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Abstract 

Alzheimer’s disease is the 6th leading cause of death in the U.S. and the cost of care is billions of 

dollars per year. Tau aggregation is a pathological hallmark in neurodegenerative diseases 

known as tauopathies, which includes Alzheimer’s disease. Currently there are no approved 

drugs that can inhibit or reverse tau aggregation. Natural products, such as ones attained from 

fungi, have been utilized directly as drugs or more commonly as chemical scaffolds to produce 

biomedically relevant compounds. Previously it was found that secondary metabolites produced 

from Aspergillus nidulans were capable of inhibiting tau aggregation and provided a new 

chemical scaffold that was used to semi-synthetically produce compounds known as azaphilones. 

In the present study, more secondary metabolites produced from Aspergillus nidulans were 

provided to find novel chemical scaffolds that had tau aggregation inhibition (TAI) activity. One 

compound in particular, ANTC 15, stood out because it was structurally similar to the 

azaphilones but had an isoquinoline core structure. ANTC 15 was tested for TAI activity and it 

could inhibit the formation of tau aggregates and disassemble previously formed aggregates in 

vitro. 
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Chapter 1: Introduction 

1.1 Alzheimer’s disease background  

In 1906 Dr. Alois Alzheimer described a disease with symptoms of memory loss, continual 

cognitive decline, and behavioral issues coupled with pathological hallmarks of plaques and 

neurofibrillary tangles that were discovered post-mortem1. Today this disease is known as 

Alzheimer’s disease (AD), which affects over 5 million Americans and is the 6th leading cause of 

death. It is also the most common form of dementia with 1 in 10 people 65 years and older 

having the disease2. Hundreds of thousands of people die each year with the disease and the 

annual projected cost of care for 2017 is $259 billion2. AD is also one of two diseases in the top 

ten leading causes of death in which the number of deaths per year has been increasing. Since 

2000, there has been an 89% increase in the number of deaths due to AD2. There have been 

estimates that in 2050 there will be as high as 16 million people living with the disease at a cost 

of $1.1 trillion2. There are three main stages to AD; mild AD, moderate AD, and severe AD. In 

the mild stage people may be able to live independently or work, but could be experiencing 

minor memory issues such as forgetting familiar words or troubles planning and organizing. As 

the disease progresses these issues become more severe to include personality and behavioral 

changes to a point where it is severe enough to require round-the-clock care3. People that suffer 

AD also have major physiological changes. The cortex of the brain shrinks and the ventricles 

become enlarged due to progressive neuronal loss4. The neuronal loss has been hypothesized to 

be the result of two main pathological hallmarks. These hallmarks are the presence of 

extracellular senile plaques consisting of the peptide amyloid beta and intracellular 

neurofibrillary tangles composed to the microtubule-associated protein tau.  
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Diagnosing AD is extremely difficult, but tests have been developed to effectively do so. These 

techniques include looking at medical history, physical exams, neurological exams, brain 

imaging, biomarkers in the cerebrospinal fluid or blood, and genetic testing5. No single test is 

able to diagnose AD, but when a battery of tests is used an accurate diagnosis can be given.  

 

1.2 Amyloid Introduction 

In AD, the occurrence of Aβ plaques are a pathological hallmark of the disease. Aβ plaques 

consist of cleaved Amyloid Precursor Protein (APP), which is a transmembrane protein 

expressed in neuronal tissues. The normal function of this protein is not well understood, but 

recently there has been evidence shown that APP and APP-like proteins can regulate 

transcription, synaptic functions, and can function as cell surface receptor-like proteins6. What 

has been teased out through years of research is how this protein is involved in Aβ plaque 

formation. APP can be cut by multiple different secretase enzymes to produce amyloidogenic 

and non-amyloidogenic species. If it is cut in the membrane by γ-secretase and extracellularly by 

α-secretase it produces a non-amyloidogenic fragment known as P3. APP becomes 

amyloidogenic when it is cleaved by a β-secretase and a γ-secretase to create a fragment known 

as Aβ. The Aβ fragment can either be 40 or 42 amino acids long, with Aβ42 being more prone to 

aggregation and more toxic due to the extra 2 hydrophobic amino acids7. The γ-secretase 

cleavage can also produce a fragment even less prone to aggregation known as Aβ38, which 

recently has been an interest for amyloid therapeutics8. Aβ has been hypothesized to be the 

driving force of AD due to the deposits of extracellular Aβ plaques and known genetic risk 

factors associated with Aβ production can create further downstream effects, which is known as 

the amyloid cascade hypothesis. 
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1.3 Alzheimer’s disease Genetic Risk Factors 

Extracellular senile plaques found in AD are composed of the aggregated Aβ42 oligomers. These 

oligomers adopt beta sheet structure, aggregates into fibrils, and eventually become large 

extracellular plaques9. The majority of people develop AD sporadically, but about 5% of the 

cases are inherited through genetic mutations and known as early onset or familial AD10. 

Sporadic AD generally manifests itself after the age of 65, but familial AD patients begins to 

show symptoms in their 30’s, 40’s, and 50’s and the disease progresses to severe AD around age 

60. These mutations are on chromosome 21, chromosome 14, or chromosome 1 which alter APP, 

presenilin-1 (PSEN1), and presinilin-2 (PSEN2) respectively11. PSEN1 and PSEN2 are part of 

the catalytic domain of γ-secretase and mutations in either of these can affect cleavage of APP12. 

It has been reported that people with Down syndrome develop AD earlier than people without 

down syndrome with the hypothesis that having an extra chromosome 21 produces an 

overexpression of APP and increasing the rate of pathology accumulation13. Pathogenic missense 

mutations near the secretase cleavage sites can increase the rate of Aβ production or increase the 

ratio of Aβ42 to Aβ40 can also occur14. In sporadic AD, the apolipoprotein E (ApoE) allele has 

been associated with protection against AD or as a genetic risk factor. ApoE ε2 may provide 

protection, ApoE ε4 increases the risk, and having two copies of ApoE ε4 gives an individual an 

even higher risk of developing AD15.  

 

1.4 Amyloid Cascade Hypothesis 

The amyloid cascade hypothesis has been around since the early 1990’s and Aβ aggregation was 

thought to be the driving force of the disease because of the genetic risk factors associated with 

the disease. The amyloid cascade hypothesis proposes that the accumulation and oligomerization 
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of Aβ42 and less commonly Aβ40 is the pathological driving force of the disease. The 

development of plaques in the limbic and association cortices produces synaptic dysregulation 

and has further downstream effects, which includes microglial and cytokine activation, oxidative 

stress, altered kinase and phosphatase activity, formation of neurofibrillary tangles, and 

eventually widespread neuronal dysregulation and neuronal loss16.  

Although much research and many potential therapies have gone to clinical trials, no Aβ therapy 

has been able to prevent, stop, or slow the pathology17. Aβ therapies would most likely be more 

useful to the 5% of early onset AD cases due to the strong genetic associations with Aβ and 

plaque accumulation. The other 95% of AD cases occur sporadically and although there are 

senile plaques present they may not play as major of a role as originally thought. The 

accumulation of Aβ plaques have been seen postmortem of people that showed no cognitive 

decline or dementia18. Due to this, there has been an increasing interest in the other pathological 

hallmark of AD, which is the presence of intracellular neurofibrillary tangles (NFTs). 

 

1.5 Tau Introduction 

In the 1980’s it was discovered that neurofibrillary tangles found in AD are composed of a 

microtubule-associated protein called tau19. Later it was also shown that tau aggregation plays a 

major role in multiple neurodegenerative diseases, including AD, which are known today as 

tauopathies20. The tau protein was originally discovered in 1975 by Dr. Weingarten as an 

essential protein needed for the stabilization and assembly of microtubules21. Tau is a part of a 

family of protein known as microtubule-associated proteins (MAPs) that interact with 

microtubules and the cytoskeleton22. Tau is said to be a natively unfolded protein and since its 
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discovery, a lot of research has been done to understand its structural, functional, and 

biochemical properties and how that relates to disease23.  

 

1.6 Tau Structure 

Tau is mainly expressed in neurons and the gene is made up of 16 exons, which is located on 

chromosome 1724. Full length tau in the central nervous system is 441 amino acids long and has 

4 microtubule binding repeat regions, but through alternative mRNA splicing tau exists in 6 

different isoforms25. These isoforms are characterized by the presence or absence of exons E2 

and E3 located in the N-terminus and E10 (also known as microtubule binding repeat R2) as 

shown in figure 1.1. The tau nomenclature identifies the presence or absence of exons E2 or E3 

denoted as 0N, 1N, or 2N. The splicing of E3 is dependent on E2 and is never present without 

it26. The other half of the nomenclature describes the presence or absence of exon E10 to explain 

whether that isoform has 4 or 3 MTBR regions and is denoted as 3R or 4R. In the brain of the 

fetus only the 0N/3R isoform is present, but tau is developmentally regulated. In the adult brain, 

all 6 isoforms are present with the 3R and 4R isoforms roughly being equal, but the 0N, 1N, 2N 

isoforms are present as ~37%, ~54%, and ~9% of total tau25, 27. Tau is considered to be an 

unfolded protein or intrinsically disordered with monomeric tau having very little secondary 

structure, but utilizing NMR there is evidence that within the MTBRs there are some β-strands28, 

29. Besides the MTBRs, tau also has other important structural features. When tau binds to the 

microtubules, the acidic N-terminal region projects outward and is known as the projection 

domain, which includes E2 and E3, and has interactions with other proteins30. There is also a 

proline-rich region of tau which comes right before the MTBRs. This region has shown to have a 

binding motif of PXXP with serines or threonines next to the proline residues that bind to fyn 
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and src tyrosine kinases31. Another interesting aspect of tau is that all the isoforms have a slight 

positive charge overall, but the distribution of the charges is something to make note of. The 

proline-rich region and the MTBRs are positively charged to bind to and stabilize microtubules, 

but the N-terminal projection domain is negative with many acidic residues. Although tau is 

natively unfolded and highly flexible, it has been shown to adopt a global hairpin structure when 

unbound and in solution32. Utilizing NMR and FRET-based assays, it was determined that the N-

terminus and C-terminus overlap over the middle of the MTBRs creating this hairpin or 

paperclip structure. The structure and function of tau is important to its aggregation in disease 

and it is still not well understood if tau aggregation is a toxic gain of function or a toxic loss of 

function.  
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Figure 1.1 

 

Figure 1.1 Tau isoforms due to alternative mRNA splicing  

The human brain has six isoforms of tau generated by alternative mRNA splicing of exons 2, 3, 

and microtubule binding repeat 2. The tau nomenclature describes the number of N-terminal 

exons denoted as 2N, 1N, or 0N and the number of microtubule binding repeats present, 4R or 

3R. Adapted from Combs et al.33 
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1.7 Tau Function 

Tau functions as a microtubule stabilizer as well as promoting α and β tubulin nucleation to form 

microtubules34. Microtubules serve as cytoskeletal support and as a track for molecular cargo to 

be transported from the cell body to the synapse and vice versa. The microtubule is distinguished 

by a plus end going toward microtubule growth and a minus end towards the centrosome where 

the microtubules propagate. Kinesin and dynein are molecular motors that carry cargo from 

minus to plus and plus to minus respectively35. The microtubule binding repeats (MTBRs) 

regions of tau bind to microtubules for stabilization36. Although each individual MTBR has weak 

binding, there is evidence that they have a cooperative binding effect37. Because of this, the 4R 

isoforms bind more tightly than the 3R isoforms and more efficiently promote the assembly of 

microtubules. In addition to stabilizing microtubules, tau also influences microtubule bundling38. 

The bundling of microtubules is a critical process involved in cell division and may be important 

for axonal structure and transport of molecular cargo, which may be affected by the sizes of the 

tau isoforms. The projection domain of bound tau interacts with the plasma membrane and is 

involved in anchoring the protein39. Tau is also involved in remodeling of the actin cytoskeleton 

and may assist in mediating microtubule-actin interactions. The proline-rich region has been 

shown to bind SH3 domains of src family kinases and has been shown to interact with 

phospholipase isozymes as well31. All of these functions of tau are heavily related to the 

unfolded nature of tau, the acidic N-terminal domain, basic MTBR, and play a role in the 

aggregation of tau. 

1.8 Tau Aggregation 

The tau hypothesis suggests that tau aggregation into neurofibrillary tangles is the driving force 

of AD and other dementias known as tauopathies40. Tauopathies are classified as 
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neurodegenerative diseases with the pathological hallmark of tau aggregation. Tauopathies 

include AD, Pick’s disease, progressive supranuclear palsy, corticobasal degeneration, chronic 

traumatic encephalopathy, and frontotemporal dementia with Parkinsonism linked to 

Chromosome 17. Although all of the diseases have a defining characteristic of tau aggregation, 

they are distinct in the brain regions each affects as well as different forms of pathological tau. 

When tau becomes pathological it is not known whether aggregation is a toxic loss of function or 

gain of function. Tau is normally a very soluble protein but in disease it loses its ability to bind to 

microtubules, which leads to destabilization of microtubules. Pathologically, tau aggregation 

correlates with the progression of the disease with aggregates in the brain regions that are 

associated with behavioral and psychological symptoms of the disease. When monomeric tau 

aggregates, it forms paired helical filaments (PHFs), straight filaments, and twisted ribbons, 

depending on the disease. In AD PHFs are present and are facilitated through two main 

hexarepeat amino acid regions in tau, which are 275VQIINK280 in the second MTBR and 

306VQIVYK311 found in the third MTBR41. These motifs are essential for tau aggregation and are 

labeled PHF6* and PHF6 respectively.  The 4R isoforms have both regions, but the 3R isoforms 

are missing VQIVYK motif because of the absence of the MTBR2. When tau aggregates, these 

motifs form cross-β structures, which make up the core of the filaments42. Tau aggregation has 

been described as a two-step process of nucleation and elongation in vitro43. The nucleation 

phase consists of tau monomers coming together to form tau oligomers. These oligomers are able 

to associate with other tau oligomers and incorporate monomeric tau to form insoluble filaments, 

which is known as the elongation phase. One of the ways to study tau aggregation and better 

understand the mechanism of the disease is to aggregate tau in a laboratory setting. Tau is a very 
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soluble protein and does not aggregate on its own. To aggregate tau in vitro, an inducer molecule 

is used such as heparin, arachidonic acid (ARA), and other polyanionic molecules44-46.  

There has also been debate about what are the actual toxic species of tau aggregation. Initially 

the hypothesis was the filaments themselves were toxic to neurons. This was explored by taking 

NFTs from a postmortem AD patient and implanting them in to mice. The mice, however, did 

not develop AD-like dementia or additional pathology47. Additional research was done to 

suggest that the toxic species is the oligomeric form of tau48. There is evidence that neuronal 

dysfunction is present before NFTs are present, suggesting that a different species of tau 

aggregation is toxic.  It has also been suggested that there is a toxic conformation of tau as well. 

As previously mentioned, tau sits in a global hairpin conformation with the N and C-terminals 

overlapping over the middle of the MTBRs. The N-terminal contains a phosphatase-activating 

domain (PAD). When monomeric tau is in this conformation the PAD is not accessible, but if tau 

is modified and adopts an “open paperclip” conformation the exposed PAD can activate a 

signaling cascade, which involves protein phosphatase-1 and glycogen synthase kinase-349. 

Activation of this pathway can cause phosphorylation of kinesin and inhibit the binding of 

molecular cargo and disrupt fast axonal transport. This disruption can affect axonal and synaptic 

processes and can eventually lead to cell death49.  

Tau aggregation seen in tauopathies is still not fully understood. It has been hypothesized and 

well-studied that monomeric tau undergoes post-translational modifications that could contribute 

to disease. These modifications are hyperphosphorylation, acetylation, truncation, as well as 

mutations known as frontotemporal dementia with parkinsonism linked to chromosome 1750. 

Research has shown that these modifications affect aggregation in vitro and have implications in 
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tauopathies. Although tau aggregation and the accumulation of senile plaques are pathological 

hallmarks of the disease, there are no current treatments targeting this.  
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Figure 1.2 

 

Figure 1.2. Global hairpin conformation of tau  
The N-terminal and C-terminal ends of tau interact with each other as well as the interior of the 

protein in a conformation that has been described as the “global hairpin.” This global hairpin is 

the conformation monomeric tau is in when it is not bound to microtubules. The PAD represents 

the phosphatase-activating domain, which is accessible when tau is bound to microtubules and 

during aggregation in disease. Adapted from Combs et al.51 
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1.9 Current Approved Therapies 

With the prevalence and cost of AD there are continuous efforts to produce drugs and therapies 

for it. There are currently 5 drugs approved by the Federal Drug Administration (FDA)2. The 

drugs are known as donepezil, rivastigmine, galantamine, memantine, and the most recent drug 

approved in 2014 combines donepezil and memantine. The drugs grouped by their mechanism of 

action and are aimed to improving the quality of life of the individual with the disease by 

managing its symptoms, such as memory loss. A summary of the drug name, brand name, stage 

of disease it is used for, drug mechanism, and when it was approved by the FDA can be found in 

table 1. 

 

The first group of drugs is donepezil, rivastigmine, and galantamine, which are all cholinesterase 

inhibitors. These drugs inhibit the enzyme acetylcholinesterase that hydrolyzes acetylcholine into 

choline and acetic acid52. Acetylcholine is a neurotransmitter involved in memory and learning 

and in AD there is a decrease in the amount of acetylcholine present in the brain due to neuronal 

loss53. The loss of neurons is in brain areas highly associated with memory such as the cortex, 

hippocampus, and the entorhinal cortex. The major hypothesis of inhibiting acetylcholinesterase 

is preventing the breakdown of acetylcholine so more neurotransmitter will be present in the 

synapse54. This will allow more acetylcholine to bind to receptors on the post-synaptic neuron to 

improve memory. 

 

Memantine, however, works by a different mechanism. This drug works as an N-methyl-D-

aspartate (NMDA) receptor antagonist to help regulate the activity of glutamate and calcium55. 

NMDA receptors require the binding of glutamate and are unique from other ionotropic 
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receptors because of the strong voltage dependence needed to remove the magnesium (Mg2+) 

blockade to allow ions such as K+, Na+, and Ca2+ to permeate the post-synaptic neuron. 

There is a hypothesis that in AD there is overactivation of NMDA receptors, which can cause 

neuronal damage or even death due to Ca2+ excitotoxicity56. Memantine is an uncompetitive 

antagonist meaning it does not cause inhibition by competing with glutamate, but instead acts 

like Mg2+ to block the channel. Unlike Mg2+, however, memantine is not released from the 

channel due to the binding of glutamate and ions are not able to flow through the channel. 

Regulating the influx of Ca2+ can reduce the damage or death of neurons and preserve synaptic 

pathways associated with memory56. 

 

 As mentioned previously 5 FDA approved drugs are focused on improving the quality of life by 

medicating symptoms, but there are issues with these drugs. The main issues are seen with 

dosing and tolerance. Dosing has been shown to be very individualistic with many patients not 

responding to the drug until higher doses are given. With higher doses, however, side effects 

become more likely. The acetylcholinesterase inhibitors have been shown to cause nausea, 

vomiting, dizziness, and increased bowel movements. Memantine has been known to cause 

headaches, confusion, loss of appetite, and vomiting. Although most of the drugs are approved 

for mild to severe stages of the disease, the formation of pathology occurs well before symptoms 

begin. Currently there are no approved drugs that are targeting the pathology to prevent or slow 

the progression of the disease. 
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Table 1.1 FDA Approved Drugs for Alzheimer’s Disease 

 

 

 

 

Drug(s) Brand Name Approved For Mechanism FDA 

Approved 

Donepezil Aricept All stages Acetyl cholinesterase 

inhibitor 

1996 

Rivastigmine Excelon Mild to 

moderate 

Acetyl cholinesterase 

inhibitor 

2000 

Galantamine Razadyne Mild to 

moderate 

Acetyl cholinesterase 

inhibitor 

2001 

Memantine Namenda Moderate to 

severe 

NMDA receptor 

inhibitor 

2003 

Donepezil and 

Memantine 

Namzaric Moderate to 

severe 

Acetyl cholinesterase 

inhibitor 

and NMDA receptor 

inhibitor 

2014 



17 
 

1.10 Tau Aggregation inhibitors 

Although the current FDA approved drugs do not target pathology, there is research being done 

to do so. A lot of research has been done targeting the components of the amyloid cascade 

hypothesis including β-secretase inhibitors, γ-secretase inhibitors, preventing oligomerization of 

Aβ, increasing the clearance of Aβ, and anti-inflammatory drugs.57-59 Although many of these 

Aβ drugs have gone to clinical trials, no drug has been approved60. Due to this, efforts have put 

towards targeting the other major pathology seen in AD, which is tau aggregation and NFTs. 

Inhibiting tau aggregation or breaking down the existing pathology can be useful in preventing or 

delaying the progression of AD. 

 

Targeting tau aggregation directly through small molecules has been of interest as an avenue and 

notably a tau aggregation inhibitor for the treatment of AD has reached phase-3 clinical trials and 

is a stable reduced form of the methylthionium moiety (figure 1.3)61.  
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Figure 1.3 

 

Figure 1.3 

The structure of rember (TRX-0237), a tau aggregation inhibitor with a methylthionium moiety 

and is currently in phase 3 clinical trials62. 
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Small molecules are believed to interact with the β-sheet structures or the hexarepeat aggregation 

motifs in tau to inhibit aggregation. Chemical scaffolds of tau aggregation inhibitors have been 

identified from high-throughput screen of small molecule libraries that consisted of synthetic, 

semi-synthetic, and natural products. The scaffolds that had TAI activity were rhodanines, 

anthraquinones, N-phenylamines, and phenylthiazolyl hydrazides (figure 1.4)63. Many of these 

compound classes were able to inhibit tau aggregation and disassemble preformed aggregates as 

well. 
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Figure 1.4  

 

 

Figure 1.4 

Compound classes found in a high-throughput screen of 200,000 compounds from random 

libraries63. 
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Natural products have been extremely useful in medicinal chemistry and drug development. 

Between 1981 and 2014 of the 1,562 drugs approved by the FDA, unaltered natural products that 

became drugs was 4%64. Although this doesn’t seem significant, natural products have been used 

as scaffolds or insights into synthetic drugs. Synthetic or semi-synthetic drugs that had influence 

from natural products make up 47% of approved drugs during that time period64. One source of 

biomedically useful natural products have been from fungi, which have given us drugs such as 

cyclosporin, lovastatin, and penicillin65. Many natural products used in medicinal chemistry are 

secondary metabolites, which are molecules used by the fungus in situations such as defense 

mechanisms but are not necessarily needed for life cycle purposes66. One of these purposes is 

when fungi encounter invading bacteria they will produce chemicals for antibiosis67 Bacteria 

utilize biofilms for adhesion and quorum sensing, but the biofilms are made up of matrix proteins 

that polymerize similar to β-structures seen in protein aggregation related to AD68. Because of 

this, we hypothesized that fungal secondary metabolites could possess TAI activity.  

 

Dr. Berl Oakley and colleagues have developed genetic tools to access silent gene clusters for 

expression of secondary metabolites in Aspergillus nidulans69. The secondary metabolites 

isolated from their lab contained novel compounds as well as compounds that were from the 

class of anthraquinones, including the compound emodin which was known to inhibit tau 

aggregation in vitro63. The 17 compounds Dr. Oakley isolated from Aspergillus nidulans were 

utilized in tau aggregation inhibition reactions and one of the compounds was a novel inhibitor 

scaffold known as asperbenzaldehyde70. Asperbenzaldehyde was an intermediate to azaphilone 

biosynthesis, which have known lipoxygenase activity. Asperbenzaldehyde was semi-
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synthetically modified to 11 azaphilone derivatives, which all were able to inhibit tau 

aggregation and 4 were able to also disassemble preformed filaments71. 

 

1.11 Thesis Overview 

Alzheimer’s disease, along with the other tauopathies, are devastating diseases that collectively 

affect millions of Americans2. Currently there are no approved drugs that can stop, reverse, or 

slow down the disease. The current treatments are aimed at improving the symptoms of the 

disease, but do not target the underlying pathology. It has been estimated that a treatment 

delaying the disease even by 5 years can save billions of dollars in the cost of care72. One of the 

challenges of finding a treatment that can delay the progression of the disease is even though a 

lot of research has gone in to understanding these diseases, is we do not know the cause of them. 

Tau aggregation seems to be a major player in the disease, but what initiates tau aggregation is 

still unknown. Even though we do not know what causes the initial insult of tau aggregation, 

aggregation inhibitors are still of interest because of the impact it can have on the people that 

suffer from the disease since pathology accumulates before cognitive deficits occur.  

 The goal of this study was to identify natural products that could serve as chemical scaffolds for 

future drug candidates with the potential of preventing or delaying disease. To do this, secondary 

metabolites from Aspergillus nidulans were screened as tau aggregation inhibitors (TAIs). The 

lead compound, ANTC 15, was chosen out of 30 compounds isolated by Dr. Berl Oakley and 

colleagues because of the structural similarity to previous TAIs known as azaphilones. The 

compound was tested using in vitro assays previously used by the lab to assess the compounds 

ability to inhibit the formation of tau filaments or disassemble pre-formed tau aggregates.  
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Chapter 2: A Novel Tau Aggregation Inhibitor from Fungal Secondary Metabolites  

2.1 Introduction:  

Alzheimer’s disease (AD) is the most common form of dementia and is the 6th leading cause of 

death in the United States. Current approved treatments are focused on improving the symptoms 

of the disease rather than reversing or preventing the pathological hallmarks of the disease. 

These hallmarks being senile plaques composed of amyloid beta and neurofibrillary tangles 

composed of the microtubule-associated protein tau. The location and amount of tau aggregation 

correlates with the progression and severity of the disease73. It’s for this reason it would be 

beneficial to identify drugs that could inhibit or reverse tau aggregation. 

Fungi have produced biomedically relevant compounds that have been useful for antibiotics, 

immunosuppressants, and drugs to lower cholesterol74. There are biosynthetic pathways in 

Aspergillus nidulans that produce secondary metabolites and were discovered as being a part of 

silent gene clusters75. Developments have been made to manipulate the genome of A. nidulans to 

produce secondary metabolites in a laboratory setting76. Previously, these secondary metabolites 

were tested in vitro for tau aggregation inhibition (TAI) activity. One compound that was 

discovered was asperbenzaldehyde, which was structurally distinct from previous tau 

aggregation inhibitors70. Although it only inhibited tau aggregation and not disassembled 

previously formed aggregates, it was shown to be an intermediate compound for the synthesis of 

lipoxygenase inhibitors known as azaphilone compounds77. These compounds were synthesized 

from asperbenzaldehyde and tested as tau aggregation inhibitors. All of the azaphilones tested 

were able to inhibit tau aggregation, but four compounds were able to disassemble previously 

formed aggregates as well71.  
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In the current study, a compound was investigated that was isolated from Aspergillus nidulans 

and provided by Dr. Berl Oakley. This compound was chosen because of its similarity to the 

azaphilones previously mentioned. This compound, however, has an aromatic core structure 

known as an isoquinoline and has an IUPAC name of 7-methyl-3-nonylisoquinoline-6,8-diol, but 

will be referred to as ANTC 15. The ability of the compound to inhibit the formation of tau 

aggregates or disassemble preformed filaments was assessed in vitro using a standard 

arachidonic acid induction of tau aggregation technique. ANTC 15 was able to inhibit tau 

aggregation and disassemble tau aggregates in vitro. Dose-dependence tests of inhibition and 

disassembly were also performed to see how potent the compound was in vitro utilizing the filter 

trap technique as well as electron microscopy. This study was able to provide a novel chemical 

scaffold as a tau aggregation inhibitor that could be used in further studies to improve the 

efficacy of the compounds as well as understand how these compounds are interacting with tau. 

  

2.2 Experimental Procedures: 

2.2.1 Chemicals and Reagents  

Full length 2N4R tau was expressed and purified using a method previously described78. 2N4R 

tau and cysless 2N4R tau were grown overnight in Luria Broth overnight and IPTG was used 

induce expression. Cells were lysed through a french press and the protein was isolated using a 

Ni affinity column and Superdex 200 column. Cysless tau was generated by mutating the 

cysteine at amino acid 291 to alanine and cysteine at 322 to alanine79. 

 

2.2.2 Polymerization reactions 
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Inhibition reactions 

2 μM recombinant tau protein was incubated in polymerization buffer which contained 10 mM 

HEPES (pH 7.64), 5 mM DTT, 100 mM NaCl, 0.1 mM EDTA, and 3.75% ethanol. Compounds 

dissolved in DMSO were added to the tau solution at final concentrations of 400 μM, 300 μM, 

200 μM, 150 μM, 100 μM, 50 μM, 25 μM, 12.5 μM, or 6.25 μM.  Compounds were incubated 

with tau for 20 min at room temperature before adding arachidonic acid (ARA) (Millipore) at a 

final concentration of 75 μM to initiate tau polymerization. The reactions proceeded at 25℃ for 

16 hrs before analysis.  

 

Disassembly reactions 

2 μM recombinant tau protein was incubated in polymerization buffer which contained 10 mM 

HEPES (pH 7.64), 5 mM DTT, 100 mM NaCl, 0.1 mM EDTA, and 3.75% ethanol. ARA was 

added to the reactions at a final concentration of 75µM, causing tau to polymerize into filaments. 

After 6 hrs of incubation at 25℃, compounds dissolved in DMSO were added to the tau solution 

at final concentrations of 400 μM, 300 μM, 200 μM, 150 μM, 100 μM, 50 μM, 25 μM, 12.5 μM, 

or 6.25 μM. The reactions proceeded at room temperature for 16 hrs before analysis. 

 

2.2.3 Filter trap 

Tau polymerization reactions, as described in 2.3.4 were done as previously described71. The 

reactions were diluted to 20 ng/300 μL in Tris-Buffered Saline solution (TBS) and passed 

through a pre-wetted nitrocellulose membrane (Bio-Rad Laboratories) using vacuum force in a 

dot-blot apparatus (Bio-Rad Laboratories). The membranes were washed three times with TBS-

0.05%Tween20 (TBST) and then blocked in 5% nonfat dry milk in TBST for 1 h. The 
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membranes were then incubated with primary antibody. Primary antibodies included: Tau 5, 7, 

12 antibody mixture [Tau 5 at 1:50,000 dilution, Tau 12 at 1:250,000 dilution and Tau 7 at 

1:250,000 dilution], TNT1 at a dilution of 1:200,000, and TOC1 at a dilution of 1:7000 overnight 

at 4 °C. The membranes were washed three times in TBST, at 5 min each, and incubated with 

secondary antibody: HRP-linked Goat anti-mouse IgG (Thermo Scientific, Rockford, IL) for Tau 

5, 7, 12 and TNT1 and HRP-linked Goat anti-mouse IgM (Thermo Scientific, Rockford, IL) for 

TOC1 for 1 hr at room temperature. The membranes were washed twice at 5 min each in TBST 

and a final 5 min wash with TBS. The blots were developed using ECL (enhanced 

chemiluminescence) Western Blotting Analysis System (GE Healthcare, Buckinghamshire, UK).  

Images were captured with a ChemiDoc-It2 Imager and were quantified using the histogram 

function of Adobe Photoshop 7.0. 

 

2.2.4  Antibodies 

Detection of the amount of filaments on the nitrocellulose membrane a mixture of antibodies to 

recognize the N-terminal region (tau-12), the central region (tau-5), and the C-terminal region 

(tau-7), which is labeled as Tau 5, 7, 12 or total tau. There two other proposed toxic 

conformations of tau, which are detected by antibodies Tau-N-Terminal 1 (TNT1) and Tau 

Oligomeric Complex 1 (TOC1). TNT1 recognizes the phosphatase activating domain (PAD) in 

the N-terminal region of tau and TOC1 recognizes cross-linked oligomers of tau80 

 

2.2.5 Electron Microscopy 

Polymerization reaction samples were diluted 1:10 in polymerization buffer and fixed with 2% 

glutaraldehyde for 5 min. 10 μL of each sample was added to a Formvar carbon-coated grid for 1 
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min. The grid was blotted on filter paper, washed with water, blotted, washed with 2% uranyl 

acetate, and blotted before staining with 2% uranyl acetate for 1 min followed by a final blotting 

on filter paper. The grids were examined with a Technai F20 XT Field emission transmission 

electron microscope (FEI Co., Hillsboro, OR). Images were taken with the Gatan Digital 

Micrograph imaging system. The images were collected at a magnification of 3600×51.  

 

2.2.6 Mass Spectrometry 

Figure and mass spectrometry (MS) analysis provided by Dr. Weiss and Farai Rusinga. 

Intact protein analysis on a Time-of-Flight (ToF) mass spectrometer (Agilent 6200) with 

electrospray ionization (ESI) was utilized to obtain masses. Before MS, protein (and compound) 

samples were pumped onto a C4 desalting trap in 0.1% formic acid using by an isocratic pump 

(Agilent 1200). After 2 minutes of washing, samples were eluted by a gradient of 0.1% formic 

acid (bottle A) and 90/10/0.1% acetonitrile/water/formic acid (bottle B) into the ESI source for 

MS analysis. Agilent MassHunter Acquisition software for acquiring spectra and Agilent 

Qualitative Analysis software for data analysis. 

 

2.2.7 Statistical analysis   

An unpaired t-test was used to compare the values for the filter trap assay.  P-values less than or 

equal to 0.05 were indicated with one asterisk (*), less than or equal to 0.01 with two asterisks 

(**), and less than or equal to 0.001 with three asterisks (***).   
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2.3 Results: 

The compound utilized in this study was chosen from secondary metabolites obtained from 

Aspergillus nidulans. ANTC 15 was chosen to be studied as a TAI because of its structural 

similarities to Aza-9, which is a known tau aggregation inhibitor71 (figure 2.1). Inhibition of tau 

aggregation reactions and disassembling preformed tau aggregate reactions were carried out in 

vitro as described above. To determine if ANTC 15 could inhibit or disassemble filaments, a 

final concentration of 200 µM was incubated with 2 µM tau for 20 minutes before adding ARA 

at a final concentration of 75 µM. The amount of TAI activity was measured by a filter trap 

assay, which has been previously used to test A. nidulans compounds70. 

.  

ANTC 15 significantly inhibited the formation of filaments, the toxic open paperclip 

conformation of tau, and the formation of toxic oligomers (figure 2.2 A). The compound was 

also able to disassemble preformed filaments and toxic oligomeric complexes (figure 2.2B). 

Electron microscopy (EM) was also done to show the absence of filaments after the compound 

had been added (figure 2.2 A and B). It was also able to significantly decrease the signal of the 

TNT1 antibody by decreasing the presence of the toxic conformation (figure 2.2).  
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Figure 2.1 

 

Figure 2.1: Structure comparison of ANTC 15 and known tau aggregation inhibitor Aza-9.  
Lipoxygenase inhibitors that were previously tested for tau aggregation inhibition activity have 

an azaphilone score scaffold, and Aza-9 was the most potent. The azaphilone scaffold is 

characterized by the presence of a pyrone-quinone structure as well as a chiral quaternary 

center81. ANTC 15 was chosen from a set of isolated secondary metabolites due to its similarity 

to Aza-9, but has an isoquinoline core scaffold to test for tau aggregation inhibition activity. The 

isoquinoline scaffold is characterized by a benzo-fused pyridine, but with the N in the 2 

position82. 
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Figure 2.2 

 

Figure 2.2: Inhibition and Disassembly of ANTC 15 at 200 µM 

Inhibition (A) and disassembly (B) reactions were done with a final concentration of ANTC 15 

of 200 µM utilizing the filter trap assay. ANTC 15 was able to significantly inhibit and 

disassemble tau aggregation filaments and the toxic conformations of tau recognized by TNT1 

and TOC1. This was also seen with EM images of the reactions. The average of three 

independent trials ± SD for No Compound and ANTC 15 with Tau 5, 7, 12 (green bars), TNT1 

(red bars), and TOC1 (blue bars). *, P ≤ 0.05; **, P ≤ 0.001; ***, P ≤ 0.001  
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Since the compound was able to significantly inhibit and disassemble filaments and toxic 

species, I tested to see if there was a dose dependent relationship. IC50’s for inhibition and 

disassembly in vitro were determined using a range of concentrations from 400 µM to 6.25 µM 

utilizing the filter trap assay. An IC50 was used to determine the concentration of ANTC 15 

needed to reduce the amount of filaments or toxic species by half. The curves were fit by a dose-

response by variable slope with normalized tau aggregation on the y-axis and the log of 

concentration on the x-axis. For inhibition, the IC50’s were 48.66 µM +/- 29.19 for Tau 5 7 12 

(figure 2.3 A), 95.93 µM +/- 69.40 for TNT1 (figure 2.3 B), and 161.25 µM +/- 17.47 for TOC1 

(figure 2.3 C). For disassembly, IC50’s were 42.62 µM +/- 17.93 for Tau 5 7 12 (figure 2.3 D), 

129.20 µM +/- 85.31 for TNT1 (figure 2.3 E), and 169.20 µM +/- 23.05 for TOC1 (figure 2.3 F). 

These results were qualitatively validated for inhibition and disassembly by EM images at each 

of the concentrations showing the decrease of filaments present on the grid as the concentration 

of ANTC 15 increases (figures 2.4 and 2.5). For inhibition, qualitatively the IC50 seems to be 

between the 100 µM to 50 µM grids (figure 2.4), which is similar to the quantitated IC50 for the 

total tau antibody (figure 2.3 A). Although looking at the disassembly grids the IC50 appears to 

be between 150 µM and 100 µM (figure 2.5), which is a little higher than the quantified IC50 

(figure 2.3 D). To determine how long it takes for ANTC 15 to disassemble filaments a 

disassembly time course assay was set up. Tau aggregation was induced with ARA and allowed 

to proceed for 6 hours. Before 200 µM ANTC 15 was added an EM grid was made of the 

reaction, then immediately after ANTC 15 was added another EM grid was made. A grid was 

made at various time points including the next day. The grids showed qualitatively that the 

amount of filaments before adding ANTC 15 and after addition were comparable and as further 

EM grids were made, the amount of filaments decreased (figure 2.6). There is a noticeable 
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difference between the 300 min grid and the Next Day grid and having more time points would 

be beneficial to understanding how ANTC 15 disassembles filaments. This also showed that 

ANTC 15 was not interfering with the filaments sticking to the grid because the No compound 

grid and 0 min grid are comparable.   
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Figure 2.3 

 

Figure 2.3: IC50 of ANTC 15 Inhibition and Disassembly with Filter Trap 

IC50’s were determined for inhibition and disassembly reactions by filter trap. 2 µM 2N4R tau 

and ANTC 15 at several concentrations for the inhibition and disassembly reactions. Antibodies 

tau 5, 7, 12 (total tau), TNT1, and TOC1 were used to measure the amount of filaments and toxic 

species. The data was plotted against the log of inhibition concentration and fit to a dose-

response curve to determine an IC50. The data points were averaged between trials ± SD. 
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Figure 2.4 

 

Figure 2.4: Electron Microscopy of ANTC 15 Dose Dependence Inhibition 

Inhibition tau aggregation reactions were performed using 2 µM 2N4R tau, ANTC 15 at final 

concentrations of 400 µM to 12.5 µM incubated with monomeric tau for 20 mins, and 75 µM 

arachidonic acid to induce polymerization at room temperature overnight. As the concentration 

of ANTC 15 gets lower, the presence of filaments increases, which qualitatively correlation with 

the dose dependent filter trap data. 
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Figure 2.5 

 

Figure 2.5: Electron Microscopy of ANTC 15 Dose Dependent Disassembly 

Disassembly tau aggregation reactions were performed using 2 µM 2N4R tau, 75 µM 

arachidonic acid to induce polymerization for 6 hours at room temperature, then adding ANTC 

15 at final concentrations of 400 µM to 12.5 µM overnight. As the concentration of ANTC 15 

gets lower, the presence of filaments increases, which qualitatively correlation with the dose 

dependent filter trap data. 
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 Figure 2.6 

 

Figure 2.6: Electron Microscopy of Disassembly Time course of 200 µM ANTC 15 

Disassembly tau aggregation reactions were performed using 2 µM 2N4R tau, 75 µM 

arachidonic acid to induce polymerization for 6 hours at room temperature, then a grid was made 

and labeled No compound. Then adding ANTC 15 a final concentration of 200 µM a grid was 

made immediately and labeled 0 mins, and grids were continued to be made at the various time 

points.  
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Mass spectrometry was utilized to analyze if ANTC 15 was covalently modifying monomeric 

tau. Covalently modifying monomeric tau could be detrimental because the aggregation motifs 

are located within the MTBRs and could interfere with tau binding to microtubules. Using 

electrospray mass spectrometry and intact protein time of flight we expected to see two peaks; a 

tau mass of 48.013 kDa and an ANTC 15 mass of 301.43 Da. The tau mass was resolved at 

47.883 kDa, which is consistent with cleavage of the start methionine and is common in 

recombinantly expressed proteins83. ANTC 15 did not appear to be making a covalent 

modification because of the appearance of a tau peak and an ANTC 15 peak (figure 2.7). With 

the possibility that ANTC 15 could be interacting with the cysteines in tau and not the lysines in 

the aggregation motifs, cysless 2N4R tau was expressed, purified, and used in inhibition 

reactions. ANTC15 was able to inhibit the formation of filaments as seen by electron microscopy 

(figure 2.8). 
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Figure 2.7 

 

Figure 2.7: Mass spectrometry of ANTC 15 and monomeric tau 

2N4R tau mass peak and ANTC 15 mass peak were able to be resolved, suggesting no covalent 

modification. Resolved 2N4R tau mass is consistent with start methionine cleavage, which is 

common in recombinantly expressed proteins. Figure and mass spectrometry analysis provided 

by Dr. Weiss and Farai Rusinga. 
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Figure 2.8 

 

Figure 2.8: Electron Microscopy of Inhibition of Cysless 2N4R tau with 200 µM ANTC 15 

Inhibition tau aggregation reactions were performed using 2 µM Cysless 2N4R tau, ANTC 15 at 

a final concentration of 200 µM incubated with monomeric tau for 20 mins, and 75 µM 

arachidonic acid to induce polymerization at room temperature overnight. ANTC 15 was able to 

inhibit the formation of cysless 2N4R filaments. 
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2.4 Discussion: 

Tau aggregation is a major pathological hallmark of AD and a potential therapeutic approach 

because the accumulation of pathology correlates with the progression and severity of the 

disease. Previous studies have found that fungal secondary metabolites can produce tau 

aggregation inhibitors that could then be modified to improve the efficacy in vitro. This study 

was able to characterize a novel tau aggregation inhibitor isolated from Aspergillus nidulans, 

known as ANTC 15. ANTC 15 was able to inhibit the formation of filaments and toxic species of 

tau aggregation, as well as disassemble preformed filaments and toxic species using filter trap 

and electron microscopy. ANTC 15 also shows dose dependent responses to inhibition and 

disassembly of tau filaments and toxic species of tau with IC50’s in the µM range using filter 

trap. EM grids were also made from the dose dependent inhibition and disassembly reactions to 

qualitatively compare IC50’s. The inhibition EM grids qualitatively showed an IC50 of 

somewhere between 100 µM and 50 µM, which is consistent with the filter trap IC50 of total tau. 

There was some discrepancy in the in the qualitative EM IC50 to the quantified filter trap IC50 for 

disassembly. The disassembly EM grids appear to have an IC50 of somewhere between 150 µM 

and 100 µM, whereas the quantified IC50 was closer to 50 µM. This difference could be due to 

inefficiencies of the filter trap or the EM and could be explored by quantifying the EM grids or 

doing another assay such as a sandwich ELISA to see which it is more consistent with. 

 

Mass spectrometry was utilized to test whether ANTC 15 was making covalent modifications to 

monomeric tau. Making covalent modifications to tau via cysteines or lysines, especially in the 

MTBRs, would be detrimental because it may inhibit tau’s ability to bind to and stabilize 

microtubules. ANTC did not appear to be making a covalent bond because a tau mass and an 
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ANTC 15 mass were able to be resolved. If the compound was making a covalent modification 

there would be a shift increase in mass of the tau peak, or a mass could not be resolved. ANTC 

15 could also be interacting with cysteines in the protein to produce TAI activity. 2N4R tau only 

has 2 cysteines, C291 and C322, which are near the aggregation motifs. Cysteines are highly 

reactive by creating disulfide bonds and are often in enzyme active sites because they are good 

nucleophiles84. Although DTT is added to keep the cysteines reduced, DTT has a half-life of 

about 2 hours at room temperature. The in vitro polymerization of the 2N4R isomer of tau has 

been kinetically characterized and most aggregation takes place before the half-life of DTT51. To 

give further insight into the mechanism of TAI activity for ANTC 15 cysless 2N4R protein was 

expressed, purified, and used in inhibition reactions. ANTC 15 was able to inhibit the formation 

of filaments, which suggests the TAI activity is from the compound interacting with the 

aggregation motifs. 

 

In this study we have identified a novel scaffold as a tau aggregation inhibitor. Previously it was 

shown that azaphilones were also tau aggregation inhibitors and 4 compounds were also able to 

inhibit and disassemble filaments. Of these 4 compounds the most potent was labeled Aza-9 with 

a disassembly IC50 of 56 µM ± 14 with tau 5, 7, 1271. The azaphilones were optimized 

compounds derived from asperbenzaldehyde, which was previously isolated from Aspergillus 

nidulans. The azaphilones will also be chemically difficult to further optimize due to the 

functional groups that were added, such as the Br and acetate group (figure 2.1). ANTC 15 has 

not been chemically optimized and has a disassembly IC50 of 43 µM ± 18, which is more potent 

than Aza-9. ANTC 15 is also more easily modified than the azaphilone compounds due to the 

functional groups and conjugated ring structures. Therefore ANTC 15, and the isoquinoline 
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scaffold, is an ideal lead compound for further studies to increase the efficacy. After 

optimization, if the compounds are able to inhibit and disassemble aggregates in the nM range, 

then moving from in vitro characterization to mouse and other model organisms used for AD 

will be important. 

 

Chapter 3: Conclusions and Future Directions 

3.1 Introduction 

Alzheimer’s disease (AD) is a devastating the disease and is the 6th leading cause of death in the 

U.S. The symptoms on the disease include problems with memory, thinking, and behavior and 

worsen as the disease progresses. There are also two pathological hallmarks that occur in AD, 

which are the presence of senile Aβ plaques and neurofibrillary tangles (NFTs) composed of the 

microtubule-associated protein tau. Pathology begins to accumulate before symptoms occur and 

tau aggregation correlates with progression of the symptoms of the disease. Tau aggregation is 

seen in other diseases known as tauopathies, although the process and mechanism of tau 

aggregation is not well understood. Current treatments focus on improving the quality of life and 

target symptoms such as memory and thinking. These treatments are not well tolerated and do 

not prevent or delay the progression of the disease. Developing a therapeutic that targets tau 

aggregation could be a good avenue for preventing or delaying disease progression. 

 

3.2 ANTC 15 as a Novel Tau Aggregation Inhibitor 

Tau aggregation is a pathological hallmark and a potential therapeutic target to prevent or delay 

the progression of tauopathies such as AD. Natural products have been utilized directly as 

therapies, but just as importantly, the scaffolds have been utilized in semi-synthetic drugs and 
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synthetic natural product mimics. Fungi have historically been a rich source of biomedically 

useful compounds. Dr. Oakley and colleagues were able to genetically modify the fungus 

Aspergillus nidulans to produce secondary metabolites, which were then tested as tau 

aggregation inhibitors. Asperbenzaldehyde was a novel chemical scaffold to inhibit tau 

aggregation and was an intermediate to compounds that were known lipoxygenase inhibitors 

known as azaphilones. These compounds were semi-synthetically produce from 

asperbenzaldehyde and were able to inhibit the formation of and disassemble pre-formed 

aggregates in vitro. More compounds were isolated from Aspergillus nidulans and ANTC 15 was 

chosen because of the similarities to the azaphilone compound scaffold, but with a major 

difference (figure 2.1). Antibodies were used to detect the presence of filaments (tau 5, 7, 12), 

the open paperclip conformation (TNT1), and toxic oligomers (TOC1). ANTC 15 was able to 

inhibit the formation of and disassemble previously formed filaments and toxic aggregation 

species at 200 µM. It was also shown that there was a dose-dependence relationship as well and 

IC50 values were determined to be in the µM range. We hypothesize that these compounds are 

interacting with the lysine residues in the aggregation motifs VQIVYK and VQIINK denoted at 

PHF6 and PHF 6* respectively.  

It was hypothesized that previous compounds were making a covalent modification at lysine or 

cysteine residues, especially in the aggregation motifs, which gave the compound tau 

aggregation inhibition (TAI) activity. Although covalent chemistry has been used in medically 

relevant drugs in the past, because of the high concentrations of glutathione in cells and the 

potential irreversible bonds it can make with its intended target, they have been utilized with 

caution85. This has been seen especially for compound in early stages of drug development. 

Covalent modifications to monomeric tau could also inhibit tau from binding to microtubules 
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because the two cysteines in tau (C291 and C322) and lysines (K280 and K311) in the 

aggregation motifs are within the MTBRs. Mass spectrometry was used to see if ANTC 15 was 

making a covalent modification to tau or not, and when tested there were separate convoluted 

mass peaks of monomeric tau and ANTC 15 suggesting no covalent modification was made. The 

TAI activity also seems to not be due to ANTC 15 interacting with the cysteines in tau because it 

was able to inhibit filament formation with cysless tau, suggesting it is interacting with VQIINK 

and VQIVYK to produce TAI activity. ANTC 15 is a novel scaffold as a tau aggregation 

inhibitor that could be used as inspiration as an AD therapeutic. 

 

3.3 Future Directions 

Although ANTC 15 is a novel tau aggregation inhibitor we do not completely understand how it 

interacts with tau to have TAI activity. Looking at ANTC 15, there are several motifs of this 

molecule that could be explored through structure-activity relationship (SAR) studies. ANTC 15 

has an isoquinoline core structure, but the functional groups off of the ring structure as well as 

the polycarbon tail are areas that are more easily modified through semi-synthetic chemistry 

(figure 3.1). To understand how each functional group add to the potency of the molecule by 

modifying the hydroxyl groups to electron withdrawing or electron donating species to better 

interact with the lysines in the aggregation motifs. Another modification that could be explored 

is the polycarbon tail by shortening, lengthening, or introducing functional groups to assess how 

it affects the TAI activity. Understanding how these functional groups play a role in TAI activity 

will provide insight to changes that can be made to improve the efficacy of the isoquinoline 

scaffold. 
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In the present study, ANTC 15 was tested against the longest isoform of tau. The aggregation of 

the longest isoform has been optimized in vitro and utilized frequently in tau aggregation studies. 

In the brain all 6 isoforms of tau are present and in disease there are known mutations associated 

with tauopathies known as FTDP-17 mutations that occur in all 6 isoforms. To gain further 

insight into the mechanism of action and probe tau proteins associated with disease models, it 

would be beneficial to introduce ANTC 15 to FTDP-17 mutants to see if there is TAI activity. 

Preliminary studies have been done using ANTC 15 and a known FTDP-17 mutant in the 2N4R 

isoform. This mutant has the proline at position 301 mutated to a serine, denoted P301S. The 

P301S mutation has shown reduced ability to promote microtubule assembly in disease86. At 200 

μM ANTC 15 was able to inhibit and disassemble filament formation shown by EM (figure 3.2). 

 All of the current work was done in vitro, but introducing ANTC 15 to in vivo models will be 

important to assess whether it is able to cross cell membranes, or is toxic, or can cross the blood 

brain barrier. It is essential for potential therapeutic scaffolds to be tested in model organisms 

before it can be used to treat humans to understand if the drug works as it showed in vitro and to 

make sure there are no unwanted side-effects
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Figure 3.1 

 

 

Figure 3.1 ANTC 15 structure-activity relationship (SAR) studies. 

ANTC 15 molecule with potential sites to be modified for SAR studies in the black box and 

circles. 
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Figure 3.2 

 

Figure 3.2 Electron Microscopy of Inhibition of P301S 2N4R tau with 200 µM ANTC 15 

A proline is changed to a serine in the 2N4R tau isoform at amino acid position 301 (P301S). 

Inhibition tau aggregation reactions were performed using 2 µM P301S 2N4R tau, ANTC 15 at a 

final concentration of 200 µM incubated with monomeric tau for 20 mins, and 75 µM 

arachidonic acid to induce polymerization at room temperature overnight. ANTC 15 was able to 

inhibit the formation of P301S 2N4R filaments.
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