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ABSTRACT 

Precise knowledge of the density in the upper atmosphere is a vital component of the orbit 

determination process for low Earth orbit, as inaccuracies in the estimation of atmospheric drag 

are the primary source of uncertainty for satellites in low Earth orbit. The need for a more 

accurate knowledge of the density of the upper atmosphere has led to the development of 

atmospheric density derived from precision satellite orbits. This method, using the Precise Orbit 

Ephemerides (POE) for a satellite, requires refinement and validation before it can be used on a 

larger scale. Additionally, the uncertainty of this method is not well documented. 

To improve these atmospheric density models, the POE densities are calculated and 

compared to the accelerometer derived densities for a majority of the lifetime of both the 

Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment 

(GRACE) satellites to provide a more robust understanding of the effectiveness of these models. 

Additionally, the framework has been set so that future satellite missions can easily be ingested 

and analyzed without a substantial amount of work. 

In a few locations in the accelerometer derived densities, there are gaps that must be filled. 

By using a separate accelerometer density method, the first, more reliable accelerometer method 

can be patched in these locations to allow for a much more robust method. This combined density 

allows for a more effective evaluation of the POE densities. 
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To further improve the estimates of atmospheric density, the four Atmospheric Neutral 

Density Experiment (ANDE) satellites are considered. These spherical satellites provide a much 

simpler analysis of the atmospheric drag than the much more complicated geometry of the 

established CHAMP and GRACE satellites. To further improve the estimates for the ANDE 

satellites, a series of methods to more accurately model the drag coefficients for these satellites 

are studied and applied to the orbit determination process. In addition to the ANDE satellites, the 

CHAMP and GRACE satellites drag coefficients were updated to include a higher fidelity drag 

coefficient and projected area model. 

Using these drag coefficients, the atmospheric densities are estimated, and the uncertainty 

associated with the estimation process is saved. The returned atmospheric densities for the 

CHAMP and GRACE satellites show a marked improvement in the RMS values when compared 

to the accelerometer derived densities. Next, a method of validating the ANDE results is 

examined. 

By examining both the uncertainty in the atmospheric density estimate and the error as 

compared to the accelerometer derived densities for both the CHAMP and GRACE satellites, a 

scale factor relating these two variables is studied. This method provides a daily scale factor to 

adjust the uncertainties in the atmospheric density estimate to determine the root mean square 

(RMS) error for the ANDE satellites. These RMS values are then separated into several 

geomagnetic and solar activity bins that allow for a better comparison of the results. From this, 

the effectiveness of the atmospheric density estimation process is evaluated, and the most 

effective drag coefficient method is selected. 
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In conclusion, three distinct advancements have been made. First, the drag coefficients have 

been determined for the ANDE satellites using a larger set of separate methods than have 

previously been studied, including the Cercignani-Lampis-Lord with a series of separate 

adsorption models. Second, the POE method is altered to allow for these drag coefficients to be 

used directly instead of estimated. Finally, by investigating the difference in the uncertainties of 

the CHAMP and GRACE satellites with their RMS errors, an estimate of RMS errors for a 

satellite without a base truth model are provided for the first time. 
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1 INTRODUCTION 

1.1 Objective 

The two primary objectives of the research presented in this dissertation are to quantify and 

reduce the inherent uncertainty involved in the estimation of atmospheric density model 

corrections. To complete the first objective, this uncertainty must be determined. This is a 

fundamental portion of the orbit determination process but has not been closely examined in 

previous work. Once this first task is completed, higher accuracy models of the inputs to the 

estimation process, namely the area and drag coefficient, have been incorporated into the results 

to reduce the uncertainty. These two objectives aim to provide a much richer understanding of 

the uncertainty involved with the estimation of the density in Earth’s upper atmosphere.  

1.2 Motivation 

The density of the upper atmosphere is one of the largest sources of uncertainty in orbit 

determination for low Earth orbiting satellites. This uncertainty leads to a poor understanding of 

the atmospheric drag encountered by these satellites. An accurate model of atmospheric density 

is important for all operators of these artificial satellites. Having an accurate knowledge of the 

atmospheric effects on a satellite can be used to predict its life-span, allowing for more accurate 

prediction of reentry times and locations, and can even prevent satellite collisions. 

This requirement of an accurate atmospheric density prediction model has led to the 

development of many different atmospheric models, several of which can be found below in 

Figure 1.1 [1] .  
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Figure 1.1: Development of Atmospheric Models [1] 

As can be seen in the above figure, many of these atmospheric models stem from measurements 

taken by satellite missions. However, these measurements generally require a dedicated 

instrument, such as an accelerometer or a mass-spectrometer to analyze the atmosphere. A 

method that does not require dedicated instrumentation, but instead is derived directly from the 

dynamics of the satellite can be a very valuable addition to the atmospheric modelling process. 

The Precise Orbit Ephemerides (POE) method studied by McLaughlin et. al [2], which is 

further discussed in Section 1.3, utilizes this method. At present, the uncertainty of the 

atmospheric density corrections has not been deeply studied. There is a need to quantify the 

uncertainty associated with these derived density corrections, which will be necessary to 
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incorporate them into a novel atmospheric density model, as well as validate them for satellites 

in which there is no other instrument that can provide atmospheric information. 

Utilizing these atmospheric density corrections, along with their associated uncertainties, one 

can begin to incorporate this method of determining the atmospheric density into existing 

atmospheric models. One such example of this is the POE Assimilated Global Ionosphere 

Thermosphere Model (GITM) created jointly by Los Alamos and The University of Kansas as 

presented in McLaughlin et. al. [3]. The use of these atmospheric densities and their associated 

uncertainties to develop new atmospheric models will help to improve the understanding of the 

space environment and ensure that the ever-increasing set of Earth-orbiting satellites can 

continue to operate safely. 

1.3 Description of Precise Orbit Ephemerides (POE) Derived Densities 

The POE derived densities are calculated using optimal orbit determination. A sequential 

measurement processing and filtering scheme is completed with POE data provided for the 

satellite of interest used as the measurements. The filter estimates a state vector including the 

position, velocity, atmospheric density, and ballistic coefficient. Smoothing is then applied to the 

result. By considering all data in each solution, the accuracy is increased. The filter/smoother 

combination can estimate time variable density and ballistic coefficient and includes realistic 

covariance matrices based on the physics of the problem. [2]  

The density is estimated using the method outlined in Wright [4, 5], which is imbedded in 

the software package Orbit Determination Tool Kit (ODTK). These techniques are considered 

most useful, as this method allows for a real-time estimation of atmospheric density, as well as 
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the ballistic coefficient. This is important, as the ballistic coefficient is not well known for all 

satellites examined. 

The estimated atmospheric densities are given as a correction to an existing atmospheric 

model. These corrections can be applied to Jacchia 1971 [6], Jacchia-Roberts [7], Jacchia-

Bowman 2008 [8], COSPAR International Reference Atmosphere (CIRA) 1972 [9], Mass 

Spectrometer and Ground-Based Incoherent Scatter Extended (MSISE)-1990 [10], or Naval 

Research Lab MSISE (NRLMSISE)-2000 [11] models. At present, the CIRA-72 model is used 

as the baseline, as it provides the results that correlate most closely to the accelerometer densities 

according to Mysore Krishna [12].  

1.4 Description of Accelerometer Densities 

The accelerometer derived densities, provided by Sutton [13] and Bruinsma [14] are used as 

the truth values for all error metrics used to validate the performance of the POE derived 

densities. An additional set of accelerometer densities are derived from the work of Sutton using 

adjusted drag coefficients and projected areas by Mehta et. al. [15]. These sets of accelerometer 

data are used to determine the performance of the data after adding these values. The specific 

error metrics are explained in Section 2.1. To determine the true atmospheric density experienced 

by a satellite, accelerometer data collected from the Challenging Mini-satellite Payload 

(CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) satellites were used. 

 Prior to using the accelerometer data, however, the measurements must be preprocessed. 

First, spikes in the accelerometer data caused by station keeping maneuvers and parasite electric 

currents are removed. Second, the data is smoothed with a low-pass filter and data gaps are filled 
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with interpolation. Finally, the data is validated and calibrated by applying instrumental biases 

and scale factors.  

Once this is completed, all factors not related to atmospheric drag must be eliminated. Solar 

radiation pressure, as well as Earth albedo must be accounted for. Once these perturbations are 

removed, the drag signal remains. Finally, the atmospheric density is found by applying the 

following equation: 

𝝆 =
𝟐𝒂𝒅𝒓𝒂𝒈𝒎

𝑪𝒅𝑨𝒗𝟐  (Eq. 1.1) 

where 𝜌 is the atmospheric density, 𝑎𝑑𝑟𝑎𝑔 is the acceleration captured by the previous procedure, 

𝑚 is the mass of the satellite, 𝐶𝑑 is the drag coefficient of the satellite, 𝐴 is the area normal to the 

flow past the satellite, and 𝑣 is the scalar velocity of the satellite relative to the atmosphere. Each 

of the parameters on the right-hand side of the equation is assumed to be known.  

1.5 Description of Methods to Determine Drag Coefficients 

As discussed in the previous section, when one is determining atmospheric density, a precise 

and accurate knowledge of all parameters that go into the calculation of the drag force on a 

satellite is necessary. The mass of a satellite is known from the time of launch and is well 

estimated as it continues throughout its life. The area of the satellite normal to the flow is well 

known and constant for a spherical satellite; and can be easily calculated given knowledge of 

orientation in the case of a non-spherical satellite. The dynamics of the satellite, such as its 

velocity must be well known as a prerequisite for the estimation of the density. The drag 

coefficient is generally the primary source of uncertainty, after atmospheric density, when 

considering the drag on a satellite.  
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Previously, in the work done by McLaughlin et. al. [16], the ballistic coefficient, and 

indirectly the coefficient of drag are estimated along with the atmospheric density using a Gauss-

Markov process. This procedure has provided an effective estimate of the ballistic coefficient 

and atmospheric density simultaneously; however, the estimated density and nominal ballistic 

coefficient are coupled. A bias in the nominal ballistic coefficient results in a bias in the estimated 

atmospheric density. As a result, there is a need for a more direct knowledge of the drag 

coefficient. 

Determination of the drag coefficient for a satellite is a uniquely difficult situation in the 

space environment. This drag coefficient is heavily dependent on the gas-surface interaction 

(GSI) between the satellite and its surrounding environment. Figure 1.2 [17] below illustrates 

several assumptions of gas-surface interactions. 

 

Figure 1.2: Representation of Gas-Surface Interaction Models [17] 
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 Assuming diffuse reflection of particles, Moe et. al. [18] discusses realistic drag coefficients 

to use for a series of satellite geometries, specifically spherical, conical, cylindrical, and flat plate 

modeled satellites. Included in this article is a series of tables for accommodation coefficients of 

1.00, 0.95, and 0.90; surface temperatures of 500-1500 kelvin in 500 K increments; and mean 

molecular mass of atmospheric particles of 18 and 22. Through interpolation, the drag 

coefficients for any value contained within these ranges can be calculated with a reported 

uncertainty of 4%. Additional work completed by Moe et. al. [19] provides a deeper investigation 

for a spherical satellite. In this work, the drag coefficient is plotted with respect to altitude using 

both diffuse and quasi-specular reflections. 

Pilinski et. al. [20] created a model that fits drag coefficient data found in Bowman and Moe 

[21] to a Langmuir isotherm [22]. This model used the NRLMSISE-00 model discussed in 

Section 1.7.2 to determine the number density of atomic oxygen and atmospheric temperature as 

inputs to the isotherm. This accommodation model is valid for altitudes below 500 km, and 

accommodation coefficients greater than 0.85. 

Mehta et. al. [17] discusses two GSI models that can be used to determine the time varying 

drag coefficient given the surrounding environment: the quasi-specular Cercignani-Lampis-Lord  

(CLL) [23], and the diffuse reflection with incomplete accommodation (DRIA) [20] models. 

These models have several parameters that must be estimated prior to their use. Several of the 

constant parameters and their range of validity are discussed in Walker et. al. [24] In addition to 

several tuning constants, knowledge of the amount of atomic oxygen on the surface of the satellite 

is required. These values are modeled by a series of adsorption models: the Langmuir isotherm 
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[22], the Freundlich isotherm [25], and the Temkin isotherm [26]. Each of these values are then 

used to calculate the adsorption constant and plugged into the two GSI models.  

For the non-spherical satellites studied, the drag coefficient is not the only variable parameter 

that must be known. In these cases, one must also know the area normal to the incoming flow. In 

these cases, the orientation of the satellite must also be known. For the non-spherical satellites 

studied, effective areas derived from the satellite’s orientation and Langmuir CLL drag 

coefficients are made available by Mehta et. al. [15] for the CHAMP and GRACE satellites. 

1.6 Brief Introduction of Satellite Missions Studied 

A summary of the basic parameters of interest for each of the satellites discussed can be found 

in Table 1.1. For GRACE, the reentry date is not the exact date of reentry of the satellites, but 

instead the date that was deemed the end of mission for the two satellites. A deeper discussion of 

each of these satellites can be found in the subsequent sections. 

 

Table 1.1: Satellite Properties 

 

Satellite Deployment Date Reentry Date Cross Sectional Area (m
2
) Mass (kg)

Initial 

Altitude 

(km)

Inclination 

(deg)

CHAMP July 15, 2000 September 20, 2010 Variable (See Figure) 522 454 87

GRACE-1+2 March 17, 2002 October, 27, 2017* Variable (See Figure) 432 485 89

ANDE-RR FCal December 21, 2006 May 25, 2008 0.1551792 62.7 350 51.6

ANDE-RR MAA December 21, 2006 December 25, 2007 0.1829214 52.04 350 51.6

ANDE-2 Castor July 30, 2009 August 18, 2010 0.1829214 47.5 350 51.6

ANDE-2 Pollux July 30, 2009 March 28, 2010 0.1829214 27.4 350 51.6



    

9 

 Challenging Mini-satellite Payload (CHAMP) 

The Challenging Minisatellite Payload (CHAMP) mission [27] was to study variations in the 

magnetic and gravity fields of Earth. Figure 1.3 below shows an artist’s impression of the 

CHAMP satellite in flight. 

 

Figure 1.3: Artist Representation of CHAMP Satellite in Flight [27] 

The CHAMP satellite was launched from the Plesetsk Cosmodrome July 15, 2000. It orbited 

the Earth at an 87° inclination at an initial altitude of 454 km. The satellite reentered on 

September 20, 2010, exceeding its expected lifetime by 5 years. The instruments of interest on 

this satellite are the retroreflector array for satellite laser ranging (SLR) and the GPS receiver, 

which allow for high accuracy orbit determination, and the Space Three-axis Accelerometer for 

Research (STAR) accelerometer, which enables accelerometer derived density comparisons. The 

initial mass of the satellite was 522kg, 30 kg of which was attributed to the cold gas thrusters, 

which allowed for three boost maneuvers. Figure 1.4 below illustrates the basic geometry of the 

CHAMP satellite. 
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Figure 1.4: CHAMP Satellite Geometry 

 

 Gravity Recovery and Climate Experiment (GRACE) 

The Gravity Recovery and Climate Experiment (GRACE) mission [28] consisted of two 

tandem satellites used to detect perturbations in Earth’s gravity field to estimate differences in 

mass distribution. Figure 1.5 below shows an artist’s depiction of the two satellites in operation.  

 

Figure 1.5: Artist Depiction of GRACE Satellites in Orbit [28] 
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The two satellites were launched from the Plesetsk Cosmodrome on March 17, 2002. The 

GRACE satellites orbit the Earth at an inclination of 89° and an altitude of 485 km, decaying to 

300 km after 5 years. Like CHAMP, the original mission was intended to be 5 years. However, 

the mission was continued until October 27, 2017, a full 10 years past its intended lifetime. 

Despite the end of the mission, contact has been lost with only one of the two GRACE satellites. 

GRACE-B’s fuel has been expended, and the satellite has begun to deorbit, expected to return to 

Earth in December or January. GRACE-A, will use its remaining fuel to “calibrate and 

characterize its accelerometer”, and deorbit in early 2018. A follow-on mission is currently 

planned to launch in 2018. As with CHAMP, the SuperSTAR accelerometer provided the basis 

for the accelerometer derived density for comparison purposes. Each of the two GRACE satellites 

has a mass of 432 kg, with a fuel mass of 34 kg. Figure 1.6 below illustrates the geometry of the 

GRACE Satellites. 

 

Figure 1.6: GRACE Satellite Geometry 
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 Atmospheric Neutral Density Experiment Risk Reduction (ANDE-RR) 

The Atmospheric Neutral Density Experiment Risk Reduction (ANDE-RR) flight [29, 30] 

consisted of two satellites designated Fence Calibration (FCal) and Mock ANDE Active (MAA). 

Figure 1.7 below shows the two ANDE-RR satellites in their deployment system.  

 

Figure 1.7: ANDE-RR Satellites MAA (left) and FCal (right) [31] 

The mission was developed to test the deployment mechanism for the Space Shuttle, as well as 

the instruments for a future ANDE flight.  The risk reduction flight was launched from the Space 

Shuttle on December 21, 2006. The satellites were fitted with retro-reflectors for SLR and 

contained a small payload to determine the spin rate and orientation of the spacecraft. The 

spacecraft masses were 50 and 75 kg for MAA and Fcal, respectively. The satellites were placed 

in a 350 km orbit at 51.6° inclination. The MAA and FCal satellites re-entered the Earth’s 

atmosphere on December 25, 2007 and May 8, 2008 respectively. 
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 Atmospheric Neutral Density Experiment 2 (ANDE-2) 

The Atmospheric Neutral Density Experiment 2 (ANDE-2) [32, 33] was a system of two 

nearly perfectly spherical satellites to monitor atmospheric density. Figure 1.8 below shows the 

two ANDE-2 satellites prior to launch. 

 

Figure 1.8: ANDE-2 Satellites Castor (left) and Pollux (right) [32] 

The two satellites were launched from the Space Shuttle flight STS-127 on July 30, 2009. The 

system consisted of an active satellite, Castor, and a passive satellite, Pollux. The two satellites 

were different masses due to the different payloads: Castor with a mass of 47.45 kg, and Pollux 

with a mass of 27.44 kg. The satellites flew at an altitude of 350 km at an inclination of 51.6°. 

The ANDE-2 satellites Castor and Pollux re-entered the Earth’s atmosphere on August 18 and 

March 28, 2010 respectively. 
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1.7 Brief Discussion of Atmospheric Models 

 COSPAR International Reference Atmosphere – 1972 (CIRA-72) 

The COSPAR International Reference Atmosphere-1972 (CIRA-72) [9] model is a combined 

set of atmospheric models which is valid from 25 km to 2500 km. In the regime in which satellites 

operate (altitudes > 100 km), the CIRA-72 model is identical to the Jacchia 1971 atmospheric 

density model on which it is based. The Jacchia 1971 model [6] was developed as a revision of 

the Jacchia 1970 model, incorporating additional mass spectrometer and EUV-absorption data 

collected between 1961 and 1969. To account for short-term variations, the models uses an 81-

day average for geomagnetic and solar activity levels as inputs. 

 Naval Research Laboratory Mass Spectrometer and Ground-Based Incoherent Scatter 

Extended–2000 (NRLMSISE-00) 

The Naval Research Laboratory Mass Spectrometer and Ground-Based Incoherent Scatter 

Extended–2000 (NRLMSISE-00) [11] atmospheric model is an improvement over the earlier 

MSISE 1990 atmospheric model. The MSISE series of atmospheric models incorporate a large 

data set of in situ mass spectrometer data collected from Earth orbiting satellites, and incoherent 

scatter radar data from ground-based locations. The NRLMSISE-00 model incorporates 

additional satellite drag data using spherical harmonics. The NRLMSISE model requires input 

of the current and 81-day averages for solar flux measured by the F10.7 parameter, as well as 

magnetic indices for three-hour intervals up to 9 hours before the current time. The benefit of 

using the NRLMSISE-00 atmospheric model, however, is that one can obtain the number 

densities of several species of gases found in the upper atmosphere. 
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 High Accuracy Satellite Drag Model (HASDM) 

The High Accuracy Satellite Drag Model (HASDM) [34] is an atmospheric model that was 

developed by the US Air Force to include dynamic changes in atmospheric drag. HASDM 

includes a dynamic calibration of the atmosphere (DCA) algorithm that incorporates variations 

in thermospheric density using near real-time observations from a set of low Earth orbit 

calibration satellites. This atmospheric model pulls inputs of the EUV index, a measure of the 

extreme ultraviolet radiation. In addition, the model extrapolates data using the last 27 days of 

measurements through a density prediction filter. 
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2 METHODOLOGY 

2.1 Verification of Established POE Density Metrics 

Before any new work can be done to further improve the Precise Orbit Ephemeris (POE) 

density data, root mean square (RMS) error and cross correlation (CC) between POE and a 

baseline accelerometer derived density, originally completed by Mysore Krishna, [12] was re-

created to ensure that any changes in ODTK software version would not affect the performance 

of POE with respect to other methods. The method to calculate RMS [35] and CC [36] are found 

below in Equations 2.1 and 2.2. 

 

𝑅𝑀𝑆 = √∑
(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑁

𝑖=1

 

 (Eq. 2.1) 

 

𝑪𝑪 =
∑ [(𝒙𝒊 − �̅�)(𝒚𝒊 − �̅�)]𝑵

𝒊=𝟏

√∑ (𝒙𝒊 − �̅�)𝟐𝑵
𝒊=𝟏 √∑ (𝒚𝒊 − �̅�)𝟐𝑵

𝒊=𝟏

 

 (Eq. 2.2) 

 

Where 𝑥𝑖 and 𝑦𝑖 are the ith value of the data set of interest and the truth-values respectively, 

and �̅� and �̅� are the mean values of each data set. The results as a comparison to previous work 

can be found in Section 3. 
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2.2 Improvements Made to POE Density Metrics 

 Merging of Sutton and Bruinsma Accelerometer Data 

Both the Sutton and Bruinsma accelerometer density data have significant gaps. In several 

cases, these gaps do not occur in the exact same location. Figure 2.1 and Figure 2.2 below 

illustrate the gaps in the CHAMP and GRACE data streams respectively. 

 

Figure 2.1: Gaps in CHAMP Accelerometer Data 
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Figure 2.2: Gaps in GRACE Accelerometer Data 

These streams of data can be combined in several locations to form one data stream. To complete 

this process, the Sutton data are used as a baseline, and the Bruinsma data are used to fill in the 

gaps. Using a linear weighted blending process, a patch of Bruinsma data sized three times larger 

than the gap in the Sutton data is applied to these locations. However, the Bruinsma data cannot 

be used to directly patch the Sutton data, as there is a small difference in the values at each point. 

The Bruinsma data is adjusted for the duration of the patch such that its average value over a time 

period three times the gap size with an overlap the size of the gap on either side will match the 

average value of the Sutton data where the patch is applied. 

 Examination of Cross Correlation and RMS for the Life of a Satellite 

Prior work in studying POE focused on calculating the CC and RMS error averaged the CC 

and RMS errors calculated on a week-by-week basis. However, there are some issues with this 

procedure. A sounder method of examining these error parameters would be to examine them for 
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the entire life of the satellite. The results of examining the entire data set instead of the average 

is explored in Section 4.2. 

 Absolute Mean Percent Error 

In addition to the CC and RMS values that were calculated, a potentially better clarity can be 

obtained by examining the percent error as opposed to a set value. To accommodate this need, 

the Absolute Mean Percent Error is calculated using, Equation 2.3 [37] below. These results can 

be found in Section 4.2. 

𝐴𝑀%𝐸 =
1

𝑁
∑

|𝑥𝑖 − 𝑦𝑖|

𝑦𝑖

𝑁

𝑖=1

 

 (Eq. 2.3) 

 

2.3 Calculation of Drag Coefficients and Normal Areas 

First, the altitude, latitude, and longitude, as well as the F10.7 and Ap for a satellite at a given 

time are fed into the NRLMSISE-00 [11] atmospheric model. This model is used to determine 

the ambient atmospheric temperature, and the molecular count of Hydrogen, Helium, Oxygen, 

Nitrogen, Argon atoms, as well as N2 and O2 molecules, which are then combined to form the 

total molar mass of the constituent elements, denoted as 𝑀𝑡.  

Next, the most probable speed of a Maxwellian velocity distribution at the local translational 

temperature is calculated using the following equation: 

 𝑣𝑚𝑝 = √
2𝑘𝑏𝑇∞

𝑀
 (Eq. 2.4) 
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where 𝑘𝑏 is the Boltzmann constant, 𝑀 is the mean molecular mass, and 𝑇∞ is the atmospheric 

temperature calculated using NRLMSISE-00. This most probable speed is then used to calculate 

the speed ratio, 𝑠, below: 

 𝑠 =
𝑣𝑟𝑒𝑙

𝑣𝑚𝑝
 (Eq. 2.5) 

The second parameter that must be calculated is the energy accommodation coefficient, 𝛼. 

This coefficient is dependent on if the surface of the satellite is covered in atomic oxygen. If the 

satellite’s surface is covered, the value of 𝛼 is exactly one. However, if the surface of the satellite 

is clear of atomic oxygen, 𝛼 is calculated using the empirical model of Goodman and Wachmann 

[38] as shown below: 

 𝛼 =
(2.4𝜇)

(1+𝜇)2 (Eq. 2.6) 

where 𝜇 is the ratio of the average mass of the atmospheric gas to the particles on the satellite’s 

surface. 

Next, the s and 𝛼 parameters are used to calculate the drag coefficients for both a clean and 

fully covered satellite according to one of two Gas-Surface Interaction (GSI) models: the quasi-

specular Cercignani-Lampis-Lord (CLL) [23] or the Diffuse Reflection with Incomplete 

Accommodation (DRIA) [20]. 

The CLL model is given by: 



    

21 

𝐶𝐷 =
1

𝑀𝑡
∑ 𝑀𝑖 (

2 + √2(1 − 𝛼)

2
(

4𝑠4 + 4𝑠2 − 1

2𝑠4
erf(𝑠) +

2𝑠2 + 1

√𝜋𝑠3
𝑒−𝑠2

)
𝑁

𝑖=1

+
2𝜁𝑖√𝜋

3𝑠2
𝑒−𝛽𝑖(2(1−𝛼))

𝛾𝑖
(

𝑇𝑠

𝑇∞
)

0.5+𝛿𝑖

) 

  (Eq. 2.7) 

where 𝛼 is the energy accommodation coefficient, 𝑀𝑖 and 𝑇∞ are the molar mass of each 

constituent element and the ambient temperature respectively, as determined using NRLMSISE-

00, and erf() is the error function, defined as: 

 erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
 (Eq. 2.8) 

In addition to these values, the surface temperature of the satellite, denoted as 𝑇𝑠 is required. The 

satellite surface temperature has been shown in Walker et. al. [24] to not have a strong effect on 

the resultant drag coefficient from 100 to 500 K.  As a result, this value is set to be 300 Kelvin 

for each run, providing a median point to the highest and lowest values found in the previous 

study.   

The other parameters 𝛽𝑖, 𝛾𝑖, 𝛿𝑖, 𝑎𝑛𝑑 𝜁𝑖 are functions of the ith species of molecules and free 

elements contained in the gas. These individual parameters are given below in Table 2.1, and are 

derived from work completed by Walker et. al. [24]. 
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Table 2.1: Best-Fit Parameters for CLL Drag Equation 

 

The DRIA drag model is given as: 

 𝐶𝐷 =  
4𝑠4+4𝑠2−1

2𝑠4 erf(𝑠) +
2𝑠2+1

√𝜋𝑠3 𝑒−𝑠2
+

2√𝜋

3𝑠
√

𝑇𝑘,𝑟

𝑇∞
 (Eq. 2.9) 

where 𝑇𝑘,𝑟 is found by: 

 𝑇𝑘,𝑟 =
𝑀𝑡𝑣𝑟𝑒𝑙

2

3𝑘𝑏
(1 − 𝛼) + 𝛼𝑇𝑠 (Eq. 2.10) 

Since the values of 𝛼 (and as a result, the drag coefficient) are only known for a fully covered 

or completely clean satellite surface, we must assume that the drag coefficient of the satellite is 

some combination of the resultant drag coefficient given a completely clean satellite and a fully 

covered one. The percentage of the satellite covered is indicated by 𝜃 and the remaining 

percentage of uncovered surface given by (1 − 𝜃). The resulting drag equation is then given by: 

 𝐶𝐷𝑡𝑜𝑡𝑎𝑙
= (1 − 𝜃)𝐶𝐷𝑐𝑙𝑒𝑎𝑛

+ 𝜃𝐶𝐷𝑐𝑜𝑣𝑒𝑟𝑒𝑑
 (Eq. 2.11) 

To determine the portion of the satellite that is covered, three separate adsorption models are 

considered: The Langmuir isotherm, the Freundlich model, and the Temkin isotherm. The 

Langmuir isotherm gives the value of 𝜃 as: 

Species β γ δ ζ

O2 5.45 0.18 0.5 49

N2 5.5 0.18 0.5 51

O 4.4 0.32 0.48 11

N 4.75 0.24 0.5 20

He 4.15 0.35 0.52 8

H 3.4 0.54 0.54 2.8
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 𝜃 =
𝐾𝑃0

1+𝐾𝑃0
 (Eq. 2.12) 

The Freundlich method calculates 𝜃 by: 

 𝜃 = 𝐴𝑃0
𝜉
 (Eq. 2.13) 

Finally, the Temkin isotherm calculates 𝜃 to be: 

 𝜃 =
1

𝐵
ln (𝜂𝑃0) (Eq. 2.14) 

In each of these cases, 𝑃0 is the partial pressure of atmospheric oxygen at a given altitude, 

calculated using the following equation: 

 𝑃0 = 𝑛𝑜𝑘𝑏𝑇∞ (Eq. 2.15) 

where 𝑛𝑜 is the number density of oxygen obtained from the NRLMSISE-00 model. The other 

parameters for each of the adsorption models are fitted using optimized values given by Mehta 

in a discussion on July 10, 2018 are shown below in Table 2.2. 

Table 2.2: Best fit of Langmuir, Freundlich, and Temkin adsorption model parameters 

for the CLL and DRIA GSI models. 

 

In addition to calculating drag coefficients from the two GSI models using the three separate 

adsorption models, the values for the Langmuir isotherm constants are compared to earlier work 

completed by Pilinski et. al. [20], which were created using satellite drag coefficients calculated 

Model Parameter CLL DRIA

Langmuir K 2.89E+06 1.44E+06

A 2.09 3.515

ξ 0.0708 0.1202

B 16.22 10.22

η 3.36E+11 8.38E+08

Freundlich

Temkin
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by Bowman and Moe [21]. This method uses the Langmuir isotherm equation to directly 

calculate the accommodation coefficient using the following equation: 

 𝛼 =
7.50×10−17𝑛𝑂𝑇𝑖

1+7.50×10−17𝑛𝑂𝑇𝑖
 (Eq. 2.16) 

This accommodation coefficient is then plugged into the DRIA model to calculate the drag 

coefficient. Using this procedure, seven separate drag coefficients are generated for each given 

satellite state. For the CHAMP and GRACE satellites, the Langmuir CLL drag coefficient is not 

directly calculated, but is found in the appendices of Mehta et. al. [15] 

Due to their spherical nature, the ANDE satellites do not have a variable area, and therefore 

the orientation of the satellite is not required as an input. This is not the case for the non-spherical 

satellites CHAMP and GRACE. The areas of these satellites normal to the incoming flow are 

also a data set made freely available in the appendices of Mehta et. al. [15]. 

Finally, to ensure that during the entire lifetime of the satellite the free molecular flow 

assumption is held, the Knudsen number is calculated using Equation -0.83 [15] below. 

 𝐾𝑛 =
1

√2𝜋𝑑2𝑛𝐿
 (Eq. 2.17) 

where d is the mean collision diameter, and L is the diameter of the ANDE satellite. If the 

Knudsen number is larger than 10, the free molecular flow assumption holds [39]. If the Knudsen 

number is less than 10, the free molecular flow assumption does not hold, and the drag 

coefficients returned by the model are suspect. 
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2.4  Orbit Determination and Density Estimation of ANDE Satellites Using Calculated 

Drag Coefficients 

Next, these drag coefficients are used in an orbit determination technique which uses the 

satellite laser ranging (SLR) data from the ANDE satellites to estimate the atmospheric density 

encountered by these satellites. This procedure is an expansion on the POE derived density 

method outlined in McLaughlin et. al. [2], with the main difference being that the ballistic 

coefficient is not estimated, and is assumed to be a known value imported into the OD technique.  

The measurements used in this technique are the Consolidated Laser Ranging Data (CRD) 

and the Consolidated Prediction Format (CPF), both provided by the International Laser Ranging 

Service (ILRS) found at ftp://cddis.gsfc.nasa.gov/pub/slr/data/npt_crd/, and 

ftp://cddis.gsfc.nasa.gov/pub/slr/cpf_predicts/ respectively. The CRD files are converted using 

ODTK and ingested directly, using an initial sigma of 0.0175 meters, updates using a Gauss-

Markov process with a half-life of 15 minutes. The CPF files are converted into a GPS Navsol 

data file with an uncertainty of 1000 m. 

Ideally, the drag coefficients generated in the previous section would then be used as inputs 

into the orbit determination method to determine the atmospheric density of the satellite. 

However, ODTK does not allow for the input of a variable coefficient of drag. Instead, a variable 

area is allowed as an input. ODTK performs the atmospheric density estimation using the ballistic 

coefficient, calculated as: 

 𝐵𝐶 =
𝑚

𝐶𝑑𝐴
 (Eq. 2.18) 
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where 𝐴 is the area of the satellite, and 𝑚 is its mass. Since the parameter passed into the filter is 

the ballistic coefficient, and the only variable parameter allowed by the software is area, we 

introduce the idea of an “effective area” calculated by: 

 𝐴𝑒𝑓𝑓 = 𝐴𝑠𝑎𝑡 (
𝐶𝑑𝑎𝑐𝑢𝑡𝑎𝑙

𝐶𝑑𝑟𝑒𝑓

) (Eq. 2.19) 

where 𝐴𝑠𝑎𝑡 is the actual satellite area, given below in Table 2.3 for each satellite, and 𝐶𝑑𝑟𝑒𝑓
 is a 

reference drag coefficient, set to be 2.05. 

Table 2.3: Satellite Cross-Sectional Areas for the ANDE Satellites [30, 33] 

 

Once the OD process is set up, an augmented state vector using the atmospheric density and 

the satellite’s state are estimated using a sequential measurement processing and filtering scheme. 

These filters are run in 4-day segments to ensure that enough SLR data is ingested between runs. 

After filtering, the data is run through a smoother. This estimated atmospheric density is 

calculated as a correction to an existing model, with the uncertainty modeled using a Gauss-

Markov process. The density correction used a half-life of 180 minutes. For this estimation, the 

COSPAR International Reference Atmosphere 1972 (CIRA-72) [9] was used as a baseline. This 

atmospheric model was shown to provide the lowest RMS error in estimation of density in 

McLaughlin et. al. [2]. 

2.5 Orbit Determination and Atmospheric Density Estimation for Non-Spherical 

Satellites 

For the CHAMP and GRACE satellites, the atmospheric density is estimated using a similar 

orbit determination technique as the one outlined in Section 2.4. However, in this case, Rapid 

ANDE-2 Castor ANDE-2 Pollux ANDE-RR MAA ANDE-RR Fcal

0.182921 0.182921 0.182921 0.155179
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Science Orbits (RSO) have been provided which allow for a direct input of the measured position 

vector of the satellite as a measurement. As with the ANDE satellites, the ballistic coefficient is 

not estimated, as the inputs to it are assumed to be well known. 

The measurements used in this technique are the previously mentioned RSO, provided by the 

GFZ-Potsdam, and can be found at https://isdc.gfz-potsdam.de. The RSO files are converted to 

a GPS style measurement using the Navsol data format, using an uncertainty of 10 meters. 

The effective area parameter is then calculated as before. However, one major difference 

from the previous section is that the area normal to the flow is no longer a constant value. The 

calculation of the effective area is now the combination of two separate parameters, drag 

coefficient and area, be folded into a single parameter of effective area. This set of data is then 

input into the precise orbit determination scheme.  

As before, the augmented state vector of the atmospheric density and the satellite’s state are 

estimated using the measurement processing and filtering technique. These filters are run in 14-

hour intervals. This is done to allow for some overlap in the resulting files, and to remain 

compatible with the previously used techniques.  The atmospheric density estimation uses the 

same techniques as the methods used for the ANDE satellites, providing corrections to the CIRA-

72 model.  

2.6 Determination of Uncertainties 

The uncertainty in the atmospheric densities is a by-product of the orbit determination 

process. The filtering scheme processes the uncertainty in the atmospheric density as a 

component of the covariance matrix processed by the algorithm. Knowledge of this uncertainty 

will lead to a better understanding of the errors involved in the density estimation. To evaluate 
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the capability of these uncertainties to estimate these errors, the atmospheric densities obtained 

for the CHAMP and GRACE satellites as determined in Section 2.5 are compared to the 

combined accelerometer densities examined in Section 2.2.1, calculated with updated drag 

coefficients as seen in Mehta et. al. [15]. 

The error of the atmospheric estimates was calculated using the accelerometer density found 

in Mehta et, al. [15] as the truth-value. This error is shown in Equation 2.20 below: 

 �̃� = 𝜌𝑒𝑖
− 𝜌𝑎𝑖

 (Eq. 2.20) 

where �̃� is the density error, 𝜌𝑎𝑖
 is the ith accelerometer derived atmospheric density, and 𝜌𝑒𝑖

 is 

the ith estimated density. The daily RMS of this density error is then compared to the daily RMS 

of uncertainty in the estimate generated by ODTK. From this difference, a scaling factor is 

determined to allow for a comparison between different atmospheric models. This scaling factor 

for one satellite is then used to estimate the density error using the uncertainty of the other 

satellite, and compared to the original error value. Finally, these scale factors are applied to the 

uncertainty in atmospheric estimates made for the ANDE satellites to estimate the daily RMS 

error for these satellites. 
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3 VERIFICATION OF ESTABLISHED POE DENSITY METRICS 

3.1 Definition of Bins 

To verify that the code generated is identical to the work completed in Mysore Krishna [12], 

the cross correlation and RMS difference between the Bruinsma accelerometer derived densities 

used as a baseline and the density values of interest were calculated. In addition to POE, the 

accelerometer densities were also compared to the High Accuracy Satellite Drag Model 

(HASDM) [34], NRLMSISE-00 [11], and Jacchia-71 [6] To ensure that each model worked well 

for all space weather conditions, the CC and RMS errors were placed into separate bins based on 

Picone et. al. [11] These bins are given in Table 3.1 below.  

Table 3.1: CC and RMS Bin Definitions [11]  

 

3.2 Results for CHAMP 

Table 3.2 shows the CC values previously given for CHAMP, and Table 3.3 shows the CC 

that was re-calculated using the new code. Table 3.4 then shows the RMS previously given, and 

Table 3.5 shows the re-calculated RMS.  

 

 

  

Activity Bin Bin Definition

Low Solar F10.7 < 75

Moderate Solar 75 ≤ F10.7 < 150

Elevated Solar 150 ≤ F10.7 < 190

High Solar 190 ≤ F10.7 

Quiet Geomagnetic Ap ≤ 10

Moderate Geomagnetic 10 < Ap ≤ 50

Active Geomagnetic 50 ≤ Ap
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Table 3.2: Previously Calculated CHAMP CC Values [40] 

Bin 
 Cross Correlation 

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.934 0.924 0.888 0.886 

Low Solar 0.926 0.910 0.880 0.884 

Moderate Solar 0.935 0.925 0.881 0.884 

Elevated Solar 0.938 0.936 0.907 0.895 

High Solar 0.948 0.942 0.903 0.895 

Quiet Geomagnetic 0.935 0.923 0.891 0.896 

Moderate Geomagnetic 0.932 0.924 0.885 0.874 

Active Geomagnetic 0.950 0.941 0.871 0.831 

 

Table 3.3: Recalculated CHAMP CC Values 

Bin 
Cross Correlation   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.935 0.924 0.888 0.891 

Low Solar 0.923 0.906 0.876 0.881 

Moderate Solar 0.937 0.928 0.883 0.893 

Elevated Solar 0.947 0.935 0.906 0.900 

High Solar 0.949 0.944 0.901 0.895 

Quiet Geomagnetic 0.936 0.925 0.893 0.898 

Moderate Geomagnetic 0.934 0.924 0.885 0.882 

Active Geomagnetic 0.950 0.940 0.871 0.830 

 

Table 3.4: Previously Calculated CHAMP RMS Values [40] 

Bin 
Root Mean Square (10-12 kg/m3)   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.383 0.400 0.701 0.836 

Low Solar 0.322 0.346 0.849 0.925 

Moderate Solar 0.354 0.372 0.643 0.663 

Elevated Solar 0.526 0.531 0.719 1.027 

High Solar 0.573 0.576 0.783 1.434 

Quiet Geomagnetic 0.346 0.361 0.745 0.759 

Moderate Geomagnetic 0.423 0.441 0.658 0.895 

Active Geomagnetic 0.925 0.986 0.551 3.231 
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Table 3.5: Recalculated CHAMP RMS Values 

Bin 
Root Mean Square (10-12 kg/m3)   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.379 0.398 0.700 0.839 

Low Solar 0.324 0.346 0.849 0.908 

Moderate Solar 0.357 0.376 0.641 0.675 

Elevated Solar 0.471 0.489 0.721 0.975 

High Solar 0.574 0.578 0.782 1.457 

Quiet Geomagnetic 0.345 0.361 0.745 0.776 

Moderate Geomagnetic 0.414 0.435 0.656 0.877 

Active Geomagnetic 0.927 0.992 0.550 3.241 

 

3.3 Results for GRACE 

Tables 3.6–3.9 show the CC and RMS values before and after re-calculation for GRACE. 

Table 3.6: Previously Calculated GRACE CC Values [40] 

Bin 
Cross Correlation   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.885 0.873 0.844 0.839 

Low Solar 0.855 0.840 0.822 0.816 

Moderate Solar 0.912 0.902 0.863 0.859 

Quiet Geomagnetic 0.883 0.869 0.852 0.840 

Moderate Geomagnetic 0.891 0.881 0.827 0.836 

 

Table 3.7: Recalculated GRACE CC Values 

Bin 
Cross Correlation   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.889 0.881 0.849 0.852 

Low Solar 0.868 0.859 0.832 0.842 

Moderate Solar 0.908 0.899 0.861 0.860 

Quiet Geomagnetic 0.881 0.873 0.855 0.847 

Moderate Geomagnetic 0.908 0.898 0.838 0.864 
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Table 3.8: Previously Calculated GRACE RMS Values [40] 

Bin 
Root Mean Square (10-12 kg/m3)   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

For all Bins 0.044 0.047 0.089 0.111 

Low Solar 0.031 0.031 0.079 0.100 

Moderate Solar 0.056 0.060 0.098 0.122 

Quiet Geomagnetic 0.036 0.038 0.080 0.096 

Moderate Geomagnetic 0.063 0.068 0.109 0.147 

 

Table 3.9: Recalculated GRACE RMS Values 

Bin 
Root Mean Square (10-12 kg/m3)   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

For all Bins 0.048 0.050 0.091 0.117 

Low Solar 0.031 0.031 0.079 0.097 

Moderate Solar 0.063 0.067 0.101 0.133 

Quiet Geomagnetic 0.043 0.045 0.083 0.108 

Moderate Geomagnetic 0.057 0.058 0.094 0.123 

 

3.4 Summary 

As shown in the above tables, the values for both the cross correlation and root mean square 

error are generally within 1% of the original values. Any deviations from the values found 

previously are likely due to a difference in either software version or machine precision. 

However, as the values are approximately equal to the originals, this is not considered 

problematic. As a result, the attempt at recreating the data was deemed a success. 
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4 IMPROVEMENTS TO EXISTING POE DENSITY METRICS 

4.1 Merging of Sutton and Bruinsma Accelerometer Data 

A few of the patched gaps for CHAMP illustrated in Figure 2.1 are shown below in Figures 

4.1–4.3. 

 

Figure 4.1: Example of Two Patched Gaps in Sutton Density on Oct. 9 and 11, 2002 

 

Figure 4.2: Example of Medium-Sized Patched Gap in Sutton Density on Feb 29-Mar 1, 

2004 
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Figure 4.3: Example of Large Patched Gap in Sutton Density from Aug. 28 to Sep. 11, 2006 

 

As can be seen from the above figures, any set of data can be sufficiently patched given a 

large enough alternative data set. 

4.2 CC and RMS from Continuous Data Stream 

 CHAMP 

The following tables show the new values of CC are given for CHAMP in Table 4.1. Next, 

Table 4.2 shows the RMS values for CHAMP. Finally, Table 4.3 shows the absolute mean 

percent error for CHAMP, as calculated in Section 2.2.3.   
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Table 4.1: CHAMP CC Values Using Data from 2001-2010 

Bin 
Cross Correlation   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.970 0.968 0.916 0.901 

Low Solar 0.946 0.938 0.892 0.895 

Moderate Solar 0.958 0.954 0.895 0.885 

Elevated Solar 0.971 0.968 0.916 0.890 

High Solar 0.962 0.958 0.885 0.811 

Quiet Geomagnetic 0.972 0.970 0.926 0.914 

Moderate Geomagnetic 0.966 0.963 0.901 0.884 

Active Geomagnetic 0.957 0.950 0.893 0.876 

 

Table 4.2: CHAMP RMS Values Using Data from 2001-2010 

Bin 
Root Mean Square (10-12 kg/m3) 

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.454 0.457 0.802 1.050 

Low Solar 0.334 0.359 0.838 1.004 

Moderate Solar 0.378 0.397 0.602 0.752 

Elevated Solar 0.579 0.580 0.930 1.291 

High Solar 0.881 0.812 1.419 2.058 

Quiet Geomagnetic 0.415 0.417 0.753 0.945 

Moderate Geomagnetic 0.488 0.491 0.841 1.131 

Active Geomagnetic 0.793 0.801 1.301 1.988 

 

Table 4.3: CHAMP Absolute Mean Percent Error Values Using Data from 2001-2010 

Bin 
Absolute Mean Percent Error 

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 14.1% 14.5% 27.7% 33.7% 

Low Solar 18.0% 19.7% 45.7% 52.6% 

Moderate Solar 11.7% 12.1% 19.8% 24.4% 

Elevated Solar 11.2% 10.5% 18.4% 24.7% 

High Solar 19.8% 17.0% 29.7% 41.5% 

Quiet Geomagnetic 15.3% 15.8% 30.8% 36.9% 

Moderate Geomagnetic 12.2% 12.5% 22.7% 28.4% 

Active Geomagnetic 13.2% 13.0% 23.7% 32.7% 
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 GRACE 

Tables 4.4-4.6 illustrate the same cross correlation, RMS and absolute mean percent error 

values for GRACE. 

Table 4.4: GRACE CC Values Using Data from 2002-2010 

Bin 
Cross Correlation   

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.931 0.925 0.871 0.855 

Low Solar 0.918 0.911 0.860 0.848 

Moderate Solar 0.924 0.917 0.863 0.848 

Quiet Geomagnetic 0.959 0.954 0.910 0.889 

Moderate Geomagnetic 0.889 0.882 0.822 0.795 

Active Geomagnetic 0.954 0.943 0.870 0.872 

 

Table 4.5: GRACE RMS Values Using Data from 2002-2010 

Bin 
Root Mean Square (10-12 kg/m3) 

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 0.068 0.072 0.102 0.137 

Low Solar 0.034 0.035 0.076 0.102 

Moderate Solar 0.080 0.085 0.113 0.151 

Quiet Geomagnetic 0.041 0.044 0.077 0.100 

Moderate Geomagnetic 0.102 0.107 0.134 0.180 

Active Geomagnetic 0.148 0.170 0.238 0.341 

 

Table 4.6: GRACE Absolute Mean Percent Error Values Using Data from 2002-2010 

Bin 
Absolute Mean Percent Error 

POE derived density HASDM NRLMSISE-00 Jacchia-71 

Overall 22.1% 23.4% 45.2% 50.2% 

Low Solar 25.8% 27.6% 57.9% 65.4% 

Moderate Solar 20.3% 21.3% 38.8% 42.6% 

Quiet Geomagnetic 19.3% 20.7% 40.5% 44.5% 

Moderate Geomagnetic 28.7% 29.7% 55.8% 63.1% 

Active Geomagnetic 20.5% 21.6% 44.8% 51.8% 
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4.3 Summary 

Overall, after recalculating the RMS and CC for the CHAMP and GRACE missions, a 

noticeable improvement has been made in the cross correlation of the data sets with the 

accelerometer data. Overall, incorporating a larger data set provides a much clearer picture of the 

performance of these metrics, providing a better assessment of which method most accurately 

captures the atmospheric densities encountered by the satellites. The RMS values, in general, 

increased from the baseline values calculated by Mysore Krishna [12]. The inclusion of the 

Sutton data has allowed for a more comprehensive comparison overall. The omitted values from 

the previous analysis have inadvertently undervalued the errors inherent in the model. 

The baseline atmospheric models, Jacchia and NRLMISE, generally provide a worse result 

for the CHAMP and GRACE satellites. Both the CC and RMS values returned for these 

atmospheric models perform much worse than the HASDM and the POE densities. In ranking 

the atmospheric density models, Jacchia-71 is the lowest performer, followed by NRLMSISE-

00, then HASDM, and finally the POE derived densities. In general, the POE derived atmospheric 

densities are still most closely match the accelerometer data in most cases for both satellites. 
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5 DRAG COEFFICIENTS AND EFFECTIVE AREAS 

This chapter discusses the drag coefficients as calculated in Section 2.3. For the ANDE 

missions, these drag coefficients are then plotted with respect to time. Next, a smoothing process 

is done to the data to allow better comparison between each of the separate drag coefficient 

values. The data is smoothed using a standard moving average low pass filter with a span of 1 

day (1441 minutes). The span length is not exactly 1 day, as the smoothing process requires an 

odd number of measurements centered on the current value. Finally, in each section, the drag 

coefficients are compared to one another by selecting a baseline drag coefficient model that fell 

predominantly in the center of the rest of the data. The model selected as the baseline was the 

Temkin CLL model.  

For the CHAMP and GRACE satellite missions, the atmospheric densities and the satellite 

area must be known as inputs to the OD process. As a result, both the drag coefficient and the 

area normal to the flow must be known.  

5.1 ANDE Missions 

Figure 5.1 below illustrates the raw drag coefficient data collected for the ANDE-RR MAA 

satellite mission. Next, Figure 5.2 shows the smoothed drag coefficients, which are smoothed as 

discussed in the previous section. Finally, Figure 5.3 shows the comparison of the respective 

atmospheric densities. Figures 5.4-5.6 show the same information for the ANDE-RR Fcal 

satellite, and then Figures 5.7-5.9 and Figures 5.10-5.12 provide the same information for the 

ANDE-2 Satellites Castor and Pollux respectively. Using these atmospheric densities, the 

effective area of the satellites can be calculated using Equation 2.19. 
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Figure 5.1: ANDE-RR MAA Drag Coefficients 

 

Figure 5.2: ANDE-RR MAA Smoothed Drag Coefficients 
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Figure 5.3: ANDE-RR MAA Smoothed Drag Coefficients Percent Difference Using 

Temkin CLL as Baseline 

 

 

Figure 5.4: ANDE-RR Fcal Drag Coefficients 
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Figure 5.5: ANDE-RR Fcal Smoothed Drag Coefficients 

 

Figure 5.6: ANDE-RR Fcal Smoothed Drag Coefficients Percent Difference Using Temkin 

CLL as Baseline 
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Figure 5.7: ANDE-2 Castor Drag Coefficients 

 

Figure 5.8: ANDE-2 Castor Smoothed Drag Coefficients 
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Figure 5.9: ANDE-2 Castor Smoothed Drag Coefficients Percent Difference Using 

Temkin CLL as Baseline 

 

 

Figure 5.10: ANDE-2 Pollux Drag Coefficients 
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Figure 5.11: ANDE-2 Pollux Smoothed Drag Coefficients 

 

 

 

Figure 5.12: ANDE-2 Pollux Smoothed Drag Coefficients Percent Difference Using 

Temkin CLL as Baseline 

As can be seen from the above figures, the Pilinski and Langmuir drag coefficient models 

tend to follow the same trend line with a slight offset. This is due to these two models using a 
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similar adsorption model. In the beginning of each satellite’s life, the Pilinski and Langmuir drag 

coefficients provide a higher estimate of the drag coefficients as compared to the Temking and 

Freundlich models. The Temkin and Freundlich adsorption models tend to follow a very similar 

trend throughout, showing a near zero percent difference when compared to Temkin CLL. At the 

end of the satellite’s life, the percentage of coverage trends toward an effective accommodation 

coefficient of 1. As a result, they all tend to converge to a similar value near the end of the life.  

Another aspect to note is that the ANDE-RR satellites show less variation between the various 

methods. This is likely due to the constants that were used in the generation of the drag 

coefficients were better suited to the ANDE-RR mission than the ANDE-2 mission. Essentially, 

the space weather conditions used to estimate the empirical constants in the drag coefficient 

models were more similar to the lifetime of the ANDE-RR satellites than the ANDE-2 satellites’ 

lifetime. 

To validate the drag coefficients as discussed in this section, the tables found in Moe et. al. 

[18] provides approximate values for the satellite drag coefficients. However, as discussed in 

Section 1.5, the lower bound of the accommodation coefficient is 0.90. This is in direct conflict 

with the early measurements for each satellite, which have an accommodation coefficient of 

around 0.83 in the beginning of the mission for the ANDE-2 satellites. Thus, extrapolation to 

these values is necessary. Table 5.1 below illustrates the approximate values found for each 

satellite near the beginning and end of their lives, given their accommodation coefficient and the 

ambient temperature. 
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Table 5.1: Drag Coefficients Derived from Literature 

 

As can be seen in the above table, the drag coefficients for each of the satellites generally fall 

within these bounds. However, for several of the Pilinski drag coefficients found in the early 

portions of the ANDE-2 satellite missions are seen to be above this value. This is likely due to 

the Pilinski derived drag coefficients not being valid for accommodation coefficient values less 

than 0.85. This is further reflected in the differences between drag coefficient models in Figures 

5.9 and 5.12. Early in the satellite’s lifetime, the difference between the Pilinski values and the 

other drag coefficient models are much higher than later in the satellite missions. 

To ensure that the free molecular flow assumption holds for the entire lifetime of the satellite, 

the Knudson number is calculated at the end of life for each satellite. Table 5.2 below shows the 

final Knudsen numbers for each of the ANDE satellites. 

Table 5.2: Final Knudsen Number for Each ANDE Satellite 

 

As seen in the above table, the Knudson number remains above 10 even at the end of each 

satellites data set. As a result, the free molecular flow assumption holds, even at the last tracked 

point for each satellite. If the satellites were tracked even lower into the atmosphere, however, 

this assumption would no longer hold, and the results would be much more suspect. 

MAA Fcal Castor Pollux

Beginning of Life 2.33 2.33 2.34 2.34

End of Life 2.09 2.12 2.19 2.09

ANDE-RR ANDE-2

ANDE-2 Castor ANDE-2 Pollux ANDE-RR MAA ANDE-RR Fcal

2933 505 117 3989
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5.2 CHAMP and GRACE 

Figure 5.13 illustrates the drag coefficients provided in Mehta et. al. for the CHAMP satellite. 

Next, Figure 5.14 shows the area normal to the flow. Figures 5.15 and 5.16 then illustrate the 

drag coefficient and normal area respectively for the GRACE-A satellite. 

 

Figure 5.13: CHAMP Drag Coefficients 

 

Figure 5.14: CHAMP Normal Areas 
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Figure 5.15: GRACE Drag Coefficients 

 

Figure 5.16: GRACE Normal Areas 

The normal areas for the CHAMP and GRACE satellites are consistent with the known 

geometry of the respective satellites. The spikes in the data for both the CHAMP and GRACE 

satellites are likely due to errors in the raw data used to generate the drag coefficients and normal 

areas. As a check on these values, the highest and lowest possible normal areas will provide the 

upper and lower limits on Figures 5.14 and 5.16. Figures 1.4 and 1.6 in Section 1.6 demonstrate 
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the basic geometry of the CHAMP and GRACE satellites respectively. In general, the CHAMP 

and GRACE satellites orbited with their trapezoidal face pointed into the flow with minor 

deviations. This configuration corresponds to the smallest area presented to the flow. Conversely, 

the largest possible area presented would be with the top or bottom of the satellites pointed toward 

the flow. Table 5.3 below shows the ranges of areas for the CHAMP and GRACE satellites. 

Table 5.3: Upper and Lower Bounds for CHAMP and GRACE Area 

 

As expected, the lower bound for the CHAMP satellite sits at exactly 0.75 meters. The 

GRACE satellite generally was slightly above this smallest area, but this is likely due to the 

requirement that the satellite point a radio frequency range finder to its sister satellite for the 

duration of the mission. The orientation requirement was not driven in this case by reducing drag, 

but by pointing an instrument.  

The drag coefficients for the CHAMP and GRACE satellites, although higher than the ANDE 

satellites, are not outside the realm of possibility. As seen with the ANDE satellites, the 

accommodation coefficient is an inverse function of the satellite’s altitude. This inverse 

relationship does affect the estimated drag coefficient. However, the primary source of the higher 

drag coefficient is due to the geometry of the spacecraft. The CHAMP and GRACE satellites are 

trapezoidal prisms instead of spheres, as their primary mission focus was not to estimate 

atmospheric drag. As seen in Moe et. al. [18], the closest geometry to these satellites, the cylinder 

with its circular face in the flow, has a much higher drag coefficient than the spherical shape. 

Finally, the spikes in the drag coefficients for both satellites correspond to the spikes in the 

Smallest Area Largest Area

CHAMP 0.75 m 6.88 m

GRACE 0.95 m 6.05 m
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normal areas. In these cases, the drag coefficient is correlated to the projected area of the satellite, 

so a large spike in one data set corresponds to a large spike in the other. 
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6 ATMOSPHERIC DENSITY RESULTS USING EFFECTIVE AREAS 

This section provides the results of using the effective areas from the previous section, along 

with the SLR and RSO data collected for the ANDE, and CHAMP and GRACE satellites 

respectively, to calculate the atmospheric densities using the method outlined in Sections 2.4 and 

2.5. In the case of the CHAMP and GRACE satellites, the atmospheric densities are not 

calculated for the entire life of the satellites, but instead examined for the years 2007 and 2009 

to provide a comparison to the ANDE-RR and ANDE-2 satellite missions respectively. 

6.1 ANDE Missions 

Figure 6.1 below illustrates the raw atmospheric density for the ANDE-RR MAA satellite. 

Using the same smoothing process as discussed in Section 5.1, this atmospheric density is then 

smoothed using a 1-day interval, which is shown in Figure 6.2. Finally, Figure 6.3 shows the 

atmospheric densities compared to the Temkin CLL baseline density established in the previous 

section. Figures 6.4-6.6 and Figures 6.7-6.9 then illustrate the same sets of atmospheric densities 

for the ANDE-2 satellites Castor and Pollux, respectively. The ANDE-RR Fcal satellite has been 

omitted due to the suspect nature of the raw SLR data collected. In this case, the satellite’s 

estimated velocity was too low when added to ODTK and was predicted to reenter in a single 

orbit. 
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Figure 6.1: ANDE-RR MAA Atmospheric Density Estimates 

 

Figure 6.2: ANDE-RR MAA Smoothed Atmospheric Density Estimates 
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Figure 6.3: ANDE-RR MAA Percent Difference Between Atmospheric Density Estimates 

by CD Method using Temkin CLL as Baseline 

 

 

Figure 6.4: ANDE-2 Castor Atmospheric Density Estimates 
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Figure 6.5: ANDE-2 Castor Smoothed Atmospheric Density Estimates 

 

Figure 6.6: ANDE-2 Castor Percent Difference Between Atmospheric Density Estimates 

by CD Method using Temkin CLL as Baseline 

 



    

55 

 

Figure 6.7: ANDE-2 Pollux Atmospheric Density Estimates 

 

Figure 6.8: ANDE-2 Pollux Smoothed Atmospheric Density Estimates 
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Figure 6.9: ANDE-2 Pollux Percent Difference Between Atmospheric Density Estimates 

by CD Method using Temkin CLL as Baseline 

Across the board, each of the ANDE satellites show a similar trend. At the beginning of their 

lives, they all experience approximately the same atmospheric densities. This is expected due to 

the initial conditions being similar between the ANDE-RR and ANDE-2 missions, as the ANDE-

RR mission is a risk reduction mission used to test the ANDE-2 hardware and deployment 

conditions. Therefore, in each case, the conditions they experience should be similar, which is 

shown by the data.  

Examining the difference between each of the drag coefficient methods, it can be seen that 

for most of the life of the satellites, the effect of each of these different drag coefficient models 

is imperceptible without a large amount of magnification. This leads to the percent comparisons 

found in Figures 6.3, 6.6, and 6.9. The atmospheric densities found for each of the satellites in 

general for each of the drag coefficient models fall within about 1% of each other, save for a few 
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spikes in the models that use the Langmuir isotherm. In these cases, the spikes are approximately 

bound within a 10% envelope for the ANDE-2 missions.  

The cases where these spikes are not bounded by the 10% envelope are at the end of life for 

the ANDE-2 Pollux mission. In this case, the satellite is reentering the atmosphere, which causes 

minute differences in drag coefficient to be amplified dramatically. This can also be seen at the 

end of life for the ANDE-RR MAA satellite. The ANDE-2 Castor satellite does not show this 

spike at the end of its life due to the end of this satellites life not captured on this chart. The raw 

data used to calculate the atmospheric density cuts out before re-entry for this satellite. 

Finally, to estimate the sensitivity of the atmospheric density estimates to the changes in drag 

coefficient, the atmospheric density was estimated again for September 21, 2009 for the ANDE 

satellite using only the average drag coefficient for the day. The comparison was made for this 

day, as it provided a time frame with a large amount of SLR data to be processed. This value was 

then compared to the estimate found using the full set of drag coefficients. Figure 6.10 below 

illustrates the percent difference between these two values over the course of a day. 
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Figure 6.10: Percent Change in Estimated Atmospheric Density for ANDE-2 Castor Using 

a One-Day Average of Drag Coefficient Compared to Previous Results. 

As can be seen in the above figure, the changes in drag coefficient over the course of a day 

have a strong effect on the estimated atmospheric density. This trend line exists across the board 

for all drag coefficient models studied. In all cases, the percent change between the daily average 

of drag coefficient and the full-rate data was as much as 20 percent in either direction. This shows 

that averaging the drag coefficient is not providing a suitable estimate of the atmospheric density, 

and a finer CD model will net a much different result. 

6.2 CHAMP and GRACE 

Figure 6.11 shows the estimated atmospheric density for the CHAMP satellite for 2007. 

These results are then smoothed using 1-day averages and plotted in Figure 6.12 to show a clearer 

picture of the long-term variations. Figures 6.13 and 6.14 then show the results for CHAMP for 

2009. Next, Tables 6.1-6.4 show the cross correlation and RMS respectively for the density 

estimates using the newly calculated drag coefficients and normal areas for 2007 and 2009 

compared to the previously estimated values for the respective years, as shown in Section 4.2.1. 
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These tables also show the percent change between the new and previously calculated estimates. 

Figures 6.15-6.18 then show the same results for the GRACE satellite for 2009, and Tables 6.5-

6.8 provide the same comparison as was completed for CHAMP. 

 

Figure 6.11: CHAMP Atmospheric Density Estimates, 2007 

 

Figure 6.12: CHAMP Smoothed Atmospheric Density Estimates, 2007 
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Figure 6.13: CHAMP Atmospheric Density Estimates, 2009 

 

Figure 6.14: CHAMP Smoothed Atmospheric Density Estimates, 2009 
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Table 6.1: Cross Correlation Comparison, CHAMP 2007 

Bin 
Cross Correlation 

POE Given CD  POE Estimated CD % Change 

Overall 0.943 0.944 -0.106% 

Low Solar 0.942 0.942 0.000% 

Moderate Solar 0.946 0.947 -0.106% 

Quiet Geomagnetic 0.943 0.945 -0.317% 

Moderate Geomagnetic 0.939 0.940 -0.106% 

 

Table 6.2: RMS Comparison, CHAMP 2007 

Bin 
Root Mean Square (10-12 kg/m3) 

POE Given CD  POE Estimated CD % Change 

Overall 0.258 0.303 -14.9% 

Low Solar 0.256 0.301 -15.0% 

Moderate Solar 0.265 0.307 -13.7% 

Quiet Geomagnetic 0.242 0.283 -14.5% 

Moderate Geomagnetic 0.305 0.355 -14.1% 

 

Table 6.3: Cross Correlation Comparison, CHAMP 2009 

Bin 
Cross Correlation 

POE Given CD  POE Estimated CD % Change 

Overall 0.955 0.956 -0.105% 

Low Solar 0.949 0.950 -0.105% 

Moderate Solar 0.940 0.940 0.000% 

Quiet Geomagnetic 0.955 0.957 -0.209% 

Moderate Geomagnetic 0.951 0.951 0.000% 

 

Table 6.4: RMS Comparison, CHAMP 2009 

Bin 
Root Mean Square (10-12 kg/m3) 

POE Given CD  POE Estimated CD % Change 

Overall 0.401 0.461 -13.0% 

Low Solar 0.381 0.439 -13.2% 

Moderate Solar 0.540 0.618 -12.6% 

Quiet Geomagnetic 0.404 0.464 -12.9% 

Moderate Geomagnetic 0.332 0.384 -13.5% 
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Figure 6.15: GRACE Atmospheric Density Estimates, 2007 

 

Figure 6.16: GRACE Smoothed Atmospheric Density Estimates, 2007 
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Figure 6.17: GRACE Atmospheric Density Estimates, 2009 

 

Figure 6.18: GRACE Smoothed Atmospheric Density Estimates, 2009 
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Table 6.5: Cross Correlation Comparison, GRACE 2007 

Bin 
Cross Correlation 

POE Given CD  POE Estimated CD % Change 

Overall 0.912 0.913 -0.110% 

Low Solar 0.912 0.912 0.000% 

Moderate Solar 0.907 0.910 -0.330% 

Quiet Geomagnetic 0.925 0.926 -0.108% 

Moderate Geomagnetic 0.883 0.881 0.227% 

 

Table 6.6: RMS Comparison, GRACE 2007 

Bin 
Root Mean Square (10-12 kg/m3) 

POE Given CD  POE Estimated CD % Change 

Overall 0.029 0.033 -11.9% 

Low Solar 0.028 0.032 -12.6% 

Moderate Solar 0.032 0.036 -10.9% 

Quiet Geomagnetic 0.025 0.028 -11.4% 

Moderate Geomagnetic 0.039 0.045 -12. 7% 

 

Table 6.7: Cross Correlation Comparison, GRACE 2009 

Bin 
Cross Correlation 

POE Given CD  POE Estimated CD % Change 

Overall 0.910 0.909 0.110% 

Low Solar 0.905 0.899 0.667% 

Moderate Solar 0.900 0.910 -1.098% 

Quiet Geomagnetic 0.909 0.908 0.110% 

Moderate Geomagnetic 0.910 0.916 -0.665% 

 

Table 6.8: RMS Comparison, GRACE 2009 

Bin 
Root Mean Square (10-12 kg/m3) 

POE Given CD  POE Estimated CD % Change 

Overall 0.021 0.023 -8.7% 

Low Solar 0.020 0.023 -13.0% 

Moderate Solar 0.025 0.025 -0.4% 

Quiet Geomagnetic 0.021 0.024 -12.7% 

Moderate Geomagnetic 0.018 0.020 -10.0% 
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As seen in Tables 6.1-6.4 above, the introduction of a higher fidelity drag coefficient model 

resulted in an across the board reduction of the RMS error in the atmospheric density estimates 

as compared to the accelerometer data. For the CHAMP satellite, the error was reduced by nearly 

15% for 2007 and 14% for 2009. The Cross Correlation, however, was also reduced a slight 

amount compared to the previous results. In these cases, the reduction in cross correlation was 

very miniscule in comparison to the large reduction in the RMS error. The majority of this 

reduction in RMS error is attributed to the reduction in bias between the accelerometer density 

and the POE derived density.  

Tables 6.5-6.8 show the same trend for the GRACE mission. For the GRACE satellite in 

2007, there was again a major reduction in the RMS values, approximately 11% across the board. 

For 2009, however, the moderate solar bin only shows a slight reduction in the RMS values. All 

other bins show a good reduction in RMS however, so this smaller reduction is likely attributed 

to a small number of values in the bin, and an over performing set of data previously found in 

this bin. As with the CHAMP satellite, the cross correlation has fluctuated a small amount 

compared to the original data. However, as before this is a small reduction in most cases, and in 

some locations, the cross correlation actually increased for the GRACE satellite. Overall, for both 

satellites, the inclusion of a more accurate drag model has resulted in a quantifiable increase in 

the accuracy for the atmospheric density estimates.  
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7 UNCERTAINTY IN ATMOSPHERIC DENSITY ESTIMATES 

To validate the results found in the previous section, the uncertainty of the atmospheric 

density corrections is studied. By examining the scale difference between the RMS errors from 

accelerometer-derived densities found in the CHAMP and GRACE satellites and the RMS of the 

uncertainties associated with the estimates, the RMS values for missions without truth-values in 

the form of accelerometer densities can be estimated. 

7.1 Estimation of Scale Factor for Atmospheric Estimate Uncertainty 

To help quantify the errors in the estimated atmospheric density for satellites without 

accelerometer density, the uncertainties in the atmospheric density corrections returned by the 

smoother are scaled to fit the errors in atmospheric density returned for the CHAMP and GRACE 

satellites. Figures 7.1 and 7.2 show the error in the estimates compared to the modified Sutton 

accelerometer derived densities found in Mehta et. al. [15], as well at the uncertainty determined 

by the smoother for CHAMP in 2007 and 2009 respectively. Figures 7.3 and 7.4 show the same 

results for the GRACE satellites. Using the scale factor discussed in Section 2.6, uncertainties 

from the estimates of CHAMP are scaled using the RMS errors from GRACE and compared to 

the actual RMS error using the accelerometer-derived densities, as shown in Figures 7.5 and 7.6. 

The process is then repeated for the estimates of GRACE using the results of CHAMP in Figures 

7.7 and 7.8. 
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Figure 7.1: CHAMP Estimated Uncertainty Compared to Calculated Error from 

Accelerometer Derived Density, 2007 

 

Figure 7.2: CHAMP Estimated Uncertainty Compared to Calculated Error from 

Accelerometer Derived Density, 2009 
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Figure 7.3: GRACE Estimated Uncertainty Compared to Calculated Error from 

Accelerometer Derived Density, 2007 

 

Figure 7.4: GRACE Estimated Uncertainty Compared to Calculated Error from 

Accelerometer Derived Density, 2009 
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Figure 7.5: CHAMP Actual Daily RMS Errors Compared to Estimated Daily RMS 

Errors using GRACE Scaling, 2007 

 

Figure 7.6: CHAMP Actual Daily RMS Errors Compared to Estimated Daily RMS 

Errors using GRACE Scaling, 2009 
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Figure 7.7: GRACE Actual Daily RMS Errors Compared to Estimated Daily RMS Errors 

using CHAMP Scaling, 2007 

 

Figure 7.8: GRACE Actual Daily RMS Errors Compared to Estimated Daily RMS Errors 

using CHAMP Scaling, 2009 

As seen in Figures 7.1-7.4, the estimated uncertainty is generally higher than the calculated 

errors with respect to the accelerometer densities. If the RMS values of the raw uncertainty of 

the estimates generated by ODTK are used without scaling, these values would provide an overly 
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conservative estimate of the RMS errors. Through the application of the scaling process, we can 

reduce the RMS to a more realistic value.  

Figures 7.5 and 7.6, which show the CHAMP errors as scaled using the GRACE data, show 

that applying this scaling has reduced the estimated RMS error too far. The GRACE scaling over-

corrects using its scale factor, and therefore is not a suitable candidate to use for scaling the 

ANDE data, which is closer in altitude to the CHAMP satellite than GRACE. As seen in Figures 

7.7 and 7.8 above, using the CHAMP uncertainty scaling provides a conservative estimate of the 

GRACE errors. This scaling is less conservative, however, than applying the uncertainty 

measurements directly, and therefore provides a much more realistic result. The CHAMP scaling 

values will therefore be applied to the ANDE satellites to estimate their RMS error. 

7.2 Uncertainty for ANDE Satellites 

Using the CHAMP scaling values as determined in Section 7.1, the daily RMS values for the 

ANDE satellites for the years 2007 and 2009 can be determined using the uncertainty in the 

estimates. Table 7.1 shows the estimated RMS error for the ANDE-RR MAA satellite using all 

seven drag coefficient models for 2007 separated into bins as defined in Table 3.1. Tables 7.2 

and 7.3 then show the same information for the ANDE-2 satellites Castor and Pollux respectively 

for the year 2009.  
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Table 7.1: ANDE-RR MAA Estimated RMS Error Values 

Bin 

Root Mean Square (10-12 kg/m3) 

CLL DRIA 

Langmuir  Freundlich Temkin Langmuir Freundlich Temkin Pilinski 

Overall 3.55 3.53 3.53 3.48 3.47 3.48 3.49 

Low Solar 3.70 3.68 3.69 3.62 3.61 3.62 3.63 

Moderate 

Solar 
3.08 3.08 3.08 3.07 3.08 3.08 3.08 

Quiet 

Geomagnetic 
3.49 3.47 3.47 3.41 3.39 3.40 3.42 

Moderate 

Geomagnetic 
3.72 3.71 3.71 3.70 3.71 3.71 3.72 

 

Table 7.2: ANDE-2 Castor Estimated RMS Error Values 

Bin 

Root Mean Square (10-12 kg/m3) 

CLL DRIA 

Langmuir  Freundlich Temkin Langmuir Freundlich Temkin Pilinski 

Overall 1.54 1.54 1.54 1.54 1.54 1.54 1.54 

Low Solar 1.44 1.44 1.44 1.44 1.44 1.44 1.44 

Moderate 

Solar 
1.82 1.82 1.82 1.82 1.82 1.82 1.82 

Quiet 

Geomagnetic 
1.53 1.53 1.53 1.53 1.53 1.53 1.53 

Moderate 

Geomagnetic 
1.79 1.79 1.79 1.79 1.79 1.79 1.79 

 

Table 7.3: ANDE-2 Pollux Estimated RMS Error Values 

Bin 

Root Mean Square (10-12 kg/m3) 

CLL DRIA 

Langmuir  Freundlich Temkin Langmuir Freundlich Temkin Pilinski 

Overall 1.64 1.64 1.64 1.64 1.64 1.64 1.64 

Low Solar 1.49 1.49 1.49 1.49 1.49 1.49 1.48 

Moderate 

Solar 
2.09 2.09 2.09 2.09 2.09 2.09 2.09 

Quiet 

Geomagnetic 
1.64 1.64 1.64 1.64 1.64 1.64 1.64 

Moderate 

Geomagnetic 
1.76 1.76 1.76 1.76 1.76 1.76 1.77 
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As seen with the atmospheric density figures found in Section 6.1, the choice of drag 

coefficient model does not result in a large difference in the results. Each of the respective drag 

coefficient models appear to provide a similarly accurate estimate of the atmospheric density 

encountered by the ANDE satellites. The few spikes in the percent difference as seen in Figures 

6.3, 6.6, and 6.9 lead to the primary differences in the RMS values as seen in the above tables.  

As shown in Table 7.1, the overall lowest estimated RMS value is found by the Freundlich 

DRIA model. The ANDE-RR MAA results are more representative of the entire lifetime of the 

satellite, as the entirety of the MAA mission takes place in 2007. Therefore, the differentiation 

that occurs during re-entry is also captured by the estimates and can be applied to the RMS values. 

Tables 7.2 and 7.3 do not show much difference in estimated error between the models for the 

ANDE-2 mission in 2009. Since in neither case, the satellites had dipped low enough in the 

atmosphere until 2010, the tail end of these missions is not captured. Provided the scaling could 

be extended into 2010, these models would likely differentiate much like the ANDE-RR MAA 

satellite and provide a clearer picture of which atmospheric model was most effective. 
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8 SUMMARY, CONCLUSION, AND FUTURE WORK 

8.1 Summary 

Precise knowledge of the density in the upper atmosphere is a vital component of the orbit 

determination process, as inaccuracies in the estimation of atmospheric drag are the primary 

source of uncertainty for satellites in low Earth orbit. A need for more accurate knowledge of the 

upper atmosphere, which results in improved accuracy of orbit determination, has led to the 

development of atmospheric density derived from precision satellite orbits. This method, 

however, requires more refinement and validation before being put into widespread use. In 

addition, the uncertainty associated with this POE model prior to the research completed here 

was not well documented. 

To improve these atmospheric density models, the methods of validation for previously 

completed work were expanded to include the entire lifetime of both the CHAMP and GRACE 

satellites. These expansions provided a much more robust understanding of the effectiveness of 

the POE methods over the entire lifetime of these satellites. Additionally, the framework has 

been set to more easily ingest the results for additional satellite missions to ensure that all data is 

processed for any future missions.  

In some locations, however, there were gaps in the accelerometer derived densities which 

required an alternative method. By patching together and scaling two separate accelerometer 

density data sets, a single, more robust data set is provided that allows for a more effective 

comparison of the estimated POE densities to the truth values. 

In an effort to further improve these atmospheric density estimates, results for the spherical 

ANDE mission satellites were considered in addition to the more complex CHAMP and GRACE 
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missions. A method of calculating the drag coefficient for a sphere was applied to these missions 

to allow for a higher fidelity model of the satellite in question. Drag coefficients calculated in a 

similar method to those used for the ANDE missions and projected area information are also 

available for the CHAMP and GRACE missions. These values were applied to further improve 

the estimates of atmospheric density. 

Using these drag coefficients, the atmospheric densities were estimated, preserving the 

uncertainties returned by the filter and smoother for use in further evaluation of the methods. 

These returned atmospheric densities showed a marked reduction in the RMS values returned for 

both the CHAMP and GRACE satellites. For the ANDE satellites, however, a method of 

validation was still required. 

This method of validation was developed by examining the results for the CHAMP and 

GRACE satellites. By comparing the daily RMS values of the uncertainty in the atmospheric 

density estimates to the daily RMS errors as compared to the accelerometer derived densities, a 

scale factor for each day is returned. The more conservative estimate is used to estimate the RMS 

errors for the ANDE satellite missions. 

Through the application of these scale factors, a table of RMS values, much like the ones 

returned for the CHAMP and GRACE satellites in Section 4.2 was generated. These average 

RMS values, as placed in the respective atmospheric and geomagnetic bins as defined in Table 

3.1, provide a first estimate of the accuracy of the atmospheric density estimates for a satellite 

without any a priori knowledge of the atmospheric density as seen by the satellite. Through this 

method, the most effective drag coefficient model can be selected. 



    

76 

In conclusion, three distinct advancements have been made. 

1. The drag coefficients have been determined for the ANDE satellites using a larger set of 

methods than have been previously studied, including the CLL method and a series of separate 

adsorption models.  

2. The POE method has been altered to allow for these drag coefficients to be used directly 

instead of estimated.  

3. By investigating the difference in the uncertainties of the CHAMP and GRACE satellites 

with their RMS errors, the RMS errors for a satellite without a base truth model are provided 

for the first time. 

8.2 Conclusion 

Through the work completed in this dissertation the following conclusions are drawn: 

1. The POE densities that were previously completed have been successfully re-calculated to 

ensure no issues with an optimization of code, showing a less than 1% deviation from the 

originally calculated values found in literature for the provided days. 

2. Through the merging of two separate data sets and the examination of CC and RMS values 

for the entire lifetime of the CHAMP and GRACE satellites, a more thorough and complete 

understanding of the performance of each metric has been reached. 

3. The drag coefficients generated in Section 5 fall within expected values found in literature 

and are therefore considered to be accurate. 
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4. The relative differences between the drag coefficients found for the ANDE satellites 

remained within a 10% envelope for the lifetime of each satellite and under 5% outside of a 

few locations where the accommodation coefficient fell below the allowable value of 0.85 

for the Pilinski derived drag coefficients. 

5. The effective area approach to calculating atmospheric density was successful in 

incorporating the drag coefficients and normal areas into the ODTK filter and smoother 

techniques. 

6. The atmospheric densities calculated for the ANDE series of satellites showed no more than 

a 10% deviation regardless of drag coefficient model selection, save for a few locations in 

the ANDE-RR MAA and ANDE-2 Pollux satellites, which showed a large jump in the 

Langmuir derived models, primarily at the end-of-life for each satellite. 

7. The atmospheric densities as calculated for the CHAMP and GRACE satellites provide a 

more accurate representation of the atmosphere after adding the new drag coefficients and 

normal areas. 

8. By scaling the results from the CHAMP and GRACE missions, an effective value of the root 

mean square error for satellites without accelerometer derived density truth values can be 

estimated. 

9. Using the RMS values estimated for the ANDE satellites, the Freundlich DRIA model 

provided the lowest error solution for the ANDE-MAA satellite and was the second lowest 

error model next to the Pilinski values for the ANDE-2 missions. 
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8.3 Future Work 

Through the work completed in this research, additional tasks have arisen which merit further 

study. Some suggested topics of future study are listed in this section. 

 Drag Coefficient Resolution Cost-Benefit Analysis 

In completing the estimation of the atmospheric densities, the values for drag coefficient on 

a minute-by-minute basis were imported into the model to ensure a high accuracy solution. 

However, this process can be computationally expensive, both in the generation of the drag 

coefficients and the ingesting of them into the orbit determination process. One avenue of 

research to be studied is the reduction of the resolution of the input drag coefficients. While a 

brief investigation has been performed in Section 6.1, the one day averaging was too severe. A 

cost-benefit analysis of the computing time used to generate the drag coefficients compared to 

the benefit of the higher fidelity in the atmospheric density estimation could provide a more 

efficient solution.  

 Examination of Effectiveness of Scaling Process on Other Known Satellites 

To further evaluate the effectiveness of the scaling process, additional satellite missions with 

overlapping data should be explored to determine the effectiveness of this method. Adding more 

data points at different altitudes and atmospheric conditions will help to provide a more robust 

understanding of the scaling process. 
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 Generalization of Scaling Process 

The scaling process as presented in Section 7 is limited to areas in which a precursor satellite 

with an established accelerometer density is able to calculate the error and the scale factor for a 

set day. Realistically, a more generalized solution would be necessary to expand this method into 

areas where no precursor satellite is available. Using the CHAMP and GRACE missions, in 

accordance with a few additional missions to provide more data points, the scale factors may be 

distilled down to something that can be estimated using a set of inputs.  
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