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Abstract

An important detail that appears to be frequently overlooked in the SEM literature

is how modeling data arising from responses on an ordered-categorical scale can in-

fluence measurement invariance testing. Typically tests for measurement invariance

are conducted by comparing the fit of two nested models with chi-square difference

testing. With ordered-categorical data the chi-square difference statistic measuring the

discrepancy between two models does not follow a chi-square distribution (Muthén

& Muthén, 2015), therefore chi-square difference testing is inappropriate. The popu-

lar solution to this problem is to use a scaling correction on the chi-square difference

statistic to improve its chi-square approximation and test the resulting value for sta-

tistical significance (e.g., Garnaat & Norton, 2010; Randall & Engelhard, 2010). The

purpose of the present research was to introduce and evaluate random permutation

testing applied to measurement invariance testing with ordered-categorical data. The

random permutation test builds a reference distribution from the observed data that is

used to calculate a p-value for the observed chi-square difference value. The reference

distribution is built by repeatedly shuffling the grouping variable and then saving the

chi-square difference between the two models fitted to the resulting data. The present

research consisted of two Monte Carlo simulations. The first simulation was designed

to determine how many random shuffles of the grouping variable are appropriate. The

second simulation was designed to evaluate random permutation testing across a va-

riety of conditions in comparison to existing chi-square difference testing methods.

Simulation results, an empirical example, and suggestions for the use of the random

permutation test are provided.
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Chapter 1

Introduction

1.1 Project Overview

An important detail that appears to be frequently overlooked in the SEM literature is how model-

ing data arising from responses on a Likert-type scale (e.g., 1 = Strongly Disagree to 5 = Strongly

Agree) can influence tests for measurement invariance. Many of the common practices for mea-

surement invariance testing that are appropriate for continuous data are inappropriate when the

observed data are dichotomous or Likert-type (hereafter referred to as ordered-categorical). One

important consideration with ordered-categorical data is how to compare nested models when test-

ing for measurement invariance. With ordered-categorical data the chi-square difference statistic

measuring the discrepancy in fit between two nested models does not follow a chi-square distri-

bution because the assumption of multivariate normality is violated (Muthén & Muthén, 2015),

therefore chi-square difference testing is inappropriate. Further, popular rules of thumb for the

difference in alternative fit indices (∆AFIs), such as a confirmatory fit index difference (∆CFI)

greater than .01 (Cheung & Rensvold, 2002), do not perform well (Sass et al., 2014). The popular

model comparison method is to use a scaling correction on the chi-square difference statistic to

improve its chi-square approximation and test the resulting value for statistical significance (e.g.,

Garnaat & Norton, 2010; Randall & Engelhard, 2010). The most popular implementation of a

1



scaling correction is offered in Mplus (Muthén & Muthén, 2015) with the DIFFTEST command.

The purpose of the present research is to introduce and evaluate random permutation testing,

a non-parametric method, applied to chi-square difference testing with ordered-categorical data.

Rather than rescaling the observed chi-square difference statistic between two models being com-

pared, the random permutation test builds a reference distribution from the observed data that is

used to calculate a p-value for the observed chi-square difference value. The important feature of

the random permutation test is that no assumptions about the reference distribution are required,

this removes the need to apply any scaling correction to the observed chi-square difference statis-

tic. This chapter continues with a basic introduction to different types of measurement invariance

and how they are typically evaluated. A detailed review of the unique features of the ordered-

categorical CFA is also provided. The process of testing for measurement invariance with ordered-

categorical data is discussed before reviewing existing methods for rescaling the chi-square differ-

ence statistic for hypothesis testing. A detailed overview of how random permutation testing can

be implemented with worked examples is provided. The chapter concludes with a list of research

questions that the present research attempts to answer.

1.2 Measurement Invariance

In structural equation modeling (SEM), researchers are often interested in comparing multiple

groups, or time-points within individuals, on one or more latent variables. These comparisons

can be on latent variable means, variances, covariances, or predictive relationships. An important

requirement for such comparisons is the assumption of measurement invariance, or measurement

equivalence. Measurement invariance for a set of manifest variables exists if the variables have the

same measurement properties, or measurement parameters, across groups. Testing and meeting

the assumption of measurement invariance allows any differences observed at the latent variable

level (i.e., structural level) to be attributed to true differences in the latent variables rather than

differences in the measurement of the latent variables across groups.
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Vandenberg and Lance (2000), a frequently cited review of measurement invariance testing

practices, outlined the following levels of measurement invariance: 1) equal covariance matri-

ces across groups, 2) same measurement model for each group (configural invariance; Horn &

McArdle, 1992; Meredith, 1993), 3) equal factor loadings for identical indicator variables across

groups (metric invariance; Steenkamp & Baumgartner, 1998), 4) equal indicator intercepts and

factor loadings across groups (scalar invariance; Steenkamp & Baumgartner), and 5) equal unique

variances, intercepts, and factor loadings for indicators across groups (strict invariance; Meredith).

Schmitt and Kuljanin (2008) provided a more updated review of common practices in measure-

ment invariance testing, and they found that the test of equal covariance matrices across groups

was essentially never used in their reviewed studies. Because of its lack of popularity, the test of

equal covariance matrices will not be discussed further in this review. Additionally, because strict

invariance is difficult to achieve and not necessary for group comparisons at the structural level,

the current paper will not discuss strict invariance. The focus of the present paper is limited to tests

for configural, metric, and scalar invariance.

1.2.1 Configural Invariance

The typical first step when testing for measurement invariance is to ensure that configural invari-

ance holds across groups. Configural invariance is the least restrictive assumption about measure-

ment equivalence, it asserts that the CFA model used to measure the latent variables(s) is identical

in each group; however, no equality constraints are placed on the parameters. In other words,

configural invariance implies that the same pattern of fixed and freely estimated measurement pa-

rameters exists in measurement models across groups (Horn & McArdle, 1992). Equation 1.1

helps to demonstrate the concept of configural invariance.

yig = vg +λgηig + εi (1.1)

The term yig indicates an indicator variable score for person i in group g. The latent variable
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score for person i in group g is represented by ηig, vg represents the indicator intercept in group g,

λg represents the indicator factor loading for group g, and εi is the residual term.

The test for configural invariance is more of a qualitative than quantitative task (Little, 2013). In

other words, null hypothesis testing is not typically used to evaluate configural invariance; instead

analysts fit a configural invariant model and examine its measurement parameters across groups

and the overall model fit in order to make a decision about whether or not configural invariance

is tenable. Analysts can use commonly accepted global model fit indices in order to assess con-

figural invariance. Popular global fit index cutoffs are > .95 for the Tucker-Lewis index (TLI) and

comparative fit index (CFI) and < .06 for the root mean squared error of approximation (RMSEA;

Hu & Bentler, 1999). Once configural invariance is supported, or the initial model is altered to a

configural invariant alternative (e.g., poorly performing indicators are removed from the model for

all groups), subsequent tests of measurement invariance are permissible.

1.2.2 Metric Invariance

After configural invariance has been supported, the analyst can begin to make assertions about

the equivalence of measurement parameters across groups. The first assertion is typically that the

factor loadings for each indicator variable are equal across all groups/time-points, this is commonly

referred to as metric invariance (Steenkamp & Baumgartner, 1998). Factor loading invariance

has also been referred to as “weak invariance” (e.g., Widaman & Reise, 1997); however, weak

invariance has also been used to refer to what this paper defines as configural invariance (Horn

& McArdle, 1992). For the sake of clarity, the less confusing term “metric invariance” is used

throughout this paper. Equation 1.2 provides a mathematical expression of the metric invariance

model.

yig = vg +ληig + εi (1.2)

This equation is similar to Equation 1.1 , but the subscript g for the factor loading (λ ) has
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been removed. In the metric invariance model, each indicator variable only receives a single factor

loading estimate, and that estimate is used for measurement in all groups.

Researchers typically compare the metric model to the configural invariance model, and this

is possible because the metric model is nested within the configural model. The metric invariance

model is more restricted than the configural model, therefore it will have worse model fit. Evaluat-

ing metric invariance involves testing the null hypothesis that the indicator variable factor loadings

are equal across groups. If the configural model does not have model fit that is significantly im-

proved from the metric model, the observed data are not unlikely given the null hypothesis of equal

factor loadings across groups and the null hypothesis is not rejected. Failing to reject the null hy-

pothesis of equal factor loadings allows the analyst to assert that factor loadings are equal in the

population. The null hypothesis test for metric invariance is typically done by assessing the statisti-

cal significance of the chi-square difference between the metric and configural (χ2
metric−χ2

con f igural)

model with d fmetric−d fcon f igural degrees of freedom.

1.2.3 Scalar Invariance

In order to make inferences about mean differences on latent variables across groups, it must first

be established that the indicator variable intercepts (i.e., expected values when the latent variable is

0) are equal in all groups. Failure to meet this requirement will render tests of latent variable mean

differences difficult to interpret because the effect of group membership cannot be separated from

the true latent variable difference. Scalar invariance is tested by determining if the assumption of

equal indicator intercepts across groups is tenable. Equation 1.3 shows the assumptions of scalar

invariance which builds off of the metric invariance assumption shown in Equation 1.2.

yig = v+ληig + εi (1.3)

In Equation 1.3 the indicator intercept no longer has the group subscript g, this indicates that a

single intercept estimate is provided for each indicator variable and that estimate is applied to
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respondents in all groups. Fitting a scalar invariance model allows the analyst to set a reference

group to have a latent variable mean fixed to a certain value (typically 0) and then estimate the

latent variable means for all other groups. The scale of the latent variable will be based on the

scale of the reference group.

Scalar invariance is typically tested by comparing the fit of the scalar invariance model to the

metric invariance model. If the scalar model fit is not significantly worse than the metric model,

then scalar invariance is tenable; this is possible because the only difference between the scalar and

metric invariance models is the constraints applied to the indicator variable intercepts. Any deteri-

oration in model fit can be attributed to the added constraints on the intercepts. Scalar invariance

can also be tested by comparing the scalar invariance model and the configural invariance model,

this approach provides a joint test of metric and scalar invariance.

1.3 Ordered-Categorical Data in CFA

1.3.1 Issues with Classic CFA Model

There are numerous issues with applying the classic CFA model to ordered-categorical indicator

variables. First and foremost, the linear relationship specified between the latent variable(s) and

each indicator variable is not appropriate because a one-unit increase in a Likert-type indicator is

meaningless because of unequal interval widths (O’Brien, 1985). In other words, the distance or

difference between 1 (Disagree) and 2 (Neutral) on a Likert-type scale is not necessarily equivalent

to the difference between 2 (Neutral) and 3 (Agree). Further, the intercept value estimated in

the classic CFA model has little meaning with ordered-categorical indicators. For example, an

intercept value of 2.45 would have a difficult interpretation on a five-point Likert-type scale with

anchors of 1 (Disagree) and 5 (Agree). These issues require a model that can specify non-linear

relationships between the ordered-categorical indicator variables and latent variables.

In many research scenarios, researchers may not be concerned about theoretical issues with ap-

plying the classic CFA model to ordered-categorical data as long as the model results can be trusted
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and are useful. In addition to theoretical concerns, issues in parameter estimation occur when the

classic CFA model is applied to ordered-categorical data. In short, measurement parameters are

underestimated (Babakus et al., 1987; Johnson & Creech, 1983; Muthén & Kaplan, 1985) and

model fit indices are biased (Brown, 2006). The underestimated factor loadings can be attributed

to underestimated correlations between indicator variables, and the biased model fit indices arise

from assumption violations of the classic CFA model. These issues can be overcome by using a

model that correctly models the theorized data generation process and uses an estimation method

with tenable assumptions.

1.3.2 Ordered-Categorical Model

1.3.2.1 Latent Response Variables

The classic CFA model assumes that latent variables have linear relationships with indicator vari-

ables. With an ordered-categorical model, rather than specifying linear relationships between the

manifest variables and latent variables, the model specifies linear relationships between the latent

variables and latent response variables (LRV; Muthén & Asparouhov, 2002) that underlie each

manifest variable. The concept of a LRV is based on the assumption that each ordered-categorical

manifest variable has a latent, typically normally-distributed, variable that gives rise to the ob-

served response. For example, responses to a survey question about agreement with a statement

on a five-point Likert-type scale with anchors of 1 (Strongly Disagree) and 5 (Strongly Agree) are

believed to be determined by each respondents latent level of agreement with the statement.

The LRVs are linked to the observed responses by using threshold values that divide the con-

tinuous LRV into discrete categories. Equation 1.4 shows the relationship between the LRV (y∗)

and the observed indicator variable response (y), where G is the number of response categories ob-

served and c = 1, 2, ..., G−1. The value of τc−1 represents the minimum value on the continuous

LRV where the respondent will respond in category c, whereas τc represents the maximum LRV

value for a respondent in category c. For every ordered-categorical indicator τ0 is always fixed to

−∞ and τG is fixed to +∞. This leaves G−1 thresholds parameters that are estimated.
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y = c, i f τc−1 < y∗ ≤ τc (1.4)

The formula for the LRV can be seen below in Equation 1.5, which was taken from Muthén

and Asparouhov (2002), where y∗i is the LRV for person i, v is the intercept parameter for the LRV,

λ is the factor loading (i.e., the linear relationship between the LRV and the latent variable), ηi is

the latent factor score for person i, and εi is the residual error.

y∗i = v+ληi + εi (1.5)

The expected value for the LRV is given in Equation 1.6, where v is the LRV intercept parameter,

λ is the factor loading, and α is the latent variable mean. Equation 1.7 shows the variance of the

LRV, where ψ is the latent variable variance and θ is the variance of the residual term εi which has

a mean of 0.

µ
∗ = v+λα (1.6)

σ
∗ = λ

2
ψ +θ (1.7)

Typically µ∗and σ∗are set to be equal to 0 and 1, respectively, in single sample designs. These

constraints create standardized, normally distributed LRVs that are easily interpreted.

The theoretical formation of the LRVs allows the SEM to be fitted to the polychoric correla-

tion (Lee et al., 1995) matrix for the indicator variables which provides the lower bound of the

correlations between the LRVs. Using the polychoric correlation matrix overcomes the issue of

underestimated measurement parameters that is encountered when the classic CFA model is used.

When testing for measurement invariance with the ordered-categorical CFA model the data analyst

is interested in group differences in factor loadings and thresholds rather than factor loadings and

intercepts. The intercepts of the LRVs could be tested for invariance, however these are typically
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set to be equal to 0 for all items in all groups because the scale of the LRVs is arbitrary.

1.3.2.2 Item Probability Curve

When conducting measurement invariance testing, one wants to determine if the responses to items

are dependent on group membership. When analyzing ordered-categorical indicator variables this

requires determining if the item probability curve for a given response is dependent on group mem-

bership. Equation 1.8 shows the formula for the probability of an item response (y) being equal to

or greater than a category (c) given a latent variable score of η , with F being a distribution func-

tion determined by the assumption about the distribution of ε (typically assumed to be normally

distributed). When a normal distribution is used, the input is treated as a z-score and the function

returns the probability of observing a value equal to or less than the input.

P(y≥ c|η) = F [−(τc− v−λη)θ−1/2] (1.8)

The assumption of measurement invariance asserts than the probability of observing a response

(y) greater than or equal to a category (c) is equal across all N groups given that respondents

have identical latent variable scores (η ; see Equation 1.9). This assertion is made by stating that

indicator variable thresholds and factor loadings are equal across groups.

P(y≥ c|η ,Group1) = P(y≥ c|η ,Group2) = . . .= P(y≥ c|η ,GroupN) (1.9)

1.3.3 Residual Variance Parameterization

There are two parameterizations for residual, or unique factor, variances that can be used with the

ordered-categorical CFA model: Theta and Delta. These different parameterizations are based on

the idea that researchers can estimate residual variances in multiple group designs and they can

estimate LRV variance in multiple group designs, but they cannot estimate both simultaneously.

Theta and Delta parameterization are options in both Mplus and the R (R Core Team, 2016) pack-
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age lavaan (Rosseel, 2012).

1.3.3.1 Theta Parameterization

With Theta parameterization, the residual variances for the LRVs are fixed to 1 in the first group and

estimated for all other groups. This leaves the LRV variance (commonly referred to as “scaling

factor”; ∆) to be obtained as a remainder. The scaling factor is equal to the inverse of the LRV

standard deviation (see Equation 1.10).

∆ = 1/
√

σ∗ (1.10)

In Equation 1.10, ∆ is the scaling factor and σ∗ is the variance of the LRV. This can also be

rewritten as seen in Equation 1.11.

∆
−2 = σ

∗ (1.11)

With the theta parameterization, the residual variance for each group (with the exception the first

group) is estimated and the scaling factor is obtained as a remainder as shown in Equation 1.12.

∆
−2
g = λ

2
g ψg +θg (1.12)

Here the residual variance for the first group (θ1) is fixed to 1, whereas all other groups have θ

estimated.

1.3.3.2 Delta Parameterization

Delta parameterization requires the scaling factor to be fixed to 1 in the first group but estimated for

all other groups (Muthén & Muthén, 2015), which then leaves the residual variance to be calculated

as a remainder. This is shown in Equation 1.13

θg = ∆
−2
g −λ

2
g ψg (1.13)
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Specifically, ∆1 is fixed to 1 in the first group, whereas all other groups have ∆ estimated. Then the

resulting model parameters are used to compute the residual variance for each indicator variable in

each group. The computation of the residual variance is simplified when the scaling factor (∆−2
g )

and the latent variable variance (ψg) are set to 1, which puts the residual variance on a scale of 0

to 1 because the factor loading (λg) is then bound between -1 and 1 (see Equation 1.14).

θg = 1−λ
2
g (1.14)

Importantly, the Mplus and lavaan defaults are to use Delta parameterization. When conduct-

ing measurement invariance testing researchers are forced to constrain either scaling factors or

residual variances to be equal across groups for the sake of model identification (e.g., Sass et al.,

2014). In these situations, it becomes more clear why Delta parameterization would be preferred;

researchers typically avoid constraining residual variances to be equal across groups (Vandenberg

& Lance, 2000). Delta parameterization will be used in all Monte Carlo simulations conducted in

the proposed research.

1.3.4 Model Estimation and Implementation

There are two commonly used main steps in the process for estimating parameters for the ordered-

categorical CFA model. First the variable thresholds and polychoric (or tetrachoric with dichoto-

mous variables) correlation matrix, which estimates the lower bounds of the correlations between

all LRVs, need to be computed. Second, the thresholds and polychoric correlation matrix are used

with a version of the weighted least squares estimator in order to estimate the model parameters

and model fit.

1.3.4.1 Thresholds and Polychoric Correlations

The computation of thresholds and polychoric correlations can be done two different ways. Thresh-

olds and polychoric correlations can be estimated simultaneously using maximum likelihood (ML)
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estimation, or they can be estimated in a two-step method (Olsson, 1979). In order to provide more

detail, the two-step method is discussed here. The methods discussed here pertain to models with

no exogenous manifest variables, which is typically the case with measurement invariance test-

ing models. First the thresholds for each ordered-categorical variable are estimated based on the

proportions of responses in each category. The response proportions are then used to compute

cumulative proportions that are then used as input in the inverse of the normal cumulative distribu-

tion function (CDF) shown in Equation 1.15 which yields threshold estimates. The inverse of the

normal CDF is commonly referred to as a probit function (Bliss, 1934). The normal CDF equation

which yields the proportion of area of a normal curve to the left of a threshold can be used in

R with the “pnorm” function, whereas the probit function which yields the threshold for a given

proportion can be used in R with the “qnorm” function.

F(y) =

yˆ

−∞

1√
2π

exp
(
−(y)2

2

)
dy (1.15)

In models with exogenous manifest variables the thresholds can be calculated using ordered-probit

regression, for example in R using the “MASS” package (Venables & Ripley, 2002) or “oprobit”

in Stata (StataCorp, 2015).

After thresholds have been computed, polychoric correlations are estimated with ML estima-

tion. For any two manifest variables, consider a contingency table with r rows and s columns that

shows the frequency of responses for manifest variable 1 (with r response categories) and manifest

variable 2 (with s response categories). The ML estimator finds the polychoric correlation ρ that

maximizes the likelihood of the observed contingency table. The log likelihood function that is

maximized is shown in Equation 1.16.

log(L) = log(K)+
r

∑
i=1

s

∑
j=1

ni jlog(πi j) (1.16)

In Equation 1.16, ni j is the number of responses in row i and column j of the contingency table,

and πi j is the probability of an observation being in row i and column j which is a function of the
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thresholds (see Equation 1.17).

πi j = Φ2(τxi,τy j)−Φ2(τxi−1,τy j)−Φ2(τxi,τy j−1)+Φ2(τxi−1,τy j−1) (1.17)

In Equation 1.17, the bivariate normal CDF is applied to the response pattern of interest, as well as

adjacent response cells in the contingency table. The values of τxi and τyi represent upper threshold

values for given responses of i on the two variables of interest (e.g., τx1 is the threshold separating a

response of 1 from a response of 2). These probabilities are required to compute the probability of

a respondent being in (i, j), rather than the simple cumulative probability provided by Φ2(τxi,τy j).

The bivariate normal CDF formula can be seen in Equation 1.18.

Φ2(x,y) =

xˆ

−∞

yˆ

−∞

1

2πσxσy
√

1−ρ2
exp
[
−x2 + y2−2ρxy

2(1−ρ2)

]
(1.18)

As was previously mentioned, ρ is the parameter that Equation 1.16 estimates by maximizing

the log likelihood function. This estimation procedure is applied to all non-redundant pairs of

manifest variables to produce the polychoric correlation matrix. Fortunately, researchers wanting

to simply estimate the polychoric correlation matrix for their data can use existing software rather

than manually implementing the equations provided in this subsection. The R package “polycor”

(Fox, 2010) can calculate a polychoric correlation between any two ordered-categorical variables

using the methods described here. The “polycor” package can do the two-step method described

here as well as the full maximum likelihood approach which estimates thresholds and polychoric

correlations simultaneously. In models with exogenous manifest variables, the polychoric correla-

tions are the correlations between the residuals of the endogenous variables as would be obtained

with bivariate probit regression (e.g., “biprobit” in Stata). A worked example of manually comput-

ing a polychoric correlation estimate can be seen in Appendix A.
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1.3.4.2 CFA Model Parameters and Fit

When conducting CFA with ordered-categorical indicators, the maximum likelihood estimator no

longer permits the computation of popular alternative fit indices (AFIs) such as the CFI, RMSEA,

and TLI. Rather than using an estimation method that maximizes a likelihood function, ordered-

categorical models are typically fitted with an alternative estimation procedure. Weighted least

squares estimation, which minimizes the discrepancy between the observed and model-implied

polychoric correlations and thresholds, is the standard estimator for ordered-categorical variable

models. The formula for the WLS estimator can be seen in Equation 1.19.

FWLS = (s−σ)TW−1(s−σ) (1.19)

The observed polychoric correlations and thresholds are represented as s, whereas the model im-

plied polychoric correlations and thresholds are represented by σ . The W matrix represents the

weight matrix which summarizes the variances and covariances of the covariances of all elements

in s (Brown, 2006). Specifically, W−1 is the inverse of a positive definite u x u matrix where

u = p(p+ 1)/2, and p is the number of elements in s (Browne, 1984; Wirth & Edwards, 2007).

The major limitation with the WLS estimator is the inversion of the weight matrix, which becomes

impractical when the number of indicator variables is large.

Because of the limitations with the WLS estimator, currently the most popular estimator for

CFA with ordered-categorical indicator variables is weighted least squares with a mean and vari-

ance adjusted chi-square statistic. Mplus was the first SEM software to implement this estimator;

the developers gave it the name “WLSMV,” which has become the popular shorthand used in other

SEM software packages such as lavaan. An important feature of the WLSMV estimator is that it

does not require the full weight matrix shown in Equation 1.19. Instead with WLSMV only the

diagonal of W , which represents the variances of the covariances of s, is used. Using the diagonal

of W is advantageous because the weight matrix no longer has to be positive definite and the entire

matrix is not inverted. If p polychoric correlations and thresholds are in s, its diagonal weight
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matrix will have p(p+1)/2 diagonal elements.

The removed requirement of inverting the weight matrix allows WLSMV to have a much lower

sample size requirement than standard WLS. However, WLSMV does require that the number

of observations is greater than the number of diagonal elements in the weight matrix. A basic

representation of the WLSMV estimator can be seen in Equation 1.20.

FWLSMV = (s−σ)TWD(s−σ) (1.20)

In Equation 1.20 the WD term represents the diagonal weight matrix. Further, the WLSMV esti-

mator adjusts the chi-square statistic, standard errors, and model fit indices. This is done by using

the full weight matrix W to compute standard errors and a mean and variance adjusted chi-square

statistic. All subsequent discussions of the performance of the ordered-categorical CFA model per-

tain to evaluations with the WLSMV estimator. More information about the WLSMV estimator

can be found in Muthén and Muthén (2015). Because of its popularity with ordered-categorical

indicator variables, the present research focuses exclusively on models estimated with WLSMV.

1.3.5 Ordered-Categorical CFA Assumptions

When fitting the ordered-categorical model, researchers are making important assumptions about

their data. There are six key assumptions that are being made with the ordered-categorical CFA

model. Assumptions 1-3 are completely unique to the ordered-categorical CFA model and are

vital to correct interpretation of parameter estimates. Assumptions 4-6 also apply to the classic

CFA model but are still true in the special case of the ordered-categorical model.

1. Each observed variable has an underlying LRV that is standard normal (see Equation 1.21).

In multiple group designs the assumption of a LRV variance equal to 1 can be relaxed in all

but one group.

LRV ∼ N(0,1) (1.21)

2. All manifest variables are ordered-categorical, not nominal. Each one-unit increase all vari-
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ables must consistently indicate an increase or decrease in a LRV.

3. Any relationship between a LRV and latent variable is linear.

4. The model is correctly specified and identified. Specifically, all relationships between latent

variables and manifest variables are included in the model, and the number of parameters

estimated does not exceed the number of observed polychoric correlations and thresholds.

5. The unique factors are normally distributed with a mean of 0 and variance of θ (see Equa-

tion 1.22). Typical CFA models also assume that unique factors are uncorrelated, but this

assumption can be relaxed for certain pairs of unique factors to improve model fit.

ε ∼ N(0,θ) (1.22)

6. All latent factors are normally distributed with a mean of 0 and a variance of Ψ (see Equation

1.23). In multiple group designs the mean for a latent variable can be different from 0 in all

but one group if the model is properly specified (e.g., a scalar invariance model). Further,

the latent variable variance can be fixed to 1 in at least one group for model identification

purposes.

η ∼ N(0,Ψ) (1.23)

1.4 Measurement Invariance with Ordered-Categorical Data

1.4.1 Types of Tests

There are popular SEM resources for psychology researchers which suggest that researchers test

for configural, metric, and then scalar invariance sequentially (e.g., Kline 2016, p. 399; Van-

denberg & Lance, 2000). These assertions appear to be made as a simple extension of the popular

methods that are applied to continuous, multivariate normal, indicator variables. These recommen-
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dations are problematic because the vast majority of variables in psychology research are ordered-

categorical, not continuous (Lubke & Muthén, 2004). A review of relevant research found no

simulation research evaluating the performance of the free-baseline model building approach to

measurement invariance testing with ordered-categorical indicator variables (this is likely due to

the fact that the free-baseline approach is difficult to implement in simulation designs). Muthén

and Muthén (2015) recommend constraining factor loadings and item thresholds in tandem when

testing for measurement invariance. The basis of this recommendation is the fact that the item

probability curve (see Equation 1.8), or the probability of an item response given the latent vari-

able, is dependent on both measurement parameters. This issue with both parameters influencing

the item probability curve was discussed in detail by Muthén and Asparouhov (2002). Despite

the strong recommendations by Muthén and Muthén, some researchers still apply the free-baseline

approach to measurement invariance testing when using the ordered-categorical CFA model (e.g.,

Cyders, 2013, Skriner & Chu, 2014). In order to stay consistent with currently recommended best

practices, the current research will focus on testing metric and scalar invariance in simultaneously.

After testing for metric and scalar invariance simultaneously, researchers can follow-up signif-

icant tests with further evaluations of measurement invariance. Individual indicator variables can

have their measurement parameter constraints manipulated to allow nested model comparisons

testing for invariance in individual variables. In addition to being able to test individual variables

for invariance, individual indicator measurement parameters can also be tested. The factor loadings

for one or multiple indicator variables can be constrained to equality across groups in one model

and freely estimated in another, this creates a test for metric invariance. These follow-up tests use

the same testing procedures discussed in the following sections when comparing the nested models

for statistical significance.

1.4.2 Chi-Square Difference Testing

Chi-square difference testing is frequently used when testing for measurement invariance (Brown,

2006; Vandenberg & Lance, 2000). The chi-square fit of the more restricted model is compared to
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the chi-square fit of the less parsimonious model. When the multivariate normality assumption is

met, the chi-square difference between two nested models follows a chi-square distribution. The

degrees of freedom for the chi-square difference statistic is equal to the difference in degrees of

freedom between the two nested models. This allows a null hypothesis test of the equality of the

group measurement parameters which are constrained to equality in the more restricted model. The

p-value from this test informs the researcher of the probability of the observed data given that the

null hypothesis of equal measurement parameters across groups is true. This p-value is unbiased

when the chi-square difference statistic follows the chi-square distribution. When multivariate

normality is not present, the chi-square difference statistic is no longer chi-square distributed and

should not be used for null hypothesis testing (Satorra, 1999). This is true even when the individual

chi-square values are scaled to account for non-normality (Satorra & Bentler, 2001). Fortunately,

there are corrections to the chi-square difference statistic that can be applied to improve its chi-

square approximation and allow null hypothesis testing with models estimated with WLSMV. A

limitation with the methods discussed here is that they are only readily available in certain software

packages.

1.4.2.1 Satorra-Bentler Correction

The Satorra-Bentler (SB) correction offers a method for improving the chi-square approximation

of chi-square difference values when multivariate normality is violated. A valuable feature of the

SB correction is the flexibility that allows it to be used with WLS or ML estimators. The general

concept of the SB correction is expressed in Equations 1.24 and 1.25.

TD = T1−T0 (1.24)

T̄D = TD/c̃ (1.25)
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Here TD is the chi-square difference between nested model (T1) and its parent model (T0). The test

statistic used for hypothesis testing is T̄D, which is computed using TD and a scaling parameter c̃.

The computation of the scaling parameter is intensive when an asymptotic distribution free (ADF)

estimator such as WLSMV is used. See Satorra (1999) and Satorra & Bentler (2001) for more

detailed discussions and illustrations of the computations involved in the SB correction statistic.

The SB correction can be seen most frequently with models using some form of ML estimation

(e.g., Carpenter et al., 2010; Osman et al., 2014). When using the WLSMV estimator the SB cor-

rection for chi-square difference testing can be applied using the “lavTestLRT” function from the

lavaan package in R. When two nested models are supplied to the lavTestLRT function, the correc-

tion outlined by (Satorra, 1999) is applied to produce a scaled chi-square difference statistic. The

present research is designed to evaluate the performance of the lavTestLRT function specifically.

A review of the literature suggested that the present research is the first Monte Carlo simulation

to evaluate the performance of the lavTestLRT function. The lavTestLRT function was evaluated

using all of the default options in version 0.5-22.

1.4.2.2 Mplus DIFFTEST Command

Mplus has a unique implementation for scaling chi-square difference values when the WLSMV es-

timator is used. Muthén and Muthén (2015) suggest that researchers use the DIFFTEST command

in Mplus in order to correctly scale chi-square difference values. This correction can frequently

be seen in applied research (e.g., Garnaat & Norton, 2010; Randall & Engelhard, 2010). Further,

the DIFFTEST command is recommended by popular SEM textbooks (e.g., Kline, 2016; Little,

2013). The DIFFTEST command applies a modification to the method used by the SB correc-

tion that is discussed by Asparouhov & Muthén (2006). The parent model is fitted to the data

and matrices containing information about the model are saved in a separate output file. When

the nested model is fitted and the text file containing matrices from the parent model is provided,

DIFFTEST uses information from both models to compute a scaled chi-square difference statistic.

A more detailed, albeit brief, explanation of the computation involved with the DIFFTEST com-
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mand can be seen in Asparouhov & Muthén. The computational advantage of Mplus DIFFTEST

over the Satorra-Bentler correction is that the former does not use the possibly large sample statis-

tic variance/covariance matrix (see Asparouhov & Muthén). The main difference between the

Satorra-Bentler correction and the Mplus DIFFTEST procedure that users will notice is the differ-

ence in ∆d f . With the Satorra-Bentler correction ∆d f is adjusted and is not necessarily an integer,

whereas with Mplus DIFFTEST ∆d f is the same as what would be observed with an unadjusted

test.

After introducing the DIFFTEST command, Asparouhov & Muthén (2006) conducted a small

Monte Carlo simulation to evaluate its performance. Data were generated for two groups with

six indicator variables with three response options per indicator and equal factor loadings and

thresholds across groups (making population measurement invariance true). Using 500 simulation

replications with sample sizes of 1,100 and 2,200, configural and scalar invariance models were

fitted to the generated data. With a sample size of 1,100 measurement invariance was rejected 6%

of the time, whereas with a sample size of 2,200 measurement invariance was rejected 4.4% of the

time. These values were close enough to the nominal value of 5% for the authors to conclude that

the DIFFTEST command performed appropriately with Type I error control.

More recently, Sass et al. (2014) evaluated the Mplus DIFFTEST command along with other

model comparison criteria when testing five-point ordered-categorical data in a Monte Carlo sim-

ulation. The authors found that the popular ∆CFI cutoff value of .01 (Cheung & Rensvold, 2002)

and the ∆RMSEA cutoff of .01 (Chen, 2007) had inflated Type I error rates when comparing

nested models estimated with WLSMV. The scaled chi-square difference value provided by Mplus

DIFFTEST showed Type I error rates between .061 and .090, which is slightly higher than the

desired rate of .050. Further, while also simulating five-point ordered-categorical data, Suh (2015)

showed that the Mplus DIFFTEST command is sensitive to group differences in latent variable

distributions when conducting measurement invariance testing in the item response theory (IRT)

framework. Specifically, Suh showed that Type I error rates are inflated when the studied groups

have greatly different latent variable distributions. Specifically, when one group has a normally
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distributed latent variable (M = 0, SD = 1, skewness = 0, kurtosis = 0) and the other had a non-

normally distributed latent variable (M = 0, SD = 1, skewness = 1.5, kurtosis = 3.5) the Type I

error rate was .22. These results show that the Mplus DIFFTEST command has an issue with Type

I error control, and the limitation of sensitivity to assumption violations.

1.5 Present Research

1.5.1 Limitations with Model Comparisons

Unfortunately, the majority of past research (e.g., Cheung & Rensvold, 2002; Vandenberg & Lance,

2000) that is frequently cited by psychology researchers pertains to methods that were evaluated for

situations with continuous indicator variables, which are uncommon in psychology research. Re-

search establishing new recommendations for model comparison methods with ordered-categorical

data would make an important contribution to the literature. Sass et al. (2014) showed that popular

cutoff values for ∆AFIs do not perform well, therefore their use when conducting measurement

invariance testing with ordered-categorical indicators should be discouraged. The popular choice

for model comparisons for researchers is chi-square difference testing with a scaling correction

as implemented by the Mplus DIFFTEST command (e.g., Garnaat & Norton, 2010; Randall &

Engelhard, 2010). Researchers conducting their analysis in R using the lavaan package can use the

lavTestLRT function to perform a similar scaling correction. Research providing a viable alterna-

tive to Mplus DIFFTEST and lavTestLRT for chi-square difference testing would make a valuable

contribution to the literature. There are two important limitations with existing scaling corrections.

One limitation is that the scaling correction available to researchers is determined by the statistical

software being used. Another limitation is the performances of the existing scaling corrections.

Previous simulation research has shown that the Mplus DIFFTEST correction has slightly inflated

Type I error rates, and no simulation work evaluating the performance of lavTestLRT can be found.

A chi-square difference testing procedure that is not dependent on a certain software package, and

can consistently control Type I errors would clearly make a valuable contribution as a tool for
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researchers.

The present research is designed to evaluate the random permutation testing approach to chi-

square difference testing when testing for measurement invariance with ordered-categorical indi-

cator variables. The random permutation testing approach is not computationally intensive beyond

what is required to fit a single CFA model with the WLSMV estimator, therefore it would be rel-

atively easy to implement in any statistical software package. Further, the theory behind random

permutation testing procedure is centered around keeping the Type I error rate at .05, therefore it

should control Type I errors as well or better than existing scaling corrections.

1.5.2 Random Permutation Testing

Random permutation testing can be applied to chi-square difference testing with models estimated

with WLSMV to overcome the issue of the difference statistic not following a chi-square distribu-

tion. The focus of the present research is demonstrating how this approach works and evaluating

its performance. The proposed random permutation test is a non-parametric method based on the

idea of building a reference distribution under the assumption that groups have the same measure-

ment parameters. In other words, the reference distribution is built under the assumption that the

null hypothesis of no effect of group membership on measurement is true. This reference distri-

bution is used to calculate a p-value when testing the null hypothesis. The permutation testing

method was first used more than eighty years ago when Fisher (1935) applied it with paired data,

and then shortly afterwards Pitman (1937) applied it to test the statistical significance of correla-

tion coefficients. A variety of other uses for permutation testing have been covered by Higgins

(2004). The benefit of permutation testing is that building a non-parametric reference distribution

alleviates many of the assumptions of standard parametric hypothesis tests. This is advantageous

in situations where researchers know an assumption (e.g., all variables are normally distributed)

about their data is violated. The major limitation with random permutation testing is an increase

in computation time resulting from repeatedly manipulating data and computing a test statistic to

build a reference distribution.
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When testing for the effect of group membership on a test statistic, a null distribution can

be built by randomly shuffling the grouping variable and saving the resulting test statistic after

each shuffle. If there is no effect of group membership on measurement parameters, the observed

test statistic (calculated from the original data) is just as likely as the values created by randomly

shuffling the grouping variable and the observed value will only be in the upper 95th percentile five

percent of the time. This should keep the Type I error rate of the test procedure at .05. Building a

null distribution this way is especially useful when the distribution of the test statistic is unknown.

For a true permutation test the grouping variable would be reshuffled for all possible combinations

of group membership. The formula for the total possible number of permutations can be seen in

Equation 1.26, where n1 and n2 represent the sample sizes for two groups, and N is the total sample

size.

Combinations =
N!

n1!n2!
(1.26)

In many research designs using all possible combinations of group membership with permutation

testing would result to far too many combinations to analyze in a reasonable amount of time. In-

stead of using all possible permutations, one can sample permutations by randomly shuffling the

grouping variable a fixed number of times (Higgins, 2004). The p-value obtained with the random

shuffles serves as an estimate of the p-value that would be obtained if all possible grouping pos-

sibilities were used. The p-value obtained from comparing the observed statistic to the randomly

permuted reference distribution will have a standard error that is a function of the p-value and the

number of permutations. This can be seen in Equation 1.27, where p is equal to the p-value and R

is equal the number of permutations used (Higgins).

SEp =

√
p(1− p)

R
(1.27)

This equation shows that the number of permutations used is an important factor to consider. The

effect of the number of permutations used will be explored in the present research.
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1.5.2.1 Application To Measurement Invariance Testing

Random permutation chi-square difference testing would require the original data to have the

grouping variable randomly shuffled m times. After each of the m shuffles the resulting data are

used to fit the configural and scalar invariance models, and then the chi-square difference value

between the two models is saved. After all random permutation shuffles are complete the observed

chi-square difference value is compared to the m permuted chi-square difference values. The pro-

portion of randomly permuted chi-square difference values greater than the observed chi-square

difference value is the p-value. A p-value less than or equal to .05 indicates that the the observed

data are unlikely given that the null hypothesis is true, therefore the null hypothesis is rejected and

the researcher concludes that differences in measurement exist across groups.

The important benefit of the random permutation chi-square difference test is that it can be

implemented in any software package without requiring complex formulas. The random permuta-

tion test only requires the ability to fit individual CFA models, the ability to randomly shuffle the

grouping variable, and the ability to do this repeatedly and save the results. Even if the statistical

program used to fit the CFA models does not have the ability to randomly shuffle the grouping

variable and repeat the fitting process automatically, statistical programs such as R or general pro-

gramming languages such as Python (Rossum, 1995) can handle those tasks.

1.5.2.2 Distinction from Bootstrapping

The random permutation testing method clearly resembles the more popular bootstrapping ap-

proach (Efron, 1979) to building empirical distributions. Because bootstrapping does not allow

group membership to change, it cannot approximate the sampling distribution of a population

where group membership does not influence measurement parameters. Using random permuta-

tion testing and bootstrapping to build a chi-square difference reference distribution should yield

similar distributions when there are no group differences in population measurement parameters.

Differences between the two methods would be seen when differences in population measurement

parameters exist. The chi-square reference distribution that would be created with bootstrapping
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would be influenced by both sampling variability and group differences in measurement parame-

ters. The benefit of random permutation testing is that randomly shuffling the grouping variable

removes the effect of group measurement parameter differences on the chi-square difference ref-

erence values. This is desired because the reference distribution should approximate the sampling

distribution of the chi-square difference statistic where group membership does not influence mea-

surement parameters.

1.5.2.3 Unequal Responses Categories Between Groups

Applying the random permutation test to ordered-categorical data presents the unique problem of

random permutation shuffles possibly having unequal response categories for at least one indicator.

When this occurs, the same thresholds cannot be estimated in all groups making testing the equality

of the thresholds impossible. There are two potential solutions for this problem. The first method is

to collapse response categories when necessary to ensure that both permuted groups have an equal

number of response categories for all items. This method will allow all possible permutations to be

eligible for sampling when building the reference distribution, however a potential disadvantage

will be variations in the number of parameters estimated due to collapsing and fewer thresholds

being estimated. For each category collapsed, the degrees of freedom difference between the

configural and scalar invariance models decreases by 1. This could result in reference distributions

that are negatively biased, which could increase Type I error rates. Although collapsing categories

is the only option when this occurs with observed data, another option exists when this is observed

with a random permutation shuffle of the grouping variable. An alternative method for dealing with

sparseness is to simply discard the random permutation shuffle with unequal response categories

for any items and replace it with a draw where an equal number of response categories is observed

for both groups. This process will ensure that all random permutations have a chi-square difference

statistic with degrees of freedom equal to the test statistic from the observed data. In the present

research all instances of unequal response categories occurring in data generated from a population

model used the aforementioned collapsing method. All instances of unequal response categories
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observed while conducting the random permutation test used resampling.

1.5.2.4 Examples

A basic example of random permutation testing can be created by simulating four dichotomous

variables that measure a single latent variable. This example uses data generated for two groups

with factor loadings of .60 and thresholds of 0 for all four variables. Because the data were gen-

erated with the same measurement parameters, configural and scalar invariance models would not

be expected to have a statistically significant difference in model fit. The chi-square difference

between the configural and scalar models for the original data is 1.656. A reference distribution is

needed to assess the probability of the observed value of 1.656 or greater, given that the null hy-

pothesis is true and the factor loadings and thresholds are equal across both groups. After shuffling

the grouping variable, fitting the configural and scalar models, and saving the chi-square difference

each time, the resulting chi-square difference values can be used to build the distribution shown in

Figure 1.1. Here 94.8% of the values in the reference distribution are greater than 1.656, therefore

the null hypothesis of equal factor loadings and thresholds across groups cannot be rejected.
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Figure 1.1: Random Permutation Example 1

For an example of random permutation testing when the null hypothesis of equal factor loading

and thresholds is false, the first example can be altered so that one group has factor loadings of .30,

rather than .60, on two of the four indicators. The generated data have a chi-square difference of

16.829. The grouping variable in the original simulated data can be shuffled 1,000 times to build

a reference distribution for the chi-square difference statistic, which is shown in Figure 1.2. Here

only 2.9% of the values in the reference distribution are greater than 16.829, therefore the null

hypothesis of equal factor loadings and thresholds is rejected.
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Figure 1.2: Random Permutation Example 2

1.5.2.5 Computation Time and Basic Syntax

The random permutation testing procedure does have the downside of increased computation time.

Although the Monte Carlo simulations used in the present research were computationally demand-

ing, running the random permutation test once to test a hypothesis is easily done on a single com-

puter. To provide an idea of the expected computation time required, the second example in the

previous section required about six minutes to run with 1,000 shuffles on a single computer (with-

out any multicore processing). The R syntax used to create the second example (including code to

generate the data) can be seen in Appendix B.
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1.5.3 Research Questions

The present research serves as an evaluation of the random permutation test applied to measure-

ment invariance chi-square difference testing with ordered-categorical indicator variables. The

random permutation test is tested and compared with existing chi-square difference adjustment

options. The present research addresses the following questions about random permutation testing

applied to measurement invariance. These questions guide the Monte Carlo simulations that are

outlined in the subsequent chapter.

• How does chi-square difference testing using random permutations perform in terms of Type

I error rate and power? Are Type I errors close to .05? If Type I errors are close to .05, does

the test show reasonable power that increases as a function of sample size?

• How do sample size, the number of response categories, and threshold symmetry influence

the performance of chi-square random permutation testing?

• How does the random permutation testing approach perform compared to DIFFTEST in

Mplus and other chi-square difference test implementations?

• Does the random permutation test outperform DIFFTEST in Mplus when groups have dif-

ferent latent variable distributions?

In addition to the four main research questions, there was an important question about random

permutation testing implementation that needed to be answered. This question was answered first

because because the answers were used to inform the design of the second Monte Carlo simulation.

• How does the number of permutations used influence the performance of the random per-

mutation test? What is an appropriate number of random group shuffles to use?

After these questions are answered with two Monte Carlo simulations, an empirical example is

used to show how the random permutation test compares with existing chi-square difference testing

procedures.
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Chapter 2

Method

The research questions for the present research were answered with two separate Monte Carlo sim-

ulations. The Monte Carlo simulation work was split into two parts to ease the computational strain

created by running thousands of random permutation tests. For the sake of clarity, it is important

to outline terminology before discussing the simulation designs. In the present research, the term

“shuffle” is used to refer to a random permutation shuffle, whereas the term “replication” will be

used to refer to a drawing a single sample from the population parameter space and analyzing it

with random permutation testing as well as other testing approaches. Each simulation consisted

of a certain number of replications for each simulation condition (i.e., combination between repli-

cation variables), and each individual replication had a certain number of random permutation

shuffles used to build a reference distribution for random permutation testing. Further, all tests for

measurement invariance consisted of testing metric and scalar invariance in tandem by comparing

the fit of a configural invariance model to a scalar invariance model.

2.1 Simulation One

The first Monte Carlo simulation was used to answer research question five:

• How does the number of permutations used influence the performance of the random per-
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mutation test? What is an appropriate number of random group shuffles to use?

The goal of this simulation was to determine how the number of random permutation shuffles used

can influence null hypothesis rejection rates. Prior to conducting a larger simulation comparing

competing chi-square difference testing procedures, the appropriate minimum number of permu-

tations for the present research was identified. Because random permutations are time consuming,

it is important to avoid using an excessive number of permutations in each replication when con-

ducting a Monte Carlo simulation. Importantly, this simulation simply aimed to determine the

appropriate number of permutations for subsequent Monte Carlo simulations following the same

basic structure. Providing a rule of thumb or guidelines for applied researchers was not the goal

of the present simulation. A simple 2 (response options) x 2 (factor loading invariance) design

with four between replication conditions and 1,000 replications in each condition was used. The

number of conditions in this simulation were limited because of the computational demands using

1,000 replications with 1,000 random permutation shuffles. The response option and factor loading

invariance variables were chosen because they were expected to have the largest influence on the

shape of the reference distribution created in each replication. In each between replication con-

dition, ten different random permutation tests were conducted with different numbers of random

permutation shuffles (100-1,000 in increments of 100).

2.1.1 Data Generation and Analysis

Data for two groups were simulated in the R program with the lavaan package using the “simu-

lateData” function. A single latent common factor with eight indicator variables was simulated,

with 150 cases present in each group. Eight indicators were used in order to represent a reasonable

number of indicators that are used to measure a latent variable in applied research. The latent

common factor had a mean of 0, a variance of 1, and was normally distributed for both groups in

the population model. In order to handle generated data where a variable had unequal observed

responses across groups, categories were collapsed to ensure that response options matched in all

“observed” data. For example, if generated data showed responses of 1, 2, 3, 4, 5 in group A, but
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1, 2, 3, 4 in group B, all values of 5 in group A were recoded to be 4. This was done to mimic what

researchers are likely to do when faced with this issue in applied research.

There were two models fitted and compared in all replications: a configural invariance model

and a scalar invariance model. The configural model had the factor loadings and thresholds freely

estimated for both groups. The latent variable in each group had its estimated mean and variance

fixed to be 0 and 1, respectively. Further, the variances of the LRVs were fixed to 1 in both

groups. The scalar invariance model had the factor loadings and thresholds constrained to equality

across groups. Constraining the measurement parameters across groups allowed the latent variable

mean and variance to be estimated in the second group rather than fixed to 0 and 1. Further, in

the scalar invariance model the variances of the LRVs were still constrained to be 1 for model

identification purposes. The model comparison for the original simulated data, as well as data in

each random permutation, was conducted using the lavaan package in R by fitting the configural

and scalar invariance models with the “cfa” function. The popular WLSMV estimator was used

for all models.

2.1.2 Between Replication Conditions

2.1.2.1 Response Options

Evaluating the effect of response categories on the required number of permutations is important

because increasing the number of response categories increases the number of parameters esti-

mated in a model, which also increases computation time. Data were simulated with two or five

response options for each of the eight indicator variables. With two response options the configu-

ral and scalar models compared in the present research had a chi-square difference value with 14

degrees of freedom, whereas when five response options are used the chi-square difference had 38

degrees of freedom. A population threshold of 0 was used for two response options and for five re-

sponse options -1.30, -0.47, 0.47, and 1.30 was used. The thresholds used for five response options

were based on the recent simulation work of Sass, Schmitt, and Marsh (2014), and the threshold

of 0 for the two response option condition was chosen so that the indicator variables would, on
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average, have an equal number of responses in both categories.

2.1.2.2 Factor Loading Invariance

Manipulating factor loading invariance allowed changes in Type I error rates and power based on

the number of random permutations to be observed. Factor loading invariance/non-invariance was

created by subtracting 0 or .25 from the factor loadings for items 1 and 2 (which were chosen

arbitrarily) in the population model in the focal group (i.e., the group receiving the non-invariance

manipulation). Specifically, conditions in which the factor loadings were invariant had a factor

loading of .60 for items 1 and 2 for both groups; whereas conditions in which the factor loadings

were non-invariant had a factor loading of .60 for the reference group and .35 for the focal group for

items 1 and 2. The difference value of .25 for factor loadings has been used in previous simulation

research (Sass et al., 2014). Items 3-8 always had factor loadings of .60 and the residual variances

for indicator variables were always set at 1−λ 2 in the population model.

2.1.3 Within Replication Conditions

2.1.3.1 Number of Random Permutation Shuffles

The random permutation chi-square difference test required the simulated data in each replication

to be randomly shuffled to build a distribution of chi-square difference values under the assumption

that the null hypothesis is true. This was achieved by randomly shuffling the grouping variable in

the simulated data 1,000 times. In each random shuffle of group membership the configural invari-

ance and scalar invariance model was fitted to the data and the chi-square difference value between

the two models was saved. After this was done 1,000 times the original chi-square difference value

was compared to subgroups of the values from the random shuffles. Specifically, the first permuta-

tion test was conducted using only the first 100 random permutations as a comparison distribution,

and then the first 200 random permutations were used for another test. Separate tests were done

for values between 100 and 1,000, in intervals of 100. A p-value for the observed statistic was
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calculated by determining what proportion of the chi-square difference values from each subset

of random shuffles exceeded the observed chi-square difference. A p-value equal to or less than

.05 resulted in measurement invariance being rejected. Unequal response categories observed in

random permutation shuffles were handled by resampling permutation shuffles.

2.1.4 Outcomes

2.1.4.1 Unequal Response Categories

As was previously mentioned, unequal response categories can occur when conducting the random

permutation test. These permutation shuffles were dealt with by discarding them and replacing

them with a new shuffle of the grouping variable. This process was repeated until the new shuffle

resulted in groups that had the same number of response categories on all indicator variables. The

number of occurrences of unequal response categories in both the originally generated data as

well as the data in random permutation testing was recorded in simulation one. This information is

provided to give the reader an idea of the potential impact of the decision on how to handle unequal

response categories.

2.1.4.2 Type I Errors and Power

The outcome of interest in each condition with each testing method was the proportion of the

replications in which measurement invariance was rejected. This rejection rate was calculated

by dividing the number of replications where measurement invariance was rejected by 1,000. In

conditions where measurement invariance was simulated (i.e., all population model factor loadings

and thresholds are equal in both groups), the rejection rate was the Type I error rate. The desired

Type I error rate was .05., with values between .036 and .064 considered to be within the nominal

range. The nominal range was calculated using the expected nominal value (.05) and the number

of replications (1,000) to compute the standard error of the Type I error value of .05 (see Equation
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2.1), and multiplying that value by ±1.96 to yield a 95% confidence interval.

SETypeI =

√
.05(1− .05)

1000
= .007 (2.1)

In addition to reporting Type I error rates and power, analysis explored how often an increase

in the number of permutations used changes the result of the null hypothesis test. For each of

the random permutation sample numbers evaluated (except for the full 1,000), the proportion of

replications in which the decision about measurement invariance based on the random permuta-

tion test changed when an additional 100 random permutations were used was recorded. It was

expected that diminishing returns in added permutations would be observed. In other words, the

greatest change in outcomes was expected between 100 and 200 permutations, whereas the change

in outcomes between 900 and 1,000 was expected to be minor.

2.2 Simulation Two

The second Monte Carlo simulation was designed to answer research questions one, two, three,

and four:

• How does chi-square difference testing using random permutations perform in terms of Type

I error rate and power? Are Type I errors close to .05? If Type I errors are close to .05, does

the test show reasonable power that increases as a function of sample size?

• How do sample size, the number of response categories, and threshold symmetry influence

the performance of chi-square random permutation testing?

• How does the random permutation testing approach perform compared to DIFFTEST in

Mplus and other chi-square difference test implementations?

• Does the random permutation test outperform DIFFTEST in Mplus when groups have dif-

ferent latent variable distributions?
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This simulation evaluated the random permutation chi-square difference test against parametric

chi-square difference tests for measurement invariance testing. The simulation was designed to

evaluate Type I error rates and power of different chi-square difference tests when testing for metric

and scalar (i.e., threshold) invariance in tandem, as suggested by Muthén and Muthén (2015).

Simulation conditions were varied with the intent of identifying situations where existing testing

procedures do not perform well but the random permutation test does. The simulation design was a

fully crossed 2 (latent variable distribution) x 2 (response categories) x 2 (threshold symmetry) x 2

(sample size) x 2 (factor loading invariance) design resulting in 32 between replication conditions

used to generate data, each having 1,000 replications. In each replication, four different chi-square

difference testing approaches were used to test for measurement invariance.

2.2.1 Data Generation and Analysis

Data for two groups were simulated in the R program. A single latent common factor with eight

indicator variables was simulated in all conditions. In order to enhance the flexibility in the data

generating process, specifically to allow the latent common factor distribution to be non-normal,

the data were simulated manually by using random number generators and linear equations. First

the latent variable (η) was generated using the desired distribution and population parameters,

then linear equations were used to generate each LRV (y∗; see Equations 2.2 & 2.3). When the

latent variable was normally distributed it was generated using the “rnorm” function in R, and

when the latent variable was non-normal it will be generated using the power method suggested by

(Fleishman, 1978).

y∗i = v+ληi + εi (2.2)

ε ∼ N(0,1−λ
2) (2.3)

Once the LRVs were generated, the population model threshold values (which are dependent on
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the desired number of responses categories) were used to divide the LRVs into discrete categories.

For example, in conditions with two response categories with a threshold of 0, LRV scores less

than 0 had a response of 1 whereas LRV scores equal to or greater than 0 had a response of 2.

In order to handle generated data where a variable had unequal observed responses across groups,

categories were collapsed to ensure that response options matched in all “observed” data. For

example, if generated data showed responses of 1, 2, 3, 4, 5 in group A, but 1, 2, 3, 4 in group

B, all values of 5 in group A were recoded to be 4. This was done to mimic what researchers are

likely to do when faced with this issue in applied research.

There were two models fitted and compared in all replications: a configural invariance model

and a scalar invariance model. The configural model had the factor loadings and thresholds freely

estimated for both groups, whereas the latent variable in each group had its estimated mean and

variance fixed to be 0 and 1, respectively. Further, in the configural model the variances of the LRVs

(i.e., scales) were fixed to 1 in both groups. The scalar invariance model had the factor loadings

and thresholds constrained to equality across groups. Constraining the measurement parameters

across groups allowed the latent variable mean and variance to be estimated in the second group

rather than fixed to 0 and 1. Further, in the scalar invariance model the variances of the LRVs were

still constrained to be 1 for model identification purposes.

2.2.2 Between Replication Conditions

2.2.2.1 Latent Variable Distribution

Data were simulated for both normally distributed and positively skewed latent variables. This

is an important manipulation because ordered-categorical CFA estimation methods assume that

latent variables are normally distributed. In the normally distributed latent variable condition, the

latent variable had kurtosis and skewness values equal to 0 for both groups. In the non-normally

distributed condition, the latent variable had a skewness of 1.5 and (excess) kurtosis of 3.5 in

the focal group, whereas the reference group had a normally distributed latent variable. These

distribution shapes were chosen to replicate the simulation work of Suh (2015) which showed that
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the Mplus DIFFTEST command has inflated Type I error rates, when testing in the IRT framework,

when there are large group differences in latent variable distributions.

2.2.2.2 Response Categories

Data were simulated with two or five response options for all of the eight indicator variables. These

response option values were chosen to mimic response scales that are likely to be used in applied

research. Data with two response options represent response scales where participants are asked to

respond “No” or “Yes” to indicate if a statement is true. Data with five response options represent

response scales where participants respond on a scale such as “Strongly Disagree”, “Disagree”,

“Neutral”, “Agree”, or “Strongly Agree” to indicate their level of agreement with a statement.

2.2.2.3 Threshold Symmetry

Data were simulated using population thresholds values that create symmetric or asymmetric indi-

cator variable distributions (based on quantiles from a normally distributed latent variable). Gen-

erating data using asymmetric thresholds was done in order increase generalizability to applied re-

search where response distributions are often not symmetric (e.g., Serious Harm Reduction Scale,

Martens et al. 2007). Population threshold values of 0 or 0.70 were used when generating dichoto-

mous data. A threshold of 0 creates data where the two response categories are equally likely,

whereas a threshold 0.70 creates data where approximately 76% of responses are in the lower

response category when both the latent variable and the LRV are normally distributed. The thresh-

old value of 0 is commonly used in simulation research when generating dichotomous data (e.g.,

Beauducel & Herzberg 2006; Rhemtulla et al. 2012), and the threshold value of 0.70 was chosen as

a compromise between what Rhemtulla et al. defined as moderate asymmetry (threshold of 0.36)

and extreme asymmetry (threshold of 1.04) levels.

For five response options threshold values of -1.30, -0.47, 0.47, and 1.30 or -0.25, 0.38, 0.84,

and 1.28 were used. Values of -1.30, -0.47, 0.47, and 1.30 were used to generate data with a sym-

metric distribution, whereas -0.25, 0.38, 0.84, and 1.28 generate data that show a large number
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cases (approximately 40%) endorsing the lowest possible response when both the latent variable

and the LRV are normally distributed. The thresholds for five response options are based on the

recent simulation work of Sass, Schmitt, and Marsh (2014) who chose these values in an attempt

to create conditions that generalize to applied research. Importantly, the asymmetric conditions

should generalize to situations where responses are also grouped towards the upper end of a re-

sponse scale when the latent variable is normally distributed in both groups. This is because the

two groups have no population mean difference on the latent variable therefore the direction of the

skew is meaningless if it is the same across groups.

2.2.2.4 Sample Size

Two total sample sizes were used in the simulation, 300 and 600. These values were chosen

following typical simulation research conventions when setting sample size values. The values

selected fall within the range of those used in previous simulation research (Elosua, 2011; Elosua

& Wells, 2013;Lubke & Muthén, 2004; Sass et al., 2014). Both simulated groups had an equal

number of observations in all replications.

2.2.2.5 Factor Loading Invariance

Factor loading invariance/non-invariance was created by subtracting 0 or .25 from the factor load-

ings for items 1 and 2 (which were chosen arbitrarily) in the population model in the focal group

(i.e., the group receiving the non-invariance manipulation). Specifically, conditions in which the

factor loadings were invariant had a factor loading of .60 for items 1 and 2 for both groups; whereas

conditions in which the factor loadings were non-invariant had a factor loading of .60 for the ref-

erence group and .35 for the focal group for items 1 and 2. The difference value of .25 for factor

loadings has been used in previous simulation research (Sass et al., 2014). Items 3-8 always had

factor loadings of .60 and the residual variances for indicator variables were always set at 1−λ 2

in the population model.
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2.2.3 Within Replication Conditions

There were four chi-square difference testing methods compared in each replication; all were used

to analyze the same data. For each test a configural invariance model (i.e., freely estimated mea-

surement parameters in both groups) was compared to a scalar invariance model (i.e., factor load-

ings and items thresholds constrained to be equal in both groups) in order to test for measurement

invariance. The models fitted in all four testing methods were identical, the only difference was

how the chi-square difference test was conducted.

2.2.3.1 Chi-Square Difference Random Permutation Testing

The permutation chi-square test required the simulated data in each replication to be randomly

shuffled to build a distribution of chi-square difference values under the assumption that the null

hypothesis is true. In each random shuffle of group membership the configural invariance model

and scalar invariance model were fitted to the data and the chi-square difference value between

the two models was saved. After this was done the appropriate amount of times (which was

determined by simulation two) the original chi-square difference value was compared to the values

from the random shuffles. A p-value for the observed statistic was calculated by determining what

proportion of the chi-square difference values from the random shuffles exceeded the observed

chi-square difference. A p-value equal to or less than .05 resulted in measurement invariance

being rejected. The permutation testing was conducted using the lavaan package in R. Random

permutation shuffles in which at least one variable had a different number of observed responses

across groups was handled by resampling random permutation shuffles.

2.2.3.2 DIFFTEST Chi-Square Difference in Mplus

The DIFFTEST method was also used in all evaluations of measurement invariance. Following the

instructions of Muthén and Muthén (2015), comparisons between the configural invariance model

and scalar invariance model were conducted using the DIFFTEST option in Mplus. Measurement

invariance was rejected in replications that showed a chi-square DIFFTEST p-value less than or
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equal to .05.

2.2.3.3 Satorra-Bentler Scaled Chi-Square Difference in lavaan

Chi-square difference testing with the SB chi-square difference correction presented by Satorra

(1999) was also compared to the random permutation test. The SB correction is easily imple-

mented in R by using the “anova” function, which calls the “lavTestLRT” function in lavaan, to

compare the fit of two nested CFA models. Hereafter this correction is simply referred to as the

“lavTestLRT” correction. When the WLSMV estimator is used, the chi-square difference statistic

is automatically scaled with the SB correction. The correction was used with all of the defaults

in the lavTestLRT function in version 0.5-22 of the lavaan package. Measurement invariance was

rejected in replications that showed a lavTestLRT chi-square difference p-value less than or equal

to .05.

2.2.3.4 Unadjusted Chi-square Difference Testing

The final method of chi-square difference testing was an unadjusted test. This testing approach

served as a baseline to which the other three approaches can be compared. The unadjusted chi-

square difference test was conducted by saving the chi-square value and degrees of freedom from

the configural invariance model and the scalar invariance model and then using the difference in

those values to calculate a chi-square difference p-value. As was the case with the other three

testing methods, replications with a p-value less than or equal to .05 had measurement invariance

rejected. This approach used the lavaan package in all conditions.

2.2.4 Outcomes

The outcome of interest in each condition with each testing method was the proportion of the

replications in which measurement invariance was rejected. This rejection rate was calculated

by dividing the number of replications where measurement invariance was rejected by 1,000. In

conditions where measurement invariance was simulated (i.e., all population model factor loadings
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and thresholds are equal in both groups), the rejection rate was the Type I error rate. Testing

methods that showed Type I errors within or below the nominal range of .036 to .064 described

in the description for simulation one were considered to have acceptable Type I error control.

In conditions in which measurement non-invariance was simulated (i.e., measurement parameters

differ on items 1 and 2 in the population model), the rejection rate was power. Methods that

showed acceptable Type I error rate control were compared on power. Specifically, determining if

the random permutation test controls Type I errors and yields power equal to or greater than other

testing approaches was the main focus when interpreting the results.

2.3 Simulation Implementation

In order to ensure that the simulations were conducted in a timely manner, the University of Kansas

Advanced Computing Facility cluster was used to run multiple between replication conditions si-

multaneously. Consistent replication of the simulations was ensured by using the portableParal-

lelSeeds (Johnson, 2015) package in R. In cases where a simulation condition would take a long

time (e.g., over 30 days) to cycle through all replications and permutation shuffles, the individual

replications for that condition were split across computing nodes (e.g., 1,000 replications split into

groups of 100 across 10 computing nodes). Using portableParallelSeeds allowed the data genera-

tion to be consistent across repeated replications of the simulation, regardless of which computers

were used and how the work was divided. Further, it allowed individual replications that triggered

error messages to be revisited without requiring the entire simulation to be replicated from the

beginning. For example, if a simulation replication towards the end of the simulation triggered an

error message and caused the simulation execution to stop, portableParallelSeeds allows the user to

look-up the random number seed for that replication and then use it to reproduce the error message

in an interactive session for debugging.
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Chapter 3

Results

3.1 Simulation One

The focus of simulation one was determining the appropriate number of random permutation shuf-

fles for the second and final Monte Carlo simulation. Possible values between 100 and 1,000, in

increments of 100, were evaluated. The results reported here lead to 500 being identified as the

lowest permissible number of random permutation shuffles for use in simulation two.

3.1.1 Unequal Response Categories

Across the four between run simulation conditions the occurrence of unequal response categories

was extremely rare. The initial data generated in each replication never required response cat-

egories to be collapsed in order to make response categories match across groups. In all 1,000

replications in each condition all response categories were initially observed for all variables in

both groups, therefore no collapsing of categories in the originally generated data was necessary.

Across all replications, resampling permutation shuffles was necessary on three occasions with five

response options and equal factor loadings in the population model, whereas resampling shuffles

was necessary seven times with five response options and population model differences in factor

loadings (see Table 3.1).
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Table 3.1: Number of Resamples and Collapses
Response Options Loading Invariance Number of Resamples Number of Collapses

2 Yes 0 0
2 No 0 0
5 Yes 3 0
5 No 7 0

3.1.2 Type I Errors

The Type I error rate change across different random permutation shuffle numbers showed rates

that were consistently within or close to the nominal range of .036 to .064 (see Figure 3.1). In-

terestingly, the Type I error rate showed a slight decrease as the number of random permutations

used increased. The decrease in Type I error rates appeared to stop after 500 random permuta-

tion shuffles. As expected, the proportion of replications which showed a change in the decision

about rejecting the null hypothesis of equal factor loadings and thresholds decreased as the initial

number of random permutations increased (see Table 3.2). When increasing the number of ran-

dom permutation shuffles from 500 to 600 the rejection decision with two response options did not

change across all 1,000 replications, whereas with five response options the rejection decision only

changed in 3 of the 1,000 replications.
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Figure 3.1: Type I Error Rates Across Replications
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Table 3.2: Proportion of Replications with a Change in Decision with Population Invariance
Increase in Random Permutations Changes with Two Responses Changes with Five Responses
100 to 200 .010 .007
200 to 300 .006 .005
300 to 400 .001 .006
400 to 500 .001 .006
500 to 600 .000 .003
600 to 700 .001 .000
700 to 800 .000 .001
800 to 900 .000 .000
900 to 1000 .000 .001

3.1.3 Power

As was the case with Type I errors, power was not largely influenced by an increase in the number

of random permutation shuffles. With both two and five response categories the highest power was

observed with 100 random permutation shuffles, with a slight decrease as the shuffles increased

(see Figure 3.2). When increasing from 100 to 200 random permutation shuffles, about 3% of the

1,000 replications showed a change in the decision to reject the null hypothesis of equal factor

loadings and thresholds. Further, when increasing from 500 to 600 random permutation shuffles

a change in the rejection decision was only observed about 1% of the time (see Table 3.3). As

the number of random permutation shuffles approached 1,000 the proportion of replications which

showed a rejection decision change nearly became zero.
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Figure 3.2: Power Across Replications
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Table 3.3: Proportion of Replications with a Change in Decision with Non-Invariance
Increase in Random Permutations Changes with Two Responses Changes with Five Responses
100 to 200 .033 .028
200 to 300 .018 .016
300 to 400 .014 .015
400 to 500 .013 .008
500 to 600 .010 .009
600 to 700 .008 .008
700 to 800 .011 .005
800 to 900 .005 .004
900 to 1000 .004 .003

3.1.4 Selected Number of Shuffles

Because the focus of the present research is on how random permutation testing controls Type I

errors, it is important to use the appropriate number of shuffles to maximize its error control in

simulation two. The results of simulation one show that Type I errors decrease as the number

of permutation shuffles increases, but that after 500 random permutation shuffles using additional

shuffles has little to no impact on results. In order to ensure that random permutation testing could

control Type I errors well, 500 permutation shuffles were used in all conditions in simulation two.

3.2 Simulation Two

Based on the results of simulation one, this simulation was conducted with 500 random permuta-

tion shuffles. The results are reported first for conditions where the latent variable was normally

distributed in each group, and then conditions with a non-normal latent variable in the second

group are shown. The results are broken down to discuss Type I error rate control, and then discuss

power.
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3.2.1 Normally Distributed Latent Variables

3.2.1.1 Type I Errors

Type I errors for the random permutation test were within the nominal range of .036-.064 when

the latent variable was normally distributed in both groups (see Table 3.4). Interestingly, all Type

I error rates where within one standard error of the nominal value of .05.

Table 3.4: Type I Error Rates with Normal Latent Variables
Sample Size Response Categories Symmetric Thresholds Permutation Type I Error

Rate
150 2 Yes .050
300 2 Yes .043
150 5 Yes .053
300 5 Yes .053
150 2 No .053
300 2 No .056
150 5 No .050
300 5 No .054

3.2.1.2 Power

Evaluations of power were then conducted in conditions where the latent variables were normally

distributed in both groups and factor loading differences were present in the population model (see

Table 3.5).

Table 3.5: Power with Normal Latent Variables
Sample Size Response Categories Symmetric Thresholds Permutation Power
150 2 Yes .279
300 2 Yes .543
150 5 Yes .460
300 5 Yes .786
150 2 No .214
300 2 No .406
150 5 No .342
300 5 No .707

The results showed that power increased with larger group sizes. Further, power was greater

with five response categories per indicator when compared to two response categories. Addition-
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ally, power was noticeably lower with non-symmetric indicator variable thresholds. These effects

are depicted in Figure 3.3.
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Figure 3.3: Power with Normal Latent Variables

3.2.1.3 Comparison With Existing Testing Procedures

After random permutation testing was shown to perform well with normally distributed latent

variables, its performance was compared to existing chi-square difference testing procedures (see
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Table 3.6). The Mplus DIFFTEST correction showed Type I error rates inside of the nominal range

in six of the eight conditions with equal population factor loadings and normally distributed latent

variables in both groups. The two conditions in which errors were above .064 had two response

options per variable and non-symmetric thresholds. The lavTestLRT correction showed error rates

that were well below the nominal range and close or equal to 0. As expected, the standard chi-

square difference test with no adjustment for the chi-square difference statistic showed error rates

that were consistently inflated.

Table 3.6: Type I Errors Across Testing Methods
Condition Info Random Permutations DIFFTEST lavTestLRT No Adjustment
150, 2, Symmetric .050 .060 .004 .143
300, 2, Symmetric .043 .052 .002 .128
150, 5, Symmetric .053 .062 .000 .131
300, 5, Symmetric .053 .057 .000 .098
150, 2, Non-Symmetric .053 .065 .010 .135
300, 2, Non-Symmetric .056 .078 .004 .139
150, 5, Non-Symmetric .050 .053 .001 .131
300, 5, Non-Symmetric .054 .062 .000 .128

Note. The Condition Info column indicates each conditions’ group sample size, number of re-
sponse categories, and threshold symmetry.

Evaluations of power between the random permutation test, Mplus DIFFTEST, and the lavTestLRT

correction showed that the performances of random permutation testing and Mplus DIFFTEST

were remarkably similar with DIFFTEST always being slightly more powerful (see Table 3.7).

Table 3.7: Power Across Testing Methods
Condition Info Random Permutations DIFFTEST lavTestLRT No Adjustment
150, 2, Symmetric .279 .319 .084 .452
300, 2, Symmetric .543 .568 .220 .703
150, 5, Symmetric .460 .504 .091 .618
300, 5, Symmetric .786 .811 .347 .890
150, 2, Non-Symmetric .214 .258 .070 .361
300, 2, Non-Symmetric .406 .457 .143 .588
150, 5, Non-Symmetric .342 .370 .049 .519
300, 5, Non-Symmetric .707 .733 .226 .831

Note. The Condition Info column indicates each conditions’ group sample size, number of re-
sponse categories, and threshold symmetry.
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Simultaneous comparisons between Type I error rates and power are displayed in Figure 3.4.

The plots in Figure 3.4 show the Type I error rates for each combination of simulation variables

on the x-axis, and power on the y-axis. The vertical dotted lines indicate the nominal range for

the Type I error rate (.036-.046). These plots show how the different testing approaches simulta-

neously controlled Type I errors while maximizing power. Plot points that are red indicate testing

conditions where Type I errors were above the nominal range, whereas blue points indicate Type I

errors below the nominal range. The desired outcome was a many values within the nominal range

as possible with high power.
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Figure 3.4: Type I Errors and Power Across Conditions and Testing Methods

The plots in Figure 3.4 clearly show that the two best performers were random permutation

testing and Mplus DIFFTEST. The differences in rejection rates between Mplus DIFFTEST and

random permutation testing across all 16 conditions with normally distributed latent variables were

further explored using McNemar’s test. Specifically, the differences in rejection decisions were

evaluated for statistical significance. The results are shown in Table 3.8.
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Table 3.8: Comparison of Mplus DIFFTEST and Random Permutations
Sample
Size

Invariance Response
Categories

Symmetric
Thresholds

Random
Permuta-
tions

Mplus
DIFFTEST

McNemar’s
Chi-square

150 Yes 2 Yes .050 .060 8.1*
300 Yes 2 Yes .043 .052 7.111*
150 Yes 5 Yes .053 .062 3.368
300 Yes 5 Yes .053 .057 1.125
150 Yes 2 No .053 .065 10.083*
300 Yes 2 No .056 .078 20.045*
150 Yes 5 No .050 .053 0.364
300 Yes 5 No .054 .062 6.125*
150 No 2 Yes .279 .319 31.688*
300 No 2 Yes .543 .568 16.457*
150 No 5 Yes .460 .504 35.558*
300 No 5 Yes .786 .811 19.862*
150 No 2 No .214 .258 42.023*
300 No 2 No .406 .457 45.455*
150 No 5 No .342 .370 15.848*
300 No 5 No .707 .733 18.382*

Note. * indicates a chi-square value above the critical value of 3.84

The tests for statistical significance showed that the performances of the Mplus DIFFTEST

procedure and random permutation testing rejections rates were (statistically) significantly differ-

ent in 13 of the 16 conditions. Five of the conditions with a statistically significant difference in

rejection rate showed Mplus DIFFTEST having a higher Type I error rate. And the remaining

eight conditions showed Mplus DIFFTEST having significantly higher power. In conclusion, the

results across conditions with a normally distributed latent variable in both groups showed that the

only methods which consistently controlled Type I errors to be within the nominal range was the

random permutation test. The Mplus DIFFTEST procedure showed Type I errors close to or within

the nominal range, and had the benefit of more power to detect non-invariance.

3.2.2 Non-Normal Latent Variable Conditions

There were a total of 16 conditions in which the focal group had a latent variable with a mean of

0, variance of 1, skewness of 1.5, and (excess) kurtosis of 3.5. The reference group had a normally

54



distributed latent variable with a mean of 0 and variance of 1. The random permutation test and

the competing chi-square difference tests were evaluated for Type I error rates and power in these

16 conditions.

3.2.2.1 Comparisons With Existing Testing Procedures

The random permutation test showed a Type I error rate within the nominal range in six of the

eight possible conditions. The Mplus DIFFTEST correction showed Type I error rates within

the nominal range in three of the eight conditions. As was observed with a normally distributed

latent variable in both groups, lavTestLRT had error rates close to 0 and the unadjusted test had

consistently inflated error rates (see Table 3.9).

Table 3.9: Type I Error Rates with Non-Normal Latent Variable
Condition Info Random Permutations DIFFTEST lavTestLRT No Adjustment
150, 2, Symmetric .053 .066 .013 .113
300, 2, Symmetric .055 .061 .007 .150
150, 5, Symmetric .068 .081 .001 .145
300, 5, Symmetric .080 .100 .002 .192
150, 2, Non-Symmetric .052 .075 .002 .136
300, 2, Non-Symmetric .047 .063 .000 .126
150, 5, Non-Symmetric .045 .054 .001 .111
300, 5, Non-Symmetric .057 .068 .000 .152

Note. The Condition Info column indicates each conditions’ group sample size, number of re-
sponse categories, and threshold symmetry.

The Type I Error control for the Mplus DIFFTEST correction and random permutation testing

were reasonable enough to warrant an evaluation of power (see Table 3.10).
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Table 3.10: Power with Non-Normal Latent Variable
Condition Info Random Permutations DIFFTEST lavTestLRT No Adjustment
150, 2, Symmetric .227 .262 .055 .385
300, 2, Symmetric .475 .511 .191 .636
150, 5, Symmetric .397 .446 .081 .558
300, 5, Symmetric .763 .795 .326 .878
150, 2, Non-Symmetric .254 .302 .058 .429
300, 2, Non-Symmetric .522 .548 .184 .666
150, 5, Non-Symmetric .375 .422 .059 .542
300, 5, Non-Symmetric .736 .764 .208 .870

Note. The Condition Info column indicates each conditions’ group sample size, number of re-
sponse categories, and threshold symmetry.

Simultaneous comparisons between Type I error rates and power in conditions with different

latent variable distributions are displayed in Figure 3.5. The plots in Figure 3.5 show the Type I

error rates for each combination of simulation variables on the x-axis, and power on the y-axis.

The vertical dotted lines indicate the nominal range for the Type I error rate (.036-.064). These

plots show how the different testing approaches simultaneously controlled Type I errors while

maximizing power. Plot points that are red indicate testing conditions where Type I errors were

above the nominal range, whereas blue points indicate Type I errors below the nominal range. The

desired outcome was a many values within the nominal range as possible with high power.
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Figure 3.5: Type I Errors and Power Across Conditions with Non-Normal LV

The plots in Figure 3.5 show that although none of the testing approaches showed consistently

acceptable Type I error control, the Mplus DIFFTEST procedure and random permutation test-

ing were by far the best performers in conditions with differences in latent variable distributions.

The differences in rejection rates across all 16 conditions between Mplus DIFFTEST and random

permutation testing were further explored using McNemar’s test. Specifically, the differences in

rejection decisions were evaluated for statistical significance. The results are shown in Table 3.11.
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Table 3.11: Comparison of Mplus DIFFTEST and Random Permutations
Sample
Size

Invariance Response
Categories

Symmetric
Thresholds

Random
Permuta-
tions

Mplus
DIFFTEST

McNemar’s
Chi-square

150 Yes 2 Yes .053 .066 11.077*
300 Yes 2 Yes .055 .061 2.083
150 Yes 5 Yes .068 .081 7.579*
300 Yes 5 Yes .080 .100 16.409*
150 Yes 2 No .052 .075 21.043*
300 Yes 2 No .047 .063 14.062*
150 Yes 5 No .045 .054 4.923*
300 Yes 5 No .057 .068 6.667*
150 No 2 Yes .227 .262 29.641*
300 No 2 Yes .475 .511 30.625*
150 No 5 Yes .397 .446 43.472*
300 No 5 Yes .763 .795 28.265*
150 No 2 No .254 .302 42.481*
300 No 2 No .522 .548 16.447*
150 No 5 No .375 .422 41.49*
300 No 5 No .736 .764 21.441*

The results from McNemar’s test showed a significant difference in rejection rate in 15 out of

16 conditions. Seven out of eight possible conditions showed Type I error rates significantly lower

(and closer to .05) for the random permutation test. The eight remaining conditions were instances

where the Mplus DIFFTEST procedure showed greater power than random permutation testing.
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Chapter 4

Empirical Example

4.1 Data

In order to demonstrate the use of the random permutation test with empirical data and compare

it with the Mplus DIFFTEST procedure and lavTestLRT, publicly available data were gathered for

analysis. Data from the 2012 Programme for International Student Assessment (PISA; OECD,

2013) were used in an evaluation of measurement invariance.

The data contained responses from 15-year-old students from 65 different countries. The total

number of children who participated in the 2012 PISA survey was over 510,000. A set of eight

questions assessed students’ Math Self Efficacy (i.e., their belief and confidence in their own math

ability); these items were determined to be appropriate for a latent variable model. The questions

assessed how confident students would be doing different types of math problems, responses were

recorded on a four-point ordered scale with responses of 1 = “Very confident”, 2 = “Confident”, 3

= “Not very confident”, and 4 = “Not at all confident”. The items were the following:

1. Using a train timetable to work out how long it would take to get from one place to another.

2. Calculating how much cheaper a TV would be after a 30% discount.

3. Calculating how many square metres of tiles you need to cover a floor.
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4. Understanding graphs present in newspapers.

5. Solving an equation like 3x+5= 17.

6. Finding the actual distance between two places on a map with a 1:10,000 scale.

7. Solving an equation like 2(x+3) = (x+3)(x-3).

8. Calculating the petrol consumption rate of a car.

In this example, scores on these indicators were reverse-coded so that higher scores indicate higher

levels of confidence. This allows the latent variable to be interpreted as Math Self Efficacy where

higher scores indicate a higher level of belief in one’s math ability. These items appeared to be

theoretically appropriate indicators of a single Math Self Efficacy latent variable, therefore all CFA

models fit had eight indicators and a single latent variable.

Rather than conducting a test for measurement invariance with all countries present, only cases

from students from the United States of America (USA) and Canada were used. This resulted in

a data frame with 21,544 cases from the United States and 4,978 from Canada. In order to reduce

the number of cases per group to better represent group sizes typically seen in applied psychology

research, 300 students were randomly sampled from each country. The resulting data frame with

600 observations was used to test for measurement invariance of the eight Math Self Efficacy items

with the random permutation test procedure. The response frequencies for each indicator variable

can be seen in Table 4.1.

Table 4.1: Response Frequencies for USA and Canada
Canada, USA

Indicator “Not at all confident” “Not very confident” “Confident” “Very confident”
1 15, 7 59, 55 126, 148 100, 90
2 18, 8 56, 62 101, 131 125, 99
3 12, 8 57, 78 120, 120 111, 94
4 10, 5 34, 38 141, 138 115, 119
5 7, 2 21, 10 76, 87 196, 201
6 32, 26 94, 108 101, 104 73, 62
7 19, 11 48, 38 107, 102 126, 149
8 26, 12 96, 86 120, 126 58, 76
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4.2 Analysis and Results

4.2.1 Initial Test for Measurement Invariance

The first model fitted to the analysis data was a configural invariance model. This model specified

the same measurement structure for both countries, but allowed the factor loadings and thresholds

in each to be freely estimated. In order to set the scale, the latent variable mean and variance

were fixed to 0 and 1, respectively, for both groups. This model fit the data well, although the

RMSEA was well above commonly accepted cutoff values, χ2(40) = 245.296, CFI = .946, T LI =

.924, RMSEA = .131. The fit of the configural invariance model was sufficient to warrant further

analysis.

The next model fitted to the data was the scalar invariance model. This model had all factor

loadings and thresholds constrained to equality across both countries. Further, the constraint of

equal measurement parameters allowed the latent variable mean and variance for the Canada group

to be freely estimated while the constraints of 0 and 1 remained for the USA group. This model

also fit the data well, χ2(70) = 289.807, CFI = .942, T LI = .954, RMSEA = .102. The difference

in the chi-square fit between the two models was 44.511, which was the test statistic for the random

permutation test.

The random permutation test was carried out by randomly shuffling the grouping variable 1,000

times. In each shuffle the two aforementioned models were fitted, and their chi-square differences

were saved. This built the reference distribution for the chi-square difference statistic. There were

a total of five random permutation testing shuffles in which there were unequal response categories

across groups. These instances were dealt with by continuing to shuffle the grouping variable until

a suitable group membership assignment was observed, therefore a total of 1,005 random permu-

tation shuffles were used. The proportion of cases in the reference distribution greater than the

observed test statistic of 44.511 was .022, therefore the null hypothesis of measurement invariance

was rejected.
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4.2.2 Follow-up Tests

After the initial test found that measurement invariance was not present across the USA and Canada

for the Math Self Efficacy indicator variables, a series of additional tests were conducted to deter-

mine which item(s) is(are) non-invariant. Eight separate tests of measurement invariance were

carried out, each one evaluating a single indicator variable. The same configural model as used for

the initial test of measurement invariance was compared to a model where all but one of the indi-

cator variables had its factor loadings and thresholds constrained to equality (i.e., a partial scalar

invariance model). Each of the sets of eight models were compared with random permutation test-

ing. The results showed that in six of the eight tests the difference between the configural and

partial scalar invariance model was statistically significant, the two exceptions were the difference

between the configural and partial scalar models with freely estimated measurement parameters for

indicator variables two (“Calculating how much cheaper a TV would be after a 30% discount.”)

and three (“Calculating how many square metres of tiles you need to cover a floor.”). In other

words, the model fit did not become significantly worse when all indicators except number two or

three had their measurement parameters constrained to equality. These results suggest that both

variables are non-invariant.

For the model testing indicator variable two, the observed chi-square difference statistic was

27.846, and its p-value with 1,000 permutation shuffles was .055. This finding suggests that mea-

surement of Math Efficacy with the “Calculating how much cheaper a TV would be after a 30%

discount.” question is different between students in the USA and students in Canada. Further, for

the model testing indicator variable three the observed chi-square difference statistic was 27.846,

and its p-value with 1,000 permutation shuffles was .092. This finding suggests that measurement

of Math Efficacy with the “Calculating how many square metres of tiles you need to cover a floor.”

question is different between students in the USA and students in Canada. This finding is not

surprising because the metric system is commonly used in Canada, but less popular in the USA.

When measuring Math Self Efficacy across the USA and Canada, it is important to allow the “Cal-

culating how many square metres of tiles you need to cover a floor.” indicator to have different
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measurement parameters across groups.

The final models used for testing measurement invariance were the original configural invari-

ance model and a partial scalar invariance model with freely estimated measurement parameters

for indicator variables two and three. These models had a chi-square difference of value of 11.181

with a random permutation testing p-value of .265; therefore, measurement invariance testing con-

cluded with indicators two and three confirmed as non-invariant (although other justifiable conclu-

sions could have been reached with different follow-up approaches). Comparisons of Math Self

Efficacy across the USA and Canada should be done with the partial scalar invariance model.

4.3 Additional Testing Procedures

Continuing with the methods used in the second Monte Carlo simulation, the empirical data were

also tested for measurement invariance using lavTestLRT and Mplus DIFFTEST. The same initial

models used for the omnibus test of measurement invariance were compared using both scaling

corrections.

The results using the lavTestLRT function in R showed no statistically significant difference be-

tween the configural and scalar model in the initial test of measurement invariance ∆χ2(10.727) =

16.199, p = .122. Therefore, if the data were analyzed only using the lavTestLRT correction pro-

vided in R with the lavaan package the test of measurement invariance would have concluded with

measurement invariance being supported. No follow-up tests would have been conducted and the

non-invariance found in indicators two and three with the random permutation testing would have

gone undetected (with empirical data it is unknown if a Type I error was made by the random

permutation test, or a Type II error was made with the lavTestLRT function).

The initial test for measurement invariance conducted in Mplus showed that the first chi-square

test via DIFFTEST comparing the configural model and the scalar model was statistically signifi-

cant ∆χ2(30) = 62.025, p = .001. The final follow-up test comparing the partial scalar invariance

model (freely estimated parameters for indicator variables two and three) and the configural was
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not statistically significant ∆χ2(22) = 33.554, p = .055. Therefore the Mplus results supported

what was found using random permutation testing, indicators two and three are non-invariant

across the USA and Canada.

4.4 Effect of Measurement Constraints

Although the empirical data do not allow a statement about whether or not it is correct to reject

measurement invariance, they do allow an example demonstrating how freely estimating or con-

straining parameters for items 2 and 3 influence the group latent variable means and variances.

When using the partial scalar invariance model with the measurement parameters for items 2 and

3 freely estimated, Math Self Efficacy for the Canadian group had a mean of .159 and a variance

of .900 (these values were fixed at 0 and 1 for the USA group). If measurement invariance is not

rejected and a full scalar invariance model is used, Math Self Efficacy for the Canadian group has

a mean of .084 and a variance of .952 (these values were fixed at 0 and 1 for the USA group). This

example shows that freeing the measurement parameters for items 2 and 3 to improve model fit

results in larger group differences in parameters at the structural level.

4.5 Conclusions

This example demonstrated how random permutation testing can be applied to real data. After

initially rejecting measurement invariance, random permutation testing was used to test individual

indicator variables for invariance. This testing approach showed that two indicator variables were

the source of the non-invariance. Removing the equality constraints from the factor loadings and

thresholds for those indicators creates a partial scalar invariance model that can be used to compare

the USA and Canada on Math Self Efficacy.

The comparisons with existing scaling procedures demonstrate how the results from Mplus

DIFFTEST and random permutation testing match up well, which is consistent with the results of

Monte Carlo simulation two. Further, this example shows that using the lavTestLRT function in R
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can lead to a different conclusion from the Mplus DIFFTEST command when analyzing empirical

data.
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Chapter 5

Discussion

5.1 Research Questions

The purpose of the present research was to evaluate the use of random permutation testing applied

to chi-square difference testing for measurement invariance with ordered-categorical indicator vari-

ables. The research was focused on models estimated with the popular WLSMV estimator. When

models with ordered-categorical data are estimated with WLSMV, the chi-square difference test

requires a scaling correction ensure an unbiased test because the assumption of multivariate nor-

mality is violated. The random permutation test was introduced as an alternative that is easily

implemented in any statistical software, and as a method that should control Type I errors as well

or better than existing methods. Three chi-square difference testing methods were compared to the

random permutation test: 1) the correction implemented by the Mplus DIFFTEST command, 2)

the Satorra-Bentler correction as implemented by the lavaan package in R (lavTestLRT), and 3)

the unadjusted chi-square difference test. There where five research questions developed for the

present research, and these questions were answered with two Monte Carlo simulations.

5.1.1 Random Permutation Error Rate and Power

The first research question was:
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• How does chi-square difference testing using random permutations perform in terms of Type

I error rate and power? Are Type I errors close to .05? If Type I errors are close to .05, does

the test show reasonable power that increases as a function of sample size?

The results of the present research suggest that random permutation testing has acceptable Type

I error control. Further, even though only two sample size values were used in the Monte Carlo

simulation there was a clear increase in power when larger groups were generated. The initial

results showed a promising performance of random permutation testing and the test performed as

expected. The answer to research question one is that, when the latent variable variable distribu-

tions are normal in all groups, Type I errors are close to .05 and power does increase as a function

of sample size as would be expected.

5.1.2 Between Replication Differences

The second research question was:

• How do sample size, the number of response categories, and threshold symmetry influence

the performance of chi-square random permutation testing?

As was previously mentioned, power increased as a function of sample size, however there was

no clear influence of sample size on Type I error rates. The performance of random permutation

testing was slightly influenced by the number of response categories for each item; factor loading

differences were easier to detect with five response categories when compared to two response cat-

egories. This is likely because of the more sensitive measurement of the LRV when more response

categories are used. Further, there was a decrease in power to detect factor loading differences

when the indicator variable thresholds were non-symmetric. The most important conclusion from

the simulation results was that sample size, number of response categories, and threshold symmetry

do not influence the Type I error control of random permutation testing.
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5.1.3 Comparison with Scaling Corrections

The third research question was:

• How does the random permutation testing approach perform compared to DIFFTEST in

Mplus and other chi-square difference test implementations?

In the present research the random permutation test showed better Type I error rate control and

lower power when compared to the Mplus DIFFTEST procedure. Further, the random permu-

tation testing procedure consistently outperformed the lavTestLRT correction and an unadjusted

chi-square difference test. It was not surprising to see the unadjusted chi-square difference test

perform poorly, however the discrepancy between the lavTestLRT correction and the random per-

mutation test was surprising. The lavaan implementation of the Satorra-Bentler correction was

shown to be far too conservative with Type I error rates near or equal to 0 and low power. Follow-

up analysis showed that an alternative to the default implementation of lavTestLRT performs well

under the conditions used in simulation two (see Appendix C); however, the random permutation

test still showed better Type I error control when the model is correctly specified (i.e., all latent

variables are normally distributed).

5.1.4 Group Differences on Latent Variable Distribution

The forth research question was:

• Does the random permutation test outperform DIFFTEST in Mplus when groups have dif-

ferent latent variable distributions?

The simulation showed that random permutation testing had better Type I error control under these

conditions, but with reduced power when compared to Mplus DIFFTEST. Importantly, the greatly

inflated error rates with DIFFTEST observed by Suh (2015) were not observed in the present

research with a CFA measurement model. This is likely due to differences in the data generation

process. Suh generated data in the IRT framework where thresholds are interpreted on the scale of
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the latent variable, whereas in the SEM framework the thresholds are on the scale of the LRV. In

the present research the LRVs had a normally distributed error term, which results in a variable that

is closer to normally distributed than the latent variable. Because the thresholds were applied to a

variable that had a closer approximation of a normal distribution, the effect of the non-normal latent

variable was reduced in the data generating process. In other words, the data generation process in

the present research reduced the influence of the non-normal latent variable. The influence of group

differences in latent variable distribution appeared to have similar influence on both the random

permutation test and the Mplus DIFFTEST procedure. Type I error rates were slightly inflated

for both tests. The increased Type I error rates in these conditions can be attributed to the model

misspecification that occurred when the LRVs and common latent variable were assumed to be

normally distributed in the model estimation process. The differences in the distributions between

the groups cannot be directly shown in the estimated models; instead the differences are forced

into the estimated thresholds, even though in the data generation process the threshold were equal.

In conclusion, there was no evidence suggesting that the random permutation test substantially

outperforms the Mplus DIFFTEST procedure when groups differ on latent variable distribution. In

other words, both testing procedures showed a similar increase in Type I errors in the non-normal

latent variable conditions.

5.1.5 Number of Random Permutation Shuffles

The fifth research question was:

• How does the number of permutations used influence the performance of the random per-

mutation test? What is an appropriate number of random group shuffles to use?

The present research found that little change occurred when more than 500 permutation shuffles

were used, however this should be generalized with caution. The design of the first simulation

which found that 500 shuffles would be acceptable was designed solely to inform the design of

simulation two. Using 500 rather than 1,000 permutation shuffles allowed simulation two to cre-

ate less of a computational strain while running. It’s important to acknowledge that the present
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research did not manipulate the magnitude of non-invariance, nor did it manipulate population

threshold differences. There could be situations not evaluated here where increasing the number of

random permutation shuffles improves test performance. In summary, the finding of 500 random

permutation shuffles being sufficient should be generalized with extreme caution. In other words,

the present research has demonstrated that under certain conditions using 500 random permutation

shuffles, but 500 is not necessarily always an appropriate number.

5.1.6 Summary

Overall, the random permutation test performed well in the Monte Carlo simulations. It showed

acceptable Type I error control and power that increased as a function of sample size. The power of

the random permutation test was also influenced by the number of response categories (greater with

five response options) and threshold symmetry (greater with symmetric thresholds). The random

permutation test clearly outperformed the lavTestLRT correction (with its default options) and the

unadjusted chi-square difference test, and it showed better Type I error rate control with lower

power when compared to the Mplus DIFFTEST command. The Mplus DIFFTEST command

performed better than expected when groups differed on latent variable distributions and showed

higher Type I error rates and greater power than the random permutation test. Lastly, the results

of the present research suggest that, under the conditions of specified in simulation one, using 500

random permutation shuffles is sufficient and increasing the number of shuffles will rarely change

the test result.

5.2 Suggestions for Random Permutation Testing

The results of the present research clearly show how the four chi-square difference testing ap-

proaches compare on their ability to control Type I errors. The present research suggests that

when researchers desire to the Type I error rate of their test as close to .05 as possible, the random

permutation testing procedure could be preferable to the three parametric approaches evaluated.
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Because the lavTestLRT function in lavaan (using all of its default options) showed Type I error

rates near or equal to zero and the unadjusted chi-square difference test showed error rates above

10%, it appears that the random permutation test should be strongly considered as an alternative

testing procedure over these two methods. The poor performance of the unadjusted test is not

surprising, however the lavTestLRT function performed far worse than expected. Researchers in-

terested in using the lavTestLRT function should review Appendix C for information on how the

performance of the function can be improved in situations similar to those in simulation two. The

Mplus DIFFTEST procedure showed reasonable Type I error control (a few conditions had rates

above the nominal range) with greater power than the random permutation test. When both random

permutation testing and the Mplus DIFFTEST procedure are options, researchers need to decide if

the improved Type I error control of the random permutation test is worth the decrease in power

and the extra computation time required to repeatedly fit the same model to shuffled data.

5.2.1 Response Category Sparseness Across Groups

In the present research all cases of equal response categories across groups in random permutation

shuffles were dealt with by resampling. Simulation one showed that resampling was rarely required

in permutation shuffles, therefore the impact of using this method in the Monte Carlo simulations

cannot be discussed. However, from a theoretical point of view resampling random permutation

shuffles should be the preferred method for dealing with unequal responses because it will always

provide chi-square difference values with the same degrees of freedom as the test value. If one

uses category collapsing (as would likely be done for data obtained from participants), the chi-

square difference values will have varying degrees of freedom and therefore be on a different

scale. An important and easy to overlook detail about using the resampling approach is that this

method narrows the population space of possible combinations of the grouping variable. Rather

than simply pulling from all possible combinations of the grouping variable, combinations are

pulled from possibilities where the number of observed responses for each indicator variable match

for all groups. In unique cases where this is impossible, for instance only one respondent in a
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single group endorsed a particular response option for an indicator, the researcher should collapse

categories in the observed data prior to conducting the random permutation test.

In circumstances where a single indicator variable has very few responses on an extreme end of

a response scale for all groups, sparseness across permutation shuffles will occur frequently. This

could be handled by further restricting the possible combinations of the grouping variable to where

the group frequencies for the problematic item are equal to the frequencies in the original data. For

example, if an extreme response category for an indicator variable has only two responses across

all groups, the random permutation shuffles used to build the reference distribution could carry

the additional requirement of having two cases with the extreme response in each group. This

constraint would likely become impossible if more than one indicator variable shows an extremely

low response rate for a category.

5.3 Limitations

Perhaps the biggest limitation with the present research was that only 32 between replication con-

ditions were used. The scope of the present research was focused on evaluating the random permu-

tation test in comparison to existing scaling procedures across a variety of conditions, however the

computational demands of the random permutation test led to a carefully chosen set of conditions.

More between replication variables (e.g., latent variable mean difference between groups, thresh-

old differences between groups, number of latent variables, etc.) could have been manipulated,

and more than two levels of the manipulated variables could have been used.

An additional limitation is the narrow focus of the present research. The present research

focused on measurement invariance testing when fitting models with ordered-categorical indicator

variables and using the popular WLSMV estimator. The results of the present research should

be generalized to scenarios that differ from the variable type and estimator used in the present

research with extreme caution. No information about the random permutation test performs with

non-normal continuous variables, or with models with a maximum likelihood estimator is provided
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by the present research. Further, the results of the Monte Carlo simulations should be generalized

with caution to model comparison scenarios other than comparing a configural invariance model to

a scalar invariance model. Further, other than the conditions in which one of the simulated groups

had a non-normally distributed latent variable, all models were correctly specified in the Monte

Carlo simulations. The correct specification of the models limits the generalizability of the current

findings to applied research where models are always misspecified to some degree.

5.4 Directions for Future Research

5.4.1 Additional Simulation Conditions

As was mentioned in the limitations section, the present research only used two levels of each

simulation variable. Effects found here could be further explored in Monte Carlo simulations

focusing on certain study variables that have more levels. Larger sample sizes, larger factor loading

differences, population threshold differences, two or more latent variables, different group size

ratios, and different numbers of groups are just a few ways that future research could expand on the

present research design in an attempt to further evaluate the random permutation test. Additionally,

conditions in which models are incorrectly specified (e.g., a minor cross loading in the population

that is not modeled), could be included to better generalize to applied research. Manipulating

additional variables with more than two levels would help identify additional situations in which

random permutation testing or existing parametric tests do not perform well.

5.4.2 Number of Shuffles

Future research should also further explore the appropriate number of random permutation shuffles

across a variety of conditions. The value of 500 used in the present research should not be consid-

ered the appropriate number across all situations. The standard error of the p-value obtained from

random permutation testing could be used to inform researchers of whether or not they have used

73



a sufficient number of random permutations shuffles. Specifically, researchers could compute the

standard error of their p-value estimate after running the first 100 random permutations. If their

p-value is within two or three standard errors of .05, then an additional 50 or 100 random permu-

tations can be used and then the standard error of the resulting p-value can be recomputed. An

evaluation of how updating random permutation shuffles after reviewing an initial result influences

the performance of the test would make an valuable contribution to the literature.

5.4.3 Different Model Estimators

The present research only evaluated the random permutation test applied to models fit with the

WLSMV estimator. The random permutation test could be applied to models fit with any estima-

tion procedure, however future research is needed to determine how well the procedure performs

in these situations. Using a maximum likelihood estimator would allow alternative measures of

model fit that are not available with weighted least squares (i.e., log likelihood, Akaike informa-

tion criteria, Bayesian information criteria) to be used for the random permutation test. These

alternative model fit measures could be used in the random permutation test and compared to the

chi-square difference test with the SB correction (Satorra & Bentler, 2001).

5.4.4 Measures of Model Fit Differences

Perhaps the largest advantage of random permutation testing over existing chi-square difference

testing procedures is that it makes no assumptions about the sampling distribution of the chi-

square difference statistic. This also means that the random permutation test does not require the

chi-square difference statistic to have any sampling distribution. Without the requirement of a

sampling distribution, the random permutation test can use any measure of model fit and evaluate

differences between models (e.g., CFI, TLI, RMSEA, etc). Future research should explore how

these fit measures perform as test statistics in the random permutation testing procedure.
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5.4.5 Summary

Clearly, additional Monte Carlo simulation research is needed to further evaluate the performance

of the random permutation test. The second and main Monte Carlo simulation was small with only

32 between replication conditions. The present research was designed only to determine which

variables influenced test performance, future research is required to further probe those effects

and offer suggestions. Thinking beyond the scope of the present research–how to improve chi-

square difference testing when models are fitted with the WLSMV estimator–perhaps the most

important avenue for future research is evaluating model fit measures which do not have known

sampling distributions in the random permutation test. The random permutation test performance

was overall quite similar to the Mplus DIFFTEST method (and the implementation of lavTestLRT

discussed in Appendix C) when the chi-square difference statistic was used; however, the random

permutation test has the ability to use change the change in CFI, TLI, or RMSEA between models.

The present research was an evaluation of how random permutation testing performs in a very

specific area where limited options exist. Future research should evaluate random permutation

testing in situations where a test statistic has no known sampling distribution and compare its

performance to available parametric tests.

5.5 Conclusion

The present research provided a promising initial evaluation of random permutation testing to

handle chi-square difference testing for measurement invariance testing with ordered-categorical

indicator variables. In the main Monte Carlo simulation the random permutation test was able to

keep Type I errors close to .05 and it controlled Type I errors better than the parametric testing

approaches evaluated. The present research suggests that researchers should consider the random

permutation testing procedure a viable option for chi-square difference testing when evaluating

measurement invariance with ordered-categorical indicator variables.
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Appendix A

Polychoric Correlation Example

In order to further demonstrate how polychoric correlations are computed, a brief example is pro-

vided here for a case where the polychoric correlation between two three-point Likert-type in-

dicators needs to be estimated. The two variables used in the example below have a polychoric

correlation of roughly .57, this example will show how this estimate can be chosen when conduct-

ing analysis manually (as was previously mentioned, this estimate can quickly be obtained with the

“polycor” package in R). The first step is to compute the thresholds for each item. Because there

are three response options, there are two thresholds for each variable that need to be estimated.

An example of the response frequency table that can be used when calculating this by hand can be

seen in Table A.1.

Table A.1: Response Frequencies for Two Items
Item 2

Item 1

Response Options 1 2 3
1 40 10 10
2 15 40 20
3 10 15 40

The cumulative proportions are used in the inverse of Equation 1.15 to yield the threshold

separating the observed response from the next higher response on the distribution of the LRV. For

item 1 the first threshold value needs to separate the lower 30% (100(40+ 10+ 10)/200) of the

LRV from the upper 70%, the inverse of the normal CDF returns a threshold value of -.524. Further
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the second threshold for item 1 needs to separate the lower 67.5% (100(60+15+40+20)/200)

of the LRV from the upper 37.5%, this results in a threshold value of .454. Using the same process,

the thresholds for item 2 are -.454 and .385.

After the thresholds are computed, those values are used to evaluate the log likelihood of possi-

ble values of the polychoric correlation. If one were conducting the analysis manually, many pos-

sible polychoric correlations would be used to compute the conditional probability of the observed

responses. The accepted polychoric correlation is the one that shows the highest log likelihood

value provided by Equation 1.16. The subsequent work for this example shows the calculations

when a test polychoric correlation value of .57 is used. The calculated threshold values are used in

the bivariate CDF (see Equation 1.18) to find the probability of being in a certain response category

or lower when the polychoric correlation is .57. In this example there are nine possible response

patterns that require a likelihood estimate for Equation 1.16. The values in Table A.2 represent the

values used in Equation 1.18 to compute the bivariate probability for each response pattern given

a polychoric correlation of .57. In order to be consistent with the notation in Equation 1.18, “x”

represents item 1 threshold values and “y” represents item 2 threshold values.

Table A.2: Thresholds Used for Polychoric Correlation Computation
Item 2 Response

1 2 3

Item 1 Response
1 x = -.454, y = -.524 x = -.454, y = .454 x = -.454, y = ∞

2 x = .385, y = -.524 x = .385, y = .454 x = .385, y = ∞

3 x = ∞, y = -.524 x = ∞, y = .454 x = ∞, y = ∞

The cumulative probability for each response pattern is calculated using the binoimal distribu-

tion CDF shown in Equation 1.18. The resulting values are shown in Table A.3. The cumulative

probabilities for each response pattern are then used in Equation 1.17 to yield the probablity of

each individual observed response, the results are shown in Table A.4. Subtracting the bivariate

probability of adjacent response patterns provides the probability of being in a single response

pattern, rather than having two responses equal to or less than a certain value.
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Table A.3: Cumluative Probabilities with Polychoric Correlation of .57
Item 2

1 2 3

Item 1
1 Φ2(−.454, −.524) = .177 Φ2(−.454, .454) = .290 Φ2(−.454, ∞) = .325
2 Φ2(.385, −.524) = .266 Φ2(.385, .454) = .523 Φ2(.385, ∞) = .650
3 Φ2(∞, −.524) = .300 Φ2(∞, .454) = .675 Φ2(∞, ∞) = 1

Table A.4: Response Pattern Probabilities with Polychoric Correlation of .57
Response Pattern Pattern Probability

1, 1 π11 = .177
1, 2 π12 = .290− .177 = .113
1, 3 π13 = .325− .290 = .035
2, 1 π21 = .266− .177 = .088
2, 2 π22 = .523− .266− .290+ .177 = .144
2, 3 π23 = .650− .523− .325+ .290 = .093
3, 1 π31 = .300− .266 = .034
3, 2 π32 = .675− .300− .523+ .266 = .118
3, 3 π33 = 1− .675− .650+ .523 = .198

The resulting probability values are then used in Equation 1.16 to compute the log of the like-

lihood for the responses given a certain polychoric correlation value. This weights the probability

of each response pattern by the number of respondents showing the pattern. The computed log

likelihood given a polychoric correlation of .57 is shown in Equation A.1. In this example the

scaling parameter (K) shown in Equation 1.16 is omitted because it is a constant.

log(L)|(ρ = .57) = 40∗ log(.177)+10∗ log(.113)+10∗ log(.035)+15∗ log(.088)

+40∗ log(.144)+20∗ log(.093)+10∗ log(.034)+15∗ log(.118)+40∗ log(.198) =−416.75

(A.1)

Because polychoric correlations are not computed using a closed-form equation, one can iterate

across different possible correlation coefficients to find the value that maximizes the log of the

likelihood. Trying values between -1 and 1 shows how the likelihood of the observed data changes
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as a function of the polychoric correlation. When creating this example, 2,001 different polychoric

correlation values were evaluated, values between and including -1 and 1 in intervals of .001.

Changes in the log likelihood as a function of the polychoric correlations can be seen in Figure A.1.

In this example the polychoric correlation coefficient that maximizes the log likelihood function is

.57, this value produces the highest log likelihood value of -416.75, therefore .57 is the estimated

polychoric correlation. A smaller interval between tested polychoric correlations can be used

across iterations in order to provide a more precise estimate. When fitting a CFA model with

ordered-categorical or dichotomous data, all non-redundant pairs of variables would have their

polychoric correlation computed.
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Figure A.1: Log Likelihood as a Function of Polychoric Correlation
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Appendix B

Random Permutation Test R Syntax

l i b r a r y ( l a v a a n )

l i b r a r y ( p l y r )

l i b r a r y ( simsem )

s e t . s e ed ( 1 2 3 )

genModel <− " f1 =~ . 6 ∗y1 + . 6 ∗y2 + . 6 ∗y3 + . 6 ∗y4

y1 | 0∗ t 1

y2 | 0∗ t 1

y3 | 0∗ t 1

y4 | 0∗ t 1

f1 ~~ 1∗ f1 "

genModel2 <− " f1 =~ . 3 ∗y1 + . 3 ∗y2 + . 6 ∗y3 + . 6 ∗y4

y1 | 0∗ t 1

y2 | 0∗ t 1

y3 | 0∗ t 1

y4 | 0∗ t 1

f1 ~~ 1∗ f1 "

d a t 1 <− s i m u l a t e D a t a ( genModel , sample . nobs = 300)

d a t 2 <− s i m u l a t e D a t a ( genModel2 , sample . nobs = 300)

d a t 1 $ group <− 1

d a t 2 $ group <− 2

d a t <− rbind . f i l l ( da t1 , d a t 2 )
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model <− " f1 =~ y1 + y2 + y3 + y4

y1 ~∗~ 1∗y1

y2 ~∗~ 1∗y2

y3 ~∗~ 1∗y3

y4 ~∗~ 1∗y4 "

p a r e n t o u t <− c f a ( model , da t , g roup = " group " , ordered = c ( " y1 " , " y2 " , " y3 " ,

" y4 " ) )

n e s t e d o u t <− c f a ( model , da t , g roup = " group " , ordered = c ( " y1 " , " y2 " , " y3 " ,

" y4 " ) , group . equal = c ( " l o a d i n g s " , " t h r e s h o l d s " ) )

p f i t <− f i t M e a s u r e s ( p a r e n t o u t , f i t . measures = c ( " c h i s q . s c a l e d " , " d f . s c a l e d " ) )

n f i t <− f i t M e a s u r e s ( n e s t e d o u t , f i t . measures = c ( " c h i s q . s c a l e d " , " d f . s c a l e d " ) )

c h i s q . d i f f 2 <− n f i t [ 1 ] − p f i t [ 1 ]

df . d i f f 2 <− n f i t [ 2 ] − p f i t [ 2 ]

nperms <− 1000

permutedVa l s2 <− rep (NA, nperms )

f o r ( i i n 1 : nperms ) {

d a t $ group <− sample ( d a t $ group , nrow ( d a t ) , r e p l a c e = FALSE)

p a r e n t o u t <− c f a ( model , da t , g roup = " group " , ordered = c ( " y1 " , " y2 " ,

" y3 " , " y4 " ) )

n e s t e d o u t <− c f a ( model , da t , g roup = " group " , ordered = c ( " y1 " , " y2 " ,

" y3 " , " y4 " ) , group . equal = c ( " l o a d i n g s " , " t h r e s h o l d s " ) )

pe rmutedVa l s2 [ i ] <− f i t M e a s u r e s ( n e s t e d o u t , " c h i s q . s c a l e d " ) −

f i t M e a s u r e s ( p a r e n t o u t , " c h i s q . s c a l e d " )

}

mean ( i f e l s e ( pe rmutedVa l s2 > c h i s q . d i f f 2 , 1 , 0 ) )
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Appendix C

Further Evaluation of lavTestLRT

The results in simulation two showed surprisingly low Type I error rates for the scaled chi-square

difference test implemented by the lavTestLRT function in lavaan (Rosseel, 2012). The testing

procedure evaluated initially showed Type I errors near or equal to zero and low power. The

implementation of the lavTestLRT function in simulation two used all of the default options for the

function in lavaan; this was done because a literature review did not reveal suggested options for

use when comparing two models with ordered-categorical data fitted with the WLSMV estimator.

Further review of the lavTestLRT function showed that the “A.method” argument determines how

the Jacobian of the constraint function is computed. The default for this function in lavaan version

0.5-22 is “exact”, with the only other option being “delta.” All 32 between replication conditions

from simulation two were re-tested with the lavTestLRT function while specifying “A.method =

“delta”.” The re-testing was done using the exact same randomly generated data from simulation

two, therefore the results are directly comparable. Table C.1 and Figure C.1 show that when the

“delta” method is used the lavTestLRT function performs much better under the conditions of

simulation two.
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Table C.1: Rejection Rates for lavTestLRT with Delta Method

Invariance Sample Size Responses Threshold Symmetry Skewed LV Rejection Rate
Yes 150 2 Symmetric No .056
Yes 300 2 Symmetric No .050
Yes 150 5 Symmetric No .054
Yes 300 5 Symmetric No .053
Yes 150 2 Non-Symmetric No .054
Yes 300 2 Non-Symmetric No .065
Yes 150 5 Non-Symmetric No .047
Yes 300 5 Non-Symmetric No .056
Yes 150 2 Symmetric Yes .059
Yes 300 2 Symmetric Yes .056
Yes 150 5 Symmetric Yes .064
Yes 300 5 Symmetric Yes .085
Yes 150 2 Non-Symmetric Yes .055
Yes 300 2 Non-Symmetric Yes .054
Yes 150 5 Non-Symmetric Yes .045
Yes 300 5 Non-Symmetric Yes .059
No 150 2 Symmetric No .292
No 300 2 Symmetric No .543
No 150 5 Symmetric No .464
No 300 5 Symmetric No .794
No 150 2 Non-Symmetric No .225
No 300 2 Non-Symmetric No .427
No 150 5 Non-Symmetric No .335
No 300 5 Non-Symmetric No .712
No 150 2 Symmetric Yes .234
No 300 2 Symmetric Yes .476
No 150 5 Symmetric Yes .412
No 300 5 Symmetric Yes .772
No 150 2 Non-Symmetric Yes .268
No 300 2 Non-Symmetric Yes .531
No 150 5 Non-Symmetric Yes .391
No 300 5 Non-Symmetric Yes .736
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Figure C.1: Evaluations of lavTestLRT with Delta Option
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