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ABSTRACT 

 

Introduction: Recent advancements in surface electromyographic signal decomposition and the 

inclusion of ultrasonography have presented the opportunity for a deeper understanding of motor 

unit behavior. However, the influence of sex and muscle composition on motor unit recruitment 

patterns has yet to be investigated. In addition, little is known regarding the neuromuscular 

adaptions from endurance training on motor unit behavior during submaximal tasks and long 

duration activities. Methods: Three distinct experiments were conducted to expand the current 

literature on motor unit behavior. The first project investigated the influence of sex and muscle 

quality on motor unit action potential sizes for 10 males and 10 females. The second project 

longitudinally investigated the effects of 10-weeks of continuous cycling on motor unit firing 

rate behavior and recruitment patterns for 23 sedentary individuals. The third project 

longitudinally investigated the effects of 5-weeks of continuous cycling on motor unit firing rate 

behavior and recruitment patterns during consecutive, long duration contractions for 25 

sedentary individuals. Conclusions: For project one, the greater muscle quality and motor unit 

action potential sizes exhibited by males suggests greater muscle fiber sizes of the higher-

threshold motor units. For project two, participants displayed increases in maximal aerobic 

capacity and decreases in maximal strength. The decreases in maximal strength were associated 

with alterations in motor unit firing rate patterns and increases in muscle activation to match pre-

training absolute torques. For project three, participants displayed increases in maximal aerobic 

capacity and decreases in maximal strength. Following 5 weeks of training, there were time and 

repetition dependent change in motor unit firing rate and likely recruitment patterns to 

compensate for losses in strength.  
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REVIEW OF LITERATURE 

 

Size Principal of Recruitment 

 

Henneman (1957) 

 The authors of this study performed experiments on cats with spinal cords that had been 

transected distal to the obex. Electrical stimulation was applied to the dorsal roots of the large 

nerve trunks to elicit reflexes in the lumbar ventral roots. The authors reported two phases were 

observed when shocks with sufficient strength were used: a relatively synchronized discharge 

followed by a second or more of rhythmical firings. A closer examination of the rhythmical 

firings indicated amplitudes of the impulses varied directly with the diameters of the fibers. The 

authors concluded that less excitation is necessary for smaller motor neurons to discharge than 

larger motor neurons and, thus, the susceptibility of the motor neuron to discharge is related to its 

size.  

 

Monster and Chan (1977) 

 For this study, the authors used surface and intramuscular electromyographic (EMG) 

recordings to investigate the firing rate behavior of the left middle finger extensor digitorum 

communis (EDC) muscle during steady isometric contractions for eight adults ages 19 to 30 

years old. Monster and Chan reported a systematic relationship between the motor unit (MU) 

size, recruitment order and firing rate characteristics. For example, MUs were recruited in order 

of size with earlier recruited MUs displaying greater firing rates than later recruited MUs. In 

addition, the firing rates of the smallest, earliest recruited MUs were more likely to become fused 

than the larger, later recruited MUs and, thus, Monster and Chan suggested the larger MUs are 
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more effective for quick adjustments in force whereas the smaller units are more suited for 

maintaining force during a steady contraction.  

 

Garnett, O’Dononvan, Stephens, and Taylor (1979) 

 In this study, the authors investigated MU organization in human medial gastrocnemius 

for 13 participants, ages 22 – 46 years. The MU were isolated with controlled intramuscular 

microstimulation and plantarflexion torque was measured. The muscle was stimulated for 2 – 5 

hours to deplete the muscle fibers a glycogen and was followed by a muscle biopsy. MUs were 

divided into three groups: (1) type S (slow, small, and fatigue resistant), (2) type FR (fast, 

intermediate sized, and fatigue resistant), and (3) FF (fast, large, and fatigable). The type S MUs 

had longer contraction times (> 99 ms vs. < 85 ms) and smaller twitch forces (11.5 ± 5.0 vs. 23.3 

± 35.1 g wt) and greater fatigue resistance than type F units. The results suggest that during 

slowly increasing voluntary contractions, MUs are recruited by order size and at low force levels, 

both type S and FR are contributing to force production. Furthermore, above approximately 30% 

of maximal strength, type FF would be additionally recruited.   

 

Orderly Recruitment of Motor Unit Action Potentials 

 

Olson, Carpenter, and Henneman (1968) 

 This study examined the relationship between the amplitude of motor unit action 

potential (MUAP) sizes and their recruitment thresholds for triceps surae in 19 adult cats. Single, 

double, and steel wire electrodes were used to record EMG. The muscle potentials were led 

through amplifiers and photographed on moving film. Action potentials were paired and rank 
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correlated, which displayed a strong tendency of the EMG amplitude for a higher-threshold MU 

to be greater than that of a lower-threshold MU. In addition, factors such as fiber diameter, fiber 

number, and fiber dispersion influenced the size of the EMG potentials. Furthermore, the authors 

stated the size of a MU and its fiber type determine the density of the fiber, which determines the 

amplitude of the signal.  

 

Hu, Rymer, and Suresh (2013) 

 In this study, the authors investigated the recruitment and firing rate organization of 

multiple MUs with different action potential sizes for the first dorsal interosseous (FDI) using 

surface EMG signal decomposition techniques. Spike triggered averaging methods were used by 

the authors to estimate MU action potential sizes with the firing times of MUs as recruitment 

triggers. Eight right hand dominant individuals with no neurological disorders (4 men, 4 women) 

completed 3 maximal voluntary contractions (MVCs) followed by four blocks of trials with five 

repetitions in each block. For each repetition, participants completed isometric trapezoidal 

muscle actions at 20%, 30%, 40% and 50% MVC. The results indicated that MU size, as 

indicated by peak-to-peak amplitude of the MUAP, increased linearly with recruitment 

threshold. Therefore, the size principal was apparent during the voluntary force contractions. In 

addition, MU mean firing rates during the targeted force were inversely related to MUAP size 

and recruitment threshold. The authors proposed that surface EMG signal decomposition in 

conjunction with spike triggered averaging may provide an alternative method to examine MU 

pool organization properties.  

 

Pope, Hester, Benik, and DeFreitas (2016) 



4 

 

 

  

 The authors investigated the use of the MUAP size vs. recruitment threshold relationship 

from surface EMG signal decomposition and muscle cross sectional area (mCSA) with 

ultrasonography (US) to measure hypertrophy of higher-threshold MUs following a strength 

training program. Ten participants completed 8 weeks of high-intensity strength training for the 

leg extensors. US images and MU recording were obtained pre- and post-training intervention. 

The training program resulted in significant increases in muscle size, strength, and the slopes of 

the MUAP size vs. recruitment threshold relationship. In addition, 84% of the variance in the 

change in the slopes of the MUAP size vs. recruitment threshold relationships could be explained 

by the increases in mCSA recorded by US imaging. Therefore, the findings suggest the MUAP 

size vs. recruitment threshold relationships can be used to investigate the size principal. 

Furthermore, the surface EMG signal decomposition can be used to assess longitudinal changes 

to MUAP sizes across the recruitment threshold range. 

  

Surface Electromyographic Signal Decomposition 

 

De Luca, Adam, Wotiz, Gilmore, and Nawab (2006) 

 Typically, previous studies decomposing indwelling EMG signals could only investigate 

low contraction intensities yielding three or less MUs due to the difficulty associated with 

distinguishing similar action potential shapes when four or more MUs are active. Therefore, the 

firing rate characteristics of higher-threshold MUs, or lower- and higher-threshold MUs during 

higher contraction intensities were not well understood. In this study, the authors introduce a new 

technique for decomposing surface EMG signals into individual MUAP trains with a four 

differential channel surface array sensor. This technique, termed Precision Decomposition III, is 
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capable of decomposing several simultaneous MUAP trains from real surface EMG signals. 

Signals were detected from the orbicularis oculi and platysma and where feedback to the subject 

provided by the root-mean-squared value of the EMG signal whereas, for the tibialis anterior, 

subjects maintained a constant force at 20-50% MVC. The Precision Decomposition III 

algorithm was able to identify at least three MUAP trains as well as recruitment and 

derecruitment thresholds. The firing rate characteristics of the orbicularis oculi, platysma and 

tibialis anterior were consistent with earlier indwelling studies with earlier-recruited, lower-

threshold MUs displaying greater firing rates than later-recruited, higher-threshold MUs. Recent 

advancements in the Precision Decomposition algorithm have yielded over 60 MUs during 

isometric contractions and, thus, provide greater resolution to data investigating MU behavior.  

 

Common Synaptic Input and the Onion Skin Control Scheme 

 

Farmer, Bremner, Halliday, Rosenberg, and Stephens (1993) 

 The authors examined the firings of paired MUs recorded from either the first or second 

dorsal interosseous, and the biceps brachii in sixteen heathy controls aged 21 – 56 and eleven 

patients aged 49 – 74 who reported a clinically unilateral stroke between 1 and 9 months 

previously. Subjects performed weak isometric contractions so individual MUs recorded from 

each needle discharged at a steady rate of approximately 10 pulses per second. Cross-correlations 

were performed in the time domains for the spike trains of the MU pairs with the results 

compared to the coherence analysis performed on the same spike train data. Farmer et al. 

reported a common synaptic input to the MU pair as central peaks were exhibited in the cross-

intensity functions.  
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De Luca and Erim (1994) 

 In this study, the authors discuss the phenomenon of common drive.  The concept of 

common drive suggests the central nervous system (CNS) does not control the firing rates of 

individual motor units, but supplies the entire motor unit pool with a common synaptic input 

during voluntary contractions. The MU pool is recruited in order of size and their susceptibility 

to excitation will result in different firing rates during voluntary contractions. It has been 

suggested common drive relieves the CNS from deciding which MUs to selectively activate 

during a task. 

 In addition, De Luca and Erim (1994), among others, report earlier recruited MUs have 

greater firing rates that later recruited MUs. Plotting the firing rates of MUs as a function of 

contraction time results in an orderly nesting of firing rate curves under each other where earlier 

recruited MUs display greater firing rates than later recruited MUs and, thus, this behavior has 

been termed “onion skin.” It is well understood that later-recruited, higher-threshold MUs 

display higher-amplitude, shorter duration force twitches and, thus, would require greater firing 

rates to tetanize and produce maximal force than lower-threshold MUs. However, higher-

threshold MUs are fatigued faster than the lower-threshold MUs and would not be able to 

maintain a target force. Therefore, it appears the neuromuscular system is designed to optimize 

force and duration, not solely force production. 

 

De Luca and Hostage (2010) 

 This study used surface EMG signal decomposition technology to investigate the MU 

control properties of the vastus lateralis (VL), tibialis anterior, and first dorsal interosseous (FDI) 

during isometric trapezoidal muscle actions at 20, 50, 80, and 100% MVC. The relationships 
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between the firing rates at the target force level and the recruitment thresholds were analyzed 

with linear regression models for all contractions. For these relationships, the y-intercept 

represents the average firing rates of the lowest-threshold MUs, whereas the slope represents the 

overall MU firing rate behavior. For all subjects, muscles, and contraction intensities, the slopes 

of these relationships were negative, indicating that earlier recruited MU had greater average 

firing rates at the target force level than later recruited MUs. This behavior has been termed “the 

onion skin” because the MU firing rates, plotted as a function of time, look like the layering 

pattern of an onion.  

 Among muscles, there were differences in MU behavior. At maximum force, firing rates 

for the FDI were greater than the VL and the tibialis anterior. In addition, the average of the 

slopes for the four contraction intensities were similar for the VL (-0.30 ± 0.11) and for the 

tibialis anterior (-0.25 ± 0.05), whereas the slopes for the FDI (-0.40 ± 0.08) were more negative. 

The greater standard deviations of the slopes for the VL suggests greater inter-subject variability 

in MU behavior compared to the tibialis anterior and the FDI.  

 This study indicated a consistent MU control scheme among muscles and the differences 

in the parameters of the control scheme among muscles may be explained by differences in the 

physical properties and the functional roles of the muscle. For all muscles and contraction 

intensities, the earlier recruited, lower-threshold MUs displayed greater firing rates than the later 

recruited, higher-threshold MUs. It has been suggested this MU control scheme is not designed 

to produce maximal force but to optimize the ability to generate and maintain force. 

 

De Luca and Contessa (2012) 
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 Previous research has reported a linear relationship between recruitment threshold and 

firing rates when the nerves of anesthetized cats are electrically stimulated, and when MU data is 

grouped from different subjects and contractions performed on different days or at different 

target forces. This had led to the notion that higher-threshold MUS have greater firing rates than 

lower-threshold MUs. However, when motor unit firing rate characteristics are observed for each 

contraction and subject during isometric voluntary contractions, an inverse relationship exists 

between recruitment threshold and MU firing rates. The purpose of this study was to clarify the 

differences in observations and provide a model for MU firing rate behavior during isometric 

contractions. Eight participants (24.38 ± 5.21 yrs) completed isometric trapezoidal contractions 

at 100%, 80%, and 50% MVC. EMG was recorded from the VL and the FDI and the EMG 

signal was decomposed to extract the individual firing events of single MUs. The higher-

threshold MUs, recruited with greater levels of excitation, had lower firing rates than the lower-

threshold MUs at recruitment and target force. In addition, higher-threshold MUs had slower 

firing rate increases than lower-threshold MUs. Therefore, at any time and force, the firing rates 

of the higher-threshold MUs will be lower than lower-threshold MUs. The authors report 

favorable aspects of this control scheme for daily activities: (1) a greater ability to maintain 

force, and (2) a greater economy during activities of daily living, which are typically performed 

at low force levels.  

 

The Influence of Endurance Training on Muscle Fiber Types 

 

Jansson, Sjödin, and Tesch (1978) 
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 This study follows up on previous animal research that has reported shifts in muscle fiber 

types due to cross-innervation and electrical stimulation.  The authors investigated fiber type 

changes due to different types of physical training. Four long-distance runners completed a 

training program that was composed of two periods: (1) aerobic training (13-20 weeks; 70-80% 

VO2MAX), and (2) anaerobic training (7-13 weeks; 2-3 times a week at 90-100% VO2MAX). 

Biopsies from the VL were taken prior to the study and following both training periods and 

myofibrillar actomyosin ATPase (mATPase) was used to identify the fiber types. Two 

participants completed aerobic training followed by anaerobic training, whereas the order was 

reversed for the other two participants. Following anaerobic training, subjects displayed lower 

percentages of type I and higher percentages of type IIC fibers than after the aerobic training. In 

addition, three subjects had higher percentages of type IIA + IIB fibers with an increased IIB/IIA 

ratio following the anaerobic training. The authors proposed that type II fibers had converted to 

type IIC fibers due to aerobic training and a conversion in the reverse direction had occurred due 

to aerobic training. Furthermore, the authors stated the possibility of fibers transforming between 

type I and II fibers is supported by an earlier observation of a well-trained cross-country skier in 

which the percentage of type I fibers decreased from 81% to 57% during 6 weeks of 

immobilization post-injury. The findings support the conversion of type I to type II muscle fibers 

as a result of specific training.  

 

Simoneau, Lortie, Boulay, Marcotte, Thibault, Bouchard (1985) 

 The effects of 15 weeks of strenuous high-intensity intermittent training was measured on 

muscle fiber type proportions and fiber areas. Twenty-four sedentary (14 women and 10 men) 

and 10 control (4 women and 6 men) completed a 15 week training program consisting of 
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continuous and interval work patterns 15s to 90s on a cycle ergometer. Muscle biopsies for the 

VL were taken before and after the training program. The tissue was sectioned for mATPase 

techniques. In addition, 300 fibers were classified for each specimen and mean muscle fiber 

areas were determined. The high-intensity training program resulted in a significant increase in 

the proportion of type I fibers and a significant decrease in type IIb fibers. In addition, the areas 

of the type I and IIb fibers significantly increased following the training. The results of this study 

suggest that skeletal muscle fiber type proportion and fiber areas for the VL can be altered by 

high-intensity intermittent training for adult sedentary individuals.  

 

Howald, Hoppeler, Classen, Mathieu, and Straub (1985) 

 The authors investigated the influence of endurance training on VO2MAX, muscle fiber 

type, mitochondrial density, and intracellular lipid density. Ten sedentary subjects (5 males and 5 

females) performed 6 weeks of cycle ergometer training for 6 weeks, 5 times a week for 30 mins 

at 70% of baseline VO2MAX levels. Prior and after training, two muscle biopsies were taken from 

the VL and cross-sectioned for identification of the fiber types (type I, IIA, IIB, and IIC) by 

histochemical staining of ATPase. Five individual fibers of each type (type I, IIA, IIB) form each 

sample were processed for electron microscopy to estimate the volumes of different cellular 

components per unit of volume. Paired samples t-tests indicated the training program 

significantly increased VO2MAX, type I fibers, mitochondrial volume density for all three fiber 

types, and volume density of intracellular lipid droplets in type IIA and IIB fibers, whereas type 

IIB were significantly decreased. Therefore, high intensity endurance training leads to changes in 

muscle fiber type and an enhancement of the oxidative capacity in all muscle fiber types.  
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Trappe, Harber, Creer, Gallagher, Slivka, Minchev, and Whitsett (2006) 

 In this study, the authors investigated the effects of marathon training on single muscle 

fiber contractile properties for a group of recreational runners. Seven participants (4 males and 3 

males; ages 22 ± 1 yrs) completed a 16 week training plan that increased in volume for the first 

13 weeks and concluded with a 3 week taper leading into the marathon race. Before, after 13 

weeks, and post-taper participants were tested for single muscle fiber experiments, oxidative 

enzyme activity, and maximal oxygen uptake. A muscle biopsy of the lateral gastrocnemius was 

taken for all three time points. Following the taper, MHC composition significantly increased for 

MHC I fibers (48 ± 6 to 56 ± 6%), significantly decreased for MHC I/IIa hybrid fibers 7 ± 1 to 2 

± 1%), and significantly decreased total MHC hybrid fibers (24 ± 7 to 13 ± 4%) compared to pre-

training. Therefore, a 13 weeks of aerobic exercise led to changes in the MHC content of the 

involved muscle.  

 

Konopka, Trappe, Jemiolo, Trappe, and Harber (2011) 

 The purpose of this study was to investigate MHC plasticity in older individuals with 

aerobic exercise training. Eight sedentary women (70 ± 2 years) completed 12 weeks of aerobic 

training on a cycle ergometer. The duration (20-45 minutes), intensity (60-80% heart rate 

reserve), and frequency (3-4 sessions per week) were progressively increased throughout the 

duration of the study. Before and after the 12 week aerobic training program, a muscle biopsy 

was performed on the VL to measure the effect of the training program on MHC isoform content 

and single muscle fiber MHC distribution. Paired samples t-tests indicated MHC isoform content 

for the VL significantly increased from pre- (54% ± 4%) to post-training (61% ± 2%). In 

addition, percent type IIx MHC isoform content significantly decreased post-training (4% ± 1%) 
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compared to pre-training (8% ± 1%). For the MHC analysis of single muscle fibers, aerobic 

training elicited a significant increase in type I fiber distribution (42% ± 4% to 52% ± 3%) and a 

significant decrease in MHC IIa fiber distribution (48% ± 3% to 38% ± 4%). The findings of this 

study further support the ability of the muscle to change the MHC isoform content following an 

aerobic training program.  

  

Influence of the Physical Properties of the Motor Unit  

Pool on Contractile Properties 

 

De Luca, LeFever, McCue, and Xenakis (1982) 

 In this study, the authors investigated MU behavior of the FDI and deltoid muscle during 

triangular isometric contractions at 40 and 80% MVC for Olympic caliber swimmers and 

powerlifters, nationally known pianists, and healthy controls. For all triangular isometric 

contractions, there was a highly ordered recruitment and derecruitment MU control scheme. For 

example, there were inverse relationships between (1) recruitment and derecruitment order, and 

(2) threshold force and peak firing rates. In addition, MU firing rates at recruitment were greater 

than at derecruitment for both muscles with lower-threshold MUs tending to be derecruited at 

lower force levels while higher-threshold MUs showed a propensity to be derecruited at higher 

force levels. The greater firing rates at recruitment versus derecruitment combined with higher 

derecruitment than recruitment forces may be explained by an increase in mechanical efficiency 

of the MU after repetitive stimulation during the contraction, which has been termed 

potentiation. 
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 De Luca et al. also reported between-muscle differences, such as greater firing rates at 

recruitment for the deltoid than the FDI and greater peak firing rates for the FDI than the deltoid. 

There were also within-muscle differences at recruitment and derecruitment as a function of 

training status. For the deltoid, the powerlifters had lower firing rates at recruitment and greater 

firing rates at derecruitment compared to the other groups, whereas the swimmers had greater 

firing rates at recruitment compared to all other groups for the FDI. Therefore, De Luca et al. 

proposed the CNS does not control the firing rates of individual MUs. Rather, the motor neuron 

pool is provided a common synaptic input during voluntary contractions and the mechanical 

properties of the motor neuron pool, particularly the ratio of fast-twitch and slow-twitch fibers 

and their influence on force twitches and fatigability, results in adjustments of the common 

synaptic input to the motor neuron pool to match a target force level.  

 

Orizio and Veicsteinas (1992) 

 This study investigated the influence of fiber type composition for the VL on 

mechanomyographic (MMG) amplitude and frequency among seven sprinters, seven long 

distance runners, and seven sedentary individuals during a MVC of the leg extensors sustained to 

exhaustion. The sprinters displayed greater MVC strength at the beginning of the task but lower 

effort time than the long distance runners and sedentary individuals. At the onset of the sustained 

contraction, MMG amplitude and frequency were greater for the sprinters in comparison to the 

long distance runners and sedentary individuals. Throughout the contraction, there was a clear 

reduction in MMG amplitude for the sprinters and sedentary individuals while there was a 

compression in the power spectra towards the lower frequencies. This behavior was also reported 
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in the long distance runners but was less pronounced. The authors suggested the results were a 

result of the differences in the percentages of fast twitch fiber area among the three groups. 

 

Taylor, Bronks, Smith, and Humphries (1997) 

 The purpose of this study was to locate the sites of muscular fatigue during submaximal 

dynamic work under severe hypoxia at a work level where metabolite accumulation exceeds 

steady-state levels. A secondary aim was to investigate the influence of fiber composition on 

fatigue during hypoxic conditions. Eight males performed cycle ergometry under normal and 

normobaric hypoxia with integrated EMG measured for the VL. MVCs were performed after 

each trial to quantify changes in force, conduction velocity, electromechanical delay, median 

frequency, and maximal integrated EMG. Muscle biopsies were performed on the VL and MHC 

was quantified with sodium dodecyl-polyacrylamide gel electrophoresis. Under the 

environmental normobaric hypoxia trial, the subjects with higher type II MHC accumulated 

greater amounts of blood lactate and displayed greater reductions in median frequency and 

conduction velocity despite minimal differences in training status among participants. The 

authors suggested the participants with greater amounts of type II MHC composition displayed 

greater myoelectric fatigue during the hypoxic trial due to an increased ability to produce lactate 

and a decreased ability to consume lactate by the type II fibers. 

 

Swallow, Gosker, Ward, Moore, Dayer, Hopkinson, Schols, Moxham, and Polkey (2007) 

 In this study, the authors proposed repetitive magnetic stimulation of the femoral nerve 

could be used to induce and quantify quadriceps endurance in eight normal subjects and eight 

subjects with advanced chronic obstructive pulmonary disorder. The quadriceps were provided 
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stimuli at 30 Hz, a duty cycle of 0.4 (2 sec on, 3 sec off), for 50 trains with force and surface 

EMG measured throughout testing and quadriceps twitch forces from the supramaximal 

magnetic stimulation of femoral nerve was measured before and after the protocol. In order to 

validate this method, in vivo contractile properties of the VL was compared with MHC isoform 

protein expression. There was a positive correlation between the time for force to decease to 70% 

of the baseline and the proportion of type I fibers. Thus, MHC is associated with the fatigability 

of the muscle fiber. 

 

Beck, Housh, Fry, Cramer, Weir, Schilling, Falvo, and Moore (2007) 

 The purpose of this study was to investigate the influence of MHC isoform content on 

EMG and MMG amplitude and mean power frequency responses. Five resistance- (age ± SD; 

23.2 ± 3.7 yrs) and aerobically-trained (32. 6 ± 5.2 yrs) males completed a 30 second 

submaximal isometric muscle action of the VL at 50% MVC followed by a muscle biopsy of the 

VL. Type IIa MHC was significantly greater (p < 0.05) for the resistance-trained individuals 

(59.0 ± 4.2% vs. 27.4 ± 7.8%) whereas, type I MHC was significantly greater (p < 0.05) for the 

aerobically-trained participants (72.6 ± 7.8% vs. 40.9 ± 4.3%). The absolute and normalized 

EMG amplitude and mean power frequency patterns of responses versus time for the aerobically- 

and resistance-trained participants were similar with increases and decreases, respectively. 

However, the resistance-trained exhibited relatively stable absolute and normalized MMG 

amplitude and MPF across time whereas the aerobically-trained participants displayed increases 

in MMG amplitude and decreases in MMG MPF. In addition, MMG amplitude and MPF values 

for the resistance-trained subjects were greater than the aerobically-trained subjects. The authors 

suggested the relatively stable absolute and normalized MMG amplitude and mean power 
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frequency values for the resistance-trained participants may reflect the recruitment and fatigue 

induced drop out of fast-twitch MUs since there were significant increases in EMG amplitude 

and decreases in EMG MPF. The linear increases in absolute and normalized MMG amplitude 

and linear decreases in absolute and normalized MMG mean power frequency across the 30 

second fatiguing task for the aerobically-trained individuals may be explained by the influence of 

greater type I MHC for the VL. For example, the increase in MMG amplitude across time may 

suggest lower fatigue-induced dropout of fast twitch MUs, while the decrease in MMG mean 

power frequency over time could be explained by greater firing rates and longer twitch durations 

of the MUs due to greater amounts of type I MHC for the VL. Thus, the physical properties of 

the MU pool, particularly the ratio of fast-twitch and slow-twitch contractile proteins and their 

influence on fatigability and force twitches, play a prominent role on firing rate characteristics at 

a steady force.  

 

Herda, Housh, Fry, Weir, Schilling, Ryan, and Cramer (2010) 

 This study investigated the log-transformed EMG and MMG amplitude-force 

relationships for aerobically-trained, resistance-trained, and sedentary individuals during an 

isometric ramp contraction from 5% to 90% MVC. Muscle biopsies, skinfold thickness 

measurements, and EMG and MMG were collected for the VL. Linear regressions were 

performed on the log-transformed EMG- and MMG-amplitude vs. force relationships and the 

slopes and the antilog of the y-intercept were calculated. Analysis of the muscle biopsies 

indicated the aerobically-trained individuals had the greatest percentage of type I fiber area, the 

resistance-trained had the greatest percentage of type IIa fiber area, and the sedentary individuals 

had the greatest percentage of type IIx fiber area. The aerobically-trained had lower slopes for 
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the MMG amplitude-force relationships compared to the resistance-trained and sedentary 

individuals. The authors suggested the slopes for the log-transformed MMG amplitude-force 

relationships may have reflected the differences in fiber area-related MU activation strategies 

between individuals with predominantly type I vs. type II fiber area in the VL. For example, the 

MMG amplitude-force force relationships for the aerobically-trained group plateaued earlier than 

the resistance-trained and sedentary groups. These findings suggest the aerobically-trained 

group, which had significantly higher amounts of type I fiber area, may begin rate coding earlier 

in the force spectrum than the resistance-trained and sedentary groups (predominately type II 

fiber area). 

 

 Herda, Siedlik, Trevino, Cooper, and Weir (2015) 

 The authors examined the influence of chronic training (> 3 years) on MU firing rates for 

the VL. Five resistance- and five aerobically-trained individuals performed an isometric 

trapezoidal contraction at 40% and 70% MVC. Surface EMG was recorded for the VL and the 

EMG signal was decomposed to extract the firing events of single MUs. The aerobically-trained 

individuals had greater firing rates during the 40% and 70% contraction than the resistance-

trained individuals. In addition, the difference in the mean MU firing rates were becoming larger 

with increments in the recruitment threshold between the chronic training groups. The findings 

suggest that differences in MU mean firing rate behavior can occur within a muscle as a result of 

chronic training status and/or type I% MHC area.  

 

Trevino and Herda (2015) 
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 This study investigated the MMG amplitude-force relationships for 5 aerobically-trained, 

5 resistance-trained, and 5 sedentary individuals during an isometric trapezoidal muscle action at 

60% MVC of the leg extensors that included a linearly increasing, steady force, and linearly 

decreasing segment. MMG was recorded from the VL and slopes were calculated from the 

natural log-transformed MMG amplitude-force relationships for the linearly increasing and 

decreasing segments for each participant. In addition, MMG amplitude was averaged for the 

entire steady force segment. MMG amplitude for the steady force segment was not different 

among groups. However, the slopes for the resistance-trained and sedentary individuals during 

the linearly increasing and decreasing segments were significantly greater (P < 0.05) than the 

aerobically-trained individuals. Therefore, the resistance-trained and sedentary individuals 

displayed greater acceleration in the MMG amplitude-force relationships during the linearly 

increasing and decreasing muscle actions. The authors suggested the aerobically trained relied 

primarily on MU firing rates and/or had a greater magnitude of active muscle stiffness via fusion 

of twitches at the higher force levels than the resistance-trained and sedentary individuals. Thus, 

MU activation and deactivation control strategies were influenced by training status.  

 

Meijer, Jaspers, Rittweger, Seynnes, Kamandulis, Brazaitis, Skurvydas, Pisot, Simuni, Narici, 

and Degens (2015) 

 This study investigated the contractile properties of single muscle fibers among body-

builders, power athletes, and control subjects via biopsies taken from the VL. Maximal isotonic 

contractions were performed with single muscle fibers that were typed by sodium dodecyl sulfate 

poly-acrylamide gel electrophoresis. The muscle fibers of the body builders and the power 

athletes generated greater maximal isometric tension than the sedentary subjects. Across all 
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subjects, the force generated for type I fibers was significantly lower than IIA and IIa/IIx fibers. 

These findings suggest that MHC isoform content would influence twitch forces of the MU.  

 

Trevino, Herda, Fry, Gallagher, Vardiman, Mosier, and Miller (2016) 

 The authors investigated the influence of MHC isoform content on the mechanical 

behavior of the VL during isometric trapezoidal muscle actions at 40% and 70% MVC. Muscle 

biopsies were collected and MMG was recorded from the VL, respectively. For the linearly 

increasing and decreasing segments, linear regressions were fit to the natural-log transformed 

MMG amplitude–force relationships and MMG amplitude was selected during the during the 

steady force segment at the targeted force. Correlations were performed among type I percent 

MHC isoform content and the slopes from the MMG amplitude-force relationships during the 

linearly increasing and decreasing segments and MMG amplitude at the targeted force. For the 

40% isometric trapezoidal contraction, correlations were significant among type I percent MHC 

isoform content and the slopes from the MMG amplitude-force relationships during the linearly 

increasing and decreasing segments, and MMG amplitude for the steady force segment. This is 

the first study to report relationships between type I percent MHC isoform content and MMG 

amplitude of muscle in vivo. The significant relationships occurred primarily during the lower 

intensity contraction, which was likely the result of force being produced by predominately the 

lower-threshold MUs. The authors suggested that higher type I percent MHC isoform content 

reduced acceleration in MMG amplitude during the 40% MVC and the amplitude during the 

steady force segments. 

 

Trevino, Herda, Fry, Gallagher, Vardiman, Mosier, and Miller (2016) 
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 This study investigated the relationships among the MHC isoform content of the VL and 

MU firing rates at recruitment, targeted force, and derecruitment. Twelve participants completed 

a 40% isometric trapezoidal muscle action that included a linearly increase, steady force, and 

decreasing segment. During testing, surface EMG signals were collected for the VL and later 

decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) 

firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. 

recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold 

relationships for each subject. Following testing, participants gave a muscle biopsy of the VL 

and electrophoretic techniques were utilized to quantify type I MHC isoform content. 

Correlations were performed among type I MHC isoform content and the slopes and y-intercepts 

for the three relationships. Type I MHC isoform content was correlated with the slopes of the 

mean firing rate vs. recruitment threshold relationships at targeted forces, particularly the higher-

threshold MUs. This study supports the hypothesis that the physical properties of the 

motorneuron pool influence MU firing rate characteristics.  

 

Endurance Training and Motor Unit Behavior of the Vastus Lateralis 

 

Vila-Chã, Falla, and Farina (2010) 

 The authors investigated MU behavior during submaximal contractions after six weeks of 

endurance or resistance training. Thirty healthy men (age, 26.0 ± 3.8 yr) who did not regularly 

participate in endurance or resistance training were randomly assigned to an endurance-, 

resistance-training, or control group. The intensity of the training programs progressively 

increased and participants had three experimental sessions (pre-, mid-, and post-program 
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completion). For each experimental session, participants performed maximal and randomly 

ordered submaximal (10%, 30% MVC, and 30% to task failure) isometric knee extensions. 

Surface and intramuscular electrodes were used to acquire EMG signals for the VL, vastus 

medialis obliquus (VMO), and biceps femoris muscles during the maximal and submaximal 

isometric contractions. The intramuscular EMG recordings were decomposed and mean 

discharge rates were computed. In addition, MU conduction velocity was investigated from the 

surface EMG signals. Six weeks of endurance training significantly increased time to task failure 

by 29.7 ± 13.4%, but did not change MVC or maximal rate of force development RFD. 

Conversely, 6 weeks of strength training significantly increased MVC force by 17.5 ± 7.5% and 

maximal RFD by 33.3 ± 15.9%, but did not influence time to task failure. In addition, MU 

conduction velocity increased during the 30% contraction for both groups following their 6 week 

training programs with no differences between the groups. For the 10% MVC, average MU 

discharge rate of the VL was not influenced by training. However, for the 30% MVC, the 

average MU discharge rate significantly decreased for the endurance-trained, whereas the 

opposite was true for the strength trained. For the same MUs that could be identified during the 

10% and 30% MVC, the difference in the discharge rates between the lower and higher force 

increased following strength training but decreased following endurance training. The findings in 

this study suggest 6 weeks of endurance- and strength-training elicit different alterations in 

discharge rates, conduction velocity, and fatigability of the MU.  

 

Vila-Cha, Falla, Correia, and Farina (2012) 

 In this study, the effect of separate strength and endurance training programs on MU 

firing rates and fiber membrane properties during fatiguing contractions was investigated. Thirty 
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healthy men (26.0 ± 3.8 yr) without regular strength or endurance training experience were 

randomly assigned to one of three groups: endurance-, resistance-trained, and control group. The 

training programs were 6 weeks long for a total of 18 sessions with progressive increases in load 

intensity. Participants performed an experimental session before and after completing the 

training program. For each experimental visit, participants completed two MVCs followed by a 

constant isometric contraction at 10% MVC for 70 sec followed by a 30% MVC to task failure 

after a 15 minute rest. Surface and intramuscular EMG was recorded for the VL, VMO, and the 

biceps femoris. MU conduction velocity and average rectified values were recorded for the first 

ten seconds of each contraction and the last ten seconds of the 10% MVC. Intramuscular signals 

were decomposed and the MU discharge rates and interspike interval variability were computed 

for the MU spike trains. Six weeks of endurance training significantly increase time to task 

failure by 29% without any change in MVC strength. For the strength trained participants, MVC 

force increased by 16% but time to task failure was unchanged. These same variables did not 

change for the control group. Regardless of intervention group, MU firing rates decreased over 

time throughout for the 30% MVC. After 6 weeks of training, both groups exhibited greater MU 

conduction velocities for the 30% MVC. In addition, the endurance group showed a lower 

decrease in MU conduction velocity than the strength trained group.  

 

Martinez-Valdes, Falla, Negro, Mayer, Farina (2017) 

 This study utilized a novel technique of high-density surface EMG decomposition for 

MU tracking to investigate the influence of an endurance or high-intensity interval (HIIT) 

training program on MU behavior for the VL and VMO. Eighteen recreationally active healthy 

men were randomly assigned to an endurance or HIIT group. Pre- and post-training, participants 
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performed MVCs, followed by randomly ordered contractions at 10, 30, 50, and 70% MVC 

maintained for 20, 20, 15, and 10 sec respectively. In addition, a 30% MVC to task failure (10% 

< targeted force) was performed. EMG signals were recorded from the VL, VMO, and biceps 

femoris with an electrode grid and decomposed offline with an extensively validated method. 

The mean discharge rates were calculated during the steady torque segment and recruitment 

thresholds were defined as the time when the MU began discharging action potentials. A 

tracking method was used identify and match MUs that were present in the pre- and post-

intervention trials. An incremental exercise test to exhaustion was performed 24 hours after the 

strength and EMG measurements to assess maximal aerobic capacity. The training protocols 

included 6 training sessions over 14 days. For the endurance protocol, training consisted of 90-

120 mins of continuous cycling at 65% VO2MAX, whereas the HIIT group participants completed 

eight to twelve, 60 sec bouts of high-intensity cycling at 100% peak power output with 75 sec of 

cycling at 30 watts for recovery. Only the HIIT group increased peak toque while both groups 

significantly increased VO2MAX following their training program. The endurance group increased 

their time to task failure following training whereas the strength group showed no difference 

after training. EMG amplitude during the 10% and 30% MVC was not different post-training for 

either group, however, only the HIIT showed increases for the 50%, 70%, and MVCs. For the 

10% and 30% MVC, discharge rates were not influenced by either training program. Conversely, 

the firing rates for the VL and VM increased for the 50% and 70% only for the HIIT group. 

These findings suggest that HIIT and endurance training elicit different neuromuscular 

adaptations. The authors hypothesized the findings were a result of differences in the exercise 

intensities and training volumes between the programs.  
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Motor Unit Behavior during Prolonged and/or Repeated Contractions 

 

Dorfman, Howard, and McGill (1990) 

 This study examined MU behavior during submaximal fatiguing contractions of the left 

brachial biceps. Ten healthy adults (5 men and 5 women; ages 24-52 years) performed a MVC 

followed by a steady isometric contraction at 20% MVC for a total of 45 mins with a 1 minute 

rest period every 5 mins. EMG was recorded in 10 sec epochs with concentric needle electrodes 

and MUAPs were extracted using an automated decomposition method to determine MUAP 

sizes, MU firing rates, and coefficient of interspike-interval variability (CIV). A total of 4551 

MUAP were analyzed for this study. Following 15 minutes of exercise for the 30% MVC, mean 

MU firing rate increased and continued to rise until fatigue (pre =13.4 ± 1.7 Hz; post = 16.0 ± 

1.9 Hz). In addition, MUAP size was significantly greater at the end of the exercise (605 ± 134 

µV) compared to baseline (514 ± 137 µV). The authors reported a triphasic behavior in response 

to prolonged, submaximal exercise, such as: (1) a brief decrease and stabilization of the MU 

firing rates of recruitment, followed by (2) a slow and continual increase,  and then (3) the 

recruitment of larger, higher-threshold MUs. The increase in firing rates and the recruitment of 

larger, higher-threshold MUs is likely a compensation for the loss in MU twitch forces, which 

would explain the increases in the surface EMG signal that is commonly associated with fatigue 

in other research studies.  

 

Carpentier, Duchateau and Hainaut (2001) 

 The authors investigated MU behavior and contractile changes during fatigue for the FDI. 

Eight healthy participants (4 male and 4 female) were tested on multiple occasions (3 to 11 
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visits) with at least 1 week between visits. Surface and intramuscular EMG was recorded for the 

FDI and single MU mechanical behavior was determined with a spike triggered averaging. 

Participants completed intermittent contractions at 50% MVC which included a 3 sec linearly 

increasing segment, a 10 second plateau at targeted force, followed by a 3 sec return to baseline. 

There was a 4 sec rest period between contractions and this was repeated 3 times per minute until 

inability to maintain the targeted force for three, consecutive contractions. Investigated MU 

variables included recruitment and derecruitment thresholds, and mean discharge frequency for 

each MU during the steady force plateau. The mean endurance time was 8.38 ± 3.55 mins (range 

= 6 – 16 mins). As participants completed successive contractions, additional MUs were 

recruited and there were changes in recruitment thresholds and discharge rates with a 31% 

increases in the surface EMG signal. Recruitment order was unchanged during the protocol, 

however, there were non-systematic changes in recruitment thresholds. Lower-threshold MUs 

either maintained or increased recruitment forces, whereas recruitment thresholds were 

decreased for the higher-threshold MUs. However, derecruitment thresholds increased for the 

majority of the observed MUs. Lower- and higher-threshold MUs showed a systematic and 

progressive decrease in firing rates but the change was only significant for the lower-threshold 

(<25% MVC) MUs. Alterations of contractile forces differed as a function of recruitment 

threshold. For example, MUs recruited below 25% MVC increased contractile forces whereas 

the converse was true for MUs recruited above 25% MVC. The authors hypothesized the decline 

in discharge rates for the lower-threshold MUs was due to a slowing of their mechanical 

responses. However, the same adaptation during the task did not occur in the higher-threshold 

MUs that exhibited an increase in their mechanical time course with only a slight increase in 
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discharge rate. Lastly, it appears the for the FDI, lower-threshold MUs (<25% MVC) are fatigue 

resistant whereas the same cannot be said for the higher-threshold MUs (>25% MVC).  

 

Adam and De Luca (2003) 

 In this study, five healthy men (21.4 ± 0.9 yrs) performed three isometric MVCs for the 

knee extensors followed repeated contractions at 20% MVC. The template for the repeated 

contractions included a 5 sec ramp up to 50% MVC, followed by a brief hold and then a decrease 

to 20% MVC for a 50 sec constant hold. The surface EMG signal was recorded for the VL, VM, 

rectus femoris, and the biceps femoris and a quadrifillar fine wire electrode was inserted into the 

VL to observe individual MU behavior. Three subjects also completed the fatiguing protocol on 

a separate occasion and received transcutaneous electrical stimulation during a 6 sec rest period 

between each contraction. Results indicated that surface EMG recorded for the leg extensors 

increased from the first to the last contraction. Individual firing rate behavior indicated more 

MUs were recruited for the linearly increasing segment as contraction number increased, more 

MUs were continuously active in successive contractions when torque was decreased from 50% 

to 20% MVC, and a greater number of MUs were active during the 20% torque plateau. In 

addition, recruitment thresholds of all MUs decreased and more MUs were recruited, while MU 

recruitment order was maintained. It was suggested the loss in MU twitch forces due to fatigue 

resulted in an increase in excitatory drive to match the targeted forces.  

 

Adam and De Luca (2005) 

 The authors of this study investigated MU firing rates for the VL during fatiguing 

contractions. Five healthy males performed three isometric MVCs for the knee extensors 
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followed repeated contractions at 20% of maximal strength. The template for the repeated 

contractions included a 5 sec ramp up to 50% MVC, followed by a brief hold and then a decrease 

to 20% MVC for a 50 sec constant hold. The surface EMG signal was recorded for the VL, VM, 

rectus femoris, and the biceps femoris and a quadrifillar fine wire electrode was inserted into the 

VL to observe individual MU behavior. Three subjects also completed the fatiguing protocol on 

a separate occasion and received transcutaneous electrical stimulation during a 6 sec rest period 

between each contraction. Normalized EMG amplitude indicated the relative force contribution 

for all investigated muscles remained constant throughout the fatiguing protocol. MU firing rates 

for the VL decreased during the first 10-20% of the work time during the fatiguing contractions. 

However, as the contraction time increased, there was an increase in firing rates and recruitment 

of additional MUs as force was maintained. In addition, electrical stimulation between fatiguing 

contractions indicated increases in whole muscle twitch forces later followed by a decrease. The 

authors stated the short-term MU potentiation (increased MU twitches forces) at the onset of the 

fatiguing protocol resulted in a reduced net excitatory drive that reduced firing rates. As the force 

twitches decreased during the fatiguing task, net excitatory drive increases to increase firing rates 

and recruit additional MUs to compensate for a reduction in twitch forces. Furthermore, the 

hierarchical arrangement between MU firing rates and recruitment thresholds remained intact 

during fatigue. 

 

Contessa, De Luca, and Kline (2016) 

 This study investigated the relationship between force and MU firing rates during fatigue. 

Five healthy participants (3 men and 2 women; 24 – 33 yrs) performed MVCs of the dominant 

leg extensors followed by repetitive isometric trapezoidal muscle actions that included a linearly 
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increasing segment at a rate of 10% MVC/s to 30% MVC, a 48 sec steady force segment, 

followed by a linear decreasing segment at a rate of 10% MVC/s to baseline. Participants 

repeated the task until the average force decrease by more than 5% from the 30% targeted force. 

All contractions had a 6 sec rest interval for baseline noise calculation. Surface EMG was 

recorded for the VL and the surface EMG signal was decomposed to extract the firing events of 

their constituent MUAP trains. The following was identified for each MU: (1) MUAP size, (2) 

recruitment threshold, and (3) mean firing rate during between sec 35 and 45 during the steady 

force segment. During the protocol, the mean firing rates for MUs with similar amplitudes 

increased across contractions while the 30% MVC was maintained. In addition, higher-threshold 

MUs were recruited during the linearly increasing and steady force segment during subsequent 

contractions. Furthermore, the recruitment thresholds for MUs with similar MUAP amplitudes 

decreased across contractions. Lastly, the surface EMG signals for the VL, VMO, and rectus 

femoris similarly increased and, thus, the observed MU changes were not a result of differences 

in the activation patterns of the leg extensors. The inverse relationship between MU recruitment 

threshold and firing rate remained, however, the adaptations observed during fatigue were 

hypothesized to be a compensation for changes in the mechanical properties (force twitches) of 

the MU. 

 

Skeletal Muscle Cross-Sectional Area and Quality Measures via Ultrasonography  

 

Ahtiainen, Hoffren, Hulmi, Pietikainen, Mero, Avela, and Hakkinen (2010) 

 This study investigated the reliability and validity of US to detect changes in muscle CSA 

after a heavy resistance training program or control period by comparing results between US and 
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magnetic resonance imaging (MRI). Twenty-seven untrained, healthy males volunteered for this 

investigation. Twenty males were randomized to the resistance training group and 7 to the non-

training group. mCSA measurements were taken on the right leg pre- and post-study with US 

and MRI. The resistance training program designed for muscular hypertrophy was performed 

twice a week. Both the US and MRI indicated significant increases in VL CSA following 

training while no changes were observed in the control group. A high repeatability and validity 

was reported between subsequent US measurements and US and MRI, respectively. Although 

MRI measurements CSA values were systematically higher than the US, both methods displayed 

a high agreement in identifying muscle CSA changes. Thus, US provides measures of muscle 

CSA that are repeatable even though MRI consistently produced lager CSA values.  

 

Rosenberg, Ryan, Sobolewski, Scharville, Thompson, King (2014) 

 In this study, the authors investigated the test-restest reliability of panoramic US imaging 

to measure muscle size and quality. Sixteen men has US images taken of their medial 

gastrocnemius on two occasions separated by 2-7 days. For CSA measurements, the region of 

interest was “as much of the muscle as possible without any surrounding fascia.” Muscle quality 

was determined by the echo intensity values (EI) (gray-scale analysis of individual pixels within 

the US image) by a computer-aided gray scale analysis. The same area used for the CSA 

measurement was used for the mean EI value. EI values can range from 0 to 255 arbitrary units 

(0 = black, 255 = white). Between testing visits, there was acceptable reliability for CSA and EI. 

Therefore, US panoramic imaging is a reliable method for determining muscle size and quality. 
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THE INFLUENCE OF SEX AND MUSCLE QUALITY ON MOTOR UNIT 

RECRUITMENT PATTERNS OF THE VASTUS LATERALIS 

 

ABSTRACT  

 

 Strong relationships have been reported between the increase in muscle cross-sectional 

area (mCSA) and motor unit action potentials (MUAP) sizes for higher-threshold MUs for the 

vastus lateralis (VL) of males. However, it is unknown if sex-related differences in muscle size 

and quality are correlated with the slopes and y-intercepts for the MUAP size vs. recruitment 

threshold (RT) relationships. Ten males (21.10 ± 1.97 yrs; 81.08 ± 13.75 kg) and ten females 

(23.70 ± 6.27 yrs; 61.26 ± 14.23 kg) volunteered for this investigation. Ultrasonography was 

used to examine mCSA, echo intensity (mEI), subcutaneous fat (sFAT), and muscle quality 

(mQT [mCSA/mEI]) for the VL. Surface electromyographic decomposition techniques were 

applied to assess MUAP sizes in relation to RT of the VL during a 40% and 70% submaximal 

isometric contraction. The males had greater mCSA (P = 0.002), mQT (P = 0.001), and slopes 

for the MUAP size vs. RT relationships (P = 0.001), whereas the females had greater sFAT (P = 

0.003) and mEI (P = 0.001) for the VL. In addition, all relationships between ultrasound 

parameters and the slopes for the 40% and 70% MUAP size vs. RT were significant (P < 0.001 – 

0.020), with the greatest amount of variance explained by mQT (r = 0.707 – 0.778). The sex-

related differences in mCSA, mQT, and MUAP sizes in relation to RT suggests greater muscle 

fiber sizes of the higher-threshold MUs for the males.    
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INTRODUCTION 

 

 Increases in excitatory synaptic input to the motor unit (MU) pool (1) results in the 

orderly recruitment of MUs that are not only greater in size (2-4), but are also characterized by 

greater MU action potential (MUAP) amplitudes (2, 4, 5) as measured via intramuscular or 

surface electromyographic (sEMG) electrodes (6). Recent technological advancements in the 

automated algorithms used to decompose the sEMG signal from multichannel electrode arrays 

now allow the discrimination of MUAP waveforms from large populations of MUs (7, 8). 

Previous studies have reported strong positive relationships between the MUAP size vs. 

recruitment threshold (RT) relationships (2-4, 9). Therefore, the examination of the size principle 

(10) is now possible across large force ranges via the decomposition of the sEMG signal (11).  

 Previously, it has been reported that there is a strong correlation between the increase in 

muscle cross-sectional area (mCSA) from ultrasound (US) images and MUAP sizes of the 

higher-threshold MUs as a result of high intensity resistance training (12). Thus, increased 

contractile area (muscle fiber growth) that comprised the higher-threshold MUs resulted in an 

increase in MUAP sizes and, subsequently, changes in muscle size were associated with the 

change in slopes from the MUAP size vs. RT relationships. In theory, an individual that has 

greater muscle fiber area and greater mCSAs would possess larger y-intercepts and slopes from 

the MUAP size vs. RT relationships, however, this has yet to be tested. 

In addition, echo intensity (mEI), via the US images, reflects intramuscular non-

contractile tissue and has been correlated with intramuscular fat (13-16). Thus, normalizing 

mCSA to mEI provides an estimation of muscle quality (mQT [(mCSA/mEI]). It is hypothesized 

that the y-intercepts and/or slopes from the MUAP size vs. RT relationships might have a 

stronger correlation to mQT since it reflects both the contractile and non-contractile area. 
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 Previously, it has been reported that untrained young adult men possess greater area of 

type I (19%), IIA (59%), and IIB (66%) muscle fiber (17) and lower mEI than women for the 

vastus lateralis (VL) (18). It is understood that fibers that comprise a MU do not strictly express 

one fiber type (I vs. II), but rather co-express type I and II characteristics (19, 20). However, it is 

believed that fibers that express primarily type II characteristics tend to comprise higher-

threshold more so than lower-threshold MUs (21-23). Given that the type I and II fibers are 

reported to be 19% and 59 to 66% larger for untrained men than women, it is speculative that 

there would be greater differences in the MUAP sizes of higher- than lower-threshold MUs 

between the men and women.     

MUAP size vs. RT relationships can also provide insight on MU recruitment patterns, 

such as, it has been reported that larger sized MUs were being recruited to achieve the same 

absolute targeted force during repetitive fatiguing contractions (24). The MUAP size vs. RT 

relationship, however, has yet to be investigated as a function of contraction intensities.  It is 

unclear if MU recruitment patterns are similar for moderate- and high-targeted force levels. 

Therefore, the purposes of this study were to examine potential sex-related differences in the 

vastus lateralis (VL) for the mCSA, mEI, and mQT and the possible correlations of these 

parameters with the MUAP size vs. RT relationships. In addition, a secondary aim of this project 

was to indicate if MU recruitment patterns differed between moderate- and high-intensity 

targeted forces via the MUAP sizes vs. RT relationships.  
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METHODS 

 

Subjects 

 Ten healthy men (mean ± SD age = 21.10 ± 1.97 yrs, height = 180.60 ± 3.41 cm, weight 

= 81.08 ± 13.75) and ten healthy women (age = 23.70 ± 6.27 yrs, height = 165.00 ± 6.43 cm, 

weight = 61.26 ± 14.23) who reported no participation in any form of structured exercise 

programs for the previous 3 years volunteered for this investigation. None of the participants 

reported any history of current or ongoing neuromuscular diseases or musculoskeletal injuries 

specific to the ankle, knee, or hip joints. This study was approved by the University’s 

institutional review board for human subjects research. Each subject read and signed an informed 

consent form and completed a pre-exercise health status questionnaire. 

 

Ultrasound Imaging 

 US was used to measure anatomical mCSA, mEI, and subcutaneous fat (sFAT) of the 

VL. Distance from the anterior superior iliac spine to the superior border of the patella on the 

right leg was measured and a mark was placed at 50% of total leg length. The participants laid in 

a supine position for 10 minutes to allow fluid shifts to occur. A portable brightness mode (B-

mode) ultrasound imaging device with a multi-frequency linear-array probe (12 L-RS; 5-13 

MHz; 38.4-mm field of view) in conjunction with GE logiq e Logic View software was used to 

generate real-time images of the VL. Equipment settings included gain (68 dB) frequency (10 

MHz), and depth (4.5 cm) to optimized image quality and was held constant across all subjects. 

Great care was taken to ensure consistent minimal pressure was applied with the probe to the 

skin to avoid any muscle compression. A generous amount of water-soluble transmission gel was 

applied to the skin to reduce possible near-field artifacts and enhance acoustic coupling. A 
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custom-made probe support composed of high-density foam padding was positioned 

perpendicular to the longitudinal axis of the thigh and fastened with an adjustable Velcro strap to 

ensure US probe movement in the transverse plane. The panoramic function was used to obtain a 

single mCSA image of the VL. All US imaging analyses was performed using ImageJ software 

(Version 1.46r, National Institutes of Health, Bethesda, MD, USA). Each image was scaled from 

pixels to cm using the straight-line function.  For mCSA, the muscle was outlined using the 

polygon function, with care taken to exclude the surrounding fascia. Muscle quality was 

evaluated using mEI from the same selected region to determine mCSA. The raw mEI was 

calculated via gray-scale analysis using the standard histogram function and corrected for sFAT 

(15). sFAT was quantified as the distance between the skin and the superficial aponeurosis of the 

muscle. mCSA was then normalized to EI (mCSA/mEI) to provide an estimate of muscle quality, 

such as, the ratio of contractile area vs non-contractile area (mQT). 

 

Isometric Strength Testing 

 Each participant was seated with restraining straps over the pelvis, trunk, and 

contralateral thigh, and the lateral condyle of the femur was aligned with the input axis of a 

Biodex System 3 isokinetic dynamometer (Biodex Medical Systems, Shirley, NY) in accordance 

with the Biodex User’s Guide (Biodex Pro Manual, Applications/Operations, 1998). All 

isometric leg extensor strength assessments were performed on the right leg at a flexion of 90°. 

Isometric strength for the right leg extensor muscles was measured using the torque signal from 

the Biodex System 3 isokinetic dynamometer. 

 During the experimental trials, participants performed three isometric maximal voluntary 

contractions (MVCs) with strong verbal encouragement for motivation followed by submaximal 
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isometric trapezoid muscle actions at 40% and 70% MVC. The highest torque output for the 

MVCs determined the maximal torque output for each participant and the force level for the 

submaximal isometric trapezoid muscle actions. For all isometric trapezoid muscle actions, the 

force was increased at 10% MVC/s to the desired force level, where it was held during 12 s 

plateau and then decreased to baseline at a rate of 10% MVC/s. Therefore, the duration of each 

contraction lasted 20 and 26 s, respectively. Three to five minutes of rest was given between 

each muscle action. Participants were instructed to maintain their force output as close as 

possible to the target force presented digitally in real time on a computer monitor. Participants 

were given a second attempt if unable to maintain the targeted force during the initial trial. 

 

Electromyographic Recording 

 During the trapezoid muscle actions, surface EMG signals were recorded from the VL 

using a 5-pin surface array sensor (Delsys, Boston, MA). The pins have a diameter of 0.5 mm 

and are positioned at the corners of a 5 x 5 mm square, with the fifth pin in the center. Prior to 

sensor placement, the surface of the skin was prepared by shaving, removing superficial dead 

skin with adhesive tape (3M, St Paul, MN), and sterilizing with an alcohol swab. The sensor was 

placed over the VL muscle at 50% of the distance between the greater trochanter and the lateral 

condyle of the femur with adhesive tape. A reference electrode was placed over the left patella. 

The signals from four pairs of the sensor electrodes were differentially amplified and filtered 

with a bandwidth of 20 Hz to 9.5 kHz. The signals were sampled at 20 kHz and stored on a 

computer for off-line analysis. 

 

EMG decomposition  
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 For detailed information regarding the signal processing of the EMG signals, refer to De 

Luca et al. (7) and Nawab et al. (8). Action potentials were extracted into firing events of single 

MUs from the four separate EMG signals via the Precision Decomposition III algorithm as 

described by De Luca et al. (7). This algorithm is designed for decomposing EMG signals into 

their constituent MU action potential trains. The accuracy of the decomposed firing instances 

was tested with the reconstruct-and-test procedure (8). Only MUs with > 90% accuracies were 

used for further analysis. For each MU, 3 parameters were extracted from the firing rate data: 1) 

the recruitment threshold (RT) [expressed relative to MVC (%MVC)], 2) motor unit action 

potential size (MUAPSIZE) [expressed in millivolts (mV)], and 3) MUAP duration (MUAPDUR) 

[expressed in milliseconds (ms)]. An average 0.10-ms epoch of force that began at the first 

discharge of the MU was selected as the RT for the MU. The averages of the peak-to-peak 

amplitude (mV) and the duration (ms) from each of the four action potential waveforms were 

used to calculate MUAPSIZE and MUAPDUR, respectively. 

 

Statistical Analysis  

For each subject and contraction, linear regressions were performed on the MUAPSIZE vs. 

RT relationships. Separate two-way mixed factorial ANOVAs (sex [male vs. female] x intensity 

[40% vs. 70%]) were used to examine possible differences in the y-intercepts and slopes from 

the MUAPSIZE vs. RT relationships. In addition, separate two-way mixed factorial ANOVAs (sex 

[male vs. female] x intensity [40% vs. 70%]) was used to examine the differences in and the y-

intercepts and slopes for the MUAPDUR vs. RT relationships. Post-hoc follow-up tests included 

independent and paired samples t-tests with Bonferroni corrections. In addition, independent 

samples t-tests were used to examine differences in mCSA, mEI, mQT, and sFAT between 

sexes. Furthermore, Pearson’s product moment correlation coefficients were calculated 
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comparing mCSA, sFAT, mEI, and mQT of the VL with the slopes and y-intercepts from the 

40% and 70% MVCs. The slopes and y-intercepts were calculated using Microsoft Excel version 

2013 (Microsoft, Redmond, WA). The level of significance was set at P ≤ 0.05, and all statistical 

analyses were performed with SPSS 22 (IBM, Armonk, NY). 
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RESULTS 

 

 Table 1 indicates the number of MUs recorded per subject, RTs and MUAPSIZE ranges, 

slopes, y-intercepts, and r values from the linear regressions. The MUAPSIZE vs. RT relationships 

for each subject and contraction were significant (P ≤ 0.05, males: r = 0.81 ± 0.09, females: r = 

0.75 ± 0.11) with the slopes being positive.  

 

MUAPSIZE vs. RT Relationships  

 For the slopes, the analysis indicated no significant two-way interaction (sex x intensity; 

P = 0.066), however, there were significant main effects for sex (P = 0.001) and intensity (P = 

0.018). The slopes for the 70% MVC (0.00430 ± 0.00256 mV/%MVC) were significantly greater 

than the 40% MVC (0.00343 ± 0.00185 mV/%MVC) when collapsed across sex. In addition, the 

slopes for the males (0.00525 ± 0.00224 mV/%MVC) were significantly greater than the females 

(0.00241 ± 0.00102 mV/%MVC) when collapsed across intensity (Figure 1A). The greater 

slopes indicate there was a greater relative growth in MUAPSIZES in relation to RT for the males 

than females. The differences in slopes between the 70% and 40% MVCs was a function of 

observed RT ranges, such as, relative growth of MUAPSIZES of the higher-threshold MUs (26.5 – 

57.7% MVC) from the 70% MVC was much greater than for the lower-threshold MUs (3.4 – 

22.0% MVC) from the 40% MVC.  

 Of note, 15 of the 20 linear regression models (75%) produced a negative y-intercept 

value from the 70% MVC. The negative y-intercepts were the result of the rapid rise in 

MUAPSIZES for the higher-threshold MUs in conjunction with few recorded lower-threshold 

MUs recruited < 26.5 ± 8.1% MVC (Table 1). The negative y-intercepts is not within 
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physiological expectations and, thus, considering the RT ranges when interpreting these 

relationships from the 70% MVC is necessary.  

Nonetheless, the statistical analysis indicated a significant two-way interaction (sex x 

intensity; P = 0.005). The y-intercepts for the males from the 70% MVC were significantly less 

than the females (P = 0.004; males = -0.108 ± 0.074 mV/%MVC, females = -0.017 ± 0.074 

mV/%MVC), the y-intercepts for the males was significantly greater during the 40% MVC 

compared to the 70 % MVC (P = 0.001; 40% = 0.0174 ± 0.0100 mV/%MVC, 70% = -0.108 ± 

0.074 mV/%MVC), and the y-intercepts for the females during the 40% MVC was greater 

compared to the 70% MVC (P = 0.019; 40% = 0.0194, 70% = -0.0172 ± 0.0460 mV/%MVC).  

 There was not an overlap of RTs ranges between the 40% and 70% MVC (Table 1) and, 

therefore, a thorough examination of differences in recruitment patterns was not possible. 

However, to explore the possible intensity-related differences on MU recruitment patterns, 

predicted MUAPSIZES for MUs recruited at 26% MVC were calculated from the linear regression 

equations for each subject from the MUAPSIZE vs. RT relationships for the 40% and 70% MVCs 

and was analyzed with a mixed factorial ANOVA (sex x contraction). The RT of 26% MVC was 

chosen as it was the average minimum RT recorded during the 70% MVCs (Table 1). To avoid 

bias as a result of the range of RTs, subjects with no MUs recorded < 35% MVC for the 70% 

MVC (4 subjects) or had a negative predicted MUAPSIZE at 26% MVC (1 subject) were not 

included in the analysis.  The analysis indicated no significant two-way interaction (P = 0.051), 

however, there were main effects for sex (P = 0.012) and intensity (P = 0.003). The predicted 

MUAPSIZES for the 40% MVC (0.107 ± 0.055 mV) were greater than the 70% MVC (0.056 ± 

0.020 mV) when collapsed across sex. In addition, 14 of 15 individuals had a smaller predicted 

MUAPSIZE at 26% MVC from the 70% than the 40% MVC. The predicted MUAPSIZES for males 
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(0.100 ± 0.062 mv) were greater than the females (0.066 ± 0.025 mV) when collapsed across 

intensity.    

 

Ultrasound measurements 

 The analysis indicated significantly greater mCSA (P = 0.002) (Figure 2A) and mQT (P = 

0.001) (Figure 2B) for the males (25.21 ± 6.82 cm2
,
 0.33 ± 0.13 AU/cm2) than the females (15.61 

± 4.64 cm2, 0.12 ± 0.04 AU/cm2) and significantly greater mEI (P = 0.001) (Figure 2C) and 

sFAT (P = 0.003) (Figure 2D) for the females (135.38 ± 32.54 AU, 1.49 ± 0.57 cm) than the 

males (83.02 ± 32.54 AU, 0.66 ± 0.53 cm).  

 

Correlations 

Table 2 contains the Pearson’s product moment correlations among mCSA, mEI, mQT, 

sFAT, and the slopes and y-intercepts from the MUAPSIZE vs. RT relationships for the 40% and 

70% MVCs. There were many significant correlations and, of importance, the slopes from the 

40% and 70% MVCs were significantly correlated (P ≤ 0.001 – 0.020) with mCSA (r = 0.631, r 

= 0.516) and mQT (Figures 3A, 3B) (r = 0.778, r = 0.707) (Figures 3C, 3D).  

Noteworthy, there were slightly stronger correlations between mCSA and mQT with the 

slopes from the 40% than 70% MVC. There are two possible non-physiological explanations for 

the stronger correlations between the ultrasound and MUAPSIZE data from the 40% MVC. First, 

more MUs on average were recorded during the 40% (26.0 ± 6.4) than 70% MVC (19.7 ± 5.7) 

and, thus, the ratio of recorded vs. active MUs during the 40% MVC would have been greater 

and may lead to a better characterizing of the MU pool. Second, there was a greater commonality 

of RT ranges among subjects during the 40% than 70% MVC (Table 1).  
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When separated by sex, there was no longer correlations between mCSA (r = 0.293, P = 

0.412) and mQT (r = 0.581, P = 0.078) with the slopes from the MUAPSIZE vs. RT relationships 

for the men, unlike for the women (Table 2). A possible explanation for lack of significance was 

the recruitment range for two of the men. For two men, there were no recorded MUs with RTs > 

14% MVC. Thus, these two men possessed the lowest RTs of the last observed recruited MUs 

during the 40% MVC of all the subjects, which was well below the average RT for the men and 

women (22.0% MVC). When those two men were removed from the analysis, the correlations 

among the slopes and mCSA (P = 0.038, r = 0.736) and mQT (P = 0.004, r = 0.884) were 

significant (denoted in Figure 3). Therefore, the RT ranges of recorded MUs are important for 

the characterizing MUAPSIZES in relation to RT and should be closely examined prior to 

interpretation.  

 

MUAPDUR vs. RT Relationships 

 Five and seven of the 40 relationships were significant (P < 0.05; r = 0.379 – 0.610) for 

the 40% and 70% MVC with two subjects having significant relationships for both MVCs. No 

statistical comparisons could be made with only two subjects possessing significant relationships 

for both MVCs. Overall, the depth of recorded MUs (i.e., the positive slope) may have slightly 

increased with increments in RTs for a few of the subjects, however, there were no sex-related 

differences (Figure 4). Therefore, the sex-related differences in the MUAPSIZE vs. RT 

relationships was not a function of depth within the muscle of the recorded MUs (11, 25).   
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DISCUSSION 

 

 The main findings from this study was there were sex-related differences in mCSA, 

mQT, and slopes from the MUAPSIZES vs. RT relationships and there were significant 

correlations among mCSA and mQT with the slopes from the MUAPSIZE vs. RT relationship for 

the 40% and 70% MVC. The y-intercepts from the 70% MVC was also correlated, however, the 

majority (75%) of the y-intercepts from the individual relationships were negative due to rapid 

increases in MUAPSIZES for the higher-threshold MUs in conjunction with a lack of observed 

lower-threshold MUs. There was not an overlap of RTs ranges between the 40% and 70% MVC 

and, therefore, a comprehensive examination of differences in recruitment patterns was not 

possible. However, there is limited evidence that MUs recruited from 20% to 30% MVC during 

the 40% MVC were larger than at the same relative forces during the 70% MVC (Figures 5C, 

5D). 

 Previous research has reported greater muscle thickness and lower mEI for males than 

females for multiple muscles (18). In support, the results of the current study indicated males had 

greater mCSA for the VL than the females. In addition, females displayed greater mEI for the 

VL, likely indicating greater amounts of intramuscular fat (15, 26). Subsequently, when 

normalizing mCSA to mEI to provide an assessment of mQT, the males exhibited larger values 

and, thus, had greater amounts of contractile tissue (i.e. lean mass) of the VL compared to the 

females. Despite the similar activity levels, women displayed lower mQT, which might help 

explain the greater age-related impairments in function for women than men (18).  

 It was hypothesized that sex-related differences in mCSA and mQT would be reflected in 

the MUAPSIZE vs. RT relationships. Indeed, the findings via the US were supported by the 
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MUAPSIZE vs. RT relationships. For the 40% MVC, there were no sex-related differences for the 

y-intercepts and the observed MUAPSIZES for the lowest-threshold MUs were not different 

between groups (Figure 5A, 5B). The slopes, however, for the 40% and 70% MVC were greater 

for the men and, thus, indicating a greater increase in MUAPSIZES with increments in RT. 

Therefore, the men possessed larger MUAPSIZES of the higher-threshold MUs (Figure 5A, 5B). It 

is possible the sex-related differences in contractile area might primarily be the result of 

differences in the muscle fibers that comprise the higher-threshold MUs as evident in Figure 5B.  

Previously, Staron et al. (17) reported that the CSAs of type I and II fibers were larger for 

untrained men in comparison to untrained women. In addition, only the type II fibers for the men 

were larger in comparison to the type I fibers, unlike for the women were the type II fibers were 

of similar size to the type I fibers (17). Overall, the mean type I, IIA, and IIB fiber sizes were 

19%, 59%, and 66% greater for the men than women. Although speculative, the primary 

differences in MUAPSIZES might be the result of the larger type II muscle fibers that comprise 

more so the larger higher- than smaller lower-threshold MUs. Nonetheless, the differences in 

contractile area between untrained men and women might primarily be the result of muscle fiber 

sizes of the higher-threshold MUs.  

 The anatomical mCSA measurement includes contractile and non-contractual tissue and, 

thus, mCSA might be arbitrarily increased by fat and collagen (pseudo hypertrophy). To account 

for non-contractile tissue of the VL, a measurement of mQT (mCSA/mEI) was utilized to 

investigate if this measure provided stronger relationships than mCSA with the slopes from the 

MUAPSIZE vs. RT relationships. mCSA was significantly correlated with the slopes for the 

MUAPSIZES vs. RT threshold relationships for the 40% and 70% MVC (P ≤ 0.001 – 0.020; R2 = 

0.27 - 0.40), however, a greater amount of the variance was explained by mQT (P ≤ 0.001; R2 = 
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0.50 - 0.61). For example, individuals with greater mQT displayed larger increases in 

MUAPSIZES in relation to RT. Therefore, accounting for non-contractile tissue with a 

measurement of mQT may provide more insight regarding the contractile area of the muscle. 

 A secondary aim of the current study was to investigate if MU recruitment patterns, via 

the MUAPSIZE vs. RT relationship, are altered as a function of the targeted force. For the current 

investigation, the force increased at the same rate (10% MVC/s) during the 40% and 70% MVCs 

and, thus, insight on the influence of the targeted force level on recruitment patterns could be 

provided by comparing MUAPSIZES among common RT ranges for the 40% and 70% MVC. 

However, only a few subjects had MUs recruited in common ranges for both the 40% and 70% 

MVC. Therefore, predicted MUAPSIZES for MUs recruited at 26% MVC were calculated from 

the individual regression equations for each subject from the MUAPSIZE vs. RT relationship for 

the 40% and 70% MVC as it was the average minimum RT recorded for the 70% MVC. The 

analysis indicated the predicted MUAPSIZE at 26% MVC was greater for the 40% MVC 

compared to the 70% MVC with 14 of the 15 individuals included in the analysis displaying 

larger predicted MUAPSIZES at a RT of 26% MVC for the 40% MVC (Figure 5C, 5D). In 

addition, close examination of figure 5 also provides evidence, particularly for the men, that 

MUs with amplitudes of 0.06 to 0.10 mV and 0.04 to 0.06 mV were recruited at higher forces 

during the 70% than 40% MVC for the men and women, respectively. However, these finding 

should be interpreted with caution due to the lack of observed MUs with common RT ranges 

between the two MVCs. Future research should investigate the influence of contraction 

intensities on the MU recruitment patterns by utilizing contraction intensities with closer targeted 

forces (i.e. 40% and 60% MVC) to increase the observed MUs with common RT ranges. 
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 It is worth noting that sFAT, an anatomical factor, may be a confounding variable for the 

differences in MUAPSIZES between the males and females. For example, it has been reported that 

MUAPSIZES decrease with increases in skinfold thickness (4 to 18 mm) for superficially located 

MUs detected with surface EMG electrodes (27) and for the current study, there were greater 

amounts of sFAT for the females (1.49 ± 0.57 cm) than the males (0.66 ± 0.53 cm). Investigating 

the slopes from the MUAPSIZE vs. RT relationship allows the relative increase in MUAPSIZES 

throughout the RT spectrum to be statistically compared among individuals. Therefore, sFAT 

may reduce overall amplitudes of the MUs, however, the slopes provide insight on the rate of 

increase in MUAPSIZES with increments in RT. The greater slopes for the males compared to the 

females and the strong correlations with mCSA and mQT, despite differences in sFAT between 

groups, provide evidence that the males had greater relative increases in APSIZES for the higher-

threshold MUs than females.  

 In summary, there were sex-related differences in mCSA and mQT that were associated 

with the slopes from the MUAPSIZES vs. RT relationships for the VL. The results tentatively 

indicated that the sex-related differences in the contractile area of the muscle was primarily the 

result of smaller muscle fibers that comprised the higher-threshold MUs for the females.  
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MUs RT Range MUAP Range Slope y -Int r MUs RT Range MUAP Range Slope y -Int r

1 M 18 1.31-13.01 0.0212-0.0697 0.00307 0.0175 0.825 16 21.89-49.58 0.0569-0.1844 0.00298 -0.0189 0.751

2 M 22 4.04-30.25 0.0414-0.1859 0.00530 0.0172 0.783 23 29.82-56.38 0.0902-0.3402 0.00636 -0.1340 0.832

3 M 28 4.42-24.12 0.0374-0.1064 0.00274 0.0268 0.789 21 26.98-51.66 0.0771-0.2053 0.00488 -0.0759 0.902

4 M 28 1.05-17.89 0.0263-0.1329 0.00401 0.0253 0.607 14 19.87-62.93 0.0497-0.2053 0.00333 -0.0221 0.627

5 M 24 1.22-16.90 0.0298-0.1261 0.00411 0.0206 0.630 18 32.59-61.82 0.0898-0.3644 0.00763 -0.2045 0.753

6 M 22 4.19-18.31 0.0211-0.0876 0.00250 0.0124 0.818 20 35.40-68.90 0.0409-0.1599 0.00299 -0.0608 0.769

7 M 15 3.67-13.65 0.0382-0.1299 0.00616 0.0030 0.753 14 40.12-64.73 0.1330-0.3762 0.00644 -0.1120 0.774

8 M 20 3.87-31.48 0.0365-0.1713 0.00370 0.0088 0.821 22 23.78-58.89 0.0816-0.3232 0.00692 -0.1111 0.805

9 M 24 0.76-20.24 0.0341-0.2287 0.00884 0.0356 0.831 23 27.96-50.25 0.0893-0.3422 0.01053 -0.2499 0.816

10 M 20 5.45-21.08 0.0383-0.1287 0.00510 0.0072 0.716 19 21.42-43.44 0.0804-0.2504 0.00744 -0.0875 0.716

11 F 15 1.42-16.23 0.0342-0.1102 0.00345 0.0324 0.938 21 11.42-42.82 0.0421-0.0978 0.00130 0.0351 0.671

12 F 24 2.97-31.08 0.0113-0.0368 0.00074 0.0052 0.836 9 25.91-52.89 0.0507-0.1279 0.00173 0.0034 0.689

13 F 25 8.10-38.03 0.0436-0.0996 0.00160 0.0418 0.870 24 18.89-53.97 0.0575-0.2141 0.00265 0.0052 0.831

14 F 30 4.00-21.06 0.0296-0.0772 0.00183 0.0218 0.774 30 18.62-69.34 0.0474-0.2014 0.00236 -0.0042 0.869

15 F 28 1.26-16.24 0.0282-0.0932 0.00239 0.0295 0.665 27 22.04-57.67 0.0436-0.1366 0.00210 0.0039 0.634

16 F 36 1.87-21.14 0.0156-0.0543 0.00137 0.0126 0.922 25 16.12-45.53 0.0273-0.1305 0.00233 -0.0199 0.860

17 F 34 5.73-34.20 0.0343-0.1241 0.00275 0.0204 0.907 14 35.07-58.95 0.0826-0.2179 0.00457 -0.0802 0.886

18 F 23 2.22-17.10 0.0209-0.0927 0.00319 0.0128 0.710 10 25.54-72.47 0.0386-0.1323 0.00161 -0.0003 0.576

19 F 39 4.70-17.38 0.0234-0.0965 0.00250 0.0174 0.778 27 34.26-68.53 0.0541-0.1349 0.00185 0.0031 0.815

20 F 24 4.98-21.17 0.0242-0.0702 0.00327 0.0006 0.839 17 41.41-63.12 0.0716-0.1695 0.00459 -0.1180 0.859

Mean 24.95 3.36-22.03 0.0294-0.1111 0.00343 0.0184 0.791 19.70 26.46-57.69 0.0652-0.2156 0.00423 -0.0624 0.772

SD 6.39 1.96-7.17 0.0088-0.0456 0.00185 0.0111 0.091 5.71 8.10-8.86 0.0253-0.0881 0.00256 0.0758 0.093

Mean 22.10 3.00-20.69 0.0324-0.1367 0.00455 0.0174 0.757 19.00 27.98-56.86 0.0789-0.2748 0.00595 -0.1077 0.774

SD 4.12 1.72-6.29 0.0074-0.0473 0.00191 0.0100 0.082 3.43 6.60-8.00 0.0260-0.0827 0.00242 0.0739 0.073

Mean 27.80 3.72-23.36 0.0265-0.0855 0.00231 0.0194 0.824 20.40 24.94-58.53 0.0515-0.1563 0.00251 -0.0172 0.769

SD 7.15 2.2-8.05 0.0096-0.0262 0.00090 0.0126 0.091 7.49 9.48-10.01 0.0161-0.0417 0.00116 0.0461 0.114

MUAP vs. RT MUAP vs. RT

M

F

Table 1. Sex (expressed as male [M] or female [F]), number of motor units (MUs), recruitment threshold (RT) ranges (expressed as % of 

maximal voluntary contraction [MVC]), MU action potential size (MUAP) ranges (expressed as millivolts), slope, y -intercept (y -Int), and 

Pearson correlation coefficient (r ) values for the MUAP vs. RT relationships for the 40% and 70% MVC.

Subject Sex

40% MVC 70% MVC
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mQT

CSA

sFAT -0.441 -0.128 0.035

mEI -0.500 * 0.977 ** -0.256 0.979 ** 0.102 0.981 **

mQT 0.896 ** -0.696 ** -0.737 ** 0.864 ** -0.542 -0.655 * 1 0.832 ** -0.496 -0.448

40% Slope 0.631 ** -0.676 ** -0.687 ** 0.778 ** 0.293 -0.482 -0.518 0.581 0.661 * -0.564 -0.521 0.888 **

40% y -Int 0.036 -0.293 -0.264 0.172 0.503 -0.254 -0.365 0.613 -0.296 -0.596 -0.519 -0.048

70% Slope 0.516 * -0.643 ** -0.657 ** 0.707 ** 0.080 -0.595 -0.559 0.427 0.230 -0.039 -0.136 0.266

70% y -Int -0.558 * 0.505 * 0.552 * -0.691 ** -0.219 0.413 0.444 -0.488 -0.365 -0.097 0.006 -0.336

Notes: ** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed)

1

1

1

1

1

1

1

1

1

1

1

Table 2. Pearson correlation coefficients (r ) among muscle cross sectional area (mCSA), subcutaneous fat (sFAT), echo intensity (mEI), muscle quality 

(mQT), slopes and y-intercepts (y -Int) from the motor unit action potential size (MUAP) vs. recruitment threshold (RT) relationships for 40% and 70% 

maximal voluntary contraction.

Variable
All Subjects Males Only Females Only

CSA sFAT mEI mQT CSA sFAT mEI CSA sFAT mEI mQT



53 

 

 

  

Figure 1. The mean (±SD) slope (graph A) and y-intercept (graph B) values for the motor unit 

action potential size vs. recruitment threshold relationships from the 40% and 70% maximal 

voluntary contractions for the males and females. *The slopes were greater for the males than the 

females collapsed across contractions. **The slopes were greater for the 70% MVC than the 

40% MVC collapsed across sex. †The y-intercepts were greater for the males during the 40% 

MVC than the 70% MVC. ††The y-intercepts were greater for the females during the 40% MVC 

than the 70% MVC. #The y-intercepts for the females during the 70% MVC was greater than the 

males.  
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Figure 2. Muscle cross sectional area (A), muscle quality (B), echo intensity (C), and 

subcutaneous fat (D) for male and female participants. The echo intensity values were corrected 

for subcutaneous fat thickness. Data are presented as means±SD and * indicates a significant 

difference between groups (P < 0.05). 
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Figure 3. The plotted relationships between the slopes for the motor unit action potential size 

(millivolts [mV]) vs. recruitment threshold (expressed relative to percent maximal voluntary 

contraction [%MVC]) relationships and muscle quality (top graphs) and cross-sectional area 

(CSA) (bottom graphs) for the males (black circular markers) and females (grey circular 

markers) from the 40% (A, C) and 70% (B, D) MVCs. Plots with horizontal line (A, C) indicate 

two individuals for the 40% MVC with maximal recruitment thresholds outside the group 

mean±SD and bottom Pearson r values represent correlations with these individuals removed. 
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Figure 4. Plotted motor unit action potential (MUAP) duration (milliseconds [ms]) vs. 

recruitment threshold relationships (% maximal voluntary contraction [%MVC]) with linear 

regressions applied to the relationships for males (black markers and black solid regression lines) 

and females (grey markers and grey dashed regression lines) for the 40% (circular markers) and 

70% MVC (triangular markers) with the coefficient of determination (R2) displayed for each 

relationship.  
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Figure 5. Plotted predicted motor unit action potential (MUAP) (millivolts [mV]) sizes and 

standard deviations vs. recruitment threshold relationships (% maximal voluntary contraction 

[%MVC]) with linear regressions applied to the relationships from the 40% MVC (A; solid 

regression lines) and 70% MVC (B; dashed regression lines) and for the males (C; black 

markers) females (D; grey markers). Dashed lines (C) represent MUAP sizes across contractions. 
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Figure 6. Plotted individual motor unit action potential (MUAP) (millivolts [mV]) sizes vs. 

recruitment (% maximal voluntary contraction [%MVC]) threshold relationships for the 40% 

(black markers) and 70% (grey markers) MVC with linear (solid regression lines) regression 

models applied for subjects 12 (A), 16 (B), 13 (C), 14 (D), 2 (E), 17 (F), 10 (G), and 8 (H).  
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THE EFFECTS OF 10 WEEKS OF CONTINUOUS CYCLING ON MOTOR UNIT 

BEHAVIOR OF THE VASTUS LATERALIS 

 

ABSTRACT 

 

 This study investigated the effects of 10 weeks of continuous cycling on motor unit (MU) 

behavior for the vastus lateralis (VL). Ten sedentary males and 13 sedentary females completed 

40 continuous cycling training sessions over 10 weeks. Pre-, mid-, and post-training, participants 

performed maximal isometric voluntary contractions (MVC) followed by a 40% MVC (relative 

to pre-training) isometric trapezoidal muscle actions of the leg extensors. Surface 

electromyography (EMG) was recorded for the VL and decomposed for the 40% MVC to extract 

action potentials and firing events of single MUs. Recruitment thresholds (RT) and mean firing 

rates (MFR) were determined for each MU and the slopes and y-intercepts were calculated for 

the MFR vs. RT relationships. EMG amplitude (EMGRMS) for the 40% MVC was normalized to 

the MVC for the respective visit. MVC of the leg extensors significantly decreased after post- 

(P=0.006) but not mid-testing (P=0.059). The y-intercepts and slopes significantly increased (P = 

0.006) and decreased (P=0.017) at mid-, and returned to baseline at post-testing. Normalized 

EMGRMS was significantly increased at mid- (P=0.001) and post- (P<0.001) in comparison to 

pre-testing. Ten weeks of continuous cycling resulted in decreases for maximal strength for the 

leg extensors. In addition, firing rates of the lower- and higher-threshold MUs increased and 

decreased at mid- and returned to baseline at post-testing. Greater normalized EMGRMS likely 

indicated increases MU recruitment to match pre-training absolute torques. In summary, 

continuous cycling resulted in alterations for MU firing rate and recruitment patterns for the VL. 
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INTRODUCTION 

 

 Endurance training consists of repetitive movements performed for long durations. It is 

well understood that improvements in aerobic performance are a result of a variety of adaptations 

to metabolic and morphological responses/adaptations in skeletal muscle (28, 29). However, less 

is known regarding the neural adaptions to endurance training. Cross-sectional investigations 

have reported differences in motor unit (MU) firing rate behavior as a result of chronic training, 

such as, greater firing rates for Olympic caliber swimmers compared to Olympic caliber lifters 

and healthy controls (30) and chronic aerobically- compared to resistance-trained individuals 

(31-33) for the deltoid and vastus lateralis (VL) muscles, respectively. In addition, similar MU 

behavior has been reported between resistance-trained and sedentary individuals (31, 32). 

Therefore, it is plausible that endurance training elicits alterations in the overall MU control 

scheme, unlike resistance training (34-40).  

 However, few studies have longitudinally investigated the effects of endurance training 

on MU firing rate behavior for the VL (41-43). Vila-Cha et al. (42) reported decreases in MU 

firing rates and increases in muscle activation at a targeted force of 30% maximal voluntary 

contraction (MVC), whereas Martinez-Valdes et al. (43) reported no change in 

electromyographic amplitude (EMGRMS) with increments in targeted forces (10%, 30%, 70%, 

and 90% MVC). The endurance training protocols utilized by Vila-Cha et al. (42) and Martinez-

Valdes et al. (43) were performed at a low intensity (60% of heart rate reserve for a large portion 

of the study) or a shorter duration (2 weeks). In addition, the indwelling EMG and high-density 

surface EMG decomposition techniques used by Vila-Cha et al. (42) and Martinez-Valdes et al. 

(43) yielded limited observable MU counts per experimental session. Furthermore, Vila-Cha et 
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al. (42) did not account for recruitment threshold. Thus, it remains unclear when alterations in 

MU firing rate characteristics occur as a result of endurance training.  

 It is well understood that MU firing rates at a steady force vary as a function of 

recruitment threshold (44-46). Therefore, investigating the effects of endurance training on the 

mean firing rate vs. recruitment threshold relationships may provide insight on changes in MU 

firing rates relative to recruitment position. Previous studies have averaged observed MUs to 

produce a single firing rate value for experimental time points while disregarding recruitment 

(42, 43). In addition, the addition of normalized EMGRMS may provide further insight on 

alterations in muscle activation to achieve the targeted force as a result of endurance training. 

Therefore, the purpose of this investigation was to examine the influence of 10 weeks of 

continuous cycling on mean firing rate vs. recruitment threshold relationships and normalized 

EMGRMS of the VL for previously sedentary individuals.  
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METHODS 

 

Subjects 

 Ten healthy men (mean ± SD age = 20.20 ± 1.87 yr, height = 179.50 ± 4.95 cm, weight 

77.50 ± 8.66 kg) and 13 healthy females (21.85 ± 5.54 yr, height = 164.00 ± 5.31 cm, weight 

63.02 ± 13.23 kg) volunteered for this investigation. A subset of 5 subjects (2 males, 22.50 ± 

3.54 yrs, 181.00 ± 0.00 cm, 84.75 ± 4.45 kg; 3 females, 20.33 ± 4.04 yrs, 169.00 ± 4.58 cm, 

70.40 ± 14.93 kg) served as controls for the experimental testing procedures but did not 

participate in the continuous cycling training protocol. None of the participants reported 

participation in any form of structured exercise program for the previous 3 years. None of the 

participants reported any history of current or ongoing neuromuscular diseases or 

musculoskeletal injuries specific to the ankle, knee, or hip joints. This study was approved by the 

University’s institutional review board for human subjects research. Each subject read a signed 

an informed consent form and completed a pre-exercise health status questionnaire. 

 

Testing Time Line 

 Participants attended three laboratory sessions prior (visits 1 – 3), at the midpoint (visits 4 

– 6), and after the completion (visits 7 – 9) of a 10 week continuous cycling training program for 

a total of nine experimental testing visits. Participants also performed 10 weeks of continuous 

cycling training at a frequency of 4 sessions per week for a total of 40 training sessions. 

Therefore, participants were required to make 49 total visits for this study. Visit one included the 

completion of a health history questionnaire and informed consent form and to become familiar 

with the isometric strength testing measurements, such as, isometric maximal muscle actions and 
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submaximal isometric trapezoidal muscle actions. Visits 4 and 7 included a re-familiarization of 

isometric strength testing measurements after 5 and 10 weeks of the continuous cycling training 

programs. Visits 2, 5, and 8 included a maximal aerobic capacity (VO2MAX) test on a cycle 

ergometer to determine cardiovascular fitness and maximal heart rate. The maximal heart rate 

values from visits 2 and 5 were used to calculate the target heart rates for the subsequent 5 weeks 

of the continuous cycling training program. Visits 3, 6, and 9 included experimental isometric 

strength testing of the leg extensors (Figure 1).  

 

VO2MAX Testing 

 Testing was completed on an electronically-braked cycle ergometer (Lode, Groningen, 

Netherlands). Prior to any bike tests, participant seat height was measured and recorded for 

consistency among trials. Participants stood next to the bike to estimate proper seat height 

(greater trochanter), then examined while mounted on the bike to ensure there was a slight bend 

at the knee at the bottom of the pedal stroke, not full hyperextension. Once the seat height was 

set and comfortable, the foot straps were secured and were used to prevent the feet of the 

participants from slipping off the pedals during the test. After a two minute warm-up at 25 W, 

the workload was increased an additional 25 W every minute. Participants were encouraged to 

maintain 70 rpm, but the test was terminated when the participant could no longer maintain 60 

rpm (volitional exhaustion). A true VO2MAX was determined if participants meet three of the five 

indicators according to the American College of Sports Medicine Guidelines (47). During 

testing, heart rates were recorded with a Polar FT7 Heart Rate Monitor (Polar Electro, INC, Lake 

Success, NY, USA) to determine maximal heart rate. 

 Respiratory gases were collected and monitored using a metabolic cart (Parvo Medics 
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TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). The metabolic cart was 

calibrated prior to each test with room air and standard gases of known volume and 

concentration for the 02 and C02 analyzers. Flowmeter calibration was performed prior to each 

graded exercise test. Respiratory gases were collected by use of a two-way rebreathing valve 

(Hans Rudolph Inc., Shawnee, Kansas) and mouthpiece attached to headgear, which held them in 

place. Participants wore a nose clip to ensure that breathing will occur entirely through the 

mouth. 02 and C02 was analyzed through a sampling line after the gases are passed through a 

heated pneumotach and mixing chamber. The metabolic cart software reported the values as 

ventilated oxygen and carbon dioxide (V02 and VC02, respectively) and calculate V02MAX 

automatically.  

 

Isometric Strength Testing 

 Each participant was seated with restraining straps over the pelvis, trunk, and 

contralateral thigh, and the lateral condyle of the femur was aligned with the input axis of a 

Biodex System 3 isokinetic dynamometer (Biodex Medical Systems, Shirley, NY) in accordance 

with the Biodex User’s Guide (Biodex Pro Manual, Applications/Operations, 1998). All 

isometric leg extensor strength assessments were performed on the right leg at a flexion of 90°. 

Isometric strength for the right leg extensor muscles was measured using the torque signal from 

the Biodex System 3 isokinetic dynamometer. 

 During the experimental trials, participants performed three isometric maximal voluntary 

contractions (MVCs) with strong verbal encouragement for motivation followed by submaximal 

isometric trapezoid muscle actions at 40% relative to visit 3 (pre-training) MVC strength. The 

highest torque output for visit 3 determined the maximal torque output for each participant and 
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the force level for the 40% MVC submaximal isometric trapezoid muscle actions for all 

subsequent isometric strength testing visits. For all isometric trapezoid muscle actions, the force 

increased at 10% MVC/s to the desired torque level, where it was held during a 12 s plateau and 

then decreased to baseline at a rate of 10% MVC/s. Therefore, the duration of each contraction 

was 20 s. Three to five minutes of rest was given between each muscle action. Participants were 

instructed to maintain their torque output as close as possible to the target force presented 

digitally in real time on a computer monitor. Participants were given a second attempt if unable 

to maintain the targeted torque during the initial trial. 

 

Electromyographic Recording 

 During the trapezoid muscle actions, surface EMG signals were recorded from the VL 

using a 5-pin surface array sensor (Delsys, Boston, MA). The pins have a diameter of 0.5 mm 

and are positioned at the corners of a 5 x 5 mm square, with the fifth pin in the center. Prior to 

sensor placement, the surface of the skin was prepared by shaving, removing superficial dead 

skin with adhesive tape (3M, St Paul, MN), and sterilizing with an alcohol swab. The sensor was 

placed over the VL muscle at 50% of the distance between the greater trochanter and the lateral 

condyle of the femur with adhesive tape. The reference electrode was placed over the left patella.  

The signals from the four pairs of the sensor electrodes were differentially amplified and filtered 

with a bandwidth of 20 Hz to 9.5 kHz. The signals were sampled at 20 kHz and stored on a 

computer for off-line analysis. 

 

EMG decomposition  
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 For detailed information regarding the signal processing of the EMG signals, refer to De 

Luca et al. (7) and Nawab et al. (8). Action potentials were extracted into firing events of single 

MUs from the four separate EMG signals via the Precision Decomposition III algorithm as 

described by De Luca et al. (7). This algorithm is designed for decomposing EMG signals into 

their constituent MU action potential trains. The accuracy of the decomposed firing instances 

was tested with the reconstruct-and-test procedure (8) and only MUs with >90% accuracies were 

used for further analysis. In addition, the firing rate curve of each MU was computed by low-

pass filtering the impulse train with a unit area Hanning window of 2-s duration (44, 48, 49). For 

each MU, 3 parameters were extracted from the firing rate data: 1) recruitment threshold (RT) 

expressed as %MVC, 2) mean firing rate (MFR) at the targeted contraction level (pulses per 

second [pps]), and 3) motor unit action potential duration (MUAPDUR, ms). The MFR will be 

calculated as the average value of the MFR trajectory during the entire steady force (45, 50). An 

average 0.10-ms epoch of force that began at the first discharge of the MU was selected as the 

recruitment threshold for the MU, respectively. For MUAPDUR, durations from peak-to-peak of 

each of the four unique action potential waveform templates were averaged using a custom-

written software program (LabVIEW 2016, National Instruments, Austin, TX, USA).  

 

EMG Amplitude 

 Channel 1 of the 4 bipolar EMG channels from the 5-pin surface array sensor was 

selected for the time-domain (amplitude) analyses. The entire steady force segment of the 

trapezoidal muscle contraction was isolated and averaged for subsequent amplitude and force 

calculations. The EMG signals were bandpass filtered (fourth-order Butterworth) at 10–500 HZ. 

The time domain of the EMG signal was calculated with the root-mean-square (RMS) function, 
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and EMGRMS for the steady force segment of the isometric muscle actions was normalized to 

EMGRMS that corresponded to the highest 0.25 s peak force epoch during the current visit MVCs. 

Offline processing was performed with custom-written LabVIEW software. 

 

Continuous Cycling Training Protocol: 

 Participants performed 10 weeks of continuous cycling training on Life Fitness Upright 

Bikes (Model CLSC, Rosemont, IL, USA) at a frequency of 4 sessions per week for a total of 40 

training sessions (Figure 1). Exercise intensity was prescribed based on the upper limits of heart 

rate reserve (HRR). Target heart rates (THR) were calculated with the Karvonen method 

[(maximal heart rate – resting heart rate) x %intensity + resting heart rate) (51). The use of % 

HRR has been recommended for prescribing exercise intensity in cycling activities (52) because 

it provides accurate target workloads for individuals with a low fitness level (53).  

 Weeks 1 – 3 consisted of 30 minutes of cycling at 70% of the HRR, whereas weeks 4 – 6 

and 7 – 10 were 40 minutes at 75% and 80% of HRR. Heart rates were monitored with a Polar 

FT7 Heart Rate Monitor (Polar Electro, INC, Lake Success, NY, USA). All training sessions 

were supervised and subject heart rates were recorded every 3 minutes to ensure participants 

were maintaining the exercise intensity within the required THR.  

 

Statistical Analysis 

 For each subject, linear regressions were performed on the MFR (pps) vs. RT (%MVC), 

and MUAPDUR (ms) vs. RT (%MVC) relationships. Slopes and y-intercepts were calculated for 

each linear regression model.  
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 Eight separate two-way mixed factorial analysis of variances (ANOVAs) (sex [male vs. 

female] x time [pre vs. mid vs. post]) were used to examine possible differences in body mass, 

VO2MAX, MVC strength, and normalized EMGRMS, as well as the slopes and y-intercepts for the 

MFR vs. RT, and MUAPDUR vs. RT relationships. For the control subjects, similar statistical 

procedures were performed, however, sex was not included as a factor in the analyses. When 

appropriate, follow-up analyses included lower-order ANOVA models and independent samples 

t-tests with Bonferroni corrections. For all individual relationships, slopes and y-intercepts were 

calculated using Microsoft Excel version 2013 (Microsoft, Redmond, WA). The level of 

significance was set at P ≤ 0.05, and all statistical analyses were performed with SPSS 22 (IBM, 

Armonk, NY). 
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RESULTS 

 

Control Participants 

Results (mean±SD) from the control participants are presented in table 1. There were no 

significant one-way interactions (time) for maximal strength (P = 0.739), maximal aerobic 

capacity (P = 0.860), normalized EMGRMS (P = 0.859), and body mass (P = 0.978).  For the MFR 

vs. RT relationships, there were no significant one-way interaction (time) for the slopes (P = 

0.770) or y-intercepts (P = 0.242). For the MUAPDUR vs. RT relationships, 6 of the 15 

relationships (40%) were significant (P < 0.05; r = 0.381 – 0.521) for the 40% MVC with none 

of the subjects having significant relationships across the three visits. Therefore, no statistical 

comparisons could be made with none of the subjects possessing significant relationships for all 

testing visits.  

 

Experimental Participants 

Body Mass 

 The analysis indicated no significant two-way interaction (sex x time, P = 0.780) or main 

effects for time (P = 0.696) and sex (P = 0.604). 

 

Maximal Aerobic Capacity 

 The analysis indicated no significant two-way interaction (sex x time, P = 0.230). There 

were main effects for sex (P < 0.001) and time (P < 0.001). VO2MAX was significantly greater for 

the males (3.575 ± 0.490 L/min) in comparison to the females (2.231 ± 0.436 L/min) when 

collapsed across time. In addition, pre-VO2MAX (2.645 ± 0.818 L/min) was significantly less in 
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comparison to mid-VO2MAX (2.795 ± 0.800 L/min, P < 0.001) and post-VO2MAX (3.005 ± 0.850 

L/min, P < 0.001), and mid-VO2MAX was significantly less in comparison to post-testing VO2MAX 

(P < 0.001) when collapsed across sex (Figure 2). 

 

MVC Strength 

 The analysis indicated no significant two-way interaction (sex x time, P = 0.411). There 

were main effects for sex (P < 0.001) and time (P = 0.011). MVC strength was significantly 

greater for males (217.33 ± 44.44 Nm) in comparison to females (124.16 ± 32.83 Nm) when 

collapsed across time. In addition, MVC strength was significantly less post- (167.45 ± 39.61 

Nm) in comparison to pre-testing (175.93 ± 37.34 Nm, P = 0.006) when collapsed across sex 

(Figure 3). Despite similar values at mid- compared to post-testing, there were no differences 

between mid- (168.81 ± 41.10 Nm) and post-MVC strength (167.45 ± 39.61 Nm). 

 

Normalized EMGRMS 

 The analysis indicated no significant two-way interaction (sex x time, P = 0.819) or main 

effects for sex (0.647). However, there were main effects for time (P < 0.001). Normalized 

EMGRMS was significantly less at pre- (34.854 ± 9.218 % max) in comparison to mid- (45.984 ± 

13.141%, P = 0.001) and post-testing (45.369 ± 9.256%, P < 0.001) when collapsed across sex 

(Figure 4). 

 

MU Data 
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 Decomposition of surface EMG signals yielded 1,601 MUs. Observed MUs, RT ranges, 

and slopes and y-intercepts for the MFR vs. RT relationships per individual are presented in table 

2.  

  

MFR vs. RT Relationships 

 For all individuals, the MFR vs. RT (r = -0.89 ± 0.06) relationships were significant.  

For the slopes, the analysis indicated no significant two-way interaction (sex x time, P = 0.875) 

or main effect for sex (P = 0.121). However, there was a main effect for time (P = 0.008). The 

slopes at mid- (-0.449 ± 0.144 pps/%MVC) were significantly less in comparison to pre- (-0.344 

± 0.082 pps/%MVC, P = 0.017), but not post-testing (-0.392 ± 0.108 pps/%MVC) when 

collapsed across sex.  

 For the y-intercepts, there was no significant two-way interaction (sex x time, P = 0.304) 

or main effect for sex (P = 0.162). However, there was a main effect for time (P = 0.003). The y-

intercepts were significantly greater at mid- (25.285 ± 3.904 pps) in comparison to pre- (22.808 

± 2.854 pps), but not post-testing (23.894 ± 2.325 pps) when collapsed across sex (P = 0.006) 

(Figure 5).  

 

MUAPDUR vs. RT Relationships 

 Ten of the 69 relationships (14%) were significant (P < 0.05; r = 0.368 – 0.699) for the 

40% MVC with none of the subjects having significant relationships across all time points. No 

statistical comparisons could be made with zero of the subjects possessing significant 

relationships for all testing visits. Of importance, figure 6 indicates that there was no systemic 
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differences in MUAPDUR among pre-, mid-, and post-testing and, therefore, MUs were recorded 

from similar depths within the muscle across all visits. 
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DISCUSSION 

 

 As expected, maximal aerobic capacity increased following 5 and 10 weeks of 

continuous cycling training. Significant findings as a result of the continuous cycling training 

include the following: (1)  isometric maximal strength of the leg extensors decreased after 5 (not 

significant) and 10 weeks, (2) 5 weeks of continuous cycling training was associated with 

increases and decreases in firing rate behavior of the lower- and higher-threshold MUs, 

respectively, whereas firing rate behavior returned to baseline at 10 weeks, and (3) normalized 

EMGRMS was elevated at 5 and 10 weeks and, thus, indicating increased muscle activation to 

match pre-training forces. 

 The results from the current study indicated VO2MAX significantly increased after 5 and 

10 weeks of continuous cycling. These findings are in agreement with Hoppeller et al. (54) and 

Howald et al. (29), as well as Konopka et al. (55), that reported significant increases in VO2MAX 

following 6 and 12 weeks of cycle ergometer training for young and older individuals, 

respectively. It has been reported that a number of sex-related morphological and physiological 

differences in blood volume, red blood cells, hemoglobin, heart size, resting and submaximal 

heart rate, stoke volume, and oxygen pulse result in lower VO2MAX for females (56). In support, 

VO2MAX values were greater for the males than the females when collapsed across time. 

However, there were no differences in the sex-related responses to training for the current study 

(P = 0.394), which has previously been reported (57-60).  

 Few studies have examined the influence of endurance training on MU behavior (42, 43, 

61). Vila Cha et al. (42) reported a decrease in MU firing rates at a 10% and 30% MVC with an 

increase in EMGRMS for the VL following 6 weeks of endurance bicycle ergometer training with 

no significant changes in maximal strength. Since increases in EMGRMS reflects an increase in 
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net MU activity (62-64), the authors suggested the decrease in MU firing rates likely resulted in 

the recruitment of more, higher-threshold MUs to achieve the same relative forces. In addition, 

Mettler and Griffin (61) reported that 4 weeks of isometric thumb abduction contractions at 20% 

MVC yielded increased endurance times but no significant changes in maximal strength or MU 

firing rates for the adductor pollicis during sustained contractions. More recently, Martinez-

Valdes et al. (43) longitudinally tracked MUs following two weeks of long duration continuous 

cycling and reported no changes for maximal strength, EMGRMS, recruitment thresholds, or firing 

rates at 10%, 30%, 50% and 70% MVC despite increases in VO2MAX. Vila-Cha (42) and Mettler 

and Griffin (61) did not report RTs of the MUs and, thus, it is unknown if firing rate behavior, 

relative to recruitment position, was altered following endurance training.  

 In the current study, MU firing rate behavior and likely recruitment patterns were altered 

following 5 weeks of continuous cycling. Such as, there were increases in the firing rates of the 

lowest-threshold MUs (increased y-intercepts of the MFR vs RT relationships) with decreases in 

the firing rates of the highest-threshold MUs (decreased slopes of the MFR vs RT relationships) 

(Figure 7). Greater y-intercepts have been reported for higher- in comparison to lower-intensity 

contractions due to increases in excitation to achieve higher targeted forces (44, 65). In the 

present study, normalized EMGRMS, a measure of muscle activation, was greater at mid- and 

post-testing and, together with greater y-intercepts from the MFR vs RT relationships, likely 

indicates that greater excitation was needed to achieve the same absolute force tasks following 5 

and 10 weeks of continuous cycling.  

It has previously been theorized that the operating point of excitation to the MU pool is 

altered to compensate for changes in force twitches (24, 48, 50, 66). In the present study, torque 

was lower following 5 (-4.05%) and 10 (-4.79%) weeks, albeit only significant lower after 10 
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weeks of cycling. In addition, previous research has reported reduced force twitches of MUs 

following endurance training, such as the type I and IIa fibers of chronic runners produced 15% 

less peak force compared to age-matched sedentary controls (67). Subsequently, it is likely that 

MU twitch forces were depressed for the routinely activated lower-threshold MUs following the 

endurance cycling training in the present study. Therefore, the significant increases in 

normalized EMGRMS and the firing rates of the lowest-threshold MUs suggests a rightward shift 

in the operating point (greater excitation) to achieve the same submaximal torques following 5 

weeks of continuous cycling (24, 48, 50, 66). The resulting increases in MU firing rates 

simultaneously occurs with the recruitment of higher-threshold MUs that possess lower firing 

rates (3, 44, 48, 68, 69). Thus, the recruitment of additional higher-threshold MUs, which 

possess lower firing rates, to match the same absolute torques would result in the slopes 

becoming more negative. These findings support Vila-Cha et al. (42) as the increases in 

normalized EMGRMS and y-intercepts in conjunction with the decrease in the slopes for the MFR 

vs. RT relationships suggest greater excitation and the recruitment of additional higher-threshold 

MUs that could potentially lead to lower firing rates when disregarding RTs.  

 Following 10 weeks of the continuous endurance cycling, firing rate behavior returned to 

baseline, however, normalized EMGRMS remained elevated. In addition, MVC strength of the leg 

extensors remained depressed and was significantly lower in comparison to pre-testing.  The 

decrease in firing rates for the lowest-threshold MUs following 10 weeks of continuous cycling 

may be due to alterations in the membrane potentials of motoneurons. Animal studies 

investigating endurance training have reported greater hyperpolarized resting membrane 

potentials, voltage thresholds, afterhyperpolarization amplitudes, and decreased antidromic 

action potential rise time of the lower-threshold MUs following 12 and 16 weeks of endurance 
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training (70, 71). Although the implications of these adaptations are not fully understood (72), a 

decrease in spike rise time and a greater afterhyperpolarization would decrease MU firing rates 

(73), which was reported for the lower-threshold MUs in the current study from 5 to 10 weeks of 

continuous cycling.  

 Another possible explanation for the decrease in firing rates for the lowest-threshold MUs 

was a change in MU twitch relaxation rates. Majerczak et al. (74) reported 5 weeks of endurance 

cycling in humans resulted in a downregulation for sarco(endo)plasmic reticulum calcium 

ATPase isoform (SERCA) pumps, resulting in a prolonged muscle relaxation rate. It has been 

suggested that a reduction in calcium ATPase activity may result in prolonged twitch durations, 

leading to tetanus of MUs at lower firing rates following training (42). Furthermore, differences 

in sarcoplasmic reticulum characteristics have been reported as a function of fiber type (75). For 

example, muscle fibers that possess fast-twitch characteristics exhibit greater calcium release and 

uptake by the sarcoplasmic reticulum (76) due to greater sarcomplasmic reticulum surface area, 

as well as greater SERCA isoform kinetics (75, 77). Previously, Konopka et al. (55) reported 

increases in myosin heavy chain isoform content of the VL following 12 weeks of continuous 

cycling. Therefore, it is plausible that downregulation of SERCA for the current study occurred 

as a function of continuous cycling and changes to the area of myosin heavy chain isoform 

content of the muscle.   

 The increases in firing rates for the higher-threshold MUs following weeks 10 of 

continuous cycling may be a function of lengthened twitch durations coupled with decreased 

twitch forces for the lower-threshold MUs. It has been proposed that MUs with greater twitch 

amplitudes have lower firing rates at a targeted force (46). However, the significant increase for 

normalized EMGRMS suggests the decrease in firing rates for the lower-threshold MUs was more 
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likely a function of increases in twitch durations and not twitch amplitudes as muscle activation 

remained elevated to achieve the targeted torques. In addition, if twitch durations were elongated 

for the lower-threshold MUs, there would be no benefit to increasing their firing rates as tetanus 

would occur at lower frequencies (78). Thus, a greater reliance would be placed on the 

recruitment and modulation of firing rates of the higher-threshold MUs to match the targeted 

force compared to mid-testing, which was supported by significantly greater normalized 

EMGRMS and the increase in the slopes for the MFR vs. RT relationships to pre-testing values.  

 In summary, 5 and 10 weeks of continuous cycling resulted in increases in muscle 

activation to match pre-training absolute forces. The non-uniformed changes in firing rate 

behavior suggests a decrease in MU twitch forces (week 5) and/or alterations to motoneurone 

intrinsic properties (week 10). Consequently, this is the first study to report continuous cycling 

changes recruitment patterns for the VL. Future research should investigate the influence of 

concurrent training on MU behavior to achieve pre-training absolute forces.  
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Pre Mid Post

Body Mass (kg) 76.14 ± 13.35 76.56 ± 14.14 76.18 ± 13.21

Maximal Aerobic Capacity (L/min) 2.78 ± 0.85 2.79 ± 0.84 2.81 ± 0.78

Leg Extensor MVC (Nm) 177.20 ± 67.28 171.66 ± 53.96 174.70 ± 69.31

34.40 ± 4.96 35.76 ± 4.36 39.95 ± 16.21

Slopes (pps/%MVC) -0.413 ± 0.092 -0.455 ± 0.151 -0.427 ± 0.060

Y-Int (pps) 22.46 ± 2.10 23.67 ± 2.37 23.20 ± 1.28

Normalized EMGRMS (% max)

Table 2. Mean±SD for body mass (kg), maximal aerobic capacity (Liters/minute [L/min]), leg extensor 

maximal voluntary contraction (MVC) (Newton meters [Nm]), electromyographic amplitude (EMGRMS) 

normalized to MVC EMG (% max), slopes and y-intercepts (Y-Int) for the mean firing rate (MFR) (pulses per 

second [pps]) vs. recruitment threshold (RT) (%MVC).

Measurement

MFR vs. RT
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Figure 1. Timeline of testing and training. Fam = familiarization; Exp = experimental, HRR = 

heart rate reserve.  

 

 

 

  

Visit 1 Visit 2 Visit 3 Weeks 1 - 3 Weeks 4 - 5 Visit 4 Visit 5 Visit 6 Week 6 Weeks 7 - 10 Visit 7 Visit 8 Visit 9

Strength Maximal Strength 30 mins 40 mins Strength Maximal Strength 40 mins 40 mins Strength Maximal Strength

Testing Aerobic Testing 4x's/week 4x's/week Testing Aerobic Testing 4x's/week 4x's/week Testing Aerobic Testing

(Fam) Testing (Exp) 70% HRR 75% HRR (Fam) Testing (Exp) 75% HRR 80% HRR (Fam) Testing (Exp)

Post-TestingPre-Testing Continuous Cycling Mid-Testing Continuous Cycling
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Figure 2. The mean (± SD) absolute maximal aerobic capacity (V02MAX) (L/min) from pre-, mid, 

and post-training for the males and the females. # VO2MAX was significantly greater for the males 

in comparison to the females collapsed across time (P < 0.001). * VO2MAX was significantly 

greater at mid- in comparison to pre-training (P < 0.001) when collapsed across sex. **VO2MAX 

was significantly greater at post- in comparison to pre- (P < 0.001) and mid-training (P < 0.001) 

when collapsed across sex. 
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Figure 3. The mean (±SD) maximal voluntary contraction for pre-, mid, and post-training for the 

males and females. # Maximal strength was significantly greater for the males in comparison to 

the females when collapsed across time (P < 0.001). * Maximal strength was less for post- in 

comparison to pre-training when collapsed across sex (P = 0.006). 
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Figure 4. The mean (±SD) normalized (% max) electromyographic amplitude (EMGRMS) for pre-

, mid-, and post-training from the 40% maximal voluntary contraction for the males and females. 

* Normalized EMGRMS was greater at mid- in comparison to pre-training (P = 0.001) when 

collapsed across sex. ** Normalized EMGRMS was greater at post- in comparison to pre-training 

(P < 0.001) when collapsed across sex.  
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Figure 5. The mean (±SD) slopes (top graph) and y-intercept (bottom graph) values from the 

mean firing rate (pulses per second [pps]) vs. recruitment threshold (expressed as percent of 

maximal voluntary contraction [%MVC]) relationships for the males and females for pre-, mid, 

and post-training for the 40% MVC. * The slopes were significantly less at mid- in comparison 

to pre-training (P = 0.017) when collapsed across sex. ** The y-intercepts were significantly 

greater at mid- in comparison to pre-training (P < 0.006) when collapsed across sex.  
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Figure 6. Plotted motor unit action potential duration (MUAPDUR) (milliseconds [ms]) vs. 

recruitment threshold relationships (% maximal voluntary contraction [%MVC]) with linear 

regressions applied to the relationships for pre- (circles with black fill and black solid regression 

line), mid- (circles with grey fill and grey solid regression line) and post-training (triangles with 

white fill and black dashed regression line) with the coefficient of determination (R2) displayed 

for each relationship. 
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Figure 7. Plotted predicted mean firing rate (pulses per second [pps]) and standard deviations vs. 

recruitment threshold relationships (% maximal voluntary contraction [%MVC]) with linear 

regressions applied to the relationships for pre- (black markers with solid fill, black solid 

regression line), mid- (grey markers, grey regression line), and post-training (black markers with 

empty fill, black dashed regression line). 
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THE EFFECTS OF CONTINUOUS CYCLING ON MOTOR UNIT FIRING RATES 

AND MUSCLE ACTIVATION DURING CONSECUTIVE CONTRACTIONS 

 

ABSTRACT 

 

 This study investigated the effects of continuous cycling on motor unit (MU) behavior for 

the vastus lateralis (VL). Twenty-five sedentary participants completed 20 training sessions over 

5 weeks. Pre- and post-training included maximal voluntary contractions (MVC) followed by 

two consecutive 40% relative to pre-training MVCs of the leg extensors with a 45 s steady torque 

segment. Surface electromyographic amplitude (EMGRMS) was recorded from the VL and 

decomposed for the 40% MVCs to extract action potentials and firing events of single MUs. 

Recruitment thresholds (RT), mean firing rates (MFR), and MU action potential sizes 

(MUAPSIZE) were determined for each MU with slopes and y-intercepts calculated for the MFR 

vs. RT and MUAPSIZE vs. RT relationships. EMGRMS for the 40% MVC steady torque segment 

was normalized to MVC for the respective visit. MVC of the leg extensors significantly 

decreased for post-training (P=0.005) whereas normalized EMGRMS was increased for post-

training (P<0.001) and repetition two for pre- and post-training (P=0.001). For the MFR vs. RT 

relationships, the y-intercepts for post-training repetition two were less than post-training 

repetition one (P=0.017) and pre-training repetition two (P=0.036). In summary, continuous 

cycling decreased maximal strength for the leg extensors. The firing rates of the lowest-threshold 

MUs for repetition two of post-training were less than pre-training. In addition, the firing rates 

for the lowest-threshold MUs for repetition two of post-training were less than repetition one, 

unlike for pre-training. Furthermore, MUs exhibited a decrease in RT for the second repetition in 
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comparison to the first repetition post-training. Greater normalized EMGRMS suggests increased 

muscle activation to match pre-training absolute torques. Five weeks of continuous cycling 

resulted in training and repetition dependent changes in MU firing rate and recruitment patterns 

for the VL.  
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INTRODUCTION 

 

 Numerous studies have investigated the presence of fatigue on motor unit (MU) behavior  

(24, 41, 61, 79-82). As fatigue increases, alterations in MU firing rate and recruitment patters are 

observed to maintain a constant force (24, 79-81). It has been suggested these changes occur to 

compensate for changes in MU twitch forces (24, 79, 83-85). However, there have been 

discrepancies in the findings from previous studies. For example, during repeated or sustained 

submaximal contractions, the accumulation of fatigue has been associated with increases in the 

neural drive to the MU pool, resulting in MU firing rate increases and the recruitment of 

additional MUs to maintain a constant force (24, 61, 79, 85). Conversely, it has also been 

reported that MUs decrease their firing rates while additional MUs are recruited despite increases 

in excitation to the MU pool during fatigue (41, 86-89). It has been suggested these discrepancies 

are due to methodological issues, such as grouping MU data (41, 88, 89), low MU yields from 

intramuscular electromyographic (EMG) signals (86, 87, 89), and decreased MU recruitment 

thresholds (84, 88) during fatigue. 

 It is well understood that endurance training improves fatigue resistance due to 

adaptations such as decreased production (90) and increased clearance (90, 91) of metabolites 

during muscle contractions. However, few studies have investigated the effects of endurance 

training on firing rates of single MUs. Vila-Cha et al.  (41) reported six weeks of cycle ergometer 

training resulted in an increase in (~ 30%) time to task failure for the leg extensors without 

alterations in overall MU firing rate behavior for the vastus lateralis during a 30% maximal 

voluntary contraction. Mettler and Griffin et al. (61) recently reported 4 weeks of endurance 

training for the adductor pollicis increased endurance time (~ 45%) without changes to the 

average MU firing rates during a fatigue task at 20% MVC. The overall MU firing rate patterns 
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reported by Vila Cha et al. (41) and Mettler and Griffin (61) included an initial decline in MU 

firing rates followed by an increase to values that were less than the onset of the contraction. 

Therefore, the pattern of MU firing rate changes occurred over a longer duration following 

endurance training (41, 61). 

 Despite the findings by Vila Cha et al. (41) and Mettler and Griffin (61), questions 

remain regarding endurance training and MU behavior. For example, the indwelling techniques 

utilized in these studies resulted in low MU counts (2.7 and 1.2) per contraction. Normalized 

EMG amplitude (EMGRMS) and recruitment thresholds were also not reported and, thus, it is 

unknown if changes in muscle activation and firing rates relative to recruitment threshold occur 

as a result of endurance training. Therefore, the purpose of this investigation was to investigate 

the effects of 5 weeks of continuous cycling on MU behavior of the VL for previously sedentary 

individuals utilizing a surface EMG signal decomposition system (7, 8) that yields large MU 

counts to increase the sample size and resolution of the data. Pre- and post-training included the 

examination of the mean firing rate vs. recruitment threshold relationships and normalized 

EMGRMS. In addition, during pre- and post-training participants performed consecutive 

submaximal muscle actions to provide insight on the effects of endurance training during a 

repeated fatigue protocol, which has yet to be investigated. Lastly, the motor unit action potential 

size vs. recruitment threshold relationships and the mean firing rate vs. motor unit action 

potential size relationships were also investigated to account for decreases in MU recruitment 

thresholds that have been reported during fatigue (81, 84, 88) and can introduce bias into the 

interpretation of the data (24). 
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METHODS 

 

Subjects 

 Twenty-five healthy participants (mean ± SD age = 20.44 ± 2.27, height = 169.88 ± 8.62 

cm, body mass = 69.09 ± 14.36) volunteered for this investigation. A subset of 5 subjects (age = 

18.40 ± 0.89 yrs, height = 173.20 ± 7.19, body mass = 68.18 ± 13.71 kg) served as controls for 

the experimental testing procedures but did not participate in the continuous cycling training 

protocol. None of the participants reported participation in any form of structured exercise 

program for the previous 3 years. None of the participants reported any history of current or 

ongoing neuromuscular diseases or musculoskeletal injuries specific to the ankle, knee, or hip 

joints. This study was approved by the University’s institutional review board for human subjects 

research. Each subject read a signed an informed consent form and completed a preexercise 

health status questionnaire. 

 

Testing Time Line 

 Participants attended three laboratory sessions prior (visits 1 – 3) and after the completion 

(visits 4 – 6) of a 5 week continuous cycling training program for a total of six experimental 

testing visits. Participants performed 5 weeks of continuous cycling training at a frequency of 4 

sessions per week for a total of 20 training sessions. Therefore, participants were required to 

make 26 total visits for this study. Visit one included the completion of a health history 

questionnaire and informed consent form and to become familiar with the isometric strength 

testing measurements, such as submaximal isometric trapezoidal muscle actions, and isometric 

maximal muscle actions. Visits 4 included a re-familiarization of isometric strength testing 



105 

 

 

  

measurements after 5 weeks of the continuous cycling training programs. Visits 2 and 5 included 

a maximal aerobic capacity (VO2MAX) test on a cycle ergometer to determine cardiovascular 

fitness and maximal heart rate. The maximal heart rate values from visit 2 was used to calculate 

the target heart rates for the 5 week continuous cycling training program. Visits 3 and 6 included 

experimental isometric strength testing of the leg extensors.  

 

VO2MAX Testing 

 Testing was completed on an electronically-braked cycle ergometer (Lode, Groningen, 

Netherlands). Prior to any bike tests, participant seat height was measured and recorded for 

consistency among trials. Participants stood next to the bike to estimate proper seat height 

(greater trochanter), then examined while mounted on the bike to ensure there was a slight bend 

at the knee at the bottom of the pedal stroke, not full hyperextension. Once the seat height was 

set and comfortable, the foot straps were secured and were used to prevent the feet of the 

participants from slipping off the pedals during the test. After a two minute warm-up at 25 W, 

the workload was increased an additional 25 W every minute. Participants were encouraged to 

maintain 70 rpm, but the test was terminated when the participant could no longer maintain 60 

rpm (volitional exhaustion). A true VO2MAX was determined if participants meet three of the five 

indicators according to the American College of Sports Medicine Guidelines (92). During 

testing, heart rates were recorded with a Polar FT7 Heart Rate Monitor (Polar Electro, INC, Lake 

Success, NY, USA) to determine maximal heart rate. 

 Respiratory gases were collected and monitored using a metabolic cart (Parvo Medics 

TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). The metabolic cart was 

calibrated prior to each test with room air and standard gases of known volume and 
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concentration for the 02 and C02 analyzers. Flowmeter calibration was performed prior to each 

graded exercise test. Respiratory gases were collected by use of a two-way rebreathing valve 

(Hans Rudolph Inc., Shawnee, Kansas) and mouthpiece attached to headgear, which held them in 

place. Participants wore a nose clip to ensure that breathing will occur entirely through the 

mouth. 02 and C02 was analyzed through a sampling line after the gases are passed through a 

heated pneumotach and mixing chamber. The metabolic cart software reported the values as 

ventilated oxygen and carbon dioxide (V02 and VC02, respectively) and calculate V02MAX 

automatically. 

 

Isometric Strength Testing 

 Each participant was seated with restraining straps over the pelvis, trunk, and 

contralateral thigh, and the lateral condyle of the femur was aligned with the input axis of a 

Biodex System 3 isokinetic dynamometer (Biodex Medical Systems, Shirley, NY) in accordance 

with the Biodex User’s Guide (Biodex Pro Manual, Applications/Operations, 1998). All 

isometric leg extensor strength assessments were performed on the right leg at a flexion of 90°. 

Isometric strength for the right leg extensor muscles was measured using the torque signal from 

the Biodex System 3 isokinetic dynamometer. 

 During the experimental trials, participants performed three isometric maximal voluntary 

contractions (MVCs) with strong verbal encouragement for motivation followed by two, 

consecutive submaximal isometric trapezoid muscle actions at 40% relative to visit 3 (pre-

training) MVC strength. The highest torque output for visit 3 determined the maximal torque 

output for each participant and the force level for the 40% MVC submaximal isometric trapezoid 

muscle actions for both isometric strength testing visits. For all isometric trapezoid muscle 
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actions, the force increased at 10% MVC/s to the desired torque level, where it will be held 

during a 45 s plateau and then decreased to baseline at a rate of 10% MVC/s. Therefore, the 

duration of each contraction was 53 s and participants were given a 6 s rest interval between 

repetitions for the 3 s queiescent period required prior to and following the contraction. 

Participants were instructed to maintain their force output as close as possible to the target force 

presented digitally in real time on a computer monitor.  

 

Electromyographic Recording 

 During the isometric muscle actions, surface EMG signals were recorded from the VL 

using a 5-pin surface array sensor (Delsys, Boston, MA). The pins have a diameter of 0.5 mm 

and are positioned at the corners of a 5 x 5 mm square, with the fifth pin in the center. Prior to 

sensor placement, the surface of the skin was prepared by shaving, removing superficial dead 

skin with adhesive tape (3M, St Paul, MN), and sterilizing with an alcohol swab. The sensor was 

placed over the VL muscle at 50% of the distance between the greater trochanter and the lateral 

condyle of the femur with adhesive tape. The reference electrode was placed over the left patella. 

The signals from four pairs of the sensor electrodes were differentially amplified and filtered 

with a bandwidth of 20 Hz to 9.5 kHz. The signals were sampled at 20 kHz and stored on a 

computer for off-line analysis. 

 

EMG Decomposition 

 For detailed information regarding the signal processing of the EMG signals, refer to De 

Luca et al. (7) and Nawab et al. (8). Action potentials were extracted into firing events of single 

MUs from the four separate EMG signals via the PD III algorithm as described by De Luca et al. 
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(7). This algorithm is designed for decomposing EMG signals into their constituent MU action 

potential trains. The accuracy of the decomposed firing instances was tested with the reconstruct-

and-test procedure (8). Only MUs with >90% accuracies were used for further analysis. In 

addition, the firing rate curve of each MU was computed by low-pass filtering the impulse train 

with a unit area Hanning window of 2-s duration (44, 48, 49). For each MU, 4 parameters were 

extracted from the firing rate data: 1) recruitment threshold (RT, expressed as %MVC), 2) mean 

firing rate (MFR, pulses per second [pps]) 3) MU action potential amplitude (MUAPSIZE, mV), 

and 4) MUAP duration (MUAPDUR, ms). The MFR was calculated as the average value of the 

mean firing rate trajectory during a 10 second interval between 2 and 12 s during the constant 

torque segment of each contraction. An average 0.10 ms epoch of force that began at the first 

discharge of the MU was selected as the RT for the MU. The averages of the peak-to-peak 

amplitude and the duration from each of the four action potential waveforms were used to 

calculate MUAPSIZE and MUAPDUR, respectively. 

 

EMG Amplitude 

 Channel 1 of the 4 bipolar EMG channels from the 5-pin surface array sensor was 

selected for the time-domain (amplitude) analyses. The time period that corresponded with the 

interval analyzed for the MU data was isolated and averaged for subsequent amplitude and force 

calculations. The EMG signals were bandpass filtered (fourth-order Butterworth) at 10–500 HZ. 

The time domain of the EMG signal was calculated with the root mean square (RMS) function, 

and EMGRMS for each steady force segment of the plateau for the isometric muscle actions was 

normalized to EMGRMS that corresponded to the highest 0.25 s peak force epoch during the 
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current visit MVC (% max). Offline processing was performed with custom-written LabVIEW 

version 16 software (National Instruments). 

 

Continuous Cycling Training Protocol: 

 Participants performed 5 weeks of continuous cycling training on a Life Fitness Upright 

Bike (Model CLSC, Rosemont, IL, USA) at a frequency of 4 sessions per week for a total of 20 

training sessions. Exercise intensity was prescribed based on the upper limits of heart rate 

reserve (HRR). Target heart rates (THR) were calculated with the Karvonen method [(maximal 

heart rate – resting heart rate) x %intensity + resting heart rate) (51). The use of % HRR has been 

recommended for prescribing exercise intensity in cycling activities (52) because it provides 

accurate target workloads for individuals with a low fitness level (53).  

 Weeks 1 – 3 consisted of 30 minutes of cycling at 70% of the HRR, whereas weeks 4 – 5 

were 40 minutes at 75% HRR. Heart rates were monitored with a Polar FT7 Heart Rate Monitor 

(Polar Electro, INC, Lake Success, NY, USA). All training sessions were supervised and subject 

heart rates were recorded every 3 minutes to ensure participants were maintaining the exercise 

intensity within the required THR. Training sessions took place in the Robinson Center on the 

University of Kansas, Lawrence campus. 

 

Statistical Analysis 

 For the MU data, linear regressions were performed on the MFR vs. RT, MUAPSIZE vs. 

RT, and MUAPDUR vs. RT relationships, whereas, exponential regressions were performed on 

the MFR vs. MUAPSIZE relationships (24). Slope and y-intercept values were calculated for each 

linear relationship, while A and B terms were calculated for the exponential relationship. Two 
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separate paired samples t-tests (time [pre- vs. post-training]) were used to examine differences in 

VO2MAX and MVC. Nine separate two-way repeated measures ANOVAs (visit [pre- vs. post-

training] x repetition [one vs. two] were used to examine differences in the normalized EMGRMS, 

the A and B terms for the MFR vs. MUAPSIZE relationships, and among the slopes and y-

intercepts for the MFR vs. RT, MUAPSIZE vs. RT, and MUAPDUR vs RT relationships. For the 

control subjects, similar statistical procedures were performed. When appropriate, follow-up 

analyses for the ANOVA models were performed using dependent samples t-tests with 

Bonferroni corrections. For all individual relationships, slopes and y-intercepts and the A and B 

terms were calculated using Microsoft Excel version 2013 (Microsoft, Redmond, WA). The level 

of significance was set at P ≤ 0.05 for the statistical tests. Statistical analyses were performed 

using SPSS version 22 (IBM Corp., Armonk, New York). 
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RESULTS 

 

Control Participants 

Results (mean±SD) for the control participants are presented in table 1. Paired samples t-

tests indicated no differences in body mass, MVC, and VO2MAX (P = 0.618 – 0.740). In addition, 

there were no significant two-way interactions (P = 0.204 – 0.998; visit x repetition) or main 

effects (P =0.083 – 0.728; visit and repetition) for normalized EMGRMS, the slopes and the y-

intercepts for the MFR vs. RT relationships, and A and B terms for the MFR vs. MUAPSIZE 

relationships.  

For the MUAPSIZE vs. RT relationships, there was no significant two-way interaction 

(visit x repetition; P = 0.099) or main effect for visit (P = 0.407). There was, however, a main 

effect for repetition. The slopes for repetition two (0.00273 ± 0.00055 mV/%MVC) were 

significantly greater (P = 0.013) in comparison to repetition one (0.00201 ± 0.00050 

mV/%MVC) when collapsed across visit.  

 

Experimental Participants 

VO2MAX and MVC Strength 

 A paired samples t-test indicated VO2MAX significantly increased (P <0.001) following 5 

weeks of continuous cycling (Pre = 2.622 ± 0.819 L/min, Post = 2.798 ± 0.806 L/min) (Figure 

1). A paired samples t-test indicated maximal strength was significantly less (P = 0.005) 

following 5 weeks of continuous cycling (Pre = 173.45 ± 51.64 Nm, Post = 156.92 ± 55.37 Nm) 

(Figure 2). 
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Normalized EMGRMS 

 The analysis indicated no significant two-way interaction (visit x repetition, P = 0.786). 

However, there were main effects for visit (P < 0.001) and repetition (P = 0.001). Normalized 

EMGRMS was greater for post- (49.45 ± 16.54%) in comparison to pre-training (38.16 ± 10.77%) 

when collapsed across repetition. Normalized EMGRMS was greater for repetition two (45.56 ± 

13.35%) in comparison to repetition one (42.06 ± 11.99%) when collapsed across visit (Figure 

3).  

 

MU Characteristics 

Decomposition of surface EMG signals yielded a total of 3705 MUs, with 1863 and 1842 

MUs recorded for visits 1 and 2. The average number of MUs recorded for each subject per 

contraction was 37.05 ± 10.75 and the observed RT ranges (%MVC) were 11.94 ± 7.71 – 39.40 

± 5.28 (visit 1) and 8.72 ± 6.07 - 36.90 ± 8.21 (visit 2). 

 

MFR vs. RT Relationships 

 For all contractions, the MFR vs. RT (r = -0.94 ± 0.04) relationships were significant. For 

the slopes, the analysis indicated no significant two-way interaction (visit x repetition, P = 0.441) 

or main effect for visit (P = 0.606). However, there was a main effect for repetition (P = 0.013). 

The slopes for repetition one (-0.319 ± 0.129 pps/%MVC) were significantly less negative in 

comparison to repetition two (-0.356 ± 0.129 pps/%MVC) when collapsed across visit.  

 For the y-intercepts, the analysis indicated a significant two-way interaction (visit x 

repetition, P = 0.042). The y-intercepts for pre-training repetition two (26.06 ± 6.00 pps) were 

significantly greater (P = 0.036) in comparison to post-training repetition two (24.40 ± 4.46 pps). 
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The y-intercepts for post-training repetition one (25.36 ± 4.84 pps) were significantly greater (P 

= 0.017) in comparison to post-training repetition two (Figure 4).  

 

MUAPSIZE vs. RT Relationships 

 For the MUAPSIZE vs. RT relationships, 99 of the 100 individual relationships were 

significant (r = 0.746 ± 0.14). For the slopes, the analysis indicated no significant two-way 

interaction (visit x repetition, P = 0.430) or main effects for visit (P = 0.953) and repetition (P = 

0.144). For the y-intercepts, the analysis indicated no significant two-way interaction (visit x 

repetition, P = 0.706), or main effects for visit (P = 0.107) and repetition (P = 0.719) (Figure 5).  

 

MFR vs. MUAPSIZE Relationships 

 For the MFR vs. MUAPSIZE relationships, 99 of the 100 relationships were significant (r 

= 0.81 ± 0.10). For the A terms, the analysis indicated a significant two-way interaction (visit x 

repetition, P = 0.044). The A terms for the pre-training repetition one (22.91 ± 2.59 pps) were 

significantly less (P = 0.012) in comparison to the post-training repetition one (24.43 ± 2.73 pps). 

The A terms for post-training repetition one were significantly greater (P = 0.015) in comparison 

to post-training repetition two (23.44 ± 2.54 pps). For the B terms, the analysis indicated no 

significant two-way interaction (visit x repetition, P = 0.569) or main effects for visit (P = 0.898) 

and repetition (P = 0.519) (Figure 6). 

 

MUAPDUR vs. RT Relationships 

Fifty-eight of the 100 individual relationships were significant (y-intercepts = 4.20 ± 1.05 

ms, slopes = 0.058 ± 0.040 ms/%MVC). However, only 6 of the 25 participants had significant 
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relationships all repetitions and visits and, thus, an ANOVA model could not be performed. The 

positive slopes may suggest the depth of the recorded MUs might have slightly increased with 

increments in RT for a few of the subjects (Figure 7). Of importance, there does not appear to be 

differences in pre- and post-training and, therefore, recorded MUs were from similar depths and 

is not a confounding factor.   

  



115 

 

 

  

DISCUSSION 

 

 As anticipated, 5 weeks of continuous cycling training significantly increased maximal 

aerobic capacity. Significant findings as a result of the continuous cycling training included the 

following: (1) decreases in maximal strength of the leg extensors, (2) time and repetition 

dependent decreases in firing rates of the lowest-threshold MUs for post-training, (3) time 

dependent increases in firing rates relative to MU size for post-training, and (4) increases in 

muscle activation to match pre-training absolute torques.  

 The results from the current study indicated VO2MAX was significantly increased 

following 5 weeks of continuous cycling. These findings are in agreement with Hoppeller et al. 

(54) and Howald et al. (29) that reported increases in VO2MAX for males and females following 6 

weeks of cycle ergometer training.  In contrast to VO2MAX, participants for the current study 

exhibited a significant decrease in MVC for the leg extensors.  It has been suggested that 

increases in type I fiber type proportions resulting from aerobic training (29, 55, 67) negatively 

affect strength capabilities (93). Howald et al (29) reported an increase of 12%, decreases of 8% 

(not significant), and 24% in the percentage of type I, IIA, and IIX fibers following 6 weeks of 

continuous cycling. Thus, it is plausible the reductions in MVC for the current study post-

training may be a result of shifts towards a greater percentage of type I fiber composition. 

Numerous researchers have investigated individual MU firing rate behavior during 

muscle fatigue (24, 41, 61, 79-86, 88, 89), however, few studies have longitudinally examined 

the effect of an endurance training protocol on MU behavior. Vila-Cha et al. (41) reported 6 

weeks of cycle ergometer training increased time to task failure for the leg extensors during a 

30% MVC. However, there were no training-related effects on MVC or MU firing rates, such as, 
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there were lower firing rates of the VL and vastus medialis during a time period of 60 – 70 s 

compared to the first 10 s for pre- and post-training. Mettler and Griffin (61) reported 4 weeks of 

muscular endurance training for the abductor pollicis improved endurance time for a 20% MVC. 

The authors reported an initial decrease in MU firing rates followed by an increase later during 

the contraction and similar to Vila-Cha et al. (41), there were no training-related changes. 

Therefore, the participants for these studies (41, 61) were able to maintain force for a longer 

duration without training alterations in MU firing rate behavior.  

 For the current study, alterations in MU firing rates and likely recruitment patterns as a 

result of continuous cycling training were repetition and time dependent. For example, the firing 

rates of the lowest-threshold MUs for the second repetition at post-training were significantly 

less in comparison to the first repetition at post-training. These MU firing rate patterns are in 

agreement with the findings of Vila-Cha et al. (41). The decrease in the firing rates of the lowest-

threshold MUs for the second repetition was also associated with an increase in normalized 

EMGRMS, indicating an increase in muscle activation (62-64). Therefore, it is likely a greater 

amount of higher-threshold MUs were recruited to achieve and maintain the targeted force 

during repetition two. The recruitment of additional higher-threshold MUs, which possess lower 

firing rates, to match the same absolute torques would result in the slopes for the MFR vs. RT 

becoming more negative, which was supported in the current study. 

 The firing rates for the lowest-threshold MUs for the second repetition post-training were 

also significantly less compared to the second repetition at pre-training. These findings may be a 

result of the decreases in maximal strength. Therefore, the targeted torques for post-training were 

at a greater relative % MVC compared to pre-training. It has been reported that Group III and IV 

small diameter afferents are activated with increases in metabolite production (94, 95) leading to 
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cortical motoneurone inhibition (96) and decreases in firing rates (97). Since firing rates of the 

lowest-threshold MUs were decreased and normalized EMGRMS was elevated for the second 

repetition post- (50.49 %) compared to pre-training (40.10 %), additional higher-threshold MUs 

were likely recruited to a greater degree to match the targeted torque level during the 45 second 

plateau for repetition one and the linearly increasing segment and plateau for repetition two. It 

would be expected that higher-threshold MUs would possess a greater percentage of fast-twitch 

type characteristics, such as, greater amounts of glycolytic and lower amounts of aerobic 

enzymes (98, 99). Thus, increased recruitment and sustained activation of higher-threshold MUs 

would result in a greater accumulation of metabolites that can activate Group III and IV afferents 

and, subsequently, reduce firing rates (100) for the lowest-threshold MUs.  

 The MUAPSIZE vs. RT relationship can provide insight in MU recruitment patterns. For 

example, Contessa et al. (24) reported that larger MUs were being recruited to achieve the same 

absolute targeted force during repetitive long duration contractions at 30% MVC for the leg 

extensors (not statistically tested). For the current study, there were no effects for repetition and 

training on the size of MUAPSIZES for the lowest- (y-intercepts) and highest-threshold (slopes for 

the MUAPSIZE vs. RT relationships) MUs. However, a closer examination suggests RTs of MU 

decreased for the second repetition in comparison to the first repetition post-training (Figure 8), 

which has been reported during fatiguing contractions (24, 81, 84, 88, 101, 102). This would 

support greater recruitment of larger higher-threshold MUs was necessary to achieve the targeted 

absolute torques due to a decrease in the overall contribution of force (reduced MU force 

twitches and firing rates) from the lower-threshold MUs and the accumulation of metabolites 

associated with fatigue. In support, larger MUAPSIZES were observed for the second repetition for 

post-training (Figure 9). 
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 The MFR vs. MUAPSIZE relationships were also investigated to account for possible 

decreases in RT during the repetitive muscle actions, which may induce bias in the interpretation 

of MU firing rates (24). The greater A terms for the first repetition at post-training compared to 

the first repetition pre-training indicated that the smallest-sized MUs had greater firing rates after 

the continuous cycling protocol. This is likely a result of decreases in strength as fatigue would 

not be a factor for the first repetition of either testing visit. It is well understood that the level of 

relative excitation to the MU pool is the main determinant of the number of recruited MUs and 

their firing rates. In addition, greater firing rates of the lowest-threshold MUs, which are smallest 

in size (4, 6, 10, 11), have been reported during increments in targeted forces (44, 103). 

Therefore, the increase in the firing rates of the smallest sized MUs can be explained by the 

decrease in strength, which required greater muscle activation at post- compared to pre-training 

to achieve and maintain the targeted torques. The A terms for the first repetition for post-training 

were greater than the second repetition. Thus, continuous cycling resulted in the smallest MUs 

having reduced MU firing rates for the second repetition despite greater overall muscle 

activation. This may be due to the activation of small diameter afferents by the accumulating 

metabolites, as discussed earlier. These findings are in agreement with Carpentier et al. (81), who 

reported increases in muscle activation (EMGRMS) and significant decreases in firing rates for 

lower-threshold MUs, whereas firing rates of higher-threshold MUs were not different across 

trapezoidal contractions at 50% MVC. 

 For the current investigation, participants completed two repetitive, long duration 

contractions at 40% MVC relative to pre-training before and after 5 weeks of continuous cycling. 

In summary, 5 weeks of training resulted in decreased maximal strength for the leg extensors 

and, subsequently, increases in muscle activation to match pre-training absolute torque levels. 
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For post-training, there were increases in the firing rates of the lowest-threshold MUs for the first 

repetition compared to pre-training, which suggests twitch forces were smaller post-training. For 

the second repetition post-training, there was a decrease in the firing rates of the lowest-threshold 

MUs compared to repetition one. This was likely due to the inhibition of motoneurons via the 

activation of small diameter afferents, which resulted in the recruitment of additional higher-

threshold MUs to achieve and maintain targeted torque levels.  
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Body Mass (kg)

Maximal Aerobic Capacity (L/min)

Rep 1 Rep 2 Rep 1 Rep 2

Slopes (pps/%MVC) -0.314 ± 0.067 -0.338 ± 0.094 -0.330 ± 0.205 -0.428 ± 0.202

Y-Int (pps) 25.46 ± 3.33 26.01 ± 3.30 28.26 ± 8.98 28.81 ± 6.00

Slopes (pps/%MVC) 0.00213 ± 0.00102 0.00217 ± 0.00045* 0.00189 ± 0.00079 0.00329 ± 0.00091*

Y-Int (pps) 0.0142 ± 0.0183 0.0159 ± 0.0141 0.0167 ± 0.0212 0.00276 ± 0.0250

A Terms (pps) 24.027 ± 3.039 24.991 ± 2.511 25.965 ± 2.515 28.097 ± 8.904

B Terms (pps/mV) -5.223 ± 1.165 -5.696 ± 1.000 -5.111 ± 1.501 -4.979 ± 1.922

* Indicates the slopes for rep 2 were significantly greater for post- in comparison to pre-testing when collapsed across visit. 

Normalized EMGRMS (%) 41.85 ± 5.48 44.80 ± 4.68 45.96 ± 9.18 55.80 ± 14.49

68.18 ± 13.71 68.60 ± 13.33

2.33 ± 0.99 2.36 ± 0.91

Leg Extensor MVC (Nm) 157.51 ± 47.66 159.04 ± 41.82

Measurement Pre-Testing Post-Testing

MFR vs. RT

MUAPSIZE vs. RT

MFR vs. MUAPSIZE

Table 1. Mean±SD for body mass (kilograms [kg]), maximal aerobic capacity (Liters/minute [L/min]), leg extensor maximal voluntary 

contraction (MVC; Newton meters [Nm]), and the slopes and y-intercepts for the mean firing rate (MFR; pulses per second [pps]) vs. 

recruitment threshold (RT; expressed as %MVC), motor unit action potential size (MUAPSIZE; millivolts [mV]) vs. RT, MFR vs. 

MUAPSIZE relationships, electromyographic amplitude (EMGRMS) normalized to MVC EMG (%), from repetition (rep) one and two for 

the pre- and post-testing 40% MVC.
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Figure 1. The mean (± SD) absolute maximal aerobic capacity (V02MAX) (L/min) from pre- and 

post-training. * VO2MAX was significantly greater (P < 0.001) at post- (2.798 ± 0.801 L/min) in 

comparison to pre-training (2.622 ± 0.819 L/min).    
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Figure 2. The mean (±SD) maximal voluntary contraction for pre- and post-training maximal 

strength. * Maximal strength was less (P = 0.005) for post- (165.059 ± 64.777 Nm) in 

comparison to pre-training (173.494 ± 64.327 Nm).  
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Figure 3. The mean (±SD) normalized (% max) electromyographic amplitude (EMGRMS) for the 

first and second repetition (rep) for pre- and post-training for the 40% MVC. # Normalized 

EMGRMS was greater for rep two (45.56 ± 13.35 % max) in comparison to rep one (42.06 ± 11.99 

% max) when collapsed across visit. * Normalized EMGRMS was greater for post- (49.45 ± 16.54 

% max) in comparison to pre-training (38.16 ± 10.77 % max) when collapsed across rep.  
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Figure 4. The mean (±SD) slope (top graph) and y-intercept (bottom graph) values from the 

mean firing rate (pulses per second [pps]) vs. recruitment threshold (expressed as percent of 

maximal voluntary contraction (%MVC) relationship for the first and second repetition (rep) for 

pre- and post-training for the 40% MVC. # The slopes were significantly greater (P = 0.013) for 

rep one in comparison to rep two when collapsed across visit. * The y-intercepts were 

significantly greater (P = 0.036) for the pre- rep two in comparison to post-training rep two. ** 

The y-intercepts were significantly greater (P = 0.017) for the post- rep one in comparison to the 

post-training rep two.  
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Figure 5. The mean (±SD) slope (top graph) and y-intercept (bottom graph) values from the 

motor unit actin potential size vs. recruitment threshold (expressed as percent of maximal 

voluntary contraction (%MVC) relationship for the first and second repetition (rep) for pre- and 

post-training for the 40% MVC.  
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Figure 6. The mean (±SD) B term (top graph) and A Term (bottom graph) values from the mean 

firing rate (pulses per second [pps]) vs. motor unit action potential size (mV) relationships for the 

first and second repetition (rep) for pre- and post-training for the 40% MVC. * The A terms pre- 

rep one (22.91 ± 2.59 pps) were significantly less (P = 0.012) in comparison to the post-training 

rep one (24.43 ± 2.73 pps). ** The A terms for the post- rep one were significantly greater (P = 

0.015) in comparison to the post-training rep two (23.44 ± 2.54 pps). 
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Figure 7. Plotted motor unit action potential (MUAP) duration (milliseconds [ms]) vs. 

recruitment threshold relationships (% maximal voluntary contraction [%MVC]) with linear 

regressions applied to the relationships for pre- (black markers and black solid regression lines) 

and post-training (grey markers and grey dashed regression lines) for repetition (rep) one 

(circular markers) and rep two (triangular markers) with the coefficient of determination (R2) 

displayed for each relationship. 
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Figure 8. The mean (±SD) predicted motor unit action potential (MUAP) (millivolts [mV]) sizes 

from the MUAPSIZE vs. recruitment threshold (% maximal voluntary contraction [%MVC]) for 

the first repetition (rep) for pre- (black fill), the second rep for pre- (grey fill), the first rep for 

post- (grey fill), and the second rep for post-training (black pattern fill). The observed 

recruitment range across contractions was 10.33 ± 2.00 – 38.15 ± 1.51 %MVC and, therefore, 0 

– 10% MVC increments were not included in the figure. 
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Figure 9. Plotted predicted mean firing rate (MFR; pulses per second [pps]) and standard 

deviations vs. motor unit action potential (MUAP) (millivolts [mV]) sizes with linear regressions 

applied to the relationships from the first repetition (rep) for pre- (black markers, solid fill; solid 

black regression line), the second rep for pre- (black markers, empty fill, dashed black regression 

line), the first rep for post- (grey markers, solid fill; solid grey regression line), and the second 

rep for post-training (grey marker, empty fill; dashed grey regression line). 
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