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Abstract Geothermal heat flux (GHF) is a crucial boundary condition for making accurate predictions
of ice sheet mass loss, yet it is poorly known in Greenland due to inaccessibility of the bedrock. Here we
use a machine learning algorithm on a large collection of relevant geologic features and global GHF
measurements and produce a GHF map of Greenland that we argue is within ∼15% accuracy. The main
features of our predicted GHF map include a large region with high GHF in central-north Greenland
surrounding the NorthGRIP ice core site, and hot spots in the Jakobshavn Isbræ catchment, upstream
of Petermann Gletscher, and near the terminus of Nioghalvfjerdsfjorden glacier. Our model also captures
the trajectory of Greenland movement over the Icelandic plume by predicting a stripe of elevated GHF
in central-east Greenland. Finally, we show that our model can produce substantially more accurate
predictions if additional measurements of GHF in Greenland are provided.

Plain Language Summary The heat generated at the interior regions of Earth (geothermal
heat flux, GHF) can be high enough to melt the bottom layers of ice sheets, decrease friction between ice
and bedrock, and increase ice discharge to the ocean. This heat, however, cannot be directly measured in
ice sheets because the bedrock is inaccessible. Here we present a novel approach to estimate this heat.
We combine all the available geologic, tectonic, and GHF data that are available on all continents. We then
establish a complex relationship between GHF and all the geologic-tectonic features using machine learning
techniques and then predict the GHF for the Greenland Ice Sheet. We utilize all information from available
ice cores and bedrock boreholes to improve the GHF prediction in Greenland. Thus, the new GHF map
honors tectonic settings, regional geology, and measurements from ice cores and can be used as an
important input parameter to numerical ice sheet models that aim at lowering the uncertainties of future
sea level rise predictions.

1. Introduction

Among the numerous input parameters needed to run ice sheet models, geothermal heat flux (GHF) is perhaps
the least constrained by observations. GHF affects the ice temperature and viscosity, which can impact the ice
sheet geometry and ice velocity (e.g., Larour et al., 2012; Pittard et al., 2016; Seroussi et al., 2017). In addition,
the origin of ice streams in both Greenland and Antarctica is commonly associated with locally elevated heat
flow in the underlying bedrock (e.g., Bell et al., 2007; Fahnestock et al., 2001). Therefore, it is critical to have a
robust estimate of the spatial distribution of GHF in the underlying bedrock.

For the Greenland Ice Sheet (GrIS), the GHF is largely unknown apart from a few ice cores where GHF is inferred
from the temperature gradient in the basal ice layers. Two GHF models are frequently used for Greenland:
one inferred from seismic tomography (Shapiro & Ritzwoller, 2004) and the other from magnetic anomalies
(Fox Maule et al., 2009). These two models differ significantly from each other and suffer from numerous sim-
plifying assumptions and unknown parameters in ice-covered areas. Additionally, applying either of these
GHF models in numerical ice sheet models cannot reproduce the observed temperatures at ice core locations
(Rogozhina et al., 2012). Given the importance of GHF, it is clear that a new and independent estimate should
be constructed that honors both the ice core data as well as Greenland geology.

This study derives a new map of GHF for the GrIS using statistical relationships between global heat flux obser-
vations and the combined influence of local geology and regional tectonic setting. Compilations of global
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heat flux measurements on the continental crust include over 35,000 point measurements distributed across
all continents. By assuming that GHF is a complex function of geologic and tectonic features (e.g., crustal
thickness, magnetic anomaly, gravity field, rock type, age, elevation, and proximity to spreading ridge), we
construct a machine learning algorithm to obtain the statistical relationship between geologic features
and GHF. Based on the obtained relationship, we predict the GHF for Greenland and discuss the relative
importance of input parameters in obtaining the new GHF map.

2. Data
2.1. GHF Measurements: Global Data Set
Global GHF data measured on the continents are obtained from the International Heat Flow Commission pro-
vided by the University of North Dakota (Gosnold, 2011). The data have a nearly normal and unimodal distri-
bution, with mean and standard deviation of 60.8 and 18.2 mW m−2, respectively (Figure S6 in the supporting
information). The spatial resolution of the data varies considerably; North America and Europe are extensively
surveyed, while measurements are sparse in South America and Africa. We use the mean of GHF values within
each 1 by 1∘ latitude-longitude cell that reduces the number of points from 35,000 to more than 4,000 points.
We apply a low-pass filter to remove the short-scale spatial variability and highlight the large-scale spatial
patterns of GHF that we are interested in predicting for Greenland.

Prior to applying the low-pass filter, we limit our analysis to GHF values less than 200 mW m−2, because even
in Iceland (with an obvious mantle plume) the majority of heat flow measurements are below 200 mW m−2

(Hjartarson, 2015). Thus, we assume that for nonplume areas, such high readings are anomalous local
processes (similar to Goutorbe et al., 2011) and are therefore removed to not contaminate our procedure.

2.2. GHF Measurements: Greenland
There are only 10 determinations of GHF in Greenland: five inferences from ice core sites and five direct
bedrock measurements in ice-free coastal areas (Table S1 and Figure S7). GHF determinations at ice core sites
usually mean that the GHF is inferred from the temperature gradient in the basal ice layer. GHF is also esti-
mated using numerical ice sheet models by adjusting the GHF value at ice core locations so that the modeled
basal temperature matches the measured basal temperature (e.g., Greve, 2005), or using a Monte Carlo simula-
tion to inversely infer the GHF (e.g., Buchardt, 2009; Dahl-Jensen et al., 1998). Despite the uncertainties in these
techniques, they form our current understanding of the GHF of the GrIS.

On the exposed rocks around the coast of Greenland, Sass et al. (1972) report GHF values of 37 and 41.8 mW m−2

in the southernmost part of Greenland. There is also one data point from Langseth et al. (1972) who measure
the GHF at 51 mW m−2 in a fjord in south Greenland. In addition, the Greenland Analogue Project (GAP) reports
two GHF measurements near Isunnguata Sermia in west Greenland of 27.2 mW m−2 (Meierbachtol et al., 2015)
and 34.8 mW m−2 (Harper et al., 2011). Meierbachtol et al. (2015) do not report the exact location of their GHF
measurements; therefore, we use the average GHF value of these measurements (because the study domain
of Meierbachtol et al. (2015) is small, the two GHF measurements certainly fall in the same 1 by 1 latitude-
longitude cell), which reduces the total number of GHF points in Greenland to nine.

2.3. Geologic Features
In contrast to other efforts to estimate GHF in Greenland that use single geophysical features such as gravity
anomaly (Shapiro & Ritzwoller, 2004) or magnetic anomaly (Fox Maule et al., 2009), we use a compilation of
geologic features and information that is globally available on the continental crust (Table 1). These geologic
features are grouped into three major categories (similar to Goutorbe et al., 2011): (i) continuous data such as
gravity anomaly and crustal thickness, (ii) categorical data including rock type and classes of velocity structure
of the upper mantle, and (iii) proximity variables that describe the distance of each point to thermally active
geologic features such as hot spots, ridges, and volcanoes. All geologic features are resampled to a 1∘ latitude-
longitude grid using an ordinary kriging interpolation scheme.

3. Method
3.1. Overview of Statistical Models
The problem of predicting a continuous variable from a collection of relevant features is generally known as a
regression problem. In our case, we wish to find a predictor that assigns a GHF value (denoted by ĜHF) to any
point observation of geologic features. Performance of any such predictor is then evaluated by comparing its
predictions to known GHF values. Such models are first trained on a set of point observations consisting of
known values for geologic features and GHF, referred to as training data. The output of the training procedure
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Table 1
Geologic Data Sets Included in the Feature Vector for Predicting GHF

Variable Type Variable name Reference

Continuous Global surface topography Amante and Eakins (2009)

Greenland bedrock topography Bamber et al. (2013)

Depth to Moho Reguzzoni et al. (2013)

Lithosphere-asthenosphere boundary Pasyanos et al. (2014)

Age Poupinet and Shapiro (2009)

Bougeur gravity anomaly Balmino et al. (2012)

Crustal thickness Laske et al. (2013)

Upper mantle density anomaly Kaban et al. (2004)

Magnetic anomaly Maus et al. (2007)

Thickness of upper crust Bassin (2000)

Thickness of lower crust Bassin (2000)

Heat production provinces Goutorbe et al. (2011)

Classification Age of last thermotectonic event USGS (1997)

Upper Mantle velocity structure Shapiro and Ritzwoller (2002)

Rock typea Hartmann and Moosdorf (2012)

Rock type (Greenland)a Dawes (2009)

Proximity Distance to trench Coffin et al. (1998) (UTIG Plates Project)

Distance to transform ridge Coffin et al. (1998) (UTIG Plates Project)

Distance to young rift Şengör and Natal’in (2001)

Distance to volcano (5 nearest) Goutorbe et al. (2011)

Distance to ridge Coffin et al. (1998) (UTIG Plates Project)

Distance to hot spot Caltech seismic lab (Anderson, 2016)

aThe lithologies of Hartmann and Moosdorf (2012) and geologic provinces of Dawes (2009) are converted to
the volcanic, sedimentary, and metamorphic rock types. Details are explained in the supporting information
section 3 and Tables S2 and S3.

is an optimal predictor that minimizes prediction error with respect to some cost function. The main model
we present here for GHF prediction is Gradient Boosted Regression Tree (GBRT, Friedman, 2001) that has many
desirable properties including ability to discover nonlinear statistical relationships, as well as handling both
continuous and categorical features in the regression model, and stability (Elith et al., 2008; Friedman et al.,
2001) (see supporting information, section 1 for general explanation of GBRT and section 2.2 for our stability
analysis of the model).

In order to assess the applicability of GBRT for GHF prediction, we compare its behavior to two simpler regres-
sion models. First, we consider a linear regression model that we subsequently show to be inferior to GBRT.
Second, since applying constant GHF values to numerical ice sheet models is still common in glaciology, we
include a “constant predictor” that simply predicts a spatially uniform GHF equal to the mean GHF value of its
training data.

3.2. GHF Prediction Performance of GBRT
We use a standard cross-validation scheme in which the entire data set is randomly partitioned into two
disjoint sets: a training set used to find the optimal GHF predictor and a validation set on which the optimal pre-
dictor is evaluated. To quantify prediction performance, we report two measures of error. First, we report the
normalized root-mean-square error (RMSE) between predicted ĜHF and known GHF values in the validation
set. Normalized RMSE is a standard and robust (invariant to rescaling) measure of error and is defined as

Normalized RMSE = 1⟨GHF⟩
√⟨|||GHF − ĜHF|||2⟩

,

where ⟨⋅⟩ indicates the average over the validation set. Normalized RMSE can be interpreted as a relative mea-
sure of error; for instance, an error of 0.15 can be understood as an average 15% relative error in predictions.
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Figure 1. Performance of (left) GBRT and (right) linear regression when validation samples are distributed randomly. For each model, the difference between
measurements and predictions (top) GHF − ĜHF and linear correlation analysis between (bottom) GHF and ĜHF is shown.

Second, we report the r2 of linear correlation analysis between ĜHF and GHF on the validation set (see
supporting information, section 2).

Using the above procedure with 80% of all data points for training and the remaining 20% for validation,
GBRT predicts GHF with high accuracy (RMSE=0.14 and r2 =0.75), while predictions of the linear model have
significantly higher error (RMSE=0.21 and r2 =0.40) as shown in Figure 1.

3.3. GHF Prediction With Limited Local Data
Since the goal of this work is to predict the heat flow specifically for Greenland, we investigate whether GBRT
is capable of predicting GHF over a region with limited local data. We consider a region of interest (ROI) over
which we wish to predict GHF. To quantify the abundance of local training data, we define the notion of local
training density for an ROI as

𝜌ROI =
no. of training samples in ROI

area of ROI
.

We then pose our question regarding GHF prediction with limited local data as follows: given a 𝜌ROI and a
radius R, what is the expected error in GHF prediction over an arbitrary circular ROI of radius R?

We answer the above question by modifying the cross-validation procedure described in the previous section.
For a given ROI and a local training density 𝜌ROI we randomly pick a subset of all available data points within
the ROI as the local training set. These points together with all data points lying outside the ROI constitute
the training set while the remaining samples within the ROI constitute the validation set (Figure 2). For each
R and 𝜌ROI we report the average value of normalized RMSE and r2 over 50 random choices of ROI center
in North America and west-central Europe; the choice of these regions is due to the large number of GHF
measurements that are located in these regions (see supporting information, section 2).
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Figure 2. Step-wise improvement of GBRT predictions with increasing 𝜌ROI shown over an arbitrary ROI of radius
1,300 km. In each map grey dots indicate training data, colored dots indicate validation points, and the grey circle is
the ROI. For three densities (0, 10, and 50 per 106 km2) the (right column) difference between measurements and
predictions and (left column) their linear correlation is shown.
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Figure 3. Normalized (left) RMSE and (right) r2 of linear correlation, for GBRT (solid blue lines), linear regression
(solid red lines), and constant predictor (dashed black lines) for different densities. For each model and density,
the cross-validation procedure of Figure 2 is used and average errors on 50 ROIs of radius 1,300 km are reported.
The blue and red regions show one standard deviation.

Using the above evaluation scheme, we find that regardless of the location of the circle, GHF predictions have
high RMSE (∼0.25) and low r2 values (∼0.4) when all samples from the ROI are excluded from the training set
(i.e.,𝜌ROI =0). This shows that GBRT performs poorly over a region with no local training data (Figure 2, top row).
If an area is completely removed from the training procedure, GBRT cannot spatially extrapolate and predict
GHF over an ROI with no local training data, highlighting the importance of regional geology and tectonics in
predicting GHF. Therefore, we investigate the extent to which this reduction in prediction performance relates
to the density 𝜌ROI of training samples within the ROI as well as the ROI radius R.

We run two sets of experiments for assessing the local performance of GBRT; corresponding results for linear
regression and constant predictors are also included for comparison. In the first set of experiments we fix
the ROI radius R = 1, 300 km (size of Greenland) and vary 𝜌ROI in each experiment from 5 to 50 samples per
106 km2. Increasing 𝜌ROI leads to lower RMSE and higher r2 values for GBRT indicating increasing quality of
prediction with increasing density of local training samples (Figures 2 and 3). Conversely, the linear model
shows marginal reduction in RMSE and insignificant increase in r2 with increasing 𝜌ROI (Figure 3). We conduct
similar procedures for North America and West Europe separately and find near-identical trends in RMSE and r2

(as in Figure 3) that show that the model uncertainty does not depend on tectonic settings and local geology.

In the second set of experiments, we fix the local training density 𝜌ROI ∼10 per 106 km2 (corresponding to the
availability of training samples in Greenland, see section 3.4) and vary the radius, R, of the ROI from 500 to
4,000 km. Our results show that the RMSE of GBRT predictions remains unchanged with increasing values
of R, while the corresponding r2 continuously increases (Figure S3). In both sets of experiments, our results
strongly confirm that GBRT performs significantly better than linear regression for predicting GHF with limited
local data.

3.4. GHF Points for Greenland
There are only nine direct GHF measurements/inferences in Greenland; with R =1,300 km, these measure-
ments roughly constitute 𝜌ROI = 2 per 106 km2 on a 1 by 1∘ cell basis. With such sparse GHF measurements,
our analysis shows that GBRT results in low r2 values of 0.5 and RMSE of 0.2 (Figure 3). In order to compensate
for the paucity of GHF points in Greenland, we assume that the regions surrounding each of the nine direct
measurements in Greenland can be represented by a Gaussian kernel of the form GHFx =GHF ∗ e−x2∕d2

where
GHFx is the Gaussian-fit GHF at distance x from the ice core location. We assume an influence radius of 150 km
for GHF near ice cores. For all GHF measurements in Greenland, we use the large value of d = 1, 000 km that
essentially results in a nearly planar distribution of GHF around the measurement location (e.g.,∼2% decrease
within 150 km radius for 30 mW m−2 measurement, Figure S7). The exception is at NorthGRIP ice core. Because
the inferred GHF at NorthGRIP is anomalously high (Table S1), we assume the high GHF is a very local process
(see section 2.1), and thus, we chose d=200 km for the Gaussian kernel to make GHF drop more rapidly from
high GHF values. By fitting the Gaussian kernel around ice cores, we increase the number of known GHF values
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Figure 4. GHF predictions of GBRT for Greenland. Direct GHF measurements from the coastal rock cores, inferences from ice cores, and additional Gaussian-fit
GHF data around ice core sites are used as training samples within the ROI leading to 𝜌ROI = 11.3 per 106 km2. Predictions are shown for three different
values prescribed at NorthGRIP: (left) 160 mW m−2 as the upper limit (Dahl-Jensen et al., 2003), (middle) 135 mW m−2 suggested by Greve (2005), and (right)
90 mW m−2 as the lower range suggested by Dahl-Jensen et al. (2003). The white dashed region roughly shows the extent of elevated heat flux and a possible
trajectory of Greenland’s movement over the Icelandic plume.

in Greenland from 9 to more than 60, which is equivalent to 𝜌ROI=11.3 per 106 km2 for R=1, 300 km. Based on
the performance analysis shown in Figure 3, our GHF prediction for Greenland is expected to be within 15%
of correct values (RMSE=0.15, r2 =0.6).

4. Results and Discussion
4.1. GHF Prediction for Greenland
In order to train GBRT for predicting the GHF in Greenland, we include the entire global GHF data set in addi-
tion to the points that we add for Greenland using the Gaussian kernel (Figure S7). We perform the prediction
for Greenland using three GHF values at the NorthGRIP ice core: Dahl-Jensen et al. (2003) estimate an upper
and lower bounds of 160 and 90 mW m−2, respectively, based on modeling the age of ice layers in radar
echograms, and Greve (2005) calculates that the GHF of 135 mW m−2 is the GHF required to match the mea-
sured and modeled basal melt rate at the NorthGRIP site. The GHF predictions using these three GHF values
at NorthGRIP are shown in Figure 4.

The predictions show that apart from the anomalously high heat flux near the NorthGRIP ice core, a relatively
large northern region that spreads from the interior east and west has a similarly high GHF value. Changing
the magnitude of the prescribed GHF at the NorthGRIP ice core location alters the magnitude of predicted
GHF in this region, but the spatial pattern and extent remain unchanged.

Our model predicts a region with relatively low GHF in south Greenland, which is consistent with the GHF mea-
surements and age of the North Atlantic Craton. The extent of this low heat flux region (GHF values less than
40 mW m−2) corresponds well with the suggested extent of the North Atlantic Craton (Dawes, 2009, Figure 1).
In addition, GHF measurements across the Labrador Sea, on the Canadian region of the North Atlantic Craton
show low GHF values of about 25 mW m−2, comparable to our predictions in south Greenland (Mareschal &
Jaupart, 2004; Figure 4).

There are a number of distinguishable features in our predicted GHF map. First is the slightly elevated pre-
dicted GHF that forms a path from northwest to central-east Greenland (white dashed line in Figure 4). This
path closely follows the span of Icelandic plume tracks suggested by Rogozhina et al., 2016 (2016, Figure S8).
Other notable features are the two pockets of high GHF in central-west Greenland, which persist regardless of
the choice of GHF for NorthGRIP. This region is at the center of the catchment that is drained by Jakobshavn
Isbræ. It is important to note that there are no GHF measurements/observations in this region. The closest
GHF measurement is the location of the GAP project (Harper et al., 2011) that has a low GHF of 30 mW m−2.
Similar regions of elevated GHF exist in the northeast region, close to the margin of the ice sheet, near the
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terminus of Nioghalvfjerdsfjorden (79North). There is no nearby GHF measurement in this region either, and
therefore, these predictions are independent of the prescribed GHF values in Greenland.

4.2. Interpretation of GBRT Predictions
A standard technique in probing additive models is to first take the total amount of reduction in prediction
error provided by each feature as its importance in an individual tree. Then the average error reduction over all
trees provides a relative measure of importance for each feature (see supporting information section 3.1). Our
model predicts topography, distance to young rifts, distance to trench, depth of lithosphere-asthenosphere
boundary, and depth to Moho as the top five important features, respectively (Figure S5).

The relative importance of the top 10 features are very close to each other that hinders a straightforward
association of the observed GHF patterns to individual geologic features. Furthermore, summarizing the
importance of each feature in a single number will mask the importance of features that are somehow corre-
lated with each other. In our feature vector, for example, distance to volcanoes is likely correlated with distance
to hot spots and rifts. Including strongly correlated features in the feature vector only marginally improves
the model performance, but the relative importance of correlated features will get distributed (Figure S5).
A robust interpretation or simplification of the GBRT model presented here is beyond the scope of current
study and is a potential avenue for future work (see supporting information, section 3.2).

5. Conclusion

Using the Gradient Boosted Regression Tree (GBRT) algorithm, we present a robust statistical relationship
between a large group of geologic and tectonic features and global GHF. We combine the global GHF mea-
surements on the continental crust with GHF inferences from ice cores, and few available GHF measurements
on exposed coastal rock in Greenland and train GBRT to predict the GHF for the entire unsurveyed land mass
of Greenland.

Our predicted GHF map shows a notable contrast between the regions south and north of ∼67∘ with south
having significantly lower GHF than north. The GHF map predicts a large region with high GHF in central-north
Greenland close to the NorthGRIP ice core site, where other studies suggest thin lithosphere and trajectory of
crust movement over the Icelandic plume as the cause of elevated GHF. This trajectory is also captured by our
model in central-east Greenland. Finally, our GHF map shows slightly elevated GHF in central-west Greenland
(upstream of Jakobshavn Isbræ), near the terminus of Nioghalvfjerdsfjorden in northwest, and small pockets
in the northern regions.

The model’s performance evaluation shows that the performance of GBRT will be significantly improved if
any additional GHF measurements become available in Greenland and thus resolve the need for logistically
expensive field measurements for the entire ice sheet.
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