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ABSTRACT 

Background: Cardiovascular disease is endemic among patients with chronic kidney disease 

(CKD). Growing evidence suggests the gut microbiome plays an obligatory role in cardiovascular 

pathogenesis. Trimethylamine-N-oxide (TMAO) is a downstream byproduct of intestinal microbe 

metabolism of phosphatidylcholine and L-carnitine that may directly promote atherosclerosis 

formation. Since clearance of this uremic metabolite is dependent on urinary excretion, plasma 

levels of TMAO increase with decrements in kidney function. Association studies have linked 

plasma levels of TMAO to adverse cardiovascular outcomes in patients with renal dysfunction; 

however, the direct effect on the heart itself remains largely unexplored.  

Objective: The objective of this study was to determine if TMAO alone could acutely alter ex vivo 

cardiac contractile function on a beat-to-beat basis.  

Methods: CD1 adult mouse hearts were extracted, attached to a force transducer, oxygenated, and 

paced within an organ bath. Changes in contractility were measured after infusing TMAO or 

vehicle into the organ bath. As a follow-up approach, mouse hearts were reverse perfused through 

the aorta via a modified Langendorff apparatus to facilitate TMAO delivery into the myocardium. 

Subsequently, to determine if our findings translated to the human heart, we performed 

contractility experiments using human atrial appendage biopsy tissue, which was retrieved during 

cardiopulmonary bypass procedures prior to cannula placement. To investigate whether TMAO 

alters contractile rate, in a separate series of experiments, the atria and sinoatrial node of isolated 

mouse hearts were kept intact to allow for spontaneous beating without artificial pacing. Changes 

in contraction rate (in beats per minute) were measured after treatment with TMAO or vehicle. 

Additionally, calcium imaging was performed on spontaneously beating embryonic (E18) rat 
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cardiomyocytes. Changes in intracellular Ca2+ oscillations were measured, following treatment 

with 300 µM TMAO or vehicle, using the fluorescent Ca2+ indicator Fluo-4 AM.  

Results: Acute exposure to TMAO in the organ bath increased average contraction amplitude 17% 

and 41% at 300 µM and 3,000 µM, respectively (P < 0.05, n = 6-7 animals). Langendorff reverse 

perfusion of mouse hearts ex vivo with 300 µM TMAO generated an even greater response than 

non-perfusion peripheral exposure and increased isometric force 34% compared to vehicle (P < 

0.05, n = 2-3). Consistent with what we observed in the animal model, incubation of human atrial 

muscle tissue with TMAO at 3,000 µM increased isometric tension 29% compared to vehicle (P 

< 0.05, n = 4-5). Average beating frequency of mouse hearts ex vivo increased 27% and 46% 

compared to vehicle following treatment with TMAO at 300 µM and 3,000 µM, respectively (P < 

0.05, n = 3). Similarly, 300 µM TMAO increased average calcium oscillation frequency within 

embryonic rat cardiomyocytes by 42% compared to vehicle (P < 0.05, n = 3-4). 

Conclusions: TMAO, at pathological concentrations, directly increases the force and rate of 

cardiac contractility. Initially, these inotropic and chronotropic actions may help maintain cardiac 

output during CKD; however, chronic increases in isometric tension and beating frequency are 

known to promote cardiac remodeling, left ventricular hypertrophy, and heart failure. Further in 

vivo studies are needed to determine how chronic exposure to TMAO may contribute to cardiac 

pathology in CKD and to examine if TMAO represents a therapeutic target for reducing 

cardiovascular mortality in patients with CKD. Our findings lay the groundwork for future 

translational research on the intricate relationship between the microbiome, kidneys, and heart.
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INTRODUCTION 

The Centers for Disease Control and Prevention estimates that 30 million adults in the 

United States are living with chronic kidney disease (CKD) as of 2017.1 CKD is generally defined 

as progressive, irreversible impairment in renal function and encompasses a spectrum of 

pathophysiologic processes associated with a decline in glomerular filtration rate (GFR).2,3 The 

kidneys have several essential physiologic functions including the filtration of blood and excretion 

of metabolic and exogenous waste, regulation of volume status and blood pressure, maintenance 

of acid-base balance and electrolyte homeostasis, and various endocrine functions important for 

bone metabolism and red blood cell production.4 Chronic renal insult, most commonly due to 

diabetes or hypertension, leads to damage and eventual destruction of nephrons, the functional 

units of the kidney.5 Initially compensatory hyperfiltration ensues, though in the long term, 

increased stress on the kidneys propagates overwork injury and pathologic changes such as 

progressive glomerular distortion and interstitial fibrosis.6 Therefore as the disease advances, fluid, 

electrolytes, and metabolic waste normally excreted by the kidneys accumulate within the body 

leading to widespread homeostatic disturbances and dysfunction including abnormalities in 

dermatologic, musculoskeletal, neuromuscular, endocrine-metabolic, hematologic, 

gastrointestinal, and importantly, cardiovascular function.2  

More than 60% of individuals with CKD also have comorbid cardiovascular disease 

(CVD),7 a prevalence that is approximately 9-times higher than that among individuals with 

normal renal function.8 It is well established that the presence of CKD is one of the most important 

risk factors for CVD.9 However, patients with end-stage renal disease (ESRD) are less prone to 

receive important cardioprotective interventions and are at increased risk for adverse outcomes 

and death once cardiac events occur.10 Thus, CVD is the leading cause of mortality among patients 
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with CKD — accounting for approximately 50% of deaths in patients with ESRD.11,12 The 

management of CKD accounts for an astounding $48 billion per year in healthcare costs the United 

States,13 yet the major expenditure is not in providing renal replacement therapy but the cost of 

disability from premature CVD.14 

A complex relationship exists between these two vital organ systems — chronic damage 

to one organ eventually causes both organs to fail.15 It was originally suggested that this 

relationship exists due to coinciding, “traditional” risk factors such as advanced age, hypertension, 

diabetes mellitus, and dyslipidemia promoting the development and progression of both CVD and 

CKD.1,16 However, standard clinical interventions for managing CVD have failed to improve 

cardiovascular outcomes in patients with CKD.15,17 

In recent years there has been growing interest in the bacteria living symbiotically within 

the human intestines. Evolving evidence suggests the gut microbiome is an obligatory contributor 

in several metabolic pathways linked to chronic cardiometabolic conditions.18–20  This has spurred 

a dramatic shift in the understanding and approach to cardiac pathology. There is now a novel 

appreciation that the intestinal microbiota functions as an endocrine organ capable of producing a 

myriad of metabolites, such as trimethylamine-N-oxide (TMAO), related to human health and 

disease.21  

Formation of TMAO necessitates gut microbial metabolism of dietary choline and L-

carnitine.22–24 Choline, an essential nutrient derived from phosphatidylcholine, and L-carnitine are 

consumed primarily in the form of fatty, high cholesterol foods such as red meat, liver, and egg 

yolks.20 Bacterial metabolism of choline and L-carnitine generates trimethylamine (TMA), an 

intermediate metabolite, which is absorbed through the intestinal epithelium and carried to the 

liver in the portal circulation.25,26 TMA is then oxidized to TMAO by hepatic flavin 
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monooxygenase 3 (FMO3) enzymatic activity.27–30 Clearance is dependent almost exclusively on 

urinary excretion;31–33 therefore, serum levels climb with decrements in kidney function34–36 to 

approximately 100 µM in patients with dialysis-dependent CKD.37  

TMAO has been linked to adverse cardiovascular outcomes, initially identified through a 

series of untargeted metabolomic studies.22 Subsequently, elevated levels of TMAO and its 

precursors were shown to predict major adverse cardiac events such as myocardial infarction, 

stroke, and death.23,24 Interestingly, high plasma concentrations of carnitine and choline were only 

associated with cardiovascular risk in the presence of an intact microbiome, when TMAO was also 

concomitantly elevated.24,38 Animal studies have indicated TMAO fosters enhanced macrophage 

foam cell development and atherosclerotic plaque formation through reductions in reverse 

cholesterol transport and alterations in expression of macrophage surface receptors.22,24 These data 

demonstrating the proatherogenic properties of TMAO, 20,22–25,38 could potentially account for the 

clinical associations between elevated plasma levels of TMAO and CVD. However, the majority 

of cardiovascular deaths in patients with ESRD are due to sudden cardiac death, fatal arrhythmia, 

or heart failure.39 With relatively fewer deaths attributable to coronary artery disease or myocardial 

infarction,39 it is unlikely traditional risk factors account for the excess cardiovascular morbidity 

and mortality in patients with CKD.14,15,40 Furthermore, recent evidence indicates elevated TMAO 

levels correlate with equivalent adverse prognostic value in both ischemic and non-ischemic heart 

failure,41 suggesting TMAO may contribute to cardiovascular pathogenesis beyond the 

development of atherosclerotic complications.   

The exact mechanisms through which TMAO promotes CV diseases, including heart 

failure, have not yet been identified. Studies exploring the direct effects of TMAO on the 

myocardium are limited. It was recently shown that long-term TMAO administration at a dose of 
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120 mg/kg in drinking water increased the TMAO concentration in cardiac tissues 22-fold and that 

this accumulation led to disturbances in both pyruvate and fatty acid oxidation in cardiac 

mitochondria in mice.42 Mitochondrial dysfunction and reduced energy metabolism are important 

mechanisms responsible for the progression of heart failure.43 It has also been shown in mice fed 

a Western diet that increased plasma TMAO levels were associated with reduced left ventricular 

ejection fraction and increased cardiac inflammation and fibrosis — changes that were prevented 

by treatment of an inhibitor of TMA formation (3,3-Dimethyl-1-butanol).44 While these initial 

studies demonstrate that TMAO may have an impact on cardiac function, the objective of our 

present study was to determine how TMAO alters cardiac function on a beat-to-beat basis. In this 

study, we test the direct effects of TMAO on isolated mouse and human heart contractile function, 

as well as the acute effects on spontaneously beating mouse hearts and embryonic cardiomyocytes. 

These results are critical for understanding the role of TMAO in cardiac function and pathology.   
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MATERIALS AND METHODS 

Responsible Conduct of Research 

This study was conducted under the approval of the University of Missouri Kansas 

City Institutional Animal Care and Use Committee (IACUC), Protocol # 1302, and the University 

of Kansas Medical Center Human Subjects Committee, IRB # 00004440. Animal care and 

procedures relating to human subjects were performed in accordance with institutional guidelines. 

Chemicals and Reagents 

TMAO was purchased from Sigma Chemical (St. Louis, MO). Fluo-4 AM was obtained 

from Invitrogen (Carlsbad, CA). All remaining reagents were sourced from Sigma (St. Louis, 

MO).  

Experimental Animals 

 Twelve-week-old male CD-1 mice (Harlan Laboratories: Madison, WI) were used for 

experiments with exogenous TMAO. All mice were housed in a temperature-controlled (22 +/- 

2°C) room with a 12:12-h light-dark cycle. Animals were fed ad libitum. Mice were anesthetized 

with 3% isoflurane inhalation prior to tissue harvesting.  

Measurements of Force of Cardiac Contractility 

Artificially-paced ex vivo mouse hearts.  

The mouse hearts were quickly excised and placed in Ringer’s solution [composed of (in 

mM): 140 NaCl, 2.0 KCl, 2.5 CaCl2, 1.0 MgSO4, 1.5 K2HPO4, 10 HEPES, 10 glucose, pH 7.4]. 

The atria, blood, fat, and excess connective tissues were carefully removed. The hearts were hung 

vertically and attached to a force transducer between bipolar platinum-stimulating electrodes 

suspended in 25-ml glass tissue chambers (Radnoti: Monrovia, CA) and bubbled under 100% O2. 

Hearts were stretched to the length of maximum force development and stimulated (SD9 
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stimulation unit—Grass Technologies: Quincy, MA) with pulses of 1 Hz at 5 ms duration. Hearts 

were paced for 20 minutes to obtain a stable baseline before treatment with either vehicle or 

TMAO. Two concentrations of TMAO, 300 µM and 3,000 µM, were pipetted into the organ bath 

30 minutes apart. As a control, equal volumes of vehicle (Ringer’s solution) were administered 30 

minutes apart. Following treatment with either vehicle or TMAO, norepinephrine (5 µM) was 

administered as a positive control. The contractile data were recorded and analyzed on the 

LabChart 6 software (AD Instruments: Colorado Springs, CO). Waveform changes were analyzed 

in the segments corresponding to peak isometric tension (mN). Additional waveform 

characteristics including maximum slope (mN/s), peak area under the curve (mN x s), and 

minimum slope (mN/s) were also collected and analyzed. Changes in these parameters could 

indicate variation in calcium handling mechanisms, such as enhanced calcium release, or 

modification of the contractile proteins. Experimental data are presented as a fold change from 

baseline contractile parameters. 

Artificially-paced ex vivo mouse hearts with Langendorff perfusion. 

After removal of the heart, the ascending aorta was cannulated to establish access for 

reverse perfusion of the coronary circulation via a modified Langendorff perfusion setup using a 

peristaltic pump (Masterflex, 7518-00, Cole-Parmer Instrument Company: Vernon Hills, IL). The 

cannulated hearts were hung vertically and attached to a force transducer between bipolar 

platinum-stimulating electrodes suspended in 25-ml glass tissue chambers. Retrograde perfusion 

of the hearts was initiated with Ringer’s solution equilibrated in 100% O2 to a pH of 7.4. Hearts 

were stimulated with pulses of 1.0-1.5 Hz at 5 ms duration. Hearts were paced for 20 minutes to 

obtain a stable baseline before perfusion with either vehicle (Ringer’s solution) or TMAO (300 

µM).  Contractility was measured as previously described.  
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Artificially-paced human heart biopsy tissue.  

Atrial appendage cardiac tissue was obtained from the Cardiovascular Research Institute 

at the University of Kansas Medical Center. Subject qualifying criteria included: 1) being 18 years 

of age or older, and 2) undergoing an open heart procedure requiring cardiopulmonary bypass 

(including coronary artery bypass grafting, cardiac valvular repair/replacement, and repair of 

septal defects). Participation was voluntary and written informed consent was obtained prior to 

enrollment in the study. Subjects were fully informed of the risks and benefits of participation. 

There was no reimbursement for patient participation. All adult subjects regardless of age, race or 

gender were included in this study. Non-English speaking persons were excluded so that there 

would be no confusion during informed consent. No vulnerable populations were included. 

Subjects were able to withdraw their consent any time prior to the surgical procedure.  

Atrial appendage biopsy tissue was obtained by the cardiac surgeons prior to cannula 

placement during the cardiopulmonary bypass procedure. Once retrieved, the piece of tissue was 

placed in a 50-ml sterile tube containing normal saline. This tube was placed on ice to reduce tissue 

metabolism during transportation to the laboratory.  

Upon arrival, the heart tissue was placed in Ringer’s solution and carefully cleaned of any 

connective tissue before being cut into two or three muscle strips depending on the size of the 

biopsy. Contractility was performed as previously described. REDCap (Research Electronic Data 

Capture) was utilized to securely store patient data. Once all experimentation was complete, the 

tissue was disposed of in a biohazard container located in the UMKC School of Medicine 

laboratory facility. 

Measurements of Rate of Cardiac Contractility 

Self-paced ex vivo mouse hearts.  
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The mouse hearts were excised and suspended in 25-ml glass tissue chambers as previously 

described. However, in these experiments, the atria and sinoatrial node of the isolated hearts were 

kept intact to allow for spontaneous beating without artificial pacing.  Hearts were allowed to self-

pace for 20 minutes to obtain a stable baseline rate prior to administration of either TMAO or 

vehicle. Changes in heart rate (in beats per minute) were measured after treatment with TMAO 

(300 µM or 3,000 µM) or vehicle (Ringer’s solution) using the LabChart 6 software. Experiments 

were normalized within each condition to baseline rate of contractility and are presented as a 

relative change from baseline. 

Spontaneously beating rat cardiomyocytes.  

E18 rat cardiomyocytes were plated directly onto 35-mm plastic tissue culture dishes at a 

density of 10,000 cells/cm2 in 10% fetal bovine serum (PAA: Piscataway, NJ), 1: 200 

penicillin/streptomycin, 50% Ham’s F-12 media, and 50% eagle minimum essential media. The 

myocytes were maintained in a 37°C, 5% CO2, and 95% O2 incubator and allowed 2-5 days of 

growth, until 100% confluency and spontaneous beating of cell populations occurred. On the day 

of imaging, media was removed from the dish and the cells were washed in the perfusion system 

for 10 minutes, which also allowed time for acclimation to the flow of the system. The cells were 

then loaded on the microscope at 37°C with the Ca2+ indicator dye, Fluo-4 AM (Invitrogen; 10μM) 

in calcium imaging buffer (D-MEM/F-12 with 2 mM CaCl2) and incubated for 20 minutes. Cells 

were washed 3 times in calcium imaging buffer and allowed to de-esterify for 10 minutes. 

Intracellular Ca2+ oscillations were measured using an inverted microscope with fluorescent 

imaging capabilities [Olympus IX51 (Olympus: Melville, NY), Hamamatsu Orca-ERGA charge-

coupled device camera (Hamamatsu: Bridgewater, NJ), Semrock Bright Line filter set (Semrock: 

Rochester, NY), EXFO X-cite metal halide light source (EXFO: Mississauga, ON, Canada), and 
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Slidebook ratiometric software (Intelligent Imaging Innovations)]. TMAO (300 µM) or vehicle 

(calcium imaging buffer) were carefully perfused into the cell culture dishes at a rate of 0.3 ml/min 

using a VC-8T perfusion system (Warner Instruments: Hamden, CT) and driven by P720/66 high-

flow peristaltic pumps (Instech: Plymouth Meeting, PA). The perfusion protocol for acute 

application of TMAO was as follows: 2 minutes vehicle, 7 minutes TMAO, 6 minutes washout 

with vehicle. The fluorescent changes from each cell were averaged and used for data analysis. All 

data were analyzed for average calcium oscillation frequency in the last 30 seconds prior to 

treatment (baseline) and then in the final 30 seconds after TMAO or vehicle application. This was 

used to calculate a fold change from baseline, which was then normalized to control (vehicle).  

Statistical Analysis 

All statistical procedures and graphs were performed with GraphPad Prism 5.0 (La Jolla, 

CA). Data are presented as the average fold change from baseline ± SEM. Data were compared 

using either an unpaired t-test or a one-way analysis of variance, with the significance set at the 

P < 0.05 level. The one-way ANOVA was followed by Newman-Keuls Multiple Comparison post 

hoc analysis. 
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Figure 1. TMAO Increases Cardiac Contractility in ex vivo Mouse Hearts A: raw tracings of paced, 

ventricular contractions at baseline and then following 3,000 µM TMAO. B: mean changes in isometric tension 

(force) normalized to baseline contractions. C: mean changes in maximum slope, peak area, and minimum slope 

of the contractile waveform normalized to baseline contractions (n = 6-7 animals). *Statistical difference from 

vehicle (P < 0.05). † Statistical difference from 300 µM TMAO (P < 0.05). 
 

RESULTS 

 
TMAO-induced Changes in Force of Cardiac Contractility  

In order to explore the acute effect of exogenous TMAO on cardiac muscle contractility, 

we compared the contractile responses elicited by diffusing increasing concentrations of TMAO 

to vehicle treatment. Peak changes in whole heart contractility were noted between 7 and 18 

minutes following addition of TMAO to the organ bath. Figure 1A displays raw tracings of paced 

hearts following treatment with 3,000 µM TMAO. Acute treatment with TMAO increased average 

isometric force generation 17% and 41%, at 300 µM and 3,000 µM respectively, compared to 

vehicle (P < 0.05; Fig. 1B). We further analyzed the effect of TMAO on specific characteristics of 

each contractile waveform. Increasing concentrations of TMAO induced significant increases in 

the maximum slope (rate of contraction), peak area under the curve, and minimum slope (rate of 

relaxation) of the waveform when compared with vehicle (P < 0.05; Fig. 1C).  
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In these initial experiments, TMAO was diluted into the organ bath for diffusion to the 

heart. In the next series of experiments, we directly perfused TMAO through the coronary arteries. 

Modified Langendorff perfusion of hearts with 300 µM TMAO generated a greater response 

compared to non-perfusion and increased isometric force 34% compared to vehicle (P < 0.05; Fig. 

2B).  Langendorff perfusion of TMAO also induced statistically significant increases in maximum 

slope (59%), peak area under the curve (26%), and minimum slope (42%) of the contractile 

waveform compared to vehicle (P < 0.05). 

To determine if our findings translated to human heart tissue, we repeated our studies with 

human atrial appendage biopsy tissue. Demographic information on the patients from which the 

samples were obtained is displayed in Figure 3A. Of note, all participants had a documented 

history of coronary artery disease and hypertension. Other comorbidities included history of 

myocardial infarction, arrhythmia, diabetes, CKD, hyperlipidemia, and thyroid disease. Two 

subjects in the TMAO group and three subjects in the control group were taking a beta-blocker at 

the time of their enrollment in this study. Though these drugs lower blood pressure and reduce 
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Figure 2. Langendorff Perfusion of Coronary Arteries with TMAO Generates an Even Greater Response  

A: modified Langendorff perfusion apparatus — a cannula is inserted into the aorta to facilitate reverse 

perfusion, the heart is connected to the force transducer and hung between bipolar stimulating electrodes. B: 

mean changes in isometric tension induced by 300 µM TMAO either infused into the organ bath (Diffusion) or 

Langendorff perfused through the coronary circulation (Perfusion). All changes have been normalized to 

baseline contractions and are shown as a fold change (n = 2-3 animals). *Statistical difference from vehicle (P 

< 0.05). † Statistical difference from diffusion-based delivery of 300 µM TMAO (P < 0.05). 
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beta-adrenergic receptor activity in vivo, all biopsy samples included for analysis generated a 

greater than 40% increase from baseline in response to the inotropic agent, norepinephrine, used 

as a positive control. Consistent with what was observed in our animal model, TMAO (3,000 µM) 

increased isometric tension 29% compared to vehicle (P < 0.05; Fig. 3B). TMAO also increased 

maximum slope 29% (P <0.05), minimum slope 32% (P <0.05) and peak area under the curve 

12% (P > 0.05) compared to vehicle.  

TMAO-induced Changes in Rate of Cardiac Contraction  

While the previous experiments involved paced hearts or cardiac tissue, we were interested 

in whether TMAO also exhibited chronotropic effects in addition to the observed inotropic effects. 

To further explore this, the atria and sinoatrial node were kept intact and the hearts were allowed 

to beat spontaneously, without artificial pacing. Figure 4A displays raw tracings of a self-paced 

heart at baseline and then following treatment with 3,000 µM TMAO. Average contraction 

frequency increased 27% and 46%, at 300 µM and 3,000 µM respectively, compared to vehicle (P 

< 0.05; Fig. 4B).  
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Treatment Age Gender Race Procedure 

Vehicle 

Subject 01 71 Male Caucasian CABG 

Subject 02 59 Male Caucasian CABG 

Subject 03 59 Male Caucasian CABG + valve repair 

Subject 04 58 Male Caucasian CABG + valve repair 

Subject 05 46 Male Caucasian CABG 

TMAO 

Subject 06 45 Female African Am. CABG + valve repair 

Subject 07 54 Female Caucasian CABG 

Subject 08 58 Male Caucasian CABG 

Subject 09 59 Male Caucasian CABG 

 

Figure 3. TMAO Increases Contractility of Human Heart Tissue A: subject demographics and cardiac 

procedure performed at time of atrial appendage biopsy retrieval. B: mean changes in isometric tension induced 

by 3,000 µM TMAO or vehicle normalized to baseline contractions (n = 4-5; P < 0.05). *Statistical difference 

from vehicle (P < 0.05).  
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Figure 4. TMAO Increases Rate of Cardiac Contraction A: raw tracings of spontaneously beating isolated 

mouse hearts at baseline and then following treatment with 3,000 µM TMAO. B: mean changes in contraction 

rate evoked by TMAO or vehicle normalized to baseline rate (n = 3; P < 0.05). C: spontaneously beating 

embryonic rat cardiac myocytes were stained with two cardiac-specific markers, cardiac troponin I antibody (top 

image) and atrial natriuretic peptide antibody (bottom image) as well as DAPI to stain the nuclei. D: fold change 

in the average frequency of calcium oscillations normalized to vehicle (n = 3-4). *Statistical difference from 

vehicle (P < 0.05). † Statistical difference from 300 µM TMAO (P < 0.05).  

We followed these experiments by imaging spontaneously beating isolated embryonic 

(E18) rat cardiomyocytes. First, to confirm the cardiac phenotype, these cells were stained using 

fluorescent antibodies to cardiac specific markers — troponin I and atrial natriuretic peptide (ANP) 

(Fig. 4C). Next, the cells were imaged using the fluorescent Ca2+ indicator, Fluo-4 AM, to measure 

changes in intracellular Ca2+ wave frequency following treatment with TMAO (300 µM) or 

vehicle. TMAO increased the calcium oscillation frequency 42% compared to vehicle (P < 0.05; 

Fig. 4D) but did not increase peak intracellular calcium (P > 0.05).  
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DISCUSSION 

There is a strong inverse relationship between kidney function and TMAO levels within 

the body.23,25,35,45 In healthy patients the median serum TMAO concentration is approximately 3 

µM. As CKD advances to ESRD, median serum TMAO concentration climbs roughly 30-fold.37 

Recent studies suggest TMAO could be an independent, nontraditional risk factor for CVD in 

patients with CKD,22,46 with elevated concentrations of TMAO having been associated with 

increased risk for major adverse cardiovascular events (myocardial infarction, stroke, and 

death),22,23,38 heart failure,45,47 and worse overall survival even after adjusting for traditional risk 

factors.36,48 Despite these strong clinical associations, the mechanism by which TMAO promotes 

cardiovascular risk remains poorly understood. To date most studies have focused on vascular 

function. For example, animal studies have linked increased plasma TMAO to foam cell formation 

and altered sterol metabolism;22,24 however, few studies have attempted to uncover the effects of 

TMAO on the myocardium itself. Therefore, our objective was to determine whether TMAO alone 

could directly alter cardiac muscle mechanics. The major findings of this study were: 1) acute 

TMAO exposure increases the force of cardiac contractility in mice 2) these findings translate to 

human cardiac muscle and 3) exposure to TMAO acutely increases the spontaneous beating rate 

of mouse hearts as well as that of isolated cardiac myocytes.  

Inotropic Effects  

We have shown for the first time that TMAO significantly increases isometric tension, 

maximum slope, peak area under the curve, and minimum slope of the contractile waveform in 

isolated whole mouse hearts. These increases were significantly greater in Langendorff perfused 

hearts than when TMAO was pipetted into the organ bath. Increases in ex vivo contractility were 
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also observed in human heart biopsy tissue, confirming that TMAO directly influences human 

cardiac function.  

The cellular mechanism(s) responsible for this improved contractility remain to be 

elucidated in future studies. However, data from previous studies suggests several possibilities. 

First, TMAO may augment cytosolic calcium release mechanisms. It has recently been shown that 

acute TMAO exposure can directly modulate platelet hyperresponsiveness and thrombosis 

formation through increasing calcium release from intracellular stores.49 Interestingly, we did not 

observe a significant increase in peak intracellular calcium when treating isolated rat 

cardiomyocytes with TMAO. The increase in calcium may have been mitigated by the increase in 

rate of excitation induced by TMAO. Nevertheless, it may be that the underlying mechanism is 

largely independent of calcium.  

Second, TMAO may be altering the muscle proteins themselves. Growing evidence 

suggests that TMAO stabilizes the structure of various proteins through preferential hydration.50–

56 Owing to its small size and a combination of both hydrophobic and polar characteristics, TMAO 

mimics a protein chaperone57 promoting protein folding and stabilization of secondary structure 

through formation of hydrogen bonds with surrounding water molecules, which excludes water 

from the protein’s amide backbone.58–61 At high concentrations (1.0 M) in rabbit skeletal muscle, 

TMAO has specifically been shown to enhance polymerization of actin62,63 and stabilization of 

myosin.64 In this study the authors showed that at these high concentrations both sarcomere sliding 

velocity and ATPase activity were decreased, potentially indicating excessive stabilization. 

Alternatively, TMAO at 50 mM has been shown to increase skeletal muscle power in the rainbow 

smelt, Osmerus mordax, at 10°C. Treatment with TMAO led to greater generation of contractile 

force and faster relaxation,65 which the authors attributed to the stabilizing influence of TMAO on 
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muscle proteins. In our studies we also observed an increase in contractile force and faster 

relaxation time; therefore, it is possible that similar mechanisms are responsible for altering 

contractility in cardiac muscle and skeletal muscle, both of which are striated muscle types.   

Consistent with this hypothesis, there is robust evidence that TMAO counteracts the effects 

of urea at the cellular level.16,18,23–25,44–46 Urea, the predominant nitrogenous product of protein 

metabolism, is also renally cleared and thus accumulates as the kidneys fail. However, unlike 

TMAO, urea weakens the hydrogen bonds of water surrounding proteins,51,58 which results in 

protein unfolding and loss of function.66 While studies investigating the direct actions of TMAO 

on the heart are lacking, the direct effects of urea are better characterized. In a series of similar 

cardiac contractility experiments, urea depressed myocardial force development.67,68 It is 

reasonable, therefore, to postulate both urea and TMAO at pathological concentrations have the 

capacity to alter the excitation-contraction coupling mechanism in heart muscle and that TMAO 

may oppose the actions of urea at the myocardium due to its stabilizing properties.  

Chronotropic Effects  

In the absence of artificial pacing, acute exposure of whole mouse hearts to TMAO 

significantly increased spontaneous beating rate. TMAO also increased calcium oscillation 

frequency, which corresponds to cell excitation, in spontaneously beating cardiomyocytes. We 

utilized these particular cells, primary cardiomyocytes from embryonic rats at day 18 

(approximately 2 days before birth), because they are able to autonomously pace69 and have been 

shown to change rates in response to known chronotropic agents.70 

Previous research indicates that more than 85% of the patients with CKD have at least one 

form of electrocardiogram (EKG) abnormality.71 Tachycardia and premature contractions are 

among the most prevalent changes seen in this patient population.71,72 This may indicate that 
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TMAO increases pace-making and/or excitatory responses in the heart. Interestingly, in a recent 

study investigating the role of TMAO in the progression of atrial fibrillation, when locally injected 

into the four major atrial autonomic ganglionated plexi, TMAO increased susceptibility to atrial 

fibrillation in canines.73 These findings in the autonomic nervous system — in light of our data 

showing a direct, acute effect on the heart — indicate TMAO may facilitate arrhythmia 

inducibility.  

The mechanism responsible for the increase in beating frequency also remains to be 

elucidated; however, this too may occur through protein stabilization. In a study designed to test 

the in vivo efficacy of TMAO in correcting the Cl- transport defect in a mouse model of cystic 

fibrosis (CF), TMAO partially corrected the Cl-conductance defect in ∆F508 CF mice.74 

Therefore, TMAO may modify cardiac beating frequency and excitability through stabilization of 

ion-channels within the muscle membrane, altering ion currents. Further in vitro studies are needed 

to uncover the mechanisms responsible for the changes we observed in spontaneous beating rate.  

Significance  

There is a growing appreciation for the intricacy of the relationship between the 

microbiome, kidneys, and cardiac vasculature and its role in chronic disease progression. TMAO 

has been implicated to play a critical role in this multiorgan cross-talk, yet the importance of the 

direct impact TMAO has on the heart itself is only now being explored.  

At present, it is unclear if TMAO is a harmful byproduct or if it provides some protective 

benefit.75 We hypothesize that the acute inotropic and chronotropic actions of TMAO may help to 

maintain cardiac output during early uremic cardiomyopathy. Among non-diabetic patients with 

CKD stages 2 to 4, there was no difference in left ventricular ejection fraction compared to healthy 

controls, in spite of increased diffuse myocardial fibrosis and global cardiac strain.76 In light of 
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our findings, TMAO may induce compensatory increases which would allow for preservation of 

cardiac output and renal perfusion, physiologically advantageous adjustments for patients with 

renal dysfunction. Yet chronically elevated cardiac contractility and heart rate, while helping to 

maintain cardiac homeostasis, increases cardiac energy consumption and results in pathologic 

changes including cardiac remodeling, hypertrophy, fibrosis, and eventual progression to heart 

failure.77–83 The prevalence of these maladaptive alterations in cardiac structure and function 

increases as renal function deteriorates.84 

In summary, our study is the first to show TMAO alone has direct inotropic and 

chronotropic effects on the heart. This lays the groundwork for future translational studies 

investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during 

CKD. Further studies are needed to illustrate a mechanism of action and to explore whether TMAO 

represents a therapeutic target for reducing cardiovascular mortality in patients with CKD.   

Limitations  

 A few limitations in our studies should be acknowledged. First, contractility analysis was 

performed using ex vivo mouse hearts. While this allowed us to characterize the direct effect of 

TMAO on isolated cardiac muscle, contractile mechanics may differ in vivo. Further, in the human 

heart contractility experiments we were able to test atrial appendage tissue but not ventricular 

muscle. While we obtained similar results between human atrial samples and mouse ventricular 

tissue, there are species and muscle type differences which are unavoidable. Finally, our ex vivo 

studies were critical for isolating the immediate effects of TMAO on cardiac muscle apart from 

other endogenous agents released in vivo; however, once a heart is removed it remains 

metabolically active for only a limited time outside of the body, even when oxygenated. Therefore, 

our setup is less conducive for measuring changes in cardiac function over extended periods.   
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Future Directions  

Due to the disproportionate prevalence of sudden cardiac death among patients with CKD, 

our group has proposed to further explore the ability for TMAO to induce and promote 

arrhythmias, such as atrial fibrillation. To do this we would perform EKGs on mouse hearts ex 

vivo in order to characterize alterations in the electrical activity of the heart after TMAO treatment.  

We are also interested in further exploring the cellular mechanisms responsible for the 

inotropic and chronotropic effects we observed. We plan to repeat our contractility experiments 

treating with both urea and TMAO. If TMAO is able to mitigate the action of urea on the organ 

level, this would support to the hypothesis that TMAO exerts its effect on the heart through protein 

stabilization.   

Our studies have captured the immediate effects of TMAO on the heart and cardiac cells. 

Due to the nature of our experimental design, we cannot extrapolate long-term changes in cardiac 

contractile mechanics. Now that we have described the acute effects of TMAO on the heart, we 

need to explore how chronically elevated concentrations of TMAO influence cardiac function.   
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