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INTRODUCTION

It is a well known fact that when the power speétral density of an
input noise process’is essentially flat over a frequency rangé considerably
gfeater than the maximum bandwidth of the system, calculation of the output
noise process as well as otper related analysis can be carried out with
a white noise1 substitutéd in place of the actual input noise, Fictiﬁious
though such a concept as white noise is, the simplicity it offers makes
it so attractive that it has been found to be indispensable in most of
the stochastic processes analysis. Such rigorqus mathematical treatment
on étochastic processes as stochastic differential and integral equations
‘is based upon this assumption. As a matter of fact, a greal many formu-
‘iations and derivations in communication and control engineering have been
made manageable as‘well as practicable only through this powerful concept.
Fortunately, a great number of noises actually encountered in many problems
are of such'nature as to make this assumption reasonable., The question
still arises, nevertheless, as to the problem of handling those noises
that do not 1end_themselves directly to this assumption.,

To answer the whole question satisfactorily is no doubt quite for-
midable if not impossible, Bearing in mind tha£ the practical usefulness
of a method will be greatly reduced unless it can meet this criterion,
namely, being mathematically tractable while at the same time maintaining

sufficient accuracy, the author of this thesis, working under Professor

1+ Here it is used in the sense of its usual usage, namely, a
noise of flat power spectral density with infinite bandwidth. It is also
used sometimes to indicate only the property of being flat without regard
to the bandwidth. Its meaning, however, is usually clear from the context.

s



Ronald L. Klein's guidancé, has made some progress towérd #he solution of
the problem, although it is not complete in a general sense.

In this study, a Butterworth filter of order n has been chosen as
a. representative linear.time invariant system on which analysis of the
broblem is baseds The first chapter is devoted as a whole to the calcu-~
lation of correlation function at the output of a Buttexworth filter sub-
Ject to input white noise of arbitrary bandwidth. Both the order of the
filter and the noise bandwidth, normalized with respect to the filter
bandwidth, are treated as parameterso The results, besides being frequently
referred to in later chapters; are so interesting that they may deserve
to be studied in their own right., The second chapter examines some pos-
'sible methods of replacement which are worth consideration. It is fol-
lowed by Chapter Three on the method actually exploited here. Finally,
in Chapter Four, this method is apﬁlied to a general all-pole second or-
der filter as an example of its application to system other than a But-
terworth filter. The section on cohclusion, which actually includes sone
general observatioﬁ, discussion, as Qell as comment, then.summarizes the

material presented here,



CHAPTER ONE
CORRELATION FUNCTiON'OF WHITE NOISE

PASSING THROUGH A BUTTERWORTH FILTER

Figure 1-1 shows a typical situation 'in which the replacement of
an arbitrary input noise process by a white noise is allowable, as far as

the output noise process is concerned. The problem of interest is when

. System frequency response
,._”_.-,_JK:// Input noise
// \ power spectral
7 Y density
\
/ \
e . \
- - -
Figure 1-1.

the width of the input noise power spectral density curve becomes compa-
rable with, or even smaller than, that of the syétem frequency response
curve, Obviously there can be an infinite number of such power spectral

density curves that are of the same bandwidth, under the 3-db bandwidth
s(f)

f
-f fc

Figure 1-2

basis for example. For the purpose of analysis, an idealized noise proc-
ess called band-limited white noise is used to represent a noise having

a pover spectral density curve shown in Figure 1-1, The power spectral



density of a band-limited white noise is given by
| B TR P R i |
s(£) = (1-1)
0; elsewhere
where f, is its bandwidth as shown in Figure 1-2.

The system frequency response curve too can be represented in a
great‘many possible ways., A Butterworth function2 has been chosen for
this analysis partly because of its simplicity. A Butterworth filter,
or a maximally flat filter, is a physiéally'realizable 1ow—pass filter

the magnitude or gain function of which aside from a scale factor is given

by
1

A gy S (1-2)

where ¢ is the frequency in radians per second and n, a positive integer,

\

is called the order of the filter. With this expression the bandwidth is
seen to be unity. It can, however, be modified to represent a filter of

any arbitrary bandwidth @, radians per second by writing

)dn . (1"3)
, b ,
where the functional difference between the H in (1-3) and that in (1-2)

is understood. Plots of the Butterworth function of several oxrders are
shown in Figure 1-3. The three sections in this chapter will treat the
output correlation function of the model extablished above, and thus pro-

vides the reference material for later use,

2. Norman Balabanian and Theodore A. Bickart, Electrical Network
Theory (New York: John Wiley & Sons, Inc., 1969), p. L15-421. Samuel Je
-Mason and Henry J. Zimmermann, Electronic Circuits, Signals, and Systen
(New York: John Wiley & Sons, Inc., 1965), p. L22-428,
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Band-Limited White Noise Input

Let y(t) be the output of a system consisting of a linear filter

h(t) with input x(t), Figure 1-4. The relation between the input and

(&) (1)

— e h(t)

Figure 1-4

output correlation functions is given by

. [~ o]
e L . 2 J2Ff7T
ny(7) = f 5,(6) | (£)| 2 2™ as
-0

where Sx(f) is the input power spectral density defined as the Fourier

\transform of the input correlation function,

o0
-§2AET
Sy (£) E/Rx(‘?’)e I
~00

and H(f) is-the filter transfer function,
If x(t) is 2 band-limited white noise with power spectral density
N; [f] £ f4
Sx(f) =
0; elsewhere

where f, is the cutoff frequeﬁcy, see Figure 1-2, and H(f) is the Butter-

worth function,
i

Vi (7

where f = %% is the filter bandwidth in Hertz, the output correlation

H(f) =

function is then given by

3. John M. Wozencraft and Irwin Mark Jacobs, Principles of Commu-
nication Engineering (New York: John Wiley & Sons, Inc., 1967), pe182,




Ry(@) = [ —5m ©

(1-1)

n
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where e, = 27f,,

N CoSwT -

7T 7m0 (1-5)
1+ ()

_ 0

The last line follows from the properties of the odd and even functions.

The integral in (1-5) caﬁ be evaluated by numerical integration,
Appendix A shows a FORTRAN IV computer program using Simpson's rule de-
~signed fof this purpose. Several sample results from this program for .
the first order filter are also shown, with N and w, set equal to unity,

There is no loss of generality, however, since we can write (1-5) as

, o
Nab [cosgen7
R, (7) = d (1-6)
A T 1+ §2n 5

where g = f% and p = %%, that ise and w, have now been normalized with
respect to «w,e Then, for any values of N and ), Ry(T) is still given

by the same curve with the EX scale multiplied by Ney, and the 7 scale di-

— ——

vided by g

| It is interesting to note that when the cutoff frequency of the
input noise is much less than the filter bandwidth, or that the normal-
ized frequency of the input noise is much less than unity, the shape of
the output correlation function is very much like that of a sampling func-

tion, Sin X

¢« This is not difficult to understand since under the above

condition, the output power spectral density
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5 -—§~E?;5§H3 |f| é'fc
1+ (=
sy(£) = 8,(£) ()]~ = 4
y
, 03 elsewhere
does not differ much from that of an ideal low-pass filter subject to a

pure white noise input.

The parameters a and b for t.he approximation

R =T (1-7)

can be evaluated as follows. For convenienée, let us first set N and .“’o

equal to unity so that (1-5) becomes

@e

i [ _coswr
R (1) = 1 [-£028T g
Y Ty 4 wZn
\ 0
and think of @ and @, &s the normalized quantities like g and p in (1-6)

1o .
Then, when @, is muchi less than unity we have

w .

: ~ 1 : = 1 sin7 _

Ry('?’)~ ﬁ/coswrdw 5 S (1-8)
: 0

Comparing this result with (1-7) we seethat a =
It should be noticed that the‘accuracy of this approximation de-
pends upon ), as well as n. Actual calculation shows that an accuracy
close to .four significant figures can be achieved provided that w(?;n is
less than 0.01. In the case of a second order filter for example, <
mﬁst ‘be less than 0.316 in oxder to get such an accuracy. Some values

of Ry(’f) calculated from the computer and those from the approximate for-

mula for @, = 0.31416 (< 0.316) are shown below for comparisons

- 1 sina.7
0 . 0.0998 0.,1000
1 0.0982 0.0984
2 0.,0934 0,0936



Infinite Bandwidth White Noise Input

If the input to the unit bandwidth Butterworth filter is an infi;

nite bandwidth white noise with unit power spectral density, (1-4) becomes
0

1 COS w7 . _
Ry(7) = 57 [——5 4@ (1-9)
_ 1+ &
‘ . —00
The integral in (1-9), unlike that in (1-5), can be evaluated analytical-
ly by the method of residues. One formula for evaluating a definite in-

L
tegral of this form is that

o . .
J/;osrm<Q(x)dx = —ZWQZimagihary parts of the residues of elmZQ(Z)
/00 at its poles in the upper half plane (1-10)

The poles in our case are given by

where

mk =M; k = O,. 1, 2, ev ey 2n"'1

2n

and their locations for n = 1, 2, and 3 are shown in Figure 1-5.

k=0 ‘ 1

2 : k=0

n=1 ‘n=2 : n=3

Figure 1-5

be C. R Wylie, Jr., Advanced Engineering Mathematics (New York:
MeGraw-Hill Book Co., Inc., 1960), p. 602,
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Using formula (1-10), we have

o ,
n-1 -
Ry(7) = COSWT = - Z InfAy} (1-11)
A7) = 2 1+ " k=0
-0 : T
where )
jTEj“k :
v i (1-12)
" joe o3
5 ]—T (eJ k eJ l)
1=0
14k
jfz
is the kth residue of —————z—
1+ 2.

Let Dy be the denominator of Ay, then, in terms of sine and cosine,

we have for its modulus

2n-1
. Mod Dy = q/kcosap-cosai) +(s1nak-gnnal) (1-13)
| 1 7! >
and its argument
2n-1 : . :
_ -1 sineg-sinay 14
ArgDx = 2 tan CoS&y~COSAY S
1 4 k

Using the trigonometric identities for sums to products of sines and co-

sines, the above expression for the modulus of Dy can readily be simpli-

fied to
2n-1 .
Mod Dy = 1U01251n(k-1)§—n- | (1-15)
14k

with the angle now expressed directly in terms of k, 1, and n.

In searching for a simpler expression, let us first write (1-15)

as
Zn 1 v 71 2n -1 7
Mod Dy = T[sm (k-1)L '[‘|' sin(1-k)-ZL (1-16)
20y Jp an

Then, using the reduction formula sin(7-o) = sina the other way round,

we have
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sin(kfi)é”{-l - sih(2n+1-k)-2%

whereupon
k=t s k1 g 2kl -
J;L51n(k-1)§ﬁ-= 32%51n(2n+1-k)55 = i[l; 51n(1—k)§E.
and (1-16) becomes
Mod Dy = 22“‘139'—[1sin(1-k)§7-75 - 22“'12ﬁ1sm’§"-"£ (1-17)
1=kt ~m=1 <0

At this point, we note that the modulus of Dy is independent of k for a
fixed n, Thus it seems to be more appropriate to write it as Mod D(n)

instead of Mod Dy.

It is a simple matter to go from (1-17) to two other equivalent

\expressions,5
| | 2n-157 2 -
Mod D(n) = 2°77 ]1-sin e/ (1-18)
m_1 2]]
and
2 4n-’1 2
Mod D(n) = 2 “‘*ﬂ cos mA - (1-19)
o m=1 - 2N : '
1 1
2 =0 2 - =0
\
3 5 3 5
4 L
k=20 k=1 k=2
n=3

Figure 1-6

5+ We ray arrive at expressions (1-18) and (1-19) in a more straight-
forward manner with the help of the "vector diagran" like those shown in
Figure 1-6,
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Both of these expressions have the advantage over that of (1-17) in that
only about half the number of different factors need be evaluated.
Coming back to (1-17), if we use the double-angle of sine formula,

sin2a = 2sinecosa, we can write (1-17) as

Mod D(n) = un—zgf1-31nﬂﬂ -TT-C osA (1-20)
- . R bn
whereas if we double the value of n in (1-17), we will get
Lm_',llmnl
Mod D(2n) = 2 'rT sinh7 (1-21)
m= 1 4n

It can be shown, by direct expansion and using the reduction formula

sin(g+a) = cos«, that

4n-4 . 2n-1 o 2n-1 . )
sinft = sintl cosBa ‘ (1-22
m=g Moo gLl ””J]; 4n

From (1-20), (1-21), and (1-22) we have

Mod D(2n) _ (1-23)

Mod D(n)
Forn =1,
Mod D(1) = 2sinf = 2
for n = 2, ‘
3 .
Mod D(2) = 2 sm4 51n%? sinoll = BQ#%)(l)(é%) =4

as can be expected in view of (1—23). For n = 3, we have; by actual

evaluation,

Mod D(3) =

This inturn may be written as

Mod D(3) = 3(2) = 3 Mod D(1)
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or

Mod D(3) = 2(%) = 2 Hod D(2)

That such relation is true for any two arbitrary n's can be verified by

direct substitution. Hence we have the general expression of (1-23),

Mod D(ny) _ P1

Mod D(np) no ( )

Since we know that Mod D(1) = 2, it follows immediately that
Mod D(n) = 2n ‘ (1-25)

which is the kind of thing we have been looking for.

We now turn our attention to the argument of Dp. Let

1 sinog-sinoy
COSAL=COS0q

61 = tan~ (1-26)

Again using the identities for sums to products of sines and cosines we
get, aftervexpressing the resultant angle directly in terms of k, 1, and

n,

8, = tan_j[}cot(k+1+1)é%] . (1-27)

From (1-27) come two possible solutions the proper choice of which is
dictated by (1-26) as a reflection in the relative values of the two

sines and cosines, and hence those of k and 1. The result reads

T4 (k+1+1)L; 1<k

61 = { ° - Zn (1-28)
+1)4L - .’.‘.; 1>k
(k+1 1)2n 5 ‘

Consequently,

2n-1 k-1 2n~-1

Arg Dy = Z 1= 61+ >0
=) 1=0 - 1=k+1

14k
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which, upon substituting in each partial sum the proper value of 91 from

(1-28) and simplifying,

(Zn;i)(2k+1)g%

(2n-1)et (1-29)

This completes the evaluation of Dy,

Putting (1-29) and (1-25) together we have

j(2n-1)ay
e

Dy = 2n (1-30)

which is the denominator of the residue Ap given by (1-12). Hence

jor
j'reJ k

Ap » —5 (1-31
. 2n e‘](zn“1 )%k ' )

It follows that

Im{Ak} = é%sin[rcosak-(Zn—l)koe-TSindk (1-32)
Since
énock = (2k+1)7
and that
sin[(2k+1)7i-a] = sina
we can write (1-32) as |
Im{Ak} = -'-Z'-Ii-l-sin('rcosak+ak)e-rsm“k " (1-33)

Furthermore, we know that an autocorrelation function is an even function
of the variable 7, this means that the absolute‘va‘lue of 7 should be used.
This is justified in view of the cosine term in (1-11). Substituting
(1-33) subject to the above reasoning in (1-11) gives

~|7Isinog

n-1 :
Ry(7) = -é%}zosin(l'rlcosakwék)e (1-34)
=0
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Applying the reduction formula for sine and cosine to the terms
in the second half of the expansion of (1-34) shows that each one of them
has a corresponding term in the first half except the middle term, in the
' -7l

case of odd n, which is simply given by E%e « Thus we have as an al-

ternative of (1-34) the following formula,

- (n-3)/2  =|7|sina
—l-e l7’|+ i sin(l'flcosoc'k—*-dk)e i k for odd n
Zn o
Ry(7) = | P | - (1-35)
(n=2)/2 =|7|sineg
1 sin(lflcosak-wfk)e © " for even n

k=0 : ,
For small values of n, the expressions are relatively simple.

Given below are those corresponding to the first three values of n.

Forn=1,
-I7
, | Ry(7) = e
For n = 2,
1.4 7 - 172
Ry(’/') -2-51n(7§-I7| + 4)8
For n = '

3
Ry(‘T) = %e"|7’|+ %sin(’—’-?-l?’l + %) e“rrl/2

Plots of these functions and some higher order ones are presented

in Appendix B,

Butterworth Filter of Infinite Order

Examining the curves of Ry('l‘) reveals an interesting fact that the
higher the order of the function is, the more similar to the sampling
function the curve will be. This suggests that in the limit as the order
goes to infinity, (1-34) nay converge to a properly scaled sampling func-
That this is indeed the case can be seen from the follow-

tion a Sinbx |

X
ing analysis,

From (1-34),
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|T|Sindk

13:120 Ry('r) = lim Tzoln(lﬂcosozk-i-olk)e (1-36)

N -»co k=0

As n goes to infinity, the angle

o = (2k+1 )7

2n

will take on every possible value from O to 7. The increment of the an-
gle

IR

will accordingly become d® . The sum in (1-36) can now be replaced by
an int 1
n integral, -
21, sin(l7]cosaptay)e
0

~I7{sineg

il

lim R (7)

Ne-yoo

|X

” ,
i -l7isinay
Zﬁdg;1n071cogak)cosa e day

/4 .
1 -[7Isineg
b cos(r] cosay) sinage oy

, 0
In the last expression, the first integral vanishes as can be seen easi-

ly by a change of the vatrible of integration. We now apply the method

of integration by parts to the second integral., Let

u = e—”151m“k, dv = cos(b1cosak)sinak day,
~|7isin« 3
du = e Koosay, dot v = - sin(l7icosay)
: I7l
Then
i I7lsina
J/;os(h1003dk)sinake RS
0 : ”
. 7 7
sin(l7lcos ~|7isina ) ~|7lsine;
= - ( L_ “k)e k ~.//;1n(h1cosap)cosake I % ey
171 2 <
0 0

2 sinv
7
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The absolute value symbol has been droppad in the last 1line since its

presence is no longer necessary. With this result, (1-37) becomes

sin7 | (1—38)

The result in (1-38), while.it confirms the observation mentioned
before, should not be of much surprise to us if we have recognized the
fact that as n goes to infiﬁity,‘the Buttefworth filter becomes an ideal
1oprass filter, and whence comes the ;esulto

From the preceding section we know that for nv= i, RyC7? is a
double-sided expénential fund£ion.‘ It can also be shown from (1-9) that
Hy(7? is an impulse function for n = 0, although a zero order Butterworth
\filter is not defined, nor physically exists. Recalling that the sub-
script y in Ry(q') is used to indicate its association with the output y(t)
in Figufe 1-4, let us dissociate it from y(t) for a moment, and rewrite
it as Ry(7) to indicate explicitly the functional, or rather, the para-
metrical, depehdence of R upon n. In this way, Rn(T)vmay be fegarded
mathematically as a generating function whereby the impuléé function,
the exponential function, the sampling function, and those lie between
the exponential and the sampling function, are generated és n takes on
the vélue from O to e, This unified notation for these seemingly dif-
ferent functions will serve to indicate some sort of relation between
them as well as their order in this family,

The idea that an ideal low-pass filter is nothing but the limit-
ing case of‘a realistic Butterworth filter coupled with the fact disclosed -
in the foregoing analysis that this limit can be taken after the integra-

tion process suggests that it may be possible to use this procedure to
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get an analytic expression for the output correlation function in the
case of band~limited white noise input since its power spectral density
i ol € e
" 8x(@) =

0; elsewhere

may be represented in another way as

A'.’ ® ) 1 ) . "
S (@) = 1lim (1-39)
| T mmers (97 | |
where ' ' R »
v -

-

(/2-1) /2™

is a constant being chosen in such a way as to make ¢ the 3-db bandwidth.
Using (1-39) with the assumption that the order of integration and

‘taking the limit is interchangeable, the output correlation function then

becomes

. OO
.1 i COSWT .
Ry (7) = 1lim oL dew (1-40
y(l) Cmaw 2Ty (;,—‘-’)4m 1 +e” : )
00

Again applying the formula (1-10), and after a procedure similar to that

performed in the previous section, we arrive at a result -

~I7lsinyy,

1 n-1 1 =
YT L Rt meesdcB)e

;ﬂﬁsmnﬂk } (1-41) E

m=1
1ty
+ E-’;kz.—_o-ﬁgu in(l7icoss tu-Sy)e

where
2m-

1
i 2
n I ' /1/;2- +1 - ;COS(VR-‘/{})

o
il

2m=1 -1 sinyp-rsineg,

tan po
qgo COSLK=YCOSKY

2n-1  r>
| l 7/7 + 1 = 2ycos{uy-2rp)
p=0 : ’

2]
.
=]

il

=0
]
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=nd -1 ysinug-sing,

Sn=2tan —
7o ¥ coguq—cosYy

and

/"k - §212<;1 )7 '-‘ Vk _ 5212{—;1}77
Although it can be shown that (1-41) does converge to (1-311() as &, and
hence 7, goes to infinity, attempt to take the limit aé m approaches in-
finity fails. For any _i_‘_l_rl}_y_g m, however, expression (1-41) is valid ex-rf
cept when ¥ = 1 and m = n, since in this case the integrand in (1-40)
contains second order poles which wiil lead to an expression somewhat
diffeient from (1;41). Tc':tkin{;,r some finite m, .of course, Just amounts to
taking-a power spectral Aensity curve like the one shown in Figure 1-1

" instead of the rectangular shape curve in Fiéure 1-2. If data concern-
ihg the power spectral density curve under investigation is available,
the cur\;e may be better approximated than a mere rectangular shape curve
by selecting some sﬁitable value of m., Onl the other hand, fhe value of
m may be made’ éufficiéntly large to give a close approximation to the

rectangular shape curve of Figure 1-2 for analysis in general where knowl-

edge of the exact curve is not cared for.,



CHAPTER TWO
REPLACEMENT OF A BAND-LIMITED WHITE NOISE

BY AN INFINITE BANDWIDTH WHITE NOISE

A randoh process is_chafacterized to a ceftain extent by some sta-
tistical averages, or simply, statistics, but it can never be completely
specified except in the special case of a Gaussian process.~ To replace
one process by another is no more than a matter of matching some of these
statistics in one way or another in oréer to gain some analytical advan-~
tages,‘usually at the expense of some accuracye

In.an attempt to find é method that will suit our purpose, that is
~ to replace an input noise process of arbitrary vapdAdEh by a white noise,
lseveral approaches have been considered. One of such approaches will be
discussed in detail in Chapter Three, with the other being described brief-

ly here.

Generation of an Arbitrary Noise Process by White Noise

Let us refer again to Figure 1-4. We have a system consisting of
a unit bandwidth Butterworth filter of order n the transfer function of
which is given by

H(OO) = __.___1_.__.. . (2_1) ‘

Y1+ e
The input x(t) is assumed to be a band-limited white noise with cutoff

frequency s and hence a power spectral density

i3 lwl € we
Sx(‘o) = (2"2)
0; elsewhere ;
The correlation function of the output y(t) is found in terms of HG») and

Sy (@) to be
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“

Ry(7) = & [2925T qw - (2-3)

¥ 27 [ 4 4 ofP , ‘
. ~, . ,

If the band-limited noise is to be replaced by a white noise and

matching of the statistics given by (2-3) would suffice as a criterion

for such replacement, a scheme like that depicted in Figure 2-1 can easi-

ﬁ(t) g(t) x(t) h(t) - y(t)

Figure 2-1

ly be conceived for this purpose, using the idea that an arbitrary noise
process may be regarded as generated by a white noise passing through a
_ 6

‘suitable filter, In this particular case, the "suitable" filter g(t)

turns out to be an ideal low-pass filter of which the transfer function

| (13 ] € w, -
a(w) ={ (2-4)

0; elsewhere

is

Apparently the original problem of replacing an arbitrary noise by a white
noise becomes a problem of curvevfitting. Neither the added transfer
function GQ@O nor'thé.composite transfer function
-—'—-l-;'—*ﬁ; |wl £ w, |
@) =4V + - (2-5)

0; elsewhere

as shown in Figure 2-2 can be synthesized exactly. However, the mean-

square error criterion for example may be used in order to approximate

6. Jo Halcombe Laning, Jr., and Richard H, Battin, Random Processes
in Automatic Control (New York: McGraw-Hill Book Covy Ince, 1956), pe 143,
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Figure 22

Matching of Intensity Coefficient -

Instead of matching the output correlation function (2-3), consid-
er just matching the area under the curve. This approach where it is ap-
plicable would no doubt greatly simplify the analysis.

The area under a correlation function curve is given by the quan-
ti .

ity i .
K =/R(T) a7 : (2-6)
' 00
which is called the intensity coefficient of the process.7 Since the

power spectral density is, by definition,

20
. - jexfT
s(£) = [rR@)e V" ar
y - 00
it follows immediately that
K = 5(0) ' (2-7)

If we try to apply this method of replacement to our case, we will

find to our disappointment that the result turns out to be a trivial one

7« Re L. Stratonovich, Topics in the Theory of ‘Random Noise, Vol.
I.(New York: Gordon and Breach Science Publishers, Inc., 1963), p. 22,




since, for a power spectral density

the corresponding intensity coefficient

Sy (w) =

.

Ky = Sy(O) =

1l £ e,

elsewhere

i
[N
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(2-8)

for all values of @, except zero. On the other hand, it can be seen that

this is just the logical result to be expected if we are considering only

those cases where the values of «) are much greater than the filter band-

width, -

\

It should be remarked here that extensive use of the concept of

intensity coefficient has been made in the so-called Fokker-Plank equa-

tion by means of which we can make two equations stochastically equiva-

g ,
lent,  and hence obtain another basis for the replacement of one process

by another,

8.

Ibid., p. 97.



~ CHAPTER THREE
REPLACEMENT OF A BAND-LIMITED GAUSSIAN WHITE NOISE

BY AN INFINITE BANDWIDTH GAUSSIAN WHITE NOISE

In this chapter, we will be more specific in regard to éertain
aspects of the nature of the randoﬁ process. In particular, we will deal
excluéively with stationary Gaussian noise,rmaking use of some of its
important prqperties such that our der%vations will be more meaningful.

Another point which is of minorfimportance yet should be made
clear at this time is that we will choose to work only with zero-mean
processes, In spite of the fact that a white noise is defined as a sta-
tionary zero-mean process,9 we can if desired devise a white noise with
‘a non-zero mean. But nothing essential is added since the mean can al-
ways be‘treated separately as a deterministic signal, With these assum?—

tions we now proceed to the derivations.

fatching of First Order Statistics

Let us refer to Figure 1-4 once again., Since we are dealing with
stationary zero-mean Gaussian processes, we can write the first order
probability density function, or simply the density function, of the band-

limited input white noise x(t) as

2
1 —a?/?ﬂk
px(a) =m¢x e (3"‘1)

2 . ] :
where g, is the variance of x(t). The system assumed linear and time

invariant will produce, by virtue of one of the Gaussian properties,10

9. Wozencraft and Jacobs, Op. cit., p. 189.

10. Ibid. H pl 178.
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at its output another:Caussian noise the first order density function of

" which can be written down immediately as

T a?/éaz
_ -1 - y (3-2)
a) = —=—e 3
where a§ is the variance of y(t) and is given by
2 T2 :
& = @) = Ry(0) (3-3)

This as well as the density function (3-2) follows from the fact that the
output mean )
. 00
‘ my, =-/nxx h(t«g}(dg
L

" is zero since the input mean m, is zero by assumptions

X
If only the first order statistics are to be of importance in our
problem, the variance a§ will be fhe key to the solution. Now ogr problem
is ts find é means of replacing an input noise process of arbitrary bsnd—
width by a.shite noise so as td yielﬁ the same statistics of interest at
_the output, in view of the foregoing statement this goal can be achieved
simply by matching the output/varianceSO- |
To fofmulate the problem concisely, let z(t) be the result of pass;

ing a Gaussian white noise w(t) through the sysﬁem h(t). As far as the

output first order statistics are concerned, w(t) and x(t) will be equiv-

alent if
GZ =_ O-y (3"'“’)
or eqﬁivalently
R,(0) = Ry(0) (3-5)

since we are dealing with zero-mean processes. Condition (3-4) or
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(3-5) together with the knowledge of the system and the noise power
spectral densiiy are needed for solving the probleme

For a unit bandwidth Butterworth filter

H(w) = ,ﬁ‘jijr—n (3-6)

having as its input a band-limited white noise. x(t). with power spectral
density

N foilaﬂ £ w
s, @) ={ ¢ | (3-7)

0 mrp|>wc

The output correlation function:is

We

‘ N COS&)T
R(T) = 2| —51 aw
J a 1.+-u§n
0 ‘

Hence,

Ry(0) = = [ & G

The output correlation function in the case 6f infinite bandwidthlwhite
‘noise w(t) is 00
‘ Ny | cosawt
7)) = e i . -Q
Rz (T) 27| T o de | (3-9)
-0 )
where N, is the power spectral demsity of w(t). Using (1-11) and (1-34),

we can write (3-9) as

. -1 .
N -
Ry (7) = %Zsin(lﬂ cosay+0h ) e: |7 sinay
Pk=0 '
where
= \2k+1)T -
ak 2n (3-10)

From here,



27

N B-t
Ry (0) = E%%sinak (3-11)

11
The sum in (3-11) can be found from the formula

Zisin(Zk-l)x = 280X, 5in x £ 0 - (3-12)
k=

As a result, we have

. Ny 1
Ry(0) = 2% —— (3-13)
Son
To find Ry(O), let us first rewrite (3-8) as
Ny '
Ry(0) = & I(n) (3-1%)
where @,
d
I(n) = [ ——25 (3-15)
i +w
The integrand in (3-15) can be expanded into partiél fractions,
1 2n=1
—m = Z : (3-16)
1+w k=0&~ e‘)mk

‘where o is given by (3-10). The coefficient Ay is just the inverse of

Dy given in (1-30), that is

1

Ay = 20 ) 2B TP (3-17)

The indefinite integral of (3-15), using (3-16) and (3-17), is found to
be

21’1-1 2 i

a 1 [‘1 2 : -1 "S‘“nak]

= = Zcosag In(c =20c0s0n+1) + sindptan —m————— -18
fi oL znk‘g—o 5 COsdy i+1) K —-| (3-18)

, 1. C. R. Wylie, Jr., Plane Trigonometry (New York: McGraw-Hill
Book Co.y Inc., 1955), p. 239.




thereafter the definite integral is evaluated as

-4 ;'Si.n“k _l{_‘i)
wc“'cosa.k n’

o0 s
I(n) = éL-;Ei [—vcosaklnﬁx?-ZQ)coqak+1) + sinog(tan”

' (3-19)

The following two expressions for n = 1,and n = 2 may serve to give some

idea as to the extent of complexity with respect to the order of a

Butterworth filter,

Forn=1, D 6,
' ‘ dey -1
(1) = = tan ‘w,
1+ é? -
-0
For n = 2,
, @, |
1(2) = 22, . (J"*’v’z‘*’“ g T
1+ @’ ln/' -/éc%ﬂ 242 1 iy
0

Equating (3-13) and (3-14) and rearranging, we get a ratio

N

:=-—E-=g.r.l_ '—Z‘.. ‘ -2
=y 7TI(n)31n2n (3~20)

where I(q) is given by either (3-15) or (3-19)« The message conveyed by
this expression is that in order to fetain the same firstpgrder statistics
at the oufput, the white noise w(t) nmust be so chosen as to possess a
power spéctral dénsity r times that of the original noise, Being simfle
in form and.ygtvquite typical in nature, the ratio for the case of a

first order Butterworth filter,

r = % tan jwc (3"21)

deserves our attention.. Note that here &,y though not stated explicitly,
will be regarded as a normalized quantity, being the noise cutoff frequen-

cy normalized with respect to the . filter bandwidth., Table 3-1 gives the



29

__Tor equal variance at the output of a Butterworth filter of oxrder n =

with noise to filter bandwidth ratio 0.

10 |
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B+,0635
G,1257
A,1825
60,2422
0,2952

0,3440
p,3888
0.429%
0.4665
0,5000

0,5303
0,5577
0,5825%
0,6051
0,6257

f,6444
00,6615
0.6772
0,69156
0,7048

0,7171
0,7284
0,7369
0,747
0,7578

0,7663
0,7742
0,7815
0,7685
0,7952

D'M,MH

gt

0.0900
0,1800
0,2697
0,3583
614447

0.5271
0,6034
00,6718

047308

0,7805
0,8212
0.8540
0,8803

Q.9011
0.9178

0,9311
049418
0:950%
0.9575
0,9635

0,9683
0,9723
0,9757
0,97856

0,9810

0,9831
0,9849
0,9864
0,9878
0,9889

U!NWM

60,0755
0,1210
01,2364
0,3317
0,4764

0,3592
84,5279
20,7388
0,3280
73,8530

0,9239
0,2329
21,9528
049565
0,9758

0,7323
17,9368
0,9700
1,2724
0,9941

10,2953
0,9963
1,93970
10,2976
10,2980

0,9984
0,987
0,9989
09,9991
1,97292

d;.wu

Ny0974
0,1949
Q18923
0,3898
G|4870

0.5836
0,6779
0,7662
0,8425
0,9011

0,9406
0,9648
0,9790
0,9872
0,9920

0,9949
0.,9966
0,9977

01,9984

0,9989

0,9992
0,9994
0,9996
0,9997

0,9998

0,9998
0,9999
0,9999

0,9999
0,9999

6;A,.

0,0984
0,19567
0.2%2%
0,3934
0,4918

0,5899
0,6868
0,7796
0,8614
0,9227

0,9604
0,9803
0,9900
0,9948
0,9972

0,9934
0,9991
0,9994
0,929%
01,9998

0,9999
0.9999

0,9999.

1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000

O;WWM.

0,098°9
04,1977
00,2966
0,3954
00,4943

0,5931
0,6913
0,7869
0,8728
0,9367

0,9872a5
0,9885
0,9951
0,99228
0,999¢0

0,9995
0,9997
0,9999
0,999
1,0000

1,0000

1,000¢0
1,0000
1,0000
1,0000
1,0000
1,0000
1.,0000
1,0000

6.,m

80,0902
0,1983
0,2975
0,3947
n,4958

0.5949
0.6938
0,7910
n,3803
0,9464

0,9803
0,9921
n,9975
0,9990
0,9996

0,9998
0,9999
1,0000
1,0000
1,0000

1,0000
1,0000
1,0000
1,000C
1,0000

1,0000

1,0000
1,0000
1,0000
1,0000

h;WA\“

0,0994
0,1987
0,2981

10,3974

0,4568

0.5961
0.,6954
0,7936
0.8853
0,9535

0,985%56
0,9958
0,9987
0,9996
0,9998

0,9999
1,0000
1,0000

11,0000

1,0000

1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000

1,0000

11,0000

1,0000

_D:ww““

0,0995
0,1990
0,2985
0,3980
0,4975

n,5970

0,6964
0,7952
0,8889
0,9590

0,9893
n,9974
0,9993
0,9998
0,9999

1,0000
1,0000
1,0000
1,0000
1,0000
1,6000
1,0000
1,0000
1,0000
1,0000

1,0000

1,0000
1,0000
1,0000
1,0000

b}«”“_mw

11,0000

1,00004

1,0000
1,0000

0,0995
0,1992
0,2988
0,3984
0,4979

0,5975
0,6971
0,7963
0,8914
0,9633

09920
0,9984
n,9996
0,9999
1,0000
1,0000
1,0000
1,0000

1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
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spectral density ratio r, continued,

: n
P ,
3,110,8013/0.9900{0,9993(0,9999|1,0000{1,0000{1,0000|1,0000|1,0000/{1,0000
3.2 10,8072]0.,990910,9994]1,0000(1,0000{1,0000/1,0000/1,0000/1,0000/1,0000
3,3 }0,8127|0,9917({0,9995|1,0000|1,0000(1,0000{1,0000|1,0000(1,0000/(1,0000
3.4 10,817910,992410,93996/1,0000({1,0600]1,0000{1,0000/1,0000[1,0000/1,0000
3,5 10,8228|0.9930{0,9996|1,0000(1,0000(1,0000{1,0000{1,0000{1,0000(1,0000
3.6 J0,8275|0,9936|0,%397(1,0000/1,0000|1,0000]|1,0000({1,0000(1,0000/({1,0000
3.7 10,8320]0,994110,%297]1,0000/1,0000{2,0000/{1,0000/|41,0000{41,0000/{1,0000
3,8 10,8362/0,9945|0,9398|1,0000(|1,0000{1,0000|1,0000/1,0000{1,0000{1,0000
3,9 | 0n,84062|0.9950]0,9998(1,0000(1,0000{1,0000(1,0000|1,0000/1,0000{1,0000
4,0 | 0,8440[0,9953|0,9998(1,0000({1,0000({1,0000|1,0000(1,0000/21,0000(4,0000
4,1 | 0.,847710.995710,9998|1,0000{1,0000{1,0000(1,0000(2,0000(2,0000{1,0000
4,2 10,851210,9960|0,9999|1,0000]2,0000/1,0000(1,0000/21,0000/1,0060/[1,0000
4,3 | 0,8545|0,9962]0,9799(1,0000|1,0000{12,0000(1,0000(1,0000|1,0000/{1,0000
4,4 10,8577/0,996510,979911,0000/1,0000]1,0000(1,0000(1,0000{1,0000{1,0000
4,5 10,8608(0,9967[0,9799|1,0000{1,0000(1,0000({1,0000/1,0000{(1,0060(1,0000
4,6 | 0,8637[0,9969]|0,9999|1,0000|1,0000]|1,0000|1,0000|1,0000|1,0000]|1,0000
4,7 | 0,8665/0,9971(0,9999]1,0000{1,0000(1,0000(1,0000{1,0000{1,0000{1,0000
4,8 | 0,8692|0,997310,9799(1,0000|1,0000|1,0000]1,0000/1,0000|/1,0000{1,0000
4,9 10,871810,997510,92999(1,0000(1,0000/1,0000(1,0000(1,0000(1,0000(1,0000
5,0 ] 0,8743|0,9976(0,9999|1,0000/[1,0000(|1,0000|1,0000(1,0000|1,0000(1,0000
5,1 | 0,8767|0,9977|0,9299(1,0000(1,0000/1,0000(1,0000/1,0000|1,0000]1,0000
5,2 10.,879010,997910,999911,0000(1,0000(1,0000/1,0000(1,0000{1,0000{1,0000
5,3 10,8813/0,9980(1,0000{1,0000(1,0000/1,0000{1,0000(1,0000[1,0000{1,0000
5,4 | 0,0883410,9981|1,0200|1,0000[1,0000|1,000G|1,0000/2,0000{1,0000/|1,0000
| 5,5 | 0.,8855/0,9982]1,0300|1,0000[%,0000([1,0000[1{,0000(1,0000[1,0000[1,0000
5,6 | 0,8875|0,9983|1,0300(1,0000[1,0000({1,0000[1,0000(41,0000|1,00C0[1,0000
5.7 10.,689410,9984/1,0200(1,0000{1,0000{1,0000/1,0000(1,0000{1,0000{1,0000
5,8 | 0,8913{0,9985|1,0300(1,0000(1,0000[41,0000|1,0000(1,0000|1,0000(1,0000
5,9 |0,893110,9965(1,0300(|1,0000{1,0000|1,0000(1,0000(1,0000|1,0000]/1,0000
6,0 | 0,894910,9986|1,0300|1,0000|1,6000][41,0000 1,0000(1,0000|1,0000(1,0000]
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values of r for the case of Butterworth filter of order 1 up to 10 each
of which covers a considerable range of a, (shown in the table as p).

Plots of r versus w, for a few values of n are also shown in Figure 3-1.

Matching of Higher Order Statistics

In the previous section we have made an assumption that only the
first order statistics at tge output are of importance to our problenm,
and hence the replacement can be accomplished by matching the output var-
iance. In some problems, héwever. knowledge‘of some higher order statis-
tics is also required. Consequently, it requires the matching of those
higher order statistics. Generally speaking, the method of replacement
, By matéﬁing a single paiameter, namely the variance, is no longer appli-
:éable in this case. Nevertheless, it will be shown that under certain
favorable condition this method can still be employed.

Let us c¢onsider for a moment the nature of a Gaussian proéess,

12

One of its'imporiant prdperties is that it can be completely specified

Jjust by the mean function _
nyx(t) = Ex(t)]
and the covariance function

¢
I

Py(t,s) = E[bdt)-mx(t)}{x(s)—mx(s)n '
For stationary and zero-mean Gaussian process with which we are working

here, the above statement is eguivalent to saying that the correlation

function

Ry (7) = E[x(0)x(7)]

12, Wozencraft and Jacobs, Op. cit., p. 172.
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is the only thiﬁg needed for its complete specification. In either case
it always requires a knowledge of the second 6rder density function where-
by density functions of any other order can be obtained.

| It can be seen that if we usé the method outlined in the first
section of'thevprevious chapter to match the output correlation functionm,
- the problem is completely solved, at least theorectically, but without
enjoying the ease we have in the last section.

It is not quite out of the quesfion to imagine that there may be
some circuﬁstaﬁce that will permit us to use the advantage of the method
of replacement by matching of.the variance, or the second moment. If
for example we are interested only in the second order statistics of ran-

‘dom variébles y(tq) and y(tp) where t4 and t; are aﬁy two instants of
timé that arelfarther apart than the correlation time13 of y(t), then

the joint density function of'y(tl)vand y(tz) can be written dowr imme~
diately since in this case y(ty) and y(t,) can be regarded as independ-
ent, again using one of the Gaussian properties that being uncorrelated
implies independenée. The joint denéity function written‘down in this
way is Just the product of the first order density functions of y(ti) and
‘y(tz) and hence requires a knowledge of no more than that of the variance.
In this way the requirement for matching of the second order stétistics
can be satisfied using the same procedﬁre as described in the preceding
section, By similar reasoning, the replacement by matching of higher oxr-
der statistics can also be accomplished under this particular condition,

n&mely when the sepération between any two variables is greater than the

13, Stratonovich, Op. cit., p. 22,
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correlation time, which is the subject to be treated in the next section.

Correlation Time

From the previous argumept we héve seen how important the part
played by thé correlation time is in justifying the extension of the
method developéd in the first section:ito the case of higher order sta-
" tisticss In this sectibnvthe idea will be consolidated by actual eval-
vation based on the same examples that haé béen used so far, that ié the
Butterworth.filter. |

The correlation time is defined by the expression

00

Toor = _RT%)' lR(T)I. a7 (3-22)

. , 0
Unfortunately, this simple looking formula is, at least in our case, far

from simple to use. The only exception is the case of first order filter
with infinite bandwidth white noise input where the correlation function

is given by
* which is always positive; and

in this’' case, we have

s o
Teor i//; d7 =1 = (3-23)
0 .

Obviously, a simpler, or rather, more manageable, formula for the

correlation time is in order. One of such formula is given as

14, Ibid., p. 88.
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‘ f':l:(r) a7 R

; . .
Toop =B = £ 7R(7) dr B ‘(3-24)
j R(7) ar 0

where K is the intens1ty coefflelent. The values of T,q, 8lven by (3~24)
and (3-22) will be somewhat different, but of the same order of:magnitude.
ASuBstituting the formula

hel

Ry('?') = ——-Z sm(]?’l coso-.k+o:k)e

|7]sinay

(3-25)

where

(xk - (2k+1)7

2n

and the value of K found in (2-8), which is one, into (3-24) gives the

correlation time in the case of white noise input as

n-1 |
=15 1(x) (3-26)
g0
where
- R -7sinw .
I(k) =~}/;sinCTcosak+ak)e Rag (3-27)
0

the absolute value symbol for 7‘be1ng dropped in view of the integration
Tange. Applying the integration by parts technique to (3-?7) several

times, we eventually arrive at the result

: I(k) = sinogy ' A (3-28)
From here, we have
n-1 $ ‘ :
7.cor “":ESlm&k % (3“29)
n s 1n—2—£

The result on the right follows from formula (3-12).

The values of T,y for the first few vdlues of n are shown below,



n | T cor
1 1.000
2 0.707
« B 0.667

Since we know from Chapter One that as n goes to infinity the lim-
it of a Butterworth function as well as that of its cérresponding output
cor?elation function exists, we would naturally inquire about such a lim-
it for the correlation time. If we take the limit in (3-29) directly,

the result will be an indeterminate fofm. We have to resort to the for-

1. X ¢§a;
x;gg%x; y\a

nula

i

" Which will lead to an answer

= 0.637 (3-30)

SRS

lim 7eor =
neo

While the correlation time in the case of band-limited noise input
cannot be t%eated:exactly in general, several formulas do exist for its
approximation. From the second section in Chapter One, we know that for
émall valuerf ¢}, particularly when ¢ is much less than unity, the out-

put correlation funcion can be approximated accurately as

~ 1 sinw7 | -
Ry(7) = 7 == (3-31)

With this formula and the fact that K = 1 for all values of 4%, we get,

from (3-24)

(3-32)

15. The same result may be obtained simply by using the fact that
for small angle, sina = ¢, ‘
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- Strictly speaking, this expression cannbt be evaluated.since cos@Q7 may
take on any value between 1 éhd -1 as 7 goes to infinity. The valﬁes'of
7éor'corresponding to these two extreme values of cosagf are respectively
0 and 5%§' The former scems to be out of the question in our case. But

instead of taking the latter directly, we may think of taking the average

of these two to make

(3-33)

Zcor

since it is‘gtill of.the same order of magnitude as the latter.

The above result which:-seems to be taken arbitrarily ban, as a
matter of fact, be evaluated exactly aithéugh indirectly. To see this
. we note'that if we take the filter bandwidth &}, into account explicitly

‘in (3-25), we would arrive at (3-29) as

1 | (il
| A "'cor n%siné% _ (3 314”)
whereupon (3-30) becomes
‘ X 2
1 = 2 -
i Zeor = 7y (3-35)

similarly, the formula (1-38) for «w, other than unity would become

SREaRr |  (3-36)

Hence to get the solution for (3-32) is just a matter of replacing W, by
@ in (3-35) and (3-36).
Finally, we note that when the evaluation of the integral is too

involved, the formula
1
Toor ¥ o (3-37)

can be used as a first approximation,



_ CHAPTER FOUR
REPLACEMENT IN THE CASE OF A GENERAL

ALL-POLE SECOND ORDER FILTER

The method presented in ﬁhe preceding chaptér has been applied
with detailed demonstration to the case of a Butterworth filter. Although
/it is just a specific class of filter, the réSults derived therefrom will,
nevertheless, be of some significance in general.. Another class of filter
that is of much interest is anﬁall—pol;'second order filter. Thus we will

- use it as a‘further example to demonstrate how the suggested method can be
applied to‘other éases. .

The transfer function of a general all-pole second order filter is

H(s) = —— | (4-1)

sP+aly s

Replacing s by jw, we get, after rearranging,

. i
H(36) = (4-2)
(=5 )+ 3(280.0)
The magnitude-~-square function is then given by
2 1 '
HED e (4-3)

o 4 L 2 &
W 4200, (2 -1 )W+
' For an input Gaussian noise, x(t), with power spectral density

Ny foriwl £ @,

Sx(w) =
6 foriwl >w,
the output correlation function is given by
)
cos WwT

27 AN
W 264, (2471 )0 40,
0

N
_ Ry(T? = :? aw
"

and the variance is accordingly
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A = Ri(0) = = e 0 , (4-L)
VOV s ] |

Similarly, for an input white Caussian noise, w(t), with power
spectral density

S, ) = N,y =0 <ew< oo

the variance at the output will be

o
02 = a(0) - %? a?#éai(zzéil)af+uﬁ (-5)
To' evaluate the integral in (4-4), let us first define
| | 7 -8 andp-:gf; | (4-6)
‘such that ' -
" Ry(0) = =% 1) - (4-7)
where ) A i o
A of+2(2g2-1)¢zd+1
Setting
7228 -1)5741 = 0
we get |
= (1-28) * agyleP-1 | (4-9)

¢

For & = 0, the two values of 922 in (4-9) are 1, the indefinite integra116

J/‘ + Lin
(7°-1) 1-7) *

16, Herbert Bristol Dw1ght Tableo of Integrals and Other Mathe-
matical Data (New York: The Macmillan Coe, 1934), Pe 27.

in (4-8) becomes

147
1=

Hence




R '
=1ln (4—10),
(@ 2(1 2) Hojis
- For 0<&<1, write (4-0) as

= (1 2&52) ¥ 5289/t~

or, in the exponential forﬁ,
e o
= B - ) (4-11)

whexe

6 = tan™! zfzgégﬁ | (4-12)

Using (4-11), the integrand in (4-8) can be written as

1 N
7r42(2€ -1)7+1  2jsing|7fed® 57 =Y

~ which can be further expanded as

1 1 {1 1 } % . ¥e . 1 JZ{]
2jsin8 Ze'je/dlfz-eje/2 '7+e35/5 Ze'Je/dl7be"d / 7+e-38/

The indefinite integral of I(£) in this case is found to be

a7 1 1 g-e992 4 | e -38/2"
' g 1n -
j[%ﬂ42(2ﬁz-1)7d+1 isi [;ngz P+e 3672 -JG/Z ';;‘3672

L jsin®

which after simplifying,

- sec9/21n72+2ﬂc059/2+1 - cosecG/Ztan‘12 sing/2
- 8 172-2?7c059/2+1 b ?2—1

where 6 is given by (4-12). It follows that

2 X
I(%) =.§99§131ﬁ62+2“0058/2+1 cosec®/2ln 4o 13ﬁ%1n6{
8  B“=28c0s8/2+1 b 621

(4-13)
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Forg= 1, we have two equal roots for 772, namely, -1 and -1. Consequently,

the indefinite integral reduces to

+ itan-jéz

/. dg  _ ’i
Z
(P41 2(7+1)
‘ : .
the result being found directly from the table of integrals, 7 The cor-

responding definite integrel is

. ;o _
1(8) = 4 =tan (4-14)
® " iy A |
Finally, fo'r £>1 ' write
2 o (0
7 =-ulv (4-15)

- Where

u = (2;2-1) and v = 24;/;2-1 ' (4-16)

- Again, the integrand in (4-8) can be expanded into partial fractions,

1 - 1[ 1 1 ]
«774+2(2;2 R T P +(uv) 77+ (utv)

i 18
which will permit the use of table of 1ntegrals to obtain the result,’

| dz _ g nl % tan™) v]
/ ?g”+2(2gd-1)?zé+1 2"[4/ Yu-v. 7/_— b

from where

1(8) = -él\;_[/__tan 1—% man—iﬁ—%] ' | (4-17)

17. Ibid., p. 22.

18, Ibid., p. 22.
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" Using (4-12) and (4-16), formulas (4-13) and (4-17) respectively can be

expressed back in terms of the parameter £ as

I(g) = b nbrzelizf [;,—-- tan 265] (4-18)
8/1- ,52_2,3/1 K P

for 0<&8<1, and

_ n-i A 1 an (4-19)
HE [ (2;7/42 1) Bofe -1 ' i-(€’+/65~1)d é’ﬂs" 1]

forg>1,

In Qiew of all of these formulas for I(Z), our task of evaluating
(4-4), or equivalently (4-7), is now complete. The next step is to solve
(4-5). This can be done easily by first taking the iimit of the formulas

?‘for 1(B) as g goes to infinity. The limit is found to be

lim 1(p) o 7 | 1-20
et E) "1z ~ (B-20)

for all cases excep‘c for &= 0, From here we can write (4-5) as

R,(0) = | (-
,(0) WP (4-21)
Equating (4-21) and (4-~7) a'nd"reérranging, we get
N ’ :
T == FIE) (4-22)
§ X

Values of r for variousp's and g's have been tabulated as shown

- in Table 4-1, Figure 4-1 gives some of the curves plotted from.the Table.
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Table 4-1 :
[ Pure white noise to tend-limited white noise power spectral density ratio r |
‘ for equal v%rnnce at the output of an all-pole second order Tilter with & il .
I danplnfr actor. = and noise bandwidth to filter natural frequency rltlo,d
B
e e 02— |0l — | — 06— Ve8—|—4+0—F—ti2——ts— 156 18 Cary s
8.5 10 0, 5 4 B 0. g, a, 1o. 0, 0.
- L S L o MRS, % . %
if 0.1 ]0.025610.,051212,0765|0,1017|0.,12565/0.1509]0,1749/0.1984|0.2213[0.2437
iy 0.2 10,0522(0.103710,153%]0.2022(0,2481]0,2914]0,3320{0,3698{0.4048|0.4371
il 0.3 10,0809 o 159210,2323|0.3001|0,3608|0.4147]|0,4622|0.5041(0.5409|0.5734
4-Q;i_~0 «113310,219310,3135|0.394110,4618]|0.5183|0,5654|0,6051]10,6386|/0.66723
0,5 1515 o 285912.39580.4822[0.5498]|0.6031|0.56458|0.,6806[0.7093|0.7334
0.6 | 0,1994|0.3609(0.4785]|0.5630|0,6249|0.6718|0.7084|0.7376|0.7615|0.7814
_ 0.7 | 0,2633|0,4452[0.5595]|0.6349|0.6879]0.7271]0.7574]0.7815|0.8011|0.8175{1
0.8 1 0,3545|0,5373|0.5357|0,6973|0.7401|0.7717|0.7962]0.8158(0.8319|0.8453
il 0.9 ]0.4866[/0.,631310.7339|0.7502]0.7831]0.8079]|0,8274/0,8431|0.8562[/0.8522
1.0 1 0.6490|0,7177(0,7523[0.7942|0.8183|0.8373|0,8526|0.8652|0.8758|0.8849
1.1 | 0.7842|0.7687[0.8101[0.8302|0,8472[0.8613|0,8732|0.8833[0.8919(0.8994
1.2 | 0.8658/0,842410,3482|0.8594|0.8708[0.8812}0,.8903|0.8982[0,9052|0.9114
1.3 10.9115/0.8813(0.378110.8831(0.8902/0.8975|0,9045|0.9107|0.9164]0.9214
|l 1.4 10.9368210.9090]0,9213/0.9022 0.9052 0,9113/0.9164[0,9213[{0.9258|0.9309
1.5 1 0.,9548/0,9290(0,9193]0.9176]0.,9195|0.9225]0.9265/0.9303(0,9339]0.9373
1.6 | 0.9657|0.,94360,9334(0.9202]0.,9305/0.9324(0,9351]0.9379/0.9408|0.9436
1.7 10.973210.9545]0,9445|0.9405[0,9397]0.9405|0.9424|0.9446/0.,9468[0.9491
1.8 10.9786(0.,9627|0,9534[0.9489/0,9474|[0,9475(0.9487|0.9503|/0.9520(0.9539
1.9 ] 0.982610,9691]0.9505(0.9559]|0.,9540[0.,9535]9,9542]/0.955310.9566/0.9581
2.0 | 0.9856|0,9740[0.9562[0.9617]0.9595|0.9587|0,9589|0.9596|0.9606 0.9618
2.1 ]0.9879]0,9780(0,9709|0.9666|0.9642]0.9632|0.9630|0.9634]|0.9642]0.9651
2.2 10.9898/0,9811/0,974810.9706/0,9682/0,9670|0,9667]|0,9668|0,9673/0.9580
2.310.,9913|0,9837(0,97809|0.9741(0.9717|0.9704|0n,9698|0.9698/0.9701]0.9706
| 2.4 10,992510,985910,9307]|0,9770/0.9747[0.9723|9,9726/0,9724|0.9726/0.9730
2.5 10,993410.987610,9330]0.9796{0,9773|0.9759]0,9751|0.9748|0.9748|0.9751
T L e SRS T i ]
2.6 1 0,994310,9891(10,9349]/0.9817(0,9796/0.978110.9773/0.9769(0,9768|0.9770
2.7 1 0.9949(0,990410,9365(0.9836/0.9815|0,9801/0,9793|/0,9788|0,9786|0.9787
2.8 1 0,9955|0.9914[2,9380(0,9853|0.,9833|0.9819|0.9810]0.93805|0,9803[0.9302
§_ 2.9 1 0.996010,9923/0,9392|0.9867|0,9848]0.9835[0.9826]|0,9820/0.9817/0.9815%
3.0 10,9964[(0.9931]0,9703/0.9879|0,98%2|0.9849|0.9840]/0.9834|0.9831 0.9829L
I { i 1 &
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Pure white noise to band-limited white noise power spectral density ratio, continued. ‘
- g
- / . S N .
ﬁ |
-------- Qo 2t Qb0 g OBt O |12 14l 146 158 256—{H
3.1 | 0.9968|0.9938|0,9912|0.9290]|0.9874|0.9841]0.9852]|0.9846]0.9843|0.9341(]
3:2 10.997110,9944]0.,992010.9900]0.9884]|0,9872]10.9843/0.9857]|0.9854/0..9852 #
3.3 10.9974|0,9949[0.92927|0.9909|0.9894]|0.9882|0,9874|0.9868|0.9864|0.9861
3.4 10,9975610.9954]10.9933]0.9916(0,9902|0,9891}|n.,988310,987710.9873/0.9870al}.
3.5 99781 0,9958|0,9939/0.9923{0,9910]{0.9899{n,9891|0.9885]|0.9881|0.9873
| 3.6 | 0.9980(0.5961/0.9944|0.9929]|0.9917]0.99n7]0.9899]0.9893|0.9889|0.9885!(l
| 3.7 10.,998210,9964[0.9949/0.9935/0.9923]0.9913[0.,9906]0.9900}0.9896]0.9393|}
| 3.8 }0.,9983[0,9967]|0.9953|0.9940/0.,9929[0.9920(0,9912]0,9907{0.,9903/0.9899
F __3“_.\3___»0“99?_w L9970 Owgﬁﬁﬁ 10.9944]0.9934]0.992510.,9912]0,9%1310.9908]0.99a5
il 4.0 ]0.9988 4 9972|0,9959[0.9948[0.9938|0.9930|0.9923/0.9918(0.9914[0.9911
WG RGN SO A R U MRR i o
1 4.1 §0.,9987]0.9974]|0.9262(0.9952|0.9943/0.9935]0.9928|0.9923{0.9919(0.9915
{l 4.2 ]10.9938|0.9975 s 926510.9955(0.9946]0,993910.993310.9928]0.9924{0.9921
4.% 1 0,9989(0.9978(0.9967 n 995810.9950(0.9943(0.9937]0.9932/0,9928/0.9925
il 4.4 0. 9999wn 9979 3.2970 .996110.,.995310.994510,9941]0.993610.993210,99291l
4.5 10.9990(0,9981]9,9972 n 9963(0,9956[0,9950]0.9944]0.,9940/0.9936(0.9933 i
SR Y e R | SR P R oDy r |
4.8 k65,9991 $962(0.9973[0.9966|0.9959(0.9953/0,9947[0.9943[{0.9939({0.9937|1
4.7 0.9991]0.9983]0.9575]0.9965|0.9961 |0.9953|0.9050 019946 |0.9943|0. 9940 ;
4.8 10,9992 u 9984|0,9977(0.9970(0.9964[0.9953|0,9953|0.9949[{0.9946[0.99431f
il 4.9 10.9992]10,9985]0,9978(0.9972]0.9966|0.9960]0.9956]0.9952]C.9949[0.9945|1
5.0 10,9993(0.9985(0.,9979(0.9973|0.9958|0.9963]0.,99580,9954|0.9951(0.9949
5.1 0.9993|0.9987[0,9981[0.9975(0.,9969(0.9965]|n0.9960(0.9957|0.9954|0.9951 |1
5.2 10.9994[0.998810.97820.9976[0.9971[0.9967[0.99563]0.9959]|0.9956[0.9953|f
5.3 10.9994|0.9988|0.9783(0.99770.9973|0.9948[0.9964|0.9961/0.9958|0.9956
f 5.4 10,9994]10,998910,9984[0.9979[0,9974]0.9970[0,9966]0.9963|0,9960[0.9958
5.5 10.9995]0,9990|0.9985[0.9980|0.9975[0.9572|0.9968[0.9965|0.9962|0.9960
5.6 | 0.9995]0.,9990(0.,97985|0.9981(0.9977[0.9973/0,9970]0.9966(0.99640.9962|1
5.7 10,9995[0,9991]0,998610.9982]0.9978[0.9974]0.9971[0.9968]0.9966|0.9963}]
5.8 10,999610.999110.,9987|0.9983(0.9979|0,99756[0,9972|0.9970]/0.9967|0.9965
il 5.2 10.999610.9992/10.998710.9984]|0,9980]0.9977[0.9974/0.9971{0.9969|0.99656
6.0 | 0.9996|0.5992(0.9988|0.9984(0.9981|0.9978[0,997510.9972[0.9970/0.9968
6.1 ]0.9996(0.9992(0,9989|0.9985(0.9982|0.9979]0.9976|0.9974|0.9971/0.9969
- Q:??9§,0 999310,9989/0.9986/0.9983/0,9980]0,9977/0.9975]0.9973]0.9971 1
6.3 10.9997|0.9993|0,9990(0.9987|0.9984|0.9981[0.9978/0.9976/0.9974|0.9972
| 6.4 0;9997w2m9?9§.9-?293“9'995].0-9954 0,9982(0.9979(0.9977|0,9975|0.9973
6.5 10.999710.9994|0,9991|0.99843|0.9985(0.9982[0.9950[0.997/8|/0.9976(0.9974
B
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CONCLUSION

The practice of replacing a band-limited white ﬁoise by an infinite
bandwidth white noise has been éxtehded here although Gaussian distribu-
tions are assumed. We have seen that under this condition the replaceﬁent
can always be made where matching of the first order statistics alone is
allowable., Avmore completé solution which requires matching of higher
‘order statistics must take the correlation time into consideration. It
is important to note that unlike the usual practice, the relatiye values
of noise bandwidth and filter bandwidth do not appear in the criterioﬁ
for sﬁch,replacement, alhoﬁgh they do play a determinative role in select-
'\ing the a?propriate white noise for this purpose. When the noise band-
ﬁidth is much greater than the filter bandwidth, theAreplécement nade in

this way turns out to be no different from the practice we are familiar

v

with, namely straightforward replacement of band-limited noise with pure
white noise,

It is iﬁ the sense stated above that the work is an extension of
our practice in spité of the fact that thé accuracy of the replacement
has not been.oompleiely analyzed with respect to higher order statistics.
The relative ease of such method as presented hére, or.rather, the idea
éﬁggésted here, will nevértheless prove valuable when a replacement based
on only first-order statistics is acceptable, As a by-product of this
study, we have gained some more insight into the mechanism, as well as
the validity, of the replacement in thé case that the bandwidth of the
input noise is large compared to‘thé system bandwidth,

Since a white noise can be simulated in a digital computer and a



L8

/band-l:‘vtmited white noise can be generated from a white>noise by using an
appropriate -filter, this method can be tesied expez.;imentally. It is quite
certain that some useful aﬁd moré dfsfinite resx;lts can thus be obtained.
This prospect is recomménded as a continuation of this work in oxder to

evaluate the quality of the replaLcement scheme proposed here,



APPENDIX A

COMPUTER PROGRAM AND SAMPLE RESULTS

‘The correlation function at the output of a unit bandwidth Butter-
worth filter order n subject to é band-limited white noise input with-

normalized cutoff frequency @y is, from Chapter One,

De

_Yl cosw7 -
By (7) o rwvri (A-1)

where w is the frgquency normalizeé)with respect to the filter bandwidth.
With the exception of infinite w,, we,haye to resort to numerical methods
for the évaluation of (A-1). To accomplish this, a computer program writ-
\tgn in ?ORTRAN IV language has been developed, the numérical integration
being performed by using thé-Sihpson's rule, |
The data format foi this particular usage is described in the com-
ments of the program, and will not be repeated here. Adaptation for use
with other filter transfer functions can readily be made through appro-
priate changes of the FUNCTION subprégram HSG(W), the COMMON. statement,
.and the variable N which in our case is the parameter of the filter de-
noting filter order.
~are exclusively of the first order Butterworth filter., The program and

these sample results can be found in the following pages.
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Computer Program

CALCULATION OF QUTPUT CORRELATION FUNCTION
FOR BAND-LINMITED WHITE NOISE INPUT
N = BUTTERWORTH FILTER ORDER
W = NORMALIZED FREQUENCY (WITH RESPECT TO FILTER BANDWIDTH)
WC = NORMALI4ED NOISE CUTOFF FREQUENCY
FOR INPUT FURMAT, SEE STATEMENTS 101 AND 501
: REAL N , |
) COMMON TN
501 FORMAT(2F10.4)
601 FORMAT(1H1,3HN =,F4,0,5X, 4ch ,FiO 4//6X,3HTAU, 1ox.2HRY/77
602 FORMAT(ZFiZ.h)
101 READ(5,501)N,HC
IF(N.EQ.0.0)STOP
TN=N+N
WRITE(6,601)N,HC
DH=HC/90.0
TAU=0,0
DO 201 J=1,201
W=0.0
Y=HSQ(W)*COS (W*TAU)
DO 202 I=1,44
W=W+D
Y=Y+4,0*HSQ(¥ ) *COS (¥ *TAU)
W=W-+DW
o Y=Y+2 ,0%¥HSQ(W ) *COS(W*TAU)
202 CONTINUE .
W=W+DH
Y=Y+1, O*HSQ(W)*COS(W*TAU)
W=W+DH
Y=Y+HSQ(W ) *COS(W*TAU)
RY=Y*Di /(3.0%3.,141592)
WRITE(6,602)TAU,RY
TAU=TAU+0,1
201, CONTINUE
GO TO 10%
END

Taacocooa

c FILTER TRANSFER FUNCTION SQUARED SUBPROGRAM
- FUNCTION HSQ(W)
COMMON TN
HSQ=1.0/(1,0+u**TN)
" RETURN
END



LEnas

4 H

pEans

EENY EEE

T
$S) SEERE SRS NN

B 1

T

BEEaERaN!

aEmEEnza:

6 times of that of the filter.

7. sec.

10

it

i

RUNBEERNRE

i)
=
jon]
<
o
<
P
o
=
b e d
s
£
(o]
44
C
&~
[
IPEY
e
o
U4
<
45
~
[0}
E & ~
(0] L ]
+2 (V] .
+> i
u .
R - :
42
4] m F
Bt F -
e} g
a4 <
A
£y
L G4
3 (e]
]
(] N
(W] 2] =i |
fel o
+ (o]
o
G4
o] Q< 58
S
g ¥
o =
o il
o G
] o
=3 S
G4+ o
=
§ 3 -
o 1 TNO
+ L] [
h o
s 8
H
H aQ
(o}
o
g R
Hh <
T t &4
i m £ T
H : o
- b4 Am + =
av s £ -
4 5 =
T £ I 149
2 i
[ msmn — un i
vﬁ ¥ _Lw 1 +~\m“‘_ :
Hr w HiiH
-
*




1

"

11

3has

e

T

B AR

i EL

EuE!
$Ht

be

I

% ESE T8 0E3

H

-

HH

3 times of that of the filter.

10 ¥ sec.

Tt
1
I

HHHFH

1T
I

e
B

maEE
o
\O
2 b1+
HA +
i :
.W s (&)
i - g
e <
i .M T
L "
Al g 1
2 o
wa o
=
uas o e g
"ol I 1
o
Euana o
T T : =
4 " » Ha e
Eas [ 1 T.IV .. Wl e ~H
: s : S
T 5o
; = b bt . B4 ; H i
T sasdumedaue 3l » : 1
1 . ¥ 1
H HH1H q H 0 O LR 1 00 0 O R R | A W o]
- i (0]
s ampunE mau +
H Ak H & f LA
o a8 | f &
. <4 1 : T H - « -l
1 L,
smmnn o T 1 NeJ
CE T 1 e Le] 1
- 1 &
g i __ 8 :
: i : i _
H - (]
< 1 < Ll 1
.3 14 ) ¥ 1
o 1 -+ 4 ; 16 )
T A I T H
B TH ; '
-y 4 |5 -
H THH T
asgamausun : 22 "
= S anks : tHHA t
S ks kA Aa ENwmHauRS BEAw
HEEEF - i5s ; -
THH sssus um
T “ I 1 i
: w : : H “ fasastats '
HH 1 e H 8
e : A : RHHY
nnam T - T 1% T T
st ae e i R R R ReEh ke st el e i
mumy g : T4 T It T 3
T na. T T 11 T was H
ok TR i, SepRdnan: 1 wui : i 2

0e2

-0e2

Figure A-2




I nas

REEa.
poRas

e b0
I ERS

T

SgEEESsE RN

FEEE

T

10-.- 4 secs

i ©
&

@ T

e m :
4

ol !

G4

O I

= =x2222 Vo)
+ 7 1 1 HH
&y SRR

O i1 S |

- i

< HEEE V |
e et |
B ;

o Eaaas:

o = :

0 T

o

B

«i

e

ke

4

e

&
-

a band-limited white noise of bandw
s

rh . ¥ - e
HHH 1 mwan an ,
- it ] 15 pu 4
T+ 1 ' + i BugN
H - 1 L 11 17 T -1
CH HH Bassnds ! s
sb b g : 0
. Fid 5 1 HH ! ,
mua a2 e B s e
t tH 1 o B _“ T
; i " om T 1 .l~ “
i g b b
o8 ! HH 1 1
1

jisasadsaa

- : : T
T 2 11 1 [ ] ,
: T
T ] 't ; -+
. i _ i
! !
FH , T Tt ’ H
: tis HEp L _
s + BaRks + V
R, e H
seeas b t R 1 TH |
m - 13
a3 + T i 4
i ! : it 1
1 = nw T - 4
shsits ] HH i {aEaes st atand |
m ] . WL e
- b ohs :




S
BeakBEareRasa
1 H
T T
B Auu e N e
TR

rworth filter of order 1 with input,

a band-limited white noise of bandwidth 2.5 times of that of the filter.

;2

JEetEaatl!

b

0

Figure A-4

[}
-+ [ e
e
o
m
4« @ S
G
o Sann
o RaEs"
=
H 4
" t =
1 3
t [¢) Ran
- :
<
P
G4
O e
=1 H]
- T o]
: H Ee H P r + ot
HrH T i b 1 +
awns 1 mu g T ©
T E HH s m
! T I i (o]
E: H o .
4 ; = e
- : 1 b i ] e
; T 4
] H : o] t
£ HEL °
=xnb a1 | 85 .MA.v
Heyainipaet i 8550 B &
n 1 {
bitg 1
T
§ T 3
seuzeun THE == TH
i - T asas
REY SEORESIES NuHE. T
CHEEE I T [ ng Bai
T T t :
Hugua 1 2 T
! : :
HH H [inannannass ; - H HHH
585 i 4 113 HH EH SER
(34 i i
) > O ® 9”
= S 3 S




H 1
1 -
i .
H 13
it T b »
Err 318 [0
,m E
a2 ugmy : B
Ba: i THH 7
44 - L.\‘
HiH
THH L
o T p it
4
8 Hroh
Qy i T
< pagsas !
| HETEeH
g 4 T
+ (0] HHH (s
«t ...fb T T
= £ :
> Gy SuE
&4 [} y L
A
r I W
o dy T { e
© | s musN
G T ;i
o ..n.m ; "
§ 5 SEEE
- r
~— Gy
o o
G
s L4
¥ B
&~ o
m + 113
o % HEit
y o
o i
m A 3 -
t 1
¢ © EEEHEEE
G 2 R
. +
a
5 2
2y
-+ G4
2 (@]
o] P teit )
) 0 R i
Kol o
+ O
| < IEH
W I e T Gy o o st
FHE "
1 - o .w L S fEaagge .h m m
i P - il
) aaguEnanh o £ m ﬁ
: 3
1 ' AmaSnmsguans Haeanans HH R pa!
1 I 0 @ =]
! 8 EasEsREARun H T o o
B 1 t 8 (o} —~
nmams o ]
b HEHEH i o o] !
przmane H & 5
3 3 3 433 B SR B
i | S . s 3 :
B Bas r 1 = FENRS RN 1 N_ e
T na Bdu: } P
T I SRER e - (o]
sua; nat ma s npNEY S LuY A REn g O
s i
; Eiss FREESES : Q :
{ T : s ;
+F Jans 1 HHH & ;
.m, jSanan HHHH t
.ﬁr H jabanuhue o ‘w‘ m an t
i it e : i
peEgapae o mEnS] a3ug B = w
. i A¢.y 8 A : 1
14 3080 31 4
Euuea HAHT 1 ;
ERSENE s BT s ik 3 £

Figure A-5




it
T
5|

bl

» e
u i
b A " 1
R RS T e -
5 e T s mEe
i - e A 0
O L -
: P 3)
m o R H1+H
= o + ;
8 Gy
~ @ 1
[0] oAy et \O
..m + T + ,a» aE
bt O Gy o !
o) 1 : ) EEEE
G4 -
o Mw 1 =
~ L THEH B anas
0] + H 3
aaEm 4 + I
G G Gy o i
o C s
G4 :
s T
amnia e R [0
P = HEE
4 -
Qb
% o : 4
Q L] 4 NnE
45
.‘m ]
e
0 o e <
1 i PR ®
G4 o ? i H = [
o A ! =
o q HEEEE b
o
s t f H
=3 & + T
anum! o e 2
Q 1)) AEEEEgRERS '
< ot -
+ o Eash
<
e W
(o] [}
a semnan T w ! R HTH
. HEH - “ .. - « - n ll 4
bt i i o < g
T - FH mEauww H T t T o =z - d
S . -+ 1 y 2 Sensy
RanABaRqEengn anauan 5 + = o )
I T - - H < (4 -+
T : - : = e =3 .R mnzEn
o HE o A
T w 1 30 Tt (o] -~
- o : e ot 1 .
i T I 1 g 3 o A
= HHH QS <
Hi _.T.l, ! ~ m
H Heres [0} ,
= e . HHE S |
1 T 1] t it . 11 : ~ a
! P Eas : Seeasn\ & e © : |
Hx uﬂ H-H 114 sssaam I f Sy % o0
- T e A [0} %
'3 T L H- = I T
jasan H HEERE HH
v o aw Py Sum -
| saawn! gess H t
1 mEm -l L
it : JHH < InNnS o I
nm S 1 Fid o
; b i S EesERRRannaany & 1 4 1 !.rm
sengauea + T THH { ]
+H ‘..f: H FrEHEE T B : : d
444 4 HHHTH T HE
R T it i
S T : e cai: |
Hiie (R T : ! |

-0e1
=042



e
t
. :
1 g ¢
H ] 5
H i :
i 3
+ =
LT Qu
(]
ot
i - :
P 5 : s
o .w ;
w I
=
<« ﬁ T Oy
~
() () :
o) < sus (Vo)
~ +
o
Gy
G4 o HH
) 1T
g |
~ [0} u
() L
H + = : =
A e
Gy (4] T T mas Eama
Aafl bl = e
P 4+ =
~ o] |
(i o 1
W ..W s : o~
8 5 i |
¢4
@ o :
E d
LI - T
4 sasaseasgt o
o () T e
o T
: 2P o
tE 5 R
2 B ooy H
3 @ e 2
ux S }
o 8 e :
H © m Sl [aV
hol o) 1
+ oo i = an s e pne
G4 [0}
0 +
ord .
g ¢
o ¥
+ o> - o e
: [9) o)
i ! : : [ -+
a o aas: 1 i = o THFH
: t = G4 £
oy 1T -l
: _ o
t m .-n—u
., +1 of
T r .8 b
1
B ~— .m
o : m i manEss 1
L e
] . vui 4 ;
; H o T
1 2 1] 7
1 441
wa. 1 2 lm - apue s (00]
£t
+ N B
jEES T
Mr I
g5 : :
H i +H HH w
+ T 1
i SR .
IM\W - . -4 T “y‘_ k3
it R Hrit
HHH
i i :

-042}:

Figure A-7




APPENDIX B:
CURVES OF OUTPUT CORRELATION- FUNCTION

FOR INFINITE BANDWIDTH WHITE NOISE INPUT

The output correlation function of a unit bandwidth Butterworth
filter order n having as its input a unit power spectral density white

ndise is, from Chaptexr One,

[ <]

) = 4 [ _coswT . ' Bel
Ry(7) 7l (B1)
00 ‘ )

n-1

: ‘ - l7lsine
-1—Zsin(|7| COSQHOL) @ Il k
2nk=0 -

il

- (B-2)
Hwhere

dk - (2k+1)7

2n

Plots of this function for several n's é,re shown in this appendix to-

gether with a sampling fﬁnction curve for thé purpose of comparison.
For filter bandwidth and noise powér spectral density other than

unity, the R scale must be multiplied'by the product of bgth~while the

7 scale is divided by the former.
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