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Abstract 

Background. Obesity is a modifiable risk factor for breast cancer in the United States. 

White adipose tissue is increased in obese (BMI  30 kg/m2) women and the dysfunction 

resulting from adipocyte hyperplasia and hypertrophy as well as the increase in visceral and 

ectopic fat results in an increase in local and often systemic pro-inflammatory cytokines and 

bioavailable estrogen. Adipose stromal cells play a key role in releasing estrogens and pro-

inflammatory cytokines, while circulating adipose stromal cells (CASCs) home to tumor sites 

and promote angiogenesis and vascularization. CASCs have been implicated in promoting 

metastases in individuals with cancer and have been correlated with BMI in both cancer and non-

cancer patients. In a cross sectional study in women at high risk for development of breast 

cancer, we examined whether CASC frequency correlates with additional measures of adiposity 

and tissue measures of short term risk. In a pilot study of a 3 month weight loss intervention in 

obese sedentary breast cancer survivors we also assessed whether CASC frequencies changed 

with weight and fat loss.  

Methods. 34 women at high risk for development of breast cancer were recruited 

primarily for random peri-areolar fine needle aspiration (RPFNA) for risk assessment and also 

underwent Dual-energy X-ray absorptiometry (DEXA) body composition, anthropomorphic 

assessment, and non-fasting venous blood collection as part of HSC4601. 10 obese sedentary 

breast cancer survivors recruited as part of a weight loss and exercise trial (STUDY00004575) 

underwent DEXA body composition, anthropomorphic measures, and phlebotomy prior to and 

after a 3-month intervention. Mononuclear cells were isolated from the non-fasting blood and the 

frequency of CASCs (characterized as CD34brightCD31-CD45- cells) was assessed by flow 

cytometry.   
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Results. In the cross sectional study in high risk women, CASC frequency ranged from 0 

to 0.013% (median 0.001%) for 14 non-obese and 20 obese women. There was an association 

between CASC frequency and BMI (range 19 – 46 kg/m2), as both a linear correlation (P=0.03) 

and when dichotomized at a BMI of 30 kg/m2 (P=0.05). A stronger relationship was observed 

between BMI and CASCs when dichotomizing BMI at < 35 kg/m2 and ≥ 35 kg/m2 (P=0.009). 

CASC frequency was correlated with low mammographic breast density (P=0.018) in high risk 

women possibly due to high BMI in women with < 5% density. Decrease in CASC frequency in 

10 obese breast cancer survivors undergoing a 3 month diet and exercise intervention was 

linearly correlated with decreases in weight, BMI, and visceral fat. 

Conclusions. These findings suggest that evaluation of circulating adipose stromal cells 

could have value as a response biomarker in weight loss intervention trials of both high risk 

women and breast cancer survivors.  
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1 Background  

Breast cancer is the most common cancer among women (excluding skin cancers) and the 

second leading cause of cancer-related mortality in women [1]. Although mortality rates have 

been decreasing over time due to both early detection and more effective treatment strategies [1], 

successful primary and secondary prevention interventions can also reduce morbidity by 

reducing or eliminating local and systemic treatment [2]. Obesity is associated with a 30% 

increase in risk of breast cancer in post-menopausal women and increased risk of recurrence and 

mortality once breast cancer is diagnosed [3]. The link between obesity and breast cancer risk 

and recurrence is likely mediated at least in part by local and systemic increases in bioavailable 

estrogen and testosterone and inflammatory factors [4]. Obesity is also likely to foster 

angiogenesis necessary both for development of invasive cancer and metastases although this 

link is less well studied [5, 6].  Adipose stromal cells are hypothesized to contribute to cancer 

risk by increasing estrogen levels in response to aromatase, releasing inflammatory cytokines, 

and promoting angiogenesis [7-9]. Reversible risk biomarkers are often used as surrogate 

markers of response in phase II prevention and survivorship interventional trials for dose finding 

or to inform the design of a Phase III cancer incidence or recurrence trial. They can also be used 

to help improve short and long term compliance with an intervention. These surrogate markers of 

response should be biologically plausible and associated either with the outcome of interest or 

other known risk factors. Increased number of circulating adipose stromal cells (CASCs) has 

been positively correlated in cross sectional studies with BMI in individuals with and without 

cancer [10-12], but relation to other measures of adiposity and risk biomarkers in women at 

increased risk based on family history has not been explored. Probably most important is the 

issue of whether CASCs are altered by successful weight and fat loss in sedentary obese breast 
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cancer survivors. If so serial CASC assessment could serve as a potential surrogate indicator of 

the effect of weight and fat mass loss on disease free survival.       

1.1 Statement of Purpose  

The purpose of this investigation was to explore the potential of CASCs to be used as a risk 

biomarker for obese women at increased estimated risk of breast cancer due to family history or 

other health history variables; and to explore if CASCs were associated with any other measures 

of adiposity besides body mass index (BMI). We also wished to evaluate the potential utility of 

CASCs as a response biomarker in behavioral diet and exercise trials by assessing whether 

successful weight and fat loss modulated CASCs in the blood of breast cancer survivors.  

1.2  Research Questions 

1. Is body mass index (BMI) associated with CASCs in women who are at high 

risk for the development of breast cancer?  

2. Are other anthropomorphic measures of adiposity such as waist circumference, 

total fat mass or visceral fat mass more tightly correlated with CASCs than 

BMI?  

3. Are CASCs associated with strong risk factors for breast cancer risk such 

mammographic breast density and Random Peri-Areolar Fine Needle Aspiration 

(RPFNA) atypia?  

4. Can CASCs be modulated with successful weight and fat loss in a diet and 

exercise intervention in sedentary obese breast cancer survivors?  
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2 Literature Review 

2.1 Breast Cancer Prevention 

Breast cancer has the highest incidence rates of all cancers in women globally [13]. In the 

US alone, there will be an estimated 252,710 new cases of invasive breast cancer and 63,410 in 

situ lesions diagnosed in 2017, accounting for 30% of all incident cancers in post-menopausal 

women. Improved survival for women with breast cancer due to early detection and effective 

treatment is important progress, but only prevention can decrease incidence and thus avoid the 

side effects of treatment [12]. Breast cancer is the leading cause of disability-adjusted life-years 

for women in both developed and developing countries, and the second leading cause of loss of 

productivity due to cancer diagnosis in the US [13, 14]. Therefore, it is critical to focus on 

prevention to reduce the burden of breast cancer on women and society as a whole.  

2.2 Breast Cancer Risk  

Risk prediction models help clinicians stratify risk and make risk level appropriate 

recommendations for surveillance and risk reduction [15, 16]. Risk factors for breast cancer 

include non-modifiable (e.g. genetics, age of menarche, etc.) and modifiable risk factors (e.g. 

obesity, hormone replacement therapy, alcohol use, etc.) [17-19]. Women without a prior history 

of breast cancer are classified as “high risk” for developing breast cancer if they have greater 

than a 20% lifetime risk or ≥ 1.7% 5-year risk for developing breast cancer [20]. Although these 

models are generally good for classification of cohorts and are extensively used in research, short 

term risk prediction for an individual patient is more problematic. We are increasingly using 

biomarkers to help stratify risk prediction based on family history, medical and reproductive 
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variables. Adiposity is one such variable but if it is considered at all in these models it is only in 

the context of Body Mass Index (BMI) which may have limited specificity (see next section). 

2.2.1 Obesity as a Risk Factor 

At least 1/3 of US adult women are obese (BMI 30 kg/m2 or higher). Obesity is associated 

with a  30% or greater increase in breast cancer risk in post-menopausal women [3]. The 

underlying problem is not necessarily increasing total mass, but rather dysfunctional fat mass 

which tends to increase with increasing BMI [21]. For instance, individuals with high muscle 

mass may have a high BMI but little adiposity or risk of metabolic abnormalities. There may be 

better measurements of adiposity that are more tightly correlated with risk for breast cancer and 

other diseases, such as waist circumference, total fat or visceral fat by Dual-energy X-ray 

absorptiometry (DEXA), CT, or MRI scans [22-24]. Further, there may be better measures of the 

consequences of excess and dysfunctional fat. White adipose tissue (WAT) is increased in obese 

women and acts as an active endocrine organ, releasing estrogens, pro-inflammatory cytokines, 

and pro-angiogenic factors locally and systemically. Visceral adipose tissue (VAT) compared to 

subcutaneous adipose tissue (SAT) has greater proportional responsibility  metabolic 

abnormalities in obese women [8].  

Because obesity is a very common modifiable risk factor, diet and exercise studies have 

been of utmost interest to reduce initial development of breast cancer, risk of breast cancer 

recurrence, or risk of cardiovascular disease [25]. For breast cancer survivors, maintaining a 

normal weight and increasing moderate to vigorous physical activity to 150-200 minutes/week 

can substantially decrease their risk of death, but few cancer survivors achieve this level of 

physical activity [26, 27]. Studies in the general population have shown that the amount of initial 

weight loss and the amount of exercise are the most important factors in maintaining long-term 
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weight loss [28, 29]. However, the amount of moderate to vigorous physical activity that older 

obese sedentary breast cancer survivors are capable of achieving is unknown and is the goal of 

the ongoing pilot study by Fabian, et al.   

2.3 Biomarkers 

Risk biomarkers help personalize risk assessment and make risk estimates more precise for 

individuals. The Biomarker Working Group has defined biomarkers as “A characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention” [30].  Biomarkers can 

improve the accuracy of risk prediction models by identifying who is most likely to progress to 

malignancy or if they have cancer already if they are likely to develop metastases [31]. 

Established breast cancer risk biomarkers of short term risk include: atypical hyperplasia or 

LCIS by diagnostic biopsy, atypical cytomorphology by RPFNA especially when combined with 

measures of proliferation, high area of mammographic breast density, high levels of circulating 

hormones in postmenopausal women, and the ratio of IGF-1: IGFBP [32-36].   

Obese postmenopausal women present special problems in the use of risk biomarkers to 

refine risk. They often have low yields of epithelial cells on RPFNA and low or absent 

proliferation by Ki-67, low area of mammographic density which becomes higher with weight 

loss due to reduction in breast fat, and low IGF-1:IGFBP3 ratio, which increases weight loss. 

Thus, for obese postmenopausal women more mechanistic and reliable risk biomarkers are 

needed.  

2.4 Circulating Adipose Stromal Cells 

Adipose stromal cells (ASCs) are the adipose tissue-derived multipotent cell population in 

WAT that allow for proliferative adipogenesis in obesity [37]. ASCs taken from individuals on 
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high fat diets have been shown to promote a pro-inflammatory state via release of pro-

inflammatory cytokines such as, IL-1, IL-6, and TNF-α, and pro-inflammatory adipokines such 

as leptin [37, 38]. In vitro, ASCs are able to mobilize and invade, indicating their capability to 

coordinate tumorigenesis [39]. While the mechanism is not fully understood, ASCs appear to be 

capable of not only invading, but also circulating in the blood stream where they are referred to 

as circulating adipose stromal cells (CASCs) [10, 11, 40]. ASCs and CASCs play a key role in 

releasing estrogens in adipose tissue and in the circulation, and increased bioavailable estrogen is 

known to increase risk of breast cancer [41, 42]. CASCs have been shown to home to tumor sites 

and promote angiogenesis and vascularization, a key developmental component of breast cancer 

[8, 9, 43]. The surface antigen phenotype of CASCs is important and tells us about the origins 

and function of this cell population: CD34 is a hematopoietic stem cell and stromal cell marker; 

CD45 is a hematopoietic cell marker (excluding red blood cells); and CD31 is an endothelial cell 

and endothelial progenitor marker [44]. Therefore, excluding CD31 and CD45, while expressing 

CD34 identifies a stromal cell progenitor population (i.e., CD34+CD31-CD45- as characterized 

by flow cytometry). 

Previous studies have shown that CASCs (expressed as the proportion of all single 

mononuclear cells in blood) are directly correlated with BMI in disease-free patients, cancer 

patients, and cancer survivors [10-12]. However, BMI alone as a marker of dysfunctional 

adipose predisposing to disease has its limitations [23, 45]. Total body fat and in particular 

visceral fat and ectopic (liver and muscle) fat, and even waist circumference may be better 

anthropomorphic predictors of metabolic dysfunction than BMI [46]. Visceral fat is much more 

metabolically active than subcutaneous fat [47] and individuals with high amounts of visceral 

and ectopic fat, especially those with lower muscle mass, are more prone to insulin resistance, 
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and higher levels of local and systemic bioavailable hormones, pro-inflammatory and pro-

angiogenic factors [46]. To our knowledge, no other cross sectional studies have examined the 

association of  CASC and other risk variables including Tyrer-Cuzick model risk estimation, area 

of mammographic breast density, atypical cytomorphology and  Ki67. Nor have other studies 

examined CASC in relation to other anthropomorphic variables associated with obesity (waist 

circumference, DEXA total fat, lean mass).  Finally, our study looks at change in CASC with 

weight loss in breast cancer survivors, a topic of high current interest and association of change 

in CASCs (%) with change in other anthropomorphic variables. Of these visceral fat is of 

greatest interest as higher levels are more likely to be associated with adipose dysfunction.  

Given the importance of CASCs in angiogenesis, CASCs could be used effectively as a risk and 

response biomarker in trials of calorie restriction and exercise in obese high risk women and 

breast cancer survivors.  

3 Methods 

3.1 Participants 

Participants were recruited through the University of Kansas Medical Center’s Breast 

Cancer Prevention and Survivorship Research Center. Prior to the initial procedure, all potential 

study participants were given oral and written information regarding the studies including risks 

and benefits and signed a consent. 

3.1.1 Cross-Sectional Study in High Risk Women 

Thirty-four women at high risk for development of breast cancer were recruited primarily 

for random peri-areolar fine needle aspiration (RPFNA) for risk assessment. These women also 

underwent DEXA body composition scans (GE Lunar Prodigy), anthropomorphic assessment, 
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and non-fasting venous blood collection as part of HSC # 4601. This cross-sectional study was 

specifically investigating biomarkers in women at high risk of developing breast cancer, but who 

do not have a prior history of invasive breast cancer. Risk eligibility criteria for the cross-

sectional study were any one or more of the following: known high penetrance germline gene 

mutation (e.g. BRCA1, BRCA2, p53), a first degree relative or multiple 2nd degree relatives with 

a diagnosis of breast cancer under age 60 (family history), prior breast biopsy, ≥25% 

mammographic breast density, 5 year Gail risk of ≥ 1.67% or twice the 10-year average 

population Tyrer-Cuzick risk. A Gail risk of 1.67% is the average risk of a 60 year old with no 

other risk factors. The DEXA scanner used for the cross sectional study measured total and lean 

mass, total fat mass, android fat mass, but did not have the software to assess visceral fat mass. 

Carol Fabian, MD, or Kandy Powers, NP, performed the RPFNA. 

3.1.2 Diet and Exercise Intervention in Breast Cancer Survivors 

Eleven obese sedentary breast cancer survivors who were recruited as part of a weight loss 

and exercise trial (STUDY00004575) underwent anthropomorphic measures, initial DEXA body 

composition, and phlebotomy before and after the intervention. DEXA used in this study was a 

GE Lunar iDXA which does assess visceral fat in addition to other body composition measures. 

This prospective interventional study was designed to determine whether obese sedentary 

breast cancer survivors could reliably achieve 300 minutes per week of planned physical 

activity/week with the help of a trainer during a 12 week program of moderate calorie restriction.  

Inclusion criteria for this study were prior breast cancer and completion of any surgery, radiation 

or cytotoxic chemotherapy, a BMI of ≥30 kg/m2, < 60 minutes of exercise per week, possession 

of a smart phone and the physical ability to exercise. Exclusion criteria were history of diabetes 
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or metformin use and inability to meet with an exercise trainer twice weekly at a local YMCA. 

One woman was African-American and all other women were Caucasian. 

3.2 Setting 

Both studies were conducted as outpatients at the University of Kansas Cancer Center 

(Westwood Campus) and at the University of Kansas Clinical and Translational Science Unit 

(CTSU).  

3.2.1 Cross-Sectional Study in High Risk Women 

Patient demographics, medical history, clinical breast exam, mammogram, RPFNA, 

anthropomorphic measures including dual-energy x-ray absorptiometry (DEXA). Biologic 

specimens were collected by clinic staff under proscribed procedures and then transferred to the 

Breast Cancer Prevention Laboratory for further processing.  

3.2.2 Diet and Exercise Intervention in Breast Cancer Survivors 

Women were generally referred for this study by their physicians although self-referral was 

allowed. The baseline visit included collecting patient demographics, performing a medical 

history and physical exam, anthropomorphic measures, a DEXA scan, and a 6 minute walk test. 

Baseline fitness was measured with VO2 peak performed as part of cardio-pulmonary testing.  

Following two initial in person group meetings explaining the diet and exercise program and 

how to use their activity trackers and the MyFitnessPal application, participants were started on 

the program of portion-controlled meals, 5 servings of fruits and vegetables daily (1200-1400 

cal/day), and an escalating exercise program. Weekly group phone sessions were conducted by 

research staff with study participants to discuss their progress and any challenges or issues. The 

12 week off-study appointment included all of the same assessments as the baseline appointment. 
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3.3 Procedures 

Venipuncture blood was drawn by one of two trained clinical trial staff in two blue tiger-top 

tubes for mononuclear cells (8 mL BD Vacutainer CPT tubes). Tubes were immediately put on 

wet ice and transferred to the breast cancer prevention laboratory within two hours. Identification 

of CASCs followed the modified protocol outlined by Duda, et al [48]. Cells were spun at 1,600 

g at 20°C for 25 minutes with no brake. Plasma was separated from the mononuclear layer and 

cells were counted. Based on cell count calculations, 20 μL per 107 cells of Fc-receptor blocking 

antibody (Miltenyi Biotec) was added and incubated for 10 minutes on ice. Isotype controls and 

individual fluorochrome conjugated antibodies for CD31 (FITC), CD45 (eFluor), and CD34 (PE) 

were added to 500 μL aliquots of cells and incubated in the dark on ice for 30 minutes. Anti-

CD34 PE and CD34 PE isotype control were added at 20 μL per 107 cells via the manufacturer’s 

protocol (BD Pharminogen). Cells were washed twice with 9 mL of ice-cold 1X PBS and spun 

down at 250 g for 5 minutes with a brake. Pellets were re-suspended in 500 uL of ice-cold 1X 

PBS for flow cytometry.  

3.4 Flow Cytometry 

Flow cytometry was performed at KUMC’s Flow Cytometry Core Laboratory on a Becton-

Dickinson model LSR II equipped with 405, 488, 552, and 633 nm lasers for single-cell 

suspensions. Unstained, isotype controls, and single antibodies were run to allow for 

compensation of the machine. Due to the low cell count of circulating CD34+ cells, manual 

compensation was occasionally necessary to facilitate appropriate cell gating. Cells were gated 

on the CD34bright cell population and gates were reviewed by two investigators (Appendix Figure 

7). Gates were applied to cell suspensions with all three antibodies. The number of 
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CD34brightCD31-CD45- cells detected was expressed as a percent of all single mononuclear cells. 

FlowJo®, LLC (Ashland, Oregon, USA) software version 10.2 was used for all analyses.  

3.5 Statistical Analysis  

All statistical analyses were performed using SAS® Statistical Software version 9.4, SAS 

Institute Inc., Cary, North Carolina, USA.   

3.5.1 Cross-Sectional Study in High Risk Women 

CASC frequency was not normally distributed (Shapiro-Wilk P<0.0001) and therefore non-

parametric analyses were used to evaluate statistical significance. Kruskal-Wallis test was used 

to evaluate differences in CASC levels between BMI groups (< 30kg/m2 vs. ≥ 30 kg/m2), and to 

evaluate differences in CASC and BMI levels for mammographic breast density groups. 

Spearman’s correlation coefficient was used to evaluate linear relationships between BMI values 

and CASC levels.  

3.5.2  Diet and Exercise Intervention in Breast Cancer Survivors 

CASC frequencies at baseline and 12 weeks were not normally distributed. Paired Wilcoxon 

signed-rank test was used to compare baseline CASCs to 12 week CASC frequencies. Changes 

in CASC frequency (12 weeks – 0 weeks) were normally distributed and parametric procedures 

were used for all analyses comparing 12 week changes in CASCs. Correlation and linear 

regression were used to evaluate linear relationships between change in CASCs and other 

continuous variables. Non-parametric analyses or ANOVA were used to compare categorical 

variables with change in CASC frequencies if the CASCs of categorical groups were non-

normally or normally distributed, respectively. 
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4 Results 

For both studies, similar levels of CASCs and single mononuclear cell counts were observed 

for high risk women and breast cancer survivors with BMI ≥ 30 kg/m2. For the cross-sectional 

study, obese high risk women had a mean CASC of 0.002% (range 0.000 – 0.013%). Median 

single mononuclear cell count was 590,798 cells (range 263,639 – 1,201,123 cells). For the 

weight loss study, obese breast cancer survivors had a mean CASC of 0.003% (range 0.000 – 

0.010) at baseline. Median baseline single mononuclear cell count was 793,486 (range 542,961 – 

1,514,672 cells). These consistent findings for both studies in obese women indicate reliability of 

our results.  

4.1 Cross-Sectional Study in High risk Women 

There were 14 women with BMI < 30 kg/m2 and 20 women with BMI > 30 kg/m2. CASC 

frequency was found to be nearly statistically different between dichotomized groups with BMI 

< 30 kg/m2 and ≥ 30 kg/m2 (Figure 1A, P=0.05). The mean CASC (%) for BMI < 30 kg/m2 was 

0.001 (range 0.000-0.002). The mean CASC (%) for BMI ≥ 30 kg/m2 was 0.002 (range 0.000 – 

0.013). However, when women were dichotomized into BMI groups < 35 kg/m2 and ≥ 35 kg/m2 

there was a significant difference between groups (Figure 1B, P=0.009). A linear correlation was 

noted with CASCs (%) and both BMI (kg/m2) and total body fat (kg) (Figure 2, P=0.029 and 

P=0.035, respectively) for the 34 high risk women. Waist circumference, percent fat, lean mass, 

and android fat were not found to be correlated with CASC levels with Spearman’s correlation. 

We were unable to measure visceral fat in the cross sectional study as the GE Healthcare Lunar 

Prodigy DEXA scanner used for this cohort did not have the appropriate software. Other breast 

cancer risk variables factors investigated were age, menopause status, hormone therapy, breast 

density, cytomorphology, Ki67, hours of self- reported aerobic exercise per week exercise, and 
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Tyrer-Cuzick estimated 10 year risk. Of these variables only very low breast density (<5%) 

(Figure 3) was found to be significantly associated with CASC levels (Figure 4A, P=0.02). In 

this group, the five women with very low mammographic breast density estimates (<5%) were 

also all obese (Figure 4B, BMI range 32.81-42.15 kg/m2).  
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A 

 

B 

 
 Figure 1: Distribution of CASC levels (%) by Dichotomized BMI Groups in High Risk Women 
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(A) BMI groups dichotomized at < 30 kg/m2 (N=14) and ≥ 30 kg/m2 (N=20). Kruskal-Wallis test 

used to evaluate significance (P=0.05). Error bars indicate mean and standard error of the mean. 

(B) BMI groups dichotomized at < 35 kg/m2 (N=24) and ≥ 35 kg/m2 (N=10). Kruskal-Wallis test 

used to evaluate significance (P=0.009). Error bars indicate mean and standard error of the mean. 
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Table 1: Comparing Characteristics of High Risk Women with BMI < 30 kg/m2 vs. BMI ≥ 30 

kg/m2  

 
BMI < 30 kg/m2 

(N=14) 

BMI ≥ 30 kg/m2 

(N=20) 
P-Value 

Age (years)  

(mean ± SD) Range 

49.9 ±9.7 

36 – 64 

50.4 ± 10.5 

33 – 71  
0.90 

Menopause Status (N, %) 

Pre-Menopause 

Peri-Menopause 

Post-Menopause 

6 (42.9) 

1 (7.1) 

7 (50.0) 

7 (35.0) 

0 (0.0) 

13 (65.0) 

0.39 

Hormone Replacement Therapy (N, %) 

Yes 

No 

5 (35.7) 

9 (64.3) 

7 (35.0) 

13 (65.0) 

0.97 

Mammographic Breast Density (N, %) 

<5% 

5-25% 

25-50% 

50-75% 

0 (0.00) 

3 (21.4) 

5 (35.7)  

6 (42.9) 

5 (26.3) 

7 (36.8) 

6 (31.6) 

1 (5.3) 

0.02 

Tyrer-Cuzick Lifetime Risk (%) 

(mean ± SD) Range 

27.5 ± 11.7  

11.4 – 54.5  

29.9 ± 18.4 

10.2 – 75.9 
0.97 

Tyrer-Cuzick 10-year Risk (%) 

(mean ± SD) Range 

7.6 ± 6.8  

1.8 – 28.5  

8.2 ± 7.0 

1.6 – 27.1 
0.41 

Waist Circumference (cm) 

(mean ± SD) Range 

82.5 ± 18.0 

32 – 108  

105.9 ± 6.3 

97 – 120 
<0.0001 

Total Fat (kg)  

(mean ± SD) Range 

28.1 ± 11.5 

12.8 – 43.3 

46.6 ± 6.3 

37.4 – 59.4 
<0.0001 

Body Fat (%) 

(mean ± SD) Range 

39.2 ± 9.4 

25.1 – 52.5  

51.1 ± 3.2 

44.0 – 55.6  
0.0002 

Lean Mass (kg)  

(mean ± SD) Range 

40.9 ± 4.5 

33.7 – 46.5 

44.5 ± 5.0 

36.9 – 54.2  
0.087 

Android Fat (kg) 

(mean ± SD) Range 

42.3 ± 13.8 

16.4 – 58.7 

56.3 ± 2.8 

49.8 – 60.7  
0.0045 

Cytomorphology Index Score*  

(mean ± SD) Range 

14.2 ± 1.0 

13 – 16 

14.3 ± 1.2 

12 – 16  
0.72 

Ki67 (%) 

(mean ± SD) Range 

0.06 ± 0.05 

0 – 0.2 

0.05 ± 0.05 

0 – 0.1 
0.61 

Weekly Exercise (hours)  

(mean ± SD) Range 

3.9 ± 2.2 

0 – 7  

2.1 ± 1.9 

0 – 7  
0.02 

*Cytomorphology Index Score Ranges: <11 = Normal; 11-14 = Hyperplasia; 15-18 = 

Hyperplasia with Atypia. 

Kruskal-Wallis tests were performed to evaluate significance between BMI groups and all 

continuous variables due to lack of normality. Fisher’s exact test was used to test differences 

between BMI groups and categorical variables (menopause status, hormone replacement 

therapy, mammographic breast density). 
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Figure 2: Linear relationship of CASCs (%) with BMI (kg/m2) and Fat Mass (kg) 
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(A) Linear correlation between CASCs (%) and BMI of women at high risk for developing 

breast cancer. Spearman’s correlation coefficient R=0.38, P=0.029. (B) Linear correlation 

between CASCs (%) and total body fat (kg) of women at high risk for developing breast cancer. 

Spearman’s correlation coefficient R=0.37, P=0.035.  

 

 

Figure 3: Depiction of Mammographically Dense Area Groups 

Mammographic dense area <5% consists of mostly fatty breasts. Estimates of 5-25% generally 

consists of scattered densities throughout the breast. An estimate of 25-50% is considered 

moderately dense with > 50% at increased risk for breast cancer  [49]. No women in this cohort 

had > 75% density.  



19 
 

A 

 

B 

 
Figure 4: CASC and BMI Distributions for Mammographically Dense Area Groups 
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(A)  Comparison of CASC levels (%) in different mammographic breast density estimate groups. 

Kruskal-Wallis test used to evaluate significance (P=0.018). Error bars indicate mean and 

standard error of the mean. (B) Comparison of BMI (kg/m2) in different mammographic breast 

density estimate groups. Kruskal-Wallis test used to evaluate significance (P=0.010). Error bars 

indicate mean and standard error of the mean. Dotted line indicates a BMI of 30 kg/m2 and 

visually divides the graph into non-obese (< 30 kg/m2) and obese categories (≥ 30 kg/m2).  

4.2 Diet and Exercise Intervention in Breast Cancer Survivors 

There were 11 women who passed all screening tests and were able to initiate the 12 week 

diet and exercise intervention. Only 10 of these women had blood drawn for CASC at both 

baseline and 12 weeks, although all 11 completed the intervention.  Baseline characteristics of 

the 10 participants for which we have specimen for CASCs are included in Table 2. Median age 

was 61 and median BMI was about 36 kg/m2. Of the 11 women who completed the weight loss 

intervention, 9 were able to achieve at least 200 minutes of purposeful physical activity(exercise) 

/week by week 8   and 6 were able to consistently perform at that level during weeks  8-12 of the 

interventions. Six women were able to achieve 200 or more minutes of moderate to vigorous 

physical activity (45-65% of heart rate reserve which we termed “Zone 3”) by week 8 and 4 of 

those were able to consistently perform at that level during weeks  8-12 of the intervention. 

Women with higher weight and fat mass loss achieved more zone 3 minutes. Absolute changes 

in anthropomorphic measures at 12 weeks are given in Table 3.  For the weight loss intervention 

study we were able to use a newer model DEXA (the GE Healthcare iDXA) that uses a fully 

automated program to segment android fat into subcutaneous fat and visceral fat. Visceral fat 
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measured by this technique has been found to have a strong correlation with visceral fat assessed 

by MRI and CT [50, 51].  

Ten women lost weight, with only one woman increasing her BMI by 0.2 kg/m2. Individual 

changes in CASCs (%) did correlate with individual changes in adiposity measures.  Four 

women had a decrease in their CASC levels (%), 4 women had no change, and 2 women had an 

increase in their CASC (%) levels (Figure 5). There were no patient characteristic differences or 

baseline adiposity variable differences in women whose CASCs decreased, increased, or had no 

changes (table 3). The women with the greatest proportional decreases in BMI, weight, and fat at 

12 weeks exhibited the greatest changes in their CASCs (%). There were linear correlations 

between changes in CASCs and changes in BMI (kg/m2), weight (kg), fat mass (kg), and visceral 

fat (kg). There was no correlation with absolute change in CASCs and absolute change in waist 

circumference or percent android fat (Table 4).  

 

Table 2: Baseline Characteristics of Breast Cancer Survivors in Diet/Exercise Intervention 

Variable Subject Information (N=10) 

Age (years) 

(median) Range 

61 

51 – 70  

BMI  

(Mean ± SD) Range 

35.76 ± 3.0 

30.8 – 39. 8 

Days Since Diagnosis (Mean ± SD) 

Range 

1,099 ± 1,043.2 

395 – 3,800 

Chemotherapy, N (%)  

Yes 4 (40%) 

No 6 (60%) 

Anti-Hormonal Therapy, N (%)  

Yes 7 (70%) 

No 3 (30%) 
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Figure 5: Individual changes in CASCs (%) from Baseline to 12 Weeks 

Absolute changes of CASC levels (%) from baseline to 12 weeks are color-coded by participant 

study ID. Four participants decreased their CASCs. Four participants experienced no changes in 

their CASCs. Two participants’ CASC levels increased.  
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Table 3: Characteristics of Participants based on Absolute Changes in CASC Levels at 3 Months 

 

 
CASC Levels 

Decreased 

(N=4) 

CASC Levels 

No Change 

(N=4) 

CASC Levels 

Increased 

(N=2) 

P-Value 

P
at

ie
n
t 

C
h
ar

ac
te

ri
st

ic
s 

Baseline CASCs 

Mean (Range) 

0.003 

(0.001-0.004) 

0.003 

(0.000-0.01) 

0.002 

(0.002-0.002) 
0.54 

Age (years) 

Mean (Range) 

57 

(51 – 62) 

63 

(59 – 70) 

64.5 

(64 – 65) 
0.16 

Chemotherapy 

N (%) 
2 (50%) 1 (25%) 1 (50%) 1.00 

Anti-Hormonal 

Therapy N (%) 
2 (50%) 4 (100%) 1 (50%) 0.33 

Days Since Diagnosis 

Mean (Range) 

576.3 

(395-820) 

1,701.3 

(395-3800) 

940 

(485-1395) 
0.43 

B
as

el
in

e 
A

d
ip

o
si

ty
 

V
ar

ia
b
le

s 

BMI Baseline (kg/m2) 

Mean (Range) 

38.0 

(37 – 39.8) 

34.4 

(30.8 – 37.7) 

33.9 

(31 – 36.9) 
0.12 

Weight Baseline (kg) 

Mean (Range) 

103.2 

(92.5-121.6) 

86.3 

(75.9 – 97.7) 

96.6 

(89.8 – 103.4) 
0.15 

Visceral Fat Baseline 

(kg) Mean (Range) 

2.5 

(1.9-3.3) 

2.0 

(1.5-3.1) 

1.9 

(1.9-2.0) 
0.21 

A
b
so

lu
te

 C
h
an

g
es

 i
n
 

A
d
ip

o
si
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 V
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ia

b
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s 
at

 

1
2
 w

ee
k
s 

BMI Change (kg/m2) 

Mean (Range) 

-4.9 

(-7.2, -3.2) 

-2.1 

(-2.9, -0.7) 

-0.45 

(-1.1, 0.2) 
0.026 

Weight Change (kg) 

Mean (Range) 

-13.8 

(-20.5, -9.8) 

-5.4 

(-8.0, -1.8) 

-2.0 

(-4.4, 0.4) 
0.026 

Body Fat Change (%) 

Mean (Range) 

-4.6 

(-8, -2.4) 

-1.7 

(-2.2, -0.6) 

-0.95 

(-1.4, -0.5) 
0.026 

Visceral Fat Change 

(kg) Mean (Range) 

-0.8 

(-1.1, -0.6) 

-0.5 

(-0.7, -0.3) 

-0.02 

(-0.03, -0.01) 
0.057 

A Kruskal-Wallis nonparametric test was used to evaluate differences between changes in CASC 

levels (decrease, no change, increase) and continuous measures of patient characteristics, 

baseline adiposity measures, and absolute changes in adiposity variables at 12 weeks. Fisher’s 

exact test was used to evaluate differences in CASC level changes and categorical variables 

(chemotherapy, anti-hormonal therapy).  

BMI Change = (12 week BMI – 0 week BMI) 

Weight Change (kg) = [12 week weight (kg) – 0 week weight (kg)] 

Body Fat Change (%) = [12 week body fat (%) – 0 week body fat (%)] 

Visceral Fat Change (kg) = [12 week visceral fat (kg) – 0 week visceral fat (kg)] 
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Table 4: 12 Week Outcomes of Adiposity Variables and their Linear Relationship with Change 

in CASCs (%) 

 Univariate Statistics 

(N=10) 

Correlation with 

Change in CASCs (%) 

 Mean Median SD Min Max R P-value 

BMI Change 

(kg/m2) 
-2.9 -2.7 2.2 -7.2 0.2 0.85 0.002 

Weight Change 

(kg) 
-8.1 -7.5 6.1 -20.5 0.4 0.87 0.0009 

Fat Mass Change 

(kg) 
-6.2 -5.7 4.5 -15.6 -1.2 0.87 0.0009 

Body Fat Change 

(%) 
-2.7 -2.1 2.3 -8.0 -0.5 0.85 0.0018 

Visceral Fat 

Change (kg) 
-0.5 -0.6 0.3 -1.1 -0.01 0.73 0.016 

Waist 

Circumference 

Change (cm) 

-9.6 -8.0 6.6 -22.0 -3.0 0.25 0.49 

Android Fat 

Change (%) 
-3.3 -2.5 3.8 -10.5 2.1 0.73 0.17 

Spearman’s correlation was used to evaluate significance of linear relationships between changes 

in CASC (%) and changes in adiposity measures at 12 weeks.  

CASC Change = [12 week CASC (%) – 0 week CASC (%)]  

Fat Mass Change (kg) = [12 week fat (kg) – 0 week fat (kg)] 

Waist Circumference (WC) Change = [12 week WC (cm) – 0 week WC (cm)] 

Android Fat Change (%) = [12 week android fat (%) – 0 week android fat (%)] 
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Figure 6: Linear Correlation of Changes in Visceral Fat (kg) and Changes in CASCs (%) 

Linear correlation plot of changes in visceral fat [12 week visceral fat (kg) – 0 week visceral fat 

(kg)] with changes in CASC levels [12 week CASC (%) – 0 week CASC (%)], P=0.016. Shaded 

blue area represents the 95% confidence interval for the line of best-fit.  
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5 Discussion 

Adipose stromal cells are increased in obesity, and release of these cells into the circulation 

from obese white adipose tissue may be due to tissue hypoxia resulting from adipocyte 

hypertrophy and hyperplasia in the context of an increase in extracellular matrix as well as an 

increase in local inflammation and tissue remodeling [52]. The observations that co-culture of 

human adipose stromal cells with various cell lines can result in leptin and estrogen dependent 

breast cancer cell proliferation, invasion and metastases [53-55] and that circulating adipose 

stromal cells home to sites of tumor cells via chemokine gradients [56] suggest an important role 

for CASCs in developing invasive cancer and metastatic disease in obese individuals. It further 

suggests that reduction in dysfunctional fat mass via calorie restriction and exercise in obese 

individuals should reduce CASCs as hypoxia and inflammation are reduced. These hypotheses 

led to our studies assessing CASCs across a spectrum of adiposity in high risk women and a pilot 

study in obese breast cancer survivors undergoing a short term diet and exercise intervention.  

5.1 Cross-Sectional Study in High risk Women 

Our cross-sectional study findings that there was a highly significant difference in CASCs 

(%) in women with BMI of < 35 kg/m2 vs. ≥ 35 kg/m2 (Class II obesity) (P=0.0009) and 

marginally with BMI < 30 kg/m2 vs. ≥ 30 kg/m2  (P=0.05) (Class I obesity) are consistent with 

the findings of others that CASCs are often not detectible in non-obese women. The increased 

risk of metabolic abnormalities with Class II vs. I obesity and our relatively small sample size 

provide a logical explanation for a stronger association of CASCs (%) with Class II obesity [52, 

53]. 
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BMI is not always an optimal measure of adiposity. Obesity can be overestimated with BMI 

in men with a large muscle mass and underestimated in women.  We found that that total body 

fat (kg) is also linearly associated with CASCs (%), and this association provides a more 

mechanistic association than BMI.  For high risk women, we did not find that percent body fat, 

android fat or waist circumference to have stronger associations with CASCs than BMI, although 

visceral fat could not be assessed with the DEXA scanner used in this cross-sectional study.  

We did observe that low mammographic breast density, specifically < 5%, was inversely 

associated with CASC levels in obese women. This is an interesting observation because high 

mammographic breast density (50% or greater) is well-established as one of the strongest 

independent risk factors for both sporadic breast cancer and breast cancer development in high 

risk populations [57-60]. In fact, interventions such as tamoxifen or premenopausal 

oophorectomy which decrease breast density have been shown to decrease risk of breast cancer 

[59, 61]. Our observations do not challenge these well-documented findings, rather offer an 

explanation for the potential biological mechanism of increased risk despite decreased breast 

density in obesity. Mammographically dense area (%) is decreased in overweight and obese 

women due to adipose hypertrophy and hyperplasia in the breast. The increase in adipose may be 

associated with an increase in local and circulating adipose stromal cells [62-64]. The median 

BMI of high risk women with mammographic density less than 5% was 37.1 kg/m2 (range 32.81-

42.15 kg/m2) and this group also had the highest CASCs (median 0.004%, range 0.001-0.013%). 

Therefore, our findings suggest that obese high-risk women with very fatty breasts may be 

releasing more adipose-derived CASCs into the blood stream.  

From our cross-sectional study, we can conclude that in high-risk women, we are more 

likely to observe CASC in women with BMI above 35 kg/m2 and that further studies are 
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indicated looking at correlations of CASC with Fat Mass Index (total fat mass kg divided by 

height in meters squared) and visceral fat, as well as adipokines and cytokines. We also found 

that increased proportions of breast fat (low mammographic density) in obese high-risk women 

appears to be associated with CASCs, but this may be a more of a representation of their BMI 

than mammographic density. In a random sample of high-risk women, there are many potential 

factors influencing CASC levels at any point in time.  

5.2 Diet and Exercise Intervention in Breast Cancer Survivors 

To address the question of how CASCs are affected by weight loss interventions, we 

quantified CASCs before and after a 3 month weight loss regimen consisting of moderate calorie 

restriction and high volume exercise in older obese sedentary breast cancer survivors. Ghosh et 

al. looked at the effect of a 6 month exercise program on CASCs in breast cancer survivors and 

found no statistically significant difference in CASCs from baseline to 6 months [39].  While 

they found no difference from the cohort’s baseline to 6 month measures (N=13), they did 

observe that women whose CASCs decreased (N=6) lost about 2.79% body fat on average. The 

only adiposity measures they assessed were BMI and body fat (%), which they estimated through 

skinfold assessments. We found that women who had the largest decreases in weight, BMI, total 

body fat, and visceral fat had the greatest decreases in their CASCs. From Table 3, we can see 

that women who lost a mean of 13.8 kg (range -20.5 to -9.8 kg) of their body weight exhibited a 

decrease in their CASCs. Changes in weight (kg) and fat mass (kg) were found to have the 

strongest linear correlation (P=0.0009). Changes in BMI (kg/m2), body fat (%), and visceral fat 

(kg) also expressed significant linear relationships with changes in CASCs (%) and therefore 

justify further investigation in larger cohort studies. These findings provide promising potential 

for the ability of change in CASCs to be an indicator of the type of fat loss (visceral and ectopic 



29 
 

fat) associated with the greatest metabolic dysfunction and greatest breast cancer risk. These 

results warrant further investigation into this relationship with larger sample size.  

Our studies were both limited by small sample sizes as well as the low number of CASCs in 

the mononuclear cell population. Next steps include assessment of change in measures of insulin 

resistance and pro-inflammatory adipokines and cytokines including leptin as a function of 

change in CASCs. We also intent to expand our weight loss intervention data in breast cancer 

survivors and high risk participants where change in CASCs, fat mass index, visceral fat, 

bioavailable hormones and blood adipokines and cytokines  are measured in all participants.  
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7  Appendix 

A 

 

B 
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Figure 7: Flow Cytometry Gating Protocol with FlowJo Software 
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(A) FSC-A/ SSC-A: Excluding cell debris and gating for mononuclear cells. (B) FSC-A/FSC-H: 

Excluding cell clumps and selecting only single cells. (C) FSC-A/CD34: From single cells, select 

discrete CD34bright population from CD34 single antibody tube. (D) CD45/CD31: From 

CD34bright population, set gate around population to define CD31 and CD45 negatives. Apply 

this gate to sample with all 3 antibodies. (E) Sample with all three antibodies from high risk 

woman of BMI < 30 kg/m2. Cells in Q4 taken as a percentage of all single mononuclear cells. (F) 

Sample with all three antibodies from high risk woman of BMI ≥ 30 kg/m2. Cells in Q4 taken as 

a percentage of all single mononuclear cells. 
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Table 5: Raw Data of CASCs from Cross-Sectional Study in High Risk Women 

Participant Number 
Single Mononuclear 

Cell Counts (N) 

CASC 

Number 
CASC (%) 

9 749,319 8 0.001 

15 577,209 1 0.000 

16 656,479 0 0.000 

17 698,373 13 0.002 

18 1,020,415 22 0.002 

19 1,055,266 138 0.013 

20 948,013 25 0.003 

22 988,324 5 0.001 

24 582,524 23 0.004 

26 590,541 4 0.001 

27 376,338 0 0.000 

28 291,304 0 0.000 

30 395,522 0 0.000 

32 384,372 1 0.000 

34 369,819 0 0.000 

35 263,639 1 0.000 

36 646,893 3 0.000 

37 711,825 10 0.001 

38 550,291 3 0.001 

39 417,255 0 0.000 

40 558,892 6 0.001 

41 525,537 5 0.001 

42 651,430 17 0.003 

43 815,972 8 0.001 

44 520,096 3 0.001 

45 591,055 8 0.001 

46 996,813 11 0.001 

47 509,598 11 0.002 

48 731,888 9 0.001 

49 552,416 4 0.001 

50 438,538 5 0.001 

51 767,462 3 0.000 

52 798,913 58 0.007 

65 1,201,123 16 0.001 

Median 590,798 5 0.001 

Min 263,639 0 0.000 

Max 1,201,123 138 0.013 

 

 



37 
 

Table 6. Raw Data of CASCs from Baseline and 3 months of Cohort Study in Obese Sedentary 

Breast Cancer Survivors 

Study 

ID 

Baseline 3 Months 

Single 

Mononuclear 

Cell Counts (N) 

CASC 

Number 

CASCs 

(%) 

Single 

Mononuclear 

Cell Counts (N) 

CASC 

Number 

CASCs 

(%) 

301 809,521 13 0.002 2,222,210 103 0.005 

303 905,363 20 0.002 2,026,995 28 0.001 

304 616,091 3 0.000 1,979,686 9 0.000 

305 542,961 5 0.001 1,817,123 27 0.001 

306 928,044 91 0.010 1,421,737 141 0.010 

307 736,938 5 0.001 866,011 3 0.000 

309 648,726 29 0.004 694,747 18 0.003 

310 777,451 36 0.002 888,584 31 0.003 

311 1,099,218 30 0.003 1,103,567 7 0.001 

312 1,514,672 21 0.001 1,574,821 19 0.001 

Median  793,486 20.5 0.002 1,498,279 23 0.001 

Min 542,961 3 0.000 694,747 3 0.000 

Max 1,514,672 91 0.010 2,222,210 141 0.010 

 


