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INTRODUCTION 

It is a well known fact that when the power spectral density of an 

input noise process is essentially flat over a frequency range considerably 

greater than the maximum bandwidth of the system, calculation of the output 

noise process as well as other related analysis can be carried out with 
1 

a white noise substituted in place of the actual input noise. Fictitious 

though such a concept as white noise is, the simplicity it offers makes 

it so attrdctive that it has been found to be indispensable in most of 

the stochastic processes analysis. Such rigorous mathematical treatment 

on stochastic processes as stochastic differential and integral equations 

is b:-tsed upon this assumption. As a matter of fact, a great many formu-

lations and derivations in communication and control engineering have been 

made manageable as well as practicable only through this powerful concept. 

Fortunately, a great number of noises actually encountered in many problen1s 

are of such nature as to make this assumption reasonable, The question 

still arises, nevertheless, as to the problem of handling·tbose noises 

that do not lend themselves directly to this assumption, 

To answer the whole question satisfactorily is no doubt qu~te for-

midable if not impossible, Bearing in mind that the practical usefulness 

of a method will be greatly reduced unless it can meet thj.s criterion, 

namely, befog ma thema ticaHy trctcta ble while at the same time maintaining 

sufficient accuracy, the author of this thesis, working under Professor 

1. Here it is used in the sense of its usual usage, nar:-iely, a 
noise of flat power spectral density with infinite b2 .. ndwidth. It is alBo 
uaed sometimes to indicate only the property of being flat 1-1ithout regard 
to the b:lndwldth, Its meaning, however, is usually clear from th(~ context. 
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Ronald L, Klein's guidance, has made some progress toward the solution of 

the problem, although it is not complete in a general sense, 

In this study, a Butterworth filter of order n has been chosen as 

a . representative linear time invariant system on which analysis of the 

problem is bs.sed, The first chapter is devoted as a whole to the calcu-

lation of correlation funct'ion at the output of a Butterworth filter sub-

ject to input white noise of arbitrary bandwidth. Both the order of the 

filter and the noise b3.ndwidth, normalized with respect to the filter 

bandwidth, are treated as p:trameterso The results, besides being frequently 

referred to in later chapters, are so interesting that they may deserve 

to be studied in their own right·. The second chapter examines some pos-

sible methods of replacement which are worth consideration. It is fol-

lowed by Chapter Three on the method actually exploited here. Finally, 

in Chapter Four, this method is applied to a general all-pole second or-

der filter ·as an example of its application to system other than a But-

terworth filter. The section on conclusion, which actually includes some 

genercil observation, discussion, as well as comment, then summarizes the 

mater.i.al presented hereo 



CHAPTER ONE 

CORRELATION F'UNCTION OF WHITE NOISE 

PASSING THROUGH A BUTTERWORTH FILTER 

Figure 1-1 shows a typical situation in which the replacement of 

an arbitrary input noise process by a white noise is allowable, as far as 

the output nolse process is· concerned, The problem of interest is when 

:: / System frequency response 

/ 
_L, Input noise 

\ power spectral 
density I \ 

I \ 
/ __,..::;;. _____ / ______ ..__ _____ ,~----_.;;::---- f 

Figure 1-1 • 

the width of the input noise power spectral density curve becomes_ compa-

rable with, or even smaller than, that of the system frequency response 

curveo Obviously there can be an infinite number of such power spectral 

density curves that are of the same bandwidth, under the }-db b:Lndwidth 
S(f) 

N 

___________ ...._ ______ _.__ __ ..,..f 

-fc fc 
F'igure 1-2 

basis for exa.mpre. For the purpose of analysis, an idealized noise proc-

ess called band-limited white noise is used to represent a noise having 

a power spectral density curve shown in }i'igure j-1. The power spectrcil 
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density of a band-limited white noise is given by 

S(f)" = 
\

N; 
( 1-1) 

0;. elsewhere 

where fc is its bandwidth as shown in Figure 1-2. 

The system frequency response curve too can be represented in a 

great many possible ways. A Butterworth function2 has been chosen for 

this analysis partly because of its simplicity. A Butterworth filter, 

or a_maximally flat filter, is a physically.realizable low-pass filter 

the magnitude or gain function of which aside from a scale factor is given 

by 

(1-2) 

wheretv is the frequency in radians per second and n, a positive integer, 

is called the order of the filter. With this expression the bandwidth is 

seen to be unity. It can, however, be modified to represent a filter of 

a.nyarbit:r.ary bandwidth6..)0 radians per second by writing 

1 H ( lJ) = ---;::======,,,.=r ,y 1 + (£)2n 
% 

(1-3) 

where the functional difference between the Hin (1-3) and that in (1-2) 

is understood. Plots of the Buttervrorth function of several orders are 

shown in Figure 1-3• The three sect.ions in this chapter will treat the 

output correlation function of the model extablished above, and thus pro-

vides the reference material for later useo 

2. Norinan Balatanian and Theodore A. Bickart, Electrical Network 
Theory (New Yorka John Wiley & Sons, Inc., 1969), Po 4:15-421. Samuel J. 
Mason and Henry J. Zimmermann, Electronic Circuits, Signals, and System 
(New York; John Wiley & Sons, Inc., 1965), p. 422-428. 



H(f) 

1.0 

o.6 

0 

BUTTERWORTH OR MAXIMALLY F'LAT LOW-PASS FILTER ORDER n 

1 
+w2n 

f, 
CD:5 
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Band-Limited White Noise Input 

1et y(t) be the output of a system consisting of a linear filter 

h(t) with input x(t), Figure 1-4. The relation between the input and 

x(t) ... h(t) 

.Figure 1-4 

; 3 
outpu~ correlation functions is given by 

-y(t) 

Ry(7) = j s:(f) !H(r)I 2ej27if7df 
. -oo . 

where Sx(f) is the input power spectral density defined as the Fourier 

transform of the input correlation function, 

1
00 

-j2'ilf7 
Sx(f) es -~x(7')e d'/ · 

and H(f) is -the filter transfer function. 

If x(t) is a band-limited white noise with power spectral density 

{ 

N; 
Sx(f) = 

O; elsewhere 

where fc is the cutoff frequency, see Figure 1-2, and H(f) is the Butter-

worth function, 
1 

= 'V 1 : (.!..)2n 
fo 

H(f) 

where f 0 =~is the filter bandwidth in Hertz, the output correlation 

function is then given by 

J. John M. Wozencraft and Irwin Ma:r.k Jacobs, Principles of Commu-
nication Engineering (New York: John Wiley & Sons, Inc., 1967),p.182. 



? 

t
~c 

jWT 
= Ji. e di:v 

21f 1 + (,'j )2n 
-{,.) 0 

C . 

(1-4) 

where ev0 = 21Tf c, 

= B_:/2 :COSWT dc;J 
11 1 + (~)Zn ('-b . 

0 

(1-5) 

The last line follows from the properties of the odd and even functions, 

The integral in (1-5) can be evaluated by numerical integration. 

Appendix A shows a FORTRAN IV computer program using Simpson's rule de-

_signed for this purpose. Several sample results from this program for 

the first order filter are also shown, with N and w0 set equal to unity, 

There is no loss of generality, however, since we can write (1-5) as 
' ,<) 

R (7') = N~ {cosE,<4,t di; (1-6) 
y 1{ 11 + s2n 

0 
where s == % and p = ~' that is eu and Cvc have now been normalized with 

respect to (1.)0 , Then, for any values of N and w0 , Ry(7') is still given 

by the same curve with the _::x scale multipli~d by N'"b and the ! scale di-

vided by t.J0 , 

It is interesting to note that when the cutoff frequency of the 

input noise is much less than the filter bandwidth, or that the normal-

ized frequency of the input noise is much less than unity, the shape of 

the output correlation function is very much like that of a sampling func-

tion, sin x, This is not difficult to understand since under the above 
X 

condition, the output power STJectral density 
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• N 

= 1 + 
O; 

(L)2n; 
fo 

elsewhere 

8 

does not differ much from that of ap. ideal low-pa,ss filter subject to a 

pure white noise input. 

The parameters a and b for the approximation 

R, (1"1"\ _. sin b7 y'1-a 7' ( 1-7) 

can be evaluated as follows. For convenience, let us first set N and £u0 

equal to unity so that (1-5)_ becomes 

Ry(7') = 1 (~;s m de:,.> , 11)A1 + Jn 
0 

and think of (t.) and (vc r.\S the normalized quantities like l; and;:, in ( 1-6) • 
, /,-X 
I , 

Then, when w0 is much le:;;s than unity we have 

R (7') 1jc~~tvrdcv = 1. si.n~:r 
Y 11 11 T 

. 0 
(1-8) 

Comparing this result with (1-7) we seethat a=¾; and b = w0 • 

It ·should be noticed that the accuracy of this approximation de-

pends upon w0 as well as n, Actual calculation shows that an accuracy 

close to four significant figures can be achieved provided that Cu;n is 

less than 0.01, In the case of a second order filter for example, "-b 

must ·be less than 0.316 in order to get such an accuracy. Some values 

of Ry(7") calculated from the computer and. those from the a:pproximatc for-

mula. for~ = o.3tLa6 (< 0.316) are shown below for com:p3.rison. 

( Ry(7') 1 sin~7 
1i 7 

0· 0.0998 o. 1000 
1 0.0982 0,0984 
2 0.0934 0.0936 
3 0.0857 0.0858 
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Infinite Bandwidth White Noi.se Innut 

If the input to the unit rendwidth Butterworth filter is an infi-

nite bandwidth white noise with unit power spectral density 1 ( 1-4) becomes 
. oO 

R (7') = J_ [·. cos '4>7 dw 
Y _ 21fj -~ + ,}n 

-.::>O 

(1-9) 

The integral in (1-9), unlike that in (1-5), can be evaluated analytical-

ly by the method of residues. One formula for evaluating a definite in-
4 

tegra.l of this form is that 

fc:s mx Q(x)dx = -21iZimagiilary parts of the residues of eimzQ(z) 
-oo at its poles in the upper half plane (1-10) 

The poles in our case are given by 

where 

= (2k + 1)i1, 
2n ' k = 0, 1, 2, ••• , 2n-1 

and their locations for n = 1, 2, and J are shown in Figure 1-.5• 

k=O 1 

1 4 

n == 1 n = 2 n = 3 

Figure 1-5 

4. C.R. Wylie, Jr., Advanced Engineerin3 Mathematics (New York: 
McGraw-Hill Book Co. , Inc., 1960) , p. 602. 



where 

Using formula (1-10), we have 

Joo n-1 
Ry('1) = J.... C0S4>7' do->= -.Z Im{Ak} 

21i 1 + w2n k=0 
-oo . 

·ex 
j'feJ k 

e Ak = --------
2n-1 j~ j<~t) TT (e k - e 
1=0 
1/k 

j7'Z 
is the kth -residue of e zn• 

1 + Z. 
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(1-11) 

(1-12) 

Let Dk be the denominator of Ak, then, in terms of sine and. cosine, 

we have for its modulus 

(1-13) 

and its argument 

2n-1. 1 . . = 2 tan- s1.n«k-s1.nai_ 
1 = 0 c9sa::k-cos~1 
l,'k . 

ArgDk (1-14) 

Using the trigonometric identities for sums to products of sines and co-

sines, the above expression for the modulus of Dk can readily be simpli-

fied to 
2n-1. 

Mod Dk = TT. Jzsin(k-1) 2
11 I 

1=0 n 
1/k 

(1-1.5) 

with the angle now expressed directly in terms of k, 1, and n. 

In searching for a simpler expression, let us first write (1-1.5) 
as 

2 -i k-1 2n - 1 
Mod.· Dk= 2 n TT sin(k-1){1 TI sin(l-k) 7T 

l=0 nl=k+1 2n 
(1-16) 

The_n, using the reduction formula sin (11-0:) = sin ct the other way round, 

we have 



whereupon 

sin(k-1) 11 = sin(2n+l-k)..Z?:.. 2n 2n 

k-1 k-1 . 2n+k-1 · TI sin(k-1);~ = J1 s_ in(2n+1-k)~ = TT sin(l-k)2: 
1=0 l=O · 1~2n · 

and (1-16) becomes 

2 .12n-1 1f 2n-1 
n- lJ (l ) , 22n-1 TT . mi7 Mod Dk = 2 sin -k -2 = sin-

. 1 = k+ 1 n · m = 1 Zn 

11 

(1-17) 

At this point, we note that the modulus of Dk is independent of k for a 

fixed n. Thus it seems to be more appropriate to write it as Mod D(n) 

instead of Mod Dk• 

-It is a simple matter to go from ( 1-17) to two other equivalent 

' expressions, 5 

Mod 

and 

Mod 

1 

4 

k = 0 

D(n) 
2 1 n-i 2 = 2 n- TT sin m1( 

m=1 2n 

n-1 
D(n) 22n-1 TT 2m11 = cos_, 

m=1. . _ 2n 

1. 

4 

k = 1 

n = 3 
Figure 1-6 

( 1-18) 

· (1-19) 

1 

4 

k = 2 

5• We may arrive at expressions (:1-18) and (j-19) in a more straight-
forward manner with the help of _the "vector diagram" like those shown in 
Figure 1-6. 
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Both of these expressions have the advantage over that of (1-17) in that 

only about half the number of different factors need be evaluated. 

Coming back to (1-17), if we. use the double-angle of sine formula, 

sin2« = 2sin~cos~, we can write (1-17) as 

4n-22n-1 _ 2n-1 
Mod D(n) = 2 TT sinm,, TT cos$.!! 

. m = 1 4n m = 1 4n 

whereas if we double the value of n in (1-17), we will get 

4n~14n-1 
Mod D(2n) = 2 TT sinmn' 

m= 1 4n 

(1-20) 

( 1-21) 

It can be shown, by direct exP3-nsion and using the reduction formula 

sin(!+a) = cos~, that 

4·n-1 2n-1 2n-1 

m
l=f 1sin~~ = TT sinmif TT cosm 11 

m = 1 4n m = 1 4n 

From (1-20), (1-21), and (1-22) we have 

For n = 1, 

for n = 2, 

Mod D(2n) = 2 Mod D(n) 

Mod D(1) = 2sin~ = 2 

(1-22) 

( 1-23) 

as can be expected in view of (1-23). For n = 3, we have, by actual 

evaluation, 

Mod D(J) == 6 

This inturn may be written as 

Mod D(J) = 3(2) = 3 Mod· D( 1) 
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or 

Mod D(J) = i(4) = i Mod D(2) 

That such relation is true for any two arbitrary n's can be verified by 

direct substitution. Hence we have the general expression of (1.-23), 

Mod D(n1) 
Mod D(n2) 

Since we know that Mod D(1) = 2, it fo~lows immediately that 

Nod D(n) = 2n 

which is the kind of thing we have been looking for. 

We .now turn our attention to the argument of Dk• Let 

(1-24) 

( 1-25) 

Again using the identities for sums to products of sines and cosines we 

get, after expressing the resultant angle directly in terms of k, 1, and 

n, 

81 = tan-1 [-cot(k+l+1);] (1-27) 

From (1-27) come two possible solutions the proper choice of which is 

dictated by (1-26) as a reflection in the relative values of the two 

sines and cosines, and hence those of k and 1, The result reads 

Consequently, 

61 = 2n { 
t + (k+l+1) 1i; 

(k+l+1)JL - .!!.; 2n 2 

1 < k 

1 > k 
( 1-28) 
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which, upon substituting in each partial sum the proper value of 01 from 

(1-28) and simplifying, 

= (2n-1_) (2k+1) i 
= (2n-1)ak 

This completes the evaluation of Dko 

Putting (1-29) and (1-25) together.we have 

( 1-29) 

Dk = 2n e 
j(2n-1)ak ( 1-30) 

which is the denominator of the residue Ak given by (1-12). Hence 

ja:k 
j're 

e Ak = --j-(2_n __ _,..1-)a_k_ 
2n e 

It follows that 

(1-31) 

. ( 1-32) 

Since 

2n«k = (2k+1)7i 

and that 

sin [(2k+1)71-«] = sin ex 

we can write (1-32) as 

(1-33) 

:F'urthermore, we know that an autocorrelation function is an even function 

of the variable 7, this means that the absolute value of 7 should be used. 

This is justified in view of the cosine term in (1~11). Substituting 

(1-33) subject to the above reasoning in (1-11) gives 

( 1-34) 
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Applying the reduction formula for sine and cosine to the terms 

in the second half of the expansion of (1-34) shows that each one of them 

has a corresponding term in the first half except the middle term, in the 
1 -171 

case of odd n, which is simply given by -· e • Thus we have as an al-
2n 

ternative of (1-34) the following formula, 
-lrl 1 (n-3) /2 -l7lsin~k i e + - ? sin(l7'1 coscxk +~k) e for odd n 

n n 
(1-35) 

(n~/2 ":"ITlsintrk 1 sin(l'1'1cos~k+«k)e · for even n 
n k=O 

For small values of n, the expressions are relatively simple. 

Given below are those corresponding to the first three values of n. 

For n = 1, 

F'or n = 2, 
Ry(,) 1 -171 = -e 2 

For n = 3, 
R (~) = 1 e -lrl + 1.sin(i}l71 + 'l!..) e -l,f/2 

Y 6 3 2 . 6 
Plots of these functions and some higher order ones are presented 

in Appendix B. 

Butterworth Filter of Infinite Order 

Examini11.g·t-t-e curves of. Ry(r) reveals an interesting fact that the 

higher the order of the function is, the more similar to the sampling 

function the curve will be, This suggests that in the limit as the order 

goes to infinity, (1-34) may converge to a properly scaled sampling func-

tion a sin bx • That this is indeed the case can be seen from the follow-
x 

in~ analysis. 

From ( 1-34-), 
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(1-36) 

As n goes to infinity, the angle 

ct. = (2k+1)ii 
k 2n 

will take on every possible value from O to 1fo The increment of the an-

gle 

Ao: - II k -.n 

will accordingly become d«k• The sum in (1-36) can now be replaced by 

an integral, 

ff . 

= i7ljsin(lrl cosak) cos«ke-l'i'lsin«k oo·k 
0 . 

1
11 -11"1s ina 

+ ] 71 cos(l-rl cosak) sina:ke k d«k 

0 
In the last expression, the first integral vanishes as can be seen easi-

ly by a change of the varible of integration. We now apply the method 

of integration by parts to the second integral. Let 

-lrlsinak u = e , 
-171 s in~k . 

du = -Irle cosak cuxk, 

= 2 sin7 
7 

dv = cos (171 cos;k) sin~k dak 

v = _ sin(l7jcosll'k) 
17'1 



The absolute value symbol has been dropped in the last line since its 

presence is no longer necessary. With this result, (1-37) becomes 

17 

( ) = ..L 2sin1' 1 sin'1' litn Ry 7" 211 7 = 7l - 1- (1-38) 
n-+00 

The result in ( 1-38) , while: .. i t confirms the observation mentioned 

before, should not be of much surprise to us if we have recognized the 

fact that as n goes to infinity, the Butterworth filter becomes an ideal 

low-pass filter, and whence comes the resulto 

From the preceding section we know that for n = 1, Ry(7) is a 

double-sided exponential function. It can also be shown from (1-9) that 

Ry('T) is an impulse function for n = O, although a zero order Butterworth 

'filter is not defined, nor physically exists. Recalling that the sub-

script yin Ry('i) is used to indicate its association with the output y(t) 

in Figure 1-4, let us dissociate it from y(t) for a moment, and rewrite 

it as Rn(7') to indicate explicitly the functional, or rather, the para-

metrical, dependence of R upon n, In th~s way. Rn('<) may be regarded 

mathematically as a generating function whereby the impulse function, 

the exponential function, the sampling function, and those lie between 

the exponential and the sampling function, are generated as n takes on 

the value from O tooo, This unified notation for these seemingly dif-

ferent functions will serve to indicate some sort of relation between 

them as well as their order in this family. 

The idea that an ideal lmi-pa.ss filter is nothing but the limit-

ing case of a realistic Butterworth filter coupled with the fact disclosed · 

in _the foregoing analysis that this limit can be taken after the integra-

tion process suggests that it may be possible to use this procedur~ to 
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get an analytic expression for the output correlation function in the 

case of band-limited white ~oise input since its power spectral density 

{

1; 
. Sx(C()) = . 

O; elsewhere 

may be represented in another way as 

where 

lim - 1----
1 + (y)2m 

( 1-39) 

is a constant being chosen in such a way as to make~ the 3-db oo.ndwidth. 

·Using (1-39) with the assumption that the order of integration and 

·taking the limit is interchangeable, trr.e output correlation function then· 

becomes . . 00 · 

Ry(?") = lim it; f i Zm cos ''z~ d«> · ( 1-hO) 
. m ~o0 '; _1 + (!.#) 1 + w 

-oo 
Again applying the formula (1-10), and after a proced'ure similar to that 

performed in the previous section, we arrive at a result --

where 
2m-1 ------------

pm = TI · /jz' + 1 - jcos(vk-_Ai) 
q=O'V:, 

2m-1 
Sm -- _L 

q=O 

( 1-4:1.) 



and 

2n-1 
Sn= 2, 

p=O 

. _ (2k+1 )71 . 
~k - 2m ' 

19 

(2k+1)7i 
-tlk = 2n 

Although it can be shown that (1-41) does converge to (1-34) as%, and 

hence -y, goes to infinity, attempt to take the limit as m approaches in-

finity fails_. F'or any finite !!!,, however, expression (1-41) is valid ex-

cept when?'= 1 and m = n, since in this case the integrand in (1-40) 

contains second order poles which will lead to an expression somewhat 

different from (1-41). Taking some finite m, .of course, just amounts to 

taking ·- a power spectral density curve like the one shown in Figure 1--1 

instead of the rectangular shape curve_ in Figure t-2. If data concern-

ing the· power spectral density curve under investigation is available, 

the curve may be better approximated than a mere rectangular shape curve 

by selecting some suitable value of m, On the other hand, the value of 

m may be made sufficiently large to give a close approximation to the 

rectangular shape curve of Figure 1-2 for analysis in general where knowl-

edge of the exact curve is not cared for. 

/ 



CHAPTER TvlO 

REPLACEMENT OF A BAND-LIMITED WHITE NOISE 

BY AN INFINITE BANDWIDTH WHITE NOISE 

A r'dndom process is characterized to a certain extent by some sta-

tistical averages, or simply, statistics, but it can never be completely 

specified except in the special case of a Gaussian process. To replace 

one process by another is no more than a matter of matching some of these 

statistics in one way or another in order to gain some analytical advan-

tages, usually at the expense of some accuracy. 

In an attempt to find a method that will suit our purpose, that is 

to replace an input noise process of arbitrary bandwidth by a white noise, 

\several approaches have been considered. One of such approaches will be 

discussed in detail in Chapter Three, with the other being described brief-

ly here. 

Generation of an Arbitrarv Noise Process by White Noise 

Let us refer again to Figure 1-4. We have a system consisting of 

a unit bandwidth Butterworth filter of order n the transfer function of 

which is given by 

(2-1) 

The input x(t) is assumed to be a rand-limited white noise with cutoff 

frequency a>c, and hence a power spectral density 

{ 

1; 
Sx(w) = 

O; 
(2-2) 

elsewhere 

'£he. correlation function of the output y( t) is found in terms of H(w) and 
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Ry(7) = j_ [ __ ~sa,r dw (2-3) 2~,,1 + t}n 
-(c.)c 

If, the lnnd-limited. noise is to be replaced by a white noise and 

matching of the statistics given by (2-3) would suffice as a criterion 

for such replacemen~, a scheme like that depicted in Figure 2-1 can easi-

w(t) 
SIi: 

. 
g(t) x(!,) h(t) 

.. y(t) 
J,a 

Figure 2-1 

ly be conceived. for this purpose. using the idea that an arbitrary noise 

process may be regarded as generated by a white noise passing through a 

'suitable filter. 6 In this particular case, the "suitable" filter g(t) 

turns out to be an ideal low-pass filter of which the transfer function 

is 

G(t<l) ={1; 
O; 

(2-4) 
elsewhere 

Apµ~rently the original problem of replacing an arbitrary-noise by a white 

no~se becomes a problem of curve fitting, Neither the added transfer 

function G(a>) nor the composite transfer function 

G(W)H(W) = {,/ 1 + dn; 
_ O; elsewhere 

l . 

(2-5) 

as shown in Figure 2-2 can be synthesized exactly. However, the mean-

square error criterion for example may be used in order to approximate 

6. Jo Halcom be Laning, \Jr., and Richard H, Battin, Random Processes 
in Automatic Control (New Yorks McGraw-Hill Book Co., Inc., 1956), p. tL1-3. 
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the desired curve, (2-4) or (2-5). 

Figure 2-2 

Matching of Intensity Coefficient 

Instead of matching the output co~relation function (2-:-3), consid-

er just matching the area under the curve, This approach where it is ap-

plicable would no doubt greatly simplify the analysis, 

The area under a correlation function curve is given by the quan-

tity 
00 

K =f(-r) d't' 
-oo 

(2-6) 

which is called the intensity coefficient of the process.7 Since the 

power spectral density is, by defj_nition, 

S(f) · 1«>( ) -j2fff7 = Rre d'7 

-oo ,: 

it follows immediately that 

K = s(o) (2-7) 

If we try to apply this method of replacement to our case, we will 

find to our disappointment that the result turns out to be a trivial one 

7. R. L. Stratonovich, Topics in the Theory of'Random Noise, Vol. 
I, (New York: Gordon and Breach Science Publishers, Inc,, 1963), p. 22. 
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since, for a power spectral density 

elsewhere 

the corresponding intensity coefficient is 

(2-8) 

for all values of ~c except zero. On the other hand, it can be seen that 

this is just the logical result to be expected if we are considering only 

those cases where the values of% are_much greater than the filter rend-

widtho 

It should be remarked here that extensive use of the concept of 

intensity coefficient has been made in the so-called Fokker-Plank equa-

tion by means of which we can make two equations stochastically equiva-
. 8 

lent, and -hence obtain another b:3..sis for the replacement of one process 

by another. 

8. Ibid. , p. 97. 



CHAPTER THREE 

REPLACEMENT OF A BAND-LIMITED GAUSSIAN WHITE NOISE 

BY AN INFINITE BANDWIDTH GAUSSIAN WHITE NOISE 

In this chapter, we will be more specific in regard to certain 

aspects of the nature of the random process, In particular, we will deal 

exclusively with stationari Gaussian noise, making use of some of its 

important properties such that our derivations will be more meaningful. 

Another point which is of minor importance yet should be made 

clear at this time is that we will choose to work only with zero-mean 

processes. In spite of the fact that a white noise. is defined as a sta-

tionary zero-mean process, 9 we can if desired devise a white noise with 

a non-zero mean. But nothing essential is added since the mean can al-

ways be treated separately as a deterministic signal. With these assump-

tions we now proceed to the derivations. 

Matching of First Order Statistics 

Let us refer to Figure 1-1+ once again, Since we are dealing with 

stationary zero-mean Gaussian processes, we can write the first order 

probability density function, or simply the density function, of the rend-

limited input white noise x(t) as 

2 2 
( ) 1 -~ /2rlx 

P ct = e X .n-:;:.2-,.,,. 7r.., ,, vx (J-1) 

where Ci~ is the variance of x(t). The system assumed linear and time 

invariant will produce, by virtue of one of the Gaussian properties, 10 

9. Wozencraft and Jacobs, Op. cit., p. 189. 

10. Ibid., P• 178. 
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at its output another Gaussian noise the first.order density function of 

which can be written down immediately as 

2 2 
( ) . 1 -a /2<r.Y 

Py a = e 
~uy 

(3-2) 

2 where <ly is the variance of y(t) and is given by 
. 

· 2 -2-
(J. = y (t) = R (0) ' y y (3-3) 

This as well as the density function (J-2) follows from the fact that the 

output mean 

m~ =jm: h( t.:s) .dig 
. -co 

is zero since the input mean mx is zero by assumptiom. 

If only the first order statistics are to be of importance in our 
2 . 

problem, the variance Uy will be the key to the solution. Now our problem 

is to find a means of replacing an input noise process of arbitrary rend-

width by a white noise so as to yield the same statistics of interest at 

. the output, in view of the foregoing·statement this goal can be achieved 

simply by matching the output varianceso-

To formulate the problem condsely, let z(t) be the result of pass-

ing a daussian white noise w(t) through the system h(t). As far as the 

output first order statistics are concerned, w(t) and x(t) will be equiv-

alent if 

(3-4) 

or equivalently 

(3-5) 

since we are dealing with zero-mean processes •. Condition (3-4) or 
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(3-5) together with the knowledge of the system and the noise power 

spectral density are needed for solving the problem. 

For a unit b3.ndwidth Butterworth filter 

1 
H(w) = ,{: 2 1 + (J 

(3-6) 

having as its input a b3.nd-:limited white noise: x( t) .: with power spectral 

density 

(3-7) 

The output correlation function: is 

( ) =· Nxi:;s.:.)T de.,) 
Ry 'T 11 1 + Jn 

0 . 
Hence, 

i
GJC . 

Nx dev 
Ry(O) = - J-1T 1 + n 

0 

(3-8) 

The out.put correlation function in the case of infinite bandwidth:.white 

· noise w(t) is 

(-) _ Nw ( :s c,;7 , 
Rz , - 2a_J } + Jn dCJ 

-(;\) 

(3-9) 

where N~ is the power spectral density of w ( t), Using (1-11) and (1-34), 

we can write (3-9) as 

where 

(2k+1 )7f 
cxk == 2n (J-10) 

Fro·m here, 



N n-1 
Rz(O) = 2w 5 sin«k 

. n~ 
11 

The sum in (3-11.) can be found from the formula 

As a result, we have 

m sin2mx,. 
sin(2k-1)x = sin x , sin x :/ 0 

Rz(O) = Nw . 1 
2n sin 11 

2n 
To find Ry{O), let us first rewrite (3-8) as 

where 

Ry(O) = :X<I(n) 
. " 

. tU 

I(n) ==1 cd<.> 2n 
1+~ 

The integrand in (3-:1.5) can be exp1nded into partial fracti.ons, 

27 

(3-11) 

(3-12) 

(3 ... 13) 

(3-14) 

(3-15) 

(3-16) 

where~k is given by (3-10). The coefficient Ak is just the inverse of 

Dk given in (1-30), that is 

1 
Ak = j(2n-1.)0t:k 

2ne · 
(3-t?) 

The indefinite integral of (3-15), using (3-16) and (J-17), is found to 

be 

· ti, C, R, Wylie, Jr., Plane Trigonometry (New York: McGraw-Hill 
Book Co., Inc., 1955), p, 239. 
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thereafter the definite integral is evaluated as 

The following two expressions for n = 1,and n = 2 may serve to give some 

idea as to the extent of complexity with respect to the order of a 

Butterworth filtero 

For n = 1, 

iliJC . . 

For n = 2, 

I(i°) de,.>' 
= 1+c:.f= 
. 0 . 

-1 tan £.Jc 

.f (v~~ 1 . ·J,~+r/2tJc+1) . 1 -11'zf<lc 7t 
I(2) = 4 = -ln(~--- - -· tan -- + -

. 
1 + w · 4·VZ w2_,./2,~+1 2·12 w2-1 2:i/2 

Q C C 

ITiquating (3-13) and (J-1l}) and:·· rearranging, we get a ratio 

r = Nw = 2nI(n)sin~ 
Nx: 1T 2n 

(3-20) 

where I(n) is given by either (3-15) or (3-:19), The message conveyed by 

this expression is that in order to retain the same first order statistics 

at the output, the white noise w(t) must be so chosen as to possess a 

power spectral density r times that of the original noise. Being ·_simple 

in· form and.y~t quite typical in nature, the ratio for the case of a 

first order Butterworth filter, 

2 -1 r = - tan we 1i (3-21) 

deserves our attention •. Note that here tt>c, though not stated explicitly, 

wil~ be regarded as a normalized quantity, being the noise cutoff frequen-

cy normalized with respect to the.filter bandwidth. Table 3-:t gives the 
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Pure white noise to b.1-nd-limited white noise power spectral density ratio r , continued. 
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values of r for the case of Butterworth filter of order 1 up to 10 each 

of which covers a considerable range of 4b (shown in the . table asp). 

Plots of r versus ev0 for a few values of n are also shown in Figure 3-1. 

Matching of Higher Order Statistics' 

In the previous section we have made an assumption that only the 

first order statistics at the output are of importance to our problem, 

and hence the replacement ca.n be accomplished by matching the output var-

iance. In _some prob~erns, however, knowledge of some higher order statis-

tics is also required. Consequently, it requires the matching of those 

higher order statistics. Generally speaking, the method of replacement 

by matching a single parameter, namely the variance, is no longer appli-

cable in this case. Nevertheless, it will be shown that under certain 

favorable condition this .method can still be employed. 

Let us consider for a moment the nature of a Gaussian process. 
12 

One of its· important properties is that it can be completely specified 

just by the mean function 

mx( t) = E[x( t)] 

and the covariance function 

For stationary and zero-mean Gaussian process with which we are working 

here, the above statement is equivalent to saying that the correlation 

function 

Rx ( 'T) = E [ x ( 0) X ( -r)] 

12. Wozencraft and Jacobs, Op. ci.t., p. 172. 
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is the only thing needed for its complete specification. In either case 

it always requires a knowledge of the second order density function where-

by density functions of any other o~der can be obtain~d, 

It can be seen that if we use the method outlined in the first 

section of the previous chapter to match the output correlation function, 

the problem is· completely s"olved, at least theorectically, but without 

enjoying the ease we have in the last section •. 

It is• not quite out of the question to imagine that there may be 

some circumstance that will permit us to use the ad.vantage of the method 

of replacement by matching of the variance, or the second moment. If 

for example we are interested only in the second order sta.ti.stics of ran-

'dom variables y(t1) and y(tz) where ti and t2 are any two instants of 

tim~ that are ·farther apart than the correlation time13 of y(t), then 

the joint density f~nction of y(t1) and y(t2) can be written dowrt imme-

diately since ih this case y(t1) and y(t2) _can be regarded as independ-

ent, again using one of the Gaussian properties that being uncorrelated 

implies j_ndependence. The joint density function written down in this 

way is just the product of the first order density functions of y(t1) and 

_y( t 2) a!]d hence requires a knowledge of no more than that of the variance. 

In this way the requirement for matching of the second order statistics 

can be satisfied using the same procedure as described in the preceding 

section. By similar reasoning, the replacement by matching of higher or-

der statistics can also be ace om plished under this p.:3.rticula.r condition, 

namely when the seIB,ration between any two variables is greater than the 

13. Stratonovich, Op. cit.~ p, 22. 
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correlation time, which is the subject to be treated in the next section. 

Correlation Time 

From the previous argument we have seen how important the p.3,rt 

played. by the correlation time is in justifying the extension of the 

method developed in the first sectio:h:ito the case of higher order sta-

tistics, In this section the idea will be consolidated by actual eval-

uation lnsed on the same example that has been used so far, that is the 

Butter.worth filter. 

The correlation time is defined·. by the expression 

'1cor = R(
1o) .£i ;(-r) I d '1 (3-22) 

Unfortunately, this simple looking formula is, at least in our case, far 

from simple to use. The only exception is the case of. first order filter 

with infinite bandwidth white noise input where the correlation function 

is given by. 

· which is always positive, and 

in thisrcase, we have 

f :.°-r 
7cor = e d7' = 1 

0 

(3-23) 

Obviously, a simpler, or rd ther, more ma.nag ea ble, formula for the 

correlation time is.in order. One of such formula is given as 14 

14. Ibid., p. 88. 
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-Jja(r) d'I' • 100 7cor -1"° = ½ OTR(,) d'T (3-29-) 
R(-r) d~ 

where K is the intensity co~fficien~ •. The values of '<cor given by (3-2#) 
and (3-22) will be somewhat different, but of the same ·order of·~magnitude. 

where 

Substituting the formula 

<Xk = (2k+1)ii 
2n 

(3-25) 

and the value of K found in (2-8), which is one, into (J-?-4) gives the 

correlation time in the case of white noise input as 

n-1 
T = 1 I(k) cor n .,L_ k=O 

(3-26) 
where 

· ( 
00 

-7s inQ'k 
I(k) = ./4 rsin(7-cosQk+«k) e d( (3-27) 

the absolute value symbol for-, being dropped in view of the integration 

range. Applying the integration by parts technique to (3-27) several 

times, we eventually arrive at the result 

I(k) = sin<kk (J-28) 

From here, we have 
n-1 

T = 1:Z:sinak = - 1--
cor nk=O · n sin1L 

2n 

(3-29) 

The result on the right follows from formula (3-12). 

The values of 7cor for the first few values of n are shown below. 



n 

1 
2 
3 

7' cor 

1.000 
0.707 
0.667 
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Since we know from Chapter One that as n goes to infinity the lim-

it of a Butterworth function as well as that of its corresponding output 

correlation function exists·, we would naturally inquire about such a lim-

it for the correlation timeo If we take the limit in .(3-29) directly, 

the result wHl be an indeterminate form. We have to resort to the for-

mula 

15 which will lead to an answer 

lim 7cor = = 0.637 
II 

(3-30) 

While the correlation time in the case of band-limited noise input 

cannot be treated exactly in general, several formulas do exist for its 

approximation. From the second section in Chapter One, we know that for 

small value of ~, particularly when is much less than unity, the out-

put corTelation funcion can . be approximated accurately as 

( ) 1 sin~7 Ry,:::::- __ _ 
11 7 

(3-31) 

With this formula and the fact that K = 1 for all ve,lues of we, we get, 

from (3-24) 
. . 00 

2. t-COS"-t:7] { ,..., -cor- 7[ G.Jc 
0 

(J-32) 

15-. The same result may be obtained simply by using the fact that 
for small angle, sintX °'. 
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Strictly speaking, this expression cannot be evaluated since cos~, may 

take on any value between 1 and -1 as r goes to infinity. The values of 

7"cor corresponding to these two ext?=eme values of cos~?" are respectively 

0 and ....!:L. The former seems to be out of the question in our case. But 
714b 

instead of taking the latter directly, we may think of taking the average 

of these two to make 
,-r _,. 2 
'cor - 7T"b (3-33) 

since it is• still of the same order of magnitude as the latter. 

The above result which-seems to be taken arbitrarily can, as a 

matter of fact, be evaluated exactly although indirectly, To see this 

we note that if we take the filter bandwidth "b into account explicitly 

in (J-25), we would arrive at (3-29) as 

whereupon (3-30) becomes 

Teo;= __ :1 __ 
n"bsin 11 

2n 

2 lim Tcor = --n~oo i1~ 

· (3-34) 

(3-35) 

similarly, the formula (1-38) for w0 other than unity would become 

· ( ) 1 sin,.1-r lim R 7 = - __ \J_ 
n-;co y 11 7' (3-36) 

Hence to get the solution for (3-32) is just a matter of replacing "-b by 

~. in ( 3-35) and (3-36) • 

Finally, we note that when the evaluation of the integral is too 

involved, the formula 

-r: -- 1 cor,_ "t (3-37) 

can be used as a first approximati6n. 



CHAPTER FOUR 

REPLACEMENT IN THE CASE OF A GENERAL 

ALL-POLE SECOND ORDER FILTER 

The 'method presented in the preceding chapter has been applied 

with detailed demonstration to the case of a Butterworth filter. Although 

it is ·just a specific class· of filter, the results derived therefrom will, 

nevertheless-, be of some significance in general • . Another class of filter 

that is of much interest is an~ all-pole second order filter. Thus we will 

. use it as a further example to demonstrate how the suggested method can be 

applied to other cases. 

The transfer function of a general all-pole second order filter is 

H(s) 1 = __,.. ____ _ 
2 )ei; - 2 

S +2r:,~S4-Wn 
(4-1) 

Replacing s by jt<>, we get, after rearranging, 

H(j0) 1 
= -,,--~------( w;- t t )+ j(2>~f'-') 

(4-2) 

The magnitude-square function is then given by 

(4-3) 

For an input G?,ussian noise, x(t), with power spectral density 

{ 

Nx for llvl WC 
Sx(w) = 

0 for1,01 >tvc 

the output correlation function is given by 
00 

( .) Nx cos cvT 
Ry 'T = --:::=- 4 2 2 2 4 dw 

Ii w +2'4i(2t;--1)~ -teun 
0 

and the variance is accordingly 
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-~y· = Rf(O) N~ r dW ·.•· . 
= 11 <,h2!4 < 2,l -1)w2 

(4-4) 

Similarly, for an input white Gaussian noise, w(t), with pm:rer 

spectral density 

the variance at the output will be 
. oO . 2 Ni : d,v cT'z . = Rz ( 0) = - · 4 2 2 2 ~-

1[' _ w +2,~-h (2~ -1 )tv +"'h 
(4-5) 

To evaluate- the integ~l in (4..J.i-), let us first define 

'1/ = and .fi = (4-6) 

, such that 

(4-?) 
where 

1
/3 . 

I(~) = 4 df 2 
_ , O "l +2(2,:; -1)12 +1 

(4-8) 

Sett:ing 

4 2 2 7l +2(2; -1),z +1 = 0 

we · get. 

(4-9) 

For~= O, the two values of 712 in (4-9) are 1, the indefinite integra116 

in (4-8) becomes 

Hence 

· j6 o Herbert Bristol Dwight, _'I1ables of Integrals and Other Mathe-
matical Data (New York: ·•The Macmillan ·co.: , 1934), P• 27. - -
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I(~) = /J + 11nl HA.I 2( 1-,i) 4 1-,6 
(4-10) 

For O<~.( 1, write (4-9) as 

or, in the ex,ponential f orni, 

±j6 
= e ( 4-11) 

where 

(4-12) 

Using (4-11), the integrand in (4-8) can be written as 

which can be further expanded as 

1 [1 {--1- 1,} .1,{ 1 
2jsinel2eje/z 1-eje/2 - '7+eJ872 - 2e -JG/Z 7-e-je/2 -'f+Jetz}] 

The indefinite integral of I(~) in this case is found to be 

f a.71 1 [ 1 1-eje/2 1 -rz-e-je/2 ] 
11.4+2(2t:/-1.)r/+1 = 4jsin9 ~ln'l+eJ9/2 - . e-J9/zln>/+e -je/2 

which 1after simplifying, 

= sec9/21n12+23/cos9/2+1 _ cosec912tan-12~sin8(2 
· 8 ?,-271cosG/2+1 4 o/2-1 

where e is given by ( 4--12). It follows that 
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2 For,;= 1, we have two equal roots for 'YJ , namely, -1 and -1. Consequently• 

the indefinite integral reduces to 

;
. d, -~ 1 -1 = + -

2
tan :n 

. (1,?+1/ 2(,/+1) l 

17-the result being found directly from the table of integrals. · The cor-

responding definite integral is 

(4-14) 

Finally, for I;> 1, write 

2 ·,z = -u ! w (4-15) 
· where 

u == (2f-1) and v .. = 2~-~ (4-16) 

Again, the integrand in (4-8) can be expanded into partial fractions, 

18 which will permit the use of table of integrals to obtain the result, 

·/ 4 ( fl ) z = 2
1v~~tan -

1 
. ...;;k - ~tan -i-v' 'l+ ] 12 +2 2~ -1 'JJ +1 '~ U-V -y U-Y- 11'U+V . U V 

from where 

1?. Ibid., p. 22. 

18. Ibid,, p. 22. 

(4-17) 
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Using (4-12) and (4-16), formulas (4-13) and (4-17) respectively can be 

expressed back in terms of the IB,rameter as 

(4-18) 

for O<~<' 1 • and 

for~>i, 

In view of all of these formulas for I(l:;), our task of evaluating 

(4-4) t or equivalently (4-7), is now complete. The next step is to solv.e 

(4-5). This can be done easily by first taking the limit of the formulas 

)~r I(~) as ;9 goes to infinity. The limit is found to be 

lim I(?;) = 7f 13~. 4i; 
(4-20) 

for all cases except fort;= Oo From here we can write (4-5) as 

R (0) = Nw 
z 4;-,Js (4-21) 

Equating (4=21) and (4-7) and rearranging, we get 

Nw L~l; ·( ) r=N= 71 rz; 
X 

(4-22) 

Values of r for various;s's and t;'s have been tabulated as shown 

in Table 4-1. Figure 4-1 gives some of the curves plotted from.the Table. 
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Table 4-1 

----------·------------1 ~ · Pure wfi°ite n-oi~_;e to band-limited white noise power spectral density ratio r 
for equal variance at the output of~? _?)l_-P?}e_ ~eC()_1:':__d. ___ ?!'~~~ fi_l~:.._e_r~~itt! -·-------

L---•-- --·-- -damping factor -½ and--no-ise b-3.ndwidth to filter natural frequency ratio fi• 

- -- -· -------------------------·------------------11 

~--- -- ---Oo2·---- --0.4 --- - o-.-6--- ---Oo8--- - h0 ---~--1-.2------1:o-._.,,,__-~:i-----oG-----1.•-)+8--+--2-.e-- -

0 • 0 t O • 0 • 0 . 0 • 0 ,. 0 . 0 * 0 . 0 . 
1--------

0. 1_ 0.025-6 0.0512 1, n 765 0,1017 0.1265 0. 1 5 09 0,1749 0.1984 0.2213 o.2437 
,_Q_~ :~_ _o ._ o 5 2 2 0,1037 ~1.i 2_ O_ .!.2 11 2._?'-'- _0~491 __ 0 . 29 -~4 0 . 33?11 0.3698 0.4n.4_1i o.4 :n1 - -

0, 3 0,08()9 0,1592 0,2328 0,3001 0.3608 Q.4147 0.4622 0.5Cl41 0.5409 o.5734 
Q.4 0. U .33 0,2193 0,3135 o • 2..11_ JL_i§J.8 0 . 518~~ 0.56:S4 0.6051 o.6386 n.667-:,, 
0. 5 0·~5~1r O, 2 a-ref ~y:-3 i5 8 0,4822 o.5498 0,60 ~S 1 0 . 6458 0.6806 0.7093 o.7334 • 

0. 6 
--- l----l---+-----+----+--- -t------11- , 0,1994 Q.3609 CJ,4785_ O.~5630 o,6249 o . 6713 o.7084 o.7376 o.7615 o.7814 

(l • 6 8 7 9 0 , 7 2 7 1 0 . 7 r:; 7 4 0 . 7 8 l 5 0 • 8 Q 11 ....D.._. 8 1 7 5 
0 • 7 4 0 l O • 7 7 ·1 7 n • 7 9 6 2 0 . 8 l 5 8 0 • 8 3 1 9 0 . 8 4 5 3 

_ o_.]_ 
0, 8 
0. 9 
1 , 0 

_o _. 2 6 :B _ o • 4 4 5 2 _ a • 3, 9 s __ 6 3 4 9 
0,3545 Q,5373 Q,6357 Q.6973 
0.4866 0,6313 0,7J39 Q.7502 
0.6490 0~7177 0.7S23 0,7942 

o • 7 8 3 1_ o . P o 7 9 o . 8 ? 7 4 o , 8 4 3 1 o . 8 5 6-2.. n . 8 7 ? _ 
0,8183 0.8373 0,9526 0.8652 0.8758 Q.8349 

-- ---- -0-~8 l ff --
1 . :l 0,7842 0,7887 0,8302 0,9472 0.86 l3 0,8732 0~8833 0 .8919 .0. 8 99 4 

_J ,_ . ~i_ 0,86~58 Q,8424 o.9482 _Q~B 9 '-1 o . s 7 o_e_ ~ -Q_l ::> 0,89Q3 n.8982 0.9052 ~li.1_1-- ---· --- -
1. 3 -o-:-9-li5 o ,8 8f3 0,3781 0,8831 n.8902 0.8976 O,9O45 0.9107 0.91.64 Q.9214 
1,4 0,93 6 2 Q.9090 0,9J13 0,902? 0.9062 0. 9U 3 Q.9164 0.9213 0.9258 o.93no -1.5 o.9549 0,9290 0,91.93 0 , 9 :l. 7 6 0,9195 0 ,92 29 0,921:)5 0.9303 0,9339 Q.9:373 

- 1.-6-- -·a. -9 6 s 1 o • 9 4 3 6 o 1 9 3 3 4 o • 9 3 o 2 o , 9 3 o 5 o • 9 3 2 4 a • 9 3 s 1 o ·• 9 ~3 7 9 o • 9 4 o a o . 9 4 :16 
- l!_l_ _o_. 9J_3_2 _Q • 9 5 4 5 ___ o ,_9 _~ 4-.i. _ . 'l.1lt2- ~-2.J:.2_Z jJ_!-2__ 4 ri 5_JL _ _2_4..2A__Q_._2_i~ O 9 4 6_8_c---Q_._2_4_9_j_ 

1.a o.9786 o.9627 o,~531 o.9489 o.9474 o,9476 o.9487 o.9503 o.9520 o.9539 
1.9 o.98?6 _o,9..2_?1 o.9S05 Q.9559 o.9540 0.953S 0.9S42 o.9553 n.9566 n.93 81 
2,0 0,9856 0,9740 0,9562 0,9617 0.9595 0,9587 0 ,9589 0.9596 0.9606 Q.9618 

---·-------- t-0~780-2,:1.. Q,9879 0,9709 Q.9666 0.9642 0.9632 [) ,9630 0.9634 0.9642 0.9651 
___?: _. ?. J)_~9? ?_8 J)_,_'2_§ 1_1. o.~748 0,9706 - 0 • 9 6 3_2 _ 0.9670 0 .96 67 J). 9668 0,9673 0.9680 

? • ~, 0,99t3 0,9837 0,9780 0 • 9 7 4 ;L 0, 9 717. 0.97rH 0,9698 0 ·• 9698 0,9701 o.97n6 
?.4 0,9925 0,9859 0,9307 0,9770 0.9747 0,97 3 3 0,97?_6 0,9724 0.9726 o.97~o i--. a, 99 ~r4· Q,9 876 o.~330 0.9748 2.5 0 ,9796 0,9773 0.9759 0.9751 0.9748 0,9751.. 

----- ------- -- - ------
2,6 0,9943 Q,9349 0 ,9 817 0,9796 0 ,97 8 1 0 .9773 0.9769 0,9768 o.9770 
'2,7 Q.9949 0, _9 9 0 4 1, 936_5 .9_._ 3_6_ . _Q~ __ 2_815 0.9801 0.979~ 0.9788 0 . 9 7 6__6_ ~~2.LaL , __ - -- -2.s Q.9914 0,9380 [1 ,9 853 0,9833 0.9819 0.9810 0.9805 0,9803 Q.9802 
?,9 0,9960 0,9923 ().~39?. 0,9867 n,9848 0 ,98 :55 0.98?6 0.9R20 0.9fil_7 0.931A 
3.0 Q.9964 0,9931 o, :no3 0,9079 0.9862 0.984~ 0.9840 0.9834 0.9831 0.9829 

--

" 

-



i------·· ------------------- --------~------,-------------1 

44 c----·-··-·--------·-~---·---·-·-----·----------------------1 

Pure white noise to band-limited white noise power spectral density ratio, continued. 

I - - ------·----------------·-----
/3 

- O·o2---i-----O·o4-- --·-0.6-- --0-.8-- . - 1--.0-- ---1-.~-----,1.4_..,~-:-.~C,-----: ... ..,....;.e....--- ~,......o'" t8·1-1 • · -

1---- - -- -3 , 1. 0 .99 68 
•- •- •--•••R •- - ••- -- •----- --~-•-•-•- ---- •-• ----, -----••--- -•---•-

0,9939 0,9t12 Q.9P,90 0,9874 0.98 61 0,9852 0,9846 0 .9843 0.9341 
____ 3. 2 o_,997_1 

0,9974 
o_.9976_ 
0,9978 

n_. 9 9 4 4 _G _. 9 12 o o_ ._9 9_0 o o_ L ~8_8 i1 o_ 9 .1.2. _o_ 2116..3- _o 9_ s 5 7 _ 9_a 5 4_ __ o: . ....2.8.5.2 _., 
0,99 49 0,9;27 0,9894 0,98~2 r ,9874 0.9868 0,9864 Or9861 
o . 9 9 5 4 _;5 2 9 9 1 6. LQ..., 9 Q.2_ o . 9 8 o 1 n .... 2J.t? o 9 8 7 7 o . 9 R 7 -3.. LQ......-2..8..2.0... _. 
0,9953 0,9;39 0,9923 0,9910 Q.9899 8,989t 0.9885 0.9881 Q.9878 

--- --- --~ ---·- -- ----------- -- ---- -- . ---•----•---- ------+----- -------,,.-
3,6 n.9980 o.9961 o.9?44 o.9929 o 9917 0,99n7 o,9899 0.9893 o .9 889 o.9886 

i '"-_3 -~ L _o _. _9 9 8 2 rJ ,_ 9_9 6 J g_. 9 :1 '!. 9 __ o .• 9 9 3 5 a_!. 2..92 l _o L2-9 1 ~.s __ 0-1_~ LO . 9 9 no _l.L..9_8-2..6... __n_._9_:19_3_ _ 
3 , 8 0,99 8 3 0,9967 0.9~53 0 ,9 940 0,9929 0.99?0 0,991.2 0,9907 0,9903 0.9399 

l___]__._2 ___ _[)_! __ 99f 2_ _Q~_9_? 7D -~ -~-2J ...... ~.2 . .2__1_4_ D. 993..1_ __ 0. 99rJ5 JL_.9_2..1..B n. 991.3 JL...2..9_QJL 0. 99n5 __ 
4 , 0 0,9906 Q.9972 0,9;59 0,9948 0.9938 0,993D 0.9923 0.9918 0.9914 Q.9911 

1--- -· ------·-- ·------ -·-··--····-·· ·--l--- -t- ---+-~--t---r-------,11 · 

4 . 1 0,9987 0,9974 0,9?6? 0 ,9 952 0,9943 0.9935 0.9928 0.9923 0,9919 0.9916 
i - _1_. ~ -

4 . :3 
4 • 4 -----4 . 5 

4,6 
___ 4. 7 

4.8 
4,9 

l s. n 
- s~T-

5.?. - =,-,-~3-
s. 4 

1~5-
- 5-;7~ 

I 5, 7 

l 
--5: 8 -

5,9 
6. n 

-Y:r 
6,2 

l
- z;:-3 

6 . I) 

6,5 

O _ _!_ 9 9 B_ 9 _ Q ._ 9_ 9 J.._f> . Q .. ! . _9 .16 _5 . 0 .• 9 9 .5 5 JL _9_9_4 6_ _O __9_9_3_2_~.(L_9_9_3_3__ n 9 9 2.8 0 • 9 9 2 4 _fl_._9..12-1_ _ 
o,9989 o.9978 o.9i67 o,9958 o.9950 o.9943 o.9937 o.9932 o.9928 o.9925 

Jl.:_9989_ .il_.997_~ O..J_!J_O __ Q~9_6_1 0.995~_ 0.9945 o ·. 9941 0 9936 0.9932 n.99?9 
U.9990 0,9981 0,9?72 0 ,9 963 0,9956 0,9950 0.9944 0.9940 0,9936 Q.9933 

0.9991 
o.9991 

----t----t-~--t---- c------ _I f t 99 8 2 a""~ ff 1 7 3 · Q.9 9 6(;· -0- .-9- 9--5-9---0 -, 9 9 5 3 0 I 9 q 4 7 0 • 9 9 4 3 0 t 9 9 3 9 .(1 • 9 9 ~57 

- - --- -
n.9992 
0.9992 
0,999:1 

o, 9983 o. ;n 7 s _o_. 99_6_8 o. 9961 o. 9955 o. 995n o. 9946 o. 9943 JL~_2.1Jl _
1 u.9984 o.9~77 n.9970 o.9964 o.99~~ G,9953 o.9949 o.9946 o.9943 

o.9985 0.9;79 o.9972 o.9966 n.9968 o.9956 o.9952 c.9949 o.9946 
~---'---+---:c..---~---t------t----·11 -

0 9 9 8 6 a-: (j'"~-7 9 0 • 9 9 7 '3- 0 s . 9 9 6 8 0 I 9 9 6 3 0 i 9 9 5 8 0 t 9 9 5 4 0 t 9 9 51 0 • 9 9 4 9 

o·.-99~Y, o,9j8:; o.cJ913To9977-
0,9995 0,9991 0,9186 0 ,9 982 0.9978 0.9974 o ;9·995 -n .-9-99:C o·,-9·:n;7 5-;-991.f~~- rr:-§979. o. 9976 

0.9960 
0.9963 
o.9964 
n.9966 
0.9968 

0,9970 
0.9971 
0,9972 

0,9957 
0.9959 
0,9961 
0.9963 
0.9965 

0.9966 
0~9968 
0.9970 

0.9954 Q.9951 
0.9956 0,9953 ·-
0.9958 o.9956 
0,9960 Q.9958 
0,9962 Q.9960 

0.9964 Q.9962 
0.9966 0,9963 
0.9967 0,9965 

0.9996 0,9992 0.9~87 0 ,99 84 0.9977 
o • 9 9 % o : 9 99 2 o • 9 :Hr R o • 9 -9 -a -4 .._o ~. -9 9...,,---..s -1 . ._o_· -. 9- 9-=--7__,g~-;.....,:::------11-----=-:~:-+-.::---:::-::-=:-=-i'-:---::-::-

0,9974 0.9971 0.9969 0.9966 
0,9975 0.9972 0.9970 o.9968 

o.9996 o.9992 o.~189 o.9985 o.9982 
o,9996 0,9993 o,;~~9 0,9986 o.9983 

0.9976 
0,9977 

0.9974 
0.9975 o -;-9-99-7 999:r o-;-9"t-9o ·o ;-9c;a-i __ --=---•--~ 0,9978 0.9976 

Ot9971 
0,9973 
0.9974 
0.9975 o.9997 0,9993 o,9J90 o.9987 o.9934 o,99 8 2 

-1r-:cJ97J"7 1)-:-g-994 - • ~-t9T a-:9°9•8.,.--a----'-o- . 9cc-9.,....,s,.....,s~o=--.--:9,...,,9=--s-::2,..........,--::::--:---+~-=-=~-t-::.~-=-=~ 
0,9979 0.9977 
0.9980 0.9978 0,9976 

0.9969 
0.9971. 
Q.9972 
0,9973 
o.9974 

. 

-

-- • ____ ._ ___ _.__ ___ _.__ ___ ,, ___ _i._ __ ~------------L----~--~ 
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-·- Pu.r~ white noise to band-limitAd white noise power spectral density ratio, continued. 
-[jl 

---~ 
w: 

- -- -------- -- -- - -- -

/J 
(}.2-- - ··-0-.4- ~-6- ----0-.8- - 1 o-C) 1--.-2 .. I hC _. r, 2.0- >-J. • ...,, J. .-u 

----- ----- --- ------- ·j1 ------ -
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CONCLUSION 

The practice of replacing a band-limited i-ihite noise by an infinite 

bandwidth white noise has been extended here although Gaussian distribu-

tions are assumedo We have seen that under this condition the replacement 

can always be made where ma:tching of the first order statistics alone is 

allowable, A more complete solution which requires matching of higher 

order statistics must take the correlation time into consideration, It 

is important to note that unlike the usual practice, the relative values 

of noise bandwidth and filter·rendw:i.dth do not appear in the criterion 

for such replacement, a.:though they do play a determinative role in select-

_ing the appropriate white noise for this purpose, When the noise band-

width is much greater than the filter bandwidth, the replacement made in 

this way turns out to be no different from the practice we are familiar 

with, namely straightforward replacement of band-limited noise with pure 

white noise. 

It is in the sense stated above that the work is ari extension of 

our practice in spite of the fact that the accuracy of the replacement 

has ·not been completely analyzed with respect to higher order statistics, 

The relative ease of such method as presented here, or rather, the idea 

suggested here, will nevertheless prove valuable when a replacement 1::Jased 

on only first· order statistics is acceptable, As a by-product of this 

study, we have gained some more insight into the mechanism, as well as 

the validity, of the replacement in the case that the b3..ndwidth of the 

input noise is large comp-3.red to the system bandwidth. 

Since a white noise can be simulated in a digital computer and a 
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ba.nd-limited white noise can be generated from a white noise by using an 

appropriate-filter, this method can be tested experimentally. It is quite 

certain that some useful and more definite results can thus be obtained. 

This prospect is recommended as a continuation of this work in order to 

evaluate the quality of the replacement scheme proposed here. 



APPENDIX A 

COMPUTER PROGRAM AND SAMPLE RESULTS 

The correlation function at the output of a unit rendwidth Butter-

worth filter order n subject to a band-limited white noise input with-

normalized cutoff frequency'% is, from Chapter One, 

= 11:~sw-r d<J 
1[ j_ + w2n 

. 0 

(A-1) 

where (.A) is the frequency normalized with respect to the filter bandwidth. 

With the exception of infinite eve, we have to resort to munerical methods 

for the evaluation of (A-1). To accor:iplish this, a computer program writ-

ten in FORTRAN IV 1angue.ge has been developed, the numerical integration 

being performed by using thea-Simpson's rule, 

The data format for this particular usage- is described in ·the com-

ments of the program, and will not be repeated here, Adaptation for use 

with other filter transfer functions can readily be made through appro-

priate changes of the FUNCTION subprogram HSCi(W), the COMMON statement, 

and the variable N which in our case is the parameter of the filter de-

noting filter order. 

Plots of Ry(7') fg~ many values of w0 'as contained in this appendix 

are exclusively of the first order Butterworth filter, The program and 

these sample results can · be found in the follo}t ing pa.ges, 



.Computer Program 

C CALCULATION OF OUTPUT CORRELATION FUNCTION 
U FOR BAND-LIMITED WHITE NOISE INPUT 
C N = BUTTERWORTH FILTER ORDER 
C. W = NORMALIZED FREQUENCY (WITH RESPECT TO FILTER BAND\HDTH) 
C WC= NORMALiiED NOISE CUTOFF FREQUENCY 
a FOR INPUT F'ORMAT, SEE STATENF~'I1S 101 AND ,501 

REAL N 
COMMON TN 

501 FORMAT(2F10 o4·) . 
60-1 FORMAT(1H1,JHN =,F4.0,5X,4HWC =,F10.4//6X,JHTAU,10X,2HRY//) 
602 F'ORNAT(2F12 .4) 
101 READ(5,50i)N,WC 

IF(N.EQ.o.o)STOP 
TN=N+N 
WRITE(6,601)N,WC 
Dvl=WC/90 .O 
TAU=O.O 
DO 201 J=i ,201 
W=O,O 
Y=HSQ(W) *COS (W*TAU) 
DO 202 I=1 ,44 
W=W+ml 
Y=Y+4oOi'rHSQ(W}*COS(W*TAU) 
W=W+DW 
_Y=Y+2 .O*HSQ(vJ )*COS(W*TAU) 

202 CONTINUE 
W=W+DW 
Y=Y+4oO*HSQ(W )*COS(W*TAU) 
W=W+DW 
Y=Y+HSQ(W)*COS(W*TAU) 
RY=Y*DW /(3 .o~-3, 141,592) 
WRITE(6,602)TAU,RY 
TAU=TAu+O, 1 

201sCONTINUE 
GO TO 101 
END 

C FILTER·TRANSFER FUNCTION SQUARED SUBPROGRAM 
FUNCTION HSQ(W) 
COMNON TN 
HSQ=i ,0/( 1.0·Hl**TN) 

· RETURN 
END 

.50 
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APPENDIX B: 

CURVES OF OUTPUT CORRELATION·FUNCTION 

FOR INFINITE BANDWIDTH WHITE NOISE INPUT 

The output correlation function of a unit bandwidth Butterworth 

filter order n having as its input a unit power spectral density white 

noise is, from Chapter One, 

(B~1) 

(B-2) 

where 

(2k+1)i1 
°'k = 2n 

Plots of this function for several n's are shown in this appendix to-

gether with -a sampling function curve for the purpose of comparisone 

For filter ba,ndwidth and noise power spectral density other than 

unity, the R scale must be multi plied by the product of both -- while the 

7scale is divided by the formero 
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