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Dissertation Abstract 

Under accounting conventions, monetary assets cannot be added to liabilities, for example, credit 

card balances, which are liabilities to consumers. However, from an innovative perspective 

proposed by Professor William A. Barnett, we perceive credit cards as transaction service 

providers, along with monetary assets, such as currency and demand deposit. Microeconomic 

aggregation theory and index number theory measure service flows and thereby provide a 

theoretical basis to aggregate jointly over credit card services and monetary services to produce 

our new Augmented Divisia Monetary Aggregates.  Whether services are produced by assets or 

liabilities is not relevant to aggregation theory. 

Following this micro-theoretic approach, my dissertation is organized in the following manners: 

Chapter 1 documents detailed information on the data sources used in producing the new 

augmented Divisia monetary aggregates, together with other relevant sources that we extensively 

explored for availability of the needed credit card variables.1 

Chapter 2 contains the theoretical derivation needed to measure the joint services of credit cards 

and money. We provide and evaluate two such aggregate measures, having different objectives. 

We initially apply our new aggregates to NGDP nowcasting. Both aggregates are being 

                                                 

 

1 This paper was invited by a special issue editor of the Elsevier journal Research in International Business and 

Finance and appeared in vol 39, Part B, January 2017, pp. 899-910. The special issue is the proceedings of a 

conference held in Paris on June 4-5, 2015. 
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implemented by the Center for Financial Stability, which will provide them to the public through 

monthly releases, as well as to Bloomberg Terminal users.2 

Chapter 3 extends the above theory by removing the assumption of risk neutrality to permit risk 

aversion in the decision of the representative consumer.3 

Chapter 4 investigates bivariate time series properties of Divisia money and nominal GDP to 

investigate the viability of recent proposals by authors who have advocated a role for a Divisia 

monetary aggregate in nominal GDP targeting.4 

Chapter 5 provides theory needed to measure the supply of the joint services of credit cards and 

money by financial firms. The resulting model can be used to investigate the transmission 

mechanism of monetary policy and to measure inside money and value-added produced by 

banks. This measurement could also be helpful to economists working on the national accounts 

as well as to those investigating the growing role of shadow banking.5 

                                                 

 

2 This paper has been submitted to the Journal of Money, Credit, and Banking and is currently in revise and 

resubmit status. 
3 This paper has been invited and accepted for publication in “Macroeconomic Advances in Honor of Clifford 

Wymer,” a special issue of Macroeconomic Dynamics.  The editors of the special issue are Giovanni De 

Bartolomeo, Daniela Federici, and Enrico Saltari A short form of the theoretical results, without the proofs or 

discussion, has been published in the Economics Bulletin, vol 36, no 4, 2016, pp. A223-A234. 
4 This paper has been invited and accepted for publication in The International Journal of Business and 

Globalisation, for a special issue containing selected papers from the May 2015 International Conference on 

Economic Recovery in the Post-Crisis Period in Skopje, Republic of Macedonia. 
5 This paper has been submitted to the Journal of Banking and Finance, which has very high impact factor.  We 

have not yet received referee reports or decision about that submission. We subsequently plan to begin econometric 

research using the theory in modeling bank behavior. 
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Abstract 

In 2013, the Center for Financial Stability (CFS) initiated its Divisia monetary aggregates 

database, maintained within the CFS program called Advances in Monetary and Financial 

Measurement (AMFM). The CFS will soon be making available Divisia monetary aggregates 

extended to include the transactions services of credit cards.  The extended aggregates will be 

called the augmented Divisia monetary aggregates and will be available to the public in monthly 

releases.  The new aggregates will also be available to Bloomberg terminal users.  The theory on 

which the new aggregates is based is provided in Barnett and Su (2014).8  In this paper, we 

provide detailed information on the data sources used in producing the new augmented Divisia 

monetary aggregates. 

 

Keywords:  monetary aggregates; credit cards; aggregation theory; index number theory; data; 

Divisia index. 

JEL Classifications: G, C8, E4. 

  

                                                 

 

8 A revised and updated version of that theory can be found in Barnett, Chauvet, Leiva-Leon, and Su (2016). 
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1. Introduction 

The Center for Financial Stability (CFS) will soon be making available Divisia monetary 

aggregates extended to include the transactions services of credit cards, in accordance with 

Barnett and Su (2014) and Barnett, Chauvet, Leiva-Leon, and Su (2016).  To construct the 

resulting “augmented Divisia monetary aggregates,” we extensively explored relevant sources 

for the needed credit card variables. Since the credit card transactions volumes data are not 

publicly available from federal government agencies or the Federal Reserve System, our search 

took over a year. In this paper we make available the results of our search, not only to document 

the sources for the new CFS augmented Divisia monetary aggregates, but also for reference by 

future researchers who might want to work in this area and therefore be confronted with similar 

data search challenges.  In this paper, we focus entirely on the credit card components of the new 

aggregates, since the sources for the other components have been documented by Barnett, Liu, 

Mattson, and Noort (2013), as was needed for construction of the original CFS aggregates. 

The most difficult part of this search was the need to find data for credit card transactions 

volumes. To be consistent with the theory in Barnett and Su (2014) and Barnett, Chauvet, Leiva-

Leon, and Su (2016), the credit card quantities to include in the augmented Divisia index formula 

are the monthly credit card transactions volumes, not the credit card balances. The balances 

include revolving debt used to pay for transactions in prior periods. To include those funds again 

in a subsequent period would produce double counting of transactions services.  But only the 

total balances are available from governmental sources, such as the Federal Reserve. Those 

credit card balances can be used as related indicator variables within the Chow-Lin method to 
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interpolate the transactions volumes monthly. Those volumes are only available quarterly, while 

the total balances are available monthly from the Federal Reserve. But the credit card debt 

balances should not themselves be entered into the Divisia index formula to measure 

contemporaneous credit card transactions services. 

The data search process was long and arduous. For the benefit of future researchers, who might 

be confronted with similar data needs, this paper not only documents our successful location of 

relevant sources but also makes public the many dead ends we encountered. 

2. Adopted Data Sources 

2.1 Data Sources for Credit Card Transactions Volumes 

As observed by Barnett and Su (2014) and Barnett, Chauvet, Leiva-Leon, and Su (2016), 

implementing the theory using credit card transactions volumes has heavy data requirements. 

Numerous sources were extensively explored, as discussed in section 3. In this subsection, we 

introduce in detail where to find the ultimate sources we adopted and how to locate the specific 

data from the financial reports. 

Our primary sources are the quarterly financial reports of the four credit card companies, Visa, 

MasterCard, Discover, and American Express.  The total payment volume each period is 

summed over the four. According to trade jargon, the word “credit card” applies only to those 

four.  Charge cards and store cards (called “private label” cards), are not credit cards.  To be a 

credit card, it must be accepted for all goods and services not requiring cash-only payment.  That 

rules out store cards, such as gasoline cards or department store cards.  In addition, the card must 
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provide a line of credit.  That rules out charge cards for which payment is required in full at the 

end of the period. To model consumer charge cards decisions, we would need to include an 

inequality constraint requiring credit card debt to be paid off at the end of the period.  Our model 

does not have such a constraint.  Our representative consumer model assumes that the 

representative consumer has access to a line of credit, if the debt is not paid off during the same 

period.9 

For Visa cards, the quarterly reports can be found in their investor relations site: 

http://investor.visa.com/financial-information/quarterly-earnings/ 

 Select the period of interest. 

 Go to “Operational Data.” 

 Page 1, first table. 

 “Visa Credit Programs” section.  

 Locate the row for “US.” 

 Locate the column for “Payments Volume.” 

 

For example, for the 3 months ending December 31, 2015, the Visa credit card transactions 

volume in the United States is 358 billion dollars. The release date each quarter is about 4 weeks 

                                                 

 

9 Historically, most American Express cards were charge cards, but in recent years even the former charge cards 

issued by American Express provide access to a line of credit.  As a result, the distinction between charge cards and 

credit cards issued by American Express is not relevant to our model. 
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after the quarter ends. 

Similarly, for MasterCard, the quarterly reports can be found in their investor relations site: 

http://investor.mastercard.com/investor-relations/financials-and-sec-filings/quarterly-

results/default.aspx 

 Select the period of interest. 

 Go to “Supplemental Materials.” 

 Page 1, first table. 

 “MasterCard Credit and Charge Programs” section.  

 Locate the row for “United States.” 

 Locate the column for “Purchase Volume.” 

For example, for the 3 months ending December 31, 2015, MasterCard transactions volume in 

the United States was 174 billion dollars. The release date is about 4 weeks after the quarter 

ends. 

For Discover Cards, the quarterly reports are researched by: 

http://investorrelations.discoverfinancial.com/phoenix.zhtml?c=204177&p=irol-quarterlyresults 

 Locate “Earnings” for the relevant quarter and year. 

 Go to “Financial Supplement (PDF).” 

 Search for the row for “Discover Card Sales Volume.” 

 Locate the column for the relevant quarter and year. 

For example, Discover credit card transactions volume in 2015 quarter 4 was 31.672 billion 

dollars. The release date is about 3 to 4 weeks after the quarter ends. 

Lastly the quarterly reports for American Express can be found at: 

http://ir.americanexpress.com/Earnings-and-Events 
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 Select the tab for “Past Events” and the period of interest. 

 Go to “American Express Earnings Conference Call.”  

 Go to “Financial Tables.” 

 Search for “Card billed business (F).”  

 Locate the row for United States, 

 Locate the column for the relevant quarter and year. 

For example, American Express credit card transactions volume in 2015 quarter 4 was 189.9 

billion dollars. The release date is about 2 to 3 weeks after the quarter ends. 

Another relevant source of credit card transactions volumes is a spreadsheet in the statistics site 

of PaymentsSource.com: 

http://www.paymentssource.com/statistics/ 

 “US Quarterly Credit and Charge Card Payment Volumes: 3Q 2006 – Current.” 

The spreadsheet contains payment volumes from 2006 Q2 to 2013 Q2. It confirmed that the 

transactions volumes found from the above-mentioned financial reports were correctly located in 

those reports. In addition, that spreadsheet improved the efficiency and accuracy of our 

collection of transactions volume series. As data up to the second quarter of 2013 were all 

included in the spreadsheet, we only needed to check the precision of those data and to update to 

the current period based on the four companies’ financial reports.  From both of our sources, 

credit card transactions volumes are available only since 2006 quarter 3, which is when the firms 
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went public.10 

The data from both sources are seasonally unadjusted. We adopted the latest Census X-13 

ARIMA-SEATS program to adjust the level data of credit card transactions volumes. 

A detailed description of the methods and theory of X-13 ARIMA-SEATS can be found at the 

US Census Bureau website.11 In addition, its reference manual, theoretical background, and 

empirical applications are also available on the US Census Bureau website.12 

2.2  Data Sources for Chow-Lin Interpolation 

Since the credit card transactions volumes are released only on a quarterly basis, we need to 

interpolate the quarterly data monthly to permit monthly publication and release of the 

augmented Divisia monetary aggregates. For this purpose, we selected the well known and 

widely respected Chow-Lin (1971) procedure, which provides a unified approach to 

interpolation, distribution, and extrapolation.13  The procedure requires regression on a related 

                                                 

 

10 An exception is American Express, which has been a public company for a much longer time.  But during the 

earlier years, American Express issued only charge cards, not credit cards. 
11 https://www.census.gov/srd/www/x13as/. 
12 https://www.census.gov/srd/www/x13as/papers4newusers.html. 
13 According to Chow-Lin (1971), interpolation and distribution are respectively defined as follows. (a) Given the 

value of a time series at the beginning of each quarter for n quarters, and given the value of a related series at the 

beginning of each month for these 3n months, the problem of interpolation is to estimate the first series for the 

remaining 2n months. (b) Given the value of a series of flows during each quarter for n quarters, and the value of a 

related series for each month, the problem of distribution is to estimate the first series for the 3n months. 
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indicator series to obtain best linear unbiased estimates (BLUE) of the monthly series. 

To implement the Chow-Lin procedure, at least one highly correlated series needs to be chosen 

as an indicator. Five potential candidates were selected for that purpose and their merits 

compared for the interpolation: 

• Total consumer credit outstanding. 

The Federal Reserve Board provides Total Consumer Credit Outstanding, with unique identifier 

“G19/CCOUT/DTCTL.M,” on a monthly basis through the G.19 survey by the Data Download 

Program.14 This seasonally adjusted series covers most credit extended to individuals, excluding 

loans secured by real estate. The release date is on the fifth business day of each month. Those 

data are also available in the St. Louis Federal Reserve Bank’s database, FRED, under the tag 

TOTALSL. This series is available beginning on January 1943. 

• Revolving consumer credit outstanding. 

This seasonally adjusted series, with unique identifier “G19/CCOUT/DTCTLR.M,” is from the 

same source as Total Consumer Credit Outstanding and is a component of it, while the other 

component is “non-revolving credit.” Credit card outstanding balance contains revolving 

consumer credit outstanding as a major component. Revolving Consumer Credit Outstanding is 

                                                 

 

14 http://www.federalreserve.gov/datadownload/Choose.aspx?rel=G19. 
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available beginning on January 1968. 

• Credit card interest rate (all accounts). 

This series is provided in the Federal Reserve Board’s G.19 release. The release provides two 

such interest rates.  One is the interest rate on only those credit card accounts that pay interest to 

the bank issuing the account.  The other interest rate, which is lower, includes those accounts that 

are not paying interest to the banks.  The noninterest yielding accounts are paid off within the 

month.  Our model is for the representative consumer, aggregated over both those consumers 

paying interest on credit card accounts and those that are not.  Hence, the interest rate we use is 

the lower one, which accounts for the fact that not all credit card transactions volumes are being 

charged interest. This series is called Commercial Bank Interest Rate on Credit Card Plans, All 

Accounts, with unique identifier “G19/TERMS/RIFSPBCICC_N.M.” It is not seasonally 

adjusted, which is consistent with the convention at the Center for Financial Stability (CFS) and 

also at the Federal Reserve for interest rates. This series is available since 1994 Q4. 

Note that this interest rate is also the choice used in the user cost formula for the credit card 

transactions services. At the present time in the United States, 58.7% of active credit card 

accounts pay interest.15 Since the interest rate paid on those accounts is high, the lower average 

credit card interest rate in the G.19 survey, averaged over both groups, is still much higher than 

                                                 

 

15 See the proportion of “revolvers,” “transactors,” and “dormants” on the following document provided by 

American Bankers Association: www.federalreserve.gov/datadownload/Choose.aspx?rel=G19. 
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our benchmark rate. As a result, the user cost is always positive – in fact very positive.  Although 

the benchmark rate is higher than the interest rates paid to consumers on secured assets, the rate 

of interest on credit card debt is not on a consumer asset and is not secured to the issuing firms. 

For the issuing firms, those accounts are assets.  Credit card debt is not secured and subject to 

fraud risk.16 

• Nominal user cost of credit card services 

The following formula for the nominal user cost of credit card services was derived in Barnett 

and Su (2014) and subsequently in Barnett, Chauvet, Leiva-Leon, and Su (2016): 

𝜋̃𝑗𝑡 =
𝑝𝑡
∗(𝑒𝑗𝑡 − 𝑅𝑡)

1 + 𝑅𝑡
, 

where 𝑝𝑡
∗ is the true cost of living index, 𝑒𝑗𝑡 is credit card interest rate, and 𝑅𝑡 is the yield on the 

benchmark asset during period t. We use the Labor Department’s Consumer Price Index (CPI) to 

represent the true cost of living index, 𝑝𝑡
∗, since the CPI is used as the “cost of living” in wage 

contracts. For the credit card interest rate, 𝑒𝑗𝑡, we use the series discussed above. For the yield on 

                                                 

 

16 Even if credit card debt were secured and not subject to fraud risk, there would be no internal contradiction in 

assuming that the maximum interest rate available to one category of economic agents (consumers) is lower than 

that available to another category of economic agents (credit card companies), although the risk born by credit card 

companies is the primary reason for the high interest rate on credit card debt.  The greatest source of risk is credit 

risk (called Net Credit Loss), but fraud risk along with high operating costs all play a role in the high interest rates 

on credit card debt. 
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the benchmark asset adopted by the CFS and used by us, see Barnett, Liu, Mattson, and van den 

Noort (2013). Restricted by the credit card interest rate’s availability, the nominal user cost of 

credit card services is available since October 1994. 

• Real user cost of credit card services. 

The formula for the real user cost of credit card services is as follows: 

𝜋̃𝑗𝑡
∗ =

𝜋̃𝑗𝑡

𝑝𝑡
∗ =

𝑒𝑗𝑡 − 𝑅𝑡

1 + 𝑅𝑡
. 

As with the nominal user cost of credit card services, the real user cost is available since October 

1994. 

To implement the Chow-Lin procedure, we used the statistical software, R. We used the 

temporal disaggregation package provided by R, and the descriptive links are below. 

https://cran.r-project.org/web/packages/tempdisagg/index.html (download link) 

https://cran.r-project.org/web/packages/tempdisagg/tempdisagg.pdf (manual) 

https://journal.r-project.org/archive/2013-2/sax-steiner.pdf (tutorial article) 

As the data are limited by the availability of the credit card interest rate, which is available only 

after 1994 Q4, we extrapolated and interpolated the data from October 1994 to the present, with 

all possible combinations of the above indicator series. The resulting table for the Chow-Lin 

procedure is in the Appendix table 1.  Statistical significance tests determined that the best model 

with Chow-Lin uses only one indicator as a related series:  total consumer credit outstanding. 

https://cran.r-project.org/web/packages/tempdisagg/index.html
https://cran.r-project.org/web/packages/tempdisagg/tempdisagg.pdf
https://journal.r-project.org/archive/2013-2/sax-steiner.pdf


14 

 

Since credit card transactions volumes start in 2006 Q3, while all the indicator series start from 

October 1994, we investigate extrapolation backwards from 2006 Q3 to October 1994. We found 

that the backwards extrapolation of transactions volumes was highly nonrobust to the choice of 

indicators, since the extrapolation has no anchor in October 1994 without availability of 

transactions volumes data before 2006 Q3. As a result, we have forgone backwards 

extrapolation, and used Chow-Lin only for interpolation beginning in 2006 Q3. 

To summarize all the adopted data sources to construct the augmented Divisia Index, we 

provided table 2 in the Appendix, following the tradition of Barnett, Liu, Mattson, and Van Den 

Noort (2013) and Anderson and Jones (2011). In addition, a graphical demonstration of the 

Chow-Lin interpolation is provided in Appendix Figure 1. 

3. Other Potentially Relevant Sources 

While searching for our chosen sources of credit card transactions volumes, we encountered 

numerous dead ends. We provide a summary for researchers interested in replicating our work or 

pursuing relevant extensions and alternatives to our approach. 

3.1  Federal Reserve Board G.19 Release 

The Federal Reserve Board G.19 release, “Consumer Credit,” reports outstanding credit 

extended to individuals for household, family, and other personal expenditures, excluding loans 
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secured by real estate.17 It was one of the first sources that we searched for credit card 

transactions volumes. Unfortunately, the Federal Reserve does not provide those transactions 

volumes. But this is where we acquired the total consumer credit outstanding, used as indicator 

for the Chow-Lin monthly volume interpolation procedure, and the credit card interest rate for all 

accounts to calculate the user costs of the credit card transactions services. 

3.2  Consumer Credit Snapshot by Federal Reserve Bank of Philadelphia 

This source provides updated statistics related to consumer credit and consumer payments.18 The 

most relevant data are at the “Consumer Debt” tab, which is a mirror of the G.19 statistics 

mentioned above. 

3.3  Federal Reserve Payment Study, 2013 

This document provides an overview of the aggregate trends in noncash payments in the United 

States.19 It does provide a few annual transactions volumes. For example, it reports that the total 

value of 2012 private label (store) card transactions in the U.S. was $2.21 trillion, which is 

consistent with the data sources we mentioned above. However, it is far from a detailed and 

systematic source providing historical data at adequate frequency.  

The Electronic Payments Study was performed by Blueflame Consulting. According to Ed 

                                                 

 

17 http://www.federalreserve.gov/Releases/G19/current/. 
18 http://www.philadelphiafed.org/consumer-credit-and-payments/statistics/. 
19 https://www.frbservices.org/files/communications/pdf/research/2013_payments_study_summary.pdf. 

http://www.philadelphiafed.org/consumer-credit-and-payments/statistics/
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Bachelder, the Director of Research and Analytics at Blueflame Consulting, “the credit card data 

was collected on annual total basis, not monthly as is described in the methodology documents. 

It was also gathered on a confidential basis and cannot be shared beyond what was publicly 

released due to a number of legal restrictions.” 

3.4  Credit Card Market Monitor by American Bankers Association 

The Credit Card Market Monitor does not provide transactions volumes, but does provide an 

informative figure: Distribution of Accounts by Behavior Type. 20 This gives us information 

about how many credit card accounts are active.  That data source, from the American Bankers’ 

Association, also provides information about how many active accounts are carrying credit card 

debt into the next period and are thereby paying credit card interest. 

3.5  Call Reports Processed by FFIEC Central Data Repository 

This file contains data from Call Reports received and processed by the FFIEC (Federal 

Financial Institutions Examination Council) Central Data Repository (CDR) as of 2016-01-14.21 

The file is intended to provide an integrated view of financial data across those financial 

institutions filing Call Reports in a format that could facilitate analysis of such data by the 

public. The file does not necessarily provide the most recent Call Report and financial 

institutions data available in FFIEC CDR. In this source, we failed to find the credit card 

                                                 

 

20 http://www.aba.com/Press/Documents/12.16.14ABACreditCardMonitorFAQ.pdf. 
21 https://cdr.ffiec.gov/public/PWS/DownloadBulkData.aspx. 

https://cdr.ffiec.gov/public/PWS/DownloadBulkData.aspx
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transactions volumes we need. 

3.6  Creditcards.com 

This site contains much informative data about credit card usage trends in the United States. For 

example, the transactors versus revolvers trend from 2009 to 2014 indicates that the percent of 

American households carrying rotating credit card debt from month to month (revolvers) have 

decreased from 44% in 2009 to 34% in 2014.22  

Meanwhile, the site’s credit card market share statistics page provides some payment volume 

data, but only the 2013 and 2014 annual purchase volumes for each card network.23 Although 

those volumes are inadequate for our use, the site’s footnotes reveal the sources of purchase 

volumes: the financial reports for the four card companies. However, the footnote does not 

provide instructions on how to locate those data from within those financial reports. 

3.7  The Nilson Report 

The Nilson report purports to publish the US credit card purchase volumes quarterly and the 

global figures every six months. However, this requires a subscription to all the issues of the 

                                                 

 

22 http://www.creditcards.com/credit-card-news/credit-card-debt-statistics-1276.php.  But the following statement is 

from www.motherjones.com/kevin-drum/2011/10/americans-are-clueless-about-their-credit-card-debt.   "In the four 

working age categories, about 50% of households think they have outstanding credit card debt, but the credit card 

companies themselves think about 80% of households have outstanding balances."  Since these percentages are of 

total households, including those having no credit cards, the percent of credit card holders paying interest can be 

even higher. 
23 http://www.creditcards.com/credit-card-news/credit-card-market-share-statistics-1264.php. 

http://www.creditcards.com/credit-card-news/credit-card-debt-statistics-1276.php
http://www.creditcards.com/credit-card-news/credit-card-market-share-statistics-1264.php


18 

 

Nilson reports. The cost is currently $1495 for each year (23 issues per year). New subscribers 

also receive a USB flash drive containing the last five years of issues. The cost for previous years 

extending back to 1997 is $295 for each year, supplied on a CD ROM or flash drive, while the 

cost for the years of 1996-1990 is $300 each year, supplied only in a hard copy format. 

Considering the cost versus the amount of information we need, and our inability to determine 

whether their reports provide exactly what we need, we decided instead to look further into the 

sources from which Nilson acquires those figures. 

3.8  The 2015 Consumer Financial Literacy Survey 

This survey was conducted online within the United States by Harris Poll on behalf of the NFCC 

(National Foundation for Credit Counseling) between March 11 and March 13, 2015 among 

2017 adults age 18+.24  Though it does not contain the credit card transactions volumes, it does 

provide an overview of the credit card expenditure trend in the US. For example, according to 

this report, one in three U.S. adults (33%) indicate their household carries rotating credit card 

debt from month to month, with about one in ten adults (11%) saying they roll over $2500 or 

more in credit card debt each month. 

3.9  SEC Filings of the Four Card Companies 

We found the same figures for transactions volumes in the SEC filings of the four credit card 

                                                 

 

24 https://www.nfcc.org/wpcontent/uploads/2015/04/NFCC_2015_Financial_Literacy_Survey_FINAL.pdf. 

https://www.nfcc.org/wpcontent/uploads/2015/04/NFCC_2015_Financial_Literacy_Survey_FINAL.pdf
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companies as in their financial reports. The SEC filings share the same release dates as their 

annual reports. 

For Visa, the SEC filings can be found here: 

http://investor.visa.com/sec-filings/ 

 Select the “8-K” filing of the relevant period. 

 Look for “Operational Performance Data” section. 

 First table, under the title “Visa Credit Programs.” 

 Locate the row of “US.” 

 Locate the column of “Payments Volume.” 

That 8-K Filing is usually released four weeks after the quarter ends. 

The SEC filings for MasterCard are available from: 

http://investor.mastercard.com/investor-relations/financials-and-sec-filings/sec-

filings/default.aspx 

 Select the “8-K” filing of the relevant period. 

 “MasterCard Incorporated Operating Performance” table. 

 “MasterCard Credit and Charge Programs” section.  

 Locate the row for “United States.” 

 Locate the column for “Purchase Volume.” 

That 8-K Filing is usually released four weeks after the quarter ends. 

For Discover cards, the SEC filings are posted at: 

http://investorrelations.discoverfinancial.com/phoenix.zhtml?c=204177&p=irol-sec 

http://investor.visa.com/sec-filings/
http://investor.mastercard.com/investor-relations/financials-and-sec-filings/sec-filings/default.aspx
http://investor.mastercard.com/investor-relations/financials-and-sec-filings/sec-filings/default.aspx
http://investorrelations.discoverfinancial.com/phoenix.zhtml?c=204177&p=irol-sec
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 Select the “8-K” filing of the relevant period. 

 Search for the row for “Discover Card Sales Volume.” 

 Locate the column for the quarter and year. 

That 8-K Filing is usually released about 3 to 4 weeks after the quarter ends. 

Finally, the American Express SEC filings are posted on: 

http://ir.americanexpress.com/docs.aspx?iid=102700 

 Select the “8-K” filing of the relevant period. 

 Search for “Card billed business (F).” 

 Locate to the row for the United States. 

 Locate the column for the quarter and year. 

That 8-K Filing is usually released about 2 to 3 weeks after the quarter ends. 

There are numerous types of other files apart from 8-K Filings on the SEC filings webpage.  As a 

result, the needed files are very scattered. Moreover, there usually are several files called “8-K 

Filings” in a single period and only one of them contains the relevant spreadsheet. Therefore, we 

do not recommend acquiring the transactions volumes through this channel.  Those data are more 

conveniently acquired from credit card companies’ annual reports. 

3.10  Credit Bureaus 

We have also looked into credit bureaus such as Equifax, Experian, and TransUnion for credit 

card transactions volumes data. However, providing this kind of data is not primarily what they 

do, they can be missing some relevant information. Researchers would need to acquire 

information from all of them, with some overlap. Following this path would be very time 

consuming, with possibly inadequate results. 

http://ir.americanexpress.com/docs.aspx?iid=102700
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3.11  FirstData 

FirstData has a product called SpendTrend, which we originally thought could be helpful. 

However, FirstData only has information about the card volumes processed through FirstData, so 

is missing a huge chunk of the relevant data. Furthermore, they would not provide any additional 

information they have privately. 

3.12  First Annapolis 

First Annapolis responded to our data requests by informing us of two other possible sources: the 

Federal Reserve Payment Study and the Philadelphia Federal Reserve Consumer Credit 

Snapshot.  We acquired no positive results from those two sources. 

3.13  CardHub 

This website contains an annual purchase volume table, based on the SEC filings from Visa, 

MasterCard, American Express, and Discover.  The table is provided only for the year 2014 and 

contains only annual data.25 The Communications Manager of CardHub replied that they do not 

have any data other than those listed in that one report. 

CardHub.com contains a table providing the Consumer Credit Card Debt from 2008 Q4.26 That 

reported debt is the total outstanding credit card debt in each quarter, not the needed transactions 

                                                 

 

25 http://www.cardhub.com/edu/market-share-by-credit-card-network/. 
26 http://www.cardhub.com/edu/credit-card-debt-study/#data-and-graphs. 

http://www.cardhub.com/edu/credit-card-debt-study/#data-and-graphs
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volumes.  

But these data help to confirm a comment mentioned by an expert on the Federal Reserve G.19 

statistics team, when we contacted that team for relevant information. What he mentioned was 

that the G.19 statistics of revolving credit outstanding is mainly credit card debt outstanding, 

which comprises more than 90% of revolving credit. Comparing the two series in each quarter, 

we found this to be the case.  This information was relevant to our choice of indicator variables 

in the Chow-Lin interpolation of transactions volumes from quarterly to monthly. 

Another table on CardHub contains total credit card debt balance. The source is the Federal 

Reserve Bank of New York consumer credit panel.27  

3.14  Investor Relations Departments of Credit Card Companies 

The Investor Relations Departments of Visa, MasterCard, American Express, and Discover were 

very helpful in our search to locate the transactions volumes, both via email and phone calls. The 

contact information is listed below: 

A. Visa 

Phone: 650-432-7644  

Email: ir@visa.com 

                                                 

 

27 http://www.cardhub.com/edu/credit-card-debt/#card-debt. 

mailto:ir@visa.com
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B. MasterCard 

Phone: 914-249-4565 

Email: Investor_Relations@mastercard.com 

C. Discover 

Phone: 224-405-4555 

Email: investorrelations@discover.com 

D. American Express 

Phone: 212-640-6348 

Email: ir@aexp.com 

3.15  Statista 

This source claims to contain credit card purchase volume in the United States for the years 

2000-2014 by type of credit card. 28 The report costs $325. Upon contacting the support team, we 

were sent the report for free. However, the report only contains a snapshot of purchase volumes 

in the years of 2000, 2010, and 2014 by each credit card company.  

3.16  Consumer Finance Monthly, Ohio State University 

According to Professor Randall Olsen from the Ohio State University, they have stopped 

collecting the Consumer Finance Monthly survey, but are allowing people to access the past data 

they did collect. However, that survey did not include the amounts charged on credit cards. The 

                                                 

 

28 http://www.statista.com/study/12118/credit-cards-in-the-united-states-statista-dossier/. 

tel:914.249.4565
mailto:investorrelations@discover.com
http://www.statista.com/study/12118/credit-cards-in-the-united-states-statista-dossier/
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survey focused on stocks, including asset quantities, liabilities, and net worth, rather than 

spending flows. 

3.17  CPRC Presentation 

The Federal Reserve Bank of Boston publishes its Consumer Payment Research Center (CPRC) 

Events and Presentations. This site has preliminary monthly figures for average value of credit 

card purchases and average number of credit card purchases for U.S. adults.29 One way to 

estimate the average purchase volume per month is to calculate the product of the two series and 

divide by the number of U.S. adults.  

But if the number of transactions and the transactions values are highly correlated, then the 

product of the averages will not be an accurate estimate of the average of the products. As a 

result, we did not adopt that approach. 

3.18  Diary of Consumer Payment Choice (DCPC) 

This source offers consumers-only data. But the DCPC had not been released officially at the 

time we were looking for the data. We had signed up on the email list of the Consumer Payment 

Research Center to receive news about new data releases. 30 However, we have so far received 

                                                 

 

29 http://www.bostonfed.org/economic/cprc/presentations/index.htm. 
30 http://www.bostonfed.org/economic/cprc/contact/contact.htm. 

http://www.bostonfed.org/economic/cprc/presentations/index.htm
http://www.bostonfed.org/economic/cprc/contact/contact.htm
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no helpful information from this source. 

3.19  Federal Reserve Survey of Consumer Finances 

This survey based report is available only every three years, with the most recent being for 

2013.31 We have not found that source to be helpful. 

3.20  Bankrate Monitor Survey 

The Bankrate Monitor Survey provides fixed and variable credit card interest rates in its weekly 

report.32 The “fixed” column refers to fixed-rate credit cards, and “variable” column refers to 

variable-rate credit cards.33 In fact, there are only five fixed-rate credit cards in Bankrate’s 

weekly survey or rates, including none from a major bank. As we are concerned with all the 

accounts rather than specific group categories, we did not adopt the data from Bankrate Monitor 

Survey. 

4. Conclusion 

To implement the theory originated by Barnett and Su (2015) and Barnett, Chauvet, Leiva-Leon, 

and Su (2016), we extensively explored relevant sources for the needed credit card variables.  As 

the relevant credit card data are not available from governmental sources, the search for level and 

                                                 

 

31 http://www.federalreserve.gov/econresdata/scf/scfindex.htm. 
32 http://www.bankrate.com/finance/credit-cards/current-interest-rates.aspx. 
33 http://www.bankrate.com/finance/credit-cards/fixed-rate-cards-going-away.aspx 
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rate data took over a year. We detail the results of this search in this paper as reference for future 

researchers confronted with a similar problem. Our focus in this paper is limited to the credit 

card data, since the other components for the CFS aggregates have been explained in Barnett, 

Liu, Mattson, and van den Noort (2013).  The most difficult part of the search was to acquire 

credit card transactions volumes, as needed by the theory, since those volumes are not provided 

by any governmental sources.  In our search, we encountered many “dead ends,” revealed in this 

paper for the benefit of future researchers on this subject.  We primarily focus on our chosen best 

sources. 

The theory and data have been integrated and applied by Barnett, Chauvet, Leiva-Leon, and Su 

(2016) to produce the new augmented Divisia monetary aggregates, which are to be made 

available to the public in regular monthly releases by the Center for Financial Stability in NY 

City and to Bloomberg terminal users.  Barnett, Chauvet, Leiva-Leon, and Su (2016) have found 

the new aggregates to be highly informative. With the inclusion of credit card transactions 

services, the augmented aggregates have been found to lead conventional Divisia at all levels and 

to correlate better with nominal GDP.  As indicators of nominal GDP, the new augmented 

Divisia monetary aggregates are found to have exceptional value in nowcasting. The 

construction of the augmented Divisia monetary aggregates has opened up a new branch and 

direction for our future research and for the research of others interested in the role of monetary 

services in the macroeconomy. 
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Appendix 

 

 

Table 1. Point estimates of the coefficients of indicators in the Chow-Lin procedure to interpolate and 

extrapolate credit card transactions volumes with combinations of indicator series (1994 Q4 - 2015 Q2).   

  Total credit Revolving credit 

Credit card interest 

rate 
Nominal user cost Real user cost 

(1) 0.06039 (***)     

 
(3.907) 

    

(2) 
 

0.1003 (*) 
   

  
(2.211) 

   

(3) 
  

-2.301 
  

   
(-1.123) 

  

(4) 
   

7.79E-04 
 

    
(0.002) 

 

(5) 
    

-34.01 

     
(-0.393) 

(6) 0.11866 (*) -0.15811 
   

 
(2.619) (-1.398) 

   

(7) 0.05953 (***) 
 

-2.27779 
  

 
(3.924) 

 
(-1.174) 

  

(8) 0.06259 (***) 
  

-0.19457 
 

 
(3.965) 

  
(-0.504) 

 

(9) 0.06323 (***) 
   

-68.5469 

 
(4.116) 

   
(-0.832) 

(10) 
 

0.09995 (*) -2.28782 
  

  
(2.221) (-1.132) 

  

(11) 
 

0.10110 (*) 
 

-0.06671 
 

  
(2.177) 

 
(-0.167) 

 

(12) 
 

0.10213 (*) 
  

-45.29199 

  
(2.215) 

  
(-0.529) 

(13) 
  

-3.6347 0.4256 
 

   
(-1.409) (0.855) 

 

(14) 
  

-2.939 
 

42.473 

   
(-1.108) 

 
(0.384) 
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(15) 
   

18.809 (***) -4073.196 (***) 

    
(6.273) (-6.288) 

(16) 0.11665 (*) -0.15555 -2.20313 
  

 
(2.592) (-1.383) (-1.157) 

  

(17) 0.12425 (*) -0.16644 
 

-0.2519 
 

 
(2.683) (-1.449) 

 
(-0.661) 

 

(18) 0.12489 (**) -0.16754 
  

-77.80956 

 
(2.739) (-1.473) 

  
(-0.961) 

(19) 0.05792 (**) 
 

-2.67904 0.12967 
 

 
(3.536) 

 
(-1.074) (0.265) 

 

(20) 0.06014 (***) 
 

-2.08534 
 

-12.98218 

 
(3.777) 

 
(-0.821) 

 
(-0.122) 

(21) 2.04E-02 
  

16.97 (***) -3691 (***) 

 
(1.341) 

  
(4.925) (-4.995) 

(22) 
 

0.09577 (*) -3.30413 0.32298 
 

  
(2.08) (-1.287) (0.648) 

 

(23) 
 

0.09889 (*) -2.6484 
 

23.93598 

  
(2.144) (-1.007) 

 
(0.218) 

(24) 
 

0.03451 
 

18.01 (***) -3906 (***) 

  
(0.978) 

 
(5.566) (-5.608) 

(25) 
  

-0.1693 18.7412 (***) -4054.17 (***) 

   
(-0.086) (5.94) (-5.821) 

(26) 0.11587 (*) -0.15441 -2.30039 0.03107 
 

 
(2.447) (-1.333) (-0.932) (0.064) 

 

(27) 0.11954 (*) -0.15982 -1.73876 
 

-30.99516 

 
(2.561) (-1.387) (-0.694) 

 
(-0.293) 

(28) 0.04094 -0.05095 
 

16.41 (***) -3574 (***) 

 
(0.996) (-0.545) 

 
(4.525) (-4.608) 

(29) 0.02037 
 

-0.06286 16.95 (***) -3684 (***) 

 
(1.316) 

 
(-0.032) (4.729) (-4.715) 

(30) 
 

0.03444 -0.1317 17.95 (***) -3891 (***) 

  
(0.96) (-0.066) (5.299) (-5.233) 

(31) 0.04092 -0.05091 -0.02285 16.40 (***) -3572 (***) 



31 

 

  (0.978) (-0.535) (-0.011) (4.364) (-4.376) 

Notes: We use *** to denote significance at the 0.1% level, ** at the 1% level, and * at the 5% 

level.  The t-ratios are in parentheses below the point estimates.  
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Table 2. A summary of adopted data sources for the augmented Divisia Index: 

Monetary Asset Level Source  Sample Period Rate Rate Source 

Credit Card 

Transactions 

Volumes 

Financial Reports 

from Visa, 

MasterCard, 

American Express, 

and Discover 

Since 2006 Q3 

(quarterly data 

interpolated into 

monthly by Chow-

Lin method) 

Interest rates of 

Credit Card Plans – 

All Accounts 

FRED / G.19 

 

Indicator Series for 

Chow-Lin 

Interpolation 

Level Source Sample Period Rate Rate Source 

Total Consumer 

Credit Outstanding 

FRED / G.19 Since 2006.07 N.A. N.A. 
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Figure 1a. Demonstration of Chow-Lin Interpolation, before interpolation. 

 

 

Figure 1b. Demonstration of Chow-Lin Interpolation, after interpolation. 
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Abstract 

While credit cards provide transactions services, credit cards have never been included in 

measures of the money supply.  The reason is accounting conventions, which do not permit 

adding liabilities to assets.  However, index number theory measures service flows and is based 

on aggregation theory, not accounting.  We derive theory needed to measure the joint services of 

credit cards and money. We provide and evaluate two such aggregate measures having different 

objectives. We initially apply to NGDP nowcasting. Both aggregates are being implemented by 

the Center for Financial Stability, which will provide them to the public monthly, along with 

Bloomberg Terminals. 
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Index, Risk, Asset Pricing, Nowcasting, Indicators. 

JEL Classification: C43, C53, C58, E01, E3, E40, E41, E51, E52, E58, G17. 

  



36 

 

1. Introduction 

Most models of the monetary policy transmission mechanism operate through interest rates, and 

often involve a monetary or credit channel, but not both. See, e.g., Bernanke and Blinder (1988) 

and Mishkin (1996).  In addition, there are multiple versions of each mechanism, usually 

implying different roles for interest rates during the economy’s adjustment to central bank policy 

actions.  However, there is a more fundamental reason for separating money from credit.  While 

money is an asset, credit is a liability.  In accounting conventions, assets and liabilities cannot be 

added together.  But aggregation theory and economic index number theory are based on 

microeconomic theory, not accounting conventions.  Economic aggregates measure service 

flows.  To the degree that money and some forms of credit produce joint services, those services 

can be aggregated.   

A particularly conspicuous example is credit card services, which are directly involved in 

transactions and contribute to the economy’s liquidity in ways not dissimilar to those of money.34 

While money is both an asset and part of wealth, credit cards are neither.  Hence credit cards are 

not money.  To the degree that monetary policy operates through a wealth effect (Pigou effect), 

as advocated by Milton Friedman, credit cards do not play a role.  But to the degree that the flow 

                                                 

 

34 We are indebted to Apostolos Serletis for his suggestion of this topic for research.  His suggestion is contained in 

his presentation as discussant of Barnett’s Presidential Address at the Inaugural Conference of the Society for 

Economic Measurement at the University of Chicago, August 18-20, 2014.  The slides for Serletis’s discussion can 

be found online at http://sem.society.cmu.edu/conference1.html. 
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of monetary services is relevant to the economy, as through the demand for monetary services or 

as an indicator of the state of the economy, the omission of credit card services from monetary 

services induces a loss of information.  For example, Duca and Whitesell (1995) showed that a 

higher probability of credit card ownership was correlated with lower holdings of monetary 

transactions balances.  Clearly credit card services are a substitute for the services of monetary 

transactions balances, perhaps to a much higher degree than the services of many of the assets 

included in traditional monetary aggregates, such as the services of nonnegotiable certificates of 

deposit. 

In this seminal paper, we use strongly simplifying assumptions.  We assume credit cards are used 

to purchase consumer goods.  All purchases are made at the beginning of periods, and payments 

for purchases are either by credit cards or money.  Credit card purchases are repaid to the credit 

card company at the end of the current period or at the end of a future period, plus interest 

charged by the credit card company. Stated more formally, all discrete time periods are closed on 

the left and open on the right. After aggregation over consumers, the expected interest rate paid 

by the “representative” credit card holder can be very high, despite the fact that about 20% of 

consumers pay no interest on credit card balances.  Future research is planned to disaggregate to 

heterogeneous agents, including consumers who repay soon enough to owe no interest. In the 

current model, such consumers affect the results only by decreasing the average credit card 

interest rate aggregated over consumers. 

To reflect the fact that money and credit cards provide services, such as liquidity and transactions 

services, money and credit are entered into a derived utility function, in accordance with Arrow 
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and Hahn’s (1971) proof.35 The derived utility function absorbs constraints reflecting the explicit 

motives for using money and credit card services.  Since this paper is about measurement, we 

need only assume the existence of such motives.  In the context of this research, we have no need 

to work backwards to reveal the explicit motives.  As has been shown repeatedly, any of those 

motives, including the highly relevant transactions motive, are consistent with existence of a 

derived utility function absorbing the motive.36 

Based on our derived theory, we propose two measurements of the joint services of credit cards 

and money.  These new Divisia monetary aggregates have different objectives. One is based on 

microeconomic structural aggregation theory, providing an aggregated variable within the 

macroeconomy.  That aggregate is widely applicable to models and policies dependent upon a 

measure of monetary services within the structure of the macroeconomy.  For example, that 

aggregate would be applicable to demand for money models or as possible intermediate targets 

                                                 

 

35 Our research in this paper is not dependent upon the simple decision problem we use for derivation and 

illustration.  In the case of monetary aggregation, Barnett (1987) proved that the same aggregator functions and 

index numbers apply, regardless of whether the initial model has money in the utility function or production 

function, so long as there is intertemporal separability of structure and separability of components over which 

aggregation occurs.  That result is equally as applicable to our current results with augmented aggregation over 

monetary asset and credit card services.  While this paper uses economic index number theory, it should be observed 

that there also exists a statistical approach to index number theory.  That approach produces the same results, with 

the Divisia index interpreted to be the Divisia mean using expenditure shares as probability.  See Barnett and 

Serletis (1990). 
36 The aggregator function is the derived function that always exists, if monetary and credit card services have 

positive value in equilibrium.  See, e.g., Samuelson (1948), Arrow and Hahn (1971), Fischer (1974), Phlips and 

Spinnewyn (1982), Quirk and Saposnik (1968), and Poterba and Rotemberg (1987).  Analogously, Feenstra (1986, 

p. 271) demonstrated “a functional equivalence between using real balances as an argument of the utility function 

and entering money into liquidity costs which appear in the budget constraints.”  The converse mapping from money 

and credit in the utility function back to the explicit motive is not unique. But in this paper we are not seeking to 

identify the explicit motives for holding money or credit card balances.   
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of policy.  The relevant existence condition is weak separability within the structure of the 

economy.37  The resulting structural aggregate is thereby directly factored out of the structure of 

the economy as a formal aggregator function.  Because of the broad applicability of the structural 

aggregate, we leave its application to future research, as in replication of the extensive prior 

research using the Center for Financial Stability (CFS) Divisia monetary aggregates over 

monetary assets alone.  

Our other credit-card-augmented aggregate is indicator optimized and is weakly separable within 

our optimal nominal GDP nowcasting equation. Hence that aggregate is directly derived from 

our nowcasting results as an aggregator function factored out of the nowcasting equation.  Unlike 

the structural aggregate, which has broad potential applications, the indicator optimized 

aggregation is application specific and is the focus of our current empirical results provided in 

this paper. Relative to its objectives, each of the aggregates is uniquely derived from the relevant 

theory.  We evaluate the ability of our indicator-optimized monetary services aggregate in 

nowcasting nominal GDP and as an indicator of the state of the economy. This objective is 

currently topical, given proposals for nominal GDP targeting, which requires monthly measures 

of nominal GDP.  Both our structural credit-card augmented aggregates, based on the relevant 

theory in this paper, and our indicator optimized aggregates, derived and applied in this paper, 

                                                 

 

37 Weak separability is the fundamental existence condition for quantity aggregation. See Barnett (1982).  We do not 

empirically test the component clusterings.  An important literature exists on testing for weakly separable functional 

structure and could contribute in major ways to further research in this area.  A recent paper meriting serious 

consideration for future research is Hjertstrand, Swofford, and Whitney (2016).  
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will soon be available monthly from the CFS and to Bloomberg Terminal users. 

Our nowcasts are estimated using only real time information, as available to policy makers at the 

time predictions are made.  We use a multivariate state space model that takes into account 

asynchronous information --- the model proposed in Barnett, Chauvet, and Leiva-Leon (2016). 

The model considers real time information arriving at different frequencies and asynchronously, 

in addition to mixed frequencies, missing data, and ragged edges. The results indicate that the 

proposed model, containing information on real economic activity, inflation, the new Divisia 

monetary aggregates, and past information nominal GDP itself, produces the most accurate real 

time nowcasts of nominal GDP growth. In particular, we find that the inclusion of the new 

aggregates in our nowcasting model yields substantially smaller mean squared errors than 

inclusion of the previous Divisia monetary aggregates, which in turn had performed substantially 

better than the official simple sum monetary aggregates in prior research by Barnett, Chauvet, 

and Leiva-Leon (2016). 

2. Intertemporal Allocation 

We begin by defining the variables in the risk neutral case for the representative consumer:. 

𝐱𝑠 = vector of per capita (planned) consumptions of N goods and services (including those of 

durables) during period 𝑠. 

 𝐩𝑠 = vector of goods and services expected prices, and of durable goods expected rental prices 

during period 𝑠. 

𝑚𝑖𝑠 = planned per capita real balances of monetary asset 𝑖 during period 𝑠 (𝑖 = 1,2, … , 𝑛). 
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𝑐𝑗𝑠 = planned per capita real expenditure with credit card type 𝑗 for transactions during period s 

(𝑗 = 1,2, … , 𝑘).  In the jargon of the credit card industry, those contemporaneous 

expenditures are called “volumes.” 

𝑧𝑗𝑠 = planned per capita rotating real balances in credit card type j during period s from 

transactions in previous periods (𝑗 = 1,2, … , 𝑘). 

𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 𝑧𝑗𝑠= planned per capita total balances in credit type j during period s (𝑗 = 1,2, … , 𝑘). 

𝑟𝑖𝑠 = expected nominal holding period yield (including capital gains and losses) on monetary 

asset 𝑖 during period 𝑠 (𝑖 = 1,2, … , 𝑛). 

𝑒𝑗𝑠 = expected interest rate on 𝑐𝑗𝑠. 

jse  = expected interest rate on 𝑧𝑗𝑠. 

𝐴𝑠 = planned per capita real holdings of the benchmark asset during period 𝑠. 

𝑅𝑠 = expected (one-period holding) yield on the benchmark asset during period 𝑠. 

𝐿𝑠 = per capita labor supply during period 𝑠. 

𝑤𝑠 = expected wage rate during period 𝑠. 

 

The benchmark asset is defined to provide no services other than its expected yield, 𝑅𝑠, which 

motivates holding of the asset solely as a means of accumulating wealth.  As a result, 𝑅𝑠 is the 

maximum expected holding period yield available to consumers in the economy in period s from 

holding a secured asset.  The benchmark asset is held to transfer wealth by consumers between 

multiperiod planning horizons, rather than to provide liquidity or other services.  In contrast, jse  

is not the interest rate on an asset and is not secured.  It is the interest rate on an unsecured 

liability, subject to substantial default and fraud risk.  Hence, jse  can be higher than the 
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benchmark asset rate, and historically has always been much higher than the benchmark asset 

rate.38  

It is important to recognize that the decision problem we model is not of a single economic 

agent, but rather of the “representative consumer,” aggregated over all consumers.  All quantities 

are therefore averaged over all consumers.  Gorman’s assumptions for the existence of a 

representative consumer are implicitly accepted, as is common in almost all modern 

macroeconomic theory having microeconomic foundations.  This modeling assumption is 

particularly important in understand the credit card quantities and interest rates used in our 

research.  About 20% of credit card holders in the United States do not pay explicit interest on 

credit card balances, since those credit card transactions are paid off by the end of the period. But 

the 80% who do pay interest pay very high interest rates.39  The Federal Reserve provides two 

interest rate series for credit card debt.  One, jse , includes interest only on accounts that do pay 

interest to the credit card issuing banks, while the other series, 𝑒𝑗𝑠, includes the approximately 

                                                 

 

38 We follow the Center for Financial Stability (CFS) and the Bank of Israel in using the short term bank loan rate as 

a proxy for the benchmark rate.  That interest rate has always exceeded the interest rate paid by banks on deposit 

accounts and on all other monetary assets used in the CFS Divisia monetary aggregates, and has always been lower 

than the Federal Reserve’s reported average interest rate charged on credit card balances.  For detailed information 

on CFS data sources, see Barnett, Liu, Mattson, and Noort (2013).  For the additional data sources used by the CFS 

to extend to credit card services, see Barnett and Su (2016). 
39 The following statement is from www.motherjones.com/kevin-drum/2011/10/americans-are-clueless-about-their-

credit-card-debt.   "In the four working age categories, about 50% of households think they have outstanding credit 

card debt, but the credit card companies themselves think about 80% of households have outstanding balances."  

Since these percentages are of total households, including those having no credit cards, the percent of credit card 

holders paying interest might be even higher. 
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20% that do not pay interest.  The latter interest rate is thereby lower, since it is averaged over 

interest paid on both categories of accounts.  Since we are modeling the representative consumer, 

aggregated over all consumers, 𝑒𝑗𝑠 is always less than jse  for all j and s.  The interest rate on 

rotating credit card balances, jse , is paid by all consumers who maintain rotating balances on 

credit cards.  But 𝑒𝑗𝑠 is averaged over both those consumers who maintain such rotating balances 

and hence pay interest on contemporaneous credit card transactions (volumes) and also those 

consumers who pay off such credit card transactions before the end of the period, and hence do 

not pay explicit interest on the credit card transactions.  The Federal Reserve provides data on 

both jse  and 𝑒𝑗𝑠. Although 𝑒𝑗𝑠 is less than jse ,  𝑒𝑗𝑠 also has always been higher than the 

benchmark rate.   This observation is a reflection of the so-called credit card debt puzzle.40 

We use the latter interest rate, 𝑒𝑗𝑠, in our augmented Divisia monetary aggregates formula, since 

the contemporaneous per capita transactions volumes in our model are averaged over both 

categories of credit card holders. We do not include rotating balances used for transactions in 

prior periods, since to do so would involve double counting of transactions services.   

The expected interest rate, 𝑒𝑗𝑠, can be explicit or implicit, and applies to the aggregated 

representative consumer.  For example, an implicit part of that interest rate could be in the form 

                                                 

 

40See, e.g., Telyukova and Wright (2008), who view the puzzle as a special case of the rate dominance puzzle in 

monetary economics.  The “credit card debt puzzle” asks why people do not pay down debt, when receiving low 

interest rates on deposits, while simultaneously paying higher interest rates on credit card debt. 
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of an increased price of the goods purchased or in the form of a periodic service fee or 

membership fee.  But we use only the Federal Reserve’s average explicit interest rate series, 

which is lower than the one that would include implicit interest. Nevertheless, that downward 

biased explicit rate of return to credit card companies, 𝑒𝑗𝑠,  aggregated over consumers, tends to 

be very high, far exceeding 𝑅𝑠, even after substantial losses from fraud. 

It is also important to recognize that we are using the credit card industry’s definition of “credit 

card,” which excludes “store cards” and “charge cards.”  According to the trade’s definition, 

“store cards” are issued by businesses providing credit only for their own goods, such as gasoline 

company credit cards or department store cards.  To be a “credit card” by the trade’s definition, 

the card must be widely accepted for many goods and services purchaes in the economy.  

“Charge cards” can be widely accepted for such purchases, but do not charge interest, since the 

debt must be paid off by the end of the period.  To be a “credit card,” the card must provide a 

line of credit to the card holder with interest charged on purchases not paid off by the end of the 

period.  For example, American Express provides both charge cards and credit cards.  The first 

credit card was provided by Bank of America.  There now are four sources of credit card services 

in the United States:  Visa, Mastercard, Discover, and American Express.  From American 

Express, we use only their credit card account services, not their charge cards. We use data from 

only those four sources, in accordance with the credit card industry’s conventional definition of 

“credit card.” 

We let 𝑢𝑡 be the representative consumer’s current intertemporal utility function at time t over 

the T-period planning horizon. We assume that 𝑢𝑡 is weakly separable in each period’s 
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consumption of goods and monetary assets, so that 𝑢𝑡 can be written in the form 

𝑢𝑡 = 𝑢𝑡(𝐦𝑡 , … ,𝐦𝑡+𝑇;  𝐜𝑡, … , 𝐜𝑡+𝑇;  𝐱𝑡, … , 𝐱𝑡+𝑇;  𝐴𝑡+𝑇) 

               = 𝑈𝑡(𝑣(𝐦𝑡, 𝐜t), 𝑣𝑡+1(𝐦𝑡+1, 𝐜𝑡+1),… , 𝑣𝑡+𝑇(𝐦𝑡+𝑇 , 𝐜𝑡+𝑇); 

𝑉(𝐱𝑡), 𝑉𝑡+1(𝐱𝑡+1), … , 𝑉𝑡+𝑇(𝐱𝑡+𝑇); 𝐴𝑡+𝑇),              (1) 

for some monotonically increasing, linearly homogeneous, strictly quasiconcave functions, 

𝑣, 𝑣𝑡+1, … , 𝑣𝑡+𝑇 , 𝑉, 𝑉𝑡+1, … , 𝑉𝑡+𝑇 .The function 𝑈𝑡 also is monotonically increasing, but not 

necessarily linearly homogeneous. Note that ct, not yt, is in the utility function.  The reason is 

that yt includes rotating balances, zt, resulting from purchases in prior periods.  To include yt in 

the utility function would introduce a form of double counting into our aggregation theory by 

counting prior transactions services more than once. Those carried forward balances provided 

transactions services in previous periods and were therefore in the utility function for that period. 

Keeping those balances in the utility function for the current period would imply existence of a 

different kind of services from the transactions and liquidity services we are seeking to measure. 

Dual to the functions, 𝑉and 𝑉𝑠(𝑠 = 𝑡 + 1,… , 𝑡 + 𝑇), there exist current and planned true cost of 

living indexes, 𝑝𝑡
∗ = 𝑝(𝐩𝑡) and 𝑝𝑠

∗ = 𝑝𝑠
∗(𝐩𝑠)(𝑠 = 𝑡 + 1,… , 𝑡 + 𝑇). Those indexes, which are the 

consumer goods unit cost functions, will be used to deflate all nominal quantities to real 

quantities, as in the definitions of 𝑚𝑖𝑠, 𝑐𝑗𝑠, and 𝐴𝑠 above. 

Assuming replanning at each t, we write the consumer’s decision problem during each period 

𝑠(𝑡 ≤ 𝑠 ≤ 𝑡 + 𝑇) within the planning horizon to be to choose 
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(𝐦𝑡, … ,𝐦𝑡+𝑇;  𝐜𝑡 , … , 𝐜t+T;  𝐱𝑡, … , 𝐱𝑡+𝑇;  𝐴𝑡+𝑇) ≥ 𝟎 to  

max𝑢𝑡(𝐦𝑡, … ,𝐦𝑡+𝑇;  𝐜𝑡, … , 𝐜𝑡+𝑇;  𝐱𝑡, … , 𝐱𝑡+𝑇;  𝐴𝑡+𝑇), 

subject to 

𝐩𝑠
′𝐱𝑠

= 𝑤𝑠𝐿𝑠

+∑[(1 + 𝑟𝑖,𝑠−1)𝑝𝑠−1
∗ 𝑚𝑖,𝑠−1 − 𝑝𝑠

∗𝑚𝑖𝑠]

𝑛

𝑖=1

+∑[𝑝𝑠
∗𝑐𝑗𝑠 − (1 + 𝑒𝑗,𝑠−1)𝑝𝑠−1

∗ 𝑐𝑗,𝑠−1]                                                          

𝑘

𝑗=1

+∑[𝑝𝑠
∗𝑧𝑗𝑠 − (1 + , 1j se  ) 𝑝𝑠−1

∗ 𝑧𝑗,𝑠−1]

𝑘

𝑗=1

  + [(1 + 𝑅𝑠−1)𝑝𝑠−1
∗ 𝐴𝑠−1

− 𝑝𝑠
∗𝐴𝑠].                                                                                                                                         (2)     

Planned per capita total balances in credit type j during period s are then 𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 𝑧𝑗𝑠.   

Equation (2) is a flow of funds identity, with the right hand side being funds available to 

purchase consumer goods during period s.  On the right hand side, the first term is labor income.  

The second term is funds absorbed or released by rolling over the monetary assets portfolio, as 

explained in Barnett (1980).  The third term is particularly important to this paper.  That term is 

the net change in credit card debt during period s from purchases of consumer goods, while the 

fourth term is the net change in rotating credit card debt.  The fifth term is funds absorbed or 
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released by rolling over the stock of the benchmark asset, as explained in Barnett (1980).  The 

third term on the right side is specific to current period credit card purchases, while the fourth 

term is not relevant to the rest of our results, since 𝑧𝑗𝑠 is not in the utility function.  Hence 𝑧𝑗𝑠 

does not appear in the user cost prices, conditional decisions, or aggregates in the rest of this 

paper. 

Let  

𝜌𝑠 = {

1,                             𝑖𝑓 𝑠 = 𝑡,

∏(1 + 𝑅𝑢)

𝑠−1

𝑢=𝑡

, 𝑖𝑓 𝑡 + 1 ≤ 𝑠 ≤ 𝑡 + 𝑇.  
                                                       (3) 

We now derive the implied Fisherine discounted wealth constraint.  The derivation procedure 

involves recursively substituting each flow of funds identity into the previous one, working 

backwards in time, as explained in Barnett (1980).  The result is the following wealth constraint 

at time t: 
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      (4) 

It is important to understand that (4) is directly derived from (2) without any additional 

assumptions.  As in Barnett (1978, 1980), we see immediately that the nominal user cost 

(equivalent rental price) of monetary asset holding 𝑚𝑖𝑠 (𝑖 = 1,2, … , 𝑛) is 

π𝑖𝑠 =
𝑝𝑠
∗

𝜌𝑠
−
𝑝𝑠
∗(1 + 𝑟𝑖𝑠)

𝜌𝑠+1
. 

So the current nominal user cost price, 𝜋𝑖𝑡, of 𝑚𝑖𝑡 reduces to 

𝜋𝑖𝑡 =
𝑝𝑡
∗(𝑅𝑡 − 𝑟𝑖𝑡)

1 + 𝑅𝑡
.                                                                           (5) 

Likewise, the nominal user cost (equivalent rental price) of credit card transactions services, 

𝑐𝑗𝑠 (𝑗 = 1,2, … , 𝑘), is 

 𝜋̃𝑗𝑡 =
𝑝𝑠
∗(1 + 𝑒𝑗𝑠)

𝜌𝑠+1
−
𝑝𝑠
∗

𝜌𝑠
. 
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Finally, the current period nominal user cost, π̃𝑗𝑡, of 𝑐𝑗𝑡 reduces to 

𝜋̃𝑗𝑡 =
𝑝𝑡
∗(1 + 𝑒j𝑡)

1 + 𝑅𝑡
− 𝑝𝑡

∗                                                                  (6) 

  =
𝑝𝑡
∗(𝑒𝑗𝑡 − 𝑅𝑡)

1 + 𝑅𝑡
.                                                                        (7) 

Equation (7) is a new result central to most that follows in this paper.41 The corresponding 

real user costs are  

𝜋𝑗𝑠
∗ =

𝜋𝑖𝑠
𝑝𝑠∗
                                                                                (8a) 

and 

𝜋̃𝑗𝑠
∗ =

𝜋̃𝑗𝑡

𝑝𝑠∗
.                                                                              (8𝑏) 

Equation (6) is particularly revealing.  To consume the transactions services of credit card type j, 

the consumer borrows 𝑝𝑡
∗ dollars per unit of goods purchased at the start of the period during 

which the goods are consumed, but repays the credit card company 𝑝𝑡
∗(1 + 𝑒𝑗𝑡) dollars at the end 

of the period.  The lender will not provide that one period loan to the consumer unless 𝑒𝑗𝑡 > 𝑅𝑡, 

because of the ability of the lender to earn 𝑅𝑡 without making the unsecured credit card loan.  

                                                 

 

41 The same user cost formula applies in the infinite planning horizon case, but the derivation is different.  The 

derivation applicable in that case is in the Appendix. 
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Consumers do not have access to higher expected yields on secured assets than the benchmark 

rate. Hence the user cost price in (7) is nonnegative. 

Equivalently, equation (7) can be understood in terms of the delay between the goods purchase 

date and the date of repayment of the loan to the credit card company.  Credit cards provide the 

opportunity for consumers to defer payment for consumer goods and services.  During the one 

period delay, the consumer can invest the cost of the goods purchase at rate of return 𝑅𝑡.  Hence 

the net real cost to the consumer of the credit card loan, per dollar borrowed, is 𝑒𝑗𝑡 − 𝑅𝑡.  

Multiplication by the true cost of living index in the numerator of (7) converts to nominal dollars 

and division by 1 + 𝑅𝑡 discounts to present value within the time period. 

3. Conditional Current Period Allocation 

We define 𝒥𝑡
∗  to be real, and 𝒥𝑡 nominal, expenditure on augmented monetary services --- 

augmented to include the services of contemporaneous credit card transactions charges. The 

assumptions on homogeneous blockwise weak separability of the intertemporal utility function, 

(1), are sufficient for consistent two-stage budgeting.  See Green (1964, theorem 4). In the first 

stage, the aggregated representative consumer selects real expenditure on augmented monetary 

services, 𝒥𝑡
∗, and on aggregate consumer goods for each period within the planning horizon, 

along with terminal benchmark asset holdings, 𝐴𝑡+𝑇.  

In the second stage, 𝒥𝑡
∗ is allocated over demands for the current period services of monetary 

assets and credit cards. That decision is to select 𝐦𝑡 and 𝐜𝑡 to 
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max𝑣(𝐦𝑡, 𝐜𝑡),                                                                             (9) 

subject to 

𝛑∗𝑡
′𝐦𝑡 + 𝛑̃

∗
𝑡
′𝐜𝑡 = 𝒥𝑡

∗,                                                                   (10) 

where 𝒥𝑡
∗ is expenditure on augmented monetary services allocated to the current period in the 

consumer’s first-stage decision.  

The rotating balances, 𝑧𝑗𝑠, from previous periods, not used for transactions this period, add a 

flow of funds term to the constraints, (2), but do not appear in the utility function.  As a result, 

𝑧𝑗𝑠 does not appear in the utility function, (9), or on the left side of equation (10), but does affect 

the right side of (10).  To implement this theory empirically, we need data on total credit card 

transactions volumes each period, 𝑐𝑗𝑠, not just the total balances in the accounts, 𝑐𝑗𝑠 + 𝑧𝑗𝑠.  While 

those volumes are much more difficult to find than credit card balances, we have been able to 

acquire those current period volumes from the annual reports of the four credit card companies.  

For details on available sources, see Barnett and Su (2016). 

4. Aggregation Theory 

The exact quantity aggregate is the level of the indirect utility produced by solving problem 

((9),(10)): 

ℳ𝑡 = max  {𝑣(𝐦𝑡, 𝐜𝑡): 𝛑𝑡
′𝐦𝑡 + 𝛑̃𝑡

′𝐜𝑡 = 𝒥𝑡}  

                                                 = max  {𝑣(𝐦𝑡, 𝐜𝑡): 𝛑
∗
𝑡
′𝐦𝑡 + 𝛑̃

∗
𝑡
′𝐜𝑡 = 𝒥𝑡

∗},                                 (11)  
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where we define ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡) = 𝑣(𝐦𝑡, 𝐜𝑡) to be the “structural augmented monetary 

aggregate” --- augmented to aggregate jointly over the contemporaneous services of money and 

credit cards.  The category utility function, 𝑣, is the aggregator function we assume to be linearly 

homogeneous in this section. Dual to any exact quantity aggregate, there exists a unique price 

aggregate, aggregating over the prices of the goods or services. Hence there must exist an exact 

nominal price aggregate over the user costs (𝛑𝑡, 𝛑̃𝑡).  As shown in Barnett (1980,1987), the 

consumer behaves relative to the dual pair of exact monetary quantity and price aggregates as if 

they were the quantity and price of an elementary good.  The same result applies to our 

augmented monetary quantity and dual user cost aggregates. 

One of the properties that an exact dual pair of price and quantity aggregates satisfies is Fisher’s 

factor reversal test, which states that the product of an exact quantity aggregate and its dual exact 

price aggregate must equal actual expenditure on the components. Hence, if 𝛱(𝛑𝑡, 𝛑̃𝑡) is the 

exact user cost aggregate dual to ℳ𝑡, then 𝛱(𝛑𝑡, 𝛑̃𝑡) must satisfy 

Π(𝛑𝑡, 𝛑̃𝑡) =
𝒥𝑡
ℳ𝑡

.                                                                               (12) 

Since (12) produces a unique solution for 𝛱(𝛑𝑡, 𝛑̃𝑡), we could use (12) to define the price dual to 

ℳ𝑡. In addition, if we replace ℳ𝑡 by the indirect utility function defined by (11) and use the 

linear homogeneity of 𝑣, we can show that 𝛱 = 𝛱(𝛑𝑡, 𝛑̃𝑡), defined by (12), does indeed depend 

only upon (𝛑𝑡, 𝛑̃𝑡), and not upon (𝐦𝑡, 𝐜𝑡) or 𝒥𝑡. See Barnett (1987) for a version of the proof in 

the case of monetary assets alone. The conclusion produced by that proof can be written in the 

form  
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Π(𝛑𝑡, 𝛑̃𝑡) = [ 𝑚𝑎𝑥
(𝐦𝑡,𝐜𝑡)

{𝑣(𝐦𝑡 , 𝐜𝑡): 𝛑𝑡
′𝐦𝑡 + 𝛑̃𝑡

′𝐜𝑡 = 1}]
−1,                                  (13) 

which clearly depends only upon (𝛑𝑡, 𝛑̃𝑡). 

Although (13) provides a valid definition of 𝛱, there also exists a direct definition that is more 

informative and often more useful. The direct definition depends upon the cost function 𝐸, 

defined by 

E(𝑣0, 𝛑𝑡, 𝛑̃𝑡) = min
(𝐦𝑡,𝐜𝑡)

{𝛑𝑡
′𝐦𝑡 + 𝛑̃𝑡

′𝐜𝑡: 𝑣(𝐦t, 𝐜𝑡) = 𝑣0}, 

which equivalently can be acquired by solving the indirect utility function equation (11) for 𝒥𝑡 as 

a function of ℳ𝑡 = 𝑣(𝐦𝑡 , 𝐜𝑡) and (𝛑𝑡, 𝛑̃𝑡).  Under our linear homogeneity assumption on 𝑣, it 

can be proved that  

        𝛱(𝛑𝑡, 𝛑̃𝑡) = 𝐸(1, 𝛑𝑡, 𝛑̃𝑡) = min
(𝐦𝑡,𝐜𝑡)

{𝛑𝑡
′𝐦𝑡 + 𝛑̃𝑡

′𝐜𝑡: 𝑣(𝐦𝑡, 𝐜𝑡) = 1},                 (14) 

Which is often called the unit cost or price function. 

The unit cost function is the minimum cost of attaining unit utility level for 𝑣(𝐦𝑡, 𝐜𝑡) at given 

user cost prices (𝛑𝑡, 𝛑̃𝑡). Clearly, (14) depends only upon (𝛑𝑡, 𝛑̃𝑡). Hence by (12) and (14), we 

see that 𝛱(𝛑𝑡, 𝛑̃𝑡) =
𝒥𝑡
ℳ𝑡
⁄ = 𝐸(1, 𝛑𝑡, 𝛑̃𝑡). 

5. Preference Structure over Financial Assets 



54 

 

5.1. Blocking of the Utility Function 

While our primary objective is to provide the theory relevant to joint aggregation over monetary 

and credit card services, subaggregation separately over monetary asset services and credit card 

services can be nested consistently within the joint aggregates. The required assumption is 

blockwise weak separability of money and credit within the joint aggregator function.  In 

particular, we would then assume the existence of functions ῦ, 𝑔1, 𝑔2, such that 

𝑣(𝐦𝑡 , 𝐜𝑡) = ῦ(𝑔1(𝐦𝑡), 𝑔2(𝐜𝑡)),                                                          (15) 

with the functions 𝑔1 and 𝑔2 being linearly homogeneous, increasing, and quasiconcave. 

We have now nested weakly separable blocks within weakly separable blocks to establish a fully 

nested utility tree. As a result, an internally consistent multi-stage budgeting procedure exists, 

such that the structured utility function defines the quantity aggregate at each stage, with duality 

theory defining the corresponding user cost price aggregates. 

In the next section we elaborate on the multi-stage budgeting properties of decision ((9),(10)) 

and the implications for quantity and price aggregation. 

5.2  Multi-stage Budgeting 

Our assumptions on the properties of 𝑣 are sufficient for a two-stage solution of the decision 

problem ((9),(10)), subsequent to the two-stage intertemporal solution that produced ((9),(10)).  

The subsequent two-stage decision is exactly nested within the former one. 
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Let 𝑀𝑡 = 𝑀(𝐦𝑡) be the exact aggregation-theoretic quantity aggregate over monetary assets 

alone, and let 𝐶𝑡 = 𝐶(𝐜𝑡) be the exact aggregation-theoretic quantity aggregate over credit card 

services.  Let 𝛱𝑚
∗ = 𝛱𝑚(𝛑𝑡

∗) be the real user costs aggregate (unit cost function) dual to 𝑀(𝐦𝑡), 

and let 𝛱𝑐
∗ = 𝛱𝑐(𝛑̃𝑡

∗) be the user costs aggregate dual to 𝐶(𝐜𝑡). The first stage of the two-stage 

decision is to select 𝑀𝑡 and 𝐶𝑡 to solve 

max
(𝐦𝑡,𝐜𝑡)

ῦ(𝑀𝑡, 𝐶𝑡)                                                                         (16) 

subject to 

𝛱𝑚
∗ 𝑀𝑡 + 𝛱𝑐

∗𝐶𝑡 = 𝒥𝑡
∗. 

From the solution to problem (16), the consumer determines aggregate real expenditure on 

monetary and credit card services, 𝛱𝑚
∗ 𝑀𝑡and 𝛱𝑐

∗𝐶𝑡. 

In the second stage, the consumer allocates 𝛱𝑚
∗ 𝑀𝑡 over individual monetary assets, and allocates 

𝛱𝑐
∗𝐶𝑡 over services of individual types of credit cards. She does so by solving the decision 

problem: 

max
𝐦𝒕

𝑔1(𝐦𝑡),                                                                    (17) 

subject to 

𝛑𝑡
∗′𝐦𝑡 = 𝛱𝑚

∗ 𝑀𝑡. 
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Similarly, she solves 

max
𝐜𝐭

𝑔2(𝒄𝑡),                                                                     (18) 

subject to 

𝛑̃𝑡
∗′𝐜𝑡 = 𝛱𝑐

∗𝐶𝑡. 

The optimized value of decision (17)’s objective function, 𝑔1(𝒎𝑡), is then the monetary 

aggregate, 𝑀𝑡 = 𝑀(𝐦𝑡), while the optimized value of decision (18)’s objective function, 𝑔2(𝐜t), 

is the credit card services aggregate, 𝐶𝑡 = 𝐶(𝐜𝑡).   

Hence, 

𝑀𝑡 = max  {𝑔1(𝐦𝑡): 𝛑𝑡
∗′𝐦𝑡 = 𝛱𝑚

∗ 𝑀𝑡}                                                  (19) 

and 

𝐶𝑡 = max  {𝑔2(𝐜𝑡): 𝛑̃𝑡
∗′𝐜𝑡 = 𝛱𝑐

∗𝐶𝑡}.                                                      (20) 

It then follows from (11) and (15) that the optimized values of the monetary and credit card 

quantity aggregates are related to the joint aggregate in the following manner: 

ℳ𝑡 = ῦ(𝑀𝑡, 𝐶𝑡).                                                                       (21) 

6. The Divisia Index 
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We advocate using the Divisia index, in its Törnqvist (1936) discrete time version, to track ℳ𝑡 =

ℳ(𝐦𝑡, 𝐜𝑡), as Barnett (1980) has previously advocated for tracking 𝑀𝑡 = 𝑀(𝐦𝑡). If there 

should be reason to track the credit card aggregate separately, the Törnqvist-Divisia index 

similarly could be used to track 𝐶𝑡 = 𝐶(𝐜𝑡).  If there is reason to track all three individually, then 

after measuring 𝑀𝑡 and 𝐶𝑡, the joint aggregate ℳ𝑡 could be tracked as a two-good Törnqvist-

Divisia index using (21), rather as an aggregate over the n + k disaggregated components, 

(𝐦𝑡, 𝐜𝑡). The aggregation theoretic procedure for selecting the 𝑛 +𝑚 component assets is 

described in Barnett (1982). 

6.1. The Linearly Homogeneous Case 

It is important to understand that the Divisia index (1925,1926) in continuous time will track any 

aggregator function without error.  To understand why, it is best to see the derivation.  The 

following is a simplified version based on Barnett (2012, pp. 290-292), adapted for our 

augmented monetary aggregate, which aggregates jointly over money and credit card services. 

The derivation is equally as relevant to separate aggregation over monetary assets or credit cards, 

so long as the prices in the indexes are the corresponding user costs, ((5),(7)).  Although Francois 

Divisia (1925, 1926) derived his consumer goods index as a line integral, the simplified approach 

below is mathematically equivalent to Divisia’s original method.     

At instant of continuous time, t, consider the quantity aggregator function, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡) =

𝑣(𝐦𝑡 , 𝐜𝑡), with components (𝐦𝑡, 𝐜𝑡), having user cost prices (𝛑𝑡, 𝛑̃𝑡).  Let 𝐦𝑡
𝑎 = (𝐦𝑡

′ , 𝐜𝑡
′)′ and 

𝛑𝑡
𝑎 = (𝛑𝑡

′ , 𝛑̃𝑡
′)′. Take the total differential of ℳ to get 
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dℳ(𝐦𝑡
𝑎) = ∑

𝜕ℳ

𝜕𝑚𝑖𝑡
𝑎  𝑑𝑚𝑖𝑡

𝑎

𝑛+𝑘

𝑖=1

.                                                              (22) 

Since 𝜕ℳ/𝜕𝑚𝑖𝑡 contains the unknown parameters of the function ℳ, we replace each of those 

marginal utilities by 𝜆𝜋𝑖𝑡
𝑎 = 𝜕ℳ/𝜕𝑚𝑖𝑡, which is the first-order condition for expenditure 

constrained maximization of ℳ, where 𝜆 is the Lagrange multiplier, and 𝜋𝑖𝑡
𝑎  is the user-cost 

price of 𝑚𝑖𝑡
𝑎  at instant of time t.  

We then get 

𝑑ℳ(𝐦𝑡
𝑎)

𝜆
= ∑𝜋𝑖𝑡

𝑎𝑑𝑚𝑖𝑡
𝑎

𝑛+𝑘

𝑖=1

,                                                                   (23) 

which has no unknown parameters on the right-hand side. 

For a quantity aggregate to be useful, it must be linearly homogeneous. A case in which the 

correct growth rate of an aggregate is clearly obvious is the case in which all components are 

growing at the same rate. As required by linear homogeneity, we would expect the quantity 

aggregate would grow at that same rate. Hence we shall assume ℳ to be linearly homogeneous. 

Define 𝛱𝑎(𝛑𝑡
𝑎) to be the dual price index satisfying Fisher’s factor reversal test, 

𝛱𝑎(𝛑𝑡
𝑎)ℳ(𝐦𝑡

𝑎) = 𝛑𝑡
𝑎′𝐦𝑡

𝑎. In other words, define 𝛱𝑎(𝛑𝑡
𝑎) to equal 𝛑𝑡

𝑎’𝐦𝑡
𝑎/ ℳ(𝐦𝑡

𝑎), which can 

be shown to depend only upon 𝛑𝑡
𝑎, when ℳ is linearly homogeneous. Then the following lemma 

holds. 
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Lemma 1: Let 𝜆 be the Lagrange multiplier in the first order conditions for solving the 

constrained maximization ((9),(10)), and assume that 𝑣 is linearly homogeneous.  Then 

𝜆 =
1

𝛱𝑎(𝛑𝑡
𝑎)

 

Proof:  See Barnett (2012, p. 291).       ∎ 

From Equation (23), we therefore find the following: 

𝛱𝑎(𝛑𝑡
𝑎)𝑑ℳ(𝐦𝑡

𝑎) = ∑𝜋𝑖
𝑎𝑑𝑚𝑖

𝑎

𝑛+𝑘

𝑖=1

.                                                 (24) 

Manipulating Equation (24) algebraically to convert to growth rate (log change) form, we find 

that 

d𝑙𝑜𝑔 ℳ(𝐦𝑡
𝑎) = ∑𝜔𝑖𝑡 𝑑𝑙𝑜𝑔 𝑚𝑖

𝑎,                                                      (25)

𝑛+𝑘

𝑖=1

 

where 𝜔𝑖𝑡 = 𝜋𝑖
𝑎𝑚𝑖

𝑎/𝛑𝑡
𝑎′𝐦𝑡

𝑎 is the value share of 𝑚𝑖
𝑎 in total expenditure on the services of 𝐦𝑡

𝑎. 

Equation (25) is the Divisia index in growth rate form. In short, the growth rate of the Divisia 

index, ℳ(𝐦𝑡
𝑎), is the share weighted average of the growth rates of the components.  Notice that 

there were no assumptions at all in the derivation about the functional form of ℳ, other than 

existence (i.e., weak separability within the structure of the economy) and linear homogeneity of 

the aggregator function. 

If Divisia aggregation was previously used to aggregate separately over money and credit card 

services, then equation (25) can be replaced by a two-goods Divisia index aggregating over the 
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two subaggregates, in accordance with equation (21). 

6.2. The Nonlinearly Homogeneous Case 

For expositional simplicity, we have presented the aggregation theory throughout this paper 

under the assumption that the category utility functions, 𝑣, 𝑔1, and 𝑔2, are linearly homogeneous.  

In the literature on aggregation theory, that assumption is called the “Santa Claus” hypothesis, 

since it equates the quantity aggregator function with the welfare function.  If the category utility 

function is not linearly homogeneous, then the utility function, while still measuring welfare, is 

not the quantity aggregator function.  The correct quantity aggregator function is then the 

distance function in microeconomic theory.  While the utility function and the distance function 

both fully represent consumer preferences, the distance function, unlike the utility function, is 

always linearly homogenous. When normalized, the distance function is called the Malmquist 

index. 

In the latter case, when welfare measurement and quantity aggregation are not equivalent, the 

Divisia index tracks the distance function, not the utility function, thereby continuing to measure 

the quantity aggregate, but not welfare.  See Barnett (1987) and Caves, Christensen, and Diewert 

(1982). Hence the only substantive assumption in quantity aggregation is blockwise weak 

separability of components.  Without that assumption there cannot exist an aggregate to track. 

 

6.3. Discrete Time Approximation to the Divisia Index 

If (𝐦𝑡, 𝐜𝑡) is acquired by maximizing (9) subject to (10) at instant of time t, then 𝑣(𝐦𝑡, 𝐜𝑡) is the 
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exact augmented monetary services aggregate, ℳ𝑡, as written in equation (11).  In continuous 

time, ℳ𝑡 = 𝑣(𝐦𝑡, 𝐜𝑡) can be tracked without error by the Divisia index, which provides ℳ𝑡 as 

the solution to the differential equation 

𝑑𝑙𝑜𝑔 ℳ𝑡

𝑑𝑡
=∑𝜔𝑖𝑡

𝑑𝑙𝑜𝑔 𝑚𝑖𝑡

𝑑𝑡

𝑛

𝑖=1

+∑𝜔̃𝑗𝑡
𝑑𝑙𝑜𝑔 𝑐𝑗𝑡

𝑑𝑡

𝑘

𝑗=1

 ,                                        (26) 

in accordance with equation (25).  The share 𝜔𝑖𝑡 is the expenditure share of monetary asset i in 

the total services of monetary assets and credit cards at instant of time t, 

𝜔𝑖𝑡= 𝜋𝑖𝑡𝑚𝑖𝑡/(𝛑𝑡
′𝐦𝑡 + 𝛑̃𝑡

′𝐜𝑡), 

while the share 𝜔̃𝑖𝑡 is the expenditure share of credit card services, i, in the total services of 

monetary assets and credit cards at instant of time t, 

𝜔̃𝑖𝑡= 𝜋̃𝑖𝑡𝑐𝑖𝑡/(𝛑𝑡
′𝐦𝑡 + 𝛑̃𝑡

′𝐜𝑡). 

Note that the time path of (𝐦𝑡, 𝐜𝑡) must continually maximize (9) subject to (10), in order for 

(26) to hold. 

In discrete time, however, many different approximations to (25) are possible, because 𝜔𝑖𝑡 and 

𝜔̃𝑖𝑡 need not be constant during any given time interval.  By far the most common discrete time 

approximations to the Divisia index is the Törnqvist-Theil approximation (often called the 

Törnqvist (1936) index or just the Divisia index in discrete time).  That index can be viewed as 

the Simpson’s rule approximation, where t is the discrete time period, rather than an instant of 
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time:   

                                  l𝑜𝑔 ℳ(𝐦𝑡
𝑎) − 𝑙𝑜𝑔 ℳ(𝐦𝑡−1

𝑎 )                   

=  ∑𝜔̅i𝑡(log𝑚𝑖𝑡 − log𝑚𝑖,𝑡−1)

𝑛

𝑖=1

+ ∑𝜔̅̃𝑖𝑡(log 𝑐𝑖𝑡 − log 𝑐𝑖,𝑡−1),

𝑘

𝑖=1

                                                                                  (27) 

where 𝜔̅𝑖𝑡 = (𝜔𝑖𝑡 + 𝜔𝑖,𝑡−1)/2 and 𝜔̅̃𝑖𝑡 = (𝜔̃𝑖𝑡 + 𝜔̃𝑖,𝑡−1)/2. 

A compelling reason exists for using the Törnqvist index as the discrete time approximation to 

the Divisia index. Diewert (1976) has defined a class of index numbers, called “superlative” 

index numbers, which have particular appeal in producing discrete time approximations to 

aggregator functions. Diewert defines a superlative index number to be one that is exactly correct 

for some quadratic approximation to the aggregator function, and thereby provides a second 

order local approximation to the unknown aggregator function.  In this case the aggregator 

function is ℳ(𝐦𝑡, 𝐜𝑡) = 𝑣(𝐦𝑡 , 𝐜𝑡). The Törnqvist discrete time approximation to the continuous 

time Divisia index is in the superlative class, because it is exact for the translog specification for 

the aggregator function.  The translog is quadratic in the logarithms. If the translog specification 

is not exactly correct, then the discrete Divisia index (27) has a third-order remainder term in the 

changes, since quadratic approximations possess third-order remainder terms.  

With weekly or monthly monetary asset data, the Divisia monetary index, consisting of the first 

term on the right hand side of (27), has been shown by Barnett (1980) to be accurate to within 
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three decimal places in measuring log changes in 𝑀𝑡 = 𝑀(𝐦𝑡) in discrete time.  That three 

decimal place error is smaller than the roundoff error in the Federal Reserve’s component data.  

We can reasonably expect the same to be true for our augments Divisia monetary index, (27), in 

measuring the log change of ℳ𝑡 =ℳ(𝐦𝑡 , 𝐜𝑡). 

7. Data Sources 

The credit card transactions services are measured by the transactions volumes summed over 

four sources:  Visa, MasterCard, American Express, and Discover.  Our theory does not apply to 

debit cards or to store cards or to charge cards not providing a line of credit.  We acquired the 

volumes from their annual reports and seasonally adjusted them by the Census X-13ARIMA-

SEATS program. The start date is the quarter during which those credit card firms went public 

and the annual reports became available.  The contemporaneous transactions volumes do not 

include the carried forward rotating balances resulting from transactions during prior periods.42  

The credit card interest rates imputed to the representative consumer are from the Federal 

Reserve Board’s data on all commercial bank credit card accounts, including those not charged 

interest, since paid off within the month.43  All other component quantities and interest rates are 

                                                 

 

42 Credit limits are not considered, since we do not have a way to untangle the effect of those constraints on 

contemporaneous transactions volumes from the effect on the carried forward rotating balances associate with 

previous period transactions. 
43

This interest rate includes those credit card accounts not assessed interest, and hence is lower than the Federal 

Reserve’s supplied interest rates on accounts assessed interest.  This imputation includes only explicit interest paid, 

averaged over all credit card accounts.   
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as used in the CFS Divisia monetary aggregates at 

www.centerforfinancialstability.org/amfm.php. 

Our extensive search for relevant sources of credit card data are provided in detail in Barnett and 

Su (2016), which documents our decisions about credit card data sources.  All details about data 

sources and data decisions regarding monetary asset components and interest rates are provided 

in Barnett, Liu, Mattson, and van den Noort (2013).  We use only sources available to the 

public.44   

The resulting augmented Divisia monetary services aggregates, ℳ𝑡 =ℳ(𝐦𝑡, 𝐜𝑡), satisfy the 

existence conditions for a structural economic variable in a macroeconomic model.  Hence those 

aggregates can be used as the quantity of monetary services in a demand for money equation, or 

as a monetary intermediate target or long run anchor in a monetary rule, or in any other 

econometric or policy application requiring a macroeconomic model containing the monetary 

service flow as a structural variable. 

Alternatively, money can be used as an indicator of the state of the economy.  For example, new-

Keynesian nominal GDP targeting policies require monthly measures of nominal GDP, although 

                                                 

 

44 The CFS sweep adjusts demand deposits.  During periods when available from the Federal Reserve, the CFS uses 

the reported sweep adjustments.  When not available, the CFS uses an econometric model to approximate the sweep 

adjustment.  Although sweep adjustment is important at the M1 level of aggregation, the sweep adjustment has 

insignificant effect on the broader aggregates, since sweeps are largely internalized within those aggregates. 



65 

 

data on nominal GDP are available only quarterly.  The usefulness of Divisia monetary 

aggregates in nowcasting monthly nominal GDP has been established by Barnett, Chauvet, and 

Leiva-Leon (2016). Indicator uses of monetary data are free from the controversies that have 

surrounded uses of money as a policy target.  In the next section, we produce an indicator-

optimized augmented monetary aggregate, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡). Since this aggregate is 

application specific, its existence condition is different from the one used above to produce the 

augmented structural Divisia monetary aggregates.  Unlike the augmented structural aggregates, 

ℳ𝑡 =ℳ(𝐦𝑡 , 𝐜𝑡), which are statistical index numbers in the superlative index number class, the 

indicator optimized aggregates, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡), are econometrically estimated aggregator 

functions, not statistical index numbers.  The estimated aggregator function is time dependent, 

because of the real time estimation used in the nowcasting. 

In the near future, the CFS plans to add to its site our augmented Divisia structural monetary 

aggregates, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), as defined in equations 11 and 21, including credit card services, 

along with our indicator optimized monetary aggregates, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡).  Monthly updates 

will be provided to the public by the CFS through monthly releases.  The monthly updates will 

also be provided by Bloomberg to its terminal users.   

8. Nowcasting Nominal GDP 

In this section we turn to the use of our data as indicators, rather than as policy targets or as 

structural variables in the macroeconomy.   We find that the information contained in credit card 

transaction volumes is a valuable addition to the indicator set in formal nowcasting of nominal 

GDP.  A consequence is a directly derived indicator-optimized augmented aggregator function 
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over monetary and credit card services.  This aggregator function uniquely captures the 

contributions of monetary and credit card services as indicators of nominal GDP in the 

nowcasting.  

An important contribution to the literature on nowcasting is Giannone, Reichlin, and Small 

(2008). Their approach, based on factor analysis, has proved to be very successful.  Barnett, 

Chauvet, and Leiva-Leon (2016) propose an alternative methodology based on confirmatory 

factor analysis and find that Divisia monetary aggregates are particularly valuable indicators 

within the resulting set of optimal indicators.  Barnett and Tang (2016) compared the factor 

analysis approach of Giannone, Reichlin, and Small (2008) and Barnett, Chauvet, and Leiva-

Leon (2016) with alternative nowcasting approaches, and find that the factor analysis approaches 

are usually best and benefit substantially from inclusion of the CFS Divisia monetary aggregates 

among its indicators.   

In this paper, we investigate the further gains from inclusion of credit card transactions volumes 

in the nowcasting. We also produce and explore the derived indicator optimized aggregates, 

ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡 , 𝐜𝑡).  

8.1 The Model 

In this paper we use data on credit card transaction volumes along with the optimal indicators 

found by Barnett, Chauvet, and Leiva-Leon (2016) to provide a model useful to yield accurate 

nowcasts of monthly Nominal GDP. Accordingly, as indicators we use growth rates of quarterly 

Nominal GDP, 𝑦1,𝑡, monthly Industrial Production, 𝑦2,𝑡, monthly Consumer Price Index, 𝑦3,𝑡, a 

monthly Divisia monetary aggregate measure, 𝑦4,𝑡, and a monthly credit card transaction volume, 
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𝑦5,𝑡, to estimate the following Mixed Frequency Dynamic Factor model: 
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                     (28) 

The model separates out, into the unobserved factor, 𝑓𝑡, the common cyclical fluctuations 

underlying the observed variables. The idiosyncratic movements are captured by the terms, 𝑣𝑖,𝑡, 

for 𝑖 = 1,2, … ,5. The factor loadings, 𝛾𝑖, measure the sensitivity of the common factor to the 

observed variables. The dynamics of the factor and idiosyncratic components are given by  

𝑓𝑡 = 𝜙1𝑓𝑡−1 +⋯+ 𝜙𝑝𝑓𝑡−𝑝 + 𝑒𝑡,          𝑒𝑡~𝑁(0,1)                                                    (29) 

𝑣𝑖,𝑡 = 𝜑𝑖1𝑣𝑖,𝑡−1 +⋯+ 𝜑𝑖𝑄𝑖𝑣𝑖,𝑡−𝑄𝑖 + 𝜀𝑖,𝑡,          ε𝑖,𝑡~𝑁(0, 𝜎𝜀𝑖
2), for 𝑖 = 1,… ,5.    (30) 

Following Stock and Watson (1989), the model assumes that 𝑓𝑡 and 𝑣𝑖,𝑡 are mutually 

independent at all leads and lags for all 𝑛 = 5 variables. 

The model in equations (28)-(30) can be cast into a measurement equation and transition 

equation yielding the following state-space representation 
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                  𝐲𝑡 = 𝐇𝐅𝑡 + 𝛏𝑡 ,      𝛏𝐭~𝑖. 𝑖. 𝑑. 𝑁(𝟎, 𝐑)                                                  (31) 

                                                   𝐅𝑡 = 𝐆𝐅𝑡−1 + 𝛇𝑡,      𝛇𝑡~𝑖. 𝑖. 𝑑. 𝑁(𝟎, 𝐐).                                             (32) 

We apply the Kalman filter to extract optimal inferences on the state vector, 𝐅𝑡, which contains 

the common factor of interest, 𝑓𝑡, and the idiosyncratic terms, 𝑣𝑖,𝑡. 

Following Mariano and Murasawa (2003), we modify the state-space model to incorporate into 

the system missing observations, which are frequently present when performing nowcasts in 

real-time. The modification consists of substituting each missing observation with a random 

draw 𝛽𝑡~𝑁(0, 𝜎𝛽
2). This substitution keeps the matrices conformable, without affecting the 

estimation of the model parameters, in accordance with the rule: 

*
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where 𝐇𝑖,𝑡
∗  is the i-th row of a matrix 𝐇∗, which has 𝑘 columns, and 𝟎1𝑘 is a 𝑘 row vector of 

zeros. Hence, the modified measurement equation of the state-space model remains as 

                                                 𝐲𝑡
∗ = 𝐇𝑡

∗𝐅𝑡 + 𝛏𝑡
∗,       𝛏𝑡

∗~𝑖. 𝑖. 𝑑. 𝑁(𝟎,𝐑𝑡
∗).                                              (33) 

The output is an optimal estimator of the dynamic factor, constructed using information available 

through time t. As new information becomes available, the filter is applied to update the state 
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vector on a real-time basis. 

8.2 In-Sample Analysis 

We empirically evaluate the predictive ability of the information contained in credit card 

volumes to produce the most accurate nowcasts of nominal GDP growth, when credit card 

transactions volumes are included into the optimal indicator set found by Barnett, Chauvet, and 

Leiva-Leon (2016).  One of the indicators in that set is the current CFS Divisia monetary 

aggregates, unaugmented by inclusion of credit card data. We perform pairwise comparisons 

between models that include credit card information and models that do not.  In the former case, 

the indicator set includes four variables, while in the latter case the indicator set includes five 

variables.  Both sets include the same CFS unaugmented Divisia monetary aggregates, Mt = 

M(mt), as defined in equation 19, among its optimal indicators. We first examine the predictive 

ability of both models, with and without credit card information as a fifth indicator, by 

performing an in-sample analysis. We consider the sample period from November 2003 until 

May 2015 as a result of the availability of the needed data.  For the in-sample analysis, we 

estimate the model only once for the full sample.  From November 2003 to June 2006, there are 

some missing observations of some variables, but this does not present a problem, since the 

nowcasting model allows dealing with missing observations using the Kalman filter.  Regular 

data availability for all relevant variables begins in July 2006, when the credit card companies’ 

data became available in annual reports.   

The first two columns of Table 1 report the full sample Mean Square Errors (MSE) associated 

with the models containing each of the two indicator sets. The table shows that models 
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containing both CFS Divisia monetary aggregates and credit card transactions volumes produce 

lower MSE than models containing only Divisia monetary aggregates, Mt = M(mt) among the 

other three indicators. This applies at any of the four levels of disaggregation, M1, M2, M3, and 

M4. Next, we compute the MSE only for the years associated with the Great Recession (2008-

2009), reported in the last two columns of Table 1. The results show that the models including 

credit card information produce lower MSE than the models omitting such information in 

nowcasting of nominal GDP growth. 

Table 1. In-Sample Mean Squared Errors  

  FULL SAMPLE GREAT RECESSION 

  CFS Augmented CFS Augmented 

DM1 0.16 0.17 0.33 0.30 

DM2 0.18 0.17 0.36 0.31 

DM3 0.16 0.15 0.32 0.26 

DM4 0.18 0.15 0.39 0.25 

 

Note. The table reports the mean squared errors associated with each model for the entire sample 

period, November 2003 - May 2015, and for the Great Recession years, January 2008 - 

December 2009.  The CFS column includes the CFS Divisia monetary aggregates, Mt = M(mt), 

among the Barnett, Chauvet, and Leiva-Leon (2016) optimal indicator set, but without inclusion 

of credit card transaction volumes, while the Augmented column includes credit card 

transactions volumes among the indicators as a fifth independent indicator. 

To provide a deeper exploration about the role that each indicator plays in the construction of 

nominal GDP predictions, we follow the line of Banbura and Rustler (2007) and decompose each 

forecast into the relative contribution of each indicator, with emphasis on the Divisia monetary 
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aggregate, Mt = M(mt), and credit card transactions volume.  In doing so, we substitute the 

prediction error, 𝛏𝑡|𝑡−1
∗ , and the predicted state, 𝐅𝑡|𝑡−1, into the updating equation of the Kalman 

filter, yielding 

                                                  𝐅𝑡|𝑡 = (𝐈 − 𝐊𝑡
∗𝐇𝑡

∗)𝐆𝐅𝑡−1|𝑡−1 + 𝐊𝑡
∗𝐲𝑡
∗,                                        (34) 

where the Kalman gain is denoted by 𝐊𝑡
∗ = 𝐏𝑡|𝑡−1(𝐇𝑡

∗′(𝐇𝑡
∗𝐏𝑡|𝑡−1𝐇𝑡

∗′ +𝐑𝑡
∗)), and the predicted 

variance of the state vector is given by 𝐏𝑡|𝑡−1 = 𝐆𝐏𝑡−1|𝑡−1𝐆 + 𝐐. When the Kalman filter 

approaches its steady state, the updated state vector can be decomposed into a weighted sum of 

observations 

                                                           𝐅𝑡|𝑡 = ∑ 𝐙𝑗𝑡
∗ 𝐲𝑡−𝑗

∗∞
𝑗=0  ,                                                         (35) 

where 𝐙𝑡
∗(𝐿) = (𝐈 − (𝐈 − 𝐊𝑡

∗𝐇𝑡
∗)𝐆𝐋)−1𝐊𝑡

∗, and each element of the matrix 𝐙𝑡
∗(𝐿) measures the 

effects of unit changes in the lags of individual observations on the inference of the state vector 

𝐅𝑡|𝑡. Therefore, the matrix 𝐙𝑡
∗(1) contains the cumulative impacts of the individual observations 

in the inference of the state vector. For further details about this decomposition, see Banbura and 

Rustler (2007). Accordingly, the vector containing the cumulative impact of each indicator on 

the forecast of nominal GDP growth can be calculated as follows 

    𝛚𝑡 = 𝐇1 (
1

3
𝐳1𝑡
∗ +

2

3
𝐳2𝑡
∗ + 𝐳3𝑡

∗ +
2

3
𝐳4𝑡
∗ +

1

3
𝐳5𝑡
∗ ) + (

1

3
𝐳7𝑡
∗ +

2

3
𝐳8𝑡
∗ + 𝒛9𝑡

∗ +
2

3
𝐳10𝑡
∗ +

1

3
𝐳11𝑡
∗ ),        (36) 

where, 𝐳1𝑡
∗

, is the i-th row of 𝐙𝑡
∗(1). 
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The average cumulative forecast weights, 𝛚𝑡, associated with each indicator are reported in Table 

2 for all the models under consideration. The results show that, on average, one third of the 

contribution is associated with previous releases of nominal quarterly GDP itself. Such 

information is primary in the model, but is only observed once per quarter. Regarding the 

monthly indicators, Industrial Production is the indicator that contributes the most to nominal 

GDP growth predictions, followed by the Divisia monetary aggregates. The indicator that 

provides the least contribution across models is often the Consumer Price Index, CPI. However, 

when credit card information is included, it shows a significantly greater forecast contribution 

than the unaugmented CFS Divisia monetary aggregates or the Consumer Price Index.  This 

conclusion is independent of the aggregation level of the monetary measure. These results 

corroborate that the in sample predictive ability of the optimal combination, including both 

Divisia monetary aggregates and credit-card volumes, outperforms models that exclude credit 

card information.45 

  

                                                 

 

45 It should be observed that the weights in the CFS rows are not directly comparable to those in the Augmented 

rows, since the weights are relative and sum to one along the rows, with more indicators being weighted in the 

Augmented rows.  Much of the weight on IP in the CFS rows is transferred to the credit card volumes in the 

Augmented rows, producing substantially better nowcasts.  The weights on the Divisia monetary aggregates are 

consistent with the results in Barnett, Chauvet, and Leiva-Leon (2016), who found inclusion of the Divisia monetary 

aggregates to be highly statistically significant, in contrast with the many other indicators considered and rejected 

from the optimal indicator set. 
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Table 2. Cumulative Forecast Weight of Each Indicator 

  NGDP IP CPI DIVISIA CREDIT 

DM1 CFS 0.33 0.59 0.03 0.05 -- 

DM1 Augmented 0.33 0.34 0.05 0.03 0.25 

DM2 CFS 0.33 0.58 0.03 0.06 -- 

DM2 Augmented 0.33 0.34 0.04 0.04 0.24 

DM3 CFS 0.33 0.63 0.04 0.01 -- 

DM3 Augmented 0.33 0.35 0.05 0.01 0.26 

DM4 CFS 0.33 0.60 0.03 0.03 -- 

DM4 Augmented 0.33 0.37 0.04 0.02 0.24 

Note. The table reports the cumulative forecast weights, averaged over time, for the entire 

sample.  As in table 1, the CFS rows include the CFS Divisia monetary aggregates among the 

Barnett, Chauvet, and Leiva-Leon (2016) optimal indicator set, but without inclusion of credit 

card transaction volumes, while the Augmented rows include credit card transactions volumes 

among the indicators as a fifth independent indicator.  In both cases, the Divisia column is the 

CFS unaugmented Divisia monetary aggregate, Mt = M(mt), defined in equation 19. 

8.3  Real Time Analysis 

For the initial estimation of the model in real time analysis, we use data from November 2003 to 

September 2007, yielding 47 observations. Hence, our nowcasting evaluation sample is the 

remaining observations from October 2007 to May 2015, yielding 92 observations. The samples 

have been chosen based on two criteria, (i) to guarantee that the estimation sample represents one 

third of the total available sample, and (ii) to incorporate the Great Recession episode in the 
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evaluation sample, since it is of particular interest.46 For every month of the evaluation sample, 

we re-estimate the model parameters, compute the nowcast of the target variable, and compare it 

with the first release of nominal GDP to construct mean squared errors. 

Figure 1: Mean Square Error Comparison (Full sample) 

 

With each model, the MSE associated with the real-time nowcasts are shown in Figure 1 for the 

entire evaluation sample. The figure shows that models incorporating credit card information 

provide a significantly lower MSE than the models not incorporating such information. Optimal 

weighting between credit card transactions volumes and Divisia monetary aggregates improves 

the accuracy in producing real-time nowcasts of nominal GDP. The superiority of the extended 

                                                 

 

46We also tried with different partitions of the sample, but the results remained qualitatively unchanged. 
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models, which include credit card information, over the un-extended models, omitting that 

information, can be observed at all four levels of aggregation and particularly for the M2 

monetary aggregates. 

Additionally, we perform the same evaluations, but only focusing on the subsample containing 

the years of the Great Recession. The motivation for doing this analysis relies on comparing the 

ability of the extended and un-extended models to track nominal GDP dynamics during 

recessionary periods, associated with macroeconomic instabilities and higher uncertainty. Figure 

2 shows the mean squared errors associated with real-time nowcasts computed with each model 

for the evaluation sample, containing the years of 2008 and 2009. The results corroborate the 

significant superiority of the extended over unextended models in nowcasting nominal GDP 

during contractionary episodes. 

Figure 2: Mean Square Error Comparison (Great Recession) 
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The model is re-estimated at every period of time during which new information is available, to 

simulate real-time conditions. We thereby investigate potential changes in the contemporaneous 

relationship between each indicator in the model and the extracted factor used to produce real-

time nowcasts of nominal GDP growth. This information allows us to examine in detail the 

comovement between each indicator and the signals used to forecast nominal GDP during 

periods of instabilities, such as the Great Recession.  In Table 1, the first row at each level of 

aggregation is for the four indicator model, while the second row is for the five indicator model. 

The upper part of Table 3 reports the full sample average of the recursively estimated factor 

loadings for each indicator and for each model. The results show a positive and strong 

comovement between Industrial Production and the common factor, and a positive but weak 

comovement between Consumer Price Index and the common factor, with stronger comovement 

in the case of the five factor model. Regarding the CFS Divisia monetary aggregates, the results 

show relatively weak and sometimes negative comovement with the common factor.  As the 

sample size grows in the future, we anticipate that the recursive loadings of the Divisia monetary 

aggregates on the common factor will remain small but will become consistently positive, as in 

Barnett, Chauvet, and Leiva-Leon (2016).47  In the five factor models, credit card transactions 

                                                 

 

47 The sample size in Barnett, Chauvet, and Leiva-Leon (2016) was much larger than in the current study, since the 

earlier research was not constrained by lack of availability of credit card volumes prior to the credit card firms going 

public.  In the earlier study, the recursive loadings of the Divisia monetary aggregates in the common factor were 

always positive, but smaller than the loadings on the other optimal indicators.  The sometimes negative out of 

sample average factor loadings on the Divisia monetary aggregates in the current study are associated with the 

smaller sample size, having a large percentage of observations during the Great Recession period of unusual 
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volumes show very strong comovement with the common factor, even stronger than the 

comovement of quarterly nominal GDP with the common factor.  Clearly the four factor model 

is missing important indicator information. 

To assess the comovements during the Great Recession period, we compute the average 

recursive loadings for the period January 2008 to December 2009 and report them in the lower 

part of Table 3.  The comovement between each indicator and the common factor across models 

presents a similar pattern to the one obtained with the full sample averages, with one notable 

exception. With both the four indicator and the five indicator models, the Consumer Price Index 

experiences a negative relationship with the common factor, providing countercyclical signals to 

nowcasts of nominal GDP growth.   Again the credit-card transactions volumes experience 

positive and strong comovement with the common factor, and hence show the ability to improve 

the accuracy of signals in nowcasting nominal GDP growth during periods of instability. 

  

                                                 

 

instability. 
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Table 3. Out of Sample Recursive Loadings 

Full sample period 

  NGDP IP CPI DIVISIA CREDIT 

DM1 CFS 0.19 0.39 0.09 -0.10 -- 

DM1 CFS & CREDIT 0.22 0.42 0.15 -0.14 0.38 

DM2 CFS 0.20 0.38 0.07 -0.13 -- 

DM2 CFS & CREDIT 0.22 0.41 0.14 -0.17 0.36 

DM3 CFS 0.18 0.38 0.08 0.02 -- 

DM3 CFS & CREDIT 0.21 0.41 0.16 0.03 0.38 

DM4 CFS 0.19 0.39 0.06 -0.11 -- 

DM4 CFS & CREDIT 0.21 0.41 0.14 -0.12 0.36 

Great Recession period 

DM1 CFS 0.21 0.43 -0.04 -0.05 -- 

DM1 CFS & CREDIT 0.24 0.48  0.00 -0.08 0.29 

DM2 CFS 0.25 0.39 -0.08 -0.01 -- 

DM2 CFS & CREDIT 0.25 0.46 -0.03 -0.06 0.25 

DM3 CFS 0.21 0.42 -0.05  0.00 -- 

DM3 CFS & CREDIT 0.23 0.48 -0.01  0.01 0.31 

DM4 CFS 0.23 0.44 -0.09 -0.16 -- 

DM4 CFS & CREDIT 0.24 0.47 -0.01 -0.14 0.26 

Note. The table reports the average out of sample recursively estimated factor loading. The upper 

part of the table focuses on the entire sample November 2003 - May 2015, while the lower part 

of the table focuses on the Great Recession years, January 2008 - December 2009. 

9. Indicator Optimized Augmented Aggregate  

As explained in the previous section, the nowcasts can be transformed into weighted averages of 

the indicators, with the weights being the vector 𝛚𝑡 provided in Table 2.  The nowcasting-

derived indicator-optimized aggregate, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡 , 𝐜𝑡), is the weighted averages of the CFS 

Divisia monetary aggregate and the credit card transactions volume. The weights of those two 

components are in the fourth and fifth columns of Table 2, with those two weights renormalized 
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to sum to one.  The estimated aggregator function, ℳ𝑡
∗(. ), is time dependent, since the weights, 

𝛚𝑡, are time dependent.48  The detailed procedure for computing the weights in Table 2 and the 

indicator optimized aggregate, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡 , 𝐜𝑡),  is provided in the appendix VI of Barnett, 

Chauvet, Leiva-Leon, and Su (2016). 

It is important to observe that if the CFS Divisia monetary aggregate is replaced by ℳ𝑡
∗ 

computed in that manner, then all of the results in Tables 1, 2, and 3 for five indicators are 

equally and exactly applicable to the nowcasting with four indicators.  As evident from those 

tables, replacing the CFS Divisia monetary aggregates, Mt, by ℳ𝑡
∗ produces very large gains in 

indicator information with four indicators in each case.  No indicator information is lost by the 

aggregation, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡 , 𝐜𝑡), since that optimized augmented indicator is uniquely 

nowcasting indicator exact.  

All of the figures below display three graphs:  (1) nominal quarterly measured GDP growth, (2) 

growth of the CFS Divisia monetary aggregates, Mt = M(mt), and  (3) growth of the indicator 

optimized augmented monetary aggregates, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡). Although the nowcasts and the 

monetary aggregates are available monthly, the plots below are quarterly, since GDP data are 

                                                 

 

48 In principle, it might be possible to factor a non-time-dependent function solely of (𝐦𝑡 , 𝐜𝑡) out of the nowcasting 

equation.  But because of the deep nonlinearity of that equation in (𝐦𝑡 , 𝐜𝑡) and the recursive real time nature of the 

nowcasting estimation, it would be impossible to solve for that aggregator function in algebraic closed form.  The 

extreme difficulty of solving for that function numerically, if the function exists, would have no benefit, since 

ℳ𝑡
∗(𝐦𝑡 , 𝐜𝑡) is indicator optimal and loses no information in the nowcasting.    
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available only quarterly.   

The following observations follow from the figures. The fluctuations in the credit-card 

augmented Divisia monetary aggregates lead the conventional Divisia monetary aggregates at all 

four levels of aggregation. The credit-card augmented Divisia monetary aggregates better 

correlate with nominal GDP than the conventional Divisia monetary aggregates do. The credit-

card augmented Divisia monetary aggregates more accurately reflect the Great Recession time 

period than the conventional Divisia monetary aggregates do. 

Although the broadest aggregates, DM3 and DM4, more accurately and completely measure the 

economy’s flow of monetary services, the transmission of policy to the aggregates is somewhat 

slower for the distant substitutes for money than for the assets in DM1 and DM2. 

It is evident from these results why, in Tables 1 and 2, the new credit-card augmented Divisia 

monetary aggregates improve so dramatically upon the performance of the nominal GDP 

nowcasting approach developed by Barnett, Chauvet, and Leiva-Leon (2016).  That approach 

previously incorporated the conventional CFS Divisia monetary aggregates among its significant 

indicators, with improved performance compared with use of the official simple sum monetary 

aggregates in the same nowcasting procedure. 
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9.1. Average Quarterly Growth Rates 

Figure 3: M1 Average Quarterly Growth Rates (2007Q4-2015Q1)

 

Figure 4: M2 Average Quarterly Growth Rates (2007Q4 – 2015Q1)
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Figure 5: M3 Average Quarterly Growth Rates (2007Q4 – 2015Q1)

 

Figure 6: M4 Average Quarterly Growth Rates (2007Q4 – 2015Q1)
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9.2. Quarterly Year-over-Year Growth Rates 

Figure 7: M1 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1)

 
Figure 8: M2 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1)
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Figure 9: Quarterly M3 Year-over-Year Growth Rates (2007Q4 – 2015Q1)

 

Figure 10: M4 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1)
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10.  Conclusions 

Many economists have wondered how the transactions services of credit cards could be included 

in monetary aggregates.  The conventional simple sum accounting approach precludes solving 

that problem, since accounting conventions do not permit adding liabilities to assets.  But 

economic aggregation and index number theory measure service flows, independently of whether 

from assets or liabilities.  We have provided theory solving that long overlooked problem both 

for use as a structural economic variable or as an indicator.  Different theory is relevant to those 

two objectives, and hence we have provided two different aggregates.  The aggregation-theoretic 

exact approach provides our credit card-augmented structural aggregate, ℳ𝑡 =ℳ(𝐦𝑡 , 𝐜𝑡), 

while the indicator optimized augmented aggregate, uniquely derived from our nowcasting 

model, produces our aggregate, ℳ𝑡
∗ = ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡).  In the former case, the aggregate is defined 

to be weakly separable within the structure of the economy, while in the latter approach the 

aggregate is defined to be weakly separable within the nowcasting equation.  The former 

approach is relevant to any application requiring a measure of monetary services within the 

structure of the economy, while the latter approach is application specific and only relevant for 

use as an indicator. 

We have provided the solution under various levels of complexity in terms of theory, 

econometrics, and data availability. Both sets of new aggregates will be provided to the public in 

monthly releases by the Center for Financial Stability (CFS) and also to Bloomberg terminal 

users.  The CFS is now providing the unaugmented aggregates, Mt = M(mt), and will soon be 

providing both the structural augmented aggregates, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), and indicator-optimized 
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augmented aggregates, ℳ𝑡
∗ =ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡). 

In previous research, Barnett, Chauvet, and Leiva-Leon (2016) have found that the CFS Divisia 

monetary aggregate, Mt = M(mt), is a valuable indicator in a four factor nowcasting model of 

nominal GDP.  In this current research, we have found that our new augmented Divisia monetary 

aggregates, ℳ𝑡
∗ =ℳ𝑡

∗(𝐦𝑡, 𝐜𝑡), provide substantially greater indicator value than Mt = M(mt).  

Although the greater indicator value is evident from our time series plots, we have displayed the 

formal nowcasting results to confirm the evidence from the plots. Among the potential 

applications of the indicator approach would be in nominal GDP targeting, requiring the 

existence of monthly nominal GDP nowcasts.  

An extensive literature exists on policy relevance of the Divisia monetary aggregates.49  Much of 

that literature could be strengthened further by use of the soon to be available credit-card-

augmented CFS structural Divisia monetary aggregates,  ℳ𝑡 =ℳ(𝐦𝑡, 𝐜𝑡).   We leave such 

empirical research with those aggregates to future applications, but we provide the supporting 

economic theory.  It should be observed that ℳ𝑡 and ℳ𝑡
∗ are not good substitutes for each other, 

having been derived from different existence conditions relevant to different objectives.50  Our 

                                                 

 

49 See, e. g., Barnett (2012), Belongia and Ireland (2006;2014; 2015a,b; 2016), Barnett and Chauvet (2011), Serletis 

and Rahman (2013), Barnett and Serletis (2000), and Serletis and Gogas (2014).   
50 A consequence is much higher weight on the credit card transactions volumes in the indicator optimized 

aggregator function, ℳ𝑡
∗, than in the Divisia index, ℳ𝑡.  A possible way to understand the different behaviors of 

ℳ𝑡
∗ and ℳ𝑡 is relative to the transmission mechanism of monetary policy.  As a potential intermediate target of 

policy, the growth of ℳ𝑡 is strongly influenced by variations in the instruments of Central Bank policy as well as by 

private shadow banking activity.  In contrast,  ℳ𝑡
∗ is an indicator of a final target of monetary policy, nominal GDP, 
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empirical research in this paper focuses on the indicator optimized aggregates, ℳ𝑡
∗ =

ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡).  

A more challenging approach would introduce risk aversion in accordance with Barnett and Wu 

(2005). 51 Adapting that advanced approach to our augmented aggregates remains another topic 

for future research, as does disaggregation to a heterogeneous agents approach.   

                                                 

 

and hence is much farther into the transmission of mechanism of monetary policy.  As a result, ℳ𝑡
∗ might be more 

strongly influenced by factors unrelated to Central Bank policy, such as international energy price variations, and 

influenced by Central Bank policy with longer lags than ℳ𝑡.  Since this paper does not model the transmission 

mechanism of monetary policy, these speculations are, at best, viewed as potential topics for future research. 
51 Initial theoretical results in that direction are available in Barnett, Chauvet, Leiva-Leon, and Su (2016). 
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APPENDIX 

Derivation of the User Cost Formula for Credit Card Services, Equation (7), in the Infinite 

Lifetimes Case 

From equation 2, the flow of funds identities, for , 1,..., ,s t t   are 
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(A.1) 

The intertemporal utility function 

u(𝐦𝑡, 𝐜𝑡 , 𝐱𝑡) + 𝐸𝑡[ ∑ (
1

1 + 𝜉
)
𝑠−𝑡

𝑢(

∞

𝑠=𝑡+1

𝐦𝑠 , 𝐜𝑠, 𝐱𝑠)]             

under perfect certainty is  

∑(
1

1 + 𝜉
)
𝑠−𝑡

𝑢(

∞

𝑠=𝑡

𝐦𝑠 , 𝐜𝑠, 𝐱𝑠).                                                            (A. 2) 

Let   be the Lagrangian for maximizing intertemporal utility subject to the sequence of flow of 

funds identities for ,..., ,s t   and let t  be the Lagrange multiplier for the t’th constraint.  Then 

the following are the first order conditions for maximizing (A.2) subject to the sequence of 
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constraints, (A.1). 
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From equation (A.3), we have 

1(1 ) 0.t t tR    
                    (A.7) 

Substitute equation (A.7) into (A.6) to eliminate 1t  , we get 
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Rearranging we get the first order condition that identifies jt as the user cost price of credit card 

services: 
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Abstract 

While credit cards provide transactions services, as do currency and demand deposits, credit 

cards have never been included in measures of the money supply.  The reason is accounting 

conventions, which do not permit adding liabilities, such as credit card balances, to assets, such 

as money.  However, economic aggregation theory and index number theory measure service 

flows and are based on microeconomic theory, not accounting.   Barnett, Chauvet, Leiva-Leon, 

and Su (2016) derived the aggregation and index number theory needed to measure the joint 

services of credit cards and money.  They derived and applied the theory under the assumption of 

risk neutrality.  But since credit card interest rates are high and volatile, risk aversion may not be 

negligible.  We extend the theory by removing the assumption of risk neutrality to permit risk 

aversion in the decision of the representative consumer. 

 

Keywords: Credit Cards, Money, Credit, Aggregation, Monetary Aggregation, Index Number 

Theory, Divisia Index, Risk, Euler Equations, Asset Pricing. 
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1. Introduction 

While money is an asset, credit is a liability.  In accounting conventions, assets and liabilities 

cannot be added together.  But aggregation theory and economic index number theory are based 

on microeconomic theory, not accounting conventions.  Economic aggregates measure service 

flows.  To the degree that money and some forms of credit produce joint services, those services 

can be aggregated.   

A particularly conspicuous example is credit card services, which are directly involved in 

transactions and contribute to the economy’s liquidity in ways not dissimilar to those of money. 

While money is both an asset and part of wealth, credit cards are neither.  Hence credit cards are 

not money.  To the degree that monetary policy operates through a wealth effect (Pigou effect), 

as advocated by Milton Friedman, credit cards do not play a role.  But to the degree that the flow 

of monetary services is relevant to the economy, as through the demand for monetary services or 

as an indicator measure, the omission of credit card services from “money” measures induces a 

loss of information.   

Barnett, Chauvet, Leiva-Leon, and Su (2016) derived the aggregation and index number theory 

needed to aggregate jointly over the services of money and credit cards.  The derivation uses 

strongly simplifying assumptions.  They assume credit cards are used to purchase consumer 

goods.  All purchases are made at the beginning of periods, and payments for purchases are 

either by credit cards or money.  Credit card purchases are repaid to the credit card company at 

the end of the current period or at the end of a future period, plus interest charged by the credit 

card company. Stated more formally, all discrete time periods are closed on the left and open on 
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the right. After aggregation over consumers, the expected interest rate paid by the representative 

credit card holder can be very high, despite the fact that some consumers pay no interest on 

credit card balances.   

The derivation in Barnett, Chauvet, Leiva-Leon, and Su (2016) assumes perfect certainty or risk 

neutrality.  With monetary assets, having relatively low risk returns, risk aversion is not likely to 

have much effect on the behavior of aggregation theoretic monetary aggregates, such as the 

Divisia monetary aggregates.  Studies have tended to show that weakening the assumption of 

risk neutrality in the derivation of the Divisia monetary aggregates has little effect on the 

behavior of the aggregates.  See, e.g., Barnett, Liu, and Jensen (1997).  But inclusion of credit 

card services introduces a high risk rate of return:  the interest rate on credit card debt.  As a 

result, extension of the aggregation theory to the case of risk neutrality might alter the behavior 

of the aggregate in a non-negligible manner.  We extend the theory of Barnett, Chauvet, Leiva-

Leon, and Su (2016) by removing the assumption of risk neutrality.  The derivation is thereby 

altered by replacing the perfect certainty first order conditions with the relevant Euler equations. 

To reflect the fact that money and credit cards provide services, such as liquidity and transactions 

services, money and credit are entered into a derived utility function, in accordance with Arrow 

and Hahn’s (1971) proof.52 The derived utility function absorbs constraints reflecting the explicit 

                                                 

 

52 Our research in this paper is not dependent upon the simple decision problem we use for derivation and 

illustration.  In the case of monetary aggregation, Barnett (1987) proved that the same aggregator functions and 
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motives for using money and credit card services.  Since this paper is about measurement, we 

need only assume the existence of such motives.  In the context of this research, we have no need 

to work backwards to reveal the explicit motives.  As has been shown repeatedly, any of those 

motives, including the highly relevant transactions motive, are consistent with existence of a 

derived utility function absorbing the motive.53 

2. Intertemporal Allocation 

We begin by defining the variables in the risk neutral case for the representative consumer: 

𝐱𝑠 = vector of per capita (planned) consumptions of N goods and services (including those of 

durables) during period 𝑠. 

𝐩𝑠 = vector of goods and services expected prices, and of durable goods expected rental prices 

during period 𝑠. 

                                                 

 

index numbers apply, regardless of whether the initial model has money in the utility function or production 

function, so long as there is intertemporal separability of structure and separability of components over which 

aggregation occurs.  That result is equally as applicable to our current results with augmented aggregation over 

monetary asset and credit card services.  While this paper uses economic index number theory, it should be observed 

that there also exists a statistical approach to index number theory.  That approach produces the same results, with 

the Divisia index interpreted to be the Divisia mean using expenditure shares as probability.  See Barnett and 

Serletis (1990). 
53 The aggregator function is the derived function that always exists, if monetary and credit card services have 

positive value in equilibrium.  See, e.g., Samuelson (1948), Arrow and Hahn (1971), stockFischer (1974), Phlips and 

Spinnewyn (1982), Quirk and Saposnik (1968), and Poterba and Rotemberg (1987).  Analogously, Feenstra (1986, 

p. 271) demonstrated “a functional equivalence between using real balances as an argument of the utility function 

and entering money into liquidity costs which appear in the budget constraints.”  The converse mapping from money 

and credit in the utility function back to the explicit motive is not unique. But in this paper we are not seeking to 

identify the explicit motives for holding money or credit card balances.   
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𝑚𝑖𝑠 = planned per capita real balances of monetary asset 𝑖 during period 𝑠 (𝑖 = 1,2, … , 𝑛). 

𝑐𝑗𝑠 = planned per capita real expenditure with credit card type 𝑗 for transactions during period s 

(𝑗 = 1,2, … , 𝑘). In the jargon of the credit card industry, those contemporaneous 

expenditures are called “volumes.” 

𝑧𝑗𝑠 = planned per capita rotating real balances in credit card type j during period s from 

transactions in previous periods (𝑗 = 1,2, … , 𝑘). 

𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 𝑧𝑗𝑠= planned per capita total balances in credit type j during period s (𝑗 = 1,2, … , 𝑘). 

𝑟𝑖𝑠 = expected nominal holding period yield (including capital gains and losses) on monetary 

asset 𝑖 during period 𝑠 (𝑖 = 1,2, … , 𝑛). 

𝑒𝑗𝑠 = expected interest rate on 𝑐𝑗𝑠. 

jse  = expected interest rate on 𝑧𝑗𝑠. 

𝐴𝑠 = planned per capita real holdings of the benchmark asset during period 𝑠. 

𝑅𝑠 = expected (one-period holding) yield on the benchmark asset during period 𝑠. 

𝐿𝑠 = per capita labor supply during period 𝑠. 

𝑤𝑠 = expected wage rate during period 𝑠. 

𝑝𝑠
∗ = 𝑝𝑠

∗(𝐩𝑠) is the true cost of living index, as defined in Barnett (1978,1980). 

 

The benchmark asset is defined to provide no services other than its expected yield, 𝑅𝑠, which 

motivates holding of the asset solely as a means of accumulating wealth.  As a result, 𝑅𝑠 is the 

maximum expected holding period yield available to consumers in the economy in period s from 

holding a secured asset.  The benchmark asset is held to transfer wealth by consumers between 

multiperiod planning horizons, rather than to provide liquidity or other services.  In contrast, jse  
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is not the interest rate on an asset and is not secured.  It is the interest rate on an unsecured 

liability, subject to substantial default and fraud risk.  Hence, jse  can be higher than the 

benchmark asset rate, and historically has always been much higher than the benchmark asset 

rate.54  

It is important to recognize that the decision problem we model is not of a single economic 

agent, but rather of the “representative consumer,” aggregated over all consumers.  All quantities 

are therefore averaged over all consumers.  Gorman’s assumptions for the existence of a 

representative consumer are implicitly accepted, as is common in almost all modern 

macroeconomic theory having microeconomic foundations.  This modeling assumption is 

particularly important in understand the credit card quantities and interest rates used in our 

research.  About 20% of credit card holders in the United States do not pay explicit interest on 

credit card balances, since those credit card transactions are paid off by the end of the period. But 

the 80% who do pay interest pay very high interest rates.55  The Federal Reserve provides two 

                                                 

 

54 Barnett, Chauvet, Leiva-Leon, and Su (2016) follow the Center for Financial Stability (CFS) and the Bank of 

Israel in using the short term bank loan rate as a proxy for the benchmark rate.  That interest rate has always 

exceeded the interest rate paid by banks on deposit accounts and on all other monetary assets used in the CFS 

Divisia monetary aggregates, and has always been lower than the Federal Reserve’s reported average interest rate 

charged on credit card balances.  For detailed information on CFS data sources, see Barnett, Liu, Mattson, and Noort 

(2013).  For the additional data sources used by the CFS to extend to credit card services, see Barnett and Su (2016). 
55 The following statement is from www.motherjones.com/kevin-drum/2011/10/americans-are-clueless-about-their-

credit-card-debt.   "In the four working age categories, about 50% of households think they have outstanding credit 

card debt, but the credit card companies themselves think about 80% of households have outstanding balances."  

Since these percentages are of total households, including those having no credit cards, the percent of credit card 

holders paying interest might be even higher. 
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interest rate series for credit card debt.  One, jse , includes interest only on accounts that do pay 

interest to the credit card issuing banks, while the other series, 𝑒𝑗𝑠, includes the approximately 

20% that do not pay interest.  The latter interest rate is thereby lower, since it is averaged over 

interest paid on both categories of accounts.  Since we are modeling the representative consumer, 

aggregated over all consumers, 𝑒𝑗𝑠 is always less than jse  for all j and s.  The interest rate on 

rotating credit card balances, jse , is paid by all consumers who maintain rotating balances in 

credit cards.  But 𝑒𝑗𝑠 is averaged over those consumers who maintain such rotating balances and 

hence pay interest on contemporaneous credit card transactions (volumes) and those consumers 

who pay off such credit card transactions before the end of the period, and hence do not pay 

explicit interest on the credit card transactions.  The Federal Reserve provides data on both jse  

and 𝑒𝑗𝑠. Although 𝑒𝑗𝑠 is less than jse ,  𝑒𝑗𝑠 also has always been higher than the benchmark rate.    

This observation is a reflection of the so-called credit card debt puzzle.56 

Barnett, Chauvet, Leiva-Leon, and Su (2016) use the latter interest rate, 𝑒𝑗𝑠, in their augmented 

Divisia monetary aggregates formula, since the contemporaneous per capita transactions 

volumes in our model are averaged over both categories of credit card holders. They do not 

include rotating balances used for transactions in prior periods, since to do so would involve 

                                                 

 

56See, e.g., Telyukova and Wright (2008), who view the puzzle as a special case of the rate dominance puzzle in 

monetary economics.  The “credit card debt puzzle” asks why people do not pay down debt, when receiving low 

interest rates on deposits, while simultaneously paying higher interest rates on credit card debt. 



103 

 

double counting of transactions services.   

The expected interest rate, 𝑒𝑗𝑠, can be explicit or implicit, and applies to the aggregated 

representative consumer.  For example, an implicit part of that interest rate could be in the form 

of an increased price of the goods purchased or in the form of a periodic service fee or 

membership fee.  But we use only the Federal Reserve’s average explicit interest rate series, 

which is lower than the one that would include implicit interest. Nevertheless, that downward 

biased explicit rate of return to credit card companies, 𝑒𝑗𝑠,  aggregated over consumers, tends to 

be very high, far exceeding 𝑅𝑠, even after substantial losses from fraud. 

We follow Barnett, Chauvet, Leiva-Leon, and Su (2016) in using the credit card industry’s 

definition of “credit card,” which excludes “store cards” and “charge cards.”  According to the 

trade’s definition, “store cards” are issued by businesses providing credit only for their own 

goods, such as gasoline company credit cards or department store cards.  To be a “credit card” by 

the trade’s definition, the card must be widely accepted for many goods and services in the 

economy not constrained to cash-only sales.  “Charge cards” can be widely accepted for goods 

purchases, but do not charge interest, since the debt must be paid off by the end of the period.  

To be a “credit card,” the card must provide a line of credit to the card holder with interest 

charged on purchases not paid off by the end of the period.  For example, American Express 

provides both charge cards and credit cards.  The first credit card was provided by Bank of 

America.  There now are four sources of credit card services in the United States:  Visa, 

Mastercard, Discover, and American Express.  From American Express, we use only their credit 

card account services, not their charge cards. We use data from only those four sources, in 
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accordance with the credit card industry’s conventional definition of “credit card.” 

The resulting flow of funds identity for each period s is: 

𝐩𝑠
′𝐱𝑠

= 𝑤𝑠𝐿𝑠

+∑[(1 + 𝑟𝑖,𝑠−1)𝑝𝑠−1
∗ 𝑚𝑖,𝑠−1 − 𝑝𝑠

∗𝑚𝑖𝑠]

𝑛

𝑖=1

+∑[𝑝𝑠
∗𝑐𝑗𝑠 − (1 + 𝑒𝑗,𝑠−1)𝑝𝑠−1

∗ 𝑐𝑗,𝑠−1]                                                         

𝑘

𝑗=1

+∑[𝑝𝑠
∗𝑧𝑗𝑠 − (1 + , 1j se  ) 𝑝𝑠−1

∗ 𝑧𝑗,𝑠−1]

𝑘

𝑗=1

  + [(1 + 𝑅𝑠−1)𝑝𝑠−1
∗ 𝐴𝑠−1

− 𝑝𝑠
∗𝐴𝑠].                                                                                                                                       (1)       

Planned per capita total balances in credit type j during period s are then 𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 𝑧𝑗𝑠.   

Equation (1) is an accounting identity, with the right hand side being funds available to purchase 

consumer goods during period s.  On the right hand side, the first term is labor income.  The 

second term is funds absorbed or released by rolling over the monetary assets portfolio, as 

explained in Barnett (1980).  The third term is particularly important to this paper.  That term is 

the net change in credit card debt during period s from purchases of consumer goods, while the 

fourth term is the net change in rotating credit card debt.  The fifth term is funds absorbed or 

released by rolling over the stock of the benchmark asset, as explained in Barnett (1980).  The 

third term on the right side is specific to current period credit card purchases, while the fourth 
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term is not relevant to the rest of our results, since 𝑧𝑗𝑠 is not in the utility function.  Hence 𝑧𝑗𝑠 is 

not relevant to the user cost prices, conditional decisions, or aggregates in the rest of this paper. 

In the perfect certainty case, Barnett (1980) found that the current nominal user cost price, 𝜋𝑖𝑡, of 

𝑚𝑖𝑡 is 

 

𝜋𝑖𝑡 =
𝑝𝑡
∗(𝑅𝑡 − 𝑟𝑖𝑡)

1 + 𝑅𝑡
,                                                                         (2) 

 

while Barnett, Chauvet, Leiva-Leon, and Su (2016) proved that the current period nominal user 

cost, 𝜋̃𝑗𝑡, of 𝑐𝑗𝑡 is 

 

  𝜋̃𝑗𝑡 =
𝑝𝑡
∗(𝑒𝑗𝑡 − 𝑅𝑡)

1 + 𝑅𝑡
.                                                                     (3)    

 

The corresponding real user costs are  

𝜋𝑗𝑠
∗ =

𝜋𝑖𝑠
𝑝𝑠∗
                                                                                    (4a) 

and 

𝜋̃𝑗𝑠
∗ =

𝜋̃𝑗𝑡

𝑝𝑠∗
.                                                                                  (4𝑏) 
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Equation (3) can be understood in terms of the delay between the goods purchase date and the 

date of repayment of the loan to the credit card company.  During the one period delay, the 

consumer can invest the cost of the goods purchased at rate of return 𝑅𝑡.  Hence the net real cost 

to the consumer of the credit card loan, per dollar borrowed, is 𝑒𝑗𝑡 − 𝑅𝑡.  Multiplication by the 

true cost of living index in the numerator of (3) converts to nominal dollars and division by  

1 + 𝑅𝑡 discounts to present value within the time period. 

 

3. Risk Adjustment 

In index number theory, it is known that uncertainty about future variables has no effect on 

contemporaneous aggregates or index numbers, if preferences are intertemporally separable.  

Only contemporaneous risk is relevant. See, e.g., Barnett (1995). Prior to Barnett, Liu, and 

Jensen (1997)), the literature on index number theory assumed that contemporaneous prices are 

known with certainty, as is reasonable for consumer goods.  But Poterba and Rotemberg (1987) 

observed that contemporaneous user cost prices of monetary assets are not known with certainty, 

since interest rates are not paid in advance.  As a result, the need existed to extend the field of 

index number theory to the case of contemporaneous risk.   

For example, the derivation of the Divisia monetary index in Barnett (1980) uses the perfect 

certainty first-order conditions for expenditure constrained maximization of utility, in a manner 
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similar to Francois Divisia’s (1925,1926) derivation of the Divisia index for consumer goods. 

But if the contemporaneous user costs are not known with certainty, those first order conditions 

become Euler equations.  This observation motivated Barnett, Liu, and Jensen (1997)) to repeat 

the steps in the Barnett (1980) with the first order conditions replaced by Euler equations. In this 

section, we analogously derive an extended augmented Divisia index using the Euler equations 

that apply under risk, with utility assumed to be intertemporally strongly separable. The result is 

a Divisia index with the user costs adjusted for risk in a manner consistent with the CCAPM 

(consumption capital asset price model).57 

The approach to our derivation of the extended index closely parallels that in Barnett, Liu, and 

Jensen (1997), Barnett and Serletis (2000, ch. 12), and Barnett (2012, Appendix D) for monetary 

assets alone.  But our results, including credit card services, are likely to result in substantially 

higher risk adjustments than the earlier results for monetary assets alone, since interest rates on 

credit card debt are much higher and much more volatile than on monetary assets.   

 3.1 The Decision 

Define 𝑌 to be the consumer’s survival set, assumed to be compact.  The decision problem in this 

section will differ from the one in Barnett, Chauvet, Leiva-Leon, and Su (2016) not only by 

introducing risk, but also by adopting an infinite planning horizon. The consumption possibility 

                                                 

 

57 Regarding CCAPM, see Lucas (1978), Breeden (1979), and Cochrane (2000). 
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set, 𝑆(𝑠), for period 𝑠 is the set of survivable points, (𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠) satisfying equation (2). 

The benchmark asset 𝐴𝑠 provides no services other than its yield, 𝑅𝑠. As a result, the benchmark 

asset does not enter the consumer’s contemporaneous utility function. The asset is held only as a 

means of accumulating wealth. The consumer’s subjective rate of time preference, 𝜉, is assumed 

to be constant. The single-period utility function, 𝑢(𝐦𝑡, 𝐜𝑡 , 𝐱𝑡), is assumed to be increasing and 

strictly quasi-concave. 

The consumer’s decision problem is the following. 

Problem 1. Choose the deterministic point (𝐦𝑡 , 𝐜𝑡, 𝐱𝑡, 𝐴𝑡) and the stochastic process 

(𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠), 𝑠 = 𝑡 + 1,… ,∞, to maximize  

u(𝐦𝑡, 𝐜𝑡 , 𝐱𝑡) + 𝐸𝑡[ ∑ (
1

1 + 𝜉
)
𝑠−𝑡

𝑢(

∞

𝑠=𝑡+1

𝐦𝑠 , 𝐜𝑠, 𝐱𝑠)],                                          (5) 

subject to (𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠) ∈ 𝑆(𝑠) for 𝑠 = 𝑡, t+1, … , , and also subject to the transversality 

condition  

lim
𝑠→∞

𝐸𝑡 (
1

1 + 𝜉
)
𝑠−𝑡

𝐴𝑠 = 0.                                                                  (6) 
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3.2 Existence of an Augmented Monetary Aggregate for the Consumer 

We assume that the utility function, 𝑢, is blockwise weakly separable in (𝐦𝑠, 𝐜𝑠) and in 𝒙𝑠.
58 

Hence, there exists an augmented monetary aggregator function, ℳ, consumer goods aggregator 

function, 𝑋, and utility functions, 𝐹 and 𝐻, such that  

𝑢(𝐦𝑠, 𝐜𝑠, 𝐱𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋(𝐱𝑠)].                                                      (7) 

We define the utility function 𝑉 by 𝑉(𝐦𝑠, 𝐜𝑠 , 𝑋𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋𝑠], where aggregate 

consumption of goods is defined by 𝑋𝑠 = 𝑋(𝒙𝑠). It follows that the exact augmented monetary 

aggregate is 

ℳ𝑠 = ℳ(𝐦𝑠, 𝐜𝑠).                                                                   (8) 

The fact that blockwise weak separability is a necessary condition for exact aggregation is well 

known in the perfect-certainty case. If the resulting aggregator function also is linearly 

homogeneous, two-stage budgeting can be used to prove that the consumer behaves as if the 

exact aggregate were an elementary good. Although two-stage budgeting theory is not applicable 

under risk, ℳ(𝒎𝑠, 𝒄𝑠) remains the exact aggregation-theoretic quantity aggregate in a well-

                                                 

 

58 A long literature exists on testing the important assumption of blockwise weak separability of preferences.  Recent 

contributions include Cherchye, Demuynck, Rock, and Hjerstrand (2015) and Hjertstrand, Swofford, and Whitney 

(2016).  
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defined sense, even under risk.59 

The Euler equations that will be of the most use to us below are those for monetary assets and 

credit card services. Those Euler equations are 

𝐸𝑠 [
𝜕𝑉

𝜕𝑚𝑖𝑠
− 𝜌

𝑝𝑠
∗(𝑅𝑠 − 𝑟𝑖𝑠)

𝑝𝑠+1
∗

𝜕𝑉

𝜕𝑋𝑠+1
] = 0                                                  (9𝑎) 

and 

𝐸𝑠 [
𝜕𝑉

𝜕𝑐𝑗𝑠
− 𝜌

𝑝𝑠
∗(𝑒𝑗𝑠 − 𝑅𝑠)

𝑝𝑠+1
∗

𝜕𝑉

𝜕𝑋𝑠+1
] = 0                                                  (9b) 

for all 𝑠 ≥  𝑡, 𝑖 = 1,… , 𝑛, and 𝑗 = 1,… , 𝑘, where 𝜌 = 1/(1 + 𝜉) and where 𝑝𝑠
∗ is the exact price 

aggregate that is dual to the consumer goods quantity aggregate 𝑋𝑠.  

Similarly, we can acquire the Euler equation for the consumer goods aggregate, 𝑋𝑠, rather than 

for each of its components. The resulting Euler equation for 𝑋𝑠 is 

𝐸𝑠 [
𝜕𝑉

𝜕𝑋𝑠
− 𝜌

𝑝𝑠
∗(1 + 𝑅𝑠)

𝑝𝑠+1
∗

𝜕𝑉

𝜕𝑋𝑠+1
] = 0.                                               (9𝑐) 

For the two available approaches to derivation of the Euler equations, see the Appendix. 

                                                 

 

59See Barnett (1995) and the appendix in Barnett, Liu, and Jensen (1997). 
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 3.3 The Perfect-Certainty Case 

In the perfect-certainty case with finite planning horizon, we have already shown in section 2 

that the contemporaneous nominal user cost of the services of 𝑚𝑖𝑡 is equation (2) and the 

contemporaneous nominal user cost of credit card services is equation (3).  We have also shown 

in Barnett, Chauvet, Leiva-Leon, and Su (2016) that the solution value of the exact monetary 

aggregate, ℳ(𝐦𝑡, 𝐜𝑡) = ℳ(𝐦t
a), can be tracked without error in continuous time by the Divisia 

index. 

The flawless tracking ability of the index in the perfect-certainty case holds regardless of the 

form of the unknown aggregator function, ℳ.  Aggregation results derived with finite planning 

horizon also hold in the limit with infinite planning horizon.  See Barnett (1987, section 2.2).  

Hence those results continue to apply. However, under risk, the ability of the Divisia index to 

track ℳ(𝐦𝑡, 𝐜𝑡) is compromised. 

 3.4 New Generalized Augmented Divisia Index 

3.4.1 User Cost Under Risk Aversion  

We now find the formula for the user costs of monetary services and credit card services under 

risk.  

Definition 1. The contemporaneous risk-adjusted real user cost price of the services of 𝑚𝑖𝑡
𝑎  is 

𝓅𝑖𝑡
𝑎 , defined such that 
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𝓅𝑖𝑡
𝑎 =

𝜕𝑉
𝜕𝑚𝑖𝑡

𝑎

𝜕𝑉
𝜕𝑋𝑡

, 𝑖 = 1,2, … , 𝑛 + 𝑘. 

The above definition for the contemporaneous user cost states that the real user cost price of an 

augmented monetary asset is the marginal rate of substitution between that asset and consumer 

goods. 

For notational convenience, we convert the nominal rates of return, 𝑟𝑖𝑡, 𝑒𝑗𝑡 and 𝑅𝑡, to real total 

rates, 1 + 𝑟𝑖𝑡
∗ , 1 + 𝑒𝑗𝑡

∗  and 1 + 𝑅𝑡
∗ such that 

1 + 𝑟𝑖𝑡
∗ =

𝑝𝑡
∗(1 + 𝑟𝑖𝑡)

𝑝𝑡+1
∗  ,                                                                    (10a) 

1 + 𝑒𝑗𝑡
∗ =

𝑝𝑡
∗(1 + 𝑒𝑗𝑡)

𝑝𝑡+1
∗  ,                                                                  (10b) 

1 + 𝑅𝑡
∗  =

𝑝𝑡
∗(1 + 𝑅𝑡)

𝑝𝑡+1
∗  ,                                                                 (10c) 

where 𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ ,  and 𝑅𝑡
∗ are called the real rates of excess return. Under this change of variables 

and observing that current-period marginal utilities are known with certainty, Euler equations 

(9a), (9b), and (9c) become 

𝜕𝑉

𝜕𝑚𝑖𝑡
− 𝜌𝐸𝑡 [(𝑅𝑡

∗ − 𝑟𝑖𝑡
∗)

𝜕𝑉

𝜕𝑋𝑡+1
] = 0,                                                       (11) 
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𝜕𝑉

𝜕𝑐𝑗𝑡
− 𝜌𝐸𝑡 [(𝑒𝑗𝑡

∗ − 𝑅𝑡
∗)

𝜕𝑉

𝜕𝑋𝑡+1
] = 0,                                                        (12) 

and 

𝜕𝑉

𝜕𝑋𝑡
− 𝜌𝐸𝑡 [(1 + 𝑅𝑡

∗)
𝜕𝑉

𝜕𝑋𝑡+1
] = 0.                                                         (13) 

We now can provide our user cost theorem under risk. 

Theorem 1 (a). The risk adjusted real user cost of the services of monetary asset 𝑖 under risk is 

𝓅𝑖𝑡
𝑚 = 𝜋𝑖𝑡 + 𝜓𝑖𝑡, where 

𝜋𝑖𝑡 =
𝐸𝑡𝑅𝑡

∗ − 𝐸𝑡𝑟𝑖𝑡
∗

1 + 𝐸𝑡𝑅𝑡
                                                                      (14) 

and 

𝜓𝑖𝑡 = 𝜌(1 − 𝜋𝑖𝑡)
𝐶𝑜𝑣 (𝑅𝑡

∗,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

− 𝜌
𝐶𝑜𝑣 (𝑟𝑖𝑡

∗ ,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

.                                 (15) 

(b). The risk adjusted real user cost of the services of credit card type 𝑗 under risk is 𝓅𝑗𝑡
𝑐 = 𝜋̃𝑗𝑡 +

𝜓̃𝑗𝑡, where 

𝜋̃𝑗𝑡 =
𝐸𝑡𝑒𝑗𝑡

∗ − 𝐸𝑡𝑅𝑡
∗

1 + 𝐸𝑡𝑅𝑡
                                                                       (16) 

and 
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𝜓̃𝑗𝑡 = 𝜌
𝐶𝑜𝑣 (𝑒𝑗𝑡

∗ ,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

− 𝜌(1 + 𝜋̃𝑗𝑡)
𝐶𝑜𝑣 (𝑅𝑡

∗,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

 .                                 (17) 

Proof. See the Appendix.        ∎ 

Under risk neutrality, the covariances in (16) and (17) would all be zero, because the utility 

function would be linear in consumption. Hence, the user cost of monetary assets and credit card 

services would reduce to 𝜋𝑖,𝑡 and 𝜋̃𝑗,𝑡 respectively, as defined in equation (14) and (16). The 

following corollary is immediate. 

Corollary 1 to Theorem 1. Under risk neutrality, the user cost formulas are the same as 

equation (2) and (3) in the perfect-certainty case, but with all interest rates replaced by their 

expectations. 

3.4.2 Generalized Augmented Divisia Index Under Risk Aversion 

In the case of risk aversion, the first-order conditions are Euler equations. We now use those 

Euler equations to derive a generalized Divisia index, as follows. 

Theorem 2. In the share equations, 𝜔𝑖𝑡 = 𝜋𝑖𝑡
𝑎𝑚𝑖𝑡

𝑎 /𝛑𝑡
𝑎′𝐦𝑡

𝑎, we replace the user costs, 𝛑𝑡
𝑎 =

(𝛑𝑡
′ , 𝛑̃𝑡

′)′, defined by (2) and (3), by the risk-adjusted user costs, 𝓅𝑖𝑡
𝑎 , defined by Definition 1, to 

produce the risk adjusted shares, 𝓈𝑖𝑡 = 𝓅𝑖𝑡
𝑎𝑚𝑖𝑡

𝑎 /∑ 𝓅𝑗𝑡
𝑎𝑚𝑗𝑡

𝑎𝑛+𝑘
𝑗=1 . Under our weak-separability 

assumption, 𝑉(𝐦𝑠, 𝐜𝑠 , 𝑋𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋𝑠], and our assumption that the monetary 

aggregator function, ℳ, is linearly homogeneous, the following generalized augmented Divisia 
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index is true under risk: 

d𝑙𝑜𝑔 ℳ𝑡 =∑ 𝓈𝑖𝑡𝑑𝑙𝑜𝑔 𝑚𝑖𝑡
𝑎

𝑛+𝑘

𝑖=1
.                                                          (18) 

Proof. See the Appendix.        ∎ 

The exact tracking of the Divisia monetary index is not compromised by risk aversion, as long as 

the adjusted user costs, 𝜋𝑖𝑡 + 𝜓𝑖𝑡 and 𝜋̃𝑗𝑡 + 𝜓̃𝑗𝑡, are used in computing the index. The adjusted 

user costs reduce to the usual user costs in the case of perfect certainty, and our generalized 

Divisia index (18) reduces to the usual Divisia index. Similarly, the risk-neutral case is acquired 

as the special case with 𝜓𝑖𝑡 = 𝜓̃𝑗𝑡 = 0, so that equations (14) and (16) serve as the user costs. In 

short, our generalized augmented Divisia index (18) is a true generalization, in the sense that the 

risk-neutral and perfect-certainty cases are strictly nested special cases. Formally, that conclusion 

is the following. 

Corollary 1 to Theorem 2. Under risk neutrality, the generalized Divisia index (18) reduces to 

the perfect certainty Divisia index in Barnett, Chauvet, Leiva-Leon, and Su (2016), where the 

user costs in the formula are defined by (14) and (16).  

3.5 CCAPM Special Case 

As a means of illustrating the nature of the risk adjustments, 𝜓𝑖,𝑡 and 𝜓̃𝑗,𝑡, we consider a special 

case, based on the usual assumptions in CAPM theory of either quadratic utility or Gaussian 

stochastic processes. Direct empirical use of Theorems 1 and 2, without any CAPM 

simplifications, would require availability of prior econometric estimates of the parameters of the 
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utility function, 𝑉, and of the subjective rate of time discount. Under the usual CAPM 

assumptions, we show in this section that empirical use of Theorems 1 and 2 would require prior 

estimation of only one property of the utility function: the degree of risk aversion, on which a 

large body of published information is available.  

Consider first the following case of utility that is quadratic in consumption of goods, 

conditionally on the level of monetary asset and credit card services. 

Assumption 1. Let 𝑉 have the form 

         𝑉(𝐦𝑡 , 𝐜𝑡, 𝑋𝑡) = 𝐹[ℳ(𝐦𝑡, 𝐜𝑡), 𝑋𝑡] = 𝐴[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 −
1

2
𝐵[ℳ(𝐦𝑡 , 𝐜𝑡)]𝑋𝑡

2,                 (19) 

where 𝐴 is a positive, increasing, concave function and 𝐵 is a nonnegative, decreasing, convex 

function. 

The alternative assumption is Guassianity, as follows: 

Assumption 2. Let (𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ , 𝑋𝑡+1) be a trivariate Gaussian process for each asset 𝑖 = 1,… , 𝑛, and 

credit card service, 𝑗 = 1,… , 𝑘. 

We also make the following conventional CAPM assumption: 

Assumption 3. The benchmark rate process is deterministic or already risk-adjusted, so that 𝑅𝑡
∗ 

is the risk-free rate. 

Under this assumption, it follows that  
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C𝑜𝑣 (𝑅𝑡
∗,

𝜕𝑉

𝜕𝑋𝑡+1
) = 0. 

We define 𝐻𝑡+1 = 𝐻(ℳ𝑡+1, 𝑋𝑡+1) to be the well-known Arrow-Pratt measure of absolute risk 

aversion, 

H(ℳ𝑡+1, 𝑋𝑡+1) = −
𝐸𝑡[𝑉

′′]

𝐸𝑡[𝑉′]
 ,                                                          (20) 

where 𝑉′ = 𝜕𝑉(𝐦𝑡+1
𝑎 , 𝑋𝑡+1)/𝜕𝑋𝑡+1 and 𝑉′′ = 𝜕2𝑉(𝐦𝑡+1

𝑎 , 𝑋𝑡+1)/𝜕𝑋𝑡+1
2 . In this definition, risk 

aversion is measured relative to consumption risk, conditionally upon the level of augmented 

monetary services produced by ℳ𝑡+1 =ℳ(𝐦𝑡, 𝐜𝑡). Under risk aversion, 𝐻𝑡+1 is positive and 

increasing in the degree of absolute risk aversion. The following lemma is central to our 

Theorem 3. 

Lemma 2. Under Assumption 3 and either Assumption 1 or Assumption 2, the user-cost risk 

adjustments, 𝜓𝑖𝑡 and  𝜓̃𝑗𝑡,  defined by (15) and (17), reduce to 

𝜓𝑖𝑡 =
1

1 + 𝑅𝑡
∗𝐻𝑡+1𝑐𝑜𝑣(𝑟𝑖𝑡

∗ , 𝑋𝑡+1)                                                (21a) 

and 

𝜓̃𝑗𝑡 = −
1

1 + 𝑅𝑡
∗𝐻𝑡+1𝑐𝑜𝑣(𝑒𝑗𝑡

∗ , 𝑋𝑡+1).                                         (21b) 

Proof. See the Appendix.        ∎ 
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The following theorem identifies the effect of the risk adjustment on the expected own interest 

rates in the user cost formulas. 

Theorem 3. Let 1
ˆ

t t tH H X . Under the assumptions of Lemma 2, we have the following for 

each asset 𝑖 = 1,… , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

𝓅𝑖𝑡
𝑚 =

𝐸𝑡𝑅𝑡
∗ − (𝐸𝑡𝑟𝑖𝑡

∗ − 𝜙𝑖𝑡)

1 + 𝐸𝑡𝑅𝑡
∗ ,                                                          (22) 

where 

𝜙𝑖𝑡 =
ˆ

tH
𝐶𝑜𝑣 (𝑟𝑖𝑡

∗ ,
𝑋𝑡+1
𝑋𝑡

),                                                            (23) 

and 

𝓅𝑗𝑡
𝑐 =

(𝐸𝑡𝑒𝑗𝑡
∗ − 𝜙̃𝑗𝑡) − 𝐸𝑡𝑅𝑡

∗

1 + 𝐸𝑡𝑅𝑡
∗ ,                                                       (24) 

where 

𝜙̃𝑗𝑡 =
ˆ

tH 𝐶𝑜𝑣 (𝑒𝑗𝑡
∗ ,
𝑋𝑡+1
𝑋𝑡

).                                                         (25) 

Proof. See the Appendix.        ∎ 

As defined, ˆ
tH  is a time shifted Arrow-Pratt relative risk aversion measure.  Theorem 3 shows 
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that the risk adjustment on the own interest rate for a monetary asset or credit card service 

depends upon relative risk aversion, ˆ
tH , and the covariance between the consumption growth 

path, Xt+1/Xt, and the real rate of excess return earned on a monetary asset, 𝑟𝑖𝑡
∗ , or paid on a credit 

card service, 𝑒𝑗𝑡
∗

. 

 

3.6 Magnitude of the Adjustment 

In accordance with the large and growing literature on the equity premium puzzle, the CCAPM 

risk adjustment term is widely believed to be biased downward.60 A promising explanation may 

be the customary assumption of intertemporal separability of utility, since response to a change 

in an interest rate may not be fully reflected in contemporaneous changes in consumption.  

Hence the contemporaneous covariance in the CCAPM “beta” correction may not take full 

account of the effect of an interest rate change on life style.  An approach to risk adjustment 

without assumption of intertemporal separability was developed for monetary aggregation by 

Barnett and Wu (2005).  We have not yet applied that more complicated approach to weaken our 

assumptions further.  While we have removed the assumption of risk neutrality, we have 

assumed intertemporal separability in deriving the Euler equations on which our aggregation 

                                                 

 

60See, e.g., Campbell and Cochrane (1999), Cochrane (2000), Kocherlakota (1996), Marshall (1997), Mehra and 

Prescott (1985). 
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theory is based.  In later research, we plan to apply the approach of Barnett and Wu (2005) to 

further weaken the assumptions by removing the assumptions of intertemporal separability.   

4. Conclusions 

Many economists have wondered how the transactions services of credit cards could be included 

in monetary aggregates.  The conventional simple sum accounting approach precludes solving 

that problem, since accounting conventions do not permit adding liabilities to assets.  But 

economic aggregation and index number theory measure service flows, independently of whether 

from assets or liabilities.  Barnett, Chauvet, Leiva-Leon, and Su (2016) provided the theory 

solving that long overlooked problem, but under the assumption of risk neutrality.  The Center 

for Financial Stability (CFS) is now providing the unaugmented aggregates, Mt = M(mt), and will 

soon be providing the credit-card-augmented aggregates ℳ𝑡 =ℳ(𝐦𝑡, 𝐜𝑡), derived under the 

assumption of risk neutrality.  The new aggregates will be provided to the public in monthly 

releases by the CFS and also to Bloomberg terminal users.   

While excluding credit card services, the currently available CFS Divisia monetary aggregates 

have been found to be reasonably robust to introduction of risk, variations of the benchmark rate, 

introduction of taxation of interest rates, and other such refinements.61 But such simplifications 

                                                 

 

61 While those refinements slightly change the un-augmented Divisia monetary aggregates, those changes are 

negligible relative to the gap between the simple sum monetary aggregate path and the corresponding Divisia 

monetary aggregate path.  See, e.g., the online library of relevant research and the Divisia monetary aggregates 
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might not be the case with the augmented monetary aggregates, because of the high and volatile 

interest rates on credit card balances. As a result, in this paper we have extended the theory to 

CCAPM risk adjustment under risk aversion.   Empirical application of this theory remains a 

topic for future research.  

An extensive literature exists on policy relevance of the Divisia monetary aggregates.  See, e. g., 

Barnett (2012), Belongia and Ireland (2014; 2015a,b; 2016), Barnett and Chauvet (2011a,b), 

Serletis and Rahman (2013), and Serletis and Gogas (2014).  Much of that literature could be 

strengthened further by use of the soon to be available credit-card augmented CFS Divisia 

monetary aggregates and perhaps further strengthened by removing the assumption of risk 

neutrality in accordance with the theory in this paper. 

A more demanding approach would remove the CCAPM assumption of intertemporal 

separability, in accordance with Barnett and Wu (2005).  Adapting that advanced approach to our 

augmented aggregates, including credit card services, remains a topic for future research.   

                                                 

 

databases at the Center for Financial Stability (www.centerforfinancialstability.org/amfm.php). 
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APPENDICES 

Derivation of Euler Equations for Credit Card Services, Equation (12): 

The following are the Euler equations provided in the paper as equations (11), (12), and (13): 

𝜕𝑉

𝜕𝑚𝑖𝑡
− 𝜌𝐸𝑡 [(𝑅𝑡

∗ − 𝑟𝑖𝑡
∗)

𝜕𝑉

𝜕𝑋𝑡+1
] = 0,                                                         (A. 1) 

𝜕𝑉

𝜕𝑐𝑗𝑡
− 𝜌𝐸𝑡 [(𝑒𝑗𝑡

∗ − 𝑅𝑡
∗)

𝜕𝑉

𝜕𝑋𝑡+1
] = 0,                                                           (A. 2) 

𝜕𝑉

𝜕𝑋𝑡
− 𝜌𝐸𝑡 [(1 + 𝑅𝑡

∗)
𝜕𝑉

𝜕𝑋𝑡+1
] = 0.                                                               (A. 3) 

for all 𝑠 ≥  𝑡, 𝑖 = 1,… , 𝑛, and 𝑗 = 1,… , 𝑘, where 𝜌 = 1/(1 + 𝜉) and where 𝑝𝑠
∗ is the exact price 

aggregate that is dual to the consumer goods quantity aggregate 𝑋𝑠.  

Equation (A.1) was derived in Barnett (1995, Sec 2.3) using Bellman’s method.  An alternative 

approach to that derivation using calculus of variations was provided by Poterba and Rotemberg 

(1987).  Equation (A.2) follows by the same approach to derivation, using either Bellman’s 

method or calculus of variations.  We are not providing the lengthy derivation of (A.2) in this 

appendix, since the steps in the Bellman method approach for this class of models are provided 

in detail in Barnett and Serletis (2000, pp. 201-204). 

Proof of Theorem 1 

Theorem 1 (a). The risk adjusted real user cost of the services of monetary asset 𝑖 under risk is 
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𝓅𝑖𝑡
𝑚 = 𝜋𝑖𝑡 + 𝜓𝑖𝑡, where 

𝜋𝑖𝑡 =
𝐸𝑡𝑅𝑡

∗ − 𝐸𝑡𝑟𝑖𝑡
∗

1 + 𝐸𝑡𝑅𝑡
∗                                                                     (A. 4) 

and 

𝜓𝑖𝑡 = 𝜌(1 − 𝜋𝑖𝑡)
𝐶𝑜𝑣 (𝑅𝑡

∗,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

− 𝜌
𝐶𝑜𝑣 (𝑟𝑖𝑡

∗ ,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

.                              (A. 5) 

(b). The risk adjusted real user cost of the services of credit card type 𝑗 under risk is 
𝑗𝑡

𝑐 = 𝜋̃𝑗𝑡 +

𝜓̃𝑗𝑡, where 

𝜋̃𝑗𝑡 =
𝐸𝑡𝑒𝑗𝑡

∗ − 𝐸𝑡𝑅𝑡
∗

1 + 𝐸𝑡𝑅𝑡
∗                                                                  (A. 6) 

and 

𝜓̃𝑗𝑡 = 𝜌
𝐶𝑜𝑣 (𝑒𝑗𝑡

∗ ,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

− 𝜌(1 + 𝜋̃𝑗𝑡)
𝐶𝑜𝑣 (𝑅𝑡

∗,
𝜕𝑉
𝜕𝑋𝑡+1

)

𝜕𝑉
𝜕𝑋𝑡

 .                          (A. 7) 

Proof. For the analogous proof in the case of monetary assets only, relevant to part (a), see 

Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), or Barnett (2012, Appendix 

D).  We provide the proof of part (b) for the extended case including credit.   There are two 

approaches to proving this important theorem, the direct approach and the indirect approach.  We 

provide both approaches, beginning with the indirect approach. 
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 By definition (1) in the paper, we have for the credit card services user cost price 

j
jt

c

t

t

V

c

V

X












.       (A.8) 

Defining jt to be jt jt jt

c    , it follows that 

( )jt

jt

jt

t

VV

c X
 


 



 
. 

Substituting equations (A.2) and (A.3) into this equation, we get 

   * * *

1 1

( ) 1t jt t jt jt t t

t t

V V
E e R E R

X X
   

 

    
      

      . 

Using the expectation of the product of correlated random variables, we have 

 

 

* * * *

1 1

* *

* *

*

1 1

1 , .
1

,t jt t t jt t

t t

t jt t t

jt t t t t

t t t t

V V
E e R E Cov e R

X X

E e E R V V
E R E Cov R

E R X X


 

 

    
     

    

           
         

            
 

Multiplying  *1 t tE R  through on both sides of the equation, we get: 
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     

     

* * * * * *

1 1

* * * * *

1 1

1 1

1 1 ,

,

.

t t t jt t t t t jt t

t t

t jt t t t jt t t t t

t t

V V
E R E e R E E R Cov e R

X X

V V
E e R E R E R E Cov R

X X


 

 

    
       

    

                       


 

Manipulating the algebra, we have 

     

 

     

* * * * * * *

1 1 1

* * *

1

* * * * *

1 1 1

1

,

,

,t jt t t t t t jt t t jt t

t t t

t t jt t

t

t jt t t t jt t t t t t

t t t

V V V
E e R E E R E e R E Cov e R

X X X

V
E R Cov e R

X

V V V
E e R E R E E R E Cov R

X X X


  



  

       
         

       

 
  

 

                          


 
,




  

 

and hence 

     

 

      

* * * * * * *

1 1 1

* * *

1

* * * * * * * *

1 1

,

,

,

t jt t t t t t jt t t jt t

t t t

t t jt t

t

t jt t t t jt t t t t t jt t t

t t

V V V
E e R E E R E e R E Cov e R

X X X

V
E R Cov e R

X

V V V
E e R E E e R E R E E e R Cov R

X X X

  



 

       
         

       

 
  

 

      
                

   

1

* * *

1 1 1

1 , .

t

t t jt t t t t t

t t t

V V V
E R E E R E Cov R

X X X




  

 
 
 

          
                       

Notice that by equation (A.3), 



129 

 

 

 

*

1

* *

1 1 1

1

, .

t t

t t

t t t t t

t t t

V V
E R

X X

V V V
E E R E Cov R

X X X







  

  
  

  

          
                      

Substituting this back into the prior equation, we have 

     

 

      

* * * * * * *

1 1 1

* * *

1

* * * * * * * *

1 1

,

,

,

t jt t t t t t jt t t jt t

t t t

t t jt t

t

t jt t t t jt t t t t t jt t t

t t

V V V
E e R E E R E e R E Cov e R

X X X

V
E R Cov e R

X

V V V
E e R E E e R E R E E e R Cov R

X X X

  



 

       
         

       

 
  

 

      
                

 

1

*1
1

.

t

t t jt

t

V
E R

X






 
 
 


 



 
 
   

Simplifying the equation, we get 

 

   

* * * * *

1 1

* * * *

1

,

1

,

1
, .

jt t t t jt t

t t

t jt t t t t jt

t t

V V
Cov e R E R Cov e R

X X

V V
E e R Cov R E R

X X




 



    
     

    

  
    



 


  

  

Recall that by equation (A.6), 

 

𝜋̃𝑗𝑡 =
𝐸𝑡𝑒𝑗𝑡

∗ − 𝐸𝑡𝑅𝑡
∗

1 + 𝐸𝑡𝑅𝑡
∗ . 
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Substituting this equation back into the prior equation, we have 

 

   

* * * * *

1 1

* * *

1

,

1
.1

,

1 ,

jt t t t jt t

t t

jt t t t t t jt

t t

V V
Cov e R E R Cov e R

X X

V V
E R Cov R E R

X X
 



 



    
     

    

  
    



 
 
     

Rearranging the equation, we have 

     * * * * * *

1 1

1
1

, 1, ,1t t jt t jt t t t t t jt

t t t

V V V
E R Cov e R E R Cov R E R

X X X
 

 

     
        

  



   


 
   

so that 

* * *

1 1

1
,,jt t jt t jt

t t t

V V V
Cov e R Cov R

X X X
 

 

     
     

   

 
 
   . 

Hence, it follows that 
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 

* * *

1 1

* * *

1 1 1

*

1

,   ,

,   ,   ,

,  

1

jt t t

t t

jt jt

t t

jt t t

t t t

jt

t t t

jt

t

jt

t

V V
Cov e R Cov R

X X

V V

X X

V V V
Cov e Cov R Cov R

X X X

V V V

X X X

V
Cov e Cov

X

V

X

  

  

  

 

  



    
   

     
 

 

       
     

       
  

  

  

 
 

   






*

1

,

.

t

t

t

V
R

X

V

X



 
 

 



 

The alternative direct approach to proof is the following. 

By equation (A.3), we have 

 

 

*

1

* *

1 1

1

1 , .

t t

t t

t t t t

t t

V V
E R

X X

V V
E R E Cov R

X X



 



 

  
  

  

     
              

Rearranging, we get 

 * *

1 1

1 , ,t t t t

t t t

V V V
E R E Cov R

X X X
 

 

      
               

 

and hence 
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*

*

1 1

1
, .

1
t t

t t t t t

V V V
E Cov R

X E R X X
 

 

      
     

           (A.9) 

But from (A.12), we have 

 *

1

.t jt t

jt t

V V
E e R

c X




  
  

    

From the expectation of the correlated product, we then have 

   * *

1 1

, ,t jt t t jt t

jt t t

V V V
E e R E Cov e R

c X X
 

 

     
     

      

so that 

 * *

1 1 1

, , .t jt t t jt t

jt t t t

V V V V
E e R E Cov e Cov R

c X X X
  

  

       
      

    


 

  (A.10) 

Now substitute equation (A.9) into equation (A.10), to acquire 

 *

* *

*

1 1 1

* *

1 1 1

, , ,
1

, , , .

t jt t

t jt t

jt t t t t t t

jt t jt t

t t t t

E e RV V V V V
Cov R Cov e Cov R

c E R X X X X

V V V V
Cov R Cov e Cov R

X X X X

  

   

  

  

           
         

           

         
         

           

Multiplying and dividing the right side by 
t

V

X




, we get 
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 

* *

1 1 1

*

1 1

, , ,

, ,

1 .

t jt t

t t t

jt jt

jt t

t t t

jt t

t t

jt jt

t

t t

V V V
Cov R Cov e Cov R

X X XV V

V V Vc X

X X X

V V
Cov e Cov R

X XV

V VX

X X

   

   

  

 

        
      

              
     
   

 

     
    

          
   
  

   

Define jt  by 

 
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    
   

     
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Then we have 

,
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X

 




 




 

so that 

           
𝑗𝑡

𝑐 = 𝜋̃𝑗𝑡 + 𝜓̃𝑗𝑡. ∎ 
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Proof of Lemma 2: 

Assumption 1. Let 𝑉 have the form 

V(𝐦𝑡, 𝐜𝑡 , 𝑋𝑡) = 𝐹[ℳ(𝐦𝑡, 𝐜𝑡), 𝑋𝑡] = 𝐴[ℳ(𝐦𝑡 , 𝐜𝑡)]𝑋𝑡 −
1

2
𝐵[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡

2,             (A. 11) 

Where 𝐴 is a positive, increasing, concave function and 𝐵 is a nonnegative, decreasing, convex 

function. 

Assumption 2. Let (𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ , 𝑋𝑡+1) be a trivariate Gaussian process for each asset 𝑖 = 1,… , 𝑛, and 

credit card service, 𝑗 = 1,… , 𝑘. 

Assumption 3. The benchmark rate process is deterministic or already risk-adjusted, so that 𝑅𝑡
∗ 

is the risk-free rate. 

Under this assumption, it follows that  

C𝑜𝑣 (𝑅𝑡
∗,

𝜕𝑉

𝜕𝑋𝑡+1
) = 0. 

Define 𝐻𝑡+1 = 𝐻(ℳ𝑡+1, 𝑋𝑡+1) to be the well-known Arrow-Pratt measure of absolute risk 

aversion, 

H(ℳ𝑡+1, 𝑋𝑡+1) = −
𝐸𝑡[𝑉

′′]

𝐸𝑡[𝑉′]
 ,                                                    (A. 12) 

Where 𝑉′ = 𝜕𝑉(𝒎𝑡+1
𝑎 , 𝑋𝑡+1)/𝜕𝑋𝑡+1 and 𝑉′′ = 𝜕2𝑉(𝒎𝑡+1

𝑎 , 𝑋𝑡+1)/𝜕𝑋𝑡+1
2 . 
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Lemma 2. Under Assumption 3 and either Assumption 1 or Assumption 2, the user-cost risk 

adjustments, 𝜓𝑖𝑡and  𝜓̃𝑗𝑡,  defined by (A.5) and (A.7), reduce to 

𝜓𝑖𝑡 =
1

1 + 𝑅𝑡
∗𝐻𝑡+1𝑐𝑜𝑣(𝑟𝑖𝑡

∗ , 𝑋𝑡+1)                                                  (A. 13) 

and 

𝜓̃𝑗𝑡 = −
1

1 + 𝑅𝑡
∗𝐻𝑡+1𝑐𝑜𝑣(𝑒𝑗𝑡

∗ , 𝑋𝑡+1).                                          (A. 14)  

Proof. For the analogous proof in the case of monetary assets only, see Barnett, Liu, and Jensen 

(1997), Barnett and Serletis (2000, ch. 12), or Barnett (2012, Appendix D).  We provide the 

proof of equation (A.14) for the extended case including credit.   

Under Assumption 3, the benchmark asset is risk-free, so that 

*

1

, 0t

t

V
Cov R

X 

 
 

  . 

By equation (A.7),  
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 

 
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 



 

But by equation (A.3),  

 *

1

1t t

t t

V V
E R

X X




  
  

   ,  

So 

 
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1

*

1
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1
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t
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t t

t

V
Cov e

X

V
R E

X

 







 
 

 
 

  
   

                                              

 

*

1

*

1

,  

.

1

jt

t

t t

t

V
Cov e

X

V
R E

X





 
 

 
 

  
 

                                                     (A.15) 

Under Assumption 1,  
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   ,  , t t t t

t

t

V

X
A B X   



    m c m c

 . 

Hence, 

 
2

2
, 

t

t t

V

X
B


  

 m c

. 

Shifting one period forward, those two equations become 

1

1

t

t

V
V A BX

X





  


 

and 

2

2

t

V
V B

X


  


. 

Substituting into equation (A.15), we get 
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

 
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  

 











 


  

Alternatively, consider Assumption 2.  We then can use Stein’s lemma, which says the 

following.62  Suppose (X,Y) are multivariate normal.  Then  

( ( ), ) ( ( )) ( , ).Cov g X Y E g X Cov X Y  

In that formula, let 
1

( )
t

V
g X

X 





, 1tX X  , and 
* .jtY e   Then from Stein’s lemma, we have 

 
2

* *

12

1 1

,   ,jt t t jt

t t

V V
Cov e E Cov X e

X X


 

   
          . 

Substituting into (A.15), we get 

                                                 

 

62 For Stein’s lemma, see Stein (1973), Ingersoll (1987, p. 13, eq. 62) or Rubinstein (1976). 
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 

 
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t t jt

t

jt

t t

t

V
E Cov X e

X

V
R E

X









 
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Using the definitions of V  , V  , and 1tH  , we have  

 *

1 1*

1
,   .

1
jt t jt t

t

H Cov e X
R

   


    ∎ 

Proof of Theorem 3: 

Theorem 3. Let 1
ˆ

t t tH H X .  Under the assumptions of Lemma 2, we have the following for 

each asset 𝑖 = 1,… , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘, 


𝑖𝑡

𝑚 =
𝐸𝑡𝑅𝑡

∗ − (𝐸𝑡𝑟𝑖𝑡
∗ − 𝜙𝑖𝑡)

1 + 𝐸𝑡𝑅𝑡
∗ ,                                                          (A. 16) 

where 

𝜙𝑖𝑡 = ˆ
tH 𝐶𝑜𝑣 (𝑟𝑖𝑡

∗ ,
𝑋𝑡+1
𝑋𝑡

),                                                            (A. 17) 

and 


𝑗𝑡

𝑐 =
(𝐸𝑡𝑒𝑗𝑡

∗ − 𝜙̃𝑗𝑡) − 𝐸𝑡𝑅𝑡
∗

1 + 𝐸𝑡𝑅𝑡
∗ ,                                                     (A. 18) 
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where 

𝜙̃𝑗𝑡 = ˆ
tH 𝐶𝑜𝑣 (𝑒𝑗𝑡

∗ ,
𝑋𝑡+1
𝑋𝑡

).                                                      (A. 19) 

Proof. For the proof in the case of monetary assets only, relevant to equations (A.16) and (A.17), 

see Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), or Barnett (2012, 

Appendix D).  We here provide the proof of equations (A.18) and (A.19) for the extended case 

including credit.  

From part b of Theorem 1, 
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Abstract 

One of the hottest topics in monetary policy research has been the revival of the proposal for 

“nominal GDP targeting.” Recent research has emphasized the potential importance of the 

Divisia monetary aggregates in implementing that policy.  We investigate bivariate time series 

properties of Divisia money and nominal GDP to investigate the viability of recent proposals by 

authors who advocate a role for a Divisia monetary aggregate in nominal GDP targeting.   

There are two particularly relevant proposals:  (1) the proposal by Barnett, Chauvet, and Leiva-

Leon (2015) to use a Divisia monetary aggregate as an indicator in the monthly Nowcasting of 

nominal GDP, as needed in implementation of any nominal GDP targeting policy; and (2) the 

proposal by Belongia and Ireland (2015) to use a Divisia monetary aggregate as an intermediate 

target, with nominal GDP being the final target of policy. 

We run well known diagnostic tests of bivariate time series properties of the Divisia M2 and 

nominal GDP stochastic processes.  Those tests are for properties that are necessary, but not 

sufficient, for the conclusions of Belongia and Ireland (2014) and Barnett, Chauvet, and Leiva-

Leon (2015).  We find no time series properties that would contradict those implied by either of 

those two approaches. 

Keywords:  money, aggregation theory, index number theory, Divisia index, Divisia monetary 

aggregates, nominal GDP targeting. 

JEL Classification Codes: C43, E01, E3, E40, E41, E51, E52, E58.   
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1. Introduction 

The recent financial crisis has induced central banks to explore and undertake unconventional 

approaches to monetary policy. One of the hottest topics in monetary policy research has been 

the revival of the proposal for “nominal GDP targeting”, advocated by many leading monetary 

economists, including Michael Woodford, Christina Romer, and Paul Krugman. Proponents 

argue that nominal GDP targeting can stabilize the macroeconomy more effectively than 

inflation targeting. In particular, they argue that by committing to return nominal GDP to its pre-

crisis trajectory, the Federal Reserve could improve confidence and expectations of future 

growth.  

We take no position on whether nominal GDP should be adopted as the new monetary policy 

target, but we investigate the bivariate time series properties of Divisia money and nominal GDP 

that are relevant to recent results by authors who do advocate a role for a Divisia monetary 

aggregate in nominal GDP targeting.  There are two such proposals.  (1) The least controversial 

is the approach of Barnett, Chauvet, and Leiva-Leon (2015) to the use of Divisia money in 

Nowcasting of nominal GDP.  Any approach to targeting nominal GDP requires availability of 

monthly measurements of nominal GDP.  Monthly measurements of nominal GDP are needed 

regardless of the instrument of policy adopted to implement the targeting.  But nominal GDP 

data are available only quarterly.  Using an advanced dynamic factor analysis approach to 

Nowcasting, Barnett, Chauvet, and Leiva-Leon (2015) find that the most accurate available 

approach to Nowcasting nominal GDP would use a Divisia monetary aggregate as one of the 

relevant and highly significant associated variables, with the others being measures of real 
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economic activity and inflation dynamics.  While Nowcasting does not imply unidirectional 

causation, Nowcasting approaches do require existence of strong bivariate time series 

associations among the interpolated variable and the associated variables. (2) The more 

controversial approach, suggesting a monetarist perspective, advocates the use of a Divisia 

monetary aggregate as an intermediate target in the procedure for targeting nominal GDP.  Such 

an approach has been advocated by Belongia and Ireland (2015), while a new Keynesian 

approach has been proposed by the same authors in Belongia and Ireland (2014). 

Early suggestions of the possible use of monetary aggregates in nominal GDP targeting include 

Feldstein and Stock (1993), who showed that the relation between M2 and nominal GDP is 

sufficiently strong to warrant further investigation into using M2 to influence nominal GDP, as 

would be relevant to the second approach described above. Since recent research has found 

Divisia monetary aggregates to be substantially superior to simple sum aggregates, we 

concentrate in this paper on Divisia M2.  See, e.g., Barnett (2012,2015) and Barnett and Chauvet 

(2011) regarding the superiority of Divisia monetary aggregates over the now largely discredited 

simple sum monetary aggregates.  But since our results are relevant to Nowcasting nominal GDP 

as well as intermediate targeting, our results are relevant even to proposals in which money is not 

used to influence nominal GDP, but only to interpolate the quarterly GDP data.  In that case, our 

results need not be interpreted as having implications for the choice of instrument or intermediate 

targets in the policy rule. 

Setting up a VAR model to indicate such relationship, we focus on 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) and 𝑑(𝑙𝑛𝑀2), 

which are the growth rates of nominal GDP and Divisia M2. The estimated model indicates that 
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there is a bidirectional Granger Causality relation between the two.  We can make predictions 

based on our estimated model and can investigate how growth rate of Divisia money supply is 

going to impact nominal GDP and vice versa.  The primary objective of this research is to run 

well known diagnostic tests of bivariate time series properties of the Divisia M2 and nominal 

GDP stochastic processes.  Those tests are for properties that are necessary, but not sufficient, for 

the conclusions of Belongia and Ireland (2014) and Barnett, Chauvet, and Leiva-Leon (2015). 

 

2.  Literature Review 

A nominal GDP target was previously called a “nominal income target” by early supporters such 

as McCallum (2011,2013).  This approach is often contrasted with inflation targeting. Under 

some proposals on nominal GDP targeting, the central bank would try to keep nominal GDP 

growing at a predetermined rate. A nominal GDP level target is similar, except that the central 

bank would recall any previous deviations of nominal GDP growth from target and seek to 

compensate in later years.  Apart from Bennett McCallum, who advocates nominal GDP growth 

rate targeting, most of the current supporters of nominal GDP targeting favor nominal GDP level 

targeting, such as Woodford (2013), Belongia and Ireland (2015), and Sumner (2012). 

Christina Romer (2011), then chair of the Council of Economic Advisers, has urged adopting 

nominal GDP targeting as the monetary policy rule. In Romer’s view, such a policy would be a 

powerful communication tool. By pledging to do whatever it takes to return nominal GDP to its 

pre-crisis trajectory, the Fed could improve confidence and expectations of future growth. 
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Because nominal GDP reflects the Fed’s dual mandate, stable price level and maximum real 

output, Romer argues that nominal GDP targeting would have a better chance of reducing 

unemployment than any other monetary policy approach under discussion. 

Woodford (2013) argues that long run inflation targeting does not need to be repudiated as a 

policy framework, but rather needs to be completed. He argues that the target path for nominal 

GDP could be chosen such that keeping nominal GDP on that path should ensure, over the 

medium run, an average inflation rate equal to the inflation target. In his view, nominal GDP 

targeting can complete inflation targeting without conflicting with it. He further maintains that 

nominal GDP targeting would reduce the tension between the goals of restraining risks to 

financial stability, on the one hand, and maintaining macroeconomic stability, on the other.63 

Sumner (2012), a persistent advocator of nominal GDP targeting and relentless blogger of “The 

Money Illusion,” argues that the recent financial crisis exposed serious flaws with inflation 

targeting monetary policy regimes. In his view, GDP targeting would have greatly reduced the 

severity of the recession and also eliminated the need for fiscal stimulus. He also argues that 

nominal GDP targeting would make it easier for politicians to resist calls for bailouts of private 

sector firms, while assuring low inflation and reducing the severity of the business cycle. He also 

argues that nominal GDP targeting would make asset price bubbles less likely to occur. In 

                                                 

 

63 Regarding inflation targeting, see, e.g., Bernanke and Mishkin (1997) and Svensson (1998). 
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summary, advocates of nominal GDP targeting believe it would provide the best environment for 

free-market policies to flourish.  

On September 12, 2012, the Federal Reserve undertook policy initiatives influenced by 

Woodford (2003,2005,2012): an open-ended quantitative easing program, in which the amount 

of purchases depends on progress toward the policy goals. The Federal Reserve also announced 

it would maintain an easy money policy for some period after the economy has recovered.  That 

announcement can be interpreted as an incremental move toward nominal GDP level targeting. 

Nominal GDP targeting defines the final target of policy, but not the instrument, intermediate 

target, or rule used to implement the final target commitment.  Many proposed approaches exist, 

including those that implement the final target for a new-Keynesian approach, a post-Keynesian 

approach, a monetarist approach, a classical approach, a new-classical approach, or an Austrian 

School approach. McCallum (1987) proposes a monetarist rule that uses the monetary base as 

instrument to target nominal GDP. He advocates targeting the growth rate of nominal GDP, 

rather than the level. His view is that if growth rates are on average equal to the target value over 

time, the policy would be unlikely to permit much departure from the planned path and should 

therefore be preferred. His rule employs a four-year moving average of past growth in monetary 

base velocity to forecast that velocity’s growth in the coming quarter. Based on that forecast, the 

rule specifies the percentage of the gap between the targeted and actual levels of nominal GDP 

that the central bank should plan to close in the coming quarter.  

In simulations, Dueker (1993) confronts McCallum’s nominal GDP targeting rule with a world 

in which coefficients in the velocity equation for the monetary instrument are subject to 
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unpredictable stochastic change. His approach differs from McCallum’s by using explanatory 

variables to help forecast velocity in a time-varying parameter model. By allowing for time-

varying coefficients, Dueker’s forecasting model is argued to be more stable over time than 

fixed-coefficient models. Dueker concludes that McCallum’s approach to nominal GDP 

targeting is simple yet robust to velocity behavior.  However, Dueker’s forecast-based rule 

performed somewhat better in simulations in which velocity was generated from a time-varying 

parameter model. 

Recent contributors to the literature on nominal GDP targeting also incorporate aggregation 

theoretic monetary aggregates. Belongia and Ireland (2015) derive an approach to targeting the 

level of nominal GDP using a framework first outlined by Working (1923) and used, with minor 

modifications, by Hallman, et al. (1991) in their P-Star model. Belongia and Ireland’s framework 

is built on traditional quantity theoretic foundations and draws directly from Barnett’s 

(1978,1980) economic approach to monetary aggregation. With any desired long-run trajectory 

for nominal GDP, the framework can find a consistent intermediate target path for Divisia 

money. The central bank can use the monetary base to control the intermediate target path for 

either a narrow or broad Divisia monetary aggregate and thereby keep nominal GDP growing 

along any desired long-run path.  

Their innovation lies in employing Divisia monetary aggregates to establish a path for the 

intermediate target and uses a one-sided filtering algorithm to control for slow-moving trends in 

velocity. The merits of this approach are its transparency to outside observers, its forward-

looking design, and its potentially straightforward implementation.  
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Barnett, Chauvet, and Leiva-Leon (2015) developed dynamic factor models to Nowcast nominal 

output growth, using information from the previous release of nominal GDP, Industrial 

Production, Consumer Price Index, and Divisia M3. Their model is useful in giving monthly 

assessment of the current nominal GDP quarterly growth.  This ability plays an essential role in 

monitoring the effectiveness of nominal GDP targeting monetary policy, regardless of the 

approach to implementation.  In fact any approach that uses monthly feedback in its nominal 

GDP targeting approach becomes undefined, and thereby not applicable, without access to 

monthly GDP Nowcasts.  

3.  The Bivariate Time Series Relationship between Divisia M2 and Nominal GDP 

As explained above, the use of Divisia monetary aggregates has been proposed in two different 

potential roles in nominal GDP targeting.  One role is as an indicator variable in Nowcasting of 

monthly nominal GDP, as needed in any implementation of nominal GDP targeting.  The other 

roles is direct use as an intermediate target in the policy design.  Both cases imply the existence 

of a bivariate time series relationship between a Divisia monetary aggregate and nominal GDP.  

In this paper, we explore the nature of that relationship. 

The Divisia monetary aggregate we use is Divisia M2, as provided by the Federal Reserve Bank 

of St. Louis in its FRED database.  We use those data since they are well known and have a long 

history in this literature.  But in future research, we plan to use the broader Divisia monetary 
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aggregates, M3 and M4, supplied by the Center for Financial Stability in New York City.64  The 

GDP data we use are supplied by the U.S. Bureau of Economic Analysis (BEA). Both series are 

seasonally adjusted.  We eliminate heteroskedasticity by taking logarithms of the variables. We 

use 𝑙𝑛𝑁𝐺𝐷𝑃 and 𝑙𝑛𝑀2 to denote the transformed data.   

3.1. Unit Root Test 

First we conduct a unit root test to examine stationarity of the series. If the series are non-

stationary, regression could be spurious. We adopt the ADF (Augmented Dickey-Fuller) method 

for unit root test.  The test results are displayed in the appendix as Table 1a. 

The p values of both tests are greater than the 5% significance level, with 0.9951 for 𝑙𝑛𝑁𝐺𝐷𝑃 

and 0.4876 for 𝑙𝑛𝑀2 respectively.  Hence, for each of the tests, we fail to reject the null 

hypothesis that the series has a unit root. Both 𝑙𝑛𝑁𝐺𝐷𝑃 and 𝑙𝑛𝑀2 series are non-stationary.  

To test for causality relationship between nominal GDP and Divisia M2 money supply, we need 

the series to be stationary. For that purpose, we first difference the series to produce two first 

order differenced series 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) and 𝑑(𝑙𝑛𝑀2). We then again conduct the ADF test on each 

of those transformed series. The null hypotheses that 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)  and 𝑑(𝑙𝑛𝑀2) have unit roots 

are decisively rejected.  The differenced time series are stationary processes.  See Table 2a in the 

                                                 

 

64 See Barnett, Liu, Mattson, and van den Noort (2013). 
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appendix. 

3.2. Cointegration Test 

Next we test cointegration between 𝑙𝑛𝑁𝐺𝐷𝑃 and 𝑙𝑛𝑀2 to investigate whether there exists long 

run association between the two processes. If the two variables are not cointegrated, we could 

apply an unrestricted VAR model.  If the variables are cointegrated, we should prefer a vector 

error correction model (VECM). We use Johansen’s (1988,1991) methodology. The p values for 

unrestricted cointegration rank tests using trace and maximum eigenvalue are 0.0828 and 0.0646 

respectively, both higher than 5% significance level.  See Table 3a in the appendix. Hence we 

fail to reject the null hypothesis of no cointegration between 𝑙𝑛𝑁𝐺𝐷𝑃 and 𝑙𝑛𝑀2. We use an 

unrestricted VAR model in the following step. 

3.3. VAR Model 

We begin with a preliminary unrestricted VAR(2) model, as shown in appendix table 4a. We use 

the Akaike Information Criterion (AIC) to determine the appropriate maximum lag length for the 

variables in the VAR. Since we are using quarterly data, we choose lag equal to 4, when 

conducting VAR lag order selection. As the following table 1 shows, lag equal to 3 gives us the 

lowest AIC value. Therefore, we revise our model to a VAR(3) and estimate its coefficients. 

Detailed results are in appendix table 5a. 
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Table 1: VAR Lag Order Selection Criteria 

     

Endogenous variables: 𝑑(𝑙𝑛𝑀2), 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)    

Sample: 1967Q1 - 2013Q4     

Included observations: 183     

       
       Lag Log L LR FPE AIC SC HQ 

       
       0 1201.558 NA  6.94e-09 -13.10992 -13.07485 -13.09571 

1 1259.317 113.6242  3.86e-09 -13.69745 -13.59222 -13.65480 

2 1269.885 20.55929*  3.59e-09 -13.76924  -13.59386*  -13.69815* 

3 1274.130 8.164230   3.58e-09*  -13.77191* -13.52638 -13.67238 

4 1277.989 7.338699  3.59e-09 -13.77037 -13.45468 -13.64241 

       
       * Identifies the lag order selected by the criterion in that column. 

Log L: log likelihood    

LR: sequential modified LR test statistic (each test at 5% level)   

FPE: Final prediction error     

AIC: Akaike information criterion     

SC: Schwarz information criterion     

HQ: Hannan-Quinn information criterion    

 

Next we examine whether there exist autocorrelation problems among the disturbances. Using 

the Autocorrelation LM (Lagrange Multiplier) test with lag equal to 12, we acquire the following 

table 2 with most of the p values greater than the 5% significance level. 
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Table 2: VAR Residual Serial Correlation LM 

Tests 

 

Null Hypothesis: no serial correlation at lag order 

Sample: 1967Q1 - 2013Q4 
  

Included observations: 184 
  

     
     
Lags LM-Statistic P value* 

  

     
     
1 8.170979 0.0855 

  

2 10.45168 0.0335 
  

3 6.668278 0.1545 
  

4 6.192919 0.1852 
  

5 10.20056 0.0372 
  

6 7.367825 0.1177 
  

7 2.768448 0.5973 
  

8 4.482638 0.3446 
  

9 9.023472 0.0605 
  

10 1.994479 0.7368 
  

11 12.65099 0.0131 
  

12 5.147886 0.2725 
  

     
     *P value from chi-square with 4 degrees of 

freedom. 
  

 

 We fail to reject the null hypothesis of no serial correlation among the residuals of the VAR(3) 

model. The VAR(3) model is well-specified. 

3.4. Granger Causality Test 

We conducted Granger causality tests between 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) and 𝑑(𝑙𝑛𝑀2). The results indicate 

that 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) Granger causes 𝑑(𝑙𝑛𝑀2), and 𝑑(𝑙𝑛𝑀2) also Granger Causes 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃). 

Listed below in table 3 are the Granger causality test results.  
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Table 3: VAR Granger Causality, Block Exogeneity Wald Tests 

 

Sample: 1967Q1 2013Q4  

Included observations: 184  

    
        

Dependent variable: 𝑑(𝑙𝑛𝑀2)  

    
    Excluded Chi-sq df P value 

    
    d(𝑙𝑛𝑁𝐺𝐷𝑃)  11.28757 3  0.0103 

    
    All  11.28757 3  0.0103 

    
        

Dependent variable: 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)  

    
    Excluded Chi-sq df P value 

    
    d(𝑙𝑛𝑀2)  11.67938 3  0.0086 

    
    All  11.67938 3  0.0086 

    
    

 

The P value of the null hypothesis that 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) does not Granger cause 𝑑(𝑙𝑛𝑀2) is 0.0103, 

which is smaller than the conventional critical value 0.05. We reject the null and therefore 

conclude that 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)  does Granger cause 𝑑(𝑙𝑛𝑀2). The P value of the null hypothesis that 

𝑑(𝑙𝑛𝑀2) does not Granger cause 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) is 0.0086, also smaller than the critical value 0.05. 

We reject the null hypothesis and therefore conclude that 𝑑(𝑙𝑛𝑀2) does Granger cause 

𝑑(𝑙𝑛𝑁𝐺𝐷𝑃). There exists a bidirectional Granger causality relationship between 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) 

and 𝑑(𝑙𝑛𝑀2). 
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3.5. Estimation of the Final Bivariate VAR 

We implemented the bidirectional Granger Causality relationship between  𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) and 

𝑑(𝑙𝑛𝑀2) by estimating a bivariate VAR in those two stochastic processes with optimized lag 

lengths selected from the EViews program.  The coefficients of the two equations are stacked 

into one vector having elements, C(i), i = 1, … , 14, as defined in table 6a in the appendix.  The 

two equations we estimated in this VAR are defined in Table 6a.  The coefficients of the first 

equation are C(i), i = 1, … , 7 , while the coefficients of the second equation are C(i), i = 8, … , 

14.  See the table for the specification of those two equations and the estimates of their 

coefficients. 

The p value for 𝐶(1) is 0.0000, demonstrating that the coefficient of 𝑑(𝑙𝑛𝑀2)𝑡−1 is significant 

in the first equation. The growth rate of Divisa M2 money supply in the previous period has a 

significant impact on prediction of the current growth rate of Divisia M2. The corresponding p 

value of 𝐶(2) is 0.9735, demonstrating that the second lag of the growth rate of M2 does not 

have significant predicting power for the current growth rate of M2. By eliminating the 

statistically insignificant coefficients, we acquire the following two estimated equations: 

 
1 3

1

(ln 2) 0.483728 (ln 2) 0.146457 (ln 2)

0.223671 (ln ) 0.006672.

t t t

t

d M d M d M

d NGDP

 



 

 
                                  (1) 

 
1 1

2

(ln ) 0.223336 (ln 2) 0.318158 (ln )

0.288470 (ln ) .

t t t

t

d GDNP d M d NGDP

d NGDP

 



 


                      (2) 

Since 𝑑(𝑙𝑛𝑀2) and 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) indicate the growth rates, the estimated equations can be 

interpreted as follows.  The growth rate of Divisia M2 is affected by the growth rate of itself, 

lagged by 1 and 3 quarters, as well as by the growth rate of the previous quarter’s nominal GDP.  
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Furthermore, holding other variables constant, we can reach the following conclusions.  From the 

first equation, if the growth rate of Divisia M2 during the last quarter increases by 10%, then the 

growth rate of M2 this quarter will increase by 4.83728%.  But if the nominal GDP growth rate 

of the previous quarter increases by 10%, the M2 growth rate this quarter will decrease by 

2.23671%. If the M2 growth rate, lagged three quarters, reaches 10%, the current growth rate 

will increase by 1.46457%. Similar analysis applies to the second equation, where 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡 

is the dependent variable. 

 

3.6. Prediction 

Based on the estimation of equations (1) and (2), we can predict the growth rate of Divisia M2 

and nominal GDP in 2014 Q1 using the quarterly data in our sample ending in 2013 Q4.65  

{
 
 

 
 𝑑(𝑙𝑛𝑀2)2014𝑄1 = 0.483728𝑑(𝑙𝑛𝑀2)2013𝑄4 + 0.146457𝑑(𝑙𝑛𝑀2)2013𝑄2 −

0.223671d(𝑙𝑛𝑁𝐺𝐷𝑃)2013𝑄4 + 0.006672

𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)2014𝑄1 = 0.223336𝑑(𝑙𝑛𝑀2)2013𝑄4 + 0.318158𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)2013𝑄4
+0.288470𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)2013𝑄2

 

Substituting the measured values of the variables into the right hand sides, the predicted growth 

                                                 

 

65 We could have used a longer sample period including more recent quarters by using data from the Center for 

Financial Stability (CFS) in New York City.  But we limited this study to data made available by the Federal 

Reserve Bank of St. Louis, which has not updated its data as regularly as the CFS, which does update monthly. 
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rates are: 

{
𝑑(𝑙𝑛𝑀2)2014𝑄1 = 0.014079

𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)2014𝑄1 = 0.012193
 

The predicted growth rates can be used to predict the levels of M2 and NGDP in 2014Q1 by the 

following equations: 

{
𝑀22014𝑄1 = 𝑀22013𝑄4 ∗ (1 + 𝑑(𝑙𝑛𝑀2)2014𝑄1)

𝑁𝐺𝐷𝑃2014𝑄1 = 𝑁𝐺𝐷𝑃2013𝑄4 ∗ (1 + 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)2014𝑄1)
 

Substituting into the right hand sides, we acquire: 

{
𝑀22014𝑄1 = 11758.8

𝑁𝐺𝐷𝑃2014𝑄1 = 17286.5
 

The 1.4% predicted growth rate of Divisia M2 money supply in 2014Q1 was inconsistence with 

the Federal Reserve’s accommodative monetary policy. A consequence is reflected in the 

almost-non-growing 1.2% nominal GDP prediction in 2014Q1. In fact, the out of sample growth 

rate of 2014Q1 was -0.2%, according to the data released by Bureau of Economic Analysis 

(BEA). 

4. Conclusion 

In this paper we discuss the relationship between Divisia M2 money supply and nominal GDP. 

The primary objective of this research is to run well known diagnostic tests of bivariate time 

series properties of the Divisia M2 and nominal GDP stochastic processes that are necessary but 
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not sufficient for the conclusions of Belongia and Ireland (2014) and Barnett, Chauvet, and 

Leiva-Leon (2015).  We find no evidence to contradict the conclusions of those two papers about 

the potential relevancy of Divisia monetary aggregates in targeting nominal GDP, either as an 

intermediate target or as an indicator.  Our results are not specific to either of those approaches 

and hence cannot provide conclusions about which of those two approaches should be preferred.  

Since neither of those two approaches contradicts the other, one possibility would be to use both 

of those approaches simultaneously.  In that case, Barnett, Chauvet, and Leiva-Leon (2015) 

could be used to interpolate the quarterly data to provide the needed Nowcast monthly nominal 

GDP data, while Belongia and Ireland (2014) would then be used to implement a policy design 

using a Divisia monetary aggregate as an intermediate target. 

But if a different policy design were adopted without an intermediate target, Barnett, Chauvet, 

and Leiva-Leon (2015) would remain relevant to producing the monthly data necessary for any 

approach to nominal GDP targeting.  
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Appendix 

Table 1a. Unit Root Test Result for 𝑙𝑛𝑁𝐺𝐷𝑃 and 𝑙𝑛𝑀2 

Null Hypothesis: 𝑙𝑛𝑁𝐺𝐷𝑃 has a unit root  

     
        t-Statistic   P value* 

     
     Augmented Dickey-Fuller test statistic -0.065053  0.9951 

Test critical values: 1% level  -4.008154  

 5% level  -3.434167  

 10% level  -3.141001  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

     
     

                                Null Hypothesis: 𝑙𝑛𝑀2 has a unit root 

     
        t-Statistic   P value* 

     
     Augmented Dickey-Fuller test statistic -2.197872  0.4876 

Test critical values: 1% level  -4.008154  

 5% level  -3.434167  

 10% level  -3.141001  

     
     *MacKinnon (1996) one-sided p-values.  
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Table 2a. Unit Root Test Result for 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) and 𝑑(𝑙𝑛𝑀2) 

 

Null Hypothesis: 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃) has a unit root  

     
        t-Statistic   P value* 

     
     Augmented Dickey-Fuller test statistic -10.34110  0.0000 

Test critical values: 1% level  -4.008154  

 5% level  -3.434167  

 10% level  -3.141001  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

 

 

Null Hypothesis: 𝑑(𝑙𝑛𝑀2) has a unit root  

     
        t-Statistic   P value* 

     
     Augmented Dickey-Fuller test statistic -7.718251  0.0000 

Test critical values: 1% level  -4.008154  

 5% level  -3.434167  

 10% level  -3.141001  

     
     *MacKinnon (1996) one-sided p-values.  
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                   Table 3a. Johansen Cointegration Test Between 𝑙𝑛𝑁𝐺𝐷𝑃 and 𝑙𝑛𝑀2 

 

Sample (adjusted): 1968Q2 - 2013Q4   

Included observations: 183  

Series: 𝑑(𝑙𝑛𝑀2), 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)    

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value P value** 

     
     None  0.071362  14.00454  15.49471  0.0828 

At most 1  0.002488  0.455880  3.841466  0.4996 

     
      Trace test indicates no cointegration at the 0.05 level 

 *Denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value P value** 

     
     None  0.071362  13.54866  14.26460  0.0646 

At most 1  0.002488  0.455880  3.841466  0.4996 

     
      Max-eigenvalue test indicates no cointegration at the 0.05 level 

 *Denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

 Unrestricted Cointegrating Coefficients:  

     
     l𝑛𝑀2 l𝑛𝑁𝐺𝐷𝑃    

 1.852061 -3.068247    

 9.671655 -7.514269    

     
          

 Unrestricted Adjustment Coefficients (alpha):   

     
     d(𝑙𝑛𝑀2)  0.000987  0.000297   

d(𝑙𝑛𝑁𝐺𝐷𝑃)  0.001715 -0.000217   

     
          

One Cointegrating Equation:  Log likelihood  1284.763  

     
     Normalized cointegrating coefficients (standard error in parentheses) 

l𝑛𝑀2 l𝑛𝑁𝐺𝐷𝑃    

 1.000000 -1.656666    

  (0.23697)    

     

Adjustment coefficients (standard error in parentheses)  

d(𝑙𝑛𝑀2)  0.001828    

  (0.00098)    

d(𝑙𝑛𝑁𝐺𝐷𝑃)  0.003177    

  (0.00106)    
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Table 4a. VAR(2) Estimation 

 

 Vector Autoregression Estimates 

 Sample (adjusted): 1967Q4 - 2013Q4 

 Included observations: 185  

 Standard errors in ( ) & t-statistics in [ ] 

   
    d(𝑙𝑛𝑁𝐺𝐷𝑃) d(𝑙𝑛𝑀2) 
   
   𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−1  0.343726 -0.203535 

  (0.07111)  (0.06393) 

 [ 4.83377] [-3.18391] 

   

𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−2  0.296876  0.110804 

  (0.07117)  (0.06398) 

 [ 4.17157] [ 1.73192] 

   

𝑑(𝑙𝑛𝑀2)𝑡−1  0.230714  0.502884 

  (0.08198)  (0.07370) 

 [ 2.81432] [ 6.82361] 

   

𝑑(𝑙𝑛𝑀2)𝑡−2 -0.018083  0.051093 

  (0.08169)  (0.07344) 

 [-0.22137] [ 0.69573] 

   

Constant intercept  0.002710  0.007922 

  (0.00177)  (0.00159) 

 [ 1.53297] [ 4.98427] 

   
    R-squared  0.320419  0.300597 

 Adj. R-squared  0.305317  0.285055 

 Sum sq. residuals  0.011651  0.009416 

 S.E. equation  0.008045  0.007233 

 F-statistic  21.21725  19.34060 

 Log likelihood  632.2211  651.9214 

 Akaike AIC -6.780769 -6.993745 

 Schwarz SC -6.693732 -6.906708 

 Mean dependent  0.016113  0.014431 

 S.D. dependent  0.009653  0.008554 

   
    Determinant residual covariance (df adj)  3.38E-09 

 Determinant residual covariance  3.20E-09 

 Log likelihood  1284.335 

 Akaike information criterion -13.77659 

 Schwarz criterion -13.60252 
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Table 5a. VAR(3) Estimation 

 

 Sample (adjusted): 1968Q1 - 2013Q4 

 Included observations: 184 

 Standard errors in ( ) and t-statistics in [ ] 

   
    d(𝑙𝑛𝑁𝐺𝐷𝑃) d(𝑙𝑛𝑀2) 
   
   𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−1  0.318158 -0.223671 

  (0.07460)  (0.06667) 

 [ 4.26460] [-3.35472] 

   

𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−2  0.288470  0.062865 

  (0.07726)  (0.06904) 

 [ 3.73398] [ 0.91053] 

   

𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−3  0.076208  0.074424 

  (0.07535)  (0.06734) 

 [ 1.01134] [ 1.10515] 

   

𝑑(𝑙𝑛𝑀2)𝑡−1  0.223336  0.483728 

  (0.08300)  (0.07418) 

 [ 2.69084] [ 6.52140] 

   

𝑑(𝑙𝑛𝑀2)𝑡−2  0.061580  0.002791 

  (0.09397)  (0.08398) 

 [ 0.65531] [ 0.03323] 

   

𝑑(𝑙𝑛𝑀2)𝑡−3 -0.113475  0.146457 

  (0.08194)  (0.07323) 

 [-1.38480] [ 1.99990] 

   

Constant intercept  0.002610  0.006672 

  (0.00190)  (0.00170) 

 [ 1.37251] [ 3.92561] 

   
    R-squared  0.331774  0.320114 

 Adj. R-squared  0.309123  0.297067 

 Sum sq. residuals  0.011451  0.009146 

 S.E. equation  0.008043  0.007188 

 F-statistic  14.64676  13.88960 

 Log likelihood  629.8995  650.5791 

 Akaike AIC -6.770647 -6.995425 

 Schwarz SC -6.648340 -6.873118 

 Mean dependent  0.016098  0.014412 

 S.D. dependent  0.009677  0.008574 

   
    Determinant residual covariance (df adj.)  3.34E-09 

 Determinant residual covariance  3.09E-09 

 Log likelihood  1280.607 

 Akaike information criterion -13.76747 

 Schwarz criterion -13.52286 
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Table 6a. Final VAR Coefficient Estimation 

 

Estimation Software: EViews computer program  

Sample: 1968Q1 - 2013Q4  

Included observations: 184  

Total system observations 368  

 

 Coefficient Std. Error t Statistic P Value 

C(1)  0.483728 0.074176 6.521397 0.0000 

C(2)  0.002791 0.083982 0.033235 0.9735 

C(3)  0.146457 0.073232 1.999902 0.0463 

C(4)  -0.223671 0.066674 -3.354718 0.0009 

C(5)  0.062865 0.069043 0.910526 0.3632 

C(6)  0.074424 0.067343 1.105148 0.2698 

C(7)  0.006672 0.001700 3.925608 0.0001 

C(8)  0.223336 0.082999 2.690835 0.0075 

C(9)  0.061580 0.093971 0.655308 0.5127 

C(10)  -0.113475 0.081943 -1.384797 0.1670 

C(11)  0.318158 0.074604 4.264599 0.0000 

C(12)  0.288470 0.077255 3.733981 0.0002 

C(13)  0.076208 0.075353 1.011342 0.3125 

C(14)  0.002610 0.001902 1.372509 0.1708 

 

Equation: 𝑑(𝑙𝑛𝑀2)𝑡 = C(1)𝑑(𝑙𝑛𝑀2)𝑡−1 + C(2)𝑑(𝑙𝑛𝑀2)𝑡−2 + C(3)𝑑(𝑙𝑛𝑀2)𝑡−3 + C(4)𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−1+ C(5)𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−2 + 
C(6)𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−3 + C(7)   

R squared 0.320114 Mean dependent var 0.014412  

Adjusted R squared 0.297067 dependent var 0.008574  

S.E. of regression  0.007188 Sum squared resid 0.009146  

Durbin-Watson stat  1.977980    

Equation: 𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡= C(8)𝑑(𝑙𝑛𝑀2)𝑡−1 + C(9)𝑑(𝑙𝑛𝑀2)𝑡−2 + C(10)𝑑(𝑙𝑛𝑀2)𝑡−3+ C(11)𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−1 + 
C(12)𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−2 + C(13)𝑑(𝑙𝑛𝑁𝐺𝐷𝑃)𝑡−3 + C(14)  

R squared  0.331774 Mean dependent var 0.016098 

Adjusted R-squared 0.309123 S.D. dependent var 0.009677 

S.E. of regression 0.008043 Sum squared resid 0.011451  

Durbin Watson stat 1.998140    

 

 

  



168 

 

Chapter 5 

 

Financial Firm Production of Monetary and Credit Card Services: An 

Aggregation Theoretic Approach66 

 

William A. Barnett  

University of Kansas, Lawrence, and Center for Financial Stability, NY City 

Liting Su 

University of Kansas, Lawrence, and Center for Financial Stability, NY City 

 

 

 

October 24, 2016 

  

                                                 

 

66 We have benefitted from constructive comments provided by Kimberley Zieschang. 
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Abstract 

A monetary-production model of financial firms is employed to investigate supply-side monetary 

aggregation, augmented to include credit card transaction services. Financial firms are conceived 

to produce monetary and credit card transaction services as outputs through financial 

intermediation. While credit cards provide transactions services, credit cards have never been 

included into measures of the money supply.  The reason is accounting conventions, which do 

not permit adding liabilities to assets.  However, index number theory measures service flows 

and is based on aggregation theory, not accounting.  Barnett, Chauvet, Leiva-Leon, and Su 

(2016) have derived and applied the relevant aggregation theory applicable to measuring the 

demand for the joint services of money and credit cards.  But because of the existence of 

required reserves, there is a regulatory wedge between the demand and supply of monetary 

services. We derive theory needed to measure the supply of the joint services of credit cards and 

money.  The resulting model can be used to investigate the transmission mechanism of monetary 

policy. 
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1.  Introduction 

Monetary policy is transmitted to the economy through banking firms and other financial 

intermediaries. Financial firms supply monetary assets through their financial intermediation 

between borrowers and lenders. These monetary assets play a central role in providing 

transaction services to the economy. In this context, rigorous microeconomic analysis of the 

optimal behavior of financial firms is essential to a clear understanding of the monetary 

transmission mechanism.  We begin with the model of Barnett (1987) and generalize it to include 

production of credit card transactions services, using the approach developed initially for the 

demand side by Barnett, Chauvet, Leiva-Leon, and Su (2016).    

The main objective of this study is to employ a production model of financial firms, which 

produce services through financial intermediation, and to investigate supply-side aggregation, 

when financial firms produce not only monetary services but also credit card transactions 

services. We derive the conditions under which a joint supply side aggregate over monetary and 

credit card transactions services exists, and we produce the resulting formula permitting Divisia 

monetary aggregation over those joint services.  Empirically implementing the theory is a subject 

for future research. 

As the first step in this direction, we make many simplifying assumptions, the strongest of which 

is perfect certainty or risk neutrality.  As a result, we are implicitly assuming the existence of 

complete contingent claims perfect markets, so that decentralization by owners to managers is 

incentive compatible, when owners are risk averse but managers are risk neutral.  

Generalizations under weaker assumptions are a subject for future research. 
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The ability to produce econometric models of financial intermediary production of transactions 

services could become a major source of future insights into the transmission mechanism of 

monetary policy.  Since inside money and shadow banking have become major factors affecting 

monetary policy and are potentially directly measurable as value added in banking and shadow 

banking, we consider the theory produced in this paper to be a first step in research we expect to 

grow in importance in future years. 

The theoretical foundation of the monetary production model is based on Barnett’s (1987) 

monetary aggregation-theoretic approach, also consistent with Hancock’s (1991) approach, but 

extended to include production of credit card transactions services.  The role of produced credit 

card services has become far too important to overlook in modeling the output of financial firms 

and their contribution to transactions services in the economy. Financial firms are modeled as 

maximizing the discounted present value of variable profits, subject to given technology, while 

producing monetary assets and credit card services through financial intermediation. With the 

derivation of user-cost prices for monetary assets and credit card transaction services, the 

monetary production model can be transformed into the conventional neoclassical model of 

production by multiproduct firms. As a result, a neoclassical aggregate supply function on the 

production side can be constructed, using the existing literature on output aggregation.  

The following section provides a general discussion of our model of the production of financial 

firms, based on Barnett’s aggregation-theoretic approach, and describes the derivation of the 

user-cost prices for monetary assets and credit card services on the production side. The section 

also provides a discussion of aggregation theory relevant to our model formulation.  
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For a survey of the analogous results for monetary assets alone on the consumer demand side, 

see Barnett (2012).67 For the results augmented to include credit card services on the demand 

side, see Barnett, Chauvet, Leiva-Leon, and Su (2016). Those publications survey the available 

results on demand for monetary assets and exact aggregation over those demands along with the 

extension to inclusion of credit card transactions services. The current paper produces results 

dealing with the supply of monetary and credit card services produced by financial 

intermediaries and the aggregation over those supplies.  

2. The Model 

First, we define the variables that are used in the financial intermediary’s decision problem: 

tR = yield on the benchmark asset; 

tμ = real balances of monetary asset accounts serviced by the financial intermediary; 

tτ = vector of real expenditures “volumes,” jt , with credit card type j  for transactions during 

period t; 

te = vector of expected interest rates, jte , on tτ ; 

tζ  = vector of rotating real balances, jt , in credit card type j  during period t from transactions 

                                                 

 

67 Other relevant results on the demand side include Barnett and Chauvet (2011), Belongia and Ireland (2014), and 

Serletis and Gogas (2014). 
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in previous periods; 

te = vector of interest rates on tζ ; 

tc = real balances of excess reserves held by the intermediary during period t ; 

tL = vector of labor quantities; 

tz = quantities of other factors of production; 

tq
 = prices of the factors, tz ; 

tk = reserve requirements, where itk  is the reserve requirement applicable to it  and 0 1itk   

for all i; 

d

tR = Federal Reserve discount rate; 

min{ , };d
t t tR R R  

tρ  = vector of yields paid by the firm on tμ . 

The yielding tR  on the “benchmark asset” is the yield on an investment that provides no services 

other than the yield itself.  In classical economic theory under general equilibrium, tR  is “the 

interest rate” on pure capital and hence is secured by its ownership.  In contrast, credit card loans 

are unsecured. The firm’s efficient production technology is defined by the transformation 

function ( , , , , ; ) 0t t t t t tF c z L kμ τ , assumed to be strictly quasiconvex in ( , , , , )t t t t tcz Lμ τ , 

strictly increasing in outputs ( , )t tμ τ  and strictly decreasing in inputs ( , , )t t tcz L .  Since the 

intermediary’s servicing of credit card transactions are during the current period, the firm’s 

production technology includes tτ   but does not include tζ .  The value added in servicing 
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transactions occurs during the period when the credit cards are used for transactions.68 Hence the 

firm’s optimization decision is conditional upon consumer choices of tζ , which convey no 

further services to consumers other than the unsecured rotating loan itself. The firm’s technology 

can equivalently be defined by its efficient production set (production possibility set) 

 ( ) {( , , , , ) ( , , , , ): ; 0}t t t t t t t t t t t tS c F c  k μ τ z L 0 z L kμ τ                             (1) 

or by its production correspondence F , defined such that 

 :( , , ; ) {( , ) ( , , , , ) ( )}.t t t t t t t t t t t tG c c S  z L k μ zτ 0 kLμ τ                               (2) 

We assume that required reserves are never borrowed from the Federal Reserve, but could be 

borrowed in the federal funds market.69 Excess reserves can be borrowed from either source. In 

this initial model, we assume that the Federal Reserve does not pay interest on reserves, as has 

been the case during most of its history.  Since we are assuming the existence of only one kind of 

                                                 

 

68 The ability to borrow from banks and other lending institutions would exist, even if credit cards did not exist.  

Hence there is no value added in production from tζ  in this model, for the same reason that the “benchmark” asset, 

having yield Rt, does not appear in the firm’s technology.  The value added from credit card servicing is the ability 

to buy goods with the card and defer payment.  That service is provided at the time used to purchase the goods and 

is measured by credit card transactions “volumes,” 
tτ .  To be able to impute value added to other financial 

intermediary lending, we would need to impute asset management services to the financial intermediary.  The 

current model does not include asset management as a service of the financial intermediary.  Results relevant to 

inclusion of asset management services can be found in Fixler and Zieschang (2016a,b). 
69 This assumption of “perfect moral suasion,” could easily be weakened or removed. 
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primary market loan yielding tR , it follows that the federal funds rate must always equal tR .  As 

a result, under our assumption of risk neutrality or perfect certainty, if d

t tR R  then all excess 

reserves will be borrowed from the Federal Reserve and there are no free reserves. If d

t tR R , 

then there is no borrowing from the Federal Reserve and free reserves equal excess reserves.  

If d

t tR R , then t tR R , and revenue from loans is 

* * ** ' ** * )( jtit t it it t jt jt t t t t jt jt jt t t t t

i j j

t

i j j

p k p p p c p R e p e p                q z

.    (3) 

If d

t tR R , then tt
dR R , and revenue from loans is 

* * ' * ** * *)( .d

t t t jtit t it it t jt jt t t t t t t

i

t jt

i j j j

jt jt

j

p k p p p R c p R e p e p                q z

  (4) 

Hence, in either case, revenue from loans is 

* * ** ** ' *[ (1 ) ] ( ) .t jtit it t t t t jt jtt t t t t

i j j j j

t t t t jt jt jtk p c p p p R c p R R e p e p                q z

(5) 

Variable cost, which must be paid out of revenue, is 

* .it it t t tt t

i

p     q z w L                                                              (6) 

At the end of period t , profit received is acquired by subtracting (6) from (5). Dividing by 1 tR  
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to discount profits to the beginning of period t , we get the present value of period t  profits to be 

*

0

' '

( , , , , , ; , , , , , , , , )

/ (1 ) ,

d

t t t t t t t t t t t t t t

t t t t t t t t t t

t

t t

P c p R R

R c        t

z L q e e w k

q

μ τ ζ ρ

μ γ τ π L wζ σ z
                                    (7) 

where the vector tγ  is defined such that the nominal user cost price for produced monetary asset 

it  is * (1 )

1

it it it
it t

t

k R
p

R




 



, the vector 

tπ  is defined such that the nominal user cost price for 

produced credit card service jt  is *

1

jt

t

t

t
jt

e R
p

R






, the vector tσ  is defined such that the 

nominal user cost price for carried forward rotating credit card debt jt  is *

1

jt

t

t
t

jt

e R
p

R






, and 

the nominal user cost price of excess reserves, tc ,  is *

1
ot

t

t

tR
p

R
 


. The corresponding real user 

costs are 
*

t

tp


, 

*

t

tp


, 

*

t

tp


, and 

*

ot

tp


. 

If we write the vector of all variable factor quantities as ( , , )tt tt c   z Lα  and the vector of 

corresponding factor prices as ( , / ( )1 ),t t ott t R    qβ w  , it becomes evident that profits take the 

conventional form '

t t t t t t t

    
t

μ γ τ π ζ σ α β .  But since the financial firm’s decision is conditional 

upon consumer choice of tζ , variable profits can be written as 

'

t t t t t tP    
t

μ γ τ π α β ,                                                             (8)                                                        
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and the firm’s variable profit maximization problem takes the conventional form of selecting 

, , , , ) (( )t t t t t tc Sτ L kμ z  to maximize (8). Hence the existing literature on output aggregation for 

multiproduct firms becomes immediately applicable to aggregation over the produced monetary 

services ( , )t tμ τ  and to measuring value added and technological change in financial 

intermediation. 

3. Properties of the Model 

Following Barnett (1987), variable revenue can be written in the form 

  '
'*

' ,
1

s t t
t t t

t

t t
t

p R

R
 



k μ
μ γ μ π                                                              (9) 

where  

 *

1

s t it
it t

t

R

R
p







                                                                     (10) 

has the same form as the demand-side monetary-asset user-cost formula derived by Barnett 

(1978,1980) for consumers. Clearly s

it  in (10) would equal it  if 0t k , removing the 

regulatory wedge between the demand and supply side. For credit card transaction services, jt

equals exactly the demand-side user cost of credit card services derived by Barnett, Chauvet, 

Leiva-Leon, and Su (2016) for consumers, since there is no regulatory wedge between the 

demand and supply side for credit card services. 
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The solution to the firm’s variable profit-maximization problem is its factor demand functions 

for ' '( , , )t t tc α z L  and its supply functions for its multiple products ( , )t tμ τ  conditionally upon 

consumers’ choices of tζ . Derived demand is thereby produced for high-powered (base) money. 

That derived demand, in real terms, is  

 .t t i t

i

t ih c k                                                              (11) 

The financial firm’s nominal demand for high-powered money is *

t tp h . 

4. Separability of Technology 

Following Barnett (1987), we assume there exist functions f  and H  such that 

( , , , , ; ) ( ( , ; ), , , ).t t t t t t t t t t t tF c H f cμ τ μ τz L k k z L 70                                (12) 

Under the usual neoclassical assumptions on technology, there will exist a function g  such that 

 ( , ; ) ( , , )t t t t t tf g ck z Lμ τ                                                         (13) 

                                                 

 

70 The resulting functional structure is called blockwise weak separability.  A large literature exists on testing 

weakly separable function structure, such as Cherchye, Demuynck, Rock, and Hjerstrand (2015) and Hjertstrand, 

Swofford, and Whitney (2016) 
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is the solution for ( , ; )t t tf μ τ k  to 

 ( ( , ; ), , , ) 0.t t t t t tH f c k z Lμ τ                                                    (14) 

The function ( , ; )t t tf μ τ k  is called the factor requirements function, because it equals the right-

hand side of (13), which is the minimum amount of aggregate input required to produce the 

vector ( , )t tμ τ . The function ( , , )t t tg cz L  is the production function, because it equals the left-

hand side of (13), which is the maximum amount of aggregate output that can be produced from 

the inputs ( , , )t tctz L . Hence f  is both the factor requirements function and the outputs 

aggregator function, s

tM  = ( , ; )t t tf μ τ k , while g  is both the output production function and the 

inputs aggregator function. 

We assume that f  is convex and linearly homogeneous in tμ  and tτ . In addition, it follows 

from our assumptions on the neoclassical properties of the transformation function F , that g  is 

monotonically increasing in all of its arguments and that f  is monotonically increasing in tμ  and 

tτ . We assume that g  is locally strictly concave in a neighborhood of the solution to the first-

order conditions for variable profit maximization. In addition, it follows, from the strict 

quasiconvexity of the transformation function F , that g  is globally strictly quasiconcave. 

5. Financial Intermediary Aggregation Theory Under Homogeneity 

In this section, we produce a two-stage decision for the financial intermediary. In the first stage, 

the firm solves for profit-maximizing factor demands and the profit-maximizing level of 
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aggregate financial services produced. In the second stage, the revenue-maximizing vector of 

individual financial service quantities supplied is determined at fixed aggregate financial service 

quantity supplied. 

To display that decomposition of the firm’s profit-maximization decision, we start by defining 

the relevant revenue functions. The financial firm’s revenue function is 

, }{
( , , , , ; ) max{ : ( , ; ) ( )}.

t

tt t t t t t t t t t t tW f g     
t

t t t
μ τ

α γ π σ ζ k μ γ τ π ζ σ μ τ αk
 

Since the decision is conditional on consumer choice of tζ , the financial firm’s variable revenue 

function can be written as 

*

{ , }
( , , ; ) max{ : ( , ; ) ( )},

t

tt t t t t t t tR f g   
t

t t t
μ τ

α γ π k μ γ τ π αkμ τ
                       (15) 

where the firm selects tα  to maximize variable profits 

 
* '( , , ; ) .tt t t t t tP R α γ π k α β                                                       (16) 

However, by Shephard’s (1970, p. 251) Proposition 83, it follows that there exists a linearly 

homogeneous output price aggregator function   such that 

*( , , ; ) , ) ( )( .t t t t t t tR gα γ π k γ π α                                                (17) 

Hence the financial firm’s variable profits can alternatively be written as 
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 ', ) ) .( (t t t t tP g 
t

γ π α α β                                                         (18) 

The firm’s first-stage decision is to select *

tα  to maximize (18). Substituting the optimized input 

vector *

tα into ( )tg α , the firm can compute the optimum aggregate financial service quantity 

supplied, s

tM ,  including both monetary services and credit card transaction services supplied. In 

stage two of the decentralized decision, s

tM  is substituted into (15) to replace ( )tg α , and the 

maximization problem in (15) is solved to acquire the optimum vector of supplied monetary 

assets tμ  and credit card transaction volumes tτ , conditionally upon consumer’s choices of 

carried-forward credit card debt, tζ . Observe that the intermediary’s supply function for its 

output aggregate is produced from stage one alone. 

Clearly, the exact economic output quantity aggregate for the financial firm is 

 * *( , ; ),t t

s

t tM f τ kμ                                                                   (19) 

when  * *, )( t tμ τ  is the variable profit-maximizing vector of monetary assets and credit card 

transaction volumes produced. The corresponding variable output price aggregate is 

 ( , ).t t t

s  γ π                                                                    (20) 

Fisher’s output reversal test states that t t

s sM   must equal actual revenue from production of 

* *, ).( tt
μ τ  That condition is satisfied as a result of (15) and (17), and the fact that * *( , ; )t tf

t
μ τ k  
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must equal ( )tg α  at *
t t

α α . Also observe from (15) and (17), with ( )tg α  set equal to 1.0, that 

the variable output price aggregate is equal to 

 
{ , }

, ) max{ : ( , ; ) 1}( ,
t t

t t t t t t tf   
t t

μ τ
γ π μ γ τ π μ τ k                                      (21) 

which is the unit variable revenue function. The unit variable revenue function is the maximum 

variable revenue that can be acquired from the production of one unit of the output monetary 

aggregate, ( , ; ).s

t t tM f
t

μ τ k  The linear homogeneity of  is clear from (21). In addition, the 

unit revenue function is convex and increasing in ( , )t tγ π and increasing in ( , )t tσ ζ . 

Instead of maximizing t t t

 
t

μ γ τ π  subject to 

*( , ; ) ( )t t t tf gkμ τ α
 

to acquire the stage-two solution for * *, )( tt
μ τ  conditionally upon consumer choices of *

tζ , we 

could equivalently define the stage-two decision to be the selection of * *, )( tt
μ τ  to minimize the 

aggregate factor requirement ( , ; )t t tf μ τ k  subject to 

*( , ) ( ).t t t t t tg  
t

μ γ τ π γ π α
 

As a result, we can rewrite (19) to obtain 

 , }

*

{
min{ ( , ; ) : , ) ( )}( ,

t t
t t t t t t t t

s

t tM f g   
t

μ τ
μ τ μ γ τ π γ π αk 

                          (22) 



183 

 

while our earlier statement of the stage-two decision produces the equivalent result that 

*

, }{
, ) max{ : ( , ; ) ( )}( .

t t

t t t t t t

s

t t tfM g   
t t

μ τ
γ π μ γ τ π μ τ k α

                         (23) 

Comparing (21) and (22), we can see the clear duality between the decision problems. As usual, 

the exact quantity and price aggregates of economic theory are true duals. 

Equation (21) defines the unit revenue (output price aggregator) function in terms of the factor 

requirement (output quantity aggregator) function. The converse is also possible as a result of the 

fact that 

* *
1

* *, ; ) min{ , ) : ,( ( 1}
t

tt t t t tt tf


 



   
  

t
γ 0

μ τ k γ π μ γ τ π
 

using equation (3.2) in Diewert (1976).   

6.  Financial Intermediary Index Number Theory Under Homogeneity 

Monetary output aggregation is produced by solving the financial intermediary’s second-stage 

decision for * *, )( t t

  
μ τ  and substituting it into f  to acquire * *, ; )(t t t t

sM f μ τ k . That second-stage 

decision is to select * *, )( t t

  
μ τ  to 

 max t t t t t

   
t

μ γ τ π ζ σ       subject to ( , ; ) .t t

s

tf M
t

μ τ k                               (24a) 

But since the decision is conditional on consumer choice of tζ , the decision is equivalent to 
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selecting * *, )( t t

  
μ τ  to maximize variable revenue as follows: 

 max t t t

 
t

μ γ τ π       subject to ( , ; ) .t t

s

tf M
t

μ τ k                                (24b) 

 

The following theorem proves that the Divisia index tracks s

tM  without error in continuous time, 

so long as * *, )( t t

  
μ τ  is continually selected to solve (24b) at each instant, t . 

Theorem 1.  If * *, )( t t

  
μ τ  solves (24b) continually at each instant 0t T , then for every 0t T  

 * *log / log / log / ,t

s

i j

it it jt jtd M dt s d dt u d dt                                  (25) 

where 
* * */ ( )tit it it t t ts   μ γ τ π   and 

* * */ ( )tjt jt jt t t tu   μ γ τ π  . 

Proof: The first-order conditions for solution to (24b) are 

 /it itf     ,                                                                       (26) 

/jt jtf     ,                                                                       (27) 

and * * *( , ; ) s

t tf M
t t

μ τ k , where   are the Lagrange multipliers. 

Compute the total differential of f  to acquire 
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( , ; ) .it jt

i jit jt

f f
d ddf

 


 
 t t t

μ τ k  
 

 

Substitute (26) and (27) to find, at *

t tμ μ  and *

t tτ τ , that 

 * * * *1 1
( , ; ) .

i

t t t it it j jt

j

tdf d d   
 

   μ τ k                                         (28) 

But by summing (26) over i  and (27) over j, solving for , and substituting into (28), we obtain 

* * *
* * *

* * * *

** *
*

* * * *

log ( , ; ) lo
/ /

/ /

g
( , ; )

log .
( , ; )

t t t t it it
t t t it

t t t tt t t

jt jtt t t t
it

t t t tj
t

i

t t

f f

f

d f
f

d
f

f

d
 



 


 


 



   

   


 





μ μ τ τ
μ τ k

μ τ k μ γ τ π

μ μ τ τ

μ τ k μ γ τ π

                   (29)     

But since f  is linearly homogeneous in tμ  and tτ , we have from Euler’s equation that 

 
* * * */ / ( , ; )t t t t t tf f f     tμ μ τ τ μ τ k                                               (30)  

Substituting (30) into (29), we obtain 

 * * * *log ( , ; ) / log / log / ,t t t it it jt jt

i j

d f dt s d dt u d dt  μ τ k                              (31) 

where  * * */ ( )tit it it t t ts   μ γ τ π   and * * */ ( )tjt jt jt t t tu   μ γ τ π  .                                                            

□ 
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Hence the Divisia index is equally as applicable to aggregating over the monetary services and 

credit card transaction services produced by the financial intermediary as over the monetary 

services and credit card transactions services by the consumers, as derived by Barnett, Chauvet, 

Leiva-Leon, and Su (2016). In addition, Simpson’s rule produces the Törnqvist-Theil discrete 

time approximation 

 * * * *

1 , 1 , 1log log (log log ) (log log )t t it it i t jt jt

s

j t

s

i j

M sM u           ,                  (32) 

where 
, 1

1
( )

2
it it i ts ss    and 

, 1

1
( )

2
jt jt j tu uu   . Furthermore, if the input requirement function 

f  is translog, then the discrete Divisia index (32) is exact in discrete time [see Diewert (1976, p. 

125)]. Hence (32) is a superlative index number. 

Having produced the output quantity aggregate from the Divisia index, the dual price aggregate 

is produced from variable output reversal, 

 * *( ) / .t t t t t t

sM  μ γ τ π                                                           (33) 

The user-cost price index produced in that manner is called the implicit Divisia price index. The 

resulting price index is superlative in the Diewert sense, as is easily shown from (33) and the fact 

that s

tM  is superlative. 
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7.  Financial Intermediary Aggregation Without Homotheticity 

Define the financial firm’s output distance function implicitly to be the value of ( , , ; )t t t tD μ τ α k  

that solves 

 0(( , ) / ( , , ; ); ) ( ),t t t t tf D gt tμ τ μ τ α k k α                                                 (34) 

for preselected reference input vector 0α . Then the exact monetary quantity output aggregate for 

the financial intermediary is  

 0( , ; , ) ( , , ; ),t t t

s

t t t tM Dμ τ α k μ τ α k                                                (35) 

and the corresponding Malmquist economic output quantity index is 

 2 2 1 1 0 2 2 0 1 1 0( , , , ; , , , ; ) / ( , , ; ).) (ms

t t t t t t t t t t tM DDμ τ μ τ α k μ τ α k μ τ α k
                 (36) 

The corresponding true output price aggregate is 

 *

0 0, ; , ) ( , , ; ),( t t t t t tRγ π α k α γ π k                                              (37) 

and the corresponding Konüs true financial output price index is 

 
* *

2 2 1 1 0 0 2 2 0 1 1( , , , ; , ) ( , , ; ) / ( , , ; ).k

t t t t t t t t t t tR Rγ π γ π α k α γ π k α γ π k
               (38) 

The duality results are 
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, }

*

0 0
{

) max{( , , ; : ( , , ; ) 1}
t

t t t t t t t tD R  
t

t
γ π

μ τ α k γ μ π τ α γ π k                         (39) 

and 

 ,

*

{ }
0( , , ; ) max{ : ( , , ; ) 1}.

t t

t t t t t t t tR D   
t 0 t

μ τ
α γ π k γ μ π τ μ τ α k

                       (40) 

8. Value Added from Financial Intermediation 

Partition the financial intermediary’s input vector tα  so that 1 2( , )t t t

  α α α , where 1tα  is the 

quantities of primary inputs to the financial intermediary, and 2tα  is quantities of intermediate 

inputs. Partition the factor-price vector correspondingly so that 1 2( , )t t t

  β β β . Then the financial 

intermediary’s technology can be written as 

 1 2( , ).s

t t tM g α α                                                                (41) 

Let the firm’s maximum variable profit level at given 1tα  be 

 1 2( , , , ),t t t t tV V α β γ π                                                             (42) 

which is the firm’s variable profit function conditional upon 1tα . As a function of 1tα  at fixed 

prices, V  has all of the usual properties of a neoclassical production function. Sato (1975) calls 

0 1 0 1

* * * * * *

, 1 2 1 2( , , , ) / ( , , , )t t t t t tV V V α β γ π α β γ π                                         (43) 
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the true index of real value added, which depend upon the selection of the reference prices 

* * *

2 , ,( )β γ π . 

In order to provide a nonparametric (statistical) approximation to (43), assume constant returns 

to scale. Also assume that V  is translog and select * * *

2( , , )β γ π  to be the geometric means of 

those prices in periods 0t  and 1t . Using Diewert (1980a, p. 459), it follows that (43) equals the 

discrete Divisia quantity index for aggregating over the primary inputs. 

The need to select the reference prices * * *

2 , ,( )β γ π  becomes unnecessary if and only if g  is 

separable, so that (41) can be written 

 1 2( ( ), ).t t t

sM G α α                                                            (44) 

In that case, V  can be written 

 1 1 2 2( ) ( , , ).t t t t tV V V α β γ π                                                       (45) 

So clearly 

 
0 1 0 1, 1 1 1 1( ) / ( ),t t t tV V V α α                                                            (46) 

which does not depend on reference prices. The function 1V  has all of the properties of a 

conventional neoclassical production function. However, in this case 1( )t α is itself a category 

subproduction function, so we can more directly define the value added index to be 
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0 1 0 1

*

, 1 1) / )( ( .t t t tV   α α                                                             (47) 

If   is translog, then the discrete Divisia index is exact for either (46) or (47), so the discrete 

Divisia index provides a second-order approximation for 
0 1

*

,t tV  or 
0 1,t tV  for any . In continuous 

time, the Divisia index is always exact for 1( )t α , which is value added. 

By accounting convention, “double deflation” requires the very restrictive assumption that (44) 

can be written in the form 

 1 1 2 2( ) ( ).s

t t tM  α α                                                           (48) 

Clearly 1 1( )t α  is value added, since it is added to 2 2( )t α  to get s

tM . In that case, Sims (1969) 

has proved that value added is measured exactly by a Divisia index. 

9. Data Sources 

Although this initial theoretical paper does not include empirical application, the availability of 

the needed data sources is relevant to future use.  Of particular importance is the availability of 

data on the benchmark interest rate, tR , the vector, tζ , of rotating real balances, jt , in credit 

card type j , the vector, tτ , of real expenditures “volumes,” jt , with credit card type j ; the 

vector, te , of expected interest rates, jte , on tτ ; and the vector of interest rates, te ,  on tζ .  

Complete details about those available data sources are documented in Barnett and Su (2016), as 

used on the demand side by Barnett, Chauvet, Leiva-Leon, and Su (2016). 
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The credit card transactions services can be measured by the transactions volumes summed over 

four sources:  Visa, MasterCard, American Express, and Discover.  Our theory does not apply to 

debit cards, or to store cards, or to charge cards not providing a line of credit.  Barnett, Chauvet, 

Leiva-Leon, and Su (2016) acquired the volumes from the firms’ annual reports and seasonally 

adjusted them by the Census X-13ARIMA-SEATS program. The start date is the quarter during 

which those credit card firms went public and the annual reports became available.  The 

contemporaneous transactions volumes do not include the carried forward rotating balances 

resulting from transactions during prior periods.71  The credit card interest rates are available 

from the Federal Reserve Board’s data on all commercial bank credit card accounts, including 

those not charged interest, since paid off within the month.72   

In classical economics, the benchmark asset is a secured pure investment.  In contrast, jse  is not 

the interest rate on a secured asset and is subject to substantial default and fraud risk.  Hence, jse  

can be higher than the benchmark asset rate, and historically has always been much higher than 

the benchmark asset rate.73  

                                                 

 

71 Credit limits are not explicitly considered in our current model, since we do not have a way to untangle the effect 

of those constraints on contemporaneous transactions volumes from the effect on the carried forward rotating 

balances associate with previous period’s transactions. 
72

This interest rate includes those credit card accounts not assessed interest, and hence is lower than the Federal 

Reserve’s supplied interest rates on accounts assessed interest.  This imputation includes only explicit interest paid, 

averaged over all credit card accounts.   
73 Barnett, Chauvet, Leiva-Leon, and Su (2016) follow the Center for Financial Stability (CFS) and the Bank of 

Israel in using the short term bank loan rate as a proxy for the benchmark rate.  That interest rate has always 
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It is important to recognize that the decision problem we model is not of a single economic 

agent, but rather of a “representative bank” and a “representative consumer,” aggregated over all 

consumers and all banks.  All quantities are therefore averaged over all consumers and banks.  

This modeling assumption is particularly important in understand the credit card quantities and 

interest rates relevant to this theory.  About 20% of credit card holders in the United States do 

not pay explicit interest on credit card balances, since those credit card transactions are paid off 

by the end of the period. But the 80% who do pay interest pay very high interest rates.74  The 

Federal Reserve provides two interest rate series for credit card debt.  One, jse , includes interest 

only on accounts that do pay interest to the credit card issuing banks, while the other series, 𝑒𝑗𝑠, 

includes the approximately 20% that do not pay interest.  The latter interest rate is thereby lower, 

since it is averaged over interest paid on both categories of accounts.  Since the representative 

consumer is aggregated over all consumers, 𝑒𝑗𝑠 is always less than jse  for all j and s.  The 

                                                 

 

exceeded the interest rate paid by banks on deposit accounts and on all other monetary assets used in the CFS 

Divisia monetary aggregates, and has always been lower than the Federal Reserve’s reported average interest rate 

charged on credit card balances.  However, it is important to keep in mind that the benchmark rate in theory is the 

rate of return on an owned asset, pure capital.  Since that asset is owned by its investors, it is fully secured.  While 

short term bank loans are assets to banks, some are unsecured.  For detailed information on CFS data sources, see 

Barnett, Liu, Mattson, and Noort (2013).  

     An alternative proxy for the benchmark interest rate has been proposed by Fixler and Zieschang (2016a,b).  They 

advocate using the financial firm’s overall funding portfolio as the benchmark asset and the cost of funding rate as 

the benchmark rate.  In macroeconomic research, we currently favor consistency with the CFS convention, the short 

term bank loan rate, which is easily available from the Federal Reserve.  But we recognize that the Fixler and 

Zieschang (2016a,b) proposal is very reasonable. 
74 The following statement is from www.motherjones.com/kevin-drum/2011/10/americans-are-clueless-about-their-

credit-card-debt.   "In the four working age categories, about 50% of households think they have outstanding credit 

card debt, but the credit card companies themselves think about 80% of households have outstanding balances."  

Since these percentages are of total households, including those having no credit cards, the percent of credit card 

holders paying interest might be even higher. 
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interest rate on rotating credit card balances, jse , is paid by all consumers who maintain rotating 

balances on credit cards.  But 𝑒𝑗𝑠 is averaged over both those consumers who maintain such 

rotating balances and hence pay interest on contemporaneous credit card transactions (volumes) 

and also over those consumers who pay off such credit card transactions before the end of the 

period, and hence do not pay explicit interest on the credit card transactions.  The Federal 

Reserve provides data on both jse  and 𝑒𝑗𝑠. Although 𝑒𝑗𝑠 is less than jse ,  𝑒𝑗𝑠 also has always been 

higher than the benchmark rate.      

The expected interest rate, 𝑒𝑗𝑠, can be explicit or implicit, and applies to the aggregated 

representative consumer.  For example, an implicit part of that interest rate could be in the form 

of an increased price of the goods purchased or in the form of a periodic service fee or 

membership fee.  But Barnett, Chauvet, Leiva-Leon, and Su (2016) use only the Federal 

Reserve’s average explicit interest rate series, which is lower than the one that would include 

implicit interest. Nevertheless, that downward biased explicit rate of return to credit card 

companies, 𝑒𝑗𝑠,  aggregated over consumers, tends to be very high, far exceeding 𝑅𝑠, even after 

substantial losses from fraud. 

10. Conclusion 

In this paper a monetary production model of financial firms is employed to investigate supply-

side monetary aggregation augmented to include the credit card transactions services produced 

by those firms. Financial firms are viewed to produce monetary services and credit card 

transactions services as outputs through financial intermediation. The nature of financial firms’ 
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outputs is related to their role in the transaction technology underlying the payment mechanism 

in the economy.  

Much work remains to be done, including theoretical generalizations with weakened assumptions 

and empirical applications.75  The most challenging generalizations could permit incomplete 

contingent claims markets and asymmetric information to explain the appearance of risk averse 

behavior by financial firms.  But our initial theoretical results indicate the following tentative 

conclusions. Financial firm outputs of demand deposits, time deposit services, and credit card 

transactions services can be aggregated to produce an output aggregate, which then enters an 

aggregate services supply function for the financial firm. When all outputs are separable from 

inputs, there exists a single output aggregate, and hence the use of a single output aggregate can 

be justified in the formulation and estimation of the financial firm’s production technology.  The 

theory can be implemented to investigate the role of financial intermediaries in the production of 

inside money, which plays a role in the transmission mechanism of monetary policy.  Further 

generalization could permit investigation of the role of shadow banking in central bank policy.   

The theoretical and empirical problems previously associated with the inability to include credit 

card transactions services in financial intermediary output are solved.  

                                                 

 

75 Empirical results in this tradition, but with credit card services omitted, can be found in Barnett and Hahm (1994), 

Barnett and Zhou (1994), Barnett, Kirova, and Pasupathy (1995), and Hancock (1991). 
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