. Following phosphorylation and trimerization, the released HSF1 binds to the 

HSE and induces the transcription of Hsps, especially Hsp70 (Neef et al 2011).  

N-terminal Hsp90 inhibitors have been shown to reduce toxic aggregates in 

neurodegenerative diseases, such as AD and PD (Luo et al 2007a, Putcha et al 2010). 

However, many N-terminal inhibitors have limited application since they induce 

degradation of normal client proteins in addition to the induction of HSR. We 

developed a series of novobiocin-based small molecule C-terminal Hsp90 inhibitors, 

termed novologues, which induce the HSR at a much lower concentration than the 

concentration needed to induce client protein degradation. The second-generation 

novologue, KU-32, has been shown to protect neurons from amyloid-β induced 

toxicity (Ansar et al 2007). Moreover, in mouse models of diabetic peripheral 

neuropathy (DPN), weekly treatment of KU-32 improved mitochondrial bioenergetics 

and reversed sensory deficits (Ma et al 2014). Importantly, KU-32 was also found to 

attenuate demyelination by regulating c-jun expression. Using myelinated SC-dorsal 

root ganglia co-cultures, c-jun induction and demyelination can be rapidly induced by 
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the addition of neuregulin 1 Type 1. Treating the myelinated co-cultures with KU-32 

prior to inducing demyelination with neuregulin 1 decreased c-jun expression, and 

blocked the extensive demyelination. Mechanistically, this neuroprotection required 

Hsp70 since the drug could not prevent neuregulin-induced demyelination in co-

cultures prepared from Hsp70 KO mice (Li et al 2012a).  

Although KU-32 is a potent neuroprotective C-terminal Hsp90 inhibitor, 

further structure activity studies identified KU-596 as a next generation novologue 

with a more facile synthesis that protected sensory neurons with an improved ED50 

(Kusuma et al 2012a). Like KU-32, KU-596 improved mitochondrial bioenergetics 

and sensory deficits in a mouse model of DPN in an Hsp70-dependent manner (Ma et 

al 2015). As discussed in Chapter 2, oral administration of KU-596 reduced c-jun 

expression, the extent of demyelination and improved motor function in a transgenic 

model of a demyelinating neuropathy. To more fully evaluate the potential of KU-596 

to improve a neuropathy that models a human disease, we used Cx32def mice to 

explore whether KU-596 may be beneficial in the context of CMT1X. Our data 

suggests that modulating molecular chaperones could provide a new therapeutic 

strategy towards the treatment of CMT1X. 

3.2. Materials and Methods 

3.2.1. Materials 

KU-596, N-(2-(5-(((3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyltetrahydro-

2H-pyran-2-yl)oxy)-3'-fluoro-[1,1'-bi- phenyl]-2-yl)ethyl)-acetamide was synthesized as 

previously described (Kusuma et al 2012a). Compound purity routinely exceeded 95%. 
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Captisol (CAP) was purchased from Cydex Pharmaceuticals Inc. (Lenexa, KS) and was 

used to solubilize KU-596 for oral administration and served as the drug vehicle.  

c-Jun antibody was purchased from Cell Signaling Technology (#9165, Danvers, 

MA). The specificity of the antibody was demonstrated using nerves isolated from 

animals in which c-jun was conditionally deleted in Schwann cells (data not shown). 

Goat anti-mouse-HRP and goat anti-rabbit-HRP were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). β-actin antibody was purchased from MP Biomedical 

(Santa Ana, CA). Goat anti-rabbit Alexa Fluor-647, Diamond prolong antifade mounting 

solution with 4', 6-diamidino-2-phenylindole (DAPI) and 10% normal goat serum (NGS) 

in phosphate buffered saline (PBS) was purchased from Life technologies (Calrsbad, 

CA). Tissue-Tek Optimum cutting temperature (OCT) was purchased from Electron 

Microscopy Sciences (Hatfield, PA). 

3.2.2. Animals 

Thanks to Dr. Rudolf Martini for his generous gift of Cx32 deficient (Cx32 def) 

mice (Nelles et al 1996). Cx32 def x Hsp70 KO mice were generated by crossing Cx32 

def mice with Hsp70.1/Hsp70.3 knockout (Hsp70 KO) mice (Mutant Mouse Resource 

and Research Center (Davis, CA)). C57Bl/6 mice were used as wild type (WT) controls. 

Genotypes were confirmed using the primers listed in Table 3.2.1.1. All animals were 

maintained on a 12h light/dark cycle and given ad libitum access to water and chow (NIH 

diet 7005). 

Table 3.2.1.1: Primers for genotyping 
Gene Primer Band size 

Cx32 WT 5’-GAGCATAAAAGTGAAGACGG -3’ 881bp 
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5’-CCATAAGTCAGGTGTAAAGGAGC-3’ 

Cx32 def 
5’-ATCATGCGAAACGATCCTCATCC-3’ 

5’-CCATAAGTCAGGTGTAAAGGAGC-3’ 
414bp 

Hsp70 WT 
5’-GTACACTTTAAACTCCCTCC-3’ 

5’-CTGCTTCTCTTGTCTTCG-3’ 
450bp 

Hsp70 KO 
5’-ATGGGATCGGCCATTGAACAAG-3’ 

5’-ACTCGTCAAGAAGGCGATAGAAGG-3’ 
850bp 

 

3.2.3. Immunoblot Analysis 

Sciatic nerves were collected and homogenized in lysis buffer (50mM Tris-HCl, pH 

7.4, 150mM NaCl, 1mM EDTA, 1% NP-40, 1% deoxycholate, 0.1% SDS, 0.5 mM 

sodium orthovandate, 40mM NaF, 10mM β-glycerophosphate and 1X Complete Protease 

Inhibitors). After centrifuging at 10,000 x g for 10 min at 4°C, protein concentration of 

lysates was determined using DC (detergent compatible) protein assay (Bio-Rad 

Laboratories, Inc.). 20 µg of protein were separated by SDS-PAGE and transferred to a 

nitrocellulose membrane. Membrane was blocked with 5% non-fat milk in phosphate 

buffered saline (PBS) containing 0.1% Tween-20 (PBST) and incubated with primary 

antibody overnight at 4°C. On the next day, the membrane was washed and followed by 

incubation with HRP-conjugated secondary antibody. After 2h, the membrane was 

washed and the immunoreactivity was detected using enhanced chemiluminescence 

detection kit (GE Healthcare Life Sciences). The films were scanned and Image J is used 

to analyze the density of the blot. 
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3.2.4. Immunofluorescence Analysis 

Motor branch of femoral nerves were collected and immersion fixed in Zamboni's 

fixative overnight at 4°C. After washing three times with PBS, nerves were cryoprotected 

with 30% sucrose until the tissue sinked in the solution. Nerves were embedded in OCT 

and cut at 10 µm using a cryostat. Sections were first re-hydrated with PBS three times 

for 5 min each cycle followed by permeabilization with 0.1%Triton X-100 in PBS for 20 

min. After blocking with 0.3% Triton X-100 in 10% normal goat serum (NGS, Life 

technologies, Calrsbad, CA) for 1h, tissues were placed at 4°C and incubated with 

primary antibodies diluted in 10% NGS in PBS overnight. Sections were washed with 

PBS and incubated with conjugated goat anti-rabbit-Alexa Fluor-647 for 2h in dark. 

Slides were mounted with Diamond prolong antifade with DAPI and imaged on an 

Olympus/3I Spinning Disk Confocal/TRIF Inverted Microscope. 3-5 random sections 

were captured using SlideBook 6.4 (Intelligent Imaging Innovations Inc.) for each 

animal. Images were quantified using CellProfiler software. The percentage of c-jun 

positive nucleus was calculated by dividing the number of positive nucleus by the 

number of total nucleus (3-5 sections per animal). 

3.2.5. Behavioral Tests 

For the grip strength test, mice were placed parallel on the grid. After the 

hindpaws attached to the grid, the mouse was horizontally and steadily pulled back until 

their grip was released. The average of eight readings was used. High-resolution force 

plate actometer (FPA) (Bioanalytical Systems Inc.) was used to assess the paw placement 

force of the mice. Mice were placed on the FPA for a 10 min session every week. The 

FPA measures the force of paw placement during strides and present it as a force-time 



 72 

waveform normalized to bodyweight (%bw) (Fowler et al 2009, McKerchar et al 2006). 

The amplitude of the wave represents the force of paw placement. Max power was 

calculated after Fourier transformation of the force-time waveform data using a Hanning 

data window from Matlab’s Signal Processing Toolbox. 

3.2.6. Electrophysiological measurements 

At the end of the study, mice were anesthetized with mixed solution of ketamine and 

xylazine. MNCV, SNCV (McGuire et al 2009) and CMAP (Ruiz et al 2005, Simon et al 

2010) were measured as previously described.  

3.2.7. Luciferase activity assay 

50B11 cells were transfected with a dual reporter plasmid that expressed secreted 

alkaline phosphatase (SEAP) under a CMV promoter and Gaussia luciferase driven by a 

1.5 kb region of the CCL2 promoter that contains two c-jun recognition elements. 

Following transfection, the cells were treated with DMSO or 1µM KU-596 and were 

serum deprived overnight to render them quiescent. The following day, the cells were 

stimulated for 2h by the addition of 10% serum. The medium was collected and cell 

lysates were collected for western blot. Luciferase and SEAP activity were measured 

using a secrete-pair dual luminescence assay kit (GeneCopeia). Luminescence was 

measured by a plate reader at 480 nm. Data were represented as relative luminescence 

unit (RLU), which is the ratio of luciferase to SEAP. Control cells remained in complete 

medium (DMEM, 10% FBS, 1% penicillin and streptomycin) the whole time and were 

either transfected with CCL2 plasmid or left untransfected. After overnight treatment 

with either vehicle or 1µM KU-596, cells and media were collected for luciferase assay 

and immunoblot analysis. 
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3.2.8. Statistical Tests 

All data points shown are presented as means ± standard errors of the mean 

(SEM). Datasets were first tested for normality using the Shapiro-Wilk test. Groups with 

equal variances are subjected to one-way analysis of variance (ANOVA) and Tukey's 

post-hoc test for statistical analysis. Student's t-test was used when comparing two 

groups. Results are considered significant when p<0.05. Krusal-Wallis and Dunn's test 

were used for non-parametric data sets. All statistical analyses were performed using R 

(v3.4.1) software. 

3.3. Results 

3.3.1. KU-596 treatment decreased c-jun expression in young Cx32 def mice 

We utilized Cx32def mice to model human CMT1X. We started to test our 

hypothesis in 3-month-old Cx32def mice. At this stage, axonopathy has already occurred 

and an increased level of c-jun has been reported, but demyelination does not start to 

occur until after 4 months of age (Klein et al 2014, Vavlitou et al 2010). To test whether 

KU-596 could decrease c-jun expression, we performed a dose-response experiment by 

treating Cx32def mice with 0.3mg/kg, 1mg/kg, or 3mg/kg of KU-596 daily for one month 

and examined the expression level of c-jun in sciatic nerve extracts. After a month of 

treatment, KU-596 dose-dependently decreased c-jun expression in the sciatic nerve of 

Cx32def mice (Figure 3.3.1.1A). We obtained a similar trend when SC c-jun expression 

was examined in the motor branch of femoral nerves using immunostaining (Figure 

3.3.1.1B), but it is likely that more animals are needed to reach statistical significance.   
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Figure 3.3.1.1: KU-596 decreases c-jun expression in young Cx32def mice. 
A) After treatment with CAP/KU-596 for one month, sciatic nerves were collected and prepared 
for immunoblot. KU-596 dose dependently decreased c-jun expression. B) c-Jun expression in the 
femoral nerve motor branch. KU-596 dose dependently decreased c-jun expression. C) 
Quantification of cjun+ profiles/section. (CAP, n=3, other groups, n=4)  
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3.3.2. KU-596 treatment increased the motor function in young Cx32def mice 

Recent evidence revealed that axonopathy occurs earlier than the onset of 

demyelination in Cx32def mice (Vavlitou, Sargiannidou et al. 2010). Accordingly, 

another indication of axonal loss is that patients exhibit a reduced compound muscle 

action potential (CMAP) (Birouk et al 1998, Dubourg et al 2001). After one month of 

therapy, mice were anesthetized and nerve electrophysiology was assessed. Motor nerve 

conduction velocity (MNCV) reflects the integrity of the myelin while CMAP reflects 

axonal innervation of neuromuscular junction. KU-596 treatment improved both MNCV 

and CMAP (Figure 3.3.2.1), indicating that KU-596 is capable of improving the early 

axonopathy. 
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Figure 3.3.2.1: KU-596 improves motor function in young Cx32def mice. 
After treatment with CAP/KU-596 for one month, mice were subjected to electrophysiological 
assessments. KU-596 dose dependently increased both motor nerve conduction (MNCV) and 
compound muscle action potential (CMAP). *, p<0.05 vs. WT. #, p<0.05 vs. CAP. (WT, n=7, 
CAP, n=11, 0.3mg/kg KU-596, n=9, 1mg/kg KU-596, n=9, 3mg/kg KU-596, n=8). 
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3.3.3. KU-596 treatment decreased c-jun expression in old Cx32def mice. 

The second stage of the CMT1X neuropathy is characterized by a profound 

elevation of c-jun, which takes place at around 6 months of age (Klein et al 2014). c-Jun 

drives SC demyelination (Parkinson et al 2008) and possibly regulates the expression of 

CCL2 (Wolter et al 2008) to exacerbate demyelination. To test whether KU-596 could 

attenuate c-jun expression and exhibit neuroprotection, we treated Cx32def mice daily for 

3 months with 3mg/kg KU-596. Consistent with previous literature (Klein et al 2014), 

Cx32def mice showed an increased level of c-jun in the motor branch of the femoral 

nerve compared to WT mice. 3-months of daily treatment with KU-596 decreased the 

level of c-jun as the percentage of c-jun+ profiles was reduced to half of the CAP treated 

mice (Figure 3.3.3.1). 
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Figure 3.3.3.1: KU-596 decreases c-jun expression in old Cx32def mice. 
A) After 3 months of treatment, femoral nerve motor branches of young Cx32def mice were fixed 
and stained with antibody against c-jun (red). B) Quantification of the percentage of c-jun+ 
nucleus per section. *, p<0.05 vs. WT. #, p<0.05 vs. CAP.   
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3.3.4. KU-596 treatment increased the motor function in old Cx32def mice. 

As increased levels of c-jun correlate with the decline of motor function, we 

tested whether KU-596 treatment improved measures of nerve physiology. First, we 

employed the grip strength test to measure the muscle strength of the mice. In our 3-

month dosing paradigm, we monitored the grip strength of the mice weekly. Compared 

with WT, Cx32def mice exhibit a progressive decline in muscle strength, as seen in 

previous literature (Groh et al 2010). This decrease in muscle strength is linked to the 

reduced CMAP seen in patients (Birouk et al 1998, Molin & Punga 2016). 3 weeks after 

treatment, the two groups began to differ. KU-596 treated animals improved their muscle 

strength, whereas CAP treated animals showed a progressive decline over time, as 

expected (Figure 3.3.4.1A).  

As a second measure, mice were placed on a Force Plate Actometer (FPA) to 

monitor changes in their locomotor activity. The FPA contains four force sensors each 

supporting a corner of the floor. When a mouse runs on the floor, the FPA automatically 

records the reactive forces and calculates the movement of a given mouse (Fowler et al 

2001). Mice were placed on the FPA for a 10 min session each week. The distance 

traveled within the 10min session was not different across groups. Figure 3.3.4.1C shows 

the maximum power (max power) of a mouse (normalized to % body weight) when 

running on the floor. KU-596 treatment improved the max power, indicating an 

improvement in force. In line with findings in the young mice, KU-596 treatment 

improved the MNCV and CMAP as well (Figure 3.3.4.1B and D). These data suggest 

that KU-596 treatment could improve the nerve function and muscle strength of Cx32def 
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mice, which could be translated to humans as muscle weakness, a major complaint from 

CMT1X patients.   
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Figure 3.3.4.1: KU-596 improves motor function of old Cx32def mice. 
KU-596 improves grip strength (A), MNCV (B), max power (C) and CMAP (D) in 9 
month-old Cx32def mice. Max power is measured as percent of body weight during a 
10min session on force plate actometer. *, p<0.05 vs. WT. #, p<0.05 vs. CAP.   
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3.3.5. KU-596 requires Hsp70 for efficacy. 

Our previous work has shown that the ability of KU-596 to protect against 

diabetic neuropathy is Hsp70-dependent (Ma et al 2015, Zhang et al 2018). We sought to 

explore whether Hsp70 is also required in preserving the nerve function in this model of 

CMT1X. We generated Cx32def x Hsp70 KO mice by crossing the Cx32def mice with 

Hsp70.1/70.3 knockout mice (Figure 3.3.5.1A). We included both young and old 

Cx32def x Hsp70 KO mice and followed the same experimental design as we did with 

the Cx32def mice that expressed Hsp70. Deletion of Hsp70 did not affect development of 

the neuropathy since MNCV, CMAP and grip strength were decreased to levels similar to 

that observed in the Cx323def mice. Thus, Hsp70 is not necessary for developing the 

neuromuscular deficits. However, in contrast to the Cx32def mice, KU-596 treatment 

showed no efficacy in improving the neuropathic phenotype in the Cx32def x Hsp70 KO 

mice. For example, c-jun levels were unchanged in the motor nerve femoral branches of 

young mice receiving 1 month of KU-596 treatment or old mice receiving 3 months of 

KU-596 treatment. In addition, KU-596 treatment failed to preserve motor function as 

mice receiving KU-596 treatment performed the same as CAP treated animals in the grip 

strength test and showed no improvements in MNCV and CMAP (Figure 3.3.5.1C, D, G-

I). Taken together, these data indicate that Hsp70 is required for drug efficacy, consistent 

with our previous findings in animal models of metabolic neuropathy (Li et al 2012a, Ma 

et al 2014, Zhang et al 2018). 
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Figure 3.3.5.1: KU-596 improves the motor deficit in an Hsp70 dependent manner. 
A) Genotype analysis of the Cx32def x Hsp70 KO mice (top). A, Hsp70 WT; B, Hsp70 KO; C, 
Cx32. Immunoblot analysis of sciatic nerve from three Cx32def and Cx32def x Hsp70 KO mice 
(bottom). B) Motor branches of femoral nerves of 4-month-old Cx32def x Hsp70KO mice were 
harvested after one-month of treatment. Cross sections were stained with antibody against c-jun 
(red). C) Quantification of the percentage of c-jun+ nuclei per section. D) KU-596 does not 
improve CMAP in the absence of Hsp70. E-F) Immunostaining of c-jun in cross sections of 
femoral nerve motor branch of 9-month-old Cx32def x Hsp70KO mice. Quantification is shown 
in F. G-I) KU-596 treatments did not improve the motor function of Cx32def x Hsp70KO mice. 
MNCV (G), CMAP (I) and muscle strength (H) were not changed following KU-596 treatment. 
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3.3.6. KU-596 may improve the neuropathy by decreasing macrophage 

recruitment 

Since CCL2 can be induced by c-jun and downregulation of CCL2 has been shown 

to be beneficial in Cx32def mice (Groh et al 2010), it is possible that the effects of KU-

596 may act through the c-jun-CCL2-macrophage axis. To test this hypothesis, we 

transfected 50B11 cells with a plasmid, which contains a CCL2 promoter driving 

expression of a Gaussia luciferase reporter. 

To determine if the drug had an effect on basal c-jun expression, the cells were 

treated for 14 hrs with 1 µM KU-596 while maintaining the cells in complete medium 

containing 10% serum.  Under these conditions, KU-596 had no effect on altering c-jun 

expression or luciferase activity, suggesting that the drug was not decreasing basal c-jun 

expression (Figure 3.3.6.1B). To determine if the drug might alter an increase in c-jun, 

transfected cells received vehicle or 1 µM KU-596 and were deprived of serum for 12h to 

induce quiescence. The cells were then re-stimulated with serum for 2h to induce c-jun. 

As expected, cells stimulated with 10% serum showed an increase in c-jun levels and 

luciferase activity. However, KU-596 treatment decreased the serum-induced increase in 

c-jun expression (Figure 3.3.6.1A) and luciferase activity. These data suggest that KU-

596 is blocking the serum-induced increase in c-jun levels but is not affecting basal levels 

present in the absence of serum deprivation.  

The above studies also supported that c-jun can activate the CCL2 promoter. To 

determine if KU-596 decreased CCL2 levels in vivo, extracts of sciatic nerve from mice 

treated for 3 months with KU-596 were used in a CCL2 ELISA. Due to the use of tissues 
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for other experiments, only three mice could be assessed. While CCL2 levels were 

increased in untreated Cx32def mice compared to WT animals, only two of three KU-596 

treated animals showed a robust decline in CCL2, which negated statistical significance 

(data not shown). CCL2 levels will be reassessed in an upcoming cohort of animals. 
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Figure 3.3.6.1: KU-596 decreases CCL2 luciferase activity. 
A) Luciferase activity of CCL2 in 50B11 cells. Cells were deprived of serum for 12h or remained 
in the complete medium as control and treated with the addition of 1µM KU-596. After 2h serum 
stimulation, media were collected for luciferase assay and cells lysates were used for western blot 
analysis. Serum induced c-jun expression and corresponding luciferase activity whereas KU-596 
treatment decreased both. *, p < 0.05 versus SF; # p< 0.05 vs DMSO. B) Luciferase activity of 
CCL2 in 50B11 cells without serum deprivation. Cells were treated with either Captisol or 1µM 
KU-596 overnight. Media were collected for luciferase activity assay and cell lysates western blot 
analysis. c-Jun expression and  luciferase activity remained regardless of treatment.   
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3.4. Discussion 

CMT1X is the second most prevalent form of CMT disease (Braathen 2012). 

Though not lethal, it severely affects the quality of life of CMT1X patients (Johnson et al 

2014). So far, treatment options are limited to surgeries, braces and pain management. 

Intrathecal gene delivery of Cx32 markedly improved the motor neuropathy in 

Cx32def mice (Kagiava et al 2016), yet there are many hurdles to translate such an 

approach to humans. Here we demonstrated that KU-596, a small molecule Hsp90 

inhibitor that is easily translatable to human patients, improved nerve function of 

Cx32def mice. 

The pathology of Cx32def mice presents in two stages, wherein a non-

demyelinating axonopathy occurs prior to a demyelinating axonopathy. A molecule of 

interest in both stages is the leucine zipper transcription factor c-jun. c-Jun is an AP-1 

transcription factor that plays important roles in demyelination. c-Jun inhibits myelin 

gene expression under normal conditions and is required for SC dedifferentiation 

(Parkinson et al 2008). During the first stage of the CMT1X axonopathy, c-jun 

expression is elevated likely due to the response to axonal injury. At this stage, c-jun 

switches on a repair program that downregulates myelin genes, increases the expression 

of trophic factors, initiates myelin clearance by activating SC autophagy and macrophage 

recruitment, and more importantly forms the Bungner’s band that guide axon 

regeneration (Jessen & Mirsky 2016). Glial cell-derived neurotrophic factor (GDNF) is 

found at elevated levels in c-jun positive SCs at this stage (Klein et al 2014), which is 

induced by c-jun as part of the repair program due to the presence of c-jun response 

elements in the GDNF gene promoter region (Arthur-Farraj et al 2012). If the c-jun 
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activated repair program is successful, the axons should be able to regenerate within a 

certain timeframe. However, an increase in GDNF is insufficient to halt disease 

progression and sustained high levels of c-jun lead to the gradual onset of SC 

demyelination. In addition, macrophages directly contribute to myelin degeneration in 

CMT1X (Martini & Willison 2016); their role is not secondary to myelin breakdown 

as seen in Wallerian degeneration (Martini et al 2013). It is possible that sustained high 

levels of c-jun lead to SC demyelination and add to the second wave of inflammatory 

assault, since CCL2 is driven by c-jun (Wolter et al 2008), which attracts macrophages 

and leads to the exacerbated demyelination (Figure 3.4.1). 	

We showed that the decrease of c-jun by KU-596 correlated with an improvement 

in nerve function in both young and old Cx32def mice in an Hsp70 dependent manner. 

However, the mechanism of decreased c-jun expression remains unknown. 

Mechanistically, Hsp70 inhibits the JNK pathway to protect neurons from apoptosis 

(Bienemann et al 2008, Lee et al 2005). However, phosphorylation of c-jun by JNK is 

neither necessary to drive demyelination (Parkinson et al 2008) nor to drive axon 

regeneration (Ruff et al 2012). In addition, we have previously shown that the decrease of 

c-jun in SC-neuronal co-cultures by KU-32 is due to an increased degradation but not a 

decreased production of c-jun (Li et al 2012a). In a transgenic mouse model where c-jun 

is selectively induced in SCs, pMAPK/MAPK level was not affected by KU-596 (Zhang 

et al 2018). Thus, we anticipate that the decrease of c-jun is likely due to an enhanced 

clearance rather than compromised production. In this regard, a protein of interest would 

be the F-box WD repeat domain-containing protein 7 (Fbw7). Fbw7 is an E3 ligase that 

mediates the degradation of c-jun after phosphorylation by GSK-3β at Thr239 and 
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Ser243(Wei et al 2005). In addition, Hsp70 could coimmunoprecipitate with Fbw7 

(unpublished data). These data suggest that KU-596 may decrease c-jun expression 

through Hsp70-Fbw7 mediated degradation. Further studies using mice that have a SC-

specific conditional deletion of Fbw7 crossed into the Cx32def background will help 

determine the role of Fbw7 in decreasing c-jun by KU-596. 

As c-jun not only drives SC dedifferentiation (Parkinson et al 2008) but also 

supports axon regeneration (Fontana et al 2012a, Ruff et al 2012), it is of vital importance 

to examine the physiological outcome of decreasing c-jun in Cx32def mice. We showed 

that decreased c-jun by KU-596 correlated with improved nerve function which could be 

linked to a decreased inflammatory response. KU-596 has been shown to downregulate 

the inflammatory transcriptome in a mouse model of DPN (Ma et al 2015). Another 

Hsp90 inhibitor, 17-AAG, improved neuron survival in a model of traumatic brain injury 

through down-regulating pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 

(Gu et al 2016). In the Cx32def mice, mutant SCs send out a signal that induces 

endoneurial fibroblasts to secrete CSF-1, which activates the macrophage-mediated 

neurodegeneration. In the meantime, mutant SCs secrete CCL2 to recruit macrophages 

(Martini & Willison 2016). Since CCL2 could be induced by c-jun (Wolter et al 2008), 

we performed a luciferase assay to see if KU-596 could regulate CCL2 through c-jun 

using a luciferase reporter fused with CCL2 promoter. Serum induced the expression of 

c-jun and CCL2 in 50B11 cells whereas KU-596 treatment decreased the expression of c-

jun and CCL2 luciferase activity, indicating that KU-596 may regulate CCL2 expression 

through c-jun. This suggests that the improved nerve function could be due to decreased 

macrophage recruitment and activation through c-jun mediated downregulation of CCL2 
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by KU-596. Thus KU-596 may reduce axon damage through downregulating the c-jun-

CCL2-macrophage axis, leading to a decrease in axon damage and a further reduced 

expression of c-jun. This relationship will be more stringently addressed using Cx32def 

mice that have a SC-specific conditional deletion of c-jun.  

In the C3 mouse model of CMT1A, conditional deletion of SC-c-jun exacerbated 

the phenotypes of CMT1A and led to loss of myelin-competent neurons (Hantke et al 

2014). These data suggest that targeting c-jun may have unwanted side effects on 

neuronal survival. In contrast to genetic deletion, we showed that the decrease of c-jun by 

KU-596 correlates with an improvement in nerve function. The difference in the two 

experiments could be due to the level of c-jun. Instead of complete deletion, KU-596 

reduced the c-jun level to a lower state, which helps nerve regeneration without inducing 

demyelination (Figure 3.4.1). This is supported by recent work from Fazal et al., 2017 

where they examined graded c-jun expression on myelination (Fazal et al 2017). In mice 

that heterozygously overexpressed c-jun, developmental myelination was delayed but 

nerves were able to regenerate and functionally recover after injury. On the other hand, in 

mice that homozygously overexpressed c-jun, developmental myelination is inhibited. 

These data suggest that the expression level of c-jun is key to its function where moderate 

levels increase support for axon regeneration and high expression induces demyelination. 

Thus, KU-596 may reduce c-jun to moderate elevation level compared with normal 

condition to reduce axonopathy. Further studies using c-jun conditional knockout mice 

crossed with Cx32def mice will help determine whether c-jun is necessary for the effects 

of KU-596 as well as the role of c-jun in the disease progression. 	
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Another possible aspect that KU-596 could act on to attenuate axonopathy would 

be its documented ability to improve sensory neuron bioenergetics (Ma et al 2015), as 

ATP supply is critical for axonal regeneration (Han et al 2016, Zhou et al 2016). 

Innervation of the neuromuscular junction (MNJs) would be another factor that adds to 

the improvement. Cx32def mice have been shown to have an elevated level of denervated 

NMJs compared with WT at 12 months of age (Klein et al 2015). Injections of 

recombinant human Hsp70 arrested denervation and preserved large myelinated axons in 

a mouse model of amyotrophic lateral sclerosis (Gifondorwa et al 2012). Thus, it is 

possible that KU-596 improves the innervation of NMJs and the muscle grip strength 

through Hsp70. 

In summary, we provide evidence that KU-596 decreases c-jun expression and 

improves nerve function in both young and old Cx32def mice in an Hsp70 dependent 

manner. In Cx32def mice, an unknown assault leads to axon damage resulting in elevated 

c-jun expression. c-Jun upregulation leads to SC dedifferentiation as part of the repair 

program, which is insufficient to stop the disease progression. Sustained high levels of c-

jun lead to demyelination in the second stage. In the meantime, mutant SCs send an 

unknown signal to endoneurial fibroblasts which then secrete CSF-1 and activate 

macrophage-mediated degeneration. In addition, c-jun induces the transcription of CCL2, 

which leads to a second wave of demyelination. KU-596 may act on antagonizing c-jun-

CCL2-macrophage pathway and downregulating c-jun expression to a level that reduces 

axonopathy through an Hsp70 dependent manner, thus resulting in decreased c-jun level 

and improved nerve function. Improvement in innervation of NMJs and mitochondrial 

bioenergetics through Hsp70 mediated mechanisms may also add to the overall 
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improvement in function (Figure 3.4.1). Although further experiments are needed to pin 

down the mechanism, our data support the possibility of adding KU-596 as a therapeutic 

approach to the currently empty list of pharmacological management of CMT1X. 	
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Figure 3.4.1: Proposed mechanism of action of KU-596. 
In Cx32def mice, an unknown assault leads to axon damage resulting in elevated c-jun 
expression. c-Jun upregulation leads to SC dedifferentiation as part of the repair program. The 
repair program is either unsuccessful or could not meet the rate of axon damage. Constant insult 
induced sustained high level of c-jun which may lead to the demyelination in the second stage. 
On the other hand, mutant SCs send an unknown signal to endoneurial fibroblasts which then 
secretes CSF-1 and activate macrophage-mediated degeneration. c-jun induces the transcription 
of CCL2 which may leads to a second wave of demyelination. KU-596 may act on antagonizing 
macrophage pathway and directly/indirectly downregulating c-jun expression to a level that could 
be well-tolerated through an Hsp70 dependent manner, thus resulting in decreased c-jun level and 
improved nerve function. Improvement in innervation of NMJs and mitochondrial bioenergetics 
may also add to the overall improvement in nerve function. Dashed arrows indicates potential 
mechanism. 
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Chapter 4. Outlooks 

Therapeutic strategies of demyelinating disorders currently remain limited. 

Understanding the molecular mechanism behind disease progression greatly facilitates 

finding the right targets for management. Recent studies revealed that c-jun is at the 

center of the SC demyelinating process. Upregulated c-jun expression leads to the 

inhibition of myelinating genes (Parkinson et al 2008) and such upregulation after nerve 

injury leads to SC demyelination and later support of axon regeneration (Fontana et al 

2012a, Ruff et al 2012). Results from our previously published work have shown that the 

Hsp90 inhibitor, KU-32, could attenuate the upregulation of c-jun induced by neuregulin 

in a SC-DRG co-culture model (Li et al 2012a). The effect is likely due to an increased 

degradation rather than compromised production, since the effects of KU-32 on 

downregulating c-jun were abolished when the proteasome was inhibited. Moreover, the 

protective effects of this compound rely on the presence of Hsp70 since cultures prepared 

from Hsp70KO mice failed to show improvement in the extent of myelination. The 

current work focused on investigating the in vivo effects of a next generation Hsp90 

inhibitor, KU-596, in the context of demyelinating neuropathies. Firstly, the results from 

the MPZ-RAF mice provided a proof of concept that attenuating the expression of c-jun 

by KU-596 could improve the motor function of these transgenic mice. Consistent with 

previous findings, KU-596 required Hsp70 for its efficacy. MPZ-RAF × Hsp70 KO mice 

treated with KU-596 did not show changes in c-jun expression level nor did they show 

any improvement in motor function compared with mice receiving the drug vehicle. 

Although this transgenic model proved useful to provide insight on the neuroprotective 

ability of KU-596, the model itself has some drawbacks. For example, the onset of the 
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neuropathy is very fast and it does not recapitulate the breadth of complex vascular, 

axonal, and SC interactions that contribute to the onset of neuromuscular deficits that 

contribute to many human neuropathies. Taken a step further, this strategy has been 

employed in a mouse model of an inherited neuropathy, CMT1X. The neuropathology of 

CMT1X has two stages, an initial axonopathy followed by a later stage of frank 

demyelination. KU-596 showed promising effects in downregulating c-jun expression 

and preserving nerve function in both young mice receiving 1 month of treatment and old 

mice receiving 3 months of treatment. In line with previous findings, the effects of KU-

596 appeared to be dependent on Hsp70 (Ma et al 2015, Zhang et al 2018). This study 

indicated that modulating molecular chaperones could be beneficial in the context of 

CMT1X, however the underlying mechanism remains to be uncovered.  

The mechanism of how c-jun is cleared is unknown. It is possible that KU-596 

functions post-transcriptionally to regulate c-jun expression. c-Jun is first phosphorylated 

by GSK-3β at Thr239 and Ser243 and then transported to the proteasome for degradation by 

the E3 ligase Fbw7 (Welcker et al 2004). As Fbw7 can coimmunoprecipitate with Hsp70 

(data not shown), it is possible that KU-596 decreases c-jun expression through an 

Hsp70-Fbw7 interaction. To investigate the role of Fbw7 on the degradation of c-jun, our 

lab has generated mice with SC-specific deletion of Fbw7. Fbw7 has been found to 

inhibit myelin gene expression in oligodendrocytes through inhibiting the mTOR 

pathway (Kearns et al 2015). As deletion of Fbw7 is associated with the hypomyelination 

phenotype, the first question we would like to answer is whether this strain would present 

an exacerbated phenotype when crossed with the Cx32 def mice. The second question we 

would like to answer is whether the deletion of this protein influences the level of c-jun 
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as the disease progress. If Fbw7 is important for c-jun clearance, then the onset of the 

neuropathy may be faster and the neuromuscular phenotype exacerbated. The third 

question we would like to answer is whether this protein is critical for KU-596 to 

function. We might anticipate that the drug would lose efficacy if Fbw7 is critical for 

clearing c-jun. 

Another aspect we would like to focus on is the necessity of c-jun for the effects 

of KU-596. The findings in this dissertation provide a correlation between decreased c-

jun function and improved nerve function. However, no causal relationship could be 

derived based on this study design. It is possible that the altered expression level of c-jun 

is secondary to other changes following KU-596 treatment. Inflammation plays a key role 

in the progression of CMT1X, as Cx32def mice deficient in T- and B- lymphocytes 

showed a mitigated phenotype (Kobsar et al 2003) and heterozygous deletion of CCL2 

alleviated the symptoms of CMT1X (Groh et al 2010). Several lines of data suggest that 

induction of Hsp70 could reduce inflammation and provide neuroprotection. Induction of 

Hsp70 by the Hsp90 inhibitor, 17-AAG, has been shown to promote optic neuron 

survival after injury (Kwong et al 2015). The effect of 17-AAG could likely be due to an 

anti-inflammatory action since the protection of 17-AAG on motor neurons after 

traumatic brain injury is associated with a decrease in TNF-α, IL-1β and IL-6 (Gu et al 

2016). Hsp70 has also been shown to suppress NF-κB signaling and the production of 

inflammatory cytokines (Chen et al 2006). In experimental stroke, overexpressing Hsp70 

inhibited microglia activation (Yenari et al 2005). Moreover, KU-596 decreased the 

inflammatory transcriptome upregulated by DPN (Ma et al 2015). It is possible that 
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through down-regulating inflammation, KU-596 protected neurons of Cx32def mice 

while c-jun level was decreased as a result of attenuated axonal damage.  

To more rigorously investigate the role of c-jun in drug efficacy, we have 

generated another mouse model with a SC-specific deletion of c-jun crossed into the 

Cx32def background. This model would not only give us an idea as how the effects of 

KU-596 and c-jun levels are related, but also how the c-jun protein itself contributes to 

the disease. However, there are concerns about the phenotype of c-junf/f mice. Recent 

evidence has suggested that genetic deletion of c-jun in a mouse model of CMT1A 

exacerbated the phenotype and led to loss of sensory neurons (Hantke et al 2014), 

indicating c-jun may have a protective role in addition to inducing demyelination. It 

seems that c-junf/f × Cx32def mice may have an exacerbated phenotype compared with 

Cx32def mice and the symptoms may occur at an earlier stage. If these mice fail to show 

improvement after KU-596 therapy, then the protective effects of KU-596 are c-jun 

dependent. If these mice are able to response to KU-596 therapy, the protective effects of 

KU-596 may be c-jun independent; the reduced c-jun expression seen in the Cx32def 

mice is secondary to other protective mechanisms.  

Mitochondrial function could be another interesting area to explore. Recent 

evidence suggests a role of mitochondria in axon degeneration. The opening of 

mitochondrial permeability transition pore leads to axonal degeneration induced by 

mechanical or toxic stimuli (Barrientos et al 2011). Mitochondrial depolarization could 

induce axon degeneration independent of apoptosis (Gerdts et al 2013). Depolarized 

mitochondria are associated with the release of reactive oxygen species (ROS) and 

reduced energy supply (O'Donnell et al 2013). KU-596 has been demonstrated to 
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improve sensory neuron bioenergetics and reduce ROS production in models of diabetic 

peripheral neuropathy (Ma et al 2014, Ma et al 2015). Therefore, it is possible that KU-

596 improved mitochondrial function that contributes to aspects of the neuromuscular 

improvement. Further studies looking at the mitochondrial function in young and old 

mice would help elucidate the role of mitochondrial dysfunction in the progression of the 

disease and whether KU-596 would exhibit protective effects.  

Innervation of the neuromuscular junction (NMJs) would be another exciting area 

to look at, as CMT1X is a neuromuscular disease to start with. Cx32def mice have been 

shown to have an elevated level of denervated NMJs compared to WT mice at 12 months 

of age (Klein et al 2015). Injections of recombinant human Hsp70 arrested denervation 

and preserved large myelinated axons in a mouse model of amyotrophic lateral sclerosis 

(Gifondorwa et al 2012). Thus, it is possible that KU-596 could act on NMJs and 

improved the muscle grip strength through Hsp70. 

In summary, this dissertation provides further evidence that modulating molecular 

chaperones could be beneficial in managing demyelinating neuropathies. Although 

further studies are needed, it is possible that KU5-96 could improve nerve function of 

Cx32def mice through multiple mechanisms, including decreasing c-jun expression and 

inflammatory pathways. Since KU-596 is entering Phase 2 clinical trials, novologue 

therapy could be a promising translatable approach towards human demyelinating 

neuropathy, such as CMT1X.  
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