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ABSTRACT 

Serotonin 1A receptors are an inhibitory G-protein coupled receptor that are known to play a key 

role in the regulation of mood and cognition. Dysregulation of serotonin 1A receptors has been 

implicated in mood related disorders such as depression and anxiety. Post translational 

modifications including palmitoylation and phosphorylation are found to regulate the function of 

serotonin 1A receptors. Previous studies in our lab demonstrated that serotonin 1A receptors are 

SUMOylated, however the impact of SUMOylation on serotonin 1A receptor function is yet to 

be elucidated. Acute agonist stimulation of serotonin 1A receptors was found to increase the 

levels of the SUMOylated receptors in rat cortex. This study employed acceptor photobleach 

FRET to further investigate the interaction between SUMO-1 and serotonin 1A receptor and 

identify the sites of SUMOylation on the serotonin 1A receptor. We used cell lines expressing 

both endogenous (N2A) and transfected serotonin 1A receptors (HEK293 and SHSY5Y) and 

observed FRET between serotonin 1A receptor and SUMO-1 in all the cell lines. Using acceptor 

photobleach FRET, we found three lysine residues on the serotonin 1A receptor (232, 235, 324) 

that are possibly involved in SUMOylation. We also conducted an immunocytochemistry-based 

approach, to study the effect of agonist stimulation of serotonin 1A receptors on SUMOylation 

of the receptors in the cell membrane. We observed similar extent of colocalization of serotonin 

1A receptor and SUMO-1 antibody in both the 8-OH-DPAT and vehicle treated groups. This 

was observed due to the limitations of light microscopy to distinguish between objects closer 

than 100nm as two different entities. Further studies need to be performed using techniques with 

higher resolution such as electron microscopy to study the effect of agonist stimulation on the 

SUMOylated serotonin 1A receptors. Our data provides some important insights about the 

putative sites of SUMOylation on the serotonin 1A receptor. The identification of the primary 
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site of SUMOylation along with the knowledge about the effect of agonist stimulation on the 

SUMOylation of serotonin 1A receptors would help us decipher the role of SUMOylation in 

serotonin 1A receptor desensitization. Further understanding the regulation of serotonin 1A 

receptors by SUMOylation will aid in elucidating the role of serotonin 1A receptors in various 

mood disorders such as depression. 
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1. INTRODUCTION 

1.1 SEROTONIN 

Serotonin also known as 5-hydroxytryptamine (5-HT) is a monoamine, which acts as a 

neurotransmitter in the central nervous system(CNS). The initial step in synthesis of serotonin in 

the CNS is the transport of tryptophan from blood to brain. Serotonergic neurons express the 

enzyme tryptophan hydroxylase-2 which catalyzes the hydroxylation of tryptophan to 5-

hydroxytryptophan.This is the rate limiting step in the synthesis of 5-HT. Aromatic amino acid 

decarboxylase then catalyzes the decarboxylation of 5-hydroxytryptophan to 5-

hydroxytryptamine (5-HT)[1]. Metabolism of 5-HT involves its deamination to 5-

hydroxyindoleacetaldehyde which is catalyzed by monoamine oxidase. 5-

hydroxyindoleacetaldehyde can further be oxidized to 5-hydroxyindoleacetic acid (5-HIAA)[2]. 

5-HT is involved in the regulation of various processes in the brain, such as mood, 

emotions, aggression, sleep, appetite, memory, and perceptions[3]. 5-HT regulates these processes 

through different pathways that innervate various brain regions. Most of the cells in the brain, are 

either directly or indirectly affected by 5-HT levels. Abnormal 5-HT levels are associated with 

mood and anxiety disorders, depression, panic attacks, and insomnia[4]. 

5-HT produces a myriad of physiological effects which are mediated through fourteen 

distinct receptor subtypes, out of which thirteen are G-protein coupled receptors and one is a 

ligand gated ion channel. These receptors can be broadly classified into four subfamilies: the 5-

HT1 family, the 5-HT2 family, the 5-HT4, 5-HT5, 5-HT7 family, all of which are coupled to G-

proteins. The fourth family has only one receptor subtype, 5-HT3 receptor which is a homomeric 

ligand gated ion channel[5]. 5-HT1 family consists of 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 

5-HT1F receptors. These receptors are predominantly coupled to the Gi/Go pathway and their 
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activation results in the inhibition of adenylyl cyclase. 5HT1A receptors are also known to 

couple to Gαz proteins in the hypothalamus and mediate the release of hormones[6]. The 5-HT2 

family consists of 5-HT2A, 5-HT2B and 5-HT2C receptors. These receptors are coupled to 

Gq/11 pathway and their activation results in the stimulation of phosphoinositide specific 

phospholipase C (PI-PLC). The third family consists of 5-HT4, 5-HT5 and 5-HT7 receptors; 

these receptors couple to Gαs proteins and their activation causes the stimulation of adenylyl 

cyclase. The 5-HT3 receptor is a serotonin-gated cation channel that causes rapid depolarization 

of neurons. 

1.1.1 SEROTONIN 1A RECEPTORS (5HT1AR) 

The 5HT1AR is a G-protein coupled receptor subtype that exists in two major forms in 

the nervous system: the pre-synaptic auto-receptor and the post-synaptic receptor. 5HT1A auto-

receptors reside on the soma and dendrites of serotonergic neurons in the raphe nuclei, where its 

activation results in the hyperpolarization and reduction in the firing rate of these neurons, and 

thereby reducing the extracellular levels of serotonin.  

Postsynaptic 5HT1AR are expressed in the areas receiving serotonergic innervation. 

These receptors are mainly located on pyramidal neurons and on GABAergic neurons. They are 

highly expressed in brain regions implicated in the regulation of mood and anxiety, such as the 

frontal cortex, hippocampus , hypothalamus and amygdala[7]. The postsynaptic 5HT1AR is 

coupled to the family of Gi/Go proteins and their downstream effector systems. Two of the many 

downstream signaling pathways include: (i) inhibition of adenylyl cyclase activity and (ii) the 

opening of K+ channels, which results in neuronal hyperpolarization. In terminal field areas of 

serotonergic innervation, such as the hippocampus, 5HT1ARs are coupled to both effector 
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systems. However, in the dorsal raphe nucleus, 5HT1ARs are coupled only to the opening of 

potassium channels[8].  

Dysregulation of 5HT1ARs occurs in patients suffering from depression and related 

mood disorders[9, 10]. Increases in 5HT1A auto-receptor density in the midbrain have been 

demonstrated in depressed suicide patients[10, 11]. 5HT1ARs have been also examined in many 

cerebral cortical and subcortical areas in patients with a history of mood disorders[12].Positron 

emission tomography (PET) studies revealed decreased 5HT1AR levels in the cortex in untreated 

or treated depressed patients. Decreased 5HT1AR levels were also observed in patients with 

remitted depressive episodes[13]. Furthermore, reduced 5HT1AR levels have also been reported 

in patients with social anxiety disorders and in cortical regions of patients suffering from panic 

disorder, although not all studies agree[14]. However, the overall evidence suggests that 5HT1AR 

function is altered in clinical populations when compared to controls. Furthermore, it should be 

noted that the observed abnormalities in 5HT1AR levels are found in many affective and 

anxiety-related disorders, suggesting that these findings may reflect a general vulnerability factor 

for psychopathology. 

In addition to the human studies, numerous studies in transgenic and knockout animals 

have also been performed to study the function of 5HT1AR[15-17]. 5HT1AR knockout mice 

exhibited an anxiety-like phenotype in behavioral tests such as open field, elevated plus maze, 

and novelty-suppressed feeding test[17]. The impaired performance of 5HT1AR knockout mice 

was observed to be due to an enhanced fear response, but not due to a deficit in exploratory 

drive[18]. Interestingly, despite the association of 5HT1AR function with depression in humans, 

5-HT1AR knockout mice did not display a prominent depression-like phenotype. Moreover, 
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5HT1AR KO mice display increased physiological responses to acute stress. However, these 

behavioral alterations are not correlated with 5-HT or 5-HIAA levels in brain tissue[19, 20]. 

In contrast to the behavioral changes observed in mice lacking the 5HT1AR, a 

transgenic mouse model overexpressing 5HT1AR in the central nervous system under control of 

its endogenous promoter had reduced anxiety-like behavior, reduced 5-HIAA/5-HT ratio in 

several brain areas and elevated serotonin levels in the hippocampus and striatum[21]. The data 

from this study suggests that overexpression of 5HT1ARs results in an opposite phenotype of 

5HT1AR knockout mice. 

Another transgenic mouse model that was used to independently assess the function of 

5HT1AR auto-receptors and post-synaptic receptors provided a number of advances over classic 

KO and previous transgenic approach. The study demonstrated that suppression of post-synaptic 

5HT1A receptors is not sufficient to impact anxiety-like behavior. However, loss of auto-

receptors impacts anxiety, suggesting that the anxiety-like phenotype of the 5HT1AR KO mouse 

likely results from increased serotonergic neuron excitability due to the loss of auto-receptors. 

Furthermore, mice lacking post-synaptic 5HT1ARs displayed decreased mobility in the forced 

swim test indicating an increase in behavioral despair which is consistent with depressive-like 

phenotype. In contrast, loss of 5HT1A auto-receptors did not impact behavior in the forced swim 

test[22]. These results provide evidence for distinct roles of the 5HT1A auto-receptors and post-

synaptic receptors in mediating anxiety and depressive like phenotypes in mouse models, 

suggesting that auto receptors impact the anxiety-like behavior and the post-synaptic receptor 

impacts the depressive-like behavior. 
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1.1.2 DEPRESSION 

Depression is a mood disorder that is characterized by a sense of insufficiency, despair, 

decreased activity and anhedonia, to an extent that these symptoms adversely affect a person’s 

life. The World Health Organization (WHO) estimates depression to be the leading cause of 

disability worldwide and a major contributor to the overall global burden of diseases. Currently 

about 16.1 million people in the United States are suffering from major depressive disorder. The 

prevalence is higher in females as compared to males, one in every five women and every twelve 

men are diagnosed with depression.[23]  

As described in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition 

(DSM- V), the hallmark of major depressive disorder is the occurrence of depressed mood and 

loss of interest in activities that were rather pleasurable in the past (anhedonia), with the 

symptoms lasting for at least a duration of two weeks. These symptoms must also be 

accompanied by at least four of the following indicators: changes in appetite or weight, changes 

in sleep patterns, altered psychomotor activity, feelings of worthlessness, difficulty concentrating 

or making decisions and recurrent thoughts of death[24]. 

There are many forms of depression ranging from mild to severe, two of the most 

common forms are major depressive disorder and dysthymic disorder. In major depressive 

disorder, patients typically show symptoms of depressed mood and anhedonia along with 

alterations in sleep patterns, appetite, and disturbances in cognitive functions. These symptoms 

severely affect the patient’s daily life. In dysthymic disorder, also known as the pervasive 

depressive disorder, the patient exhibits depressive mood for majority of the day for at least two 

years. This is in contrast to major depression in which the patient has a discrete episode of severe 

depression, after which the patient is in “remission” and feels normal. Some other forms of 
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depression are slightly different and may develop only under unique situations such as seasonal 

affective disorder, where the patient only gets depressive episodes in a particular season such as 

winters and post-partum depressive disorder which affects mothers after giving birth[25]. 

Even though many studies have tried to shed light on the pathophysiology of 

depression, it still is elusive. There are however many theories that explain the pathogenesis 

based on indirect markers and post mortem reports of depressive patients. One of the major 

theories of the pathophysiology of depression is the “Serotonin Hypothesis”. The serotonin 

hypothesis postulates that there is a net reduction in the levels of serotonin in depressive 

disorder[26]. This reduction in serotonin levels can be either due to decreased serotonin 

availability or it can be due a defect in the receptor activity. The basis for this hypothesis is the 

fact that the first antidepressant drugs worked by increasing serotonin activity in the brain[27]. 

Studies have shown that low dietary tryptophan has an anxiogenic and depressant effect on rat 

behaviors, where the rats display immobility in the forced swim test and anxiety related 

behaviors in the elevated plus maze[28]. The decrease in plasma level of tryptophan has also been 

shown to induce depressive symptoms in elderly patients[29]. A subset of depressed patients has 

been reported to have lower levels of 5-hydroxyindoleacetic acid (5-HIAA) a metabolite of 5-HT 

in the cerebrospinal fluid (CSF), which has been related to aggressive behavior and increased 

suicidal tendency[30]. Moreover, positron emission tomography (PET) imaging studies have 

reported a decrease in density of 5HT1AR in depressed patients in different regions of the 

brain.[31, 32]  

1.1.3 ANTIDEPRESSANTS 

Antidepressants are drugs used for the treatment of major depressive disorder and other 

conditions, including dysthymia, anxiety disorders, obsessive–compulsive disorder, attention-

https://en.wikipedia.org/wiki/Major_depressive_disorder
https://en.wikipedia.org/wiki/Dysthymia
https://en.wikipedia.org/wiki/Anxiety_disorder
https://en.wikipedia.org/wiki/Obsessive%E2%80%93compulsive_disorder
https://en.wikipedia.org/wiki/Attention-deficit_hyperactivity_disorder
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deficit hyperactivity disorder (ADHD), and sleep disorders. They may be prescribed alone or in 

combination with other medications. Antidepressant drugs either inhibit the reuptake or decrease 

the metabolism of monoamines in the CNS[33]. There are several classes of antidepressant drugs. 

Tricyclic antidepressants (TCA) inhibit the reuptake of neurotransmitters such as serotonin and 

norepinephrine. TCAs were the first drugs for depression and although they are effective, they 

have serious side effects and can be lethal in overdoses. Some of the classic examples of drugs 

from this class are amitriptyline, desipramine and imipramine[34].  Monoamine oxidase(MAO) 

inhibitors prevent the metabolism of monoamines by monoamine oxidase. As a result, the levels 

of neurotransmitters such as serotonin, dopamine and norepinephrine increase. The downside is 

that MAO inhibitors also prevent the body's ability to break down other medicines metabolized 

by this enzyme as well as the amino acid tyrosine, which is found in foods such as cheese. Some 

typical examples of MAO inhibitors are selegline and isocarboxazid[35]. 

Reuptake inhibitors reduce the transport of neurotransmitters from the synapse into the 

presynaptic neurons. There are three types of reuptake inhibitors, serotonin and norepinephrine 

reuptake inhibitors (SNRI), norepinephrine and dopamine reuptake inhibitors (NDRI) and 

selective serotonin reuptake inhibitors (SSRI). SNRIs prevent the reuptake of serotonin and 

norepinephrine by blocking the serotonin transporter (SERT) and norepinephrine transporter 

(NET). Some examples include venflaxine and duloxetine. NDRIs inhibit the reuptake of 

norepinephrine and dopamine by blocking the NET and dopamine transporter (DAT). There is 

only one drug in this class, bupropion. SSRIs are the most common antidepressants that are 

prescribed. SSRIs prevent the reuptake of serotonin by blocking the serotonin transporter 

(SERT). Fluoxetine, paroxetine and citalopram are some examples of drugs of this class[36]. 

https://en.wikipedia.org/wiki/Attention-deficit_hyperactivity_disorder
https://en.wikipedia.org/wiki/Sleep_disorder
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The mechanism by which the antidepressants increase the levels of neurotransmitters is 

known but how they alleviate the depressive symptoms is yet to be elucidated. For example, 

SSRIs rapidly block the SERT to increase the 5-HT levels, however it takes about 6-8 weeks for 

the antidepressant effects of the drugs to appear[37]. This lag might be due to receptor 

desensitization or some other adaptive changes. 5HT1A auto-receptors are thought to limit the 

initial increase of 5-HT levels induced by SSRIs, thus delaying the therapeutic response. The 

effect is gradually overcome by desensitization of 5HT1A auto-receptors in the raphe nuclei, 

allowing the firing rate of serotonergic neurons to recover. SSRIs have been shown to increase 5-

HT levels in both the frontal cortex and raphe nuclei areas, and this effect is greater in mice with 

global 5HT1AR KO mice[38]. Interestingly, mice with conditional 5HT1AR KO in the 

hippocampus respond to tricyclic antidepressants (TCAs), but not to the SSRI fluoxetine, in the 

tail suspension test and the novelty suppressed feeding test, suggesting that the 5HT1A receptors 

are a critical component in the mechanism of action of SSRIs in the hippocampus but not 

TCAs[39].    

1.2 POST TRANSLATIONAL MODIFICATIONS OF 5HT1ARs 

5HT1ARs are known to undergo a number of post-translational modifications (PTMs), 

namely palmitoylation, phosphorylation and SUMOylation. Modification of 5HT1ARs by 

palmitic acid was studied using pulse-chase experiments, where it was observed that fatty acids 

were stably attached to the cysteine residues 417 and 420 of the receptor and studies also suggest 

that it is probably an irreversible modification[40]. Palmitoylation of 5HT1AR could affect the 

receptor function in one of the two ways: it might be required for the interaction of the receptor 

to the G-proteins or that it could be involved in the trafficking of the receptor to the membrane 

subdomains such as lipid rafts or detergent resistant microdomain[41]. Phosphorylation of 
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5HT1ARs mediated by protein kinase C has been shown to cause the desensitization of the 

receptor[42]. Our lab has recently discovered that 5HT1ARs also are SUMOylated. 

1.2.1 SUMOylation 

SUMOylation is a post-translational modification that involves the covalent attachment 

of a member of the small ubiquitin-like modifier(SUMO) family of proteins to lysine residues in 

specific target proteins via an enzymatic cascade similar to the ubiquitination pathway. In 

mammals there are four SUMO paralogues, SUMO-1 to SUMO-4. SUMO-1 is an 11 kD protein 

that was isolated as the binding partner of RAD51/52 nucleoprotein filament proteins, which 

mediate DNA strand exchange[43]. The first reports of SUMO-1 functioning as a covalent protein 

modifier described SUMOylation of the nuclear pore protein Ran-GTPase-activating protein 

1(RANGAP-1)[44]. SUMO-2 and SUMO-3 differ from each other by only three N-terminal 

residues and are often referred to collectively as SUMO-2/3. SUMO-2/3, however, share only 50 

% similarity with SUMO-1. Interestingly, SUMO-2/3 can form chains on substrate proteins 

through internal lysine residues, while SUMO-1 only forms monomers (monoSUMOylation) on 

the substrate and appears to act as a chain terminator on SUMO-2/3 polymers. In contrast with 

the other SUMO genes the SUMO-4 gene lacks introns, raising the possibility that it may be a 

pseudogene. However, recent studies show that SUMO-4 is expressed in normal placental 

development. SUMO-4 expression was increased in pre-eclamptic placentas and in models of 

oxidative stress and hypoxic injury suggesting that SUMO-4 hyper-SUMOylation may be a 

potential post-translational mechanism in the stressed pre-eclamptic placenta[45]. 

Protein modification by SUMO may lead to one of the following effects on the substrate 

proteins; first, SUMOylation may mask the binding site of a protein that interacts with the 

substrate protein, essentially occluding the interaction in a SUMO-dependent manner. For 
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example, SUMOylation of the ubiquitin-conjugating enzyme E2-25K inhibits its interaction with 

ubiquitin E1 enzyme, leading to a decrease in the ubiquitin conjugation of substrates[46]. Second, 

the covalently attached SUMO may act as a hub that recruits new interacting proteins to the 

substrate either by a direct interaction with the SUMO moiety or by an indirect interaction at the 

SUMO-substrate interface. For example, SUMOylation of RANGAP-1 promotes its interaction 

with Ran binding protein 1 and its relocation from the cytoplasm to the nuclear pore complex[44]. 

Third, SUMOylation can lead to a conformational change in the SUMOylated substrate, directly 

regulating its function. [47]. 

1.2.2 THE SUMOylation CYCLE 

Conjugation 

SUMOylation is mediated through an enzyme cascade similar to ubiquitination as it 

involves the activation, conjugation and ligation of SUMO protein to its substrate. SUMO 

proteins are synthesized as inactive precursors that must first undergo a C-terminal cleavage 

catalyzed by a sentrin/SUMO-specific protease(SENP) enzyme. This cleavage exposes a di-

glycine residue that allows SUMO to be conjugated to lysine residues in target proteins. During 

each conjugation cycle, SUMO proteins are first activated in an ATP-dependent manner by the 

E1 ‘activating’ enzyme which is a heterodimer of SUMO-activating enzymes (SAE1 and SAE2) 

in mammals. This step involves the formation of a thioester bond between the active-site 

cysteine residue of SAE2 and the C-terminal glycine residue of SUMO[48]. 

SUMO is then passed to the active cysteine residue of the conjugating enzyme 

ubiquitin-conjugating 9 (Ubc9), again via a thioester linkage. Importantly, Ubc9 is the only 

known SUMO-conjugating enzyme and Ubc9 can also bind directly to the SUMOylation 

consensus motif on substrate proteins. Transfer of SUMO from Ubc9 to the target protein can 
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occur either independently through the direct interaction of Ubc9 with the substrate or in the 

presence of a ligase enzyme which facilitates SUMOylation of the substrate[47]. SUMO transfer 

from Ubc9 to a target protein can occur through two ligase-independent mechanisms. First, many 

SUMOylated lysine residues lie within a consensus motif, Ψ-K-x-[D/E] (where Ψ is an aliphatic 

branched amino acid, K is the lysine residue where the SUMO protein binds, x is any amino acid 

and D/E represent an acidic amino acid such as aspartate and glutamate). Ubc9 can directly 

recognize this motif and conjugate the lysine residue within it. Alternatively, some SUMO 

substrates have SUMO interaction motifs (SIMs) that promote their own conjugation. These 

SIMs bind to the SUMO moiety to which Ubc9 is attached, thereby increasing the local 

concentration of SUMO and facilitating SUMOylation[49].  

Ligase-dependent transfer of SUMO from Ubc9 occurs in the presence of E3 enzymes 

which facilitate majority of SUMOylation reactions under physiological conditions. One such 

family of E3 ligases is that of protein inhibitor of activated STAT (signal transducer and 

activator of transcription) [PIAS] proteins. The PIAS family consists of five members, each of 

which has ligase activity. The PIAS proteins have a SP (Siz/PIAS)-RING domain similar to the 

ones found in many ubiquitin E3 ligases. SP-RING ligases bind to Ubc9, their substrate proteins 

and bind non-covalently to SUMO, thus acting as a scaffold bringing SUMO-loaded Ubc9 

together with substrate proteins. In addition to the PIAS proteins, a number of other SP-RING 

domain-containing proteins have been reported to function as SUMO E3 ligases including Ran-

binding protein 2[50]. 

DeSUMOylation 

Protein SUMOylation is a highly dynamic process that can be readily reversed by the 

action of the SENP enzyme, which was initially needed for the maturation of SUMO precursor. 
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Mammals have six SENPs, designated as SENP1–3 and SENP5–7. These SENPs vary in their 

cellular distribution, SUMO paralogue specificity and selectivity for SUMO maturation 

compared with deconjugation activities. Mammalian SENPs can be classified into three groups. 

SENP1 and SENP2 have a broad specificity for SUMO-1 and SUMO-2/3 and function both in 

their maturation and deconjugation. SENP3 and SENP5 favor SUMO-2/3 over SUMO-1, i.e. 

they function in the removal of monomeric SUMO-2/3 chains. SENP6 and SENP7 also act 

preferentially on SUMO-2/3. Neither SENP6 nor SENP7 seem to be involved in maturation of 

pro-SUMO proteins and they show minimal activity in the deconjugation of monomeric SUMO-

2/3 from substrate proteins. Rather, SENP6 and SENP7 efficiently edit and deconjugate poly-

SUMO-2/3 chains[51]. 

1.2.3 FUNCTIONS OF SUMOylation 

Depending on the target protein, SUMOylation can occur at the cell membrane, 

cytoplasm or nucleus, and is involved in regulating the subcellular localization of a number of 

substrate proteins. 

Nuclear Functions: 

SUMOylation is known to be a predominantly nuclear modification and is known to 

modify a large number of chromatin-remodeling complexes. RANGAP-1 was the first identified 

SUMO substrate and plays an important role in the regulation of transport of ribonucleoproteins 

and proteins across the nuclear pore complex. Unmodified RanGAP1 resides predominantly in 

the cytoplasm and upon conjugation with SUMO associates with the cytoplasmic fibers of the 

nuclear pore complex[44, 52]. The promyelocytic leukemia and Sp100 proteins are major 

components of promyelocytic leukemia nuclear bodies, also called nuclear domain 10. 
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SUMOylation has been found to be required for the subcellular localization of most of the 

proteins found in nuclear domain 10 such as promyelocytic leukemia[53]. 

The SUMOylation of transcription factors has been reported to have different effects on 

their activities in various pathways including those involving cytokines, WNT, steroid hormones, 

and AP-1. In most cases, SUMO modification plays a negative role in transcription regulation[54, 

55]. Although SUMOylation of most transcription factors results in repression, it appears to have 

positive effects on transcriptional activation by the heat shock factors HSF1 and HSF2. 

SUMOylation of HSF1 and HSF2 is correlated with their localization to promyelocytic leukemia 

nuclear bodies[56, 57]. For both HSFs, SUMOylation leads to increased DNA-binding activity. 

SUMOylation also plays an important role in cell cycle and division such as 

chromosome cohesion and kinetochore assembly. During mitosis, the proper distribution of 

chromosomes into replicated cells is dependent upon the sister chromatid assembly and 

separation. Dysregulation of this process was one of the first phenotypes described in SUMO-1 

mutants in yeast and is characterized by aberrant mitosis and defects in chromosomal 

segregation[58]. 

Extranuclear Functions: 

The nuclear functions of SUMOylation have been very well characterized, but recent 

studies indicate many important roles for SUMOylation in signal transduction, trafficking and 

modification of cytosolic and membrane proteins. Phosphorylation cascades are integral to cell 

signaling, and important elements of these pathways can be modulated by SUMOylation. For 

example, focal adhesion kinase and protein tyrosine phosphatase 1b are both SUMO substrates. 

SUMOylation of focal adhesion kinase results in its autophosphorylation and that of protein 

tyrosine phosphatase 1b results in transient downregulation of both its activity and expression[59, 
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60]. Mitochondrial fission is dependent on the GTPase dynamin-related protein 1 and 

SUMOylation of dynamin-related protein 1 appears to protect it against degradation[61]. 

In addition to proteins involved in cell signaling, many membrane-associated proteins 

have also been observed to be SUMOylated. Glucose transporters GLUT1 and GLUT4 were the 

first membrane proteins that were found to be SUMOylated[62]. However, the functional effect of 

SUMOylation on these transporters is still unclear. SUMO conjugation has also been shown to 

regulate the function of two neuronal K+ channels, K2P1 and Kv1.5, indicating the role of 

SUMOylation in neuronal excitability[63]. Kainate receptors are tetrameric glutamate-gated ion 

channels that undergo activity-dependent SUMOylation. Kainate receptors are selectively and 

rapidly SUMOylated in response to agonist activation, leading to the endocytosis of the 

receptor[64].  

 In addition to the above-mentioned membrane associated proteins, recently many 

proteins associated with G-protein signaling have also been found to be SUMOylated. 

Metabotropic glutamate receptors(mGLuRs) are one of the first G-protein coupled receptors that 

were shown to be SUMOylated. Although the exact function of SUMOylation of mGLuRs is still 

unclear, it is thought that SUMO might provide an interface for the binding of many interacting 

proteins[65]. Another G-protein coupled receptor that is known to be SUMOylated is cannabinoid 

receptor 1(CB1). It was found that SUMOylation of CB1 is decreased upon agonist treatment[66]. 

The regulators of G-protein signaling, RGSZ1 and RGSZ2 are SUMOylated upon the activation 

of µ-opioid receptors. SUMOylation of RGSZ1 and RGSZ2 is thought to mediate the 

desensitization of G-protein coupled receptors[67]. Another G-protein coupled receptor that has 

been found to get SUMOylated is 5HT1A receptor[68]. 
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1.2.4 SUMOylation OF 5HT1ARs 

Previous studies from our lab reported that 5HT1ARs are SUMOylated by SUMO-1 

proteins[68]. Using immunoprecipitation followed by immunoblotting for, SUMOylated 5-

HT1ARs were detected in the membrane fraction but not in the cytosolic fraction of the rat 

cortex. These SUMOylated 5HT1ARs were found in numerous brain regions such as frontal 

cortex, cortex, hippocampus, hypothalamus, midbrain, and the dorsal raphe. Most of the brain 

regions had comparable expression of SUMOylated 5HT1ARs, except for the midbrain which 

had a lower expression. Results also showed that acute treatment with 8-hydroxy-2-

dipropylamino tetralin (8-OH-DPAT), an agonist of the 5HT1AR, significantly increased the 

expression levels of SUMOylated 5HT1ARs. 

Active 5HT1ARs are located in the detergent resistant membrane microdomain (DRM). 

To determine if the SUMOylated 5HT1ARs are located in the DRM, our lab previously isolated 

the DRM by cold triton-X100 treatment followed by sucrose gradient centrifugation. The 

majority of SUMOylated 5HT1AR was found in the triton-X100 soluble fraction and very low 

levels of SUMOylated 5HT1ARs were observed in the DRM fraction. Moreover, acute treatment 

with 8-OH-DPAT increased the expression of SUMOylated 5HT1ARs in the DRM.  

To further determine the subcellular location of the SUMOylated 5HT1AR, a 

discontinuous gradient centrifugation with 7.5-30% iodixanol was performed. The subcellular 

organelles located in the fractions of rat cortex were collected and confirmed by immunoblotting 

with several organelle markers. The SUMOylated 5HT1ARs were primarily found to be 

colocalized with TGN38, a marker for the transgolgi-network (TGN) and calreticulin, a marker 

for the endoplasmic reticulum (ER).  
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An 8-OH-DPAT binding assay was also conducted in the subcellular fractions to 

determine if the SUMOylated 5HT1ARs were functional. Subcellular fractions were obtained by 

discontinuous gradient centrifugation with 10-40% iodixanol and each fraction was divided into 

two. One half was used for the binding assay and the other half was used for 

immunoprecipitation of SUMOylated 5HT1ARs. It was observed that the fractions that had high 

8-OH-DPAT binding had low levels of the SUMOylated receptors and the fractions with high 

levels of SUMOylated receptor showed low 8-OH-DPAT binding. 

1.3 STATEMENT OF PURPOSE 

From the previous studies in our lab, we know that 5HT1ARs are SUMOylated and 

acute treatment with a selective 5HT1AR agonist i.e. 8-OH-DPAT results in an increase in the 

levels of SUMOylated 5HT1ARs. Based on the previous studies suggesting various roles of 

SUMOylation in the regulation of the trafficking of 5HT1ARs and possibly in the 5HT1AR 

signal transduction, it is necessary to understand how SUMO-1 interacts with 5HT1AR. Thus, 

the first goal for this study is to identify the primary site of SUMOylation of 5HT1AR. 

Identification of the primary site of SUMOylation would help us understand the effect that 

SUMOylation may have on 5HT1AR function. Moreover, mutation of this primary site of 

SUMOylation would provide a tool to further investigate the role of SUMOylation in the 

5HT1ARs signal transduction.  

Our lab has previously studied the role of agonist stimulation in the SUMOylation of 

5HT1ARs using molecular biology techniques and had observed an increase in the SUMOylation 

of 5HT1ARs in the membrane fractions after agonist stimulation. To verify the effects of agonist 

treatment on the SUMOylation of 5-HT1ARs, my second goal is to study the effect of acute 

agonist stimulation on the SUMOylation of 5HT1ARs using immunocytochemistry.  
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Overall, both the goals would help us to elucidate the role of SUMOylation in 5HT1AR 

function and relation between the SUMOylation of 5HT1ARs and receptor desensitization after 

stimulation by 5HT1AR agonists. 
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2. MATERIAL AND METHODS 

2.1 Cell Culture  

Mouse neuroblastoma cells (N2A) and human neuroblastoma cells (SHSY5Y) were 

maintained in 50% Dulbecco’s minimum essential medium (DMEM high glucose, Catalog no. 

#11-995-073, Fisher Scientific, Waltham, MA, USA), 50% Opti MEM reduced serum media 

(Catalog no. #31-985-088, Fisher Scientific, Waltham, MA, USA), 10% fetal bovine serum 

(FBS) (Catalog no. #S11150, Atlanta Biologicals, Flowery Branch, GA, USA) and 1% 

penicillin-streptomycin (Catalog no. #P0781-100ML, Sigma Aldrich, St. Louis, MO, USA). 

Human embryonic kidney cells (HEK293) were maintained in Eagle’s minimum essential media 

(EMEM with L-Glutamine, Catalog no. #30-2003, ATCC, Manassas, VA, USA) and 10% FBS 

(Catalog no. #S11150, Atlanta Biologicals, Flowery Branch, GA, USA). For 

immunocytochemistry, N2A cells were plated in either micro-slide 8-well glass bottom plates 

(Catalog no. #80827, Ibidi, Martinsried, Germany) at a seeding density of 20,000 cells per well; 

or in 96-well glass bottom plates (Catalog no. #P96-1-N, CellVis, Mountain View, CA, USA) at 

a seeding density of 15,000 cells per well. The plates were coated with 10% poly-L-lysine 

(Catalog no. #P8920-100ML, Sigma Aldrich, St. Louis, MO, USA). SHSY5Y cells were plated 

in micro-slide 96-well plates (Catalog no. #89626, Ibidi, Martinsried, Germany) coated with 

10µg/ml fibronectin (fibronectin bovine plasma, Catalog no. #F1141-1MG, Sigma Aldrich, St. 

Louis, MO, USA) at a seeding density of 20,000 cells per well. HEK293 cells were plated in 

micro-slide 8-well polymer coverslip plates (Catalog no. #80826, Ibidi, Martinsried, Germany) at 

a seeding density of 15,000 cells per well. N2A cells were treated with vehicle or 0.2 mg/ml 8-

OH-DPAT for 5 mins, 15 mins, 30 mins, or 60 mins and were then fixed with 2% 

paraformaldehyde for 20 mins for immunocytochemistry. 



19 
 

2.2 Plasmid Constructs 

To identify the primary SUMOylation site on 5HT1ARs we used plasmids constructed 

to express 5HT1ARs which have mutations on the putative sites of SUMOylation. Most SUMO 

substrates have a common SUMO recognition motif, Ψ-K-x-D/E, where Ψ is a hydrophobic 

residue consisting of 3–4 aliphatic residues, K is lysine conjugated to SUMO, x could be any 

amino acid (aa), D/E is an acidic residue. Based on the SUMO recognition motif above our lab 

had previously identified 5 putative SUMOylation sites on 5HT1AR. Using site specific 

mutagenesis mutant plasmids were constructed to express 5HT1ARs in which the lysine residues 

in the putative SUMOylation sites were mutated to arginine. The plasmid constructs used the 

pcDNA4hismaxc (Addgene, Cambridge, MA, USA) vector backbone and expressed either the 

wild type 5HT1AR (rat), or the mutant 5HT1ARs. The mutations are described as “KXR”, where 

K is lysine, R is arginine and X indicates the position in the amino acid sequence of 5HT1AR 

where lysine was mutated to arginine. The plasmid constructs used expressed either the wild type 

5HT1ARs or one of the following mutations in the 5HT1AR; K302R, K332R, K302.332R, 

K324R, K232.235R and K232.235.324R.  

2.3 Transfection 

SHSY5Y were transfected 16-24 hours after plating with 150ng of plasmids expressing 

either the wild type or mutant 5HT1ARs using lipofectamine 2000 (Catalog no. #11668019, 

ThermoFisher Scientific, Waltham, MA, USA). The media was changed once 3-4 hours after 

transfection. HEK293 cells were co-transfected with 125 ng wild type 5HT1ARs and 125 ng of 

Ubc9 (HEK293 cells have low levels of Ubc9) 48 hours after plating using lipofectamine PLUS 

reagent (Catalog no. #11514015, ThermoFisher Scientific, Waltham, MA, USA). The media was 
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changed once after 4 hours of transfection. 48 hours after the transfection, both the cells lines 

were fixed in 2% paraformaldehyde for 20 mins, and then used for immunocytochemistry. 

2.3 Immunocytochemistry for Light Microscopy 

SHSY5Y, N2A and HEK293 cells were rinsed twice with Hank’s balanced salt solution 

(1X HBSS without calcium, magnesium, and phenol red, Catalog no. #21-022-CV, Nalgene, 

ThermoFisher Scientific, Waltham, MA, USA) and fixed in 2% paraformaldehyde in HBSS 

(PFA, Catalog no. #158127-500G, Sigma Aldrich, St. Louis, MO, USA) for 20 mins. After 

fixation, the cells were permeabilized with 1mg/ml saponin (Catalog no. #84510-100G Sigma 

Aldrich, St. Louis, MO, USA) in HBSS (HBSS-S) by rinsing three times for 5 minutes each. 

After permeabilization, the non-specific labelling of the cells was blocked in blocking buffer 

containing 3% normal goat serum (NGS, Catalog no. #31873, Invitrogen, ThermoFisher 

Scientific, Waltham, MA, USA), 0.02% triton-X100 (Catalog no. #T8787-100ML, Sigma 

Aldrich, St. Louis, MO, USA) in HBSS-S for 1 hour. The cells were then incubated with primary 

antibodies for the 5HT1AR and SUMO-1 diluted in the blocking buffer overnight at 4ºC. The 

next day, the cells were washed three times with HBSS-S for five minutes each and then probed 

with secondary antibodies conjugated to fluorophores diluted in blocking buffer and incubated 

for 2 hours at room temperature. After the incubation with secondary antibodies, cells were 

washed twice with HBSS-S for five minutes each and once with HBSS for five minutes. For 

SHSY5Y and HEK293, after the washes, prolong gold antifade reagent with DAPI (Catalog no. 

#P36931, ThermoFisher Scientific, Waltham, MA, USA) was added and at least 20 mins later, 

the cells were imaged. N2A cells, after the washes, were incubated with wheat germ agglutinin 

conjugated with Alexa fluor 488 (WGA) (Catalog No. #W1121, ThermoFisher Scientific, 

Waltham, MA, USA) for 30 minutes. The cells were rinsed with HBSS three times for five 
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minutes each. After the washes, prolong gold antifade reagent with DAPI was added and the 

cells were imaged. 

2.4 Antibodies 

The antibodies used in the experiments are listed below in Table 1. 

Table 1: Summary of antibodies used 

No. Antibody Antigen 

Sequence 

Dilution Catalog 

No. 

Lot No. Vendor 

1.  Rabbit Polyclonal 

5HT1AR 

400-422 aa 1:200 PA1647 0161212c014731 Boster Bio, 

Pleasanton, CA, 

USA 

2.  Rabbit Polyclonal 

5HT1AR 

294-312 aa 1:50 24504 1443001L ImmunoStar, 

Hudson, WI, USA 

3. Mouse Monoclonal 

SUMO-1 

1-101 aa 1:200 SC-5308 D0517 Santa Cruz, Dallas, 

TX, USA 

4. Mouse Monoclonal 

SUMO-1 

85-97 aa 1:200 MA3-088 SH257204 Invitrogen, 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

5. Goat anti rabbit IgG 

conjugated with 

Alexa Fluor® 568 

- 1:200 A11036 1832035 Invitrogen, 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

6. Goat anti mouse 

IgG conjugated 

with Alexa Fluor® 

647 

- 1:200 A21236 1654338 Invitrogen, 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

7. Goat anti rabbit 

Fab’ fragment 

conjugated with 

Alexa Fluor® 594 

- 1:200 111-587-

003 

131732 Jackson 

ImmunoResearch, 

West Grove, PA, 

USA 

8. Goat anti mouse 

Fab’ fragment 

conjugated with 

Alexa Fluor® 647 

- 1:200 115-607-

003 

130849 Jackson 

ImmunoResearch, 

West Grove, PA, 

USA 

9. Alexa Fluor® 594 

FluoroNanogold™ 

Fab’ fragment of 

goat anti rabbit IgG 

- 1:80 7304 33C047 Nanoprobes,Inc., 

Yaphank, NY, USA 

10. Alexa Fluor® 647 

FluoroNanogold™ 

Fab’ fragment of 

goat anti mouse IgG 

- 1:80 7502 33C167 Nanoprobes,Inc., 

Yaphank, NY, USA 
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2.5 Acceptor Photobleach FRET 

Förster resonance energy transfer (FRET) is the non-radiative transfer of energy from 

the donor fluorescent molecule, upon excitation, to the acceptor fluorescent molecule. When the 

two molecules are in close proximity i.e. the distance between the acceptor and the donor is less 

than or equal to 10nm, excitation of the donor molecule results in a transfer of energy from the 

donor to the acceptor, which is later emitted at a characteristic emission wavelength of the 

acceptor[69]. Acceptor photobleach FRET employs a backward approach, wherein selective 

photochemical destruction of the acceptor fluorophore is used. If the two fluorophores had 

previously been close enough to FRET, there is  an increase in the donor emission[70]. 

Acceptor photobleach FRET was conducted using a customized Inverted 

Epifluorescence Microscope (Olympus IX-81 Base scope running Slidebook Version 6.0) with a 

60X/0.90 N/A (Olympus, Center Valley, PA, USA) air objective. The camera used for 

acquisition was Hamamatsu Flash 4.0 v1 CMOS (Hamamatsu Corporation, Bridgewater, NJ, 

USA). The images were acquired at excitation 387 nm +/- 11 (Semrock FF01-387/11-25, 

Rochester, NY, USA) and emission 520 nm +/- 35 (Semrock FF01-520/35-25, Rochester, NY, 

USA) for DAPI; excitation 560 nm +/- 25 (Semrock FF01-560/25-25, Rochester, NY, USA) and 

emission 607nm +/- 36 (Semrock FF01-607/36-25, Rochester, NY, USA)  for 5HT1AR (donor); 

excitation 650 nm +/- 13 (Semrock FF01-650/13-25, Rochester, NY, USA) and emission 684nm 

+/- 24 (Semrock FF02-684/24-25, Rochester, NY, USA) for SUMO-1 (acceptor) in conjunction 

with Semrock penta band dichroic (Semrock, FF408/504/581/667/762-Di01-35*36, Rochester, 

NY, USA).  

Acceptor photobleaching was performed by first acquiring images for DAPI and donor 

before photobleach, followed by photobleaching in the acceptor channel for 30 seconds, and 
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acquiring images for both the donor and the acceptor. This procedure was repeated in the same 

region as a time-lapse capture for 15 timepoints at 30 second intervals.  

2.6 Calculation of FRET Efficiency 

Analysis for FRET was performed by using the following equation: 

E = 1/[1+(r/R0)6][71, 72] 

Where, R0 is the characteristic förster distance for the given donor and acceptor 

fluorophore at which the FRET efficiency is 50%; r is the distance between the donor and 

acceptor molecules and E is the FRET efficiency which is calculated from the following 

equation: 

E = (Dpost - Dpre)/ Dpost[71, 72] 

Where, Dpost is the donor intensity after acceptor photobleaching and Dpre is the donor 

intensity before acceptor photobleaching. The förster distance for the Alexa Fluor 568 and Alexa 

Fluor 647 is 8.2 nm and for Alexa Fluor 594 and Alexa Fluor 647 is 8.5 nm 

2.7 Confocal Imaging 

Images were acquired at the Olympus 3I Spinning Disk Confocal Epifluorescence TIRF 

Inverted Microscope (Olympus IX-71 Base Scope running SlideBook version 5.5) with a 

100X/1.4 N/A oil immersion objective (Olympus, Center Valley, PA, USA). The camera used 

for acquisition was Andor Zyla 4.2 CMOS (Andor Technology Ltd, Belfast UK). Images were 

acquired using solid state lasers of 405 nm for DAPI, 488 for WGA, 561 for 5HT1AR and 642 

nm for SUMO-1. Images were acquired at each Z-step of 25nm. The processing of images and 

colocalization analysis were performed using CellProfiler (developed by Broad Institute’s 
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Imaging Platform, Cambridge, MA, USA). To analyze the colocalization of 5HT1AR and 

SUMO-1, both Pearson’s and Mander’s coefficients were determined using CellProfiler. 

2.8 Statistical Analysis 

All statistical analyses were conducted using GraphPad Prism software. Shapiro-Wilk’s 

test for normality and Brown-Forsythe-Levene test for homogeneity of variance were used to 

determine if the data met the requirements for a parametric analysis of variance. Transformation 

of data also did not result in meeting the criteria for normality and homogeneity of variance. 

Thus, a non-parametric test i.e. Kruskal-Wallis was conducted followed by Dunn’s multiple 

comparison’s test. All data are represented as mean +/- SEM.  
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3. RESULTS 

3.1 Characterization of FRET antibody pair 

To identify a pair of 5HT1AR and SUMO-1 antibodies that would FRET, we used N2A 

cells which endogenously express the 5HT1ARs and the SUMO-1 machinery and have been 

previously used in our lab to study SUMOylation of 5HT1ARs. We used antibodies that 

recognize different epitopes on the 5HT1ARs and SUMO-1 to perform acceptor photobleach 

FRET. The different antibodies used were raised against different peptides in the amino acid 

sequence of 5HT1AR and SUMO-1, the different peptides are: 5HT1AR (400-422aa), 5HT1AR 

(294-312aa), SUMO-1 (1-101aa) and SUMO-1 (85-97aa). The 5HT1AR (400-422aa) antibody 

was observed to colocalize with SUMO-1 (1-101aa) antibody but did not FRET (Figure 1A). The 

5HT1AR (294-312aa) antibody was observed to FRET with SUMO-1(1-101aa) antibody in the 

cell membrane, as indicated by an increase in the donor (5HT1AR) channel intensity with a 

decrease in the acceptor (SUMO-1) channel intensity (Figure 1B and 1C). The calculated 

distance between the fluorophores was, 13.6 nm, and was calculated from an average of three 

regions of interest on the cell membrane per cell from four cells in the field of view. To reduce 

the distance between the two fluorophores, we tried a different antibody for SUMO-1 which 

recognized amino acid sequence 85-97 on the SUMO-1 protein. We performed acceptor 

photobleach FRET with 5HT1AR antibody (294-312 aa) and SUMO-1 antibody (85-97 aa) and 

the pair of antibodies was observed to FRET in the cell membrane and peri-nuclear regions. The 

distance between the fluorophores was observed to be in the range of 8.4 – 9.6 nm (Figure 1D 
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and 1E). All the above experiments were performed using full-length secondary antibodies 

conjugated to fluorophores.  

To further reduce the distance between the fluorophores we tried using Fab’ fragment of 

the secondary antibodies conjugated to fluorophores and performed acceptor photobleach FRET 

using the same pair of primary antibodies. We observed that using the Fab’ fragments increased 

the distance between the fluorophores, as the distance was calculated as 11.1-12.0 nm (data not 

shown). This suggested that the two secondary antibodies were either at a distance such that 

having full-length sequences helped reduce the distance between the two fluorophores or the 

orientation of the full-length secondary antibodies reduced the distance between the fluorophores 

as compared to their Fab’ fragment counterparts. Hence, our results demonstrated that the best 

pair of antibodies for observing acceptor photobleach FRET are 5HT1AR (294-312 aa) with 

SUMO-1 (85-97 aa) and full-length secondary antibodies.  

3.2 Identification of primary SUMOylation site on the 5HT1AR 

To identify the primary site of SUMOylation on the 5HT1AR, we used HEK293 cells 

which do not endogenously express the 5HT1ARs but express SUMO-1 machinery although 

with low levels of Ubc9. We co-transfected HEK293 cells with the wild type 5HT1AR and Ubc9 

constructs and performed acceptor photobleach FRET using the antibodies characterized in the 

previous experiments. We observed that the 5HT1ARs were expressed in the cell membrane and 

the perinuclear regions, and they did FRET with SUMO-1 in both the regions (Figure 2A and 

2B). The distance was calculated to be within the range of 8.3-10.9 nm and was calculated from 

4 regions of interest per cell and four cells per field of view. The distances observed in HEK293 

cells showed a lot of variability within one experiment and between the three experiments. To 

avoid this variability, we tried a neuronal cell line, SHSY5Y cells which also do not express 
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endogenous 5HT1ARs but express the SUMO-1 machinery. We transfected SHSY5Y cells with 

wild type 5HT1AR construct and performed acceptor photobleach FRET using the same set of 

antibodies previously characterized. We observed a similar pattern of labelling of the 5HT1ARs 

as was seen in HEK293 cells, and the FRET distances were calculated to be within the range of 

7.8-8.6 nm (Figure 2C and 2D). The variability of the distances was very low as compared to 

HEK293 cells. Furthermore, the FRET distances were less as compared to what we had observed 

in the N2A cells, which endogenously express 5HT1ARs.  

To determine the primary site of SUMOylation on 5HT1ARs, we next transfected 

SHSY5Y cells with either the wild type 5HT1AR or one of the mutant 5HT1AR constructs and 

performed acceptor photobleach FRET. Each group was performed in triplicate in each 

experiment and each experiment was repeated three times. The FRET distances for the K324R, 

K232.235R and K232.235.324R mutants were greater compared to the wild type 5HT1AR 

control as demonstrated by Kruskal-Wallis test (p<0.0001) followed by Dunn’s multiple 

comparisons test. The data were found to be not normal and transformation of data also did not 

meet the criteria of normality, thus we performed non-parametric test i.e. Kruskal-Wallis test 

followed by Dunn’s post hoc test. The FRET distances for K332R, K302R and K302.332R 

mutants were not significantly different compared to the wild type control (Figure 3).  

3.3 The effect of acute agonist stimulation of 5HT1ARs on the SUMOylated 5HT1ARs 

To study the effect of agonist stimulation of 5HT1ARs on the SUMOylated 5HT1ARs, 

we used the N2A cells and treated them with 0.2 mg/ml of 8-OH-DPAT for 5 min, 15 min, 30 

min, and 60 mins. Immunolabelling was performed using 5HT1AR (400-422aa) and SUMO-1 

(85-97 aa) antibodies followed by full length secondary antibodies. Wheat germ agglutinin and 

DAPI were used as markers for the cell membrane and the nucleus respectively (Figure 4A). 
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Each treatment condition was performed in duplicate in each experiment and each experiment 

was repeated three times. The cells were imaged using confocal microscopy and colocalization 

analysis was performed using CellProfiler. Interestingly, both the Pearson’s and Mander’s 

coefficients were observed to be 0.97 and 1.0 respectively for all the groups. In our previous 

experiments, these antibodies were found to not FRET, so it was clear that the distance between 

the two fluorophores was more than 20 nm. The lowest possible distance we could resolve 

between two objects using the 100X/1.40 N/A oil immersion objective was around 100 nm. This 

led us to hypothesize that the two fluorophores, although not close enough to FRET, were too 

close to be resolved by the objective, thus explaining the high correlation observed with the 

Pearson’s and Mander’s coefficients. 
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Figure 1: Characterization of FRET antibody pair (A) Immunolabelling of N2A cells with 

5HT1AR antibody (400-422aa) and SUMO-1 (1-101aa) showing colocalization of 5HT1AR with 

SUMO-1. This pair of antibodies were not found to FRET. The scale bar is 10 µm and is 

indicated in the image with the merged channels. (B) Immunolabelling of N2A cells with 

5HT1AR antibody (294-312aa) and SUMO-1 (1-101aa); this pair of antibodies were found to 

FRET with each other and the distance between the fluorophores was calculated as 13.6 nm. 

Donor channel (5HT1AR antibody with Alexa Fluor 568) in pseudocolour in the top panel and 

acceptor channel (SUMO-1 antibody with Alexa Fluor 647) in the lower panel are shown before 

acceptor photobleaching (left) and at 3rd, 5th, 7th and 9th photobleach (left to right). (C) 

Representative graph of the FRET efficiency for the given donor-acceptor pair indicating the 

increase in donor channel intensity with a decrease in acceptor channel intensity. The FRET 

efficiency was calculated to be 4.5%. (D) Immunolabelling of N2A cells with 5HT1AR antibody 

(294-312aa) and SUMO-1 (85-97aa); this pair of antibodies were also found to FRET and the 

distance between the fluorophores was lower as compared to last pair and was calculated as 8.41 

nm. Donor channel (5HT1AR antibody with Alexa Fluor 568) in pseudocolour in the top panel 

and acceptor channel (SUMO-1 antibody with Alexa Fluor 647) in the lower panel are shown 

before acceptor photobleaching (left) and at 3rd, 5th, 7th and 9th photobleach (left to right). (E) 

Representative graph of the FRET efficiency for the given donor-acceptor pair indicating the 

increase in donor channel intensity with a decrease in acceptor channel intensity. The FRET 

efficiency was calculated to be 46.2%. All the images were acquired using 60X/0.90 N/A air 

objective. The scale bar is 10µm. 
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Figure 2: Acceptor photobleach FRET in HEK293 and SHSY5Y cells transfected with wild 

type 5HT1ARs. (A) Immunolabelling of HEK293 cells with 5HT1AR antibody (294-312aa) and 

SUMO-1 (85-97aa); this pair of antibodies were found to FRET and the distance between the 

fluorophores was calculated as 8.48 nm. Donor channel (5HT1AR antibody with Alexa Fluor 

568) in pseudocolour in the top panel and acceptor channel (SUMO-1 antibody with Alexa Fluor 

647) in the lower panel are shown before acceptor photobleaching (left) and at 4th, 7th and 10th 

photobleach (left to right). (B) Representative graph of the FRET efficiency for the given donor-

acceptor pair indicating the increase in donor channel intensity with a decrease in acceptor 

channel intensity. The FRET efficiency was calculated to be 44.9%. (C) Immunolabelling of 

SHSY5Y cells with 5HT1AR antibody (294-312aa) and SUMO-1 (85-97aa); this pair of 

antibodies was found to FRET and the distance between the fluorophores was calculated as 7.68 

nm. Donor channel (5HT1AR antibody with Alexa Fluor 568) in pseudocolour in the top panel 

and acceptor channel (SUMO-1 antibody with Alexa Fluor 647) in the lower panel are shown 

before acceptor photobleaching (left) and at 5th, 9th and 13th photobleach (left to right). (D) 

Representative graph of the FRET efficiency for the given donor-acceptor pair indicating the 

increase in donor channel intensity with a decrease in acceptor channel intensity. The FRET 

efficiency was calculated to be 59.7%. All the images were acquired using 60X/0.90 N/A air 

objective. The scale bar is 10µm. 
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Figure 3: Acceptor photobleach FRET in SHSY5Y cells transfected with wild type 

5HT1ARs vs mutant 5HT1ARs. The above graph depicts the distances between the 

fluorophores attached to 5HT1AR antibody and SUMO-1 antibody in wild type 5HT1ARs vs the 

mutant 5HT1ARs. The data did not pass the test for normality and transformation also did not 

normalize the data; thus Kruskal-Wallis non-parametric test was performed. p value for Kruskal-

Wallis non-parametric test was observed to be <0.0001. Dunn’s multiple comparisons test was 

conducted following Kruskal-Wallis test and the adjusted p value was observed to be 0.0065 (*) 

for Wild Type Vs K324R, 0.0057(#) for Wild Type Vs K232.235R and <0.0001(**) for Wild 

Type Vs K232.235.324R. 
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A. VEHICLE-TREATED GROUP 

 

 

B. AFTER 60 MINS TREATMENT WITH 8-OH-DPAT 

 

 

Figure 4: Effect of agonist stimulation of 5HT1ARs on the SUMOylation of 5HT1ARs.  

(A) Immunolabelling of N2A cells using 5HT1AR antibody (400-422aa) and SUMO-1 (85-97aa) 

antibody along with wheat germ agglutinin (WGA) and DAPI for staining membranes and 

nucleus respectively, in cells which were treated with vehicle and (B) cells after 60 minutes of 

treatment with 0.2 mg/ml 8-OH-DPAT. Mander’s coefficients for the vehicle-treated were found 

to be 0.95 (k1: SUMO-1 to 5HT1AR) and 1 (k2: 5HT1AR to SUMO-1). Mander’s coefficients 

for the 60 mins treatment group were also found to be 0.95 (k1: SUMO-1 to 5HT1AR) and 1 

(k2: 5HT1AR to SUMO-1). Therefore, both the treated and vehicle-treated groups had similar 

extent of colocalization. All the images were acquired using 100X/1.40 N/A oil immersion 

objective. The scale bar is 10 µm. 
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4. DISCUSSION 

In this study, we for the first time report the SUMOylation of 5HT1ARs in the plasma 

membrane using an acceptor photobleach FRET based approach. We used cell lines expressing 

both endogenous 5HT1ARs (N2A) and transfected 5HT1ARs (HEK293 and SHSY5Y) and 

observed SUMOylation of 5HT1ARs in the cell membrane in all the cell lines. Previous studies 

in our lab had reported that 5HT1ARs are SUMOylated in the membrane fractions of 

homogenates from various brain regions in rat such as cortex, hypothalamus and dorsal raphe[73]. 

SUMOylation of 5HT1ARs was also previously observed in the membrane fractions from N2A 

cells, a mouse neuroblastoma cell line that express endogenous 5HT1ARs[74]. The previous 

studies suggested SUMOylation of 5HT1ARs in the plasma membrane using cell fractionation 

and immunoprecipitation techniques. As opposed to the molecular biology-based techniques 

used previously to study the SUMOylation of 5HT1ARs, we used an acceptor photobleach 

FRET-based approach to confirm the interaction between the 5HT1ARs and SUMO-1 at the 

plasma membrane.  

In this study, we observed a robust labelling and colocalization of 5HT1ARs and 

SUMO-1 in regions around the nucleus, suggesting the presence of SUMOylated 5HT1ARs in 

the ER and TGN, since ER and TGN are usually present around the nucleus. The 5HT1AR (294-

312aa) and SUMO-1 (85-97aa) antibodies were also found to FRET in these regions. Previous 

studies in our lab had shown that SUMOylated 5HT1ARs are colocalized with markers for ER 

and TGN in subcellular fractionations of rat cortex homogenates[73]. TGN and ER are known to 

be involved in the transportation of many cellular proteins to different compartments of the cell. 

Many transmembrane proteins such as receptors, transporters and proteases are known to 

undergo internalization upon stimulation by various ligands. After internalization proteins are 
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transported to early endosomes. From early endosomes, transport continues to late endosomes 

and eventually the proteins undergo one of the following fates: (1) transported to lysosomes for 

degradation, (2) recycled back to the plasma membrane, or (3) transported to the TGN[75, 76]. 

Transport to the plasma membrane is divided into the fast, direct pathway and the slower 

pathway, going via recycling endosomes. Transport to the TGN may go through recycling 

endosomes or even late endosomes, and some proteins continue towards the ER[75, 77-79]. Other 

than the aforementioned pathway, newly synthesized proteins are known to enter the 

biosynthetic-secretory pathway in the ER by crossing the ER membrane from the cytosol. During 

their subsequent transport, these proteins move from the ER to the golgi apparatus and then to 

the TGN to get sorted to the cell surface and elsewhere. These newly synthesized proteins pass 

through a series of compartments in the golgi complex where they undergo post-translational 

modifications[80, 81]. The presence of SUMOylated 5HT1ARs in the TGN and ER suggests that 

either SUMOylation leads to the trafficking of 5HT1ARs from the plasma membrane to the TGN 

and ER or SUMOylation is a post-translational modification that is occurring in the TGN and 

ER, which results in the sorting of the modified 5HT1AR to the plasma membrane. Therefore, 

our data provides further evidence for the involvement of SUMOylation in the trafficking of 

5HT1AR either to the TGN and ER from the cell membrane or vice-versa.   

We used antibodies recognizing different epitopes on the 5HT1ARs and SUMO-1 to 

study the interaction and distance between the two proteins. 5HT1AR is a 422aa transmembrane 

protein, with three extracellular and three intracellular loops[82]. The third intracellular loop of 

the 5HT1AR (219-343 aa) is important for the coupling of G-proteins and contains sites for post-

translational modifications of the 5HT1AR such as phosphorylation[83]. Our lab previously used 

SUMO-prediction programs SUMOplot (Abgent, San Diego, CA, USA) and GPS-SUMO[84] to 
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predict putative sites of SUMOylation on the 5HT1AR. The predicted sites were found to lie in 

the third intracellular loop of the 5HT1AR and one of the predicted lysine residue at 302aa was 

found to lie in the antigen recognition sequence of the 5HT1AR (294-312aa) antibody. Our data 

from the endogenous 5HT1ARs in N2A cells also suggests that the primary site of SUMOylation 

is very close to the antigen recognition sequence of 5HT1AR antibody (294-312aa) since the 

distance between 5HT1AR antibody and SUMO-1 antibody was in the range of 8.4 – 9.6 nm. 

Thus, this data indicates that the primary site of SUMOylation on 5HT1AR is very close to the 

294-312 aa sequence and lies in the third intracellular loop of the 5HT1AR.  

Furthermore, we observed that using the full-length secondary antibodies resulted in 

lower distances between the fluorophores as compared to the Fab’ fragments of the secondary 

antibodies. This was interesting, because generally using a Fab’ fragment  decreases the distance 

between the fluorophores compared to the full-length secondary, but our data indicates the 

opposite, where we observe an increase in the distance between fluorophores with Fab’ 

fragments[85]. This could be due to one of the following reasons, first, the primary antibodies for 

5HT1AR and SUMO-1 are further away from each other such that the full-length sequence of 

the secondaries helps reduce the distance between the fluorophores. Second, the primary 

antibodies are close enough but are bound at an orientation such that the full-length secondary 

antibodies help bring the fluorophores closer as compared to their Fab’ fragment counterparts. 

Third, the Fab’ fragments are binding in such an orientation that the distance between the 

fluorophores increases as compared to the full-length secondary antibodies. Therefore, our 

results suggest that one of the above factors could be contributing to the increased distance we 

observe with the Fab’ fragments as compared to the full-length secondary antibodies. 
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Next, we used HEK293 cells, which do not express 5HT1AR but have been shown to 

have all the components of SUMO machinery but with low levels of Ubc9[86-88]. HEK293 are 

human embryonic kidney cells which have been used by many researchers to study the signal 

transduction of many neuronal proteins[89-92]. We observed that the transfected 5HT1ARs also 

FRET with SUMO-1 in HEK293, although there is a lot of variation in the FRET distances 

within each experiment. This variation in distances can be due to the difference in the membrane 

composition of the neuronal cells and embryonic kidney cells. Membrane cholesterol is known to 

stabilize the expression of 5HT1ARs and facilitate ligand binding and signal transduction of 

5HT1ARs[93-96]. One possibility could be the difference in the membrane cholesterol in HEK293, 

results in a non-homogeneous conformation of 5HT1ARs on the cell membrane. To reduce this 

variability in the FRET distance, we tried a neuronal cell line which does not express 

endogenous 5HT1ARs but contains the SUMO machinery, i.e., SHSY5Y cells[97-100]. The 

transfected 5HT1ARs in SHSY5Y were found to FRET with SUMO-1, and the variation in 

distances within each experiment and between different experiments was reduced.   

SHSY5Y cells were transfected with either the wild type 5HT1AR or one of the mutant 

5HT1ARs to observe any change in the FRET between the 5HT1AR and SUMO-1 upon 

mutation of lysines residues in predicted SUMO sites. We observed no significant difference in 

the distances for K332R, K302R and K302.332R mutants compared to the wild type 5HT1AR. 

This indicates that the lysine residues at 302 and 332 aa are not SUMOylated. However, we 

observed a significant increase in distance with K324R, K232.235R and K232.235.324R 

mutants. This suggests that lysine residues at 232, 235 and 324 aa are involved in SUMOylation. 

SUMOylation is known to occur at multiple sites on a substrate and if the primary site of 

SUMOylation is mutated, other nearby lysine residues act as secondary sites and get 
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SUMOylated[51, 101]. This could be the phenomenon that we are observing with the mutations at 

232, 235 and 324 lysine residues, where one of these sites could be the primary site of 

SUMOylation and due to its mutation other nearby lysine residues might be undergoing 

SUMOylation. If the primary site of SUMOylation on 5HT1AR had been mutated, we would 

have expected to observe no FRET or a very large increase in the distance between the mutant 

5HT1AR and SUMO-1. But since we observe a significant but small increase in the distance 

between the mutant 5HT1AR and SUMO-1, another possibility could be that the lysines at 232, 

235 and 324 although are involved in the SUMOylation of 5HT1AR, are not the primary sites of 

SUMOylation. The increase in distance observed with K232.235R, K232.235.324R and K324R 

can also be due to a change in the conformation of the 5HT1AR after the mutations, which 

resulted in an increase in the distance between the binding site of SUMO-1 and 5HT1AR 

antibody. Moreover, we did not test the single mutants of the lysines at 232 and 235, which 

would have helped in elucidating the effect of these single mutations on the interaction between 

5HT1AR and SUMO-1. To compliment the acceptor photobleach FRET approach, we could use 

immunoprecipitation techniques to observe the difference in the levels of SUMOylated receptors 

in wild type controls vs the lysates with mutant receptors. Further studies are needed to resolve 

the primary sites of SUMOylation.  

In this study, we conducted an immunocytochemistry-based approach to observe the 

effect of agonist stimulation of 5HT1ARs on the SUMOylation of 5HT1ARs in the cell 

membrane. We observed a very high correlation between the 5HT the membrane fractions of rat 

cortex homogenates[73]. To compliment the above findings, we used an immunocytochemistry-

based approach and specifically looked at the effect of agonist stimulation of 5HT1ARs in the 

cell membrane. To study the effect of agonist stimulation of 5HT1ARs on the SUMOylation of 



40 
 

5HT1ARs, we treated N2A cells with 0.2 mg/ml 8-OH-DPAT for different timepoints and 

conducted immunocytochemistry experiments. The dose was selected based on the previous 

experiments conducted using rat cortex[73]. The time points for treatment were chosen based on 

the pharmacodynamics of 8-OH-DPAT and the treatment times used to observe effect of agonist 

stimulation in earlier studies[102, 103].. Many researchers have studied the effect of acute and 

chronic agonist treatment on 5HT1AR desensitization in cell culture also. Chronic treatment of 

Swiss 3T3 cells transfected with 5HT1ARs for 24 hours with 5-HT and of CHO-K1 cells stably 

expressing 5HT1ARs for 24 hours with 8-OH-DPAT was observed to induce receptor 

desensitization[104, 105]. Whereas acute treatment for 10 minutes with 8-OH-DPAT of transfected 

Hela cells lead to rapid uncoupling of the receptor from G proteins and from the inhibition of 

adenylyl cyclase[106]. The effects of acute agonist stimulation of 5HT1AR appear to depend on 

PKC and the phosphorylation of 5HT1AR[106]. Similar to the above studies, we wanted to 

determine the effect of acute agonist stimulation of 5HT1AR on its SUMOylation, thus we 

performed a time course experiment keeping in mind the pharmacodynamics of 8-OH-DPAT and 

timepoints at which earlier studies had observed changes in receptor function. We treated our 

cells for 5 mins, 15 mins, 30 mins and 60 mins with 0.2 mg/ml of 8-OH-DPAT. 

Immunolabelling was performed using 5HT1AR (400-422aa) and SUMO-1 (85-97aa). This pair 

of antibodies was found to colocalize but not FRET in the previous experiments. The correlation 

coefficients for each treatment group and the group were 0.95 and 1.0 respectively. This 

indicated a very high correlation between the 5HT1AR and SUMO-1 antibody, which was very 

unusual as it is very difficult to observe this high of a correlation between two interacting 

molecules[107]. Since this pair of antibodies had previously been found to not FRET, the distance 

between fluorophores was greater than 20 nm, but the next question was whether the distance 
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was larger than 100 nm. Using a 100X/1.40 N/A oil immersion objective, the lowest resolvable 

distance between the two objects using a light microscope is around 100nm. Therefore, any pair 

of objects that lie closer than 100 nm would be detected as one, and the correlation coefficients 

for such objects would be 1. This would explain the high correlation that we observed with the 

aforementioned pair of antibodies. To test this hypothesis, we conducted an electron microscopy 

experiment to confirm whether the distance between two fluorophores is indeed less than 100 

nm.  

In conclusion, this study reported that the 5HT1ARs are SUMOylated in the plasma 

membrane using an acceptor photobleach FRET-based approach. We found three probable lysine 

residues on the 5HT1AR (232, 235 and 324) that are possibly involved in SUMOylation. 

However, further studies will be needed to identify whether one of them was a primary site of 

SUMOylation or if there is another lysine residue that is the primary SUMOylation site on the 

5HT1ARs. Identification of the primary site of SUMOylation would provide us with a tool to 

study how SUMOylation regulates 5HT1AR function and its role in receptor desensitization. We 

also observed robust labelling of the SUMOylated 5HT1ARs in the regions near the nucleus and 

the 5HT1AR (294-312aa) and SUMO-1 (85-97aa) antibodies seem to FRET in those regions. 

Further studies would be needed to label these regions using a TGN or ER marker and perform 

acceptor photobleach FRET between 5HT1AR and SUMO-1 in these regions to confirm the 

presence of SUMOylated 5HT1ARs in the TGN and ER. This along with the identification of the 

primary site of SUMOylation on 5HT1AR would help us understand the stage at which 

5HT1ARs get SUMOylated. This knowledge would help us elucidate whether the 5HT1ARs are 

SUMOylated in the TGN and then transported to the plasma membrane or are they SUMOylated 

at the plasma membrane and then trafficked to the TGN and ER. Furthermore, studies need to be 
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performed to observe the effect of agonist stimulation on the SUMOylation of 5HT1ARs using 

high resolution microscopy to avoid the limitations of light microscopy. These studies would 

help us understand the agonist-induced desensitization of 5HT1ARs and the role of 

SUMOylation in this process. Together, all the above studies would help us elucidate the role 

SUMOylation plays in the regulation of 5HT1AR function and whether 5HT1AR SUMOylation 

is involved in agonist induced 5HT1AR desensitization. 
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