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Abstract 

 
 

Human T-cell leukemia virus type 1 (HTLV-1), which infects more than 20 million 

people worldwide, is known to cause adult T-cell leukemia (ATL). Even those patients treated 

with intense chemotherapy have a poor prognosis [1]. Although the detailed mechanisms on how 

HTLV-1 transforms T cells are unclear, it is believed that the viral oncoprotein Tax and the 

accumulation of somatic alterations lead to ATL [2]. In 2015, Seishi Ogawa and colleague used 

whole-exome sequencing and whole-genome sequencing to comprehensively analyze ATL 

genetic alterations [2, 3]. They found that fifty genes are significantly mutated, with 13 genes 

(PLCG1, PRKCB, CCR4, CARD11, STAT3, TP53, VAV1, TBL1XR1, NOTCH1, GATA3, 

IRF4, FAS, CCR7) affecting more than 10% of ATL patients [2]. 

 

In our previous study, we found Notch1 mutations in 30% of ATL patients leading to 

reduced Fbw7-mediated degradation and stabilization of the intracellular cleaved form of Notch1 

(ICN1). In addition, Notch inhibitors reduced ATL tumor formation in a xenograft model [4]. 

Since FBXW7 has been reported to be mutated in 6% of human tumors, we hypothesized that the 

deregulation of FBXW7 can accelerate ATL proliferation and transformation. In my first study, 

we found that FBXW7 is down-regulated and mutated in ATL patients. In contrast to the tumor 

suppressor role of FBXW7 wild-type, FBXW7 D510E increased cell proliferation and 

transformation both in vitro and in an ATL xenograft model [5]. 

Genome-wide H3K27 me3 accumulation has been observed in ATL patients, which can 

be explained by Polycomb repressive complex 2 hyperactivation [6]. In addition, EZH2 

suppressed Fbxw7 expression via H3K27me3, resulting in Notch activation [7]. We 

hypothesized that the mutations of epigenetic regulators can reduce the FBXW7 expression in 

ATL. In my second study, we applied whole-genome next-generation sequencing (NGS) of 
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uncultured freshly isolated ATL samples and identified the presence of mutations in SUZ12, 

DNMT1, DNMT3A, DNMT3B, TET1, TET2, IDH1, IDH2, MLL, MLL2, MLL3 and MLL4. 

TET2 was the most frequently mutated gene, occurring in 32 % (10/31) of ATL samples 

analyzed. Consistent with the previous report, Seishi Ogawa demonstrated hypermethylation in 

promoter-associated CpG islands in ATL [2]. Since the FBXW7 promoter hypermethylation has 

been reported [8] and a DNA methyltransferase inhibitor can restore the expression of FBXW7, 

the correlation of TET2 mutations and FBXW7 down-regulation needs to be further examined. 

FBXW7α R465C/+ knockin mice increased T-ALL formation when in cooperation with a 

Notch1 mutation [9]. Mechanically, FBXW7α R465C/+ stabilized c-Myc protein half-life, 

therefore increasing leukemia-initiating cells (LICs) in FBXW7α R465C/+ knockin mice [9]. In 

my third study, we confirmed the existence of side populations having both self-renewal and 

leukemia-renewal capacity and representing cancer stem cells (CSC)/ leukemia-initiating cells 

(LIC) in ATL cell lines and patient samples. We further show that PI3K and the NOTCH1 

signaling pathway have opposite functions on the ATL side population. Constitutive activation 

of NOTCH1 signaling depletes the pool of side population cells in ATL-derived cell lines. 

Since Notch1 signaling is deregulated and essential for ATL progression, our results 

indicate another mechanism to explain how Notch1 signaling is constitutively active in ATL 

patients, implying a unique therapeutic opportunity to target FBXW7 in the future. 
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HTLV-1 

 

Human T-lymphotropic virus type I (HTLV-1) infects 20 million people worldwide [1]. 

 

While most people remain asymptomatic, about 5% of HTLV-1-infected people eventually 

develop adult T-cell leukemia-lymphoma (ATL). The clinical and hematologic characterization 

of ATL was first reported in 1977 as a distinct T-cell leukemia [10]. The RNA retrovirus HTLV- 

1 was then isolated from a cutaneous T-cell lymphoma patient by Gallo in 1980 [11]. In addition 

to ATL, HTLV-1 is causative for HTLV-1-associated myelopathy / tropical spastic paraparesis 

(HAM-TSP) [12], a chronic inflammatory disease and opportunistic infection. It is believed that 

low immune response to HTLV-1-infected cells is related to ATL development and high immune 

response is correlated with HAM-TSP [13]. 

In a clinical setting, the features of ATL are diverse. According to the Shimoyama 

classification, ATL patients can be divided into 4 different subtypes: acute, lymphoma, chronic, 

and smoldering [1]. Among those subtypes, acute, lymphoma, and unfavorable chronic are 

thought to be aggressive forms of ATL and favorable chronic and smoldering are classified as 

indolent forms of ATL. 
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Virology  

 

HTLV-1 is a positive, single-stranded RNA virus belonging to deltaretrovirus [14] . 

 

Deltaretrovirus consists of exogenous horizontally-transmitted viruses found in a few groups of 

mammals, including bovine leukemia virus, Human T-lymphotropic viruses (HTLV-1 and 2), 

and Simian T-lymphotropic viruses (STLV 1-4). HTLV-1 genome encodes 3 structure proteins 

(Gag, Pol, and Env) and many regulatory proteins such as Tax, p30 and HBZ (Figure 1). 
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Figure 1. HTLV-1 genome  

 

The gene of HTLV-1 encodes 3 structural proteins (Gag, Pol, and Env) and many 

regulatory proteins such as Tax, p30 and HBZ, which can activate viral/host gene expression, 

escape host immune response and maintain viral infection (Adapted from [14]). 
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Virus infection 

 

After infection, the virus uses reverse transcriptase to generate DNA from virus RNA and 

integrate into host genomic DNA, which is referred to as provirus [14]. HTLV-1 preferentially 

replicates in CD4+ T cells, but other cells like stem cells and CD8+ T cells can also be infected 

by HTLV-1. Viral env gene, which encodes gp21and gp46, is important for HTLV-1 infection 

[15]. In addition, it is found that glucose transporter (GLUT-1), heparan sulfate proteoglycans 

(HSPG), neuropilin 1 (NRP1) are host receptors for HTLV-1 infection [16]. The initial virus 

attachment is mediated by the interaction between gp46 and HSPG which get virus closer to host 

cell [15]. Then gp46 binds to NRP1, which causes structural change of gp46 and exposes GLUT- 

1 binding site [15]. Finally, the interaction between gp46 and HSPG/NRP1/GLUT-1 forms 

multi-receptor complexes resulting HTLV-1 fusion and host cell infection [15]. Antibody 

targeting GLUT-1 reduced HTLV-1 fusion and infection, but not binding, indicating that 

interaction with GLUT-1 is essential for fusion [15]. 
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HTLV-1 encoding proteins 

 

The genome of HTLV-1 encodes the following proteins: 1. envelope proteins (encoded 

by env): surface glycoprotein (gp46) and transmembrane protein (gp21); 2. Structural proteins 

(encoded by gag): matrix layer, capsid and nucleocapsid; 3. Functional proteins (encoded by 

pol): protease (p14), reverse transcriptase (p95) and integrase; and 4. Regulatory proteins like 

Tax, Rex, p12, p13, p30 and HTLV-1 basic leucine zipper (HBZ), which is a minus-strand gene 

protein [14]. The functions of HTLV-1 protein are summarized in the Table 1 [14]. 
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Table 1. HTLV-1 proteins 

 

Functions of HTLV-1 encoding protein (Adapted from [14]) 
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The virus synthesizes a full-length messenger RNA (mRNA) encoding a large Gag-PR- 

Pol precursor polyprotein, which uses different translation starting sites for protein translation, a 

single spliced mRNA encoding Env, and many mRNAs encode different regulatory proteins 

[14]. 

p12  
 

p12 mainly localizes to the endoplasmic reticulum (ER) that involves viral replication 

and T cell activation [17, 18]. p12 interacts with β and γ chains of the interleukin-2 receptor (IL- 

2R), which activates Janus kinase/signal transducer and activator of transcription 5 (Jak/Stat5) 

signal transduction pathway [18]. In addition, by interacting with calreticulin and calnexin, p12 

increases Ca
2+ 

release from the ER and activates nuclear factor of activated T-cells (NFAT), 

which increase T cell proliferation [18]. p12 and its proteolytic cleavage product p8 has been 
 

reported to be critical for HTLV-1 viral persistence and spread in vivo[17].In addition, p12 is 

known to reduced NK cell mediated cytotoxicity of HTLV-1 infected T cell by down-regulation 

of intercellular adhesion molecules ICAM-1 and ICAM-2. Consistently, p12 can bind and 

induce major histocompatibility complex (MHC) class I heavy chain degradation, which helps 

virus escape host immune response [17]. 

 
 

p13  
 

p13 is an inner mitochondria membrane protein that reduces Tax activity through 

disrupting Tax-CREB binding protein (CBP)/p300 interaction. Therefore, p13 reduced cell 

proliferation by inhibiting Tax-mediated viral and cellular transcription [17]. In addition, p13 

enhances mitochondrial permeability to K
+ 

and activates the electron transport chain, resulting in 

up-regulation of reactive oxygen species (ROS) [18]. 
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p30 

 

p30 is a nuclear protein that regulates viral replication. p30 reduces the expression of Tax 

and Rex by retaining doubly-spliced tax/rex mRNA in the nucleus therefore down-regulating 

viral gene expression [17]. Therefore, p30 plays a role in escaping host immune surveillance 

[18]. 

 
 

Rex 

 

Rex promotes the nuclear exportation of unspliced and single spliced HTLV-1 mRNA to 

cytoplasm therefore increases the stability of HTLV-1 mRNA and HTLV-1 protein translation 

[18]. Initially, Rex interacts with HTLV-1 mRNA by binding to Rex responsive element (RxRE). 

Then, Rex interacts with nuclear exporter CRM1 and promotes nuclear exportation of HTLV-1 

mRNA[18]. The cytoplasm exportation of unspliced and partially spliced HTLV-1 mRNA 

protects further mRNA splicing and increasing the translation of Gag and Env for viral 

replication [18]. 

The RxRE sequence is located within the retroviral 3’ LTR and is known to for highly 

stable stem-loop structure that is essential for Rex binding [19]. In addition to being the binding 

site for Rex, RxRE is indispensable for optimal positioning of the HTLV-1 mRNA ploy-A signal 

and poly-A binding site in the HTLV-1 mRNA, which brings two separate sequence together 

through RNA stem-loop structure [18]. 

 
 

Tax 

 

Tax is a strong transcriptional activator for viral genes and host genes [20, 21]. 
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Tax and viral transcription 

 

HTLV-1 genome contains a long terminal repeat (LTR) at N- and C-terminals, which 

consists of unique 3’ (U3), the repeated (R) and the unique 5’ (U5) [22]. U3 contains Tax 

responsive element I (TRE-1), which consist of 3 discontinuous 21-base pair repeats. Each of the 

3 discontinuous 21-base pair repeats is sufficient for Tax-mediated transcription [22]. 

Furthermore, discontinuous 21-base pair repeats are composed of 3 domains (Domain A, B and 

 

C) [22]. Among 3 domains, domain B contains viral cAMP response element (vCRE) that is 

important for Tax-mediated transcription [22]. Tax forms complex with cAMP response element 

binding protein (CREB), CREB-binding protein (CBP) and p300 at vCRE and initiate viral gene 

transcription [22]. 

 
 

Tax and NF-B 

 
Tax can interact with IKK regulatory component NEMO and recruits the IKK complex to 

perinuclear compartment where IKK is phosphorylated and activated [23]. Consistently, loss of 

Tax-mediated NF-B activation was observed in cell depleted NEMO. There are two models 

explain how Tax activates IKK complex [23]. The first model is that Tax forms self-dimerization 

and brings different IKK complexes closely together. The adjacent IKK complexes cross- 

phosphorylate and activate each other. Therefore, Tax M22 mutation deficient in self- 

dimerization lost it NF-B activation [23]. Another model is Tax acts as a scaffold protein that 

brings IKK complex and its upstream kinase together. IKK upstream kinases such as mitogen- 

activated protein kinase kinase kinases (MAP3Ks), MEKK1, NIK, Tpl2, and TAK1have been 

reported to interact with Tax and increase Tax-mediated NF-B activation [23].  The activation 
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of IKK complex results in IB degradation and NF-B nuclear translocation. In the nucleus, Tax 

forms Tax nuclear bodies with RelA and other cellular transcriptional components, which 

inducing high NF-B transcriptional activity [23]. 

In addition to canonical NF-B signaling pathway, Tax can activate non-canonical NF- 

 

B signaling pathway by processing p100 to p52 [23]. NEMO is essential for Tax mediated non- 

canonical NF-B activation by recruiting Tax/IKK complex, which contains only IKKα, but not 

IKKβ [23]. On the other hand, NIK has been shown to be dispensable for Tax mediated non- 

canonical NF-B activation [23]. The formation of Tax/NEMO/IKKα activates IKKα. The 

activated IKKα phosphorylates p100 and leads to β-Trcp mediated ubiquitination of p100. 

Ubiquitylated p100 is then partial degraded by proteasome and form p52 to activate non- 

canonical NF-B signaling pathway [23]. 

 

Tax and host gene transcription 

 

The promoters of c-fos, Erg-1, Erg-2, Fra-1, c-Jun, and JunD contain serum response 

factor (SRF) binding sites are known to be activated by Tax [22]. Mechanically, Tax interacts 

with Elk-1 and SAP-1, which belong to transcription factor family (TCF) that binds to promoters 

with serum response element (SRE). The deregulation of growth regulator genes responsive to 

SRF signaling increased cell proliferation and cell transformation [22]. In addition, Tax is known 

to increase the binding of SRF proteins to more diverse group of DNA sequences compared to 

canonical serum response element [22]. 

 
 

HBZ 
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HTLV-1 basic leucine zipper (HBZ) is an antisense mRNA transcribed from 3’-LTR and 

is constantly expressed in fresh ATL cells and HTLV-1-infected cells. In addition, HBZ inhibits 

Tax activity through interacting with CREB and CBP/p300, resulting in disrupting their binding 

with Tax responsive element I and cAMP response element (CRE) [22]. Silencing HBZ gene 

expression inhibits ATL cell proliferation and expression of HBZ enhances ATL cell 

proliferation [24]. In addition, enhancing TGF-beta signaling and Foxp3 expression by HBZ is a 

feature observed in ATL cells and is important for HTLV-1 persistence [25]. 

 
 

HTLV-1 mainly exists in a host-integrated provirus form and HTLV-1 infected cells 

virtually do not produce cell-free infectious HTLV-1 particles. HTLV-1 uses virus-induced 

polarization of the cytoskeleton to spread between lymphocytes. When infected cells come into 

contact with uninfected cells, HTLV-1 genome transfer to the uninfected lymphocyte through the 

viral synapse [26], which is composed of microtubule-organizing center (MTOC) [21] (Figure 

2). 
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Figure 2. HTLV-1 viral synapse 

 

Viral synapse for HTLV-1 transmission (Adapted from [21]) 



14  

The interaction between intercellular adhesion molecule 1 (ICAM1) and lymphocyte 

function-associated antigen 1 (LFA1) enhances the polarization of the MTOC at the cell-cell 

contact point and facilitates HTLV-1 transmission [21]. 

During early infection, HTLV-1 virus spreads through cell-cell contact and causes 

heterogeneous infected clones. When the virus production and host immune response reach 

balance, HTLV-1 duplication is mainly dependent on clonal expansion by host cell mitosis. The 

selective maintenance of certain clones and higher number of infected cells in late infection stage 

may play a role in the beginning of ATL [27]. Interestingly, HTLV-1 has a relatively low 

evolutionary rate compared to HIV because of the mitosis-dependent survival strategy of HTLV- 

1. The low genetic variability of HTLV-1 in vivo can be used to study the origin and evolution of 

HTLV-1 [28, 29]. 

Immune response is important for the control of provirus load and causes different 

clinical outcomes. 1. CD8+ T cells control the virus by lysing infected cells expressing viral 

antigen. 2. When the immune system is overactivated and produces too many inflammatory 

factors, it causes HAM-TSP and other inflammatory diseases. 3. The survival and proliferation 

of infected cells can accumulate genetic mutations and lead to ATL. The balance between 

immune response and provirus replication leads to a stable provirus load over time in any given 

individual [14]. 
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Epidemiology of HTLV-1 

 

About 20 million people worldwide are infected with HTLV-1. The distribution of 

HTLV-1 is endemic. There are some highly endemic regions in the world, wherein HTLV-1 

infection can be as high as 5%, including: southwestern Japan, the Caribbean, intertropical 

Africa, the Middle East, South America, and Papua New Guinea [30] (Figure 3). 
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Figure 3. World Distribution of HTLV-1 Infection 

Prevalence of HTLV-1 (Adapted from [31]). 
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Sex workers and people injecting drugs are at high risk. The major ways to transmit virus 

are breastfeeding, unprotected sex, blood transfusion, organ transplantation, and needle sharing. 

In Japan, there are many public health measures to prevent HTLV-1 infection, including testing 

donated blood, screening pregnant women and promoting condom use to prevent sexual 

transmission of HTLV-1. However, the effect of these measurements is unknown due to the lack 

of data for incidence of new infections. 

The origin of HTLV-1 can be traced back to primate T-cell lymphotropic virus (PTLV) in 

African non-human primates. PTLV spread to Asia with simian and evolved into simian T-cell 

leukaemia virus type-I (STLV-1). Then, STLV-1 migrated to Japan, India, and Indonesia where 

it evolved into the HTLV-1c (Australo-Melanesian) subtype. Later, STLV-1 came back to Africa 

from Asia and evolved into different subtypes of HTLV-1: HTLV-1a (the cosmopolitan 

subtype), Ib (the central African subtype), Id, Ie, and If. The slave trade and the increased 

mobility of humans helped spread HTLV-1a to the USA, Japan, the Middle East, and North 

Africa [1]. 
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ATL related oncogenesis and pathogenesis 

 

The detailed mechanisms on how HTLV-1 transforms T cells is unknown. However, viral 

proteins and host genetic and epigenetic modification have been shown to be involved in HTLV- 

1 mediated transformation (Figure 4). 
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Figure 4. Accumulation of somatic alterations in ATL 

 

The involvement of viral protein and host genetic and epigenetic modification in HTLV-1 

mediated transformation (Adapted from [21]). 
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Tax is known to activate various cellular signaling pathways, such as the NF-B and Akt 

signaling pathway [20], which are important for tumor cell proliferation and survival. Except for 

the deregulation of protein coding genes, miRNA is also found to be aberrant in ATL patients 

[32]. 

Tax is a strong transcriptional activator for viral genes and host genes. It is known to 

activate various cellular signaling pathways, such as the NF-B, cyclin dependent kinase and 

Akt signaling pathway (Table 2) [20, 21]. 

 
 

Tax and cell cycle 

 

Tax binds with cyclin dependent kinase (CDK) 4 and Cdk6, and increases the formation 

of CDK4/cyclin D and CDk6/cyclin D [22]. CDK/cyclin D complex then phosphorylates 

Retinoblastoma protein (Rb) and release E2F to promote cell cycle progression through G1/S 

transition [22]. In addition, Tax has been shown to induce Rb degradation via proteasome [22]. 

In addition, Tax can interact with and inactivate Chk1 and Chk2, which increases the activation 

of Cdc25 and CDK1/cyclin B [22]. Increased CDK1/cyclin B activation move cells pass through 

M phase of cell cycle. Furthermore, Tax increased the expression of cyclin D2, CDK4 and 

CDK6, which are important for cell cycle progression [22]. 

 
 

Tax and aneuploidy 

 

Tax has been reported to interact with MAD1, a mitotic spindle checkpoint (MSC) 

protein, which leads to cytoplasm translocation of MAD1 and MAD2 [22]. The translocation of 

MAD1 and MAD2 by Tax results in chromosomal segregation error and aneuploidy [22]. In 

addition to MAD1, Tax can interact with Tax1BP2 [22]. Increasing Tax1BP2 expression is 
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correlated with reduced aneuploidy. Tax mutations deficient in interacting with Tax1BP2 

reduced aneuploidy compared with Tax wild-type, which implied Tax interacts and inactivates 

Tax1BP2 [22]. 

In addition, Tax can also transform cells by inactivating p53 activity [1]. It is thought that 

Tax is important for ATL oncogenesis in the early stages because Tax can immortalize T cells 

[33] and transform cells [34]. Importantly, in transgenic mice, expressing Tax in T cells is 

sufficient for the development of leukemia in mice [35]. Although Tax can promote tumor 

progression, Tax is also an antigen recognized by host cytotoxic T cells. In order to escape the 

immune system and survive in the host, most of the ATL cells lose Tax expression by nonsense 

mutations, deletion/insertion or DNA methylation [1]. 

 
 

Tax and DNA repair 

 

Tax has been reported to impair multiple DNA repair pathways such as base excision 

repair (BER), nucleotide excision repair (NER), DNA homologous recombination repair and 

non-homologous end joining (NHEJ) [22]. Tax inhibits base excision repair by down-regulation 

of DNA polymerase β expression [22]. Inhibition of nucleotide excision repair by Tax is through 

p53 inactivation and up-regulation of proliferating cell nuclear antigen (PCNA) expression. In 

addition, activation of NF-κB signaling pathway by Tax skewed DNA repair from homologous 

recombination to error-prone non-homologous end joining (NHEJ) pathway [36]. Finally, Tax 

inhibits non-homologous end joining (NHEJ) pathway by targeting DNA-dependent kinase 

(DNA-PK) and Ku80 [22]. Tax constitutively activates DNA-PK in cells, which de-sensitizes 

cells to sense real DNA damage [22]. Furthermore, Tax reduced the expression of Ku80,resulting 

in accumulation of DNA damage in nucleus [22]. 
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In addition to DNA repair signaling pathway, Tax inhibits the DNA damage sensing 

system by targeting ataxia telangiectasia mutated (ATM) and CHK2, which impairs DNA 

damage sensing and correcting, and leads to cell cycle progression through G1/S checkpoint [22]. 

Specifically, Tax de-phosphorylates ATM, which inactivates the ATM and inhibits the 

accumulation of ATM on DNA damage site [22]. In addition, Tax expression reduced ATM- 

mediated phosphorylation of the pre-existing phosphorylated H2A.X (γH2A.X) and CHK2, 

resulting in reduced the recruitment of effector proteins such as MDC1 and CHK2 [22]. 
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Table 2. Tax activated and inactivated genes 

 

The effect of Tax on host gene expression (Adapted from [21]) 
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HBZ and cell proliferation 

 

HTLV-1 basic leucine zipper factor (HBZ) is an antisense viral protein that interacts with 

CREB-2 and inhibits viral transcription at the 5’ LTR [22]. In addition, HBZ inhibits Tax 

activity through interacting with CREB and CBP/p300, resulting in disrupting their binding with 

Tax responsive element I and cAMP response element (CRE) [22]. Although HBZ protein 

suppresses viral transcription and Tax activity, HBZ mRNA plays an opposite role in cell 

proliferation [22]. Spliced HBZ mRNA, but not un-spliced HBZ mRNA, increased the 

proliferation of ATL [22]. Further studies are needed to figure out detailed mechanisms in HBZ- 

mediated cell proliferation. 

 
 

The multi-step carcinogenesis model, wherein HTLV-1-immortalized T cells accumulate 

multiple changes during the latency period explains the age-specific occurrence of ATL [37, 38]. 

Therefore, the development of ATL is thought to be the combination result of Tax [21], HTLV-1 

basic leucine zipper factor (HBZ) [24], miRNA [39], tumor suppressor [40-42] and oncogenes 

[4]. 

When using oligo-array comparative genomic hybridization (CGH) to analyze ATL 

patients’ peripheral blood (PB) and lymph node (LN) samples, Umino found that different 

subclones in the LNs come from a common clone and one of the selected subclones then appears 

in the PB. Their findings suggest the accumulation of multiple changes and the clonal evolution 

of ATL cells in LN. 
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HTLV-1 and ubiquitin-proteasome 

 

Tax is known to be able to manipulate the host ubiquitin-proteasome system to activate 

NF-κB signaling [43] and stabilize Mcl-1[44] to transform the cells and prevent apoptosis. 

Tax can activate the canonical and non-canonical NF-B signaling pathway [43]. In the 

canonical NF-B signaling pathway, Tax directly interacts with NEMO and induces K63- 

polyubiquitination of NEMO [45]. In addition, Tax can sustain the IKK activation by inhibition 

of protein phosphatase 2A (PP2A). The activation of IKKβ phosphorylates IBα and triggers its 

degradation. Then, the RelA/p50 dimer translocates into nuclear and activates downstream gene 

expression. Moreover, in the non-canonical NF-B signaling pathway, Tax can activate the 

IKKα and trigger the process of p100 to p52. The Tax-mediated induction of p100 processing is 

dependent on beta-transducin repeat-containing protein (β-Trcp), a component of the SCF E3 

ubiquitin ligase complex. IKK inhibitors or dominant-negative IκB mutants impeded the Tax- 

mediated transformation, which indicated the dependence of the NF-B signaling pathway in 

Tax transformation. 

Preventing apoptosis is important for tumor formation and resistance to chemotherapy. 

Mcl-1 belongs to the Bcl-2 family and is highly expressed in human tumors[46]. Mcl-1 has a 

very short half-life, which is known to be post-transcriptionally regulated by E3 ubiquitin ligases 

MULE, β-TRCP and FBW7 [44]. Using mass spectrometry, Choi found that Tax can stabilize 

Mcl-1 by adding lysine 63 (K63)-linked polyubiquitination [44] in a TRAF6-and IKK-dependent 

manner (Figure 5) [44]. K63- polyubiquitination of Mcl-1 prevents its binding with the core 20S 

proteasome, thus blocking the proteasome-dependent degradation of Mcl-1. The identification of 

Mcl-1 inhibitor may provide an opportunity to overcome the resistance caused by Mcl-1 

overexpression in the future [47]. 
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Figure 5. Tax and Mcl-1 stability 

 

Tax stabilizes Mcl-1 through TRAF6-mediated K63 polyubiquitination (Adapted from 
 

[44]) 
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Clinical features of ATL 

 

The clinical features of ATL are diverse from patient to patient. The clinical features of 

ATL include general lymphadenopathy, skin lesions, hepatosplenomegaly, leukocytosis with 

abnormal flower-like lymphocytes [14] (Figure 6) or with an increased number of neutrophils, 

hypercalcemia, and opportunistic infection [1]. 
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Figure 6. Flower-like ATL cells 

 

Image of abnormal flower-like lymphocytes (Adapted from [14]) 
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According to Shimoyama criteria (Figure 7) [1], ATL patients can be classified into 4 

different subtypes (acute, lymphoma, chronic, and smoldering) according to their prognostic 

factors and clinical observation. The acute, lymphoma and unfavorable chronic subtypes largely 

define poor prognosis. On the other hand, favorable chronic and smoldering subtypes are 

associated with better clinical outcome. 
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Figure 7. Shimoyama criteria 

 

ATL clinical classification (Adapted from [1]) 
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Most ATL cells express cell surface markers: CD3, CD4, CD25, CCR4 [48] and FOXP3 

[49], and monoclonal integration of HTLV-1 DNA. Although ATL cells functioning as 

regulatory T cells is controversial, ATL cells from a subset of patients are hypo-responsive to 

stimulation and repress the proliferation and IFN-gamma production of autologous CD4+ non- 

ATL cells [50]. That may at least explain part of the immunosuppression observed in ATL 

patients. 
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Clinical treatment for ATL 

 

Most ATL treatments are based on other malignant lymphoma/leukemia treatments, such 

as diffuse large B-cell lymphoma and chronic lymphocytic leukemia (Table 3) [1]. 
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Table 3. Therapeutic choices for ATL  

ATL treatments (adapted from [1]) 
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Chemotherapy 

 

The treatment of aggressive ATL and indolent ATL are usually based on the treatment 

used for other malignant lymphomas. The VCAP-AMP-VECP regimen is a series of 

combination chemotherapy composed of vincristine, cyclophosphamide, doxorubicin, and 

prednisolone (VCAP); doxorubicin, ranimustine, and prednisolone (AMP); and vindesine, 

etoposide, carboplatin, and prednisolone (VECP). The rate of complete response (CR) and 

overall survival are improved by the VCAP-AMP-VECP regimen compared with biweekly 

cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). However, the 13-month 

median survival time is still shorter compared with other hematologic diseases and there is no 

treatment for relapsed or resistant ATL patients [1, 51]. 

Interferon α and zidovudine 

 

Interferon α is secreted by many cells like lymphocytes and is known to stimulate 

immune response to eradicate virus infection. Interferon α has been used in clinical settings for 

cancer (renal cell carcinoma and melanoma) and virus infection (hepatitis B and C virus). 

Zidovudine is a nucleotide analog reverse-transcriptase inhibitor that is used for HIV treatment. 

 

Treatment of ATL with a combination of interferon α and zidovudine was first reported 

in 1995 [52, 53]. 58% of ATL patients receiving the combination of interferon α and zidovudine 

have major response and 57% of ATL patients in whom prior cytotoxic therapy has failed also 

have major response. In a meta-analysis, five-year overall survival rates are 2 times higher in 

ATL patients receiving a combination of interferon α and zidovudine compared with patients 

receiving chemotherapy. When analyzing different subtypes of ATL, acute, chronic, and 

smoldering ATL patients are more responsive to interferon α and zidovudine treatment compared 

with chemotherapy, but the ATL lymphoma patients got a better prognosis with chemotherapy. 
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Importantly, the 5-year survival rate is 82% in acute ATL and 100% for chronic and smoldering 

ATL patients with complete remission by interferon α and zidovudine treatment [54]. In 

addition, combining chemotherapy with interferon α and zidovudine increased the overall 

response rate and median overall survival in acute and lymphoma ATL [55]. 

Allogeneic hematopoietic stem cell transplantation (HSCT) 

 

All ATL patients receiving autologous stem cell transplantation had ATL relapse or died 

because of transplantation complications, which shows little benefit for ATL patients [56]. 

Allogeneic HSCT is an effective treatment for ATL patients with 3-year overall survival and 

relapse-free survival at 45.3% and 33.8%, respectively [57]. Mild-to-moderate acute graft- 

versus-host disease (GVHD) is associated with increased overall survival and lower disease- 

associated mortality. However, moderate-to-high acute GVHD is correlated with a higher risk for 

treatment-related mortality [58]. The results above indicate that allogeneic HSCT can benefit 

ATL patients, but the treatment-related mortality needs to be carefully managed. Another factor 

affects the successful rate of allogeneic HSCT is graft-versus-HTLV-1 response [59]. The 

restoration of immune response against the HTLV-1 antigen after HSCT leads to graft-versus- 

leukemia effects and may improve the outcome of ATL patients. 

Novel treatment 

 

CCR4 is a G-protein coupled receptor that is expressed on Th2 cells and regulatory T 

cells [1]. 88.3% of ATL cells from patients are CCR4+ and the positive CCR4 expression is 

correlated with unfavorable prognosis [60]. Mogamulizumab (KW-0761) is an anti-CCR4 

monoclonal antibody with a defucosylated Fc region to increase binding affinity to the Fc 

receptor on the effector cells. Mogamulizumab can effectively treat against ATL in vitro and in 

vivo through activating antibody-dependent cellular cytotoxicity (ADCC). The efficiency of 
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Mogamulizumab is highly dependent on the amount of effector natural killer cells present [61]. 

In the phase Ⅰ clinical trial of Mogamulizumab, 31% of ATL patients showed objective 

response and the toxicity was acceptable at all the doses tested [62]. In the phase Ⅱ clinical trial 

of Mogamulizumab, the overall response rate is 50% and median progression-free and overall 

survival were 5.2 and 13.7 months, respectively. Collectively, Mogamulizumab showed effective 

anti-ATL activity in clinical ATL patients with tolerable toxicity [63]. 

Other clinical trials like Bortezomib (proteasome inhibitor), Lenalidomide 

(immunomodulatory drug), Panobinostat (histone deacetylase inhibitor), Alisertib (Aurora A 

kinase inhibitor) and Ruxolitinib (JAK1/2 inhibitor) are ongoing [1]. The research of novel 

treatments for ATL may one day improve the ATL survival and reduce the drug toxicity. 
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HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) 

 

In addition to ATL, HTLV-1 infection is associated with inflammatory disease 

HAM/TSP [14]. 

The clinical observation for HAM/TSP is a chronic inflammation of the white and grey 

matter of the spinal cord. Mononuclear cells, mainly T cells, are the source causing perivascular 

cuffing and infiltrating the parenchyma [14]. In clinic, HAM/TSP patients showed infected T 

cells in the spinal cord lesion and HTLV-1 Tax specific CD8+ T cells in the cerebrospinal fluid 

[14]. The spinal cord impair mainly happens at the white matter of the lower thoracic spinal cord, 

which explains the clinical observation of spastic paraparesis in the lower limbs [14]. Since there 

is no evidence showed that HTLV-1 infects neuronal cells, astrocytes, or microglia, the damage 

of spinal cord is caused by the bystander effect of T cell immune response [14]. 

When compare HAM/TSP patients with HTLV-1 infected asymptomatic carriers, 

HAM/TSP patients showed higher provirus load, inflammatory cytokines such as IFN-γ and 

TNFα and HTLV-1 specific CD8
+ 

T cells [14]. This clinical observation implies that higher 

HTLV-1 burden and immune response skews the HTLV-1 infected patient toward developing 

HAM/TSP [14]. Consistently, HTLV-1 infected patients with polymorphism in the TNFα 

promoter and the chemokine gene SDF-1α is associated with HAM/TSP development [14]. 
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Notch signaling pathway 

 

The Notch signaling pathway is involved in many different cellular functions, such as cell 

cycle [64], apoptosis [65], and differentiation [66]. In Drosophila melanogaster, there is one 

Notch receptor and two ligands (Delta and Serrate (Ser)). Furthermore, there are 4 Notch 

receptors (Notch 1-4) and 5 ligands (Delta-like (DLL1, DLL3 and DLL4) and Jagged (JAG1 and 

JAG2)) in mammals (Figure 3) [67, 68]. Mature Notch receptor on the membrane is a non- 

covalently linked heterodimers. The extracellular and transmembrane (intracellular) portion 

connect with each other through heterodimerization domain (HD) (Figure 8). The mutations in 

the HD domain cause ligand-independent activation of Notch receptors [67]. The extracellular 

portion has many epidermal growth factor (EGF)-like repeats. The transmembrane and 

intracellular portion is comprised of RBP-J-associated molecule (RAM) domain, Ankyrin (ANK) 

domain, nuclear localization sequences (NLSs), transactivation domain (TAD) and PEST 

(proline-, glutamate-, serine- and threonine-rich) domain. PEST domain is known to regulate 

NICD degradation and is mutated in many tumors [4, 67]. 
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Figure 8. Notch receptors 

 

Notch receptors in mammals (Adapted from [67]). 
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Every Notch ligand has an EGF-like repeat region and Delta/Serrate/Lag (DSL) except 

for the domains Jagged1 and Jagged2, which have a uniquely conserved cysteine-rich (CR) 

domain [67]. 
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Figure 9. Notch ligands 

 

Notch ligands in mammals (Adapted from [67]). 
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Upon binding with a ligand, the Notch receptor starts a series of proteolytic cleavages 

(Figure 10) and releases Notch intracellular domain (NICD) from the membrane. Once released, 

the intracellular domain of Notch (ICN) releases from the cell surface and translocates into the 

nucleus. In the nucleus, ICN forms a transcriptional activation complex with DNA-binding 

protein CSL (CBF1/Suppressor of Hairless/LAG‑1; also known as RBPJ) and MAML 

(Mastermind-like protein) to induce the expression of Notch downstream target genes [69-71]. 

At the end, CycC:CDK8 recruits to ICN and causes ICN hyperphosphorylation. The 

phosphorylation of ICN at the PEST domain causes ICN to be ubiquitylated by CDC4/FBXW7 

ubiquitin ligase and finally degraded by proteasome to terminate the Notch signaling pathway 

[72]. 
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Figure 10. Notch activation 

 

Notch receptor and ligand interaction induced series cleavage (Adapted from [66]). 
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Notch signaling pathway and T-cell development 

 

The first link between Notch signaling and the T cell is found in T-cell acute 

lymphoblastic leukemia (T-ALL) patients with chromosomal translocation t(7;9)(q34;q34.3). 

Later, gain-of-function and loss-of-function experiments indicated Notch signaling in αβTCR
+
, 

γδTCR
+
, CD4

+ 
and CD8

+ 
T‑cell development [66]. Ectopic expression of NICD increase pre-T 

cells in the bone marrow and the ablation of Notch in hematopoietic stem cell (HSC) result in 

loss of T-cell differentiation, increased pool of granulocyte-monocyte progenitors and thymic 

atrophy. In addition to development, Notch1 signaling also affects pre-T cell metabolism through 

the PI3K/AKT signaling pathway [66, 69]. 
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Notch Signaling Pathway in Cancer 

 

The genetic alteration of Notch has been demonstrated in many hematopoietic and solid 

tumors (Table 4) [69, 73]. 
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Table 4. Notch and human cancers 

 

Notch signaling in human cancers (Adapted from [73]) 
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The involvement of Notch in tumors was first reported by Ellisen et al, who observed the 

chromosome translocation in T-cell acute lymphoblastic leukemia (T-ALL) that causes the 

truncated form of Notch1 [74]. The direct evidence of truncated Notch involved in leukemia 

comes from in vitro and animal studies. First, when rat kidney cells express truncated Notch1, 

active Notch1 transforms the rat kidney cells [75]. Second, the mice developed T-cell leukemia 

after transplanting bone marrow expressing activated Notch1 [76]. However, only rare cases of 

T-ALL have chromosome translocation involving Notch1. Over 50% of the Notch1 mutations 

found in T-ALL are activating mutations in the extracellular heterodimerization (HD) domain 

and PEST domain [77]. The mutations in the HD domain cause ligand-independent activation or 

hypersensitivity of the ligands by reducing S2 cleavage site protection [73, 78]. In addition, the 

PEST domain is important for CDC4/FBXW7 mediated degradation of ICN1. Mutations in the 

PEST domain impair ICN1 degradation by FBXW7 and result in higher ICN1 expression [77]. 

Finally, studies from different groups also show the involvement of FBXW7 mutations in T- 

ALL. 8.6% of primary T-ALL samples show a mutation or homozygous deletion of FBXW7. 

The FBXW7 mutations impair FBXW7’s ability to bind ICN1 and result in ICN1 stabilization. 

Cell lines with a FBXW7 mutation also show Υ-secretase inhibitor (GSI) resistance [79, 80]. 

In addition to activating canonical Notch downstream targets, the Notch signaling 

pathway can interact with numerous signaling pathways such as TGF-β, PI3K, NF-B, and WNT 

signaling pathways [73]. For example, activated TGF-β signaling pathway is known to induce 

Jagged 1 expression and the phosphorylation of Notch intracellular domain by GSK3β is 

essential for FBXW7-mediated degradation of Notch intracellular domain. 
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Notch and ATL 

 

The involvement of Notch in cancer is also observed in human T-cell leukemia virus type 

1 (HTLV-1)–associated adult T-cell leukemia (ATL) [4, 81]. ICN1 expression is higher in ATL 

patients when compared with peripheral blood mononuclear cells (PBMCs) from a healthy 

donor. The increased level of ICN1 expression is correlated with higher HES1 expression, a 

Notch target gene, in 58 % of ATL patients when compared with normal PBMCs [4]. In 

addition, Notch ligand JAG1, JAG2 and DLL1 are found highly expressed in ATL-2 patients 

when compared with normal PBMCs. Increased cell surface and the intracellular level of JAG1 

and JAG2 expression is correlated with high ICN1 expression in ATL patients [81]. 

When we sequenced Notch1 in thirty-two ATL samples, we found 30% of ATL samples 

harboring Notch1 mutations. Interestingly, all the Notch1 mutations found in ATL samples are 

located in the PEST domain, which is different from T-ALL where the Notch mutations are in 

the HD and PEST domains. Consistent with a previous study, the PEST domain mutations found 

in ATL samples increase Notch activity and half-life, and impair the CDC4/FBXW7-mediated 

proteasomal degradation [4]. 

The in vitro and in vivo studies further support the importance of Notch1 in ATL 

proliferation and survival [4, 81]. Inhibition of Notch1 leads to G0/G1 cell cycle arrest and 

decreases cell survival and proliferation in ATL cells. The effect of GSI in cell cycle arrest is 

through up-regulating p21 and p27 cyclin-dependent kinase inhibitor expression and reducing 

cyclin E expression, which promotes cell cycle progression from G1 to S [4]. In addition, 

silencing Notch1 in ATL cells results in increased cell apoptosis [81]. When treated mice 

engrafted ATL cells with GSI, GSI can reduce tumor size and increase the survival times 

compared with control mice [4, 81]. Importantly, using GSI to treat PBMCs from high ICN-1 
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ATL patients causes cell apoptosis. Additionally, combining GSI with bortezomib and 

romidepsin blocks the spontaneous proliferation of PBMCs from 8 ATL patients [81]. 

Until now, there is no effective treatment for ATL and the resistance to chemotherapy is 

the main reason for poor prognosis of ATL. The studies above show that Notch is highly active 

in ATL and targeting Notch can be a potent treatment for ATL patients. Knowing that the Notch 

signaling pathway interconnects with many other signaling pathways in ATL, like NF-B and c- 

Myc, shows that combination therapy may be a promising direction for ATL therapy. 
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Ubiquitin-proteasome system and FBXW7 

 

Ubiquitin consists of 76 amino acids and is a protein involved in protein post- 

translational modification. The ubiquitin-proteasome system (UPS) is involved in multiple 

aspects of cellular processes, such as cell cycle, differentiation and proliferation [82-84]. The 

most common protein ubiquitination is through the covalent conjugation between ε-NH2 group 

of Lys in the targeted proteins and the C-terminal carboxyl group of Gly76 in the ubiquitin [85]. 

There are three enzymes participating in protein ubiquitylation: E1 (ubiquitin-activating) 

enzyme, E2 (ubiquitin-conjugating) and E3 ubiquitin ligase (Figure 1) [83]. First, the C-terminal 

carboxyl group of ubiquitin is activated by E1 by ATP to AMP hydrolysis. Second, the activated 

ubiquitin is transferred to E2 and then added to the target protein by E3, which interacts with 

substrate and E2 and catalyzes ubiquitin transfer from E2 to substrate. Except monomer, 

repeating the process can form polyubiquitin chains on the substrate, which are linked by seven 

internal lysine (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63) or N-terminal Met1 (M1) 

[85]. Different polyubiquitin chains are involved in a wide range of cellular functions. For 

example, monoubiquitination and multi-monoubiquitinations are known to participate in 

membrane trafficking and endocytosis. In addition, the Lys48-linked polyubiquitylation chain is 

involved in protein degradation by 26S proteasome and the K63-linked polyubiquitin chain is 

related to signal transduction and DNA repair [83]. The K11-linked polyubiquitin chain serve as 

degradation during cell cycle progression and NF-kB signaling [86]. 
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Figure 11. Ubiquitin-proteasome system (UPS) 

Ubiquitin-proteasome system (UPS) (Adapted from [83]) 
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In humans, there are two classes of E3 enzymes (RING and HECT E3 ligase). RING- 

domain E3 interacts with substrate and E2, but does not contact the ubiquitin directly. In contrast, 

HECT E3 transfers the ubiquitin onto itself and then transfers the ubiquitin to the substrate. 

There are many different RING E3 enzymes; some are single subunit enzymes and the others are 

multiple subunit enzymes. SKP1–CUL1–F‑box protein (SCF) belongs to the multiple subunit 

RING E3 enzymes. It consists of core scaffold proteins and F-box protein to recognize specific 

substrates. In humans, there are sixty-nine F-box proteins and they can be divided into 3 classes 

according to their protein interaction domain. Among those F-box proteins, FBXW7 is known to 

target many key oncoproteins, like c-Myc and Notch1 (Figure 12) [82]. In humans, FBXW7 is 

located at chromosome 4q32, which has deletion in more than 30% of human cancers [87]. 

Importantly, overall, 6% of FBXW7 mutation is observed in human tumors and 31% of T-cell 

acute lymphocytic leukemia (T-ALL) harbors FBXW7 mutations [88]. 
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FBXW7 substrate recognition 

 

FBXW7 recognizes its substrate through conserved FBXW7 phosphodegron (CPD) 

motif, which requires the substrate to be phosphorylated (Figure 12) [89-91]. The CPDs and 

FBXW7 interaction sites are the phosphorylated threonine or serine in the “0” and “+4” position. 

Therefore, the signaling pathways that affect substrate CPDs phosphorylation can regulate 

substrate degradation. For example, Glycogen synthase kinase 3 beta (GSK3β) phosphorylates c- 

Myc [92, 93], cyclin E [91] and MCL1 [94] at “0” position, which is important for FBXW7- 

mediated degradation. The PI3K/AKT pathway can phosphorylate and inactivate GSK3β; 

therefore the PI3K/AKT pathway can affect the stability of FBXW7 substrates in cell 

proliferation and survival. Interestingly, some FBXW7 substrates, such as cyclin E and KLF2, 

have more than one phospho-degron (Figure 12B). In those cases, the dimerization of FBXW7 

accelerates the substrate degradation. 
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Figure 12. FBXW7 and its substrate 

 

FBXW7 recognizes its substrate through conserved FBXW7 phosphodegron (CPD) motif 

(Adapted from [66]) 
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In addition, R465, R479, and R505 are three arginine residues in FBXW7’s substrate 

binding domain (WD40 domain) that are important for interaction with CPDs. Importantly, these 

3 arginine residues are FBXW7 hotspot mutations in many human cancers [82]. The 

dimerization of FBXW7 also controls the substrate degradation. FBXW7 dimerization increases 

binding strength between substrates and FBXW7, which is particularly important for substrates 

with weak CPDs, like cyclin E. The dominant-negative effect of FBXW7 mutants comes from 

the FBXW7
WT

-FBXW7
mutant 

heterodimer that can no longer degrade substrates with weak CPDs 

[82]. 
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Critical FBXW7 substrates 

 

FBXW7 is a tumor suppressor known to target many different proteins (Table 5) [95]. 

Most of the substrates need to be further verified in different systems and in animal models. 

Below, we discuss the substrates that have been proved in many studies and animal models. 
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Table 5. FBXW7 substrates 

 

Potential substrates for FBXW7 (Adapted from [95]) 
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c-Myc 

 

c-Myc is a transcription factor that is deregulated in many tumors. Silencing c-Myc 

expression blocks cell growth in HTLV-1-transformed human T-cell lines, which implies the 

importance of c-Myc in ATL [96]. Tax is known to upregulate c-Myc expression through the 

NF-B signaling pathway [20] and tumors from Tax transgenic mice also highly express c-Myc 

[97]. In addition, Tax alone is not sufficient to allow the hematopoietic cell line BAF-B03 to 

proliferate in the absence of cytokines, but it can do so when Tax cooperates with c-Myc [98]. 

The ubiquitination of c-Myc by FBXW7 reduces c-Myc’s ability to induce cell growth [93, 99, 

100]. The phosphorylation of Threonine-58 and serine-62 in c-Myc is essential for FBXW7- 

mediated degradation. However, threonine-58 and serine-62 are often mutated in cancer, which 

implies impaired c-Myc degradation by FBXW7 [100, 101]. 
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Notch 

 

The Notch signaling pathway is involved in many different cellular processes, like cell 

cycle, apoptosis, and differentiation. Over 50% of the Notch1 mutations found in T-ALL are 

activating mutations in the extracellular heterodimerization (HD) domain and PEST domain [77]. 

The PEST domain is important for FBXW7/FBXW7 mediated degradation of ICN1. Mutations 

in the PEST domain impair ICN1 degradation by FBXW7 and result in higher ICN1 expression. 

FBXW7 is mutated in more than 30% of primary T-ALL samples [102]. The FBXW7 mutations 

impair FBXW7’s ability to bind ICN1 and result in ICN1 stabilization [79, 80]. 
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cyclin E 

 

Cyclin E- cyclin-dependent kinase Cdk2 (cyclin E/CDK2) is known to regulate cell cycle 

entry and progression by initiating DNA replication at the G1-S phase transition [103]. 

Abnormal cyclin E expression is observed in many cancers and is known to cause genomic 

instability [104-106]. Expression of Tax in human T cells induces the expression of cyclin E and 

CDK2, and reduces the expression of CDK inhibitors p19 and p27 [107]. The expression of p27 

is lower in HTLV-1-transformed cells (IL-2-independent) compared with immortalized (IL-2- 

dependent) HTLV-1-infected T cells. The low expression of p27 is correlated with constitutive 

activation of cyclin E/CDK2 in HTLV-1-transformed T cells [108]. Cyclin E/CDK2 forms a 

complex with p300 and RNA Pol Ⅱ in HTLV-1 infected cells. The complex has kinase activity 

and can phosphorylate the carboxyl terminal domain of RNA Pol Ⅱ. Importantly, inhibition of 

cyclin E/CDK2 activity by specific CDK chemical inhibitor (Purvalanol A) can reduce the 

transcription of the HTLV-1 promoter and induce higher levels of growth inhibition and 

apoptosis in HTLV-1 infected cells than uninfected cells [109, 110]. The phosphorylation of 

cyclin E by CdK2 and GSK3 is essential for FBXW7-mediated degradation [89, 91]. In the 

FBXW7 knockout mice, the elevated levels of cyclin E are correlated with increased DNA 

synthesis in placental giant trophoblast cells [111].The mutations of FBXW7 in cancers impaired 

its function to degrade cyclin E [80] and leads to high levels of cyclin E expression and 

chromosome instability [104, 105, 112, 113]. 
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Mcl-1 

 

Mcl-1 belongs to the Bcl-2 family and regulates apoptosis in normal and cancer cells 

[114]. Transgene mice expressing Mcl-1 ended up developing lymphoma [115]. In clinical 

studies, Mcl-1 is highly expressed in various leukemias [114] and the expression of Mcl-1 is 

correlated with chemotherapy response [116]. Mcl-1 expression is higher in primary human T 

cells immortalized by HTLV-1 than the parental uninfected primary T cells [44]. Induction of 

Tax in CD4+ T cells causes T-cell hyper-proliferation and immortalization with increased 

expression of Mcl-1 [117]. Collectively, Tax stabilizes Mcl-1 by promoting TRAD6-mediated 

K63-linked polyubiquitination to increase cell survival and transformation [44]. Mcl-1 can 

induce drug resistance to ABT-373, which blocks Bcl-2, Bcl-XL, and Bcl-w. Bortezomib is a 

proteasome inhibitor that can increase the expression of Noxa and the formation of the Mcl-1- 

Noxa complex, which neutralizes the function of Mcl-1, therefore synergistically inducing 

apoptosis in HTLV-1 infected T-cell lines and fresh ATL cells when combined with ABT-737 

[118]. The regulation of Mcl-1 by GSK3 leads to the finding that FBXW7 is a ubiquitin ligase 

targeting Mcl-1 degradation [119]. Importantly, FBXW7 deletion or loss-of-function mutations 

from patient-derived cancer cells impair the Mcl-1 degradation and result in resistance to 

chemotherapy drugs [119, 120]. 
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FBXW7 and human cancers 

 

About 6% of primary tumors carry a FBXW7 inactivated mutations. Among those 

primary tumors, cholangiocarcinomas and T-ALL have the highest mutation rates, which is 35% 

and 31%, respectively [88]. Importantly, clinical studies found 3 FBXW7 arginine hotspot 

mutations (R465, R479, and R505) that are critical for FBXW7 interaction with its substrates 

[82]. FBXW7 hotspot mutations impair the ability of FBXW7 to bind and add ubiquitin to the 

substrates [80]. From the TCGA data, it shows that the majority of tumors with FBXW7 hotspot 

mutations have a normal second FBXW7 allele. On the other hand, some tumors harbor a 

nonsense mutation and homozygous null mutations. Importantly, the frequency and the FBXW7 

mutation patterns are different from organ to organ, which imply the context-dependent outcome 

of FBXW7 mutations [82]. The related low frequency of single-FBXW7 substrate CPD 

mutations compared with FBXW7 mutations implies the requirement of dysregulation of many 

oncoproteins in FBXW7-related tumorigenesis [82]. 

Conditional knockout of FBXW7 in hematopoietic cells or T cells is sufficient to cause 

T-ALL or thymic lymphoma by increased expression of Notch1 and c-Myc in more than 50% of 

FBXW7-deficient mice [121, 122]. However, FBXW7 hotspot mutation knockin mice 

(FBXW7
mut

/+) did not develop leukemia spontaneously, indicating the difference between 

FBXW7 missense mutation and homologous deletion. When combining FBXW7 

deletion/mutation with suppression of p53 [121] or loss of PTEN [123] or active Notch [9], 

FBXW7 deletion/mutation enhances the tumorigenesis. 
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FBXW7 and prognosis 

 

The role of FBXW7 in the prognostic implication remains controversial. Consistent with 

the tumor suppressor role of FBXW7, FBXW7 expression was deficient in hepatocellular 

carcinoma (HCC) tissues and correlated with poor clinical pathology features including large 

tumor size, high pathological grading and advanced TNM stage. Importantly, patients with 

positive FBXW7 expression show a better 5-year survival and FBXW7 is an independent factor 

to predict the outcome of HCC patients [124]. In non-small cell lung cancer (NSCLC), loss of 

FBXW7 increases the sensitivity of a class I-specific histone deacetylase (HDAC) inhibitor, MS- 

275, and upregulates Mcl-1 expression. In addition, patients with low FBXW7 expression have 

more aggressive cancers and shorter survival time [125]. c-Myc amplification and FBXW7 

deletion was found in gastric tumor samples at 51.5% and 45.5%, respectively. Abnormal c-Myc 

and FBXW7 expression is correlated with lymph node metastasis and tumor stage III-IV [126]. 

In high histological grade breast cancer patients, FBXW7 mRNA is significantly lower. 

Moreover, lower FBXW7 expression is correlated with high Ki-67 and cyclin E expression 

[127]. 

There is no difference between colorectal cancer (CRC) patients with and without 

FBXW7 mutation in 5-year overall survival [128], which is further confirmed by Mouradov 

[129]. In 822 patients from the VICTOR trial of stage II/III colorectal cancer, FBXW7 mutation 

is not associated with disease-free survival. In 47 patients with pediatric T-cell acute 

lymphoblastic leukemia (T-ALL), FBXW7 mutations were not associated with treatment 

outcome [130], which is the same as 88 adult patients with T-ALL treated on the 
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UKALLXII/ECOG E2993 protocol. Notch1 and FBXW7 mutations did not predict the clinical 

outcome [131]. 

However, in T-ALL patients treated in either the Lymphoblastic Acute Leukemia in 

Adults (LALA)-94 (n = 87) or the GRAALL-2003 (n = 54) trials, Notch1/FBXW7-mutated 

patients have better overall survival and event-free survival compared with other patients [132], 

although there is no correlation between Notch1/FBXW7 mutation and clinical biologic features. 

Glucocorticoid receptor alpha (GRα) may explain the better clinical outcome in patients with 

FBXW7 mutations. FBXW7 is known to ubiquitylate GRα and cause GRα to be degraded by 

proteasome. Inhibition of FBXW7 leads to increased glucocorticoid sensitivity, but not to other 

chemotherapy drugs for T-ALL [133]. 

The same was observed in 157 patients with T-ALL in the pediatric ALL-Berlin- 

Frankfurt-Munster (BFM) 2000 study [134]. Patients with Notch1 mutations show better 

response to treatment and a favorable long-term outcome, which is independent of sex, age, 

white blood cell count, and T-cell immune-phenotype at the time of diagnosis. Further study 

shows that the effect of Notch1 mutations in ALL-BMF is limited to patients with rapid early 

treatment response [135]. FBXW7 inactivated mutations are correlated with rapid early treatment 

response and act together with Notch1 mutations. However, FBXW7 inactivated mutations have 

no effect on long-term outcome by themselves or synergizing with Notch1 mutations [135]. In 

addition to Notch1, FBXW7 inactivated mutations can also affect c-Myc, cyclin E and Mcl-1, 

and this may explain why FBXW7 mutation loses synergistic effect with Notch1 mutations at 

late stage. 

Although the studies above support the favorable outcome for Notch1 mutation patients, 

other studies show different results. Zhu found that in adult T-ALL patients, but not in pediatric 
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patients, Notch mutations are associated with high WBC count and poor survival time [136]. In 

88 adult patients with T-ALL treated on the UKALLXII/ECOG E2993 protocol, Notch1 and 

FBXW7 mutations did not predict the clinical outcome [131]. The same results are observed 

from van Grotel [137] and Larson Gedman [130] that Notch1 mutations are not predictive for 

clinical outcome. 

In conclusion, the patient cohort size, the sub-population of patients (adult or pediatric 

patients), the tumor type, other gene mutation, like p53 [138], and the drugs for treatment are 

factors that may affect Notch and FBXW7 clinical outcome prediction. Further large-scale 

studies are needed to further confirm the role of FBXW7 and Notch1 in clinical prognosis. 
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Epigenome 

 

The Epigenome is defined by the changes in gene expression and cellular phenotype that 

are not caused by genomic sequence change. More than half of human cancers have mutations in 

enzymes involved in chromatin organization [139]. Epigenetic deregulation not only causes 

aberrant gene expression in cancer cells but also renders tumor cells with the ability to survive 

chemotherapy and immune surveillance. Therefore, targeting the epigenome, such as DNA 

methylation and histone modifications, represents a promising strategy for treating the disease. 

Epigenetic modification can occur at the DNA, RNA and protein level. The system 

consists of a “Writer Enzyme” that adds the specific covalent modification to DNA, RNA and 

histone, a “Reader Enzyme” that recognizes the modification and activates the downstream 

effects, and an “Eraser Enzyme” that removes the epigenetic modification (Figure 13). Therefore, 

epigenetic modifications in cells are dynamic and cell-content dependent [140]. 
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Figure 13. Epigenetic modulator 

 

Three main components of epigenetic modulators. (Adapted from [141]) 



68  

Importantly, a large number of mutations in writer, reader and eraser enzymes has been 

reported after genomic sequencing for large tumor sample size, which explains the epigenetic 

deregulation in cancer [139]. For example, the mutation of DNA methyltransferase 3A 

(DNMT3A) leads to DNA hypomethylation pattern in AML [139]. In addition, histone H3 lysine 

36 (H3K36) and H3.3K27 mutations has been reported in sarcoma and gliomas, respectively, and 

have led to global histone modification reprogramming [139]. These findings may have 

implications for treatment of epigenetic-mutant cancers and help clinical patient classification. 
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DNA methylation 

 

Methylation of DNA at the CpG island is associated with gene expression silencing. 

 

There are three DNA methyltransferase in mammalian cells: DNMT1, DNMT3A and DNMT3B. 

DNMT1 methylates newly synthesized DNA after DNA replication to maintain DNA 

methylation, whereas DNMT3A and DNMT3B de novo methylate the unmethylated DNA to 

silence gene expression [142] (Figure 1). To remove the DNA methylation, 5‑methylcytosine (5 

‑mC) is converted to 5‑hydroxymethylcytosine (5‑hmC) by ten-eleven translocation (TET) 

family (TET1, TET2 and TET3). Because DNMT1 cannot recognize 5-hmC, the methylation of 

DNA will be lost following DNA replication [142] (Figure1). 
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Figure 14. DNAMT and TET in DNA methylation 

 

DNA methylation and demethylation (Adapted from [142]). DNAM, DNA 

methyltransferases (DNMT1, DNMT3A and DNMT3B); 5mC, 5‑methylcytosine; 5‑ 

hmC, 5‑hydroxymethylcytosine; TET, ten-eleven translocation family 
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Histone modification 

 

Compared to DNA, histone has different types of modification including methylation, 

acetylation and ubiquitylation. In addition, different modifications on specific histone proteins 

and lysine residue will have a unique effect. For instance, histone 3 Lys9 dimethylation 

(H3K9me2), H3K9me3 and H3K27me3 modification are known to silence gene expression. On 

the other hand, H3K4me3 and histone acetylation are related to transcriptional activation [142]. 

Histone modifications are performed by various multi-subunit complexes. G9A and/or 

GLP are known to make H3K9me2, and H3K9me3 modification is catalyzed by SUV39H1 

and/or SUV39H2. In addition, Polycomb repressive complex 2 (PRC2) is composed of EED, 

SUZ12 and a SET-domain containing EZH protein (EZH1 or EZH2), and can process 

H3K27me3 modification. Histone demethylases JMJD3 and UTX have been reported to reverse 

H3K27me3 modification and activate the transcription activity [142]. In contrast to reduced 

transcriptional activity, H3K4me1 and H3K4me3 are associated with enhancers and active gene 

expression, respectively. In human cells, there are six lysine-specific methyltransferases: MLL1, 

MLL2, MLL3, MLL4, SET1A and SET1B. MLL3 and MLL4 are responsible for H3K4me1 

deposition at enhancer elements in mammalian cells, whereas MLL (KMT2A or MLL1) and 

MLL2 (KMT2B) are in charge of H3K4me3 modification (Figure 1) [143]. The acetylation of 

histone is catalyzed by histone acetyltransferases (HATs), which accumulates negative charge on 

the histone and leads to chromosome loosening. On the other hand, histone deacetylases 

(HDACs) are known to remove histone acetylation and result in gene silencing [142]. 
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Epigenetic alteration in ATL 

 

DNA hypermethylation at the CpG island has been reported in ATL samples compared 

with normal controls [2]. About 40% of ATL samples showed extensive hypermethylation at the 

CpG island, known as the CpG island methylator phenotype (CIMP). Importantly, CIMP in ATL 

samples is associated with poor clinical prognosis. Among those hypermethylated genes, MHC 

classⅠis known to be involved in immune surveillance to eliminate HTLV-1 infected cells, 

which can explain loss of MHC class Ⅰin 90% of ATL cases [2]. 

Combining microarray to comprehensively analyze gene expression and ChIP-on-chip to 

study the ATL epigenome, Fujikawa found that the Polycomb repressive complex 2 (PRC2) 

which is composed of EED, SUZ12 and a SET-domain containing EZH protein (EZH1 or EZH2) 

is up-regulated in acute ATL cells compared with normal CD4+ T cells [144]. Importantly, 

depletion of EZH2 and SUZ12 by shRNA reduced ATL proliferation and inhibition of EZH2 by 

GSK126 induced apoptosis in ATL cells. Consistent with the function of PRC2, ATL cells 

exhibit higher H3K27me3 modification at half of the genes. Among those genes with up- 

regulation of H3K27me3, NDRG2, CDKN1A, ZEB1, BCL2L11 (BIM) and CD7 are known to 

be involved in ATL progression. 
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Targeting the epigenome 

 

Many drugs targeting the epigenome are under development and in clinical trials (Table 6) 
 

[139] . 
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Table 6. Epigenome targeting drugs 

 

Drugs targeting the epigenome (Adapted from [139]) 
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DNMT inhibitors (DNMTi), histone deacetylase inhibitors (HDACi) and inhibitors of the 

bromodomain and extra-terminal motif proteins (iBETs) are pan-inhibitors that target more than 

one enzyme in the same family, which result in global changes in gene expression. In clinics, 

treatment of myelodysplastic syndrome (MDS) or AML patients with 5‑azanucleoside drug 

azacitidine (also known as 5‑azacytidine; Vidaza, Celgene) and its deoxy derivative decitabine 

(also known as 5‑aza‑2ʹ-deoxycytidine; Dacogen, Otsuka) reduced tumor burden and improved 

patient prognosis [139]. HDACi such as Vorinostat (Zolinza; Merck & Co.), belinostat 

(Beleodaq; Spectrum Pharmaceuticals) and romidepsin (Istodax; Celgene) has been approved by 

the FDA for the treatment of cutaneous or peripheral T-cell lymphomas. Finally, iBET, which 

targets the bromodomain-containing protein (BRD), has been shown to reduce MYC expression 

and is in clinical trial [145-147]. In addition to pan-inhibitors, the H3K27 histone N- 

methyltransferase EZH2 inhibitor is showing promising results in cell lines bearing EZH2 

mutations. 

In addition to chemotherapy drugs, the advance of chromatin-modifying technology such 

as Transcription activator-like effector nucleases (TALEN) and bacterial Cas9 nuclease (dCas9) 

has improved our ability to modify the epigenome at specific sites [140]. Importantly, in addition 

to its nuclease activity, inactivated dCas9 can be fused with epigenetic modifying enzymes and 

enable us to pinpoint each particular epigenetic modification site in gene expression regulation 

(Figure 15). 
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Figure 15. dCas9 chimera 

 

Site-specific modification of the epigenome (Adapted from [140]) 
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Chapter II: Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia 

 

patients 
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Abstract 

 

Human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia 

(ATL), an aggressive lymphoproliferative disease with a dismal prognosis. We have previously 

described the presence of Notch1 activating mutations and constitutive Notch1 signaling in 

patients with acute ATL. In this study, we report a high frequency of F-box and WD repeat 

domain containing 7 (FBXW7)/hCDC4 mutations within the WD40 substrate-binding domain in 

8 of 32 acute ATL patients (25%). Functionally, ATL FBXW7 mutants lost their ability to 

interact with intracellular Notch (NICD), resulting in increased protein stability and constitutive 

Notch1 signaling. Consistent with the loss-of-function found in ATL patients, expression of WT 

FBXW7 in several patient-derived ATL lines demonstrated strong tumor-suppressor activity 

characterized by reduced proliferation of ATL cells. Remarkably, two FBXW7 mutants, D510E 

and D527G, demonstrated oncogenic activity when expressed in the presence of HTLV-1 Tax, 

mutated p53 R276H, or c-Myc F138C found in human cancers. Transforming activity was 

further demonstrated by the ability of the FBXW7 D510E mutant to provide IL-2–independent 

growth of Tax-immortalized human T cells and increase the tumor formation in a xenograft 

mouse model of ATL. This study suggests that FBXW7, normally a tumor suppressor, can act as 

an oncogene when mutated and may play an important role in the pathogenesis of ATL. 
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Introduction 

 

Human T-cell leukemia virus type 1 (HTLV-1)–associated adult T-cell leukemia (ATL) 

carries a dismal prognosis and limited treatment options [51]. Although the molecular events 

leading to T-cell transformation are not fully elucidated, the low incidence and long latency of 

HTLV-1–associated ATL suggest that acquisition of genetic defects in virally infected cells are 

required for cellular transformation, and profound epigenetic changes have been reported in ATL 

cells [148]. Although the viral Tax protein has a low transforming efficiency in human T cells, 

Tax plays a major role by altering signaling pathways, such as NF-κB, p53, and telomerase [149, 

150]. In addition, Tax expression impairs DNA replication forks, increases DNA breaks, and 

simultaneously inhibits faithful repair through homologous recombination [36, 151]. We have 

previously reported that HTLV-1–transformed ATL cells frequently display constitutive 

activation of the Notch signaling pathway and activating mutations within the proline, glutamic 

acid, serine, and threonine (PEST) domain of Notch1 [4]. Constitutive activation of Notch 

signaling is relevant to ATL and its inhibition reduced proliferation and survival of ATL cells in 

vitro and significantly reduced tumors in an engrafted ATL mouse model [4]. Because most 

mutations found in Notch disrupted F-box and WD repeat domain containing 7 (FBXW7)- 

mediated ubiquitination, degradation, and turnover of intracellular Notch (NICD), we 

hypothesized the presence of mutations in the FBXW7 gene in ATL patient samples. FBXW7 

(also known as Sel-10, hCdc4, or hAgo) is a component of a S-phase kinase-associated protein 1 

(Skp1)-Cul1-F-box protein ubiquitin ligase complex that regulates the degradation of Notch, 

cyclin E, c-Myc, mammalian target of rapamycin, myeloid cell leukemia 1 (Mcl-1), and c-Jun, 

most of which possess oncogenic functions [82]. Loss of FBXW7 by means of mutation or 

deletion has been reported in various human cancers and has been linked to severe chromosomal 
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instability. In addition, inactivation of FBXW7 by miR-223, a microRNA deregulated in ATL, 

has also been reported [152]. Importantly, several studies have demonstrated that mutations in 

FBXW7 have clinical significance and can provide resistance to γ-secretase inhibitors (GSI) 

[79]. 

In this study, we report a high frequency of FBXW7 mutations in primary acute ATL 

patients, 8 of 32 (25%). The biological significance of these mutations is suggested by the fact 

that these mutations were generally associated with an increase in Notch1 signaling. Although 

WT FBXW7 acted as a tumor suppressor in ATL cells, we identified two FBXW7 mutants, 

D510E and G527G, with transforming activities when expressed along with another oncogene, 

such as Tax, p53, or c-Myc. To our knowledge this is the first example of FBXW7 mutants with 

oncogenic properties. 
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Materials and Methods 

 

Patients and Cell Lines. 

 

Samples from 32 ATL patients were obtained after informed consent in a study approved 

by the Institutional Review Board to the National Institutes of Health and the Necker Hospital, 

and were used for FBXW7 sequencing as previously reported [4]. The 293T, U2OS, and Rat1 

cells were cultured in DMEM with 10% (vol/vol) FBS. ATL cell lines MT1, ATL-T, ED40515(– 

), TL-Om1, and ATL-25 were cultured in RPMI-1640 with 10% (vol/vol) FBS. ATL cell line 

ATL-43T and Tax-immortalized WT4 T cells were grown in 20% (vol/vol) FBS and IL-2. 

Animal Studies. 

 

All animal studies were performed by Advanced Bioscience Laboratories. Protocols were 

reviewed and approved by Advanced Bioscience Laboratories’s Institutional Review Board. To 

study the oncogenic role of FBXW7 D510E in ATL tumor growth, 8-wk-old female NOG mice 

were used. Before injection of ATL cells, mice were given 2 mg/mL doxycycline (Vibramycin 

Monohydrate) in the drinking water with 2% sucrose for 7 d. The water was thereafter changed 

every day. Each animal received 5 × 107 ATL cell controls MT1-TripZ-WT and MT1-TripZ- 

D510E in the right and the left flank, respectively. Tumor growth was monitored three times a 

week for 21 d. 

Plasmids and Transfections. 

 

Polyfect (Qiagen) was used for 293T transfection. Calcium Phosphate Transfection Kit 

(Invitrogen) was used for Rat1 cell transfection and for lentivirus production. FBXW7 mutant 

plasmids were generated by QuikChange Site-Directed Mutagenesis Kit (Agilent). FBXW7 WT 

and mutants were cloned into the pTripZ inducible vector (Thermo). 
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Western Blot and Coimmunoprecipitation. 

 

Cells were lysed in RIPA lysis buffer. Antibodies: anti-Myc (9E10; Roche), anti-actin 

(Santa Cruz), anti-Flag (Sigma), and anti-HA (3F10) (Roche) were used for the Western blots. 

For FBXW7 and NICD interaction by coimmunoprecipitation, 293T cells were cotransfected 

with the Myc-tagged NICD and Flag-tagged FBXW7 plasmids. After 48 h, cells were harvested 

in Nonidet P-40 lysis buffer, IP with anti-Myc antibody and Western blot. Nuclear protein 

extracts of MT1 cells expressing FBXW7 WT or mutants were used for endogenous NICD 

Western blot analyses. 

Cycloheximide Chase. 

 

293T cells were cotransfected with 100 ng Myc-tagged ICN1 and 1 μg Flag-tagged 

FBXW7 WT or mutants for 48 h. Before harvest, cells were treated with 100 μg/mL 

cycloheximide for 0, 2, 4, and 6 h. Anti-Myc and anti-Flag antibodies were used for the Western 

blots. 

Luciferase Assays. 

 

Luciferase assays were performed with the Luciferase Reporter Assay Kit (Promega) 

according to the manufacturer’s instructions. Luciferase assays were repeated at least twice from 

independent experiments and results were normalized to protein concentration. 

Ubiquitination Assays. 

 

293T cells were transfected with Myc-tagged NICD, Flag-tagged FBXW7, and HA- 

tagged Ub (K48 or K63) for 48 h. Cells were treated with 10 μM MG132 for 6 h. Cells were 

collected with RIPA lysis buffer containing N-ethylmaleimide, iodoacetamide, and EDTA, then 

immunoprecipitated with anti-Myc antibody and immunoblotted. 
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Rat1 Cell Transformation Assays. 

 

After 72-h transfection, Rat1 cells transfected with indicated plasmid were subjected to 

puromycin selection. Cell culture medium was changed once a week. After a month, the colonies 

were fixed and stained with Crystal violet. 

ChIP Assays. 
 

FBXW7 WT or mutant MT1 cells (seeded at 1 × 10
6 

cells per milliliter) were treated for 

48 h with 2 μg/mL doxycycline or 72 h with ± Compound E (1 μM). Cells were cross-linked 10 

min with 1% (CF) formaldehyde, stopped with 0.125 M glycine (CF), washed, and DNA was 

sheared by sonication. ChIP was performed with the ChIP Assay Kit (Millipore), anti-Notch 

(ab27526; Abcam), according to the manufacturer’s instructions. CHIP-quantitative PCR (qPCR) 

was performed with SYBR green qPCR using Hes1-CHIP primers 

(F:CTGTGGGAAAGAAAGTTTGGG and R:GACCAAGGAGAGAGGTAGAC). Data were 

normalized using a percent input method (= 100 × 2[Adjusted input-Ct (IP)]. Amplified products 

were cloned into pGEM-T easy vector (Promega) to verify sequence. 
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Results 

 

FBXW7 Inhibits the Proliferation of ATL Cells. 

 

Disruption of FBXW7 has been reported in various human cancers, and because FBXW7 

can target many proteins involved in proliferation and survival for degradation, it has been 

classified as a tumor suppressor. However, its role in HTLV-1–transformed ATL cells has never 

been investigated. Generally ATL-transformed cell lines demonstrated significantly reduced 

mRNA expression levels of FBXW7 compared with normal peripheral blood mononuclear cells 

(PBMCs) (Fig. 16A). In contrast, freshly isolated uncultured ATL samples display variable 

levels of FBXW7 mRNA and about one-third of samples had reduced FBXW7 mRNA 

expression (Fig. 16A). To study the function of FBXW7 in ATL cells, we used lentiviral delivery 

and puromycin selection to generate stable Tet-inducible FBXW7-expressing cells. Four distinct 

patient-derived ATL lines (MT1, ATL-T, ATL-25, and ATL-43T) were used to investigate the 

effects of FBXW7 expression in ATL cells. Induction with doxycycline resulted in re-expression 

of FBXW7 (Fig. 16B). FBXW7-transduced lines and matched-control cell lines were treated 

with the same dose of doxycycline and cellular proliferation was measured by cell counts every 

other day for 10 d. Our results demonstrate that restoring expression of FBXW7 resulted in 

inhibition of ATL cell proliferation (Fig. 16B). These data suggest that FBXW7 exerts a tumor- 

suppressive effect in HTLV-1–transformed ATL cells. 

FBXW7 Mutations in Patients with Acute ATL. 

 

With the exception of T-cell acute lymphocytic leukemia (T-ALL), the mutation of 

FBXW7 is usually rare in human leukemia. T-ALL mutations in FBXW7 are predominantly 

located at arginine residues R479Q, R505C, and R465H and result in FBXW7 mutants unable to 

bind to or degrade targets [79]. We sequenced FBXW7 in a cohort of 32 acute ATL samples of 
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Caribbean origin previously characterized for the presence of Notch1 mutations (Table 7). Our 

results revealed mutation of the FBXW7 gene in 8 of 32 acute ATL patients. The mutations were 

located in the propeller domain in proximity to the pocket for substrate binding (Fig. 16C). 

Remarkably, 4 of 32 (12.5%) ATL patients with mutations in FBXW7 also carried a mutation in 

the NICD PEST domain [4]. This observation is interesting because previous studies in T-ALL 

have shown that the combined effect of mutation in both NICD and FBXW7 improves a 

patient’s prognosis. We also sequenced the WD40 domain of FBXW7 from HTLV-1– 

transformed cells MT-2, MT-4, and C8166, and from ATL-derived cell lines but found no 

mutations. We next investigated the biological consequences of FBXW7 mutations. To this end, 

we used a transient assay in which FBXW7 WT or FBXW7 mutants are expressed along with 

NICD and a CSL [CBF-1, Su(H), LAG-1]-luciferase reporter construct (Fig. 16D). In this assay 

expression of NICD activates the CSL-Luc vector leading to higher luciferase values. However, 

when WT FBXW7 is coexpressed it targets NICD for degradation, lowering luciferase activation. 

The FBXW7 mutant R505C was used as a negative control. Our experiments demonstrated that 

six of eight FBXW7 mutations detected in ATL tumor cells resulted in a complete loss-of- 

function as demonstrated by luciferase activity similar to that of the R505C mutant (Fig. 16D). 

Two FBXW7 mutants, T416A and W406R, were partially inactive (Fig. 16D). Some FBXW7 

mutants (H468R, S462P, and W425R) had higher activity, suggesting a dominant-negative effect 

(Fig. 16D). Because FBXW7 dimerization is essential for stable interaction with its substrates, 

we then tested if the above-mentioned mutants can dimerize with and antagonize WT FBXW7. 

In fact, dimer formation between FBXW7 and mutant W425R were readily observed upon 

coexpression in transient assays (Fig. 16E). Furthermore, a dose increase of W425R was able to 
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completely block WT FBXW7-mediated degradation of NICD, confirming its dominant-negative 

effect (Fig. 16E). 
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Figure 16. FBXW7 is a tumor suppressor in ATL cells. 

 

The expression of FBXW7 in ATL-transformed cell lines and normal PBMCs (A) or 

healthy donors and freshly isolated ATL samples were evaluated by real-time RT-PCR. The 

arrow indicates the patients carrying the D510E mutation. (B) Cellular proliferation of FBXW7 

transduced ATL lines were evaluated by cell count after reexpression of FBXW7. The data were 

from two independent experiments and shown as the average with SD. Western blot showed the 

expression of FBXW7. Actin served as a loading control. (C) The localizations of FBXW7 

mutations found in primary ATL samples (Table 1) are highlighted in yellow on the FBXW7 

protein 3D structure. (D) Transcriptional activities of NICD in cells expressing FBXW7 or 

FBXW7 mutants were measured by CSL-luciferase reporter assay. Luciferase activities were 

normalized to the CSL-luciferase reporter vector alone. The data are from two independent 

experiments and are shown as the average with SD. Western blot showed the expression of 
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tagged-FBXW7 and mutants. (E) Dimer formation between FBXW7 and mutant W425R was 

analyzed in 293T cells transfected with Myc-tagged FBXW7 and Flag-tagged W425R. IP 

FBXW7 and Western blot W425R showed the dimerization. NICD expression in 293T cells 

transfected with NICD, FBXW7 WT and a dose increase of W425R were analyzed by Western 

blot (Lower). Dox, doxycycline. 
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Table 7. FBXW7 mutations in ATL samples 

 

Samples from 32 ATL patients were analyzed for mutations in the substrate binding 

domain (WD40 domains) of FBXW7 and compared with previously identified Notch1 mutations 

in the same acute ATL patient samples [4] 
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ATL FBXW7 Mutants Activate the Notch Signaling Pathway. 

 

To confirm that FBXW7 mutants stimulate Notch1 signaling in human T cells, an ATL- 

transformed MT1 cell line, carrying WT FBXW7, was used to generate stable Tet-inducible cell 

lines expressing WT or FBXW7 mutants W425R, S462P, and D510E. Induction and expression 

of WT and mutant FBXW7 proteins were confirmed upon the addition of doxycycline to the 

media (Fig. 17A). The ability of WT FBXW7 but not mutants W425R, S462P, and D510E to 

degrade endogenous NICD in the context of ATL cells was also demonstrated by Western blot 

(Fig. 17B). Activation of the Notch signaling pathway was confirmed by increased expression of 

the target gene, hes family bHLH transcription factor 1 (Hes1), in cells carrying W425R, S462P, 

and D510E compared with WT (Fig. 17B). To further demonstrate activation of Notch1 in cells 

with mutated FBXW7, we next investigated the presence of NICD onto the Hes1 promoter by 

chromatin immunoprecipitation (ChIP). To demonstrate specificity, we first treated MT1 cells 

with GSI compound E, resulting in loss of NICD expression as shown by Western blot (Fig. 

17C). This result was accompanied by a 70% decrease in the amount of NICD bound to the Hes1 

promoter as determined by ChIP (Fig. 17C). Finally, the PCR product amplified by ChIP was 

cloned and sequenced to confirm the identity of the Hes1 promoter. Consistent with the data 

described above and the reduced degradation of NICD by FBXW7 mutants (Fig. 16D), we 

confirmed an increase in NICD promoter occupancy of the Hes1 gene by ChIP in cells carrying 

mutated FBXW7 W425R, S462P, and D510E compared with WT (Fig. 17D). Together, these 

results suggest that FBXW7 mutations acquired in ATL cells increase Notch1 signaling. 
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Figure 17. FBXW7 mutants activate the Notch signaling pathway. 

 

(A and B) RT-PCR for expression of FBXW7 and Hes1 after 48 h of doxycycline (Dox) 

induction in MT1 stable lines. Results were repeated at least twice and fold-change was 

calculated compared with GAPDH expression. Western blots confirm the induction of FBXW7 

(A) and reduction of endogenous nuclear NICD in WT-expressing cells but not mutants of 

FBXW7 (B). Actin and cyclin A served as loading control. (C and D) ChIP assays on FBXW7 

WT and mutant following induction in stably transduced MT1 lines using RT-PCR. ChIP assays 

were prepared using anti-Notch and amplified with Hes-1 specific primers. (C) MT1 cells 

cultured with or without GSI (1 µM for 72 h) served as an assay control for loss of NICD- 

Val1744 and Hes1 binding. Fold-change was calculated as a percent of the initial input material. 

Sequencing of the amplified product verified Hes1 amplification. 
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ATL FBXW7 Mutants Demonstrate Reduced Binding and Ubiquitin-

Mediated Degradation of NICD. 

We next investigated the ability of FBXW7 mutants to interact with NICD and promote 

ubiquitin-mediated turnover of NICD. FBXW7 and FBXW7 mutants were coexpressed along 

with NICD in 293T cells. Consistent with the reporter assay described in Fig.1D, our results 

showed that only FBXW7 mutants T416A and W406R retained their ability to degrade NICD 

(Fig. 18A). Accordingly, the half-life of NICD was extended in the presence of the FBXW7 ATL 

mutants (Fig. 18B). As expected from these data, most FBXW7 mutants found in ATL patients 

lost the ability to interact with NICD, and the FBXW7 mutants T416A and W406R retained 

binding (Fig. 18C). Surprisingly, despite the lack of NICD degradation, FBXW7 mutant D510E 

was still able to interact with NICD to a similar extent as the WT FBXW7 (Fig. 18C). The lack 

of NICD degradation was not a result of a defect in the ability of D510E to recruit SKP1 (Fig. 

18D). We think that a conformational change of D510E may affect ubiquitination. FBXW7- 

mediated ubiquitination of NICD on Lysine K63 was not affected by the D510E mutation (Fig. 

18E). However, FBXW7-mediated ubiquitination of NICD on Lysine K48, generally associated 

with proteasomal degradation, was significantly decreased for D510E compared with WT 

FBXW7 (Fig. 18E). 
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Figure 18. FBXW7 mutants reduced binding and ubiquitin-mediated degradation of 
 

NICD. 
 

(A) FBXW7-mediated degradation of NICD was analyzed by Western blot (WB) and 

compared with control plasmid (pcDNA). FBXW7 WT and R505C were used as positive and 

negative controls, respectively. The NICD expression was quantified as relative to control 

normalized as 100% (WT 53%, R505C 115%, W406R 56%, T416A 61%, W425R 80%, L443F 

100%, S462P 117%, H468R 111%, D510E 105%, and D527G 91%). (B) Expression of FBXW7 

mutants increased the half-life of NICD. The effect of FBXW7 or mutants on the half-life of 

NICD was analyzed by Western blot after 100 μg/mL cycloheximide (CHX) treatment for 0, 2, 4, 

and 6 h. Western blot for transfected NICD, FBXW7, and actin are presented. (C) The 

interaction between NICD and FBXW7 was analyzed in 293T cells transfected with Myc-tagged 

NICD and Flag-tagged FBXW7 WT or mutants. Immunoprecipitated NICD and WB FBXW7 
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showed the interaction between NICD and FBXW7 WT. (D) Interaction between S-phase 

kinase-associated protein 1 (SKP1) and FBXW7 was analyzed in 293T cells transfected with 

HA-SKP1 and Flag-tagged FBXW7 WT or mutants. IP SKP1 and Western blot FBXW7 showed 

the interaction between SKP1 and FBXW7. (E) FBXW7-mediated NICD ubiquitination was 

analyzed in 293T cells transfected with FBXW7 WT (lane 2) or D510E (lane 3), NICD, and HA- 

Ub (K63 or K48). Cells were treated with MG132 for 6 h before harvest. Immunoprecipitated 

NICD and Western blot Ub showed the ubiquitination level of NICD. 



96  

Novel Oncogenic FBXW7 Mutants Promote Cellular Transformation and 

IL-2– Independent Growth of Tax-Immortalized T Cells. 

HTLV-1 Tax’s transforming abilities have been characterized in vitro using a Rat1 

fibroblast colony formation assay (16, 17). We next tested whether ATL FBXW7 mutants could 

increase Tax-transforming activity. Interestingly, two ATL FBXW7 mutants, D510E and D527G, 

were able to stimulate the transforming activity of Tax and increase colony formation by 50% 

and 35%, respectively (Fig. 19 A and B). These mutants had no transforming effects on their 

own (Fig. 19 A and B). Increased Tax transforming activity was not related to changes in Tax 

expression as demonstrated by Western blot assays (Fig. 19C). In addition, as reported above for 

the W425R mutant, the D510E mutation acted as a dominant-negative preventing WT FBXW7- 

mediated degradation of NICD (Fig. 19C). Previously characterized FBXW7 mutant R505C was 

not able to cooperate with Tax in transformation assays. Interestingly, the oncogenic activity of 

the D510E mutant was also observed when coexpressed with either p53 R276H or c-Myc F138C 

(Fig. 19D), two mutants found in human cancers (18, 19). Our results suggest that FBXW7 has a 

tumor-suppressor effect in ATL cells but acquisition of specific mutations may result in shifting 

to a transforming phenotype. We next validated our results in the context of human T cells. In 

the early stages of the disease, chronic or smoldering ATL cells rely on autocrine loops IL-2/IL- 

2Rα and IL-15/IL-15Rα for their proliferation. In vitro, transformation by HTLV-1 is 

characterized by IL-2–independent growth and acquisition of constitutive JAK/STAT activation 

(20). We cloned FBXW7 and the D510E mutant into a lentiviral vector for delivery into the IL- 

2–dependent Tax-immortalized WT4 T cells. Two days after infection, cells were grown in the 

absence of IL-2. After 8 wk in culture, all cells infected with FBXW7 had died but WT4 D510E 
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cells were still alive and proliferating in the absence of IL-2 (Fig. 19E), suggesting that D510E is 

able to facilitate transformation of IL-2–dependent Tax-expressing human T cells. 
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Figure 19. FBXW7 mutants promote cellular transformation. 

 

(A) FBXW7 mutants increase Tax-transforming activity. Rat1 cell colony formation was 

evaluated after cells were transfected with the indicated plasmids and puromycin selection. The 

transformation efficiencies were normalized to Tax alone, which was set as 100%. The data were 

from two independent experiments and shown as the average. Increased number of transformed 

foci observed for D510E and D527G were statistically significant. (B) Photographs of 

transformed foci were shown (AMG EVOS XL core with 20× objective). (C) Western blot 

showed the expression of Tax and FBXW7. Actin served as a loading control. NICD expression 

in 293T cells transfected with NICD, FBXW7 WT, and a dose increase of D510E were analyzed 

by Western blot (Lower). (D) FBXW7 mutants increase p53 R276H and c-Myc F138C 

transforming activities analyzed as in A. The transformation efficiencies were normalized to p53 

R276H and c-Myc F138C, respectively. The data were from two independent experiments and 
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shown as the average with SD. (E) WT4 cells infected with lentivirus encoding FBXW7 WT or 

D510E were cultured in medium with or without IL-2 for 8 wk. Photographs of cell colonies are 

shown (AMG EVOS XL core with 20× objective). (F) FBXW7 WT and mutant-mediated 

substrate degradation were analyzed by Western blot after transient transfection. (G) Cellular 

proliferation of MT1 cells expressing FBXW7 WT and D510E were evaluated by cell count. The 

data were from two independent experiments and shown as the average with SD. (H) 

Degradation of endogenous substrates NICD, c-Myc, and cyclin E by FBXW7, W425R, S462P, 

and D510E mutant were analyzed by Western blot in ATL cells (MT1). 
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FBXW7 D510E Mutant Increases the Tumor Formation in an ATL Mouse Model. 

 

To gain some insight into the D510E mutant, we performed transient transfection assays 

and found that FBXW7 D510E retained its ability to target c-Myc and Cyclin E for degradation, 

but not NICD (Fig. 19F). WT FBXW7 and previously characterized R505C, which are unable to 

target proteins for proteasome degradation, were used as controls (Fig. 19F). To determine the 

physiological relevance of our studies, we next investigated whether FBXW7 D510E can 

promote ATL tumor cell growth in vivo. MT1 ATL-transformed cells were stably transduced 

with a TET-inducible vector expressing the FBXW7 D510E mutant or FBXW7 WT. In vitro 

proliferation assays demonstrated that MT1 cells expressing the D510E mutant expanded more 

rapidly (Fig. 19G). Importantly, the selective defect of D510E mutant for NICD degradation was 

also confirmed on endogenous proteins (NICD, c-Myc, and Cyclin E) in MT1 ATL cells (Fig. 

19H). 

 

To next investigate the ability of D510E to stimulate ATL tumor growth in vivo, we 

injected an equivalent number of MT1 FBXW7 or D510E cells in the right or left flanks of NOG 

(NOD/Shi-scid/IL-2Rγnull) mice. Mice received daily doxycycline in the drinking water and 

tumor volume was recorded every 3 d. After 21 d, the animals were killed and tumors excised 

(Fig. 20A). As expected from the data presented in Fig. 19, levels of NICD were higher in cells 

expressing D510E compared with WT FBXW7 (Fig. 20A). Examination of tumors revealed a 

significant increase in volume and weight for ATL cells expressing the D510E mutant compared 

with WT FBXW7 control (Fig. 20 B–C). Overall, these results confirm our in vitro 

transformation assays and suggest that the FBXW7 D510E mutation has tumor-forming potential 

in cooperation with other oncogenes. 
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Figure 20. FBXW7 D510E increased the tumor formation in vivo. 

 

(A) MT1 FBXW7 (n = 5) or D510E (n = 5) TET-On cells were injected into the right or 

left flank of NOG mice. Pictures are representative of excised tumors from injected mice. 

Western blot for NICD (Val-1744) expression in tumor samples is shown. (B) In vivo tumor 

growth curves, plotted as the average tumor volume (mm3) [calculated as the (width2 × 

length)/2]. P values were calculated using a two-sided student’s t-test between the tumor 

volumes for FBXW7 vs. D510E. (C) Tumor weight (in grams) for FBXW7 and D510E tumors 

taken at the time of sacrifice. P values were calculated using a two-sided student’s t-test between 

the tumor weight for FBXW7 vs. D510E. The mean tumor weight was indicated with a bar and 

green square, with the SD indicated. 
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Discussion 

 

In this study we report genetic mutations in the FBXW7 gene of acute ATL patients. In 

vitro established HTLV-1–transformed ATL cells demonstrate low levels of FBXW7 mRNA but 

similar mRNA half-life compared with PBMCs, suggesting transcriptional repression of the 

FBXW7 promoter in these cells. In contrast, analyses of freshly isolated and uncultured ATL 

samples demonstrated variable levels of FBXW7 mRNA expression, which was reduced in 

approximately one-third of ATL patients. Because ATL cells expressing or not expressing Tax 

had low levels of FBXW7, we think the mechanism is largely Tax-independent. Several reports 

suggest that a low level of FBXW7 expression is associated with increased malignancy potential, 

lymph node metastasis, and poorer prognosis in cancer patients [138]. The existence of 

additional posttranscriptional mechanisms to reduce FBXW7 expression, such as miR-223, miR- 

92a, and miR-27a regulation, has also been reported. Of note, we previously found that miR-223 

is up-regulated in uncultured ATL samples, suggesting that miR-223 may contribute to 

suppression of FBXW7 in ATL cells in vivo. Our data confirmed that FBXW7 acts as a tumor 

suppressor in ATL cells and significantly reduces tumor cell proliferation, thereby justifying the 

requirement for its inactivation. In a recent study by Kataoka et al. [2], 81 ATL samples were 

analyzed by exome sequencing and the rate of mutation for FBXW7 was found to be much lower 

than in our study. However, using the same patient cohort we used in this study, we recently 

found a similar rate of mutation for STAT3 (25.5% in Caribbean vs. 21% for Japanese samples). 

Therefore, we believe the rate of mutation may be higher for FBXW7 in the Caribbean 

population. In support of this notion, using the 1000 Genomes Project Consortium database, we 

found the frequency of FBXW7 single nucleotide polymorphism (SNPs) to be higher in 

Caribbean samples compared with Japanese samples. In the total population the frequency of 
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SNPs at FBXW7 was 1.05% similar to Japanese 1.08%. However, the Caribbean frequency of 

FBXW7 SNPs was significantly higher, 1.42%. In addition, we observed that Caribbean 

individuals had a greater amount of unique SNPs (1,174) at the FBXW7 locus compared with 

Japanese samples (762). The data demonstrate that individuals of Caribbean descent have a 

greater frequency of FBXW7 SNPs. In addition, another difference between the two studies is 

that we analyzed only acute ATL, whereas Kataoka et al. [2] analyzed mixed acute, chronic, 

smoldering, and lymphoma ATL (acute 47%, lymphoma 16%, chronic 31%, and smoldering 6%). 

If the mutation occurs in a later stage of the disease, that may also explain the different rate of 

mutation between the studies. 

Importantly, our study identified two mutants, FBXW7 D510E and D527G, which 

retained their ability to target endogenous Cyclin E, MCL-1, and c-Myc for proteasome 

degradation but were unable to degrade NICD in ATL cells. This observation contrasts with a 

previously reported phenotypes of FBXW7 mutants found in other cancers for which mutations 

abolish all substrate degradation. The reason why the D510E mutation selectively abolishes 

degradation of NICD but no other substrates is unclear. D510E retains its ability to interact with 

NICD but was much less efficient in promoting K48 ubiquitination of NICD. The mechanism 

underlying D510E and D527G oncogenic activity remains to be demonstrated. Other mutations 

may also play a different role. For example, several reports indicate that a mutation in FBXW7 

can contribute to drug resistance [79] or promote metastasis. Deregulated MYC and FBXW7 has 

been associated with the presence of lymph node metastasis and poor prognosis in gastric 

cancers, and a distinctively poor prognosis in gastric cancer patients who had low FBXW7 

expression levels and mutated p53 [138]. In addition, several studies showed that FBXW7 gene 

mutation and hyperphosphorylation of cyclin E, which usually correlates with FBXW7 mutation, 
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have a significant association with polyploidy and aneuploidy [112]. Because aneuploidy is also 

a characteristic of acute ATL, it will be important to determine if loss of FBXW7 affects 

chromosome segregation in ATL cells. In vivo FBXW7 mutation knock-in mice showed 

cooperation with specific signaling pathways, such as activated Notch or mutated adenomatous 

polyposis coli and accelerated tumor formation [9, 153]. However, to our knowledge, this study 

is the first example describing cooperative oncogenic activities of mutated FBXW7 with a viral 

oncogene (HTLV-1 Tax), p53, or c-Myc. Given the high rate of mutation of both p53 and c-Myc 

in human cancers, selective loss of FBXW7 functions may play a more active role than 

previously anticipated in the transformation process and warrants more study. Finally, an 

FBXW7 mutation may also provide novel therapeutic opportunities inasmuch as ablation of 

FBXW7 abrogates quiescence in leukemia-initiating cells, thereby increasing sensitivity to 

Imatinib. In fact, the combination of FBXW7 ablation with Imatinib treatment resulted in a 

greater depletion of leukemia-initiating cells than of normal hematopoietic stem cells in mice 

[154]. Glucocorticoid receptor-α is a substrate of FBXW7 and inactivation of FBXW7 has been 

linked to a higher level of glucocorticoid receptor-α expression in T-ALL. This result was 

associated with a better prognosis and an increased sensitivity of leukemia cells to steroid 

therapies [133], suggesting that loss of FBXW7 may create opportunities for specific anticancer 

therapies. 
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Chapter III: Mutation of epigenetic regulators TET2 and MLL3 in patients with 

HTLV-1-induced acute adult T-cell leukemia. 

This work was published in Molecular Cancer 15:15, Copyright (2016) Yeh et al. 
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Abstract 

 

Epigenetic regulators play a critical role in the maintenance of specific chromatin 

domains in an active or repressed state. Disruption of epigenetic regulatory mechanisms is 

widespread in cancer cells and largely contributes to the transformation process through active 

repression of tumor suppressor genes. While mutations of epigenetic regulators have been 

reported in various lymphoid malignancies and solid cancers, mutation of these genes in HTLV- 

1-associated T-cell leukemia has not been investigated. Here we used whole genome next 

generation sequencing (NGS) of uncultured freshly isolated ATL samples and identified the 

presence of mutations in SUZ12, DNMT1, DNMT3A, DNMT3B, TET1, TET2, IDH1, IDH2, 

MLL, MLL2, MLL3 and MLL4. TET2 was the most frequently mutated gene, occurring in 32 % 

(10/31) of ATL samples analyzed. Interestingly, NGS revealed nonsense mutations accompanied 

by loss of heterozygosity (LOH) in TET2 and MLL3, which was further confirmed by cloning 

and direct sequencing of DNA from uncultured cells. Finally, direct sequencing of matched 

control and tumor samples revealed that TET2 mutation was present only in ATL tumor cells. 

Our results suggest that inactivation of MLL3 and TET2 may play an important role in the 

tumorigenesis process of HTLV-1-induced ATL. 
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Introduction 

 

Human T-cell leukemia virus type I (HTLV-1) is associated with fatal 

lymphoproliferative disorders known as adult T-cell leukemia/lymphoma (ATL) [1, 155]. The 

disease is classified into distinct subtypes - smoldering, chronic, acute and lymphoma - that 

differ in their clinical presentation and in their response to treatment [51]. Since the clinical 

subtypes of ATL have distinct genomic alterations and different clinical progression, these 

diseases require a different approach for treatment. However, current therapies for ATL do not 

result in long-term remission and even the clinically less aggressive forms ultimately evolve to 

the acute. The 4 year survival rate for acute-, lymphoma-, chronic- and smoldering-type ATL is 

11, 16, 36, and 52 %, respectively [156]. The viral oncoprotein Tax plays an important role in 

initiation of events leading to cellular transformation [36, 151]. However, the fact that the 

disease has a low penetrance and is observed after a long latency period of several decades has 

led to the hypothesis that the virus initiates oncogenic events but is not sufficient for cellular 

transformation [148, 157]. In support of this notion epigenetic alterations are required for the 

development of ATL. Promoter hyper-methylation associated with loss of SHP1 expression 

coincides with the IL-2-independent transformation of T cells by HTLV-1 in vitro. SHP1 is one 

of the most frequently altered genes in ATL patients, with an overall hyper-methylation rate of 

90 %; other tumor suppressor genes inactivated by methylation in ATL include p53-related p73, 

CDKN2A and p21CIP1/WAF1 [158]. The fact that histone methyl-transferase EZH2 has been 

demonstrated to repress p57KIP2 expression through histone H3 lysine 27 trimethylation 

(H3K27me3), and that p57KIP2 is methylated in nearly 50 % of newly diagnosed ALL patients, 

prompted us to analyze the status of cellular genes involved in chromatin silencing. In this study 

we use next generation sequencing (NGS) to characterize the genetic mutations in EZH1, EZH2, 
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EED, SUZ12, DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3, IDH1/2, MLL, MLL2, 

 

MLL3, MLL4 and ASXL1. Our study revealed a high frequency of mutation in epigenetic 

regulators in ATL samples, suggesting that chromatin remodeling by some of these genes may 

play a role in the pathogenesis of ATL. 
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Materials and Methods 

 

ATL patient samples 

 

All patient samples were obtained after informed consent was provided and in agreement 

with regulations for the protection of human subjects according to the National Institutes of 

Health (NIH) guidelines. As for the samples from the Japanese material bank, they were 

provided from the biomaterial bank of the Japanese nationwide cohort study (Joint Study of 

Predisposing Factors for ATL Development, JSPFAD) that is approved by the ethical committee 

of the University of Tokyo (No. 14-15, No. 07-07 and No. 10-50). Genomic DNA was extracted 

using DNAZol (Invitrogen) from uncultured acute and lymphoma ATL samples. DNA samples 

1–7, 10 and 11 were isolated from patients diagnosed with acute ATL. DNA samples 8, 9, 12 

and 13 were isolated from patients with lymphoma ATL. HTLV-1 proviral load was calculated 

by TaqMan real time PCR and compared with a standard curve established using C91PL HTLV- 

1 transformed cell line harboring one proviral copy (Fig.21a). High tumor grade lymph node 

biopsy was used for ATL lymphoma patients as confirmed by real time PCR compared with B 

cells isolated from matched patient (Fig.21b). 
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Figure 21. ATL samples for sequencing 

 

a A set of standard samples was prepared through dilution of HTLV-1 transformed cell 

line DNA (TL) containing a single copy of integrated HTLV-1 with HTLV-1 negative 293 T cell 

DNA. Real time PCR was performed with 100 ng of mixed DNA. Both GAPDH and gag were 

detected and ΔCt was calculated by Ct gag - Ct GAPDH. The standard curve was created with 

ΔCt (X) and the percentage of HTLV-1 viral load relative to TL cell (Y). b Proviral load was 

calculated in DNA samples isolated from high grade ATL lymphoma and matched-control B 

cells by real time PCR. Relative proviral loads were calculated using the standard curve 

established above 
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Next generation sequencing (NGS) 

 

Exome Sequencing was performed by Perkin Elmer. DNA samples were evaluated using 

an e-gel and PicoGreen fluorometry to measure quality and quantity, respectively. DNA samples 

were then physically sheared to the desired size using a Covaris E220 Focused-ultrasonicator. 

Library preparation and enrichment were carried out using an Agilent SureSelectXT All Exon 

V3 kit and an automated sample preparation method derived from the manufacturer’s protocol. 

All subsequent steps were based on sequencing by Next Generation Sequencing methods on the 

Illumina Hiseq 2000 platform. Basecall files (*.bcl) were generated by the Illumina instruments 

and de-multiplexed and converted to fastq.gz format using CASAVA v1.8.2. Each pair of 

fastq.gz files was then aligned against human reference build 37 using BWA, v0.6.2. The 

resulting SAM files were converted to BAM format, sorted and indexed using SamTools v0.1.18. 

Duplicate reads in the sorted BAM file were marked using PicardTools v1.86. The duplicate 

marked BAM files were processed using GATK v1.6–13, following their “Best-Practices V3”. 

Each BAM was realigned around known INDELs and base quality scores were recalibrated, 

resulting in a recalibrated BAM file. Variants for each recalibrated BAM file were called using 

GATK Unified Genotyper, with SNPs and INDELs saved to separate files. These files were then 

hard filtered. 
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Direct PCR-sequencing and TA cloning for analyses 

 

Direct sequencing of ATL DNA was performed after PCR amplification using specific 

primers described below. In the case of MLL3 primers were located in introns surrounding exon 

16. Primers amplify genome sequence from 152235498 to 152236241 of chromosome seven 

which encompass the MLL3 Exon16 nucleotide 2653 to 2769 (amino acid 884 to 923). MLL3 F: 

CAGGCTATAGTTGTTGTCGTCACCAAG; MLL3 R: 

CATAACATGATAGTAAGCAAATATCTATC. TET2-414 primers amplify nucleotide 842 to 

1379 exon1 of TET2, which correspond to TET2 amino acid 281 to 459. TET2 Q414-F: 

ACTCTGAGCTGCCTCCAAAG; TET2 Q414-R: GAAGGTGGTGCCTCAGGTTT. TET2-876 

primers amplify nucleotide 2403 to 2866 exon1 of TET2, which correspond to amino acid 801 to 

955. TET2 Q876-F: TGTCCAAATGGGACTGGAGG; TET2 Q876-R: 

GATGCCACCTTAGAGCAGCA. Individual clones were obtained by TA-cloning (Invitrogen) 

and five clones were sequenced. 
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Results 

 

Despite profound epigenetic alterations in the genome of ATL cells, the genetic status of 

chromatin modifiers has not been investigated. In this study we performed next generation 

exome sequencing (NGS) to identify novel mutations in epigenetic regulators in ATL samples. 

The polycomb repressive complex 2 (PRC2) has histone methyltransferase activity and primarily 

trimethylates histone H3 on lysine 27 (H3K27me3), a mark of transcriptionally silent chromatin. 

The PRC2 complex has four subunits: SUZ12, EED, EZH1 and EZH2. LOH mutations of EZH2 

or SUZ12 have been reported in 25 % of T-ALL. In addition, the loss of PRC2 activity 

cooperates with mutated Notch1 by allowing recruitment of the intracellular domain of Notch 

onto the promoter of target genes. Along these lines, activated Notch is also required for ATL 

cell growth and tumor formation in an ATL mouse model [4]. While the EZH2 gene was not 

mutated in our study, 1/13 ATL sample had a mutation in SUZ12. It will be interesting in future 

studies to investigate if there is any cooperation of EZH2 and/or SUZ12 with activated Notch in 

a larger cohort of acute ATL patients. The coding sequence of the other two subunits, EED and 

EZH1, was not mutated in any of the ATL samples tested. The possibility that some members of 

PRC2 may be regulated post-transcriptionally by microRNA or LncRNA in ATL cells is under 

investigation. Similarly, miR101, miR-26 and miR208b have been shown to target EZH2, miR- 

323-3p to target EED, and miR-200b to target SUZ12. An earlier study demonstrated that 

decreased expression of miR-101, but not MiR-26b, in acute ATL is in part responsible for 

elevated expression of EZH2 in these cells [159]. Consequently, increased expression of the 

EZH2 protein induced the silencing of miR-31, resulting in NIK-mediated activation of NF-kB 

in ATL cells [39]. Additional sex combs like transcriptional regulator 1 (ASXL1) interact with 

PRC2 and are likely involved in a cross-talk between chromatin silencing systems, PRC1/PRC2, 
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the HP1α/CBX5 heterochromatin repressive complex and the polycomb repressive 

deubiquitinase (PR-DUB) complex. Mutation of ASXL1 has been reported in AML and chronic 

myelomonocytic leukemia (CMML) patients. Our study revealed mutations of ASXL1 in 2/13 

ATL samples. Interestingly, an ASXL1 somatic mutation, V1092M, detected in one ATL patient 

has also been reported in myeloproliferative neoplasms (MPN) and myelodysplastic syndromes 

(MDS). 

We next analyzed DNA (cytosine-5)-methyltransferases (DNMT1, DNMT3A and 

DNMT3B), which catalyze the transfer of methyl groups to specific CpG islands in DNA and are 

involved in maintenance or de novo methylation. Somatic mutations in DNMT3A have been 

reported as nonsense, frameshift, and missense mutations throughout the open-reading frame in 

5–20 % of AML and MDS. These studies suggested a potential gain-of-function that did not 

require the presence of a wild type copy of DNMT3A for altered function. Our analyses 

identified mutations in 7.5 % (1/13) of DNMT1 (isoform a) and DNMT3A (isoform b) and 15 % 

(2/13) of DNMT3B (isoform 1) of ATL samples. Interestingly, the same mutation at position 

N442K of DNMT3B was identified in two different unrelated ATL patients and has been 

reported in prostate cancer cells and the Cosmic Database. 

The Mixed Lineage Leukemia (MLL) family of genes (also known as lysine (K)-specific 

methyltransferases (KMT2)) plays an important role in histone methylation and transcriptional 

activation and is involved as a regulator of growth of hematopoietic precursor cells. Mutation of 

MLL and MLL2 was observed in 7.5 % (1/13) of ATL patients. The MLL3 gene, which encodes 

a component of a histone H3 lysine 4 methyltransferase complex named the ASC-2- and Mll3- 

containing complex (ASCOM), has been implicated as a tumor suppressor gene due to its 

frequent mutations in multiple types of human tumors. Exome sequencing has recently been used 
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to identify an MLL3 germ line mutation in a pedigree of colorectal cancer and acute myeloid 

leukemia [160]. Mutations and LOH in MLL3 has been reported in various human cancers. Our 

initial NGS analyses identified a high rate of nonsense mutations in MLL3 at position R904* of 

ATL samples (Fig.22a). This was interesting because early termination of MLL3 is predicted to 

produce a dominant negative form with oncogenic activities [161]. The presence of R904* on a 

highly conserved sequence homologous to MLL3 present on chromosome 13 likely contributed 

to the wrong assignment of a snp (rs200662726) in position R904* of the MLL3 gene in the 

NCBI database. Nevertheless, direct sequencing for all ATL DNA samples confirmed LOH for 

MLL3 in one ATL patient (Fig.22 b and c). 
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Figure 22. MLL3 mutations in ATL 

 

a Schematic representation of the MLL3 protein and distribution of mutations found in 

ATL patients. Nonsense and missense mutations found in ATL patients are shown in red and 

blue, respectively. b Chromatogram of the sequence of MLL3 from normal PBMC DNA (top) 

and MLL3 from ATL DNA with amino acid 904 nonsense mutation (bottom). c Alignment of 

ATL patient DNA KOE with MLL3 demonstrates the presence of a stop codon TGA in position 

904. SNPs identifying the MLL3 sequence (different from Chr13) are labeled in red 
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Ten-eleven translocation methylcytosine dioxygenase genes (TET1-3) are involved in 

DNA demethylation. Our investigations reveal mutation in the coding sequence of TET1 in 15 % 

(2/13). The mutation I1229M has been reported in the cosmic database. We also noticed the 

presence of TET1 single nucleotide polymorphism (snp rs3998860) I1123M. This snp has a 

global minor allele frequency (MAF) of 0.3067/1536 but was detected in all ATL samples tested. 

A larger cohort study is needed to confirm these data. No mutations were detected for TET3. 

Interestingly, TET2 was mutated at a high frequency of 38 % (5/13) in ATL patients. These 

results are in line with the high rate of somatic TET2 inactivation observed in MDS, MPN, 

chronic myelomonocytic leukemia (CMML) and AML [162], and they suggest that TET2 may 

play an important role in ATL pathogenesis. TET2 LOH was found in two ATL patients with 

nonsense mutations at positions Q876* and Q414* (Fig.23a), two mutations previously reported 

in CML patients. For these two ATL patients, we PCR amplified the TET2 region overlapping 

these mutations and cloned and sequenced five clones for high tumor grade and matched samples. 

ATL12 DNA was extracted from a high grade lymph node biopsy from megakaryocytes as a 

tumor negative control. For ATL11 DNA was extracted from high proviral load (high grade 

tumor sample) samples before therapy and control sample DNA obtained after complete 

remission. Proviral loads were confirmed by quantitative real time RT-PCR for all samples (Fig. 

11). Both mutations, Q876* and Q414*, were somatic mutations found in TET2 of ATL cells 

and not detected in control samples (Fig.23 b and c). We then analyzed an additional 18 acute 

ATL patients by direct PCR, cloning and sequencing and found 6/18 (30 %) with the mutation 

(Fig.24). Among missense ATL mutations only a mutation in position Q414R has previously 

been reported, although it was Q414L (COSM1618223). Of note, we found another unrelated 
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ATL patient with a Q876* mutation suggesting this may represent a frequently mutated region 

for ATL (Fig. 24). 
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Figure 23. TET2 mutations in ATL 

 

a Schematic representation of TET2 protein and distribution of mutations found in ATL 

patients. (b and c) Somatic LOH Q414* and LOH Q876* were confirmed by direct sequencing 

and analyses of TA clones from high grade tumor and matched non-tumor of two ATL samples 
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Figure 24. Independent patient cohort for TET2 sequencing 

 

TET2 mutations were found in 6/18 ATL patients by TA-cloning and direct PCR 

sequencing 
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Discussion 

 

In this study we report a high frequency of TET2 missense mutations (8/31 (25 %)) and 

LOH of TET2 (3/31 (10 %)) in acute ATL patients. These data suggest that TET2 may be 

involved in HTLV-1 pathogenesis and warrant additional studies. Studies have shown that the 

TET2 mutation results in global low levels of 5hmC compared with normal controls, supporting 

a functional relevance of TET2 mutations in leukemogenesis. Activating mutations of IDH1/2 

have been shown to be mutually exclusive with mutations of TET2 [163]. Although mutations of 

IDH1/IDH2 have the same final epigenetic effect as TET2 inactivation, mainly a global promoter 

hypermethylation, mutation in IDH1/2 was not observed in any ATL samples tested here. 

Consistent with this notion, increased methylation of CDKN2A promoter has been associated 

with the progression of ATL disease. Wilms tumor (WT1) mutant AML patients have reduced 

5hmC levels similar to the TET2/IDH1/IDH2 mutant in AML, suggesting that WT1 may also 

play an important role in control of the epigenome. WT1 and TET2 interact with one another. 

Although there are no reports regarding the genetic status of WT1 in ATL cells, we have 

previously shown PI3K-dependent cytoplasmic retention and inactivation of WT1 in HTLV-1 

transformed cells. It will be interesting to evaluate the role of cytoplasmic WT1 in the regulation 

of TET2 functions in HTLV-1 transformed T cells. Although a number of genes have been 

shown to be hypo- or hypermethylated in ATL cells, a direct implication of these genes in 

cellular transformation and/or ATL pathogenesis is lacking. In this study, we also found LOH in 

1/13 ATL patient for MLL3. ASCOM-MLL3 has a redundant but crucial role in transactivation 

of p53 and participates in DNA damage-induced expression of p53-targeted genes. Notably, p53 

transcriptional functions are impaired in ATL patients in the absence of genetic mutations in p53 
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and the possibility that loss of MLL3 participates in this process for some ATL patients warrants 

future studies. 
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Chapter IV: NOTCH1 activation depletes the pool of side population cells in ATL. 

 

This work was published in Journal of cancer sciences, vol.4,  Copyright (2017) Bai et al. 
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Abstract 

 

Background: HTLV-I infection is associated with the development of adult T-cell 

leukemia (ATL), a malignancy characterized by a high rate of disease relapse and poor survival. 

Previous studies reported the existence of side population (SP) cells in HTLV-I Tax transgenic 

mouse models. These studies showed that these ATL-like derived SP cells have both self- 

renewal and leukemia renewal capacity and represent cancer stem cells (CSC)/ leukemia- 

initiating cells (LIC). Since CSC/LIC are resistant to conventional therapies, a better 

characterization is needed. 

Methods: We isolated, sorted and characterized SP cells from uncultured PBMCs from 

ATL patients and from ATL patient-derived cell lines. We then identified several specific 

signaling pathways activated or suppressed in these cells. Expression of viral gene HBZ and Tax 

transcriptional activity was also investigated. Using gamma-secretase inhibitor (GSI, 

Calbiochem) and stably transduced ATL cell lines expressing TET-inducible NOTCH 1 

intracellular domain (NICD), we characterized the role of activated NOTCH 1 in the 

maintenance of the SP cells in ATL. 

Results: Our studies confirm the existence of SP cells in ATL samples. These cells 

demonstrate lower activation of NOTCH1 and Tax, and reduced expression of STAT3, β- 

catenin/Wnt3 and viral HBZ. We further show that PI3K and the NOTCH1 signaling pathway 

have opposite functions, and constitutive activation of NOTCH1 signaling depletes the pool of 

SP cells in ATL-derived cell lines. 

Conclusions: Our results suggest that in ATL, a balance between activation of the 

NOTCH1 and PI3K signaling pathway is the key in the control of SP cells maintenance and may 

offer therapeutic opportunities. 
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Introduction 

 

Limiting dilution transplantation demonstrated that only a small percentage of cells 

within a cell line population can give rise to tumors in vivo. These observations suggest that 

tumors and cell lines are composed of cells that are heterogeneous in terms of tumor-forming 

potential [164, 165]. Numerous studies demonstrate that side population (SP) cells identified by 

ABC pump-mediated exclusion of Hoechst can be referred to as Leukemia-initiating cells (LIC) 

or Cancer stem cells (CSC). These cells have the unique ability to regenerate full leukemia and 

self-renewal of the SP compartment in xenograft models [166]. SP analysis has also been used to 

identify CSC in a wide variety of human solid tumors, including breast, colon, ovarian and 

hepatic cancers [167-170]. These cells are relatively resistant to commonly used therapies. In 

addition, SP cells have also been reported in several hematologic malignancies, including but not 

limited to acute myeloid leukemia [171], chronic myeloid leukemia [172], and acute 

lymphoblastic leukemia (ALL) [173, 174]. 

Human T-cell Leukemia Virus type I (HTLV-I) infection is associated with an aggressive 

and fatal form of T-cell leukemia/lymphoma known as adult T-cell leukemia/lymphoma (ATL) 

[11, 175]. The mechanism by which HTLV-I engenders ATL is not fully elucidated, but 

numerous studies have demonstrated involvement of genetic and epigenetic events [5, 148, 176- 

178]. Overall, survival of ATL patients treated with various chemotherapy regimens is poor, with 

survival in several cohorts of patients presenting predominantly with acute leukemia or 

lymphoma ranging between 5.5 and 13 months [1]. Although most therapies initially result in a 

partial or complete remission, the vast majority of patients relapse and die, suggesting that 

current treatments do not completely eradicate ATL tumor cells. Consistent with these 

observations, published data suggest the existence of a slowly dividing cell subpopulation called 
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LIC, which is highly resistant to apoptosis following treatment with various chemotherapeutic 

regimens. Therefore, a major barrier impeding the cure of ATL patients may be the failure to 

effectively eliminate these LICs. In fact, studies demonstrated that combination therapy using 

arsenic trioxide and interferon-alpha (IFN) triggers proteasome-mediated Tax proteolysis and 

apoptosis and cures Tax-driven ATL in mice. This combination therapy of primary donor mice 

eliminated LIC engraftment and hampered ATL development in untreated secondary recipient 

mice [179]. Although this treatment showed promising results for long-term remission of ATL 

patients in the chronic phase of the disease, it did not benefit patients in the acute stage [180]. 

A study demonstrated that Hoechst-sorted SP cells correspond to CSC/LIC and 

investigated their role using a Tax-transgenic mouse model that causes T-cell lymphomas with 

characteristics similar to that of ATL [181]. The authors demonstrated that injection of non- 

obese diabetic/severe combined immunodeficiency (NOD/SCID) mice with as few as 10
2 

CSC/LIC was sufficient to recapitulate the original lymphoma and reestablish CSC/LIC in 

recipient NOD/SCID mice, suggesting a role for CSC/LIC in this ATL malignancy. However, it 

is important to bear in mind the limitations of data derived from transgenic mouse models. 

Enforced overexpression of the Tax oncoprotein in mature T cells is not reflective of the 

interactions between a complete HTLV-I virus and targeted signaling pathways in vivo. Tax 

expression is limited or absent in many ATL patients [182]. This approach also does not account 

for the role of the other viral accessory genes, such as p12, p30 and HBZ [183-185], in 

modulating viral leukemogenesis or playing a role in the CSC/LIC compartment. 

In this study, we demonstrated the existence of SP cells in all ATL fresh samples and 

ATL patient-derived cell lines tested. We used FACS cell sorting to characterize signaling 

pathways modulated in SP cells and show that the activity of NOTCH1 and Tax, and the 
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expression of STAT3 and β-catenin/Wnt3, are predominantly decreased in ATL SP cells. 

Consistent with these results, ectopic expression of a constitutive active form of NICD 

significantly reduced the SP population while, on the other hand, inhibition of NOTCH1 

signaling led to enrichment of the SP cells. These results suggest that targeted inhibition of 

NOTCH1 may reduce tumor burden but may not eliminate CSC/LIC. This is important because 

numerous studies suggest that leukemia relapse occurs because standard chemotherapy fails to 

eradicate CSC/LIC [186]. Therefore, elucidating the specific nature and properties of ATL 

CSC/LIC self-renewal and resistance to apoptosis represents an essential step towards curing 

ATL. 
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Materials and Methods 

Cells and reagents 

HTLV-I-transformed cell lines ED, MT1, ATL-T, and ATL-25 were cultured in RPMI- 

1640 with 10% fetal bovine serum, L-glutamine, 100U/ml penicillin and streptomycin and 

maintained in 5% CO2 at 37°C. Vybrant® DyeCycle™ (DCV) was obtained from Invitrogen. 

Verapamil hydrochloride was purchased from Sigma-Aldrich. ED or MT1 cells were treated 

with either 10 μM LY294002 (Sigma-Aldrich, St Louis, MO) for 3 days or 1μM gamma- 

secretase inhibitor (GSI, Calbiochem) for 5 days as indicated in the figure legends. 

Patient samples 

 

ATL cryopreserved samples were obtained after informed consent and institutional IRB 

approval as described in the previous study [4]. 

Side Population (SP) Analyses 

 

For DCV staining, cells were pelleted and resuspended in pre-warmed DMEM with 10% 

FBS and 10mM HEPES at a concentration of 1X10
6
cells/ml. Before incubation with DCV, cells 

were pre-incubated for 30 minutes in 200 μM Verapamil at 37°C. DCV was added at a final 

staining concentration of 10µM. The cells were stained for 60 min at 37
o
C while gently 

vortexing every 15 min. Then the cells were washed 2 times with pre-warmed PBS and 

resuspended in pre-warmed DMEM with 10% FBS and 10mM HEPES at a concentration of 

1X10
6
cells/ml. After 1 hour, the cells were either analyzed on a BD™ LSR II cytometer or flow 

sorted on a BD FACSAria™. 

RNA extraction and real-time quantitative RT-PCR 

 

Acute ATL samples were previously published [4]. Total mRNA was isolated from 

HTLV-I cell lines and cells using TRIzol Reagent (Ambion) according to manufacturer's 
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instructions. After DNAse I treatment, the RNA was reverse transcribed and the cDNA was used 

for real-time PCR. Real-time PCR was performed with the following sets of primers: 

ABCG2F: CCTGAGATCCTGAGCCTTTGG-3′), ABCG2R: 

AGGTCATTGGAAGCTGTCGC; Hes1F: CTGTGGGAAAGAAAGTTTGGG; Hes1R: 

GACCAAGGAGAGAGGTAGAC; HBZF: CGGCCTCAGGGCTGTTTC; HBZR: 

CGCGGCTTTCCTCTTCTAAGGA; GAPDHF: GAAGGTGAAGGTCGGAGTC; GAPDHR: 

GAAGATGGTGATGGGATTTC 

The relative mRNA levels in each sample were normalized with GAPDH and were 

calculated using the 2−ΔCt method. 

Production and transduction of recombinant lentivirus 

 

Lentivirus vector SMPU-18x21-EGFP was kindly provided by Dr. C. Z. Giam [187]. The 

VSV-G pseudo-typed pSIH-H1-GFP and SMPU-18x21-EGFP viruses were produced and 

concentrated as previously reported [32]. ATL-25 and MT1 cells were infected in the presence of 

polybrene and spinoculated at 1200 relative centrifugal force (rcf) at room temperature for 1 

hour. The cells were cultured for 2 days, followed by the SP analyses. 

Western blot 

 

MT1 cells were treated with 1μM GSI for 5 days. Whole cell extracts were prepared with 

radioimmunoprecipitation assay (RIPA) buffer (50 mm Tris-Cl, pH 7.5, 150 mm NaCl, 1% 

Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS) containing Complete Protease Inhibitor 

cocktail (Roche Diagnostics). Anti-NOTCH1 (#2421; Cell Signaling) and anti-actin (C-11; Santa 

Cruz Biotechnology) were used. 
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Results 

 

Characterization of SP cells in ATL fresh samples and patient-derived ATL cell lines. 
 

Numerous studies have shown that side population (SP) cells are enriched for cancer 

stem cells (CSC)/ leukemia-initiating cells (LIC), which have both self-renewal and tumor- 

regenerating potential [166]. The SP phenotype is based on the ability of these cells to 

proficiently efflux fluorescent dyes such as Hoechst 33342 or DCV through the multidrug ABC 

transporter, such as ABCG2. This property allows the characterization and isolation of SP cells 

using fluorescence-activated cell sorting (FACS). To identify and characterize SP cells in ATL, 

we investigated the SP cells by efflux of DCV dye in several ATL-derived cell lines (ED, ATL-T, 

 

MT-1, MT-2 and C91PL) as well as freshly isolated uncultured PBMCs from acute ATL 

patients. Our results demonstrate the presence of a small percentage of SP cells, from 3% to 

5.6%, in all ATL lines and in freshly isolated uncultured ATL primary samples (Fig.1A). 

Verapamil, an irreversible inhibitor of ABCG2, confirmed loss of SP cells and was used for 

gating of the cell population in further experiments. We cell-sorted SP cells (SP+) and non-SP 

cells (SP-) cells and extracted RNA and genomic DNA (Fig. 1B-E), and ABCG2 expression was 

compared between SP- and SP+ cells in ED. In keeping with earlier reports, there was almost 

two times the ABCG2 expression in SP+ cells compared with SP- cells (Fig1C). Notably, PCR- 

based analyses of T-cell receptor (TCR) gamma gene rearrangement in DNA extracted from SP+ 

and SP- cell populations indicated that these two populations have the same clonal origin 

(Fig.1E). 
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Figure 25: The presence and expression profile of side population in ATL cell 

lines and primary ATL samples. 

(A) The representative SP analysis of ATL cell lines and primary ATL samples. (B and C) 

The gates used to sort both SP+ and SP- cells were plotted as rectangles. The expression of 

ABCG2 in SP- and SP+ cells were analyzed by RT-PCR. The results were from two independent 

experiments and normalized to GAPDH expression. Data are mean ± SD. *P<0.05, two-tailed 

Student’s t-test. (C and D) SP+ and SP- cells were sorted from patient samples. The gates used to 

sort both SP+ and SP- cells were plotted as rectangles. DNA were extracted and analyzed by 

PCR. (E) Relative expressions of viral HBZ gene, cellular ABCG2, HOXB3, β-catenin, Hes1, 

BMI1, OCT-4, Nanog, Wnt3, Wnt5a, STAT3 and c-Myc were tested using RT-PCR. The results 

were from two independent experiments and normalized to GAPDH expression. Data are mean ± 

SD. *P<0.05, two-tailed Student’s t-test. 
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Signaling pathways involved in the development and maintenance of the malignant 

ATL 
 

cells. 
 

Several signaling pathways such as Bmi-1, Notch, Wnt/β-catenin, Sonic hedgehog and 

NF-kB have been implicated in CSC/LIC self-renewal and survival in leukemia and other solid 

cancers [188-193]. Previous studies have reported an increased expression of c-Kit and 

decreased expression of Tax, NOTCH1, and Bmi1 in CSC/LIC isolated from a Tax transgenic 

mouse model [181]. FACS-sorted SP+ and SP- cells were used to extract RNA for RT-PCR 

analyses of selected genes previously shown to play a role in the development and maintenance 

of the malignant ATL cells. Among the targets tested, HOXB3, Hes1, a downstream target of 

Notch 1, and STAT3 were downregulated in SP+ cells (Fig.1F). Since we have reported somatic 

mutations of the NOTCH1 and STAT3 signaling pathway in ATL patients [4, 191], the effect of 

these signaling pathways in SP cells should be considered when applying targeted therapy. 

Consistent with previous studies, we found no significant change in the expression of 

FLT3, N-cadherin, Oct-4, and Nanog (Fig.1F and data not shown). In our experiments, however, 

c-Kit (CD117) expression was not elevated in SP cells, suggesting differences between Tax- 

derived ATL-like transgenic models and patient-derived ATL cells, highlighting the need for 

further investigation. 

In HTLV-I-transformed ATL cells, the most frequently expressed viral genes are HBZ 

and Tax. Interestingly, the HBZ mRNA was significantly downregulated in SP+ cells 

(Figure.1F). These data suggest that loss of HBZ may play a role in the maintenance of SP cells 

in ATL. 

Next, we sought to analyze viral Tax activity in SP+ and SP- cells. Unlike HBZ mRNA 

generally expressed in most ATL cells, only about one-fourth of ATL samples have detectable 
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expression of tax viral mRNA [1]. Tax is a potent transcriptional trans-activator for a 21bp repeat 

motif found in the viral HTLV-I LTR promoter. To detect Tax activity in ATL cells, we used a 

previously characterized lentiviral vector known as SMPU-18x21-EGFP reporter construct [32, 

187]. We first demonstrated that SP+ and SP- cells are equally susceptible to lentivirus infection 

using concentrated virus particles generated with pSI-H1-GFP. As demonstrated in Figure 2A, 

approximately 50% of cells in each population were transduced with pSI-H1-GFP. To validate 

our approach we used Tax- cells (MT1) and Tax+ cells (ATL-25), and measured GFP activity by 

FACS. Our results suggested that the GFP signal was comparable for both cell lines when using 

the pSI-H1-GFP particles, which indicated equal transduction efficiency (Fig.2B). However, 

SMPU-18x21-EGFP signaling was only detected in Tax+ ATL-25 cells, but not Tax- MT1 cells, 

which demonstrates the specificity of the reporter (Fig.2B). In order to demonstrate the 

correlation between Tax-transcription activity and SP, we gated the ATL cells according to Tax- 

transcription activity (SMPU-18x21-EGFP signaling) and then performed SP assay. A lower 

percentage of SP cells was found in the high Tax-transcription activity population compared with 

the low Tax-transcription activity population (3.2% vs. 3.9%) (Fig.2C). 
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Figure 26: Tax-transcription activity and SP cells. 

 

(A) MT1 was first gated for SP+ and SP-, and then the SP+ and SP- cells were gated 

based on GFP expression level. (B) Both MT1 and ATL-25 were infected with SMPU-18x21- 

EGFP virus; SMPU-18x21-EGFP can only be detected in Tax+ ATL-25 cells (lower panel), but 

not Tax- MT1 cells (upper panel). (C) ATL-25 cells are first gated according to Tax-transcription 

activity and then SP assays were performed to analyze SP cells in each subgroup and total cells. 
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Activated Notch signaling depletes SP cells 
 

Previous studies have shown that NOTCH1 signaling plays an important role in CSC/LIC 

homeostasis [192]. Since our studies revealed Hes-1 as one of most deregulated genes in ATL SP 

cells and NOTCH1 signaling has been implicated in ATL tumor growth in vitro and in vivo [4], 

we next investigated the role of NOTCH1 signaling in SP cells maintenance. Notch signaling, 

initiated by receptor-ligand interactions, requires subsequent proteolytic cleavage of the receptor, 

resulting in the intracellular cleaved form of NOTCH1 (hereafter referred to as NICD) which 

translocates to the nucleus and up-regulates the transcription of Notch-regulated genes (3-5). 

Treatment with gamma secretase inhibitor (GSI, Calbiochem) prevents cleavage of the receptor 

and interrupts NOTCH1 signaling. Effectiveness of the treatment was confirmed by decreased 

NICD expression in western blotting (Val1744 Ab, Fig.3B) following incubation with 1 μM GSI. 

Treatment of ATL cells with GSI resulted in a significant increase in SP cells from 5.4% to 

16.3% (Fig.3A). This increase was not observed after a short incubation of 3 hours with GSI, 

suggesting that an increase in SP cells is specific to GSI-mediated loss of NICD rather than an 

effect on ABCG2 pump activity (Fig.3A). In contrast, treatment of cells with LY294002, a PI3K 

inhibitor, resulted in a drastic loss of SP cells (Figure.3C). The treatment was effective in ATL 

cells as demonstrated by reduction of pAKT by western blot (Fig.3D). Together these data 

suggest that the NOTCH1 and PI3K signaling pathways have antagonizing effects on SP cells 

maintenance. 
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Figure 27: The treatment of LY294002 decreases percentage of SP cells, while 

the treatment of GSI increases the SP percentage. 

(A and B) ED cells were treated with 1μM GSI for 5 days or 3 hours, followed by SP 

analysis (A) and Western blot for cleaved Notch1 (B). Actin served as a loading control. (C and 

D) ED cells were treated with 10 μM LY294002 for 3 days, followed by SP analysis (C) and 

Western blot for phospho-AKT (D). Actin served as a loading control. 
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To eliminate the possibility of GSI off-target effects and further demonstrate the role of 

NOTCH1 activation in SP cells, we generated Tet-inducible ATL lines carrying a non- 

degradable constitutive active form of NICD (*2403 and *2466) [4]. Induction of NICD mutant 

expression (Fig.4A) with Doxycycline was, as expected, associated with increased Hes1 gene 

expression (Fig.4A). Consistent with results presented in Fig. 3, expression of constitutive 

NOTCH1 in MT-1(MT-1 *2403 and MT-1 *2466) was associated with a significant loss of the 

SP cells from 11.6% to 1.6% and from 14.4% to 6.5% (Fig.4B). However, the SP cells was not 

affected in MT1 control cells (MT-1 pTripZ) (Fig.4B). These results were further confirmed in a 

different ATL patient-derived cell line (ED) using the *2466 NICD mutant (ED *2466) (Fig.4B). 

Finally, if the GSI effect described above occurs through NOTCH1 signaling, one would expect 

that expression of NICD mutants *2403 and *2466 would prevent an increase of the SP cells 

following GSI treatment. Western blot analyses confirmed that *2403 and *2466 expression is 

not affected by GSI, while endogenous levels of NICD are reduced after treatment (Fig.4C). 

FACS analyses further demonstrate that the SP cells significantly increases only in MT1 control 

ATL cells (2% to 11.8%) (Fig.4D) but not in MT1 cells carrying constitutive active NICD *2466 

and *2403 mutants (3.7% to 4.8% and 6.5% to 6.4%, respectively) (Fig.4D). Altogether our 

studies suggest that activation of NOTCH1 is critical for SP cells maintenance. 



139  

 
 

Figure 28: The regulation of SP cells by Notch signaling. 

 

(A) MT1 *2403 and *2466 stable cell lines were induced with doxycycline for 48 hours 

and western blot showed the expression of NICD. Actin acted as a loading control. The 

expression of Hes1 was analyzed by RT-PCR. The results were from two independent 

experiments and normalized to GAPDH expression. Data are mean ± SD. *P<0.05, two-tailed 

Student’s t-test. (B) SP assay was performed after MT1 and ED stable cell lines were induced 

with doxycycline for 48 hours. (C) Ectopic and endogenous expression of NICD were analyzed 

by Western blot after indicated treatment. (D) SP assay was performed after MT1 stable cell 

lines were treated with Dox alone or Dox + GSI. 
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Discussion 

 

HTLV-I-associated ATL has limited therapeutic options, a very poor prognosis and a 

dismal survival rate. The 4-year survival rate for acute-, lymphoma-, chronic- and smoldering- 

type ATL is 5.0, 5.7, 26.9 and 62.8%, respectively [148]. The poor prognosis of ATL patients is 

associated with the resistance of tumor cells to the conventional combination of high-dose 

chemotherapy and radiotherapy, in addition to ATL being associated with a high rate of disease 

relapse. The failure of first line therapies to completely eliminate cancer cells likely contributes 

to acquisition of chemoresistance [194]. Hence, a better understanding of cell population and the 

genetic and epigenetic events providing chemoresistance is critical for the design of novel 

therapeutic strategies to successfully treat cancer. In recent years, the role of CSC/LIC in cancer 

resurgence and resistance to treatment has been the focus of many investigations. High levels of 

ABC-transporter-mediated efflux, such as ACBG2, facilitate but do not solely explain the 

acquisition of mechanisms of drug resistance. Defects in DNA repair pathways, control of 

apoptosis cell death and genetic mutations observed in ATL cells [151] may be contributing 

factors leading to CSC/LIC escape from chemotherapy. CSC/LIC has been poorly characterized 

in HTLV-I-associated ATL. 

In this study, we demonstrate that HTLV-I-transformed ATL cells freshly isolated or cell 

lines derived from patient samples contain a small variable population of SP cells. As mentioned 

above, SP analysis has been used to identify CSC/LIC in a wide variety of leukemia and solid 

tumors. Our studies demonstrate that ATL SP cells display a lower expression of Hes1, STAT3, 

β-catenin and Wnt3. This is of interest because we have previously identified a high rate of 

somatic mutations in NOTCH1 and STAT3 in acute ATL patients [4, 191]. These mutations 

could trigger rapid proliferation and expansion of leukemia cells. Whether mutations occur in the 
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CSC/LIC or leukemic cellular compartment remains to be determined. In contrast, we have 

previously shown that ATL patient-derived leukemia cells activate the non-canonical Wnt 

pathway and overexpress Wnt5 but do not present activation of β-catenin or Wnt3 [188]. In this 

study, we also investigated the functional expression of the two viral genes most frequently 

expressed in ATL cells isolated from patients, Tax and HBZ. Our investigations revealed a 

reduced expression of viral HBZ and lower Tax activity in SP+ cells. These data are consistent 

with the fact that CSC/LIC are slowly dividing cells and viral proteins have an opposite effect. 

Tax is a potent transcriptional activator of cellular genes involved in cell proliferation and it 

favors genome instability by targeting DNA repair pathways [17, 36, 151]. Similar to Tax, HBZ 

has been shown to stimulate the growth of ATL cells and activate the non-canonical NF-kB 

pathway[21]. Our investigations suggest that the PI3K and NOTCH1 signaling pathways have 

opposite functions in SP cells homeostasis. While constitutive activation of NOTCH1 signaling 

depletes the pool of SP cells in ATL-derived cell lines, PI3K signaling seems to increase the pool 

of SP cells. Additional experiments will be needed to further characterize the role of these 

signaling pathways in CSC/LIC and identify effective therapeutic targets. While inhibition of the 

NOTCH1 signaling pathway may be effective in eliminating ATL leukemia cells, this strategy 

may increase the SP cells and lead to disease relapse, suggesting that combination therapies 

targeting both cellular compartments may be more effective in curing ATL. 
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Chapter V: Clinical significance of microRNAs in chronic and acute human 

 

leukemia. 

 

This work was published in Molecular Cancer, 15:37, Copyright (2016) Yeh et al. 
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Abstract 

 

Small non-coding microRNAs (miRNAs) are epigenetic regulators that target specific 

cellular mRNA to modulate gene expression patterns and cellular signaling pathways. miRNAs 

are involved in a wide range of biological processes and are frequently deregulated in human 

cancers. Numerous miRNAs promote tumorigenesis and cancer progression by enhancing tumor 

growth, angiogenesis, invasion and immune evasion, while others have tumor suppressive effects 

[195, 196]. The expression profile of cancer miRNAs can be used to predict patient prognosis 

and clinical response to treatment [197]. The majority of miRNAs are intracellular localized, 

however circulating miRNAs have been detected in various body fluids and represent new 

biomarkers of solid and hematologic cancers [198, 199]. This review describes the clinical 

relevance of miRNAs, lncRNAs and snoRNAs in the diagnosis, prognosis and treatment 

response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia 

(CML), acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T- 

cell leukemia (ATL). 
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Chronic lymphocytic leukemia (CLL) 

 

 

Chronic lymphocytic leukemia (CLL) is characterized by slow growth and the 

accumulation of incompetent CD5+, CD19+ and CD23+ B lymphocytes in blood, marrow, and 

other lymphoid tissues. This disease can be distinguished into aggressive and indolent subtypes 

with deletion of chromosome 13q14 being the most common genetic alteration found at 

diagnosis. 

 
 

miRNA signature in CLL 

 

The miR-15/16 cluster, miR-34b/c, miR-29, miR-181b, miR-17/92, miR-150, and miR- 

155 represent the most frequently deregulated miRNAs reported in CLL and these microRNAs 

have been associated with disease progression, prognosis, and drug resistance [200]. Nearly 

two-thirds of CLL cases presented a down-regulation of miR-15a/16-1 expression. In fact, miR- 

15a and miR-16-1 are located in the locus 13q14.3, a genomic region frequently deleted in CLL 

patient samples [201]. However, additional mechanisms, such as overexpression of histone 

deacetylases (HDACs), also down-regulate expression of miR-15 and miR-16 [202]. Another 

point to highlight is that there is an inverse correlation between miR-15a/16-1 and BCL2 

expression reported in CLL, as inhibition of this microRNA expression in leukemic cell lines 

leads to increased BCL2 expression and resistance to apoptotic signals. In addition, comparative 

microarray analysis in CLL patients with high or low levels of miR-15a/16-1 identified a gene 

signature that contains the anti-apoptotic BCL2 family member MCL-1, which is associated with 

B-CLL cell survival and chemotherapy resistance [203-205]. Down-regulated miR-15a and miR- 

16-1 in CLL patients is associated with a good prognosis, consistent with previous reports that 
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correlate 13q14.3 deletions with a favorable course of CLL [206]. On the other hand, the miR-29 

family, which includes miR-29a, miR-29b and miR-29c, is significantly down-regulated in a 

subset of CLL patients and is associated with an unfavorable prognosis. miR-29b targets DNA 

methyltransferase (DNMT) isoforms and inhibition of miR-29b expression may lead to 

hypermethylation and epigenetic silencing of several tumor suppressors [206]. In addition, 

evidence shows that miR-29 targets the oncogene T-cell leukemia 1 gene, TCL1A. This TCL1 

oncogene is involved in translocations and inversions characteristic of mature T-cell 

prolymphocytic leukemia (PLL) and is overexpressed in patients with unmutated 

immunoglobulin heavy chain variable regions (IgVH). Transgenic mice that overexpressed 

TCL1 in B cells display a similar phenotype to aggressive forms of human CLL [206]. Another 

genomic region frequently deleted in CLL patients is found in the 11q region where a miR-34 

cluster is located. In fact, down-regulation of miR-34a in CLL is associated with p53 

inactivation, impaired DNA damage response, and apoptosis resistance [207-209]. Since miR- 

34a also inhibits E2F1 and B-Myb [210], loss of miR-34a expression may increase tumor cell 

proliferation. Alternatively, the miR-17/92 polycistronic microRNA cluster is overexpressed in 

several lymphoid malignancies and studies have shown that miR-17/92 inhibited the expression 

of the pro-apoptotic factor Bim and the tumor suppressor PTEN [211]. In addition, STAT3- 

induced IL-6 stimulates the expression of miR-17 and miR-19a, resulting in lower expression of 

TLR7 and TNFα. Also of interest, CLL patient cells expressing zeta-chain-associated protein 70 

kDa (ZAP-70) demonstrate significantly lower levels of miR-150 when compared with ZAP-70- 

negative CLL cells. In CLL cells miR-150 targets forkhead box P1 (FOXP1) and GRB2- 

associated binding protein 1 (GAB1), thereby reducing B-cell receptor signaling [212]. 
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Another STAT3-activated microRNA, miR-155[213], is overexpressed in cells and in 

circulating microvesicles in CLL samples [213]. Induction of the onco-miR-155 in the plasma of 

CLL patients correlates with poor response to treatment and disease progression. Consistently, 

patients who achieved complete remission presented low levels of miR-155 in the plasma [200]. 

In addition, the expression of miR-155 is increased with disease progression from monoclonal B- 

cell lymphocytosis (MBL) to CLL and is higher in MBL and CLL than normal controls [214]. 

High expression of miR-155 is associated with a more aggressive disease and a poor clinical 

prognosis in CLL [215, 216]. Another miRNA, miR-181b, is frequently down-regulated in CLL 

patients with disease progression [217, 218]. Important targets of miR-181b include MCL-1 and 

BCL2 [217], which, as stated before, are important for cancer cell survival, and low expression 

of miR-181b is associated with poor prognosis as indicated by treatment-free survival [217, 218]. 

 
 

miRNA expression and drug response in CLL patients 

 

Higher expression of miR-650 and miR-708 is associated with a favorable CLL prognosis 

 

[219] and affects B-cell proliferation [220]. On the other hand, overexpression of miR-21, miR- 

148a, miR-155 and miR-222 in CLL patients is associated with poor therapeutic response and 

prognosis [214-216, 221, 222]. For example, the expression of miR-155 is higher in CLL patients 

that failed to achieve a complete response to a chemo-immunotherapy combination of 

fludarabine [222, 223], cyclophosphamide, and rituximab (FCR) [214] and, as stated in the 

previous section, it is associated with poor clinical prognosis in CLL [215, 216]. The relapsed 

patients have higher miR-155 expression compared to baseline despite reduced expression at the 

beginning with response. Importantly, when the gene expression profile is analyzed, p53 down- 

stream genes are only detected in fludarabine-responsive patients, but not resistant patients [224]. 
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The mutation of TP53 in CLL is associated with unfavorable treatment response and clinical 

outcome [225], and in some CLL patients inactivation of TP53 correlates with reduced miR-34 

expression, which is associated with an unfavorable prognosis [226]. In addition, miR-132 and 

miR-212 expression is lower in progressive CLL patients compared with stable CLL patients 

[227]. Gene expression profiling showed that the miRNAs miR-132 and miR-212 affect the Rb 

or TP53 signaling pathway, which may explain the clinical observation [227]. 

The expression of miRNAs can also be used as a biomarker to monitor CLL progression. 

 

For example, there is reduced expression of miR-181b, miR-29c and miR-223 with disease 

progression in CLL patients and this correlates with unfavorable prognosis, such as shorter 

progression-free survival and overall survival [221, 228-230]. miR-150 is highly expressed in 

both cellular and serum samples of CLL patients [231]. It is interesting to note, though, that low 

cellular but high serum expression of miR-150 is associated with poor prognosis as indicated by 

tumor burden, treatment-free survival (TFS) and overall survival (OS) [231]. This could be 

because lower expression of cellular miR-150 may enhance cell survival and proliferation in 

response to BCR signaling stimulation, which worsens the patient prognosis [231]. Furthermore, 

high serum miR-150 is correlated with high lymphocytosis, which contribute to high tumor 

burden and poor clinical outcome [231]. 
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Chronic myeloid leukemia (CML) 
 

Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by 

abnormal expansion of immature hematopoietic progenitor cells in the bone marrow and 

increased levels of myeloid cells in the peripheral blood. The genetic hallmark of CML is a 

t(9;22)(q34;q11) reciprocal translocation, also called 'Philadelphia chromosome'. This 

translocation results in a BCR-ABL fusion gene that leads to constitutive tyrosine kinase 

activation [232]. 

 
 

miRNA signature in CML 

 

The most frequently down-regulated miRNAs in chronic myeloid leukemia include miR- 

10a, miR17–92, miR-150, miR-203, and miR-318 [233]. Several oncogenic miRNAs such as the 

miR17–92 cluster have been found to facilitate cellular transformation and to be up-regulated by 

the BCR-ABL fusion protein in CML [234]. Induction of this miRNA cluster is usually observed 

in the chronic phase of CML, but not in the blast crisis phase [235]. Similarly, loss of miR-328 is 

observed in blast crisis CML in a BCR/ABL dose- and kinase-dependent manner. Ectopic 

expression of miR-328 in cell lines restores differentiation of leukemic blasts by induction of the 

survival factor PIM1 and inhibition of the hnRNP E2 interaction with the hematopoietic 

transcription factor CEBPA. Down-regulation of miR-328 is essential in CML blast crisis [233]. 

The differentiation arrest observed during the blastic phase of CML requires the activity of 

hnRNP E2, a poly(rC)-binding protein, which behaves as a translational regulator. Finally, 

expression of miR-130a and miR-130b controlled by BCR-ABL down-regulates the expression 

of CCN3, a growth inhibitory protein [236], whereas some miRNAs inhibit BCR-ABL 
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expression. For instance, miR-203 and miR-451 act as tumor suppressors in CML and suppress 

ABL and BCR-ABL protein expression [237]. Consistent with this notion, miR-203 is frequently 

silenced by monoallelic loss and hypermethylation of the remaining allele [238]. Another 

consistency found in CML patients is the reduction of miR-150 and miR-10a expression [239, 

240]. CML patients display inverse expression levels of miR-150 and the transcriptional 

activator MYB, which correlates with BCR-ABL (fusion gene) transcript levels [241], while 

miR-10a is associated with increased proliferation by targeting the upstream stimulatory factor 2 

(USF2) [239]. Finally, recently miR-362-5p was found to act as an oncomiR by down-regulating 

GADD45α, which in turn activated the JNK1/2 and P38 signaling in CML patient samples [242]. 

 
 

miRNA expression and drug response in CML patients 

 

As discussed with CLL, the expression of miRNAs can be used as a biomarker to monitor 

CML progression as well. For example, the expression of miR-15a and miR-145 is higher in 

CML patients at chronic phase than in normal controls, but lower at acute phase than chronic 

phase [243]. The expression profile of some miRNAs can predict the Imatinib therapy response 

in CML patients[244]. For example, expression of miR-26a, miR-29c, miR-130b and miR-146a 

is lower in patients with an Imatinib response than in patients with Imatinib-resistant treatment 

[243]. A loss of or reduced expression of miR-23a, miR-30a, miR-30e, miR-203, miR-320 and 

miR424 have been associated with resistance to Imatinib in CML, and re-expression of these 

miRNAs targets BCR-ABL and restores sensitivity to Imatinib treatment [245-249]. In contrast, 

loss of miR-217 and miR-199b correlates with resistance to ABL tyrosine kinase inhibitors [250, 

251]. It should be noted that the tyrosine kinase inhibitor (TKI) Dasatinib affected miR-let-7d, 

miR-let-7e, miR-15a, miR-16, miR-21, miR-130a and miR-142-3p expressions while Imitanib 
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affected miR-15a and miR-130a levels [243]. Consistent with the notion that miR-130a can act 

as a tumor suppressor by targeting BCL2 and MCL-1 expression, lower expression of miR-130a 

is associated with poor prognosis as indicated by shorter overall survival and treatment-free 

survival in CML patients [252]. Importantly, a low expression of miR-148b is found in a subset 

of CML patients with stable complete molecular responses after stopping Imatinib 

treatment[253]. These studies suggest that expression or lack thereof of some miRNA may 

predict the ability of some CML patients to be safely removed from TKI treatments. 
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Acute lymphoblastic leukemia (ALL) 
 

ALL is a lymphoid malignancy affecting the B or T lineages. Distinct microRNA 

signatures are reported in different ALL subtypes and can be used for the diagnosis and 

classification of ALL. ALL can be divided into T-cell, MLL-rearranged, TEL-AML1-positive, 

E2A-PBX1-positive, hyperdiploid ALL, BCR-ABL-positive, and “B-other” ALLs. Studies of the 

distinct microRNA signatures of ALL subtypes can be used for the diagnosis and classification 

of the disease [254]. 

 
 

miRNA signature in ALL 

 

The B and T lineages of ALL can be distinguished by miR-148, miR-151, miR- 

424,miRNA-425-5p, miRNA-191, miRNA-146b, miRNA-128, miRNA-629, and miRNA-126. 

In addition, miRNA-708 was found highly expressed in TEL-AML1, BCR-ABL, E2A-PBX1, 

hyperdiploid, and B-other cases[254, 255]. The miRNA signature in hyperdiploid and TEL- 

AML1-positive patients partly overlap, suggesting a common underlying biology. Mavrakis et al. 

identified five miRNAs – miRNA-19b, miRNA-20a, miRNA-26a, miRNA-92, and miRNA-223 

involved in T-ALL development in a mouse model. These five miRNAs have been shown to 

target T-ALL tumor suppressors such as IKAROS, PTEN, BIM, PHF6, NF1 and FBXW7 [256]. 

The expression pattern of these miRNAs can be used as a biomarker to distinguish the B and T 

lineages of ALL. Higher expression of miR-128b and lower expression of miR-223 has 

independently been reported for human ALL cell lines and ALL cells isolated from pediatric 

patients [257]. In a different study, single nucleotide polymorphisms (SNPs) analyses of 

precursor miRNAs (pre-miRNA) and miRNA-processing genes revealed eleven SNPs associated 
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with ALL susceptibility [258]. Among them, eight are located at miRNA biogenesis pathway 

genes (TNRC6B, DROSHA, DGCR8, EIF2C1, CNOT1, and CNOT6) and three at miRNA genes 

(miR-612, miR-499, and miR-449b). Interestingly, miRNA-612 and miRNA-499 have significant 

correlations with ALL susceptibility [254]. In addition, miRNA profiles can be useful to 

distinguish myeloid or lymphoid lineages of leukemia. De Leeuw et al. identified miRNA-23a, 

miRNA-27a, miRNA-199b, miRNA-221, and miRNA-223 as the most lineage-discriminative 

miRNAs between AML and ALL [259]. AML patients present down-regulation of let-7b and 

miRNA-223 and overexpression of miRNA-128a and -128b compared to ALL. Consistently, 

Wang et al. [260] identified miR-23a, miR-27a, miR-27b, miR-150, miR-199a, miR-199b, miR- 

221 and miR-340 as miRNAs differentially expressed in patients with ALL compared to AML. 

 
 

miRNA expression and drug response in ALL patients 

 

Epigenetic deregulation is one of the mechanisms that accelerates ALL progression. miR- 

124a is methylated in 59% of ALL patients and down-regulation of miR-124a increased the 

expression of its target CDK6 resulting in phosphorylation of retinoblastoma (Rb), which is 

involved in cell proliferation. As a result, hypermethylation of miR-124a in ALL patients is 

correlated with a higher relapse and mortality rate and can be used as an independent prognostic 

factor for disease-free survival (DFS) and overall survival (OS) in the multivariate analysis 

[261]. microRNA analysis shows that expression of miR-10a, miR-134, miR-214, miR-221, 

miR-128b, miR-484, miR-572, miR-580, miR-624 and miR-627 are significantly correlated with 

a favorable clinical outcome [257, 260, 262]. In contrast, deregulation of the expression of miR- 

9, miR-33, miR-92a, miR-142-3p, miR-146a, miR-181a/c, miR-210, miR-215, miR-369-5p, 

miR-335, miR-454, miR-496, miR-518d, and miR-599 are associated with an unfavorable long- 
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term clinical outcome in ALL patients [260, 262-268]. Low expression of miR-151-5p and miR- 

451, and high expression of miR-1290 or a combination of all three, predicted inferior relapse- 

free survival (RFS) in pediatric B-ALL [269]. Importantly, activation of NOTCH intracellular 

domain (NCID) signaling leads to transcriptional repression of miR-451 and miR-709, two 

tumor suppressor microRNAs in T-ALL [270]. Furthermore, different independent analyses 

identified relapse-related miRNAs. When globally analyzed the relapse-related miRNAs – miR- 

7, miR-100, miR-216 and let-7i – were up-regulated, and miR-486, miR-191, miR-150, miR-487 

and miR-342 were down-regulated in early relapse ALL patients[271]. In addition, 

overexpression of miR-708, miR-223 and miR-27a is associated with lower relapse-free survival 

in patients [272], possibly through regulation of FOXO3, BMI1 and E2F1. Expression of miR- 

126, miR-345, miR-222, and miR-551a are reduced in ALL patients with central nervous system 

(CNS) relapse compared to non-CNS-relapsed ALL patients [271]. Furthermore, higher 

expression of miR-7, miR-198 and miR-633 was found in patients with CNS relapse compared 

with non-CNS-relapsed ALL [271]. 

Glucocorticoids can be used to treat ALL because they induce apoptosis in lymphoid 

lineage cells [273]. In ALL patients, sensitivity to prednisone treatment is an important indicator 

for treatment outcome [271]. While miR-16 is lower in ALL patients with low leukocytes and 

good cytogenetic characteristics [274], higher expression of miR-16 is found in patients with 

corticosteroid resistance [274] and is correlated with shorter disease-free survival and overall 

survival. The expression of miR-223 and the miR-15/16 family is increased in ALL patients 

treated with systemic glucocorticoid monotherapy [257, 273]. In contrast, the expression of miR- 

548d-1 and miR-106b~93 is reduced after ALL patients are treated with glucocorticoids [273]. 

Differential expression of miR-18a, miR-532, miR-218, miR-625, miR-193a, miR-638, miR-550 
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and miR-633 can be used as a marker to predict prednisone response in pediatric ALL 

patients[271]. For example, high miR-18a but low miR-193a expression is associated with good 

prednisone response. Although up-regulation of miR-128a [275, 276] and miR-128b [257] is 

frequently found in childhood ALL patients, patients with poor prednisolone response are often 

associated with lower miR-128b expression, with higher expression of miR-128b correlated with 

a longer disease-free period [257]. miR-128b expression is higher in the bone marrow of 

relapsed ALL patients compared with the values detected at diagnosis [257]. Increased miR-708 

expression is detected in childhood ALL with a good response to prednisone and with better 

remission status after 15-day and 33-day chemotherapy protocol [272]. The expression of let-7e 

is generally reduced in pediatric ALL patients [275, 276], but higher expression of let-7e is 

associated with positive minimal residual disease (MRD) at day 14 after treatment [276]. 
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Acute myeloid leukemia 
 

Adult acute myeloid leukemia (AML) presents abnormal miRNA expression diversely 

expressed in the different subtypes. Both the t(8;21) and inv(16) chromosomal aberration is 

associated with the formation of novel chimeric fusion genes that involve the core-binding factor 

(CBF) complex, an important regulator of hematopoiesis, providing the designation CBF- 

AML[277]. 

 
 

miRNA signature in AML 

 

A distinct miRNA signature characterized by an alteration of miR-29, miR-125, miR- 

142, miR-146 and miR-155 expression has been reported to play a role in AML progression and 

pathogenesis [278]. miR-29 family members miR-29a, miR-29b, and miR-29c act as oncogenes 

and tumor suppressors in myeloid malignancies [279]. miR-29b targets DNA methyltransferase 

DNMT3A, DNMT3B, and Sp1 (a transcriptional regulator of DNMT1) [280]. Inhibition of miR- 

29b promotes DNA hyper-methylation in AML and contributes to methylation status in AML 

cells, suggesting its potential role as a therapeutic target in AML. In addition, miR-29a and miR- 

29b affect the expression of genes involved in apoptosis, cell cycle progression, and cellular 

proliferation. Consistently, altered expression of MCL-1 and CDK6 was reported in primary 

AML blasts following ectopic expression of miR-29b [279]. Interestingly, injection of precursor 

miR-29b oligonucleotides in mice engrafted with K562 cells reduce their tumor sizes [278]. The 

miR-125 family includes miR-125a/miR-99b/let-7e, miR-125b-2/miR-99a/let-7c-1, and miR- 

125b-1/miR-100/let-7a-2 located on human chromosomes 19, 21, and 11, respectively. The mir- 

125 family is involved in self-renewal, both in hematopoietic stem cells (HSC) and 
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Megakaryocyte-Erythroid Progenitor Cells (MEC) [281]. Overexpression of miR-125 enhances 

the development of an MPN-like phenotype, which progresses to AML. Based on the cellular 

context, miR-125b can act as a tumor suppressor or an oncogene[282]. In acute myeloid 

leukemia, miR-125b is significantly overexpressed in patient blasts and can promote the 

transformation of normal hematopoietic cells into malignant cells in an in vitro and in vivo 

model. miR-125b is located on chromosome 21 and involved in the development of a rare 

subtype of AML, acute megakaryocytic leukemia (AMKL), especially in patients with Down’s 

syndrome (DS). The trisomy chromosome 21, typical of DS, is associated with overexpression of 

miR-125b in both DS- and non-DS-related AMKL patients [283]. Down-regulation of miR-146a 

promotes AML disease progression by TRAF6-mediated induction of NF-kB [284]. miR-142 

promotes the development of lymphoid and myeloid leukemia and is found recurrently mutated 

in AML [285]. miR-155 is located on human chromosome 21 in the B-cell integration cluster 

(BIC) gene[286]. BIC cooperates with c-Myc to induce lymphomas[286]. In addition, miR-155 

inhibits the cell-cycle regulators WEE1 and the mismatch repair genes hMLH1, hMSH2, and 

hMSH6, resulting in an increase in spontaneous mutation rates in hematopoietic stem and 

progenitor cells (HSPC) and solid tumor cell lines [278, 287, 288]. In contrast, other studies 

suggest that in FLT3-wildtype AML cells, miR-155 induces myelomonocytic differentiation and 

apoptosis[289]. 

 
 

MicroRNAs in the diagnosis of AML 

 

Up-regulated let-7a-2-3p is associated with a favorable prognosis, longer overall survival 

and event-free survival in cytogenetically normal AML [290]. The effects of let-7a-2-3p are 

possibly through regulating miRNAs (miR-135a, miR-335 and miR-125b and all members of the 
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miR-181 family) and genes (FOSB, IGJ, SNORD50A and ZNF502, and FOSB) that are 

favorable signatures in AML. The role of miR-181 in AML is controversial. High miR-181 

expression is associated with a better clinical outcome in cytogenetically normal acute myeloid 

leukemia patients [291, 292] through reverse regulation of toll-like receptors and interleukin-1β. 

In addition, miR-181 contributes to a better clinical outcome in cytogenetically abnormal AML 

patients [293] by regulation of HOXA7, HOXA9, HOXA11, and PBX3. Drug resistance is the 

main reason for AML relapse and poor prognosis. miR-181b can increase AML drug sensitivity 

through down-regulation of HMGB1 and MCL-1. Therefore, miR-181b is found to be down- 

regulated in relapsed and refractory AML patients [294]. 

 
 

MicroRNA expression associated with favorable prognosis in AML 

 

In analysis of the expression of the meningioma 1 (MN1) gene and MN1-associated 

microRNA in Chinese adult de novo acute myeloid leukemia (AML) patients, Xiang found that 

increased expression of MN1 is associated with reduced miR-20a expression and increased miR- 

181b expression. In further analyzing the clinical outcome, miR-20a up-regulation is associated 

with a higher complete remission rate and longer overall survival [295]. In contrast, high miR- 

181b expression is found in patients with a lower complete remission rate, shorter relapse-free 

survival and shorter overall survival [295]. 

Cytogenetic risk factors and molecular markers are important factors for AML prognosis 

[296]. Expression signatures of a minimum of two (miR-126/126*), three (miR-224, miR-368, 

and miR-382), and seven (miR-17-5p and miR-20a, along with the aforementioned five) 

miRNAs could correctly distinguish CBF, t(15;17), and MLL-rearrangement AMLs, suggesting 

that these microRNAs may cooperate with specific translocation in leukemogenesis [297]. In 
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fact, KIT-mediated upregulation of miR-17, which targets RUNX1-3'UTR, mimic the effects of 

CBF-AML fusion protein[298]. The expression of miR-29a is lower in the bone marrow of 

pediatric AML patients compared with normal controls [299], and reduced miR-29a expression 

is associated with unfavorable karyotypes and shorter relapse-free and overall survival in 

pediatric AML patients [299]. Importantly, the association of miR-29a and prognosis is more 

apparent in intermediate-risk cytogenetic AML patients [299]. The same is true for miR-29b in 

that AML patients with low miR-29b expression have an unfavorable overall survival [300]. 

Analyses of 238 intermediate-risk cytogenetic AML patients, reduced expression of miR-135a 

and miR-409-3p is associated with a higher risk of relapse [296]. Higher miR-142 expression 

was associated with a better overall survival in AML patients with intermediate cytogenetic risk 

[301]. In AML patients with complex karyotype, p53 status plays a role in determining miR- 

34a’s role in clinical prognosis. Up-regulation of miR-34a expression is correlated with 

unfavorable overall survival in TP53 (unaltered)-AML with complex karyotype, but is correlated 

with favorable overall survival and chemotherapy sensitivity in TP53 (biallelic altered)-AML 

with complex karyotype [302]. miR-96 is down-regulated in newly diagnosed AML patients and 

is associated with a higher white blood cell (WBC) count, bone marrow blast count, and lower 

hemoglobin and platelet count. Importantly, the expression of miR-96 increased after patients 

were treated with standard cytarabine plus daunorubicin induction chemotherapy [303]. When 

analyzing the relapse-free survival (RFS) and overall survival (OS), low expression of miR-96 is 

associated with shorter RFS and OS [303]. miR-204 expression is reduced in AML patients and 

low miR-204 expression is correlated with short patient survival [304]. After patients received 

induction chemotherapy (daunorubicin plus cytarabine), high expression of miR-204 is 

associated with complete remission [304]. In addition, increased expression of miR-212, miR-25 
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and/or miR-203 has been associated with a favorable overall survival, event-free and relapse-free 

survival in AML patients independent of cytogenetic subtypes [260, 305-307]. 

 
 

miRNA expression associated with unfavorable prognosis in AML 

 

miR-378 is increased in 31% of AML patients and is associated with lower hemoglobin 

levels and shorter relapse-free survival [308]. There is a positive correlation between miR-155 

expression and white blood cell (WBC) count, serum lactate dehydrogenase (LDH), C-reaction 

protein (CRP) value in peripheral blood (PB), and miR25 and miR-196b expression in AML 

[309]. miR-126 is highly expressed in hematopoietic stem cells and leukemic stem-like cells. In 

AML patients high miR-126 expression is correlated with poor survival, higher chance of relapse 

and expression of stem cell related genes [310, 311]. In vitro, overexpression of miR-126-5p 

increased the phosphorylation of Akt and caused cytarabin resistance. Increased miR-124, miR- 

128–1, miR-194, miR-219–5p, miR-220a and miR-320 expression are associated with increased 

risk in AML [291]. The expression of miR-320d is increased in AML patients [312] and higher 

expression of miR-124-1 is associated with shorter overall survival and relapse-free survival 

[313]. AML patients with worse overall and event-free survival are known to have higher 

expression of miR-191 and miR-199a [314]. In de novo AML patients, miR-9-5p and miR-155- 

5p are independent unfavorable prognostic factors [306]. miR-155 is up-regulated in AML 

patients compared to normal controls [309, 312]. Consistent with this finding, high miR-155 

expression is associated with an unfavorable prognosis, including lower complete remission rate 

and shorter disease-free survival and overall survival in AML [306, 309, 315]. The deregulation 

of miR-155 is associated with a gene expression profile enriched for genes involved in apoptosis, 

nuclear factor-kappaB activation, and inflammation [315]. Analyzing 53 AML patients, 
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increased expression of miR-26a, miR-29b, miR-146a, and miR-196b is associated with an 

unfavorable overall survival [260]. The role of miR-196b was further supported by analyzing 

238 intermediate-risk cytogenetic AML patients, whereby high miR-196b and miR-644 

expression is associated with shorter overall survival [296]. In 40 non-M3 AML patients, high 

expression of miR-26a, miR-29b and miR-146a is associated with short overall survival [260]. It 

is worth noting that miR-146a expression is reversely correlated with prognosis in both ALL and 

AML patients [260]. The opposite role of miR-29b in AML prognosis has been reported. miR- 

29b expression is inversely associated with MLLT11 expression, which is a poor prognostic 

biomarker for AML patients. Low miR-29b and elevated MLLT11 expression are found in 

patients with poor overall survival [300]. Whether the cooperation between miR-29b and 

MLLT11 caused poor prognosis needs to be further confirmed. Reduced miR-188-5p expression 

is associated with favorable prognosis as indicated by longer overall survival (OS) and event-free 

survival (EFS) in cytogenetically normal AML patients [290]. The effects of miR-188-5p are 

possibly through regulating miRNAs (miR-135a, miR-335 and miR-125b and all members of 

miR-181 family) and genes (FOSB, IGJ, SNORD50A and ZNF502, and FOSB) that are a 

favorable signature in AML. Up-regulated miR-3151 is found in AML patients with an 

unfavorable prognosis, such as short overall survival and leukemia-free survival, and higher 

relapse risk [316, 317]. High expression of miR-3151 is associated with low expression of genes 

involved in transcriptional regulation, posttranslational modification, and cancer pathways, such 

as FBXL20 and USP40 [317]. High miR-3151 expression is associated with high miR-501-5p 

and low miR-590, miR-135a, miR-100*, miR-186* and let-7a* expression [316]. The expression 

of let-7a-3 is increased in 25% of de novo AML patients and is associated with shorter overall 
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survival and relapse-free survival [318] in AML patients with complete remission. Further 

studies are needed to confirm the opposite role of let-7a-3 and let-7a-2-3p. 

 
 

miRNA expression and drug response in AML patients 

 

Higher expression of miR-29b is found in older AML patients with single-agent 

decitabine response compared with non-response patients [319]. The ability of miR-29b to target 

DNA methyltransferases may explain the role of miR-26b in decitabine response. miR-29c 

expression is higher in AML patients compared with healthy controls and is associated with poor 

survival [320]. Reduced miR-29c expression is associated with complete remission after initial 

treatment (intensive chemotherapy: daunorubicin plus cytarabine or low dose chemotherapy (low 

dose cytarabine or azacitidine)). Higher miR-29c expression was associated with relapse after 

patients achieved complete remission. Importantly, low miR-29c expression is associated with 

better response to azacitidine treatment and remission achievement in elder AML patients who 

are not suitable for intensive chemotherapy [320]. The increased expression of miR-181a is 

associated with a higher complete remission rate, longer overall survival and disease-free 

survival [292, 293] in AML patients treated similarly with intensive induction chemotherapy and 

consolidation with autologous peripheral blood stem-cell transplantation on Cancer and 

Leukemia Group B (CALGB) protocols 9621 and 19808. In addition, after AML patients 

received double induction and one consolidation therapy, increased miR-181b expression was 

associated with worse complete remission rates, relapse-free survival and overall survival in 

adult patients with de novo AML [295]. In contrast, up-regulation of miR-20 is associated with 

better complete remission rates and overall survival [295]. The following drugs are included in 

the induction therapy and consolidation therapy: daunorubicin, cytarabine, idarubicin, and 
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fludarabin [295]. miR-204 expression is reduced in AML patients and low miR-204 expression is 

correlated with short patient survival [304]. After patients received induction chemotherapy 

(daunorubicin plus cytarabine), high expression of miR-204 is associated with complete 

remission [304]. miR-331 is up-regulated in AML patients. AML patients with longer complete 

remission after induction chemotherapy have reduced miR-331 expression [321]. miR-335 is up- 

regulated in pediatric AML patients both in bone marrow and serum [322]. High serum miR-335 

is associated with poor relapse-free and overall survival after patients received 10 days of 

induction chemotherapy [322]. However, a separate study reported no association between serum 

miR-335 expression and Ara-C-based chemotherapy response. However, high expression of 

miR-335 in the bone marrow was indicative of poor Ara-C-based chemotherapy response, lower 

relapse-free survival and overall survival in AML patients [323]. High expression of the miR-10 

family is associated with complete remission after AML patients received induction 

chemotherapy [324]. 
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Adult T-cell Leukemia 

 

Adult T-cell Leukemia: signature and prognosis 
 

Adult T-cell Leukemia is a fatal malignancy of mature CD4+, CD25+ T lymphocytes 

induced by the retrovirus Human T-cell leukemia virus (HTLV)-1[158, 325]. Several studies 

have reported deregulated microRNAs in ATL patient samples and HTLV-1-transformed cells, 

among them miR-155, miR-146a, miR-150, miR-223 were found up-regulated and miR-31 and 

miR124a down-regulated [39, 152, 326, 327]. Interestingly, a recent study demonstrated that 

virus-encoded protein HBZ targets the expression of DICER thereby modulating the expression 

of a subset of microRNAs [328]. Deregulation of miR-146a, miR-155, miR-150 and miR-223 is 

reported to affect cellular proliferation [329-331] and alteration of miR-31, miR-130b and miR- 

93 are involved in apoptosis resistance [332], suggesting a possible role of miRNA expression in 

ATL progression and pathogenesis. Differential analyses of microRNA expression in non- 

infected healthy individuals, chronic ATL patients and acute ATL patients revealed an increased 

number of up-regulated miRNAs in acute ATL patients when compared with chronic ATL 

patients [333]. Among these, increased miR-155 expression correlates with disease progression 

from HTLV-1 carrier to chronic ATL and then to acute ATL [333]. Both STAT3 and Myb, 

which transcriptionally up-regulate miR-155, are activated in HTLV-1-transformed cells and 

ATL samples [327, 334, 335]. On the other hand, let-7g is highest in healthy donors and its 

expression is significantly reduced in an HTLV-1 carrier, chronic and acute ATL patient samples 

[333]. For clinical outcomes, high miR-155 and low miR-126 is associated with a poor prognosis 

[333]. High miR-130b and low miR-145 and miR-223 expression in aggressive-type ATL are 

associated with shorter overall survival. Among miR-130b, miR-145 and miR-223, only miR- 

145 can act as an independent risk factor for ATL prognosis by a multivariate prognostic 
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analysis. An in vitro study showed that overexpression of miR-145 in ATL cells reduced cell 

proliferation [336]. A recent study demonstrated that epigenetic silencing of miR-124-1 resulted 

in STAT3-mediated Pim1 kinase activation and increased tumorigenic potential [327]. 
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Role of circulating RNA 
 

The majority of miRNAs are cellular miRNAs, however an emerging class of circulating 

miRNAs has been described. Circulating miRNAs have been observed in various body 

fluids[337]. They are involved in proliferation and differentiation. Recent evidence shows 

elevated expression of the miR-29 family (miR-29a, miR-29b and miR-29c), miR-150 and miR- 

155 in CLL-derived exosomes compared to healthy donors [338]. The plasma expression of 

miR-29a and miR-150 is associated with absolute lymphocyte count in the blood [339]. The 

miR-29 family is significantly down-regulated in a subset of CLL patients and is associated with 

an unfavorable prognosis [206]. miR-150 is highly expressed in cellular and serum samples of 

CLL patients [231]. Interestingly, low cellular expression of miR-150 but high serum expression 

of the same is associated with poor prognosis as indicated by tumor burden, treatment-free 

survival (TFS) and overall survival (OS) [231]. The expression of miR-155 is increased with 

disease progression from monoclonal B-cell lymphocytosis (MBL) to CLL and is higher in MBL 

and CLL than normal controls [214]. In addition, high plasma miR-155 expression is associated 

with CLL patients poorly responding to fludarabine, cyclophosphamide, and rituximab (FCR) 

chemotherapy [214]. Therefore, high expression of miR-155 is associated with more aggressive 

disease and poorer clinical prognosis in CLL [215, 216]. 

Consistent with the finding in CLL patients, the expression of miR-150 and miR-155 is 

higher in AML-derived exosomes and can act as a biomarker to distinguish AML patients from 

normal controls [324]. There is a positive correlation between miR-155 expression and white 

blood cell count, serum lactate dehydrogenase (LDH) and C-reaction protein (CRP) value in 

peripheral blood in AML patients [309]. High miR-155 expression is associated with an 
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unfavorable prognosis, such as lower complete remission rate and shorter disease-free survival 

and overall survival in AML patients [306, 309, 315]. However, the role of miR-150 in AML is 

controversial. The expression of miR-150 has been reported to be lower in AML-derived plasma 

compared to healthy donors [340]. Up-regulation of miR-150 after treatment is associated with 

AML patients with complete remission [340]. In addition, circulating miR-155-5p and miR- 

181b-5p are up-regulated in AML patients when compared with normal controls [312]. Up- 

regulated circulating miR-181b-5p is associated with shorter overall survival [312] and is found 

in patients with a lower complete remission rate, shorter relapse-free survival and shorter overall 

survival [295]. 

Other circulating miRNAs can also act as biomarkers for AML prognosis. For instance, 

miR-210 is up-regulated in the bone marrow and serum of AML patients compared with normal 

controls. Reduced serum miR-210 expression is found in patients with complete remission, while 

high miR-210 expression is correlated with poor relapse-free survival and overall survival in 

AML patients [341]. Similarly, the expression of miR-375 is higher in the serum and bone 

marrow of pediatric AML patients and is associated with unfavorable karyotypes and poor 

prognosis as indicated by shorter relapse-free survival and overall survival [342]. Like miR-29a 

[299], the association of miR-375 and prognosis is more apparent in intermediate-risk 

cytogenetic AML patients [342]. Plasma miR-511, miR-222, and miR-34a are up-regulated in B- 

ALL patients compared with normal controls, whereas plasma miR-199a-3p, miR-223, miR-221, 

and miR-26a are lower in B-ALL patients [343]. Moreover, the low expression of miRNA-100 

and miRNA-146a is associated with poor clinical outcome in ALL patients [257, 260, 262, 320]. 

Together these studies clearly demonstrate that detection of circulating miRNAs has significant 
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value for detection of disease progression and can also serve as indicators of therapeutic 

response. 
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Clinical significance of other non-coding RNAs 
 

In addition to microRNA, other non-coding RNAs have been reported to play a role in 

human leukemias. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 

nucleotides with undefined open reading frames involved in gene expression regulation. A small 

subset of lncRNAs have been reported in leukemia and an lncRNA expression profile correlated 

with treatment response and survival in AML patients [344]. The X-inactive specific transcript 

Xist lncRNA, involved in epigenetic regulation of transcriptionally inactive chromatin, is 

overexpressed in some leukemias [345]. NOTCH-regulated lncRNA LUNAR1 (leukemia- 

induced non-coding activator RNA) has been shown to have oncogenic effects in T-ALL [346]. 

LUNAR1 has been demonstrated to increase IGF1R mRNA expression and IGF1 signaling 

[346]. Another NOTCH-related lncRNA, RP11-611D20.2 (NOTCH-associated lncRNA in T- 

ALL (NALT)), has been found to be overexpressed in pediatric ALL and may play a role in the 

leukemia stem cell compartment [347]. In CML patients with BCR-ABL translocation, 

deregulation of two lncRNAs has been described: the Beta Globin Locus 3 (BGL3) lncRNA 

[348] and the imprinted H19 lncRNA [349]. Little is known about the function of these lncRNAs 

in CML. BGL3 lncRNA has been shown to increase the expression levels of the tumor 

suppressor PTEN by acting as a competing endogenous RNA (ceRNA) [350]. In contrast, 

lncRNA H19, which is transcriptionally activated by the oncogene c-Myc [349], has been shown 

to inhibit the expression of the onco-suppressor let-7 microRNA family [351]. In AML patients, 

lncRNA IRAIN [352], which is transcribed from the IGF1R imprinted locus, is down-regulated 

in patients with high-risk AML, while urothelial carcinoma-associated 1 (UCA1) lncRNA is 

specifically up-regulated in AML [353], although its role in the pathogenesis is unclear. Finally, 
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the lncRNA B-ALL-associated long RNAs-2 (BARL-2) was found to affect B-ALL patient 

response to corticosteroid treatment [354]. Another class of non-coding ncRNAs, the small 

nucleolar snoRNAs, is also affected in cancers and leukemia. Elevated levels of SNORD112– 

114 snoRNAs has been found in acute promyelocytic leukemia (APL) [355]. In a different study, 

Affymetrix GeneArray screening identified snoRNA SNORA70F as significantly down- 

regulated in poor prognostic subgroups of CLL patients. In addition, high expression of 

SNORA74A and SNORD116-18, and low expression of SNORD56 were associated with shorter 

progression-free survival (PFS) in these patients [356]. Although lncRNA and snoRNA are not 

as greatly studied as miRNA, they are likely to play an increasing role in the future and 

eventually become a part of patients’ genetic signatures for individualized targeted medicine. 
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CRISPR screen to prevent HTLV-1 infection 

 

HTLV-1 preferentially replicates in CD4+ T cells, but other cells like stem cells and 

CD8+ T cells can also be infected by HTLV-1. It is found that the glucose transporter glucose 

transporter 1 protein (GLUT1) and surface heparin proteoglycan are receptors for HTLV-1 

infection [16, 21]. In addition, when infected cells come into contact with uninfected cells, 

HTLV-1 genome transfer to the uninfected lymphocyte through the viral synapse [26], which is 

composed of microtubule-organizing center (MTOC) [21]. The interaction between intercellular 

adhesion molecule 1 (ICAM1) and lymphocyte function-associated antigen 1 (LFA1) enhances 

the polarization of the MTOC at the cell-cell contact point and facilitates HTLV-1 transmission 

[21]. 

In 2014, the team led by June used zinc-finger nuclease (ZFN) to target CCR5 in T cells 

and infused ZFN-modified autologous CD4 T cells back into patients [357]. The results 

demonstrate that it is safe to genetically modify CCR5 in autologous CD4+ T cells. Consistently, 

using CRISPR-base screening, Ryan identified host genes such as CCR5, tyrosylprotein 

sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) that are essential 

for HIV infection but dispensable for host cell proliferation and survival [358]. In the future, the 

same method can be used to identify HTLV-1 infection essential genes. By using small molecule 

and/or antibody blockage, it is possible to prevent the infection or viral spreading at the 

beginning of HTLV-1 infection. Determining the indispensable proteins for HTLV-1 infection 

has the potential to inform the development of new targeting strategies that may have significant 

therapeutic implications. 
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HTLV-1 patient classification 

 

The clinical features of ATL are diverse from patient to patient. The clinical features of 

ATL include general lymphadenopathy, skin lesions, hepatosplenomegaly, leukocytosis with 

abnormal flower-like lymphocytes or with an increased number of neutrophils, hypercalcemia, 

and opportunistic infection [1]. According to Shimoyama criteria (Figure 1) [1], ATL patients 

can be classified into 4 different subtypes (acute, lymphoma, chronic, and smoldering) according 

to their prognostic factors and clinical observation. Acute, lymphoma and unfavorable chronic 

subtype largely defines poor prognosis. On the other hand, favorable chronic and smoldering 

subtypes are associated with a better clinical outcome. However, the molecular basis for patient 

classification is still missing. Therefore, comprehensive studies such as RNA-sequencing, whole- 

genome sequencing [2] and mass-based proteomic study will provide the molecular mechanisms 

by which HTLV-1 transforms T cells. A recent comprehensive genomic study of 426 ATL cases 

revealed activating mutations and gene fusions. These genetic changes result in deregulation of 

signaling pathways: TCR–NF-kB, JAK-STAT, Notch, and phosphoinositide 3-kinase (PI3K)- 

AKT signaling [2]. These results identify potential biomarkers and druggable targets for ATL 

patients and provide the opportunity to identify ATL patients who might best respond to precise 

therapy such as a PI3K/AKT inhibitor and JAK/STAT inhibitor. 

Combinational therapy 

 

Although the combination chemotherapies, antiviral therapies, and allogeneic HSCT have 

improved ATL patient prognosis, the overall ATL prognosis is still dismaying. Most of the ATL 

patients receiving general chemotherapy (CHOP) eventually develop drug resistance and 

relapses in a few months. The detailed mechanism underlying drug resistance is still poorly 

understood [359]. Most of the drug resistance comes from the mutation in the drug targets, such 
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as the mutation of epidermal growth factor receptor (EGFR) in lung cancer causing resistance to 

EGFR inhibitor. In addition, reactivating the downstream signaling pathway of the chemotherapy 

target can bypass the dependence on the specific target. For example, the activation of the ERK 

signaling pathway in melanoma results in RAF inhibitor resistance [360]. Understanding the 

molecular mechanisms underlying drug resistance can help us develop new inhibitors or combine 

specific target chemotherapies to circumvent or postpone resistance. 

In our study, we found that the mutation of FBXW7 in ATL cell lines increased 

downstream oncoproteins, such as Notch, c-Myc and cyclin E [5]. Although it is still impossible 

to target FBXW7 mutants, the deregulation of diverse downstream targets caused by FBXW7 

inactivation may reveal unique cancer dependencies and provide multiple downstream 

opportunities for therapeutic intervention. It will enable identification of patient populations that 

may benefit from specific chemotherapy interventions. Therefore, targeting the FBXW7 

substrate can be a therapeutic strategy in a clinical setting (Figure 25). For example, JQ1 is a 

bromodomain and extra terminal protein (BET) inhibitor that can reduce the expression of c-Myc. 

JQ1 inhibitor has anti-tumor effects both in vitro and in vivo for AML-T-ALL and ATL [147, 

361]. 
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Figure 29. Targeting FBXW7 substrate to reverse the effect of FBXW7 mutant 
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In addition, it is possible to target FBXW7 mutant cells through synthetic-lethal methods 

(Figure 26) or oncogene dependence, such as targeting genes that are selectively essential in cell 

lines carrying particular driver mutations [82] that prevent the damage to normal cells with wild- 

type FBXW7. For example, FBXW7 has been demonstrated to target glucocorticoid receptor 

alpha (GRalpha) in T-ALL. Reduced FBXW7 expression or function increased the 

glucocorticoid sensitivity in T-ALL, but not sensitivity to other chemotherapy drugs [133]. Thus, 

glucocorticoid treatment can provide a therapeutic window to block FBXW7 mutant cells and 

spare normal FBXW7 wild-type cells. 



176  

 
 

Figure 30. Schematic of synthetic lethality. 

 

Synthetic lethality means when 2 or more genes have loss-of-function at the same time 

leading to cell death, but not causing cell death when only one gene has loss-of-function. 
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FBXW7 substrates 

 

The mutations of FBXW7 can affect the interaction between FBXW7 and SKP1 (Figure 

27A), inactivating FBXW7 without affecting interaction (Figure 27B), impairing the interaction 

between FBXW7 and substrates and creating a novel interaction between FBXW7 and new 

substrates (Figure 27C). 
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Figure 31. The effect of FBXW7 mutation. 

The star indicates the mutation site of FBXW7 
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Until now, approximately 20 different FBXW7 targets have been identified [82]. As each 

of the substrates may be differentially affected by specific FBXW7 mutations and the cross-talk 

between signaling pathways, it is difficult to identify the contribution of each pathway to the 

overall survival and proliferation of cancer cells in FBXW7 mutant ATL. To comprehensively 

determine cellular proteins affected by FBXW7 mutation in ATL, ATL cells stably expressing 

FBXW7 mutant can be used to globally analyze protein expression levels by mass spectrum 

[362]. In addition, UbiScan ubiquitination proteomics platform can be used to unbiasedly 

determine protein ubiquitylation changed by FBXW7 mutation [44]. Furthermore, systematic 

screening such as CRISPR-Cas9 library or shRNA pool will identify the signaling pathway that 

is essential for specific FBXW7 mutant effect and reveal the synthetic lethal partners of FBXW7 

inactivation. 

In addition to the natural FBXW7 substrates, it is possible to use small molecular that 

links both a novel substrate and FBXW7. The chimeric adaptor binds to novel substrate and 

FBXW7. The recruitment of FBXW7 to the novel substrate causes novel substrate ubiquitination 

and eventually is degraded by proteasome (Figure 28). This strategy can be used to target 

oncoproteins that are unable to be targeted by small molecular inhibitor. 
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Figure 32. Novel substrate for FBXW7 
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Immunotherapy for ATL 

 

Although ATL cells functioning as regulatory T cells is controversial, ATL cells from a 

subset of patients are hypo-responsive to stimulation and repress the proliferation and IFN- 

gamma production of autologous CD4+ non-ATL cells [50]. That may at least explain part of the 

immunosuppression observed in ATL patients. In a clinical setting, HTLV-1 infection can cause 

opportunistic infection, which is also associated with immunosuppression and could be the 

reason for poor ATL prognosis [1]. Recently, the success of an antibody against programmed 

cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has 

represented a promising strategy for ATL treatment. However, Keisuke reported that 27% of 

ATL patients have structural variations (SVs) at the 3′ region of the PD-L1 gene. The structural 

variations can increase PD-L1 transcription and cause immunosuppression in animal models 

[363]. Therefore, it is important to exclude ATL patients with PD-L1 aberrant expression before 

immunotherapy. In the future, it is possible to use CRISPR-Cas9 to permanently eliminate PD- 

L1 in T cells to overcome this problem. Indeed, CRISPR-Cas9 mediated knockout of PD-1 has 

been shown to increase cellular immune response and does not affect the viability of primary 

human T cells [364]. 
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Oncogenic activity of FBXW7 

About 6% of primary tumors carry an FBXW7 inactivated mutation [88]. Conditional 

knockout of FBXW7 in hematopoietic cells or T cells is sufficient to cause T-ALL or thymic 

lymphoma by increased expression of Notch1 and c-Myc in more than 50% of FBXW7-deficient 

mice [121, 122]. In previous studies, however, FBXW7 hotspot mutation knock-in mice 

(FBXW7
mut

/+) did not develop leukemia spontaneously, indicating the difference between 

FBXW7 missense mutation and homologous deletion. When combining FBXW7 

deletion/mutation with suppression of p53 [121] or loss of PTEN [123] or active Notch [9], 

FBXW7 deletion/mutation enhances the tumorigenesis. 

In our study, we found two FBXW7 mutants, D510E and D527G, that demonstrated 

oncogenic activity when co-expressed with HTLV-1 Tax, mutated p53 R276H, or c-Myc F138C 

found in human cancers. Transforming activity was further proved by the ability of the FBXW7 

D510E mutant to provide IL-2-independent growth of Tax-immortalized human T cells and 

increase the tumor formation in a xenograft mouse model of ATL. This study suggests that 

FBXW7, normally a tumor suppressor, can act as an oncogene when mutated and may play an 

important role in the pathogenesis of ATL. 

Although most of the studies indicated FBXW7 as a tumor suppressor, there are few 

reports that demonstrated the oncogenic activity of FBXW7 [365]. In epidermal cells, loss-of- 

presenilins (PS), which is a catalytic component of gamma-secretase led to up-regulation of 

FBXW7 and subsequent stabilization of EGFR [365]. Furthermore, ablation of FBXW7 in 

embryo fibroblast reduced EGFR expression. In chronic myelogenous leukemia (CML), loss of 

FBXW7 resulted in c-Myc stabilization and subsequent CML leukemia-initiating cell (LIC) 

exhaustion. Mechanically, the up-regulation of c-Myc after FBXW7 deletion caused p53- 
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dependent apoptosis in CML leukemia-initiating cells [366] and disrupted the quiescence of 

CML leukemia-initiating cell [154]. Importantly, the depletion of CML leukemia-initiating cells 

by FBXW7 deletion increased the sensitivity of CML to chemotherapy drugs such as imatinib 

[154]. Further studies are needed to know if FBXW7 functions as an oncogene in other tumors. 
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Reduced FBXW7 expression in ATL 

 

Consistent with the tumor suppressor role of FBXW7, FBXW7 expression was deficient 

in many cancers and correlated with clinical outcomes. For example, loss of FBXW7 expression 

in hepatocellular carcinoma (HCC) tissues is correlated with poor clinical pathology, with 

features including large tumor size, high pathological grading and advanced TNM stage [124]. In 

addition, in high histological grade breast cancer patients, FBXW7 mRNA is significantly lower 

[127]. Moreover, lower FBXW7 expression is correlated with high Ki-67 and cyclin E 

expression. In ATL, down-regulation of FBXW7 expression was found in all the ATL cells lines, 

including MT-1, MT-2, MT-4, C8166, TL, ATL-25, ATL-T, ED, SP, ATL-43T and ATL-55T, 

compared to normal PBMC. 

 

Shahab showed that FBXW7β expression was reduced in primary breast cancer by 

promoter hypermethyation [367]. To determine the relationship between promoter methylation 

and low FBXW7 expression in ATL, we treated MT-2 and MT-4 with 5-Aza-2'-deoxycytidine, 

which causes DNA demethylation. After 5-Aza-2'-deoxycytidine treatment, FBXW7 expression 

is increased in both MT-2 and MT-4, which implied the promoter methylation of FBXW7. 

In addition to mutations and promoter methylation, FBXW7 is targeted by miRNAs such 

as miR-27, miR-92 and miR-223 in various tumors [82]. Among those miRNAs, miR-223 is up- 

regulated in many cancers, such as gastric cancer and esophageal squamous cell carcinoma [368, 

369]. Overexpression of miR-223 promotes cell proliferation in vitro and in vivo, and inhibits 

apoptosis [368]. On the other hand, inhibition of miR-223 inhibits cell proliferation and induces 

apoptosis in T-ALL cells [370]. Importantly, in our previous study, we found miR-223 was 

highly expressed in all ATL patients tested [152]. Whether miR-223 regulates FBXW7 in ATL is 

still unclear. 
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Although the idea is attractive, increasing FBXW7 expression remains a challenge. Thus, 

a better understanding of the mechanisms regulating FBXW7 abundance is required. 



186  

Restore the function of FBXW7 

 

FBXW7 is a tumor suppressor known to target many oncoproteins, such as cyclin E, c- 

Myc and Notch 1. Overall, 6% of human cancers harbor FBXW7 mutations. Among those 

mutation points, R465, R479, and R505 are three arginine residues in FBXW7’s substrate 

binding domain (WD40 domain) that are important for interaction with substrates (Figure 29A). 

Importantly, in the COSMIC database, more than half of the FBXW7 mutations happened on 

these 3 arginine residues [82]. Furthermore, we found 25% of ATL patients have mutations in 

the WD40 domain. The FBXW7 mutants lost their ability to interact with and degrade 

intracellular domain of Notch (NICD). In addition to the FBXW7 mutations, the mutations on 

the substrate’s phosphodegron also have been reported. For example, the mutation of c-Myc 

Thr58 depletes its Thr58 phosphorylation, which is the phosphodegron for FBXW7, and leads to 

c-Myc stabilization in Burkitt's lymphoma [101]. In addition, the mutations in T-ALL are shown 

to ablate Notch interaction with FBXW7 [134]. 

Proteolysis targeting chimaeras (PROTACs) and small molecules can be used as 

therapeutic applications to restore interaction between FBXW7 and its substrates [371, 372]. 

PROTACs are heterobivalent, chimeric molecules that bring together the E3 ligase and substrate 

(Figure 29 B). Besides, it has been reported that conjugation of JQ1 with phthalimide led the 

Cereblon E3 ubiquitin ligase complex to degrade the BET protein [371]. In addition, small 

molecules can act as molecular glue to bring together FBXW7 and its substrates (Figure 29C), 

although it may have off-target effects [83]. 
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Figure 33. Restore interaction between FBXW7 and substrates 

 

a. Interaction between FBXW7 and its substrates in physical condition. b. In case the 

mutations disrupt the interaction between FBXW7 and its substrates, PROTAC can be used to 

recruit substrates to FBXW7. c. Small molecules act as molecular glue to connect FBXW7 and 

its substrates. (Adapted from [83]) 
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The advance of CRISPR-Cas9 RNA-guided DNA endonuclease (CRISPR-Cas9 system) 

has improved our ability to edit genomes in living cells [373]. The CRISPR-Cas9 system 

consists of guide RNA, which can guide Cas9 DNA endonuclease specifically to target DNA by 

Watson-Crick base-pairing and cause DNA double-strand break. When the repair template is 

available, homology-directed repair (HDR) will be used to repair DNA double- strand breaks and 

lead to desired genomic editing. Although the CRISPR-Cas9 system is an easier method to do 

genomic editing compared to zinc-finger nucleases and transcription-activator-like effector 

nucleases, the target DNA sequence (the protospacer) must contain a unique DNA sequence 

called protospacer-adjacent motif (PAM), which is a short DNA sequence that is CRISPR 

nuclease-specific [373]. In case FBXW7 is inactivated by mutations or the viral oncoprotein Tax 

[5], CRISPR-Cas9 system can be used to correct mutations in FBXW7 genes and reverse the 

oncogenic activity of an FBXW7 mutation or specifically ablate Tax expression in ATL cells. 

In addition to editing genomic DNA, modified CRISPR-Cas9 system has also been used 

to alter the epigenome in living cells. The combination of DNA methyltransferase enzyme 

DNMT3A to inactivated Cas9 can specifically edit epigenetic modification at the target CpG 

islands [373]. Furthermore, the fusion of DNA demethylase Tet1 to inactive Cas9 leads to target 

DNA demethylation [373]. When FBXW7 is inactivated by promoter methylation [367], the 

modified CRISPR-Cas9 system can be applied to specifically de-methylate FBXW7 promoter 

methylation. 
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Patient-derived xenografts model for ATL 

 

The heterogeneous clinical phenotype and recurrence of ATL highlight the difficulty in 

developing ATL therapy. Thus, there is an eager need for preclinical assessments that can 

efficiently and specifically predict treatment response. Cancer cell lines cannot represent clinical 

observation well because they have been cultured and adapted in the dish for decades. In addition, 

the microenvironment, which is important for tumor progression and drug resistance, is missing 

in a cell line culture system. Patient-derived xenografts (PDXs) that implant tumor samples from 

clinical patients directly into immune-deficient mice or humanized mice are believed to better 

predict clinical prognosis compared to in vitro dish culture. PDXs maintain the tumor 

heterogeneity and each PDX represents an individual patient that can be used to study inter- 

tumor heterogeneity [374]. Recently, PDX-base drug screen leaded by EurOPDX Consortium 

included more than one thousand PDX models from different solid cancers. Importantly, the 

results obtained from PDXs are highly correlated with clinical observation in patients [374]. For 

example, the response to EGFR antibody in colorectal PDXs is consistent with the clinical 

observations, which are indicated by tumor regression, disease stabilization and progression. The 

first ATL PDX model has been reported by Public Repository of Xenografts (PRoXe) [375]. In 

this study, they found PDXs can not only be used for randomized phase II-like preclinical drug 

trials, but also for identifying transcriptional, functional, and proteomic biomarkers. In the future, 

more and more ATL PDX models will be developed and used for the drug screen. Furthermore, 

the humanized PDX model can provide the opportunity to uncover immune escape in ATL 

patients and provide a therapy window to use immune therapy in ATL patients. 
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Epigenetic modification in ATL 

 

Most human cancers harbor both genetic and epigenetic alterations. The cross-talk 

between genetic and epigenetic aberrance has been reported [139]. In acute myeloid leukaemia 

(AML), the mutations in isocitrate dehydrogenase-encoding genes IDH1 and IDH2 inactivate 

histone demethylases and DNA demethylases, leading to changes in DNA and histone 

methylation that drive the disease phenotype. In our study, we found TET2 was the most 

frequently mutated gene, occurring in 32% (10/31) of ATL samples analyzed. Next-Generation 

Sequencing revealed nonsense mutations accompanied by loss of heterozygosity (LOH) in TET2, 

which was further confirmed by cloning and direct sequencing of DNA from uncultured cells. 

Importantly, TET2 mutation is known to cause hypermethylation of haematopoietic-specific 

enhancers in myeloid malignancies. Whether TET2 mutations in ATL caused hypermethylation 

of ATL driver genes remains to be defined. However, targeting the epigenome can be a 

promising therapeutic strategy for a considerable cohort of patients with ATL when coupled the 

genomics-guided patient selection and observation. 
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