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Abstract

Porous medium equation (PME) has been found in many applications of the phys-

ical sciences. The equation is nonlinear, degenerate, and in many situations has a

free boundary, which altogether pose great challenges for mathematical and numerical

analyses. In contrast with the mathematical development of PME, which began in the

1950s and has since had much success, studies of numerical solution did not appear

until the 1980s. Though a significant progress has been made since then for the 1D set-

ting, only limited success has been observed for 2D cases. In this dissertation, we will

propose several moving mesh methods which improve the accuracy and convergence

order of the PME numerical solution.

iii



Acknowledgements

I would like to thank the Creator of the universe, the Lord Jesus Christ, who not only

made me in His image, but also has given me life abundant, not only in this world, but

also in that which is to come. I thank Him for having led me in every detail and aspect

toward finishing my secular education.

I would like to express my gratitude toward my dearly beloved parents who

have made many great sacrifices to raise me, and also to support my long-term edu-

cation in the United States. I am deeply thankful for Pastor Chris Matthews and his

family, because they have loved and cherished me as a family member, and have sup-

ported me spiritually and emotionally for most of my life in Kansas. I am also indebted

to my brothers and sisters of Smoky Valley Baptist Church (Lindsborg, KS) and Cen-

tropolis Baptist Church (Centropolis, KS, especially Pastor Nelson and his wife Lois)

for their Christlike love, care, and hospitality toward me, by whom also I am encour-

aged to love and serve God with all my heart. I would like to thank the Morains (Glen

and Karen), along with many former high school teachers of Canyonville Christian

Academy (Canyonville, OR) for making great impacts in my life through their Christ-

honoring walks and virtuous lives.

I would like to honor my Uncle and Aunt Ten (“10”), because they not only

loved me greatly, but also first gave me the idea of growing up and getting a doctor-

ate. I am especially thankful to Mr. Rosenborg, my former and beloved high school

Math teacher and mentor, who in 2004 expressed his belief in God’s divine will for

me to obtain a PhD in Mathematics, and who has encouraged and inspired me to study

well in the discipline ever since. I am greatly indebted to the late Dr. John Murphy,

iv



my beloved professor who had taught me Math for over four years at Bethany College

(Lindsborg, KS), and had prepared me much for my graduate study. I am also thankful

to Dr. Adebanjo Oriade, my former Physics professor at Bethany College, who dili-

gently took time to teach and inspire me to use Linux operating system, the tool which

has proven invaluable to me for my research, learning, and dissertation at the graduate

school. I would like to thank Professor Van Tassel and Professor Eric Monder, my

former English teachers at Bethany College, for taking great efforts to train me in the

great arts of English writing and communication.

I would like to thank my advisor, Professor Weizhang Huang, for accepting me

as his student and training me to do research for over five years. Without his vision,

guidance, assistance, and support, my thesis would never have succeeded. I would also

like to thank Professor Erik Van Vleck, Professor Xuemin Tu, and Professor Hongguo

Xu for having various parts in teaching me the great arts of Numerical Analysis and

Computational Mathematics, and also many other professors and instructors who have

taught me other Mathematical disciplines throughout my graduate school career.

I would like to acknowledge my gratitude toward the staff members and admin-

istrators of our Math department, and also of our university (including the International

Student Service) for having various parts in helping me, and insuring my well-being

and comfort as a student and an employee throughout the past seven years.

The computational aspects of my research for this dissertation were made pos-

sible by the Information Technology equipments of the University of Kansas, and also

of our Math department. I am particularly indebted to the Advance Computational Fa-

cility (ACF) “Supercomputer,” which my university invested in 2014, and also to the

talented technicians who have worked diligently behind-the-scene, and have assisted

me tremendously with the training and usage of the system.

I would like to express my great gratitude to our university and department for

v



having supported me financially for nearly seven years, not only through entrusting

me with a beneficial GTA position, but also through the many summer scholarships,

fellowship, grant, and awards throughout my graduate career. I also greatly appreciate

each and everyone of my students who have sat under my teaching in the past seven

years; without them, there would have been less happiness, excitement, and fulfillment

in my journey through the PhD program.

vi



Contents

1 Introduction 1

2 Background 9

2.1 Applications of the porous medium equation . . . . . . . . . . . . . . . . . . . . . 9

2.2 The mathematical theory of PME . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Derivation of the Porous Medium Equation . . . . . . . . . . . . . . . . . 12

2.2.2 Weak solution and properties . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Propagation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Barenblatt-Pattle solution to the PME . . . . . . . . . . . . . . . . . . . . . . 19

2.4 State of the art of numerical methods for solving PME . . . . . . . . . . . . . . . 24

2.5 The moving mesh finite element method . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Linear Finite Element Discretization . . . . . . . . . . . . . . . . . . . . 30

2.5.2 The MMPDE method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Solution procedure for the embedding approach . . . . . . . . . . . . . . . 37

2.5.4 Discretization and mesh movement for the nonembedding method . . . . . 38

3 The UE-Method: An embedding numerical solution for the U-formulation of PME 41

3.1 The Barenblatt-Pattle numerical solution . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Application to problems with complex solution’s support . . . . . . . . . . . . . . 46

3.3 Numerical experiment for PME with variable exponent and absorption . . . . . . . 49

3.4 Some results for 3D setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



4 The U-method: A nonembedding numerical solution for the U-formulation of PME 67

4.1 Effect of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Effect of ∆∆∆tttmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Effect of mesh adaptation strategies . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Effect of PME parameter m on the solution . . . . . . . . . . . . . . . . . . . . . 74

4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 The V-method: A nonembedding numerical solution for the V-formulation of PME 82

5.1 Effect of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Effect of ∆∆∆tttmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Effect of mesh adaptation strategies . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Effect of PME parameter m on the solution . . . . . . . . . . . . . . . . . . . . . 90

5.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 A discussion on the VE-method . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusion and further remarks 99

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



List of Figures

2.1 Loss of regularity in a PME solution as time evolves. . . . . . . . . . . . . . . . . 16

2.2 The smoothing effect on the free boundary of PME solution as time evolves. . . . . 19

2.3 Typical Barenblatt-Pattle solutions 1D. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Typical Barenblatt-Pattle solutions 2D. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The two typical discretization approaches for free boundary problem. . . . . . . . 30

2.6 The outward normal directions to each boundary point of a PME solution. . . . . . 39

3.1 Convergence history for different values of τ . . . . . . . . . . . . . . . . . . . . . 43

3.2 Convergence history for the three meshing strategies as N (the number of the ele-

ments) increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The meshes (closer view near (-0.35, -0.35)) and computed solutions at t = T

obtained with uniform and arclength- and Hessian-based adaptive meshes (N =

25600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Convergence history for the UE-method applied on uniform and Hessian-based

meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Example 3.1.1. The final mesh (close view near (-0.35, -0.35)) and computed

solution for m = 3 with the Hessian-based mesh adaptation (N = 25600). . . . . . 55

3.6 Observation of oscillations in the UE-method. . . . . . . . . . . . . . . . . . . . . 56

3.7 Convergence history of the UE-method with Hessian-based adaptivity in 3D. . . . 56

3.8 Example 3.2.1. An adaptive mesh and the corresponding computed solution at

various time instants (N = 14400). . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



3.9 Example 3.2.2. An adaptive mesh and the corresponding computed solution at

various time instants (N = 14400). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Example 3.2.3. A computed solution is shown at various time instants (N = 10000). 59

3.11 Example 3.2.4. The cross section at y = 0 of a computed solution is shown at

various time instants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Example 3.2.4. A computed solution is shown at various time instants (N = 40000). 61

3.13 Example 3.3.1. An adaptive mesh and the corresponding solution at various time

instants (N = 40000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.14 Example 3.3.2. An adaptive mesh and the corresponding solution at various time

instants (N = 25600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.15 Example 3.3.3. An adaptive mesh and the corresponding solution at various time

instants (N = 25600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.16 Example 3.3.3. The cross section at y = x of a computed solution is shown at

various time instants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.17 Example 3.3.4. An adaptive mesh and the corresponding solution at various time

instants (N = 25600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Effects of τ = 10−2 on mesh movement and accuracy for the U-method. . . . . . . 70

4.2 Effects of τ = 10−4 on mesh movement and accuracy for the U-method. . . . . . . 71

4.3 Convergence history of the method for various fixed maximal time steps (original

formulation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Convergence history of the U-method for the three meshing strategies. . . . . . . . 73

4.5 Convergence history of the U-method. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Plot of a representative mesh of the U-method for m = 3 (N = 5763). . . . . . . . . 76

4.7 Plot of a representative numerical solution by the U-method for m = 3 (N = 5763). 77

4.8 Example 4.5.2. A computed solution is shown at various time instants (N = 3743). 79

4.9 Example 4.5.2. The cross section at y = 0 of a computed solution is shown at

various time instants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



4.10 Example 4.5.3. A computed solution is shown at various time instants (N = 3242). 81

5.1 The V-formulated Barenblatt-Pattle solutions for PME. . . . . . . . . . . . . . . . 85

5.2 Effect of different values of τ on the outcome of the moving mesh (m = 2). . . . . 87

5.3 Convergence histories for two different choices of τ (m = 2). . . . . . . . . . . . . 88

5.4 Convergence histories for different choices of ∆tmax (m = 3). . . . . . . . . . . . . 89

5.5 Representative meshes for the Hessian-based and boundary-based mesh adaptations. 90

5.6 Convergence histories for different adaptation strategies. . . . . . . . . . . . . . . 91

5.7 Convergence histories for different parameters m for two methods of moving mesh. 92

5.8 Example 5.5.1. The final mesh (close view near (-0.35, -0.35)) and computed

solution for m = 3 with the Hessian-based mesh adaptation (N = 10171). . . . . . 93

5.9 Example 5.5.1. The final mesh and computed solution for m = 3 (N = 40459). The

mesh nodes are deliberately clustered toward the free boundary. . . . . . . . . . . 94

5.10 The VE-method: Convergence histories for different values of m. . . . . . . . . . . 95

5.11 Example 5.5.2. A computed solution is shown at various time instants (N = 4011). 96

5.12 Example 5.5.2. The cross section at y = 0 of a computed solution is shown at

various time instants (N = 4011). . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.13 Example 5.5.3. A computed solution is shown at various time instants (N = 3242). 98

xi



Chapter 1

Introduction

In this thesis, we seek to solve numerically the porous medium equation (PME)

ut = ∇ · (|u|m∇u) , (1.1)

from which we pose a Dirichlet initial-boundary value problem (IBVP) in two dimensions,


ut = ∇ · (|u|m∇u), in Ω× (t0,T ]

u(xxx, t0) = u0(xxx), on Ω

u(xxx, t) = 0, on ∂Ω× (t0,T ]

(1.2)

where Ω ∈ R2 is a bounded polygonal domain, u0(xxx) is a given initial solution, and m ≥ 1 is a

physical parameter. PME (1.1) is a nontrivial generalization of the heat equation ut = ∆u. This

equation is found in many areas of the physical sciences, which include, for example, flow of gas

in porous medium, incompressible fluid dynamics, nonlinear heat transfer, and image processing;

more examples can be found in [46]. When (1.1) is studied in the context of gas flow in porous

medium, u represents the density of the gas, |u|m the pressure, u∇(|u|m) the flux, ∇(|u|m) the veloc-

ity, and m is the isentropic coefficient. For convenience, we refer to (1.2) as the “U-formulation”

for PME.
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The equation itself represents a nonlinear diffusion process and possesses many interesting

properties. One of the most notable among these is its degeneracy at locations of the domain where

the solution is zero, which induces the peculiar “finite propagation” phenomenon (in contrast with

the heat equation’s “infinite speed of propagation”), meaning, if the initial solution u0(xxx) has a

compact support, the solution will have a compact support for any time t > t0. This in effect creates

a free boundary which delineates the zero and nonzero regions of the solution, and propagates with

a finite speed for all time. Contrary to the heat equation which smooths out its initial solution, PME

solution can become irregular even in cases where it has a smooth initial solution (See Fig. 2.1).

Moreover, for some special initial solutions, IBVP (1.2) exhibits the waiting time phenomenon

in which the free boundary is stationary initially, but will eventually move after a finite amount

of time, called the “waiting time,” has elapsed [49]. Developments of mathematical theory for

PME began in the 1950s (and some of its generalizations in the late 1980s), and since then much

progress has been achieved and exhibited through a large quantity of literature, which includes

the earlier work by Oleı̆nik et al. [39], Kalašnikov [29], Aronson [2], the more recent work by

Shmarev [42, 43], and the monograph by Vázquez [46] and the references therein.

In contrast, numerical studies on PME had a later start, but have attracted much attention from

many researchers for the past forty years. The earliest work, to the best knowledge of the author,

dates back to 1983 by Rose [40] who, by using a regularization approach and taking the regular-

ization parameter as ε =O(h
2m+4

m2+4m+2 ), shows that the error for a P1 finite element (FE) – backward

Euler (for time) approximation of PME is bounded by

(
∑
n

∆t‖un
h−u‖m+2

Lm+2(Ω)

) 1
m+2

≤C

(
∆t

1
m+1 +

(
ln
(

1
h

)) 1
(m+1)(m+2)

h
2

m+1

)
, (1.3)

where h is the maximum element diameter and un
h is the numerical approximation of u at t = tn.

Since then, various FE approximations have been developed, and their associated error estimates

have been obtained. For example, Nochetto and Verdi [38] study a P1 finite element – 1st order

semi-implicit approximation on a class of degenerate parabolic PDEs, and show that the error of

2



approximation for PME (as its special case) is bounded by

‖uh−u‖L∞(0,T ;H−1(Ω))+‖(uh)
m+1−um+1‖L2(0,T ;L2(Ω))+

∥∥∥∥ˆ t

0
((uh)

m+1−um+1)

∥∥∥∥
L∞(0,T ;H1(Ω))

≤C
(

h2

ε
+

h4

ε2∆t
+∆t

) 1
2

(1.4)

= O(h
m+2

2(m+1) ), if ∆t = O(h
m+2
m+1 ), ε = O(h

m
m+1 ) ,

which is in fact an improvement on the result of Rose [40]. Besides, error bounds have been found

in various norms as well, especially for the P1 finite element – backward Euler approximation on

quasi-uniform meshes; some examples of these are

‖uh−u‖L∞(0,T ;H−1(Ω)) ≤C

(
∆t +

(
ln
(

1
h

)) 2m+3
2m+2

h

)
(1.5)

by Rulla and Walkington [41],

‖uh−u‖L2(0,T ;L2(Ω)) ≤Ch
m2+6m+8

6m2+14m+8 when ∆t = O(h
5m+4

2m ) (1.6)

by Ebmeyer [16], and

‖uh−u‖Lm+2(0,T ;Lm+2(Ω)) ≤C
(

∆t
1
2 +h+h

1
m+1(

dm
2m+4+1)

) 1
m+2 (1.7)

by Wei and Lefton [47], where d is the space dimension. It can be easily seen from these error

estimates that the convergence rate is first order at best and decreases as m gets higher; e.g. [40]

shows that the order of convergence diminishes to zero as m→ ∞ (cf. Eqn. (1.3)). Further,

given what we have known concerning the regularity of PME solution, some of these estimates

have been shown to be optimal in their corresponding norms. Besides these, error estimates in

quasi-norms have been obtained by Ebmeyer and Liu [17], and more recently, Duque et al. [13]

establish L1+max(γ/2) error bounds for the approximation of a general order continuous Galerkin

3



in space and a general order discontinuous Galerkin in time for PME with a variable exponent

m = γ(xxx). Moreover, among the approaches for finding these estimates, Emmrich and Šiška [18]

have used the theory of monotone operators to prove that a Galerkin finite element – backward

Euler approximation converges to the weak solution of PME.

Besides the popular continuous Galerkin FE methods, Zhang and Wu [49] applies a high order

local discontinuous Galerkin (LDG) FE method for the one-dimensional PME on a uniform mesh.

The major strength of the method is its effectiveness in eliminating spurious oscillations in the

numerical solution near the free boundary, by which a higher convergence order is attained within

the solution’s support and away from the free boundary.

Due to the presence of a free boundary and (in many situations) the low regularity of PME

solution (especially one with very steep gradient and corner shape near/at the free boundary), a

numerical solution will need more resolution in the mesh in order to produce acceptable results.

For the traditional uniform mesh approach, this requires in most situations a very fine mesh to

satisfy this need. Typically, usage of a fine mesh is feasible for 1D setting; however, for a larger-

scale problem, especially in higher dimensions (such as 2D or 3D), a fine mesh might be very

costly in terms of computer memory and processing time, and in many cases impractical. Indeed,

this particular challenge in such situations (for which PME is an interesting example) has led to

studies of mesh adaptation methods, which began around the 1980s. Typically, there are three

types of mesh adaptation. The h-method (where “h” is the standard notation which represents the

resolution of a spacing discretization, e.g. the size of a mesh element) seeks to improve accuracy

by adding more mesh points in regions of the domain where the error in the solution is large. This

approach, though intuitive (and in many ways natural), requires a continual increment of mesh

points, which in some cases can be forbidding in terms of memory usage. Another approach–the

p-method (where “p” stands for “polynomials”), seeks to improve the accuracy by successively

increasing the order of polynomials in the solution’s interpolation. Though the p-method improves

over the h-method in that it does not add more points into the mesh, its implementation in many

situations (e.g. with complicated boundary) is much more difficult. On the other hand, the r-

4



method (where “r” stands for “relocation”) or the adaptive moving mesh method (or the moving

mesh method in short) maintains the mesh structure (i.e. not introducing more mesh points or

elements into the mesh) throughout the process, and seeks to move the mesh points to regions of the

solution’s domain that require more definition. Over the years, a number of moving mesh methods

have been developed; among these are the ALE (Arbitrary Lagrangian-Eulerian) method by Hirt

et al. [21], the MFE (moving finite element) method by Miller and Miller [36], the deformation

map method by Liao and Anderson [35], the mesh-rezoning method by Li et al. [33], the method

based on geometric conservation law by Cao et al. [11], and the method based on the conservation

of fraction mass by Baines et al. [5]. More information can be found in [3, 6, 8, 10, 26, 45] along

with the references therein. Moreover, in some sophisticated applications, the r-method can also

be combined with other adaptation techniques (e.g. the h-method and the p-method) to produce

greater accuracy and robustness.

Intuitively, an adaptive moving mesh method is more desirable, and apparently a more natural

choice for a free-boundary problem such as PME, since the moving mesh can follow free bound-

aries dynamically, and adaptivity has potential in improving accuracy, especially for a solution

having low regularity and/or steep front. Indeed, mesh adaptation methods for PME have gained

more attention and active studies from many researchers since the late 1990s. For example, in

1999, Budd et al. [9] apply the Moving Mesh PDE (MMPDE) moving mesh method [25, 26] for

finding self-similarity solutions of one-dimensional PME, where a special monitor function is de-

signed for preserving the scaling invariance of PME. In a 2005-2006 series of papers [4, 5, 7] (also

see the review paper [6]), Baines et al. develop a moving mesh FE method for PME in one and

two dimensions, where the movement of mesh points is based upon conserving a local proportion

of the total mass that is present in the projected initial data. In simulating the standard/benchmark

Barenblatt-Pattle (BP) special solutions, the method achieves a second order convergence when

applied to (1.2) for m = 1 for both the 1D and 2D settings [5, 6]. However, for cases of m > 1

(with a representative example of m = 3 in [5]), this method only yields a first order convergence

in 1D. Nevertheless, a second order convergence can be recovered if an optimal initial mesh, com-
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puted via a special algorithm, is used. Unfortunately, Baines et al. have not yet produced such

an optimal mesh for the same problem in 2D, since the mentioned algorithm is significantly more

computationally expensive for higher dimensional settings. Recently, Duque et al. [14, 15] applies

the MMPDE moving mesh FE method for PME with variable exponents with/without absorption.

However, when tested for a class of special solutions, the method only yields a first-order conver-

gence.

In this dissertation, an adaptive moving mesh finite element method is developed and studied

for the numerical solution of PME. Similar to some previous works such as [14, 15], our method

will be based on an MMPDE; but unlike these, it has a few significant improvements. First, our

mesh generation method is concerned with minimizing an energy functional (cf. (2.42)) based on

the equidistribution principle and alignment condition (cf. Eqn. (2.40) and (2.41)). The equidistri-

bution principle in the moving mesh context essentially means a relocation of the mesh points, so

as to make a quantity of interest (such as the interpolation error) constant on each mesh element.

While the equidistribution concept was developed in the 1970s and exhibited in the works of de

Boor and Burchard (See [48] for references), the alignment condition has been recently developed

by Huang [22]. Secondly, unlike [14, 15] where the mesh adaptivity is controlled by a scalar

function, the mesh generation and adaptation of our method are controlled by a matrix-valued

function, called a metric tensor. The usage of such tensors is more advantageous since it holds

information about the solution which effectively directs the MMPDE method to not only control

the size of mesh elements, but also their shape and orientation. This in effect causes the mesh to

align more naturally with the geometry of the physical solution, whereas the method using a scalar

mesh adaptation function does not have such an advantage. In this work, we consider three basic

meshing strategies, with an additional one to be mentioned. The first one is nonadaptive and uses

a uniform mesh. The second, called arclength-based adaptivity, uses an adaptive mesh based on

minimizing the error estimate derived from a piecewise constant interpolation. The third, called

Hessian-based adaptivity, seeks to move the mesh points in order to minimize the error estimate

derived from a piecewise linear interpolation. Our moving mesh method achieves a breakthrough
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with the Hessian-based adaptivity, especially in dealing with the famous Barenblatt-Pattle solutions

(cf. (2.14)), notorious for their lack of regularity at the free boundary when m > 1.

Generally speaking, when dealing with free/moving boundary problems, there are two major

approaches. The first, which can be called “immersed-boundary” or “embedding” approach, per-

forms computations on a fixed (usually rectangular) domain larger than the support of the solution

at all time (cf. Fig. 2.5a). Though more memory and more CPU time are required for having

extra mesh points outside the support of the solution, and though the solution unavoidably has a

lower regularity due to its extension to the larger domain, this approach is very robust for han-

dling more complicated structures in the solution’s geometry and in the differential equation itself,

since we do not need to explicitly trace the free boundary using Darcy’s law. The second strategy,

which we term “nonimmersed-boundary” or “nonembedding approach”, discretizes only within

the support of solution (cf. Fig. 2.5b), where at each new time level, the boundary points have

to be moved manually via Darcy’s law, and the mesh points then need to be redistributed over the

support. Though not having the robustness in dealing with more complex geometric structures

in some solutions, and though the accuracy is highly dependent on the precision of Darcy’s law

computation, the approach itself is advantageous in terms of memory economy and accuracy. The

reason for the former is obvious (as we need not to have extraneous mesh points), but for the

latter, it is because when considered only within its support, the solution has a higher regularity

than it does when considered on a larger domain containing its free boundary. Additionally, for

this nonembedding approach, besides the arclength-based and Hessian-based mesh adaptations,

we also consider one that specifically places more mesh points at the free boundary; we will term

this the “boundary-based” adaptivity.

The outline of the work is as follow. Chapter 1 gives an introduction to the thesis, highlights

some significant contributions, and presents some major ideas. Chapter 2 presents some back-

ground materials which include the derivation of PME, the well-posedness of (1.2), and some

helpful facts and properties regarding the Barenblatt-Pattle solutions. Besides, we will summarize

some significant contributions to the numerical solution for PME. In the last part of the chapter,
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we will describe the moving mesh finite element method which includes the linear finite element

discretization of a PDE on a moving mesh, and the generation of an adaptive moving mesh based

on the MMPDE approach (for both the embedding and nonembedding approaches). In the sub-

sequent three chapters, we will present three methods for PME simulation, along with their sup-

porting numerical experiments. Chapter 3 presents our first embedding approach, called the UE-

method, where “U” stands for the original formulation in the u-variable–cf. (1.2), and “E” stands

for “embedding.” In the numerical section of the chapter, besides testing the method against the

Barenblatt-Pattle solution for accuracy, we will also illustrate its robustness via problems which

have solutions with, for example, complex supports and waiting time phenomenon. Addition-

ally, the UE-method’s flexibility is demonstrated in more generalized equations of PME, including

those with absorption terms and variable exponents. The second method is nonembedding and

based on the U-formulation, and is presented in Chapter 4. Chapter 5 presents a very similar nu-

merical method as in Chapter 4, but it seeks the PME solution indirectly via its “Mathematician’s

pressure” v := |u|m
m through a modified statement of the original IBVP (1.2)–cf. (5.5), called the “V-

formulation.” The same chapter ends with a discussion on computing PME via the V-formulation

by the embedding approach. Lastly, Chapter 6 gives a conclusion and also comments for future

research.
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Chapter 2

Background

In this chapter, we present a brief summary of the porous medium equation (PME) regarding its

origin (including its derivation and historical motivation), applications (both classical and mod-

ern), and Mathematical properties. We will also introduce the Barenblatt-Pattle solutions, a class

of special solutions for PME frequently used for benchmarking numerical methods in literature,

and investigate some regularity properties of these solutions, which are relevant for some numerical

observations in the subsequent chapters. Some significant contributions to the numerical solution

of PME are highlighted (in chronological order) in Section 2.4, and Section 2.5 presents our nu-

merical method.

2.1 Applications of the porous medium equation

The PME

ut = ∇ · (|u|m∇u) , m≥ 1 , (2.1)

is a nonlinear and degenerate parabolic partial differential equation, whose applications are found

in many fields of the mathematical and physical sciences. The following applications, which are

most typical for this type of equation, are referenced from the recent monograph by Vázquez [46].
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1. Gas flow through a porous medium.

Movements of an ideal gas in a homogeneous porous medium can be modeled in terms of

its density, pressure, and velocity, and are solely based on three relationships among these

quantities, namely (1) the mass balance equation, (2) Darcy’s law, and (3) the equation of

state [46]. The model has the form

∂ρ

∂ t
= c∆(ρm) ,

where c is a constant depending on the three physical quantities mentioned. The equation

can be cast into the form of the standard PME in (2.1).

2. Nonlinear heat transfer.

An application which is of historical significance for the development of PME is the theory of

heat propagation, where the thermal conductivity depends on the temperature. The governing

model, in the absence of heat source and sink, generally has the form

cρ
∂T
∂ t

= ∇ · (κ∇T ) , (2.2)

where T is the temperature, c is the specific heat, ρ is the density of the medium, and κ is the

thermal conductivity. Equation (2.2) is a more general form of the standard PME in (2.1).

3. Groundwater flow and Boussinesq’s equation.

A problem arises in fluid dynamics where we need to model the flow of an incompressible

fluid through a porous layer. Under some simplification of the hypotheses, the boundary of

the fluid’s occupied region can be modeled by Boussinesq’s equation

∂h
∂ t

= κ∆(h2) ,

where h represents the flow’s boundary, κ depends on the gravity constant, the permeability
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of the medium, and the density and viscosity of the fluid. Again, this equation can be cast

into the standard form of PME in (2.1).

4. Population dynamics. In biology, the population dynamics of a single species can be repre-

sented by the following equation

∂u
∂ t

= ∇ · (κ∇u)+ f (u) , (2.3)

where u models the density of the population, f (u) specifies an interaction within the species,

and κ is a diffusivity which depends on the density. As indicated in [46, pg. 25], a reasonable

assumption on this diffusivity is that

κ = φ(u) ,

where φ(·) is increasing. This is due to the tendency of the species to avoid crowding ([46]).

Under the assumption that κ = φ(u) = Su (where S is a constant) and that f (u) = 0, (2.3)

becomes
∂u
∂ t

= ∇ · (Su∇u) .

This equation again can be cast into the standard form (2.1) of the PME.

5. Other applications.

PME can also be found in other areas of science and engineering, such as:

• Thin liquid film spreading under gravity.

• Unsaturated filtration.

• Immiscible fluids. Oil equations.

• Boundary layer theory.

• Spread of magma in volcanoes.

• Limits of kinetic and radiation models.
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• Limit of particle models.

• Diffusive coagulation-fragmentation models.

• Diffusion in semiconductors.

• Image processing.

• Some stochastic models.

The interested reader is referred to Vázquez’s monograph [46] for more information.

2.2 The mathematical theory of PME

2.2.1 Derivation of the Porous Medium Equation

The flow of an ideal gas through a porous medium involves its density ρ , its pressure p, and its

velocity VVV , and is governed by the following three empirical laws (with notation adapted from

[46]).

1. Mass balance:

ερt +∇ · (ρVVV ) = 0 , (2.4)

where ε ∈ (0,1) is the porosity of the medium.

2. Darcy’s law:

µVVV =−k∇p , (2.5)

where µ > 0 and k > 0 are the viscosity of the fluid and the permeability of the medium,

respectively.

3. The equation of state:

p = p0 ρ
γ , (2.6)

where p0 > 0 is a reference pressure, and γ is the polytropic exponent.
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Now, assume that ε , µ , k, and p0 are all constant, we can combine (2.5) and (2.6) and have

VVV =− k
µ

∇(p0 ρ
γ) .

By using this identity, (2.4) will become

ερt +∇ ·
(
−ρk

µ
∇(p0 ρ

γ)

)
= 0 ,

ρt +∇ ·
(
−ρ p0k

εµ
∇(ργ)

)
= 0 ,

ρt−
p0k
εµ

∇ · (ρ∇(ργ)) = 0 ,

ρt−
p0k
εµ

∇ ·
(
ργρ

γ−1
∇ρ
)
= 0 ,

ρt−
p0γk
εµ

∇ · (ργ
∇ρ) = 0 .

Hence, we have

ρt = c∇ · (ρm
∇ρ) , (2.7)

where

c =
p0γk
εµ

and m = γ .

Moreover, by a time rescaling t̃ = ct, we can rewrite (2.7) into

ρt̃ = ∇ · (ρm
∇ρ) ,

from which we have a standard form of the porous medium equation (2.1).
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2.2.2 Weak solution and properties

Given a bounded domain Ω⊂Rd , d ≥ 1, which has a Lipschitz continuous boundary Γ := ∂Ω, we

consider the homogeneous Dirichlet initial-boundary value problem


ut = ∇ · (|u|m∇u) , in Ω× (t0,T ]

u(xxx, t0) = u0(xxx) , in Ω

u(xxx, t) = 0 , on ∂Ω× (t0,T ] ,

(2.8)

where the initial solution u0 ∈ L1(Ω). We would like to define a class of weak solutions for problem

(2.8). The following definition (adapted from [46, pg. 86]) gives a weak formulation to (2.8) and

additionally takes into account the initial condition.

Definition 2.2.1. A locally integrable function u defined in Ω× (t0,T ] is said to be a weak

solution of (2.8) if

1. u ∈ L1(Ω× (t0,T )) and um+1 ∈ L1(t0,T : W 1,1
0 (Ω)); and

2. u satisfies the identity

¨
Ω×(t0,T )

(|u|m∇u ·∇ϕ−uϕt) dxxxdt =
ˆ

Ω

u0(xxx)ϕ(xxx, t0) dxxx (2.9)

for each test function ϕ ∈C1(Ω× [t0,T ]), where ϕ|∂Ω = 0 and ϕ(·,T ) = 0.

The following theorem [46, pg. 88] gives a sufficient condition for a function u(xxx, t) to be a

weak solution of problem (2.8), which features an intuitive limiting of the solution to u0 as t→ 0.

It can also be used as an alternative definition for a weak solution.

Theorem 2.2.1. Let u ∈ L1(Ω× (t0,T )) be such that

1. um+1 ∈ L1(t0,T : W 1,1
0 (Ω));
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2. u satisfies the identity

¨
Ω×(t0,T )

(|u|m∇u ·∇ϕ−uϕt) dxxxdt = 0 (2.10)

for each test function ϕ ∈C∞
c (Ω× (t0,T )); and

3. u(t) ∈ L1(Ω) for each t > 0, and u(t)→ u0 as t→ t0 in L1(Ω),

then, u is a weak solution to (2.8) according to Definition 2.2.1.

In literature, the results for existence and uniqueness of the weak solution to Problem (2.8) are

known. Here, we present a version of these results adapted from [46].

The following theorem, found in [46, pg. 93], says that a weak solution to (2.8) exists under

some mild analytical assumptions on u0.

Theorem 2.2.2 (Existence). Suppose the initial solution u0 ∈ L1(Ω), um+2
0 ∈ L1(Ω), and u0 ≥

0, then there exists a nonnegative weak solution to (2.8) (according to Definition 2.2.1) on the

time interval (t0,∞). Moreover, we have um+2 ∈ L∞(t0,T : L1(Ω)) for all T > 0, um+1 ∈ L2(t0,T :

H1
0 (Ω)), and also the energy estimate

¨
Ω×(t0,T )

||u|m∇u|2 dxxxdt +
ˆ

Ω

um+2(xxx,T )
m+2

dxxx≤
ˆ

Ω

um+2
0 (xxx)
m+2

dxxx . (2.11)

Furthermore, the weak solution satisfies the Comparison Principle: If u, û are weak solutions with

initial data such that u0 ≤ û0 a.e. in Ω, then u≤ û a.e in Ω× (t0,∞). In particular if u0 ≥ 0 in Ω,

then u≥ 0 in Ω× (t0,∞).

The following theorem says that a weak solution to (2.8), if it exists, is unique under some

further analytical assumptions on the solution [46, pg. 90].

Theorem 2.2.3 (Uniqueness). Given a weak solution u to (2.8), if we assume further that

um+1 ∈ L2(t0,T : H1
0 (Ω)) and u ∈ L2(Ω× (t0,T )), problem (2.8) has at most one weak solution.

15



Moreover, it is also known that PME solution can lose its regularity as time evolves. Fig. 2.1

gives an illustration, where the PME initial solution is smooth, but it gradually becomes irregular to

the point of developing very steep/infinite slope near/at the free boundary. More detailed discussion

on the regularity of PME solution can be found in [46].
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Figure 2.1: Loss of regularity in a PME solution as time evolves.

2.2.3 Propagation properties

In this subsection we would like to present some facts regarding the propagation of the support

of a PME solution. Unlike the classic heat equation which has the infinite speed of propagation,

the degenerate nature of the PME results in the finite propagation property and has attracted much

attention from researchers since the 1950s. Before stating the results relevant to our research,

for convenience, we will adopt the following notation from [46]. Let u be a continuous solution

defined in ΩT . We denote the positivity set of u as Pu and define it as the subset of ΩT whereon u

is positive, i.e.

Pu := {(xxx, t) ∈ΩT : u(xxx, t)> 0} .
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Additionally, we define

Pu(t) := {xxx ∈Ω : u(xxx, t)> 0}

as the positivity set only at time level t. Quite naturally, we can also define the support of u at time

t, Su(t), as the closure of Pu(t) in Ω, i.e.

Su(t) := Pu(t)
Ω
.

It is known that the positivity set of a PME solution is noncontracting ([46, pg. 335]), that is, for

every t0 < t1 < t2, Pu(t1)⊂Pu(t2). In fact, it is ever expanding, as we can see from the following

theorem [46, pg. 336].

Theorem 2.2.4. Let u be a nontrivial local solution of the PME defined in Ω× (t0,∞), where

Ω is connected. Then, every point of Ω is absorbed in finite time by the positivity set of u, i.e.

⋃
t>0

Pu(t)⊇Ω .

Moreover, any compact subset K of Ω is covered by Pu(T ) for some finite time T which depends

on m, d, the initial data, the geometry of Ω, and the distance between K and ∂Ω.

Notice that Theorem 2.2.4 also implies that Su(t) will cover Ω in finite time. Moreover, PME

solution u has the uniform finite propagation property, meaning that for t0≤ t1≤ t2, Su(t2) belongs

to a neighborhood of D(|t2− t1|) of Su(t1), where D is a continuous function R+ 7→ R+ with

D(0+) = 0, and D is also independent of the solution u [46, pg. 337-340]. Further, Su(t) expands

continuously in time, i.e. if Ω is bounded there exist uniform constants δ and C > 0 such that for

every 0 < h < δ , Su(t +h) is included in the neighborhood of radius Ch1/2 of Su(t), namely

S (t +h)⊂S (t)+BCh1/2(000) .

Consequently, the finite propagation property induces the free boundary Γ(t) := ∂Su(t), and the
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existence of which is formally stated in the following theorem [46] for a more general situation.

Theorem 2.2.5. Let u be a continuous and bounded strong solution of the PME defined in a

space-time cylinder Ω× [t0,T ) and assume that u(xxx, t0) vanishes in a ball B ⊂ Ω. Then, the free

boundary is a non-empty set.

In [42], Shmarev studies the Cauchy problem for the nonlinear degenerate parabolic equation

(in dimensions d = 1,2, and 3) in the form

ut = ∆(|u|m)−aup in Rd× (t0,T ] ,

where m > 1, p > 0, a ∈ R, and m+ p ≥ 2. The result is relevant to the porous medium equation

in our case, when parameter a = 0. In particular, it is shown that for each time t ∈ (t0,T ), the free

boundary Γ(t) := ∂Su(t) has the velocity

Γ
′(t) = lim

xxx→Γ(t)−

(
− m

m−1
∇(um−1)+∇Π

)
· n̂nn , (2.12)

where n̂nn denotes the unit outward normal to Γ(t) and Π(xxx, t) is a solution of the degenerate elliptic

equation

∇ · (u∇Π) = aup , Π = 0 on Γ(t) .

Formula (2.12) indeed is a generalized form of the classic Darcy’s law. For PME expressed in the

form of equation (2.8), the speed of the boundary is given by

Γ
′(t) = lim

xxx→Γ(t)−
−∇

(
|u|m

m

)
· n̂nn , (2.13)

which is the form of Darcy’s law to be used with the U-formulation of PME for the rest of the

dissertation. In addition, one of the fascinating phenomena of PME is the existence of a waiting

time for a certain type of initial solutions, where the free boundary does not move until a finite

amount of time has elapsed (See Examples 3.3.3, 4.5.2, and 5.5.2). Loosely speaking, from Darcy’s
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law given in (2.13), this phenomenon could be expected for initial solutions having vanishing

∇(|u|m) at the initial free boundary.

Another phenomenon worthy of our consideration is the high regularity of the free boundary.

While the solution of PME can lose its regularity, its free boundary always becomes smoother.

In fact, according to the work by Daskalopoulos and Hamilton [12], the free boundary enjoys C∞

regularity on (t0,T ), i.e. instantly after the initial time t0. Fig. 2.2 shows a simulation of the

free boundary of a PME solution, which initially encloses a square support. Notice that the free

boundary is turned into a circular shape after a finite time.
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Figure 2.2: The smoothing effect on the free boundary of PME solution as time evolves.

2.3 The Barenblatt-Pattle solution to the PME

A few classes of special solutions to PME have been discovered over the years; among these are

the Barenblatt-Pattle solutions. This special class of self-similar solutions has been widely used by

researchers to evaluate the accuracy of their numerical methods for PME over the past few decades.
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Figure 2.3: Typical Barenblatt-Pattle solutions 1D.

These solutions have the form

u(r, t) =


1

λ d(t)

(
1−
(

r
r0λ (t)

)2
) 1

m

, for |r| ≤ r0λ (t)

0, for |r|> r0λ (t)

(2.14)

where

m≥ 1 , r = |xxx|, λ (t) =
(

t
t0

) 1
2+dm

, t0 =
r2

0m
2(2+dm)

, (2.15)

and r0 > 0 is a given parameter. These solutions have some interesting characteristics; the most

notable among these is their regularity at/near the boundary. For the case of m = 1, the slope of the

BP solution is finite near the free boundary (see Fig. 2.3a, 2.4a). However, for cases where m > 1,

the slope of these solutions at/near the free boundary is very steep or infinite (see Fig. 2.3b, 2.4b)

and the regularity decreases as m increases; this causes great challenges for numerical simulation

of PME.

The following theorems offer some insights to the regularity of the Barenblatt-Pattle solutions.

They will be referred to later in Chapter 3, in connection with the convergence behavior of our first

moving mesh method.

Theorem 2.3.1. The Barenblatt-Pattle solution u in (2.14) belongs to H1(supp(u)) if m = 1.
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Figure 2.4: Typical Barenblatt-Pattle solutions 2D.

Moreover, for m > 1, u ∈W 1, m
m−1−ε(supp(u)), for some ε > 0.

Proof. We observe that for each time t and position xxx in the support of u, the BP solution takes the

form

u(r) = A
(
1−Br2) 1

m .

Without loss of generality, we consider the simplified situation where A = B = 1, i.e.

u(r) =
(
1− r2) 1

m , for 0≤ r ≤ 1 .

We observe also that near r = 1,

u(r)≈ (1− r)
1
m , for r ≈ 1 .

Now, in the polar coordinate system, we have

r =
√

x2 + y2 ,
∂ r
∂x

=
x
r
,

∂u
∂x

=
∂u
∂ r

∂ r
∂x

=
∂u
∂ r

x
r
=

x
r

∂u
∂ r

, and (2.16)

∂u
∂y

=
y
r

∂u
∂ r

.
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Now, for m = 1, u(r) = 1− r2 and we have

ˆ
supp(u)

|∇u|2 dxdy =
ˆ

supp(u)
(u2

x +u2
y) dxdy =

ˆ 2π

0

ˆ 1

0

(
∂u
∂ r

)2

r dr dθ

=

ˆ 2π

0

ˆ 1

0
(−2r)2 r dr dθ < ∞ ,

which implies that u ∈ H1(supp(u)). For the case m > 1, we consider

I =
ˆ

supp(u)
|∇u|α dxdy =

ˆ
supp(u)

(|∇u|2)
α

2 dxdy =
ˆ

supp(u)
(u2

x +u2
y)

α

2 dxdy

=

ˆ 2π

0

ˆ 1

0

[(
∂u
∂ r

)2
]α

2

r dr dθ

=

ˆ 2π

0

ˆ 1

0

(
1

m2

)α

2

(1− r)(
1
m−1)α r dr dθ .

In order for I < ∞, we must have

(
1
m
−1
)

α +1 > 0 =⇒ α <
m

m−1
.

Hence, u ∈W 1, m
m−1−ε(supp(u)), for some ε > 0, as concluded.

Theorem 2.3.2. If u is a Barenblatt-Pattle solution to PME given in equation (2.14), then√
det(H(u)) ∈ L

2
3 (supp(u)), where H(u) is the Hessian of u.

Proof. Similar to the proof of Theorem 2.3.1, we consider the simplified situation where

u(r) =
(
1− r2) 1

m , for 0≤ r ≤ 1 ,

and

u(r)≈ (1− r)
1
m , for r ≈ 1 .
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We would like to consider
√

det(H(u)), where

H(u) =

uxx uxy

uxy uyy

 .

For this, we compute

∂ 2u
∂x2 =

∂

∂x

(
∂u
∂x

)
=

∂

∂x

(
x
r

∂u
∂ r

)
(cf. (2.16))

=
∂

∂x

(
x

1
r

∂u
∂ r

)
= 1

(
1
r

∂u
∂ r

)
+ x

∂

∂x

(
1
r

∂u
∂ r

)
=

1
r

∂u
∂ r

+ x
[

∂

∂ r

(
1
r

∂u
∂ r

)
∂ r
∂x

]
=

1
r

∂u
∂ r

+
x2

r

[
∂

∂ r

(
1
r

∂u
∂ r

)]
.

Similarly, we have

∂ 2u
∂y2 =

1
r

∂u
∂ r

+
y2

r

[
∂

∂ r

(
1
r

∂u
∂ r

)]
,

∂ 2u
∂x∂y

=
xy
r

[
∂

∂ r

(
1
r

∂u
∂ r

)]
.

By direct computation, we have

√
det(H(u)) =

√
1
r

∂u
∂ r

∂ 2u
∂ r2 ≈

√
∂u
∂ r

∂ 2u
∂ r2 for r ≈ 1.

Since
∂u
∂ r
≈ (1− r)

1
m−1 and

∂ 2u
∂ r2 ≈ (1− r)

1
m−2 ,

we further have √
det(H(u))≈ (1− r)

1
m−

3
2 .

Now we consider the integral

I =
ˆ

supp(u)

[√
det(H(u))

]α

dxdy≈
ˆ 2π

0

ˆ 1

0
(1− r)(

1
m−

3
2)α r dr dθ ,
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where I < ∞ requires (
1
m
− 3

2

)
α +1 > 0 =⇒ α <

2m
3m−2

.

Hence, for each m≥ 1, we can find an ε > 0 such that

√
det(H(u)) ∈ L

2m
3m−2−ε(supp(u)) .

Moreover, since
2m

3m−2
>

2
3
,

we can further requires that the same ε satisfies

2m
3m−2

− ε >
2
3
,

which implies √
det(H(u)) ∈ L

2m
3m−2−ε(supp(u))⊂ L

2
3 (supp(u)) .

Hence, for each m≥ 1, √
det(H(u)) ∈ L

2
3 (supp(u)) .

2.4 State of the art of numerical methods for solving PME

The following is a historical highlight of some significant contributions to the numerical solution

of PME.

1. Rose (1983)

Rose [40] analyzes a fully discrete scheme applied to PME (in dimensions 1, 2, and 3),

where a linear finite element method in space and a backward Euler discretization in time

are used. The analysis relies on regularizing the original PME, by perturbing the diffusion
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coefficient with a parameter ε =O(h
2m+4

m2+4m+2 ), so that the resulting equation is not degenerate

at the boundary of the solution’s support. An error estimate is given, which says

(
∑
n

∆t‖un
h−u‖m+2

Lm+2(Ω)

) 1
m+2

≤C

(
∆t

1
m+1 +

(
ln
(

1
h

)) 1
(m+1)(m+2)

h
2

m+1

)
, (2.17)

where h is the maximum element diameter and un
h is the numerical approximation of u at

t = tn. The rate of convergence given is somewhat pessimistic, which indeed vanishes as m

goes to infinity.

2. Nochetto and Verdi (1988)

In [38], the Nochetto and Verdi deal with a more general equation in the form

ut−∇x · [∇xv+b(r(v))]+ f (r(v)) = 0 , (2.18)

which is not only applicable to the PME, but also the two-phase Stephan and the nonstation-

ary filtration problems. The numerical solution is based on a discretization with linear finite

element method in space, and a semi-implicit scheme in time, where the role of numerical

integration is considered in the analysis. The error estimate of the method for the porous

medium equation (Corollary 3 of [38, pg. 807]) is given as

‖uh−u‖L∞(0,T ;H−1(Ω))+‖(uh)
m+1−um+1‖L2(0,T ;L2(Ω))+

∥∥∥∥ˆ t

0
((uh)

m+1−um+1)

∥∥∥∥
L∞(0,T ;H1(Ω))

≤C
(

h2

ε
+

h4

ε2∆t
+∆t

) 1
2

(2.19)

= O(h
m+2

2(m+1) ), if ∆t = O(h
m+2
m+1 ), ε = O(h

m
m+1 ) ,

which is slightly better than that in [40].

3. Socolovsky (1984)

Socolovsky’s PhD dissertation [44] presents some numerical methods for degenerate parabolic
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problems having the form


ut−∆ f (u)+g(u)−au = 0 , for xxx ∈Ω, t > 0

u(xxx, t) = 0 , for xxx ∈Ω

u(xxx,0) = u0(xxx) , for xxx ∈Ω

(2.20)

Applications of the methods are focused on PME as a prime example. The first part of the

work gives a convergence result for a finite difference scheme on (2.20) based on semigroup

theory. The second part deals with the Cauchy problem of the PME in one dimension, having

the form 
ut = (|u|m)xx , for x ∈ R, t > 0, m≥ 2

u(x,0) = u0(x) , for x ∈ R ,

(2.21)

and explores numerical solutions based on finite difference and finite element methods. All

the simulations are done in 1D, and only for m= 2 (which corresponds to m= 1 in the form of

PME (2.8)). A development of an implicit-explicit scheme with time step ∆t = O(h2) gives

optimal (second-order) convergence rate for not only the solution, but also the boundary.

4. Ebmeyer and Liu (1998)

Ebmeyer and Liu [16] prove a convergence result of the finite element method as applied to

ut = ∆β (u) , (2.22)

where β (·) has to satisfy a set of rather strict requirements. This result nevertheless covers

the following form of PME

ut = ∆(u|u|m−1) , m > 1 . (2.23)

The method additionally requires that each element of the mesh be nonobtuse, i.e. the right

angle is the widest that each element can have. The convergence result is an improvement

over the work of [40], since the rate does not vanish as m goes to infinity. Nevertheless, the
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convergence-rate in L2-norm is not optimal even for the case m = 2 (corresponding to m = 1

in (2.8)).

5. Baines et al. (2005)

An adaptive moving mesh method is developed by Baines et al. [5], which in effect conserves

some local properties (such as mass) of the solution on each element of the mesh. The

method is developed for a general nonlinear diffusion equation with moving boundaries in

one and two dimensions. It is tested on the porous medium equation

∂u
∂ t

= ∇ · (|u|m∇u) , (2.24)

where u = 0 on the moving boundary and the initial solution is chosen such that the exact

solution is a Barenblatt-Pattle solution given in (2.14). For the case m = 1, where the solu-

tion does not have a steep front, the results are optimal in both one and two dimensions. For

the case m = 3, where the slope of the solution at the boundary is infinity, a second-order

convergence is achieved for the one-dimensional case provided that the initial mesh is opti-

mized through a complicated algorithm which effectively locates more points at the regions

where the initial solution is steep. However, the same case in 2D has not been completely

settled as the authors have not attempted to generate the corresponding optimal initial mesh,

due to the cost of the mentioned algorithm for higher dimensions. Nevertheless, using an ini-

tial mesh with points manually clustered to the boundary, the authors achieve a convergence

order greater than one, but still less than the optimal (second) order.

6. Zhang and Wu (2009)

In their work, Zhang and Wu [49] apply the local discontinuous Galerkin (LDG) finite ele-

ment method for PME. They prove that when the initial solution is nonnegative, the scheme

preserves the non-negativity of the average of the solution on each element of the mesh pro-

vided that a parameter within the numerical scheme is chosen properly. The method, when

applied to PME where the parameter m is relatively high, converges with high order in region
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away from the boundary and successfully eliminates unwanted, nonphysical oscillations near

the solution’s free boundary. Not only so, it also pleasantly and accurately simulates some

peculiar phenomena of PME, including the existence of a waiting time for a special class of

initial solutions. Currently, their method is only demonstrated for the 1D setting.

7. Duque et al. (2014)

Duque, Almeida, and Antontsev [14] develop a moving mesh FE method to solve a more

generalized form of PME



∂u
∂ t = ∇ · (uγ(xxx,t)∇u)−uσ(xxx,t) , in ΩT = Ω× (0,T ]

u = 0 , on ΓT = ∂Ω× [0,T ]

u(xxx,0) = u0(xxx) , in Ω ,

(2.25)

where ∂Ω is Lipschitz-continuous, and γ and σ are bounded functions on ΩT such that

0≤ γ(xxx, t)≤ γ
+ < ∞ , 1≤ σ(xxx, t)≤ σ

+ < ∞ , ∀xxx ∈ΩT .

According to the work of Antontsev and Shmarev [1], problem (2.25) has a unique weak

solution, having also the finite propagation property. Hence, a free boundary exists when-

ever the initial solution is compactly supported, and is moved according to a hypothesized

equation

Γ
′(t) = lim

xxx→Γ(t)−
−u(γ−1)

∇u ,

which indeed is very close to the standard Darcy’s law. The MMPDE method (cf. [25]) for

mesh generation and adaptation is utilized, where a monitor function has been chosen that

depends on the gradient of the solution, which effectually moves the mesh points to regions

where the slope of the solution is steep. The discretized equations for the weak formulation,

boundary movement, and mesh generation are solved simultaneously. The method is applied

to a specific problem of (2.25) where the exact solution is known; however, numerical results
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only show a first-order convergence.

2.5 The moving mesh finite element method

In this section, we would like to describe briefly our moving mesh finite element method for solving

the PME. Indeed, in dealing with PDEs with free and/or moving boundaries, with PME as our

special problem, there are two major approaches.

The first approach, called the “embedding” or “immersed-boundary” approach, discretizes and

solves the PDE on a fixed domain which is sufficiently large to contain the support of the solution

throughout the simulation (See Fig. 2.5a). The main advantage of this approach is that we are not

required to trace explicitly the movement of the free boundary with Darcy’s law. This also gives us

the liberty of simulating PME with more complicated supports (including those that are nonconvex

and those which have sharp corners and cusps). However, there is also a major disadvantage to

this approach. As we have known, the finite propagation property of PME creates a free boundary

which separates the nonzero and zero regions of the solution, and therefore there is oftentimes a

sharp corner in the solution at the free boundary. This implies that the extended solution on this

larger domain will typically be at most H1 in its regularity, which further suggests that for a linear

FE method, a first order convergence is the best that we can expect.

For the second approach, the domain of the numerical solution is dynamic, where the nodal

points of the mesh are moved at each time step in order to make the overall mesh region be as

close to the support of the solution as possible (See Fig. 2.5b). We can call this the nonembedding

or “nonimmersed-boundary” approach. There are two great advantages with this approach. First,

since we are only simulating the solution within its support where the solution’s regularity is much

higher, we can expect a greater order of convergence, which is up to second order for the linear FE

method. The second advantage is less memory and CPU time usage, as we do not need extra mesh

points to represent the zero region of the solution. One major disadvantage of the method is that at

each time step, we need to use Darcy’s law to move the mesh points at the free boundary outwardly,
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(a) Embedding approach.
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Figure 2.5: The two typical discretization approaches for free boundary problem.

in order to simulate for the ever-expanding of the solution’s support. Hence, the accuracy of the

solution will be heavily affected by how accurately Darcy’s law is applied. Another disadvantage of

this approach is its lack of robustness in simulating PME with complicated support (mostly due to

the likelihood of mesh singularities). In the following subsections, we will consider a discretization

based on the first approach. The second approach is similar and will be mentioned in Subsection

2.5.4.

2.5.1 Linear Finite Element Discretization

In this section, we present a linear finite element discretization on a moving mesh for problem

(2.8), where the domain Ω is chosen sufficiently large to accommodate the support of the solution

throughout all time instants. Denote Ωh as the approximation of this domain, where Ωh = Ω if Ω

is polygonal. We would like to consider the time discretization

t0 < t1 < .. . < tn f ≡ T. (2.26)

Presently, we assume that at each time level tn,n = 0, . . . ,n f , Ωh is discretized with a simplicial

mesh T n
h , and each has the same number of nodes and elements, and with the same connectivity

(the detail on how these are generated will be given in the subsection that follows). For each mesh
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T n
h , we assume that it has N elements and Nv vertices, and denote the vertices by xxxn

j , j = 1, . . . ,Nv.

Between the times tn and tn+1, the movement of the mesh is considered continuous, which allows

us to represent the mesh Th(t) at time t ∈ (tn, tn+1) through linear interpolation, where

xxx j(t) =
t− tn

tn+1− tn
xxxn+1

j +
tn+1− t
tn+1− tn

xxxn
j , (2.27)

ẋxx j(t) =
xxxn+1

j − xxxn
j

tn+1− tn
, j = 1, ...,Nv. (2.28)

For each time t ∈ (t0,T ], we can define

φ j(xxx, t) : φ j|K ∈ P1 ∀K ∈Th(t), and φ j(xxxi, t) = δi j i = 1, . . . ,Nv

as the linear basis function associated with the vertex xxx j(t). For convenience, we assume that the

vertices are indexed such that the first Nvi vertices are the interior vertices. We denote

Vh(t) = span{φ1(·, t), ...,φNvi(·, t)} , t ∈ (t0,T ) ,

as the finite-dimensional space of the FE solution at time t ∈ (t0,T ). Then, the linear finite element

approximation to the solution of IBVP (2.8) is defined as uh(·, t) ∈Vh(t), t ∈ (t0,T ] such that


´

Ωh

∂uh
∂ t v dxxx =−

´
Ωh
|uh|m∇uh ·∇v dxxx, ∀v ∈Vh(t), t0 < t ≤ T

´
Ωh
(uh(xxx,0)−u0(xxx))v dxxx = 0, ∀v ∈Vh(t0).

(2.29)

Since uh(xxx, t)∈Vh(t), it can be expressed as a linear combination of the basis functions {φ j(xxx, t)}Nvi
j=1.

Indeed, for each time t ∈ (t0,T ], if we denote u j(t) as the approximate solution at vertex xxx j, then

we can write

uh(xxx, t) =
Nvi

∑
j=1

u j(t)φ j(xxx, t) . (2.30)
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Moreover, by differentiating (2.30) with respect to t, we have

∂uh

∂ t
=

Nvi

∑
j=1

du j

dt
φ j(xxx, t)+

Nvi

∑
j=1

u j(t)
∂φ j

∂ t
. (2.31)

According to the work of Jimack and Wathen [28, Lemma 2.3], if we define the mesh velocity

ẊXX(xxx, t) as

ẊXX(xxx, t) =
Nv

∑
j=1

ẋxx j(t)φ j(xxx, t) ,

we can show that
∂φ j

∂ t
=−∇φ j · ẊXX , a.e. in Ωh .

By this, we can simplify (2.31) into

∂uh

∂ t
=

Nvi

∑
j=1

du j

dt
φ j(xxx, t)−∇uh · ẊXX . (2.32)

Now, we can rewrite (2.29) into a matrix form. Indeed, by substituting expressions for uh and

∂uh
∂ t (from (2.30) and (2.32), respectively) into (2.29), and also by taking v = φi (i = 1, ...,Nvi)

successively, we get

Nvi

∑
j=1

(ˆ
Ωh

φ jφi dxxx
)

du j

dt
=

ˆ
Ωh

∇uh ·
(
ẊXXφi−|uh|m∇φi

)
dxxx, i = 1, ...,Nvi, t0 < t ≤ T , (2.33)

which then can be cast into the matrix form of the ODE system

B(XXX)U̇UU = F(UUU ,XXX , ẊXX), (2.34)

where B is the mass matrix, XXX is a vector representing the mesh, and UUU is a vector representing the

solution. Note that (2.34) is also called a system of differential algebraic equation (DAE) due to

the presence and position of the mass matrix B(XXX). In order to obtain the solution at the next time

level t = tn+1, we have chosen the fifth-order Radau IIA method [20] to solve numerically this ODE
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system on time interval [tn, tn+1]. The step size in this Runge-Kutta method is chosen adaptively,

based on a two-step error estimator of Gonzalez-Pinto et al. [19]. For these computations, we have

chosen the relative and absolute tolerances as rtol = 10−6 and atol = 10−8, respectively.

2.5.2 The MMPDE method

In this subsection, we would like to present a method for generating adaptively a new mesh based

on a current mesh and its associated solution. More specifically, if we are given the mesh T n
h along

with the solution un
h at time t = tn, we seek to use the MMPDE method to generate the mesh T n+1

h

based on the given information, in a way such that the solution un+1
h at the next time level t = tn+1

on this new mesh will be as optimal as possible.

The MMPDE (Moving mesh PDE) method, developed by Huang et al. [25], is an adaptive

moving mesh method typically used in context of solving PDEs, for both time dependent and

steady state problems. In essence, it is a mesh generation method based on minimizing an energy

functional, so that the outcome (ideally) is an M-uniform mesh, i.e. uniform in the Riemannian

metric

‖xxx‖M = xxxTMxxx , ∀xxx ∈ R2 (2.35)

where the metric tensor M is a d × d-matrix assumed to be symmetric and uniformly positive

definite on Ωh. Typically, M is used for controlling the size, shape, and orientation of the elements

of the new mesh.

If we would like to have a mesh uniform in the natural Euclidean metric, we can choose

M= I , (2.36)

where I is the d × d identity matrix. On the other hand, we can choose M to make our new

mesh adaptive to the current solution. Indeed, there are two major adaptivity strategies pertaining

to moving mesh methods. The first strategy, roughly speaking, seeks to distribute mesh points

uniformly along the arclength of the solution. This strategy, which can be termed arclength-based
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adaptivity, is associated with the choice of

M= (I+∇un
h(∇un

h)
T )

1
2 , (2.37)

which is derived from an error estimate of a piecewise constant interpolation. The second strategy

is called Hessian-based adaptivity, where the metric tensor is given by

M= [det(I+ |H(un
h)|)]

− 1
6 (I+ |H(un

h)|) , (2.38)

where H(un
h) is a recovered Hessian for the piecewise linear finite element solution un

h, and

|H(un
h)|= Q


|λ1|

. . .

|λd|

QT , with H(un
h) = Q


λ1

. . .

λd

QT

being the eigen-decomposition of H(un
h). This choice of M is optimal for minimizing the L2

norm of the linear interpolation error [27], which results in an adaptivity that, loosely speaking,

distributes the mesh points uniformly according to the solution’s curvature. Here the recovered

Hessian H(un
h) is obtained through a least squares fitting strategy (e.g. [30, 31]). Additionally, if

the method only discretizes on the solution’s support (for the nonembedding approach), we can

also consider the metric tensor

M=
1

[(un
h)

2 +α]r
I (2.39)

where α and r are positive parameters, typically chosen to be 10−6 and 1
2 , respectively. This

choice of M effectively allocates more mesh points toward the free boundary of PME solution,

especially in situations where the solution is smooth (For more information, see discussion of

the nonembedding methods in Chapters 4 and 5). For this reason, we term the mesh adaptivity

associated with (2.39) “boundary-based.”

In practice, the MMPDE method seeks to generate the new mesh T n+1
h to be as M-uniform as
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possible. Roughly speaking, we would like for all the elements of T n+1
h , under this special metric,

to be proportional-in-size and similar-in-shape to their corresponding reference elements in a ref-

erence mesh T̂c,h, typically chosen as the initial physical mesh Th(t0) = T 0
h . These fundamental

ideas can be quantified precisely into the equidistribution and alignment conditions [23, 26]

|K|
√

det(MK) =
σh|Kc|
|Ωc|

, ∀K ∈Th (2.40)

1
d

trace
((

F ′K
)−1M−1

K
(
F ′K
)−T

)
= det

((
F ′K
)−1M−1

K
(
F ′K
)−T

) 1
d
, ∀K ∈Th (2.41)

where |K| and |Kc| are the volumes of K and its corresponding reference element Kc ∈ Tc,h, re-

spectively, det(·) and trace(·) denote the determinant and trace of a matrix, respectively, MK is the

average of M over K (i.e. MK = 1
|K|
´

K M(xxx) dxxx), F ′K = ∂FK/∂xxx is the Jacobian matrix of the affine

mapping FK : Kc→ K, and

σh = ∑
K∈T n

h

|K|
√

det(MK), |Ωc|= ∑
Kc∈T̂c,h

|Kc|.

In fact, according to [22], we can obtain our new mesh T n+1
h by minimizing the energy function

Ih = θ ∑
K∈T n

h

|K|
√

det(MK)
(

trace((F ′K)
−1M−1

K (F ′K)
−T

)
) d p

2

+(1−2θ)d
d p
2 ∑

K∈T n
h

|K|
√

det(MK)

(
|Kc|

|K|
√

det(MK)

)p

, (2.42)

where θ ∈ (0, 1
2 ] and p> 1 are non-dimensional parameters. Equation (2.42) is the discrete form of

the functional developed in [22], where the equidistribution and alignment conditions are combined

in variational mesh adaptation. For our computations, we have chosen θ = 1/3 and p = 2, which

tend to produce better results, based on experience.

We notice that Ih is a function of only ξξξ j, j = 1, ...,Nv, and also observe that direct minimization
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problem

args min
{ξξξ j}

Nv
j=1

Ih[ξξξ j]

is highly nonlinear, which is very difficult, if not impossible, to solve directly. Hence, instead of

solving the minimization directly, we treat Ih as the gradient flow with respect to variables {ξξξ j}
Nv
j=1,

which takes the form of the MMPDE [25]

dξξξ j

dt
=−

Pj

τ

[
∂ Ih

∂ξξξ j

]T

, j = 1, ...,Nv (2.43)

where the row vector ∂ Ih/∂ξξξ j is the derivative of Ih with respect to ξξξ j, τ > 0 is a parameter

used to dictate how fast the mesh movement will react to any change in the metric tensor, and

Pj = det(M(xxx j))
p−1

2 is chosen such that (2.43) is invariant under the scaling transformation of M:

M→ cM for any positive constant c. The recent work of Huang and Kamenski [24] presents a

method to calculate the derivative of Ih with respect to ξξξ j through the notion of scalar-by-matrix

differentiation, where the authors have developed important analytical formulas in dealing with

our specific situation. With such analytical formulas, we can rewrite (2.43) into

dξξξ j

dt
=

Pj

τ
∑

K∈ω j

|K|vvvK
jK , j = 1, . . . ,Nv (2.44)

where ω j is the element patch associated with the vertex xxx j, jK denotes the local index of the same

vertex on K ∈ ω j, and vvvK
jK is the velocity contributed by K to the vertex with local index jK of the

same element. The velocities contributed by K to its vertices are given by


(vvvK

1 )
T

...

(vvvK
d )

T

=−E−1
K

∂G
∂J
− ∂G

∂ det(J)
det(ÊK)

det(EK)
Ê−1

K , vvvK
0 =−

d

∑
i=1

vvvK
i , (2.45)

where EK = [xxxK
1 −xxxK

0 , ...,xxx
K
d −xxxK

0 ] and ÊK = [ξξξ
K
1 −ξξξ

K
0 , ...,ξξξ

K
d −ξξξ

K
0 ] are the edge matrices of K and
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Kc, respectively, J= (F ′K)
−1, the function G is associated with the energy (2.42) and defined as

G(J,det(J),M) = θ
√

det(M)
(
trace(JM−1JT )

) d p
2 +(1−2θ)d

d p
2
√

det(M)

(
det(J)√
det(M)

)p

,

and its derivatives (evaluated at (J,det(J),M) = ((F ′K)
−1,det(F ′K)

−1,MK)) with respect to the first

and second arguments are given by

∂G
∂J

= d pθ
√

det(M)
(
trace(JM−1JT )

) d p
2 −1M−1JT ,

∂G
∂ det(J)

= p(1−2θ)d
d p
2 det(M)

1−p
2 det(J)p−1.

We notice that ∂G/∂J is a d-by-d matrix.

For the mesh points lying on the boundary, the mesh equation (2.44) should be modified ac-

cordingly. Typically, for fixed points on boundary, the velocities can be set to zero. If the boundary

points are allowed to move (or slide), the velocities associated with these should be modified so

that they do not move outside the domain. With these formulas and settings, the mesh equation

(2.44), with T̂c,h as the initial mesh, can be integrated from t = tn to t = tn+1 by an ODE solver

in order to obtain the new computational mesh T n+1
c,h . Here, we use the Numerical Differentiation

Formula (NDF) based implicit scheme ode15s of Matlab for the purpose. Since we have assumed

nonsingularity in the new mesh, and that it also has the same number of elements and vertices, and

the same connectivity as the physical mesh T n
h at time t = tn, there exists a 1-to-1 correspondence

T n
h = Φn

h(T
n+1

c,h ). The new physical mesh at time t = tn+1 is then defined and computed (via linear

interpolation) as T n+1
h = Φn

h(T̂c,h).

2.5.3 Solution procedure for the embedding approach

From the discussion of Subsections 2.5.1 and 2.5.2, we may summarize our method for PME with

the embedding approach as following:

1. Establish a domain Ωh sufficiently large to cover the solution’s support at the final time,
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and discretize it with a physical mesh T 0
h . Here, we let T̂c,h := T 0

h be our computational

reference mesh for the MMPDE method.

2. Assume that at time level t = tn, we have the solution un
h on the mesh T n

h . By applying the

MMPDE method, we can generate a new mesh T n+1
h for the next time level t = tn+1.

3. By the moving mesh FE method (detailed in Subsection 2.5.1), we can compute the solution

un+1
h based on un

h, T n
h , and T n+1

h .

4. Repeat the procedure in steps 2 and 3 until the final time t = tn f is reached.

Notice that, since the set of mesh equations (2.44) has a different structure than that of the physical

equations (2.34), we deem it prudent to solve them separately.

2.5.4 Discretization and mesh movement for the nonembedding method

The previous two Subsections 2.5.1 and 2.5.2 present the FE discretization on a moving mesh along

with the MMPDE method for mesh generation. In particular, they deal with problem (2.8) where

the domain Ωh is assumed to be fixed and also sufficiently large to accommodate the support of

the solution throughout the simulation. On the other hand, the nonembedding approach (as seen,

for example, in the work of [5, 14]), discretizes only on the support of the solution at each time;

it can also be called the “nonimmersed-boundary” approach (cf. Pg. 29). In order to apply this

approach, we need to consider a modified version of the original IBVP (2.8)



ut = ∇ · (|u|m∇u) , in Ω(t) , t ∈ (t0,T ]

u(xxx, t0) = u0(xxx) , in Ω(t0)

u(xxx, t) = 0 , on Γ(t) := ∂Ω(t) , t ∈ (t0,T ]

Γ′(t) = lim
xxx→Γ(t)−

−∇

(
|u|m(xxx, t)

m

)
· n̂nn , in (t0,T ] ,

(2.46)

where the domain Ω(t) depends on time and is the same as supp(u(xxx, t)), and where Darcy’s law

is incorporated to account for movements of the free boundary. The discretization procedure for
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(2.46) is very similar to the embedding method in Subsection 2.5.1. However, there are expected

differences. Suppose that at time level t = tn, we are given the mesh T n
h (which represents the

domain Ωn
h ≈Ω(tn)) and its associated solution un

h. The generation of the new mesh T n+1
h at time

level t = tn+1, based on T n
h and un

h, is done similarly as in subsection 2.5.2. However, before the

MMPDE method can be applied, we first need to move the boundary points of T n
h manually via

Darcy’s law. This boundary velocity formula, as seen in (2.46), can be discretized with the forward

Euler scheme as
Γn+1−Γn

tn+1− tn
=−∇h

(
(un

h)
m

m

)
· n̂nn , (2.47)

where ∇h(·) represents a scheme for approximating limxxx→Γ(tn)−∇(·) at time t = tn, and n̂nn denotes

the unit outward normal to the boundary (see an illustration of the outward normal directions to a

domain in Fig. 2.6). The MMPDE method then can be applied, from which we have the new mesh

T n+1
h at time level t = tn+1.
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Figure 2.6: The outward normal directions to each boundary point of a PME solution.

In order to find the FE solution un+1
h at the next time level, the integrals involved in the weak

formulation as seen in subsection 2.5.1 will be performed on the time-dependent domain Ω
n+1
h ≈
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Ω(tn+1). For example, the system of equations in (2.33) should be modified into

Nvi

∑
j=1

(ˆ
Ω

n+1
h

φ jφi dxxx

)
du j

dt
=

ˆ
Ω

n+1
h

∇uh ·
(
ẊXXφi−|uh|m∇φi

)
dxxx, i = 1, ...,Nvi, t0 < t ≤ T .

In summary, we need to solve the follow set of equations


Boundary Equations

Mesh Equations

Physical Equations

(2.48)

However, since the mesh and the solution systems in general have different structures, and their

coupling is highly nonlinear, we would like to split the solution strategy via the BMP-procedure

(i.e. “Boundary-Mesh-Physical”) as following

1. Discretize Ω(t0) into Ω0
h with the mesh T 0

h . Here we let T̂c,h := T 0
h as our reference mesh

for the MMPDE method. Assume that at time level t = tn, we have the solution un
h on the

mesh T n
h .

2. At time level t = tn, apply the scheme for Darcy’s law (2.47) to the boundary Γn to obtain

the new boundary Γn+1. This new boundary reflect the new domain Ω
n+1
h , and the physical

mesh changes to T̃ n+1
h .

3. With the mesh T̃ n+1
h and its corresponding solution un

h, we can apply the MMPDE method

to get the new physical mesh T n+1
h at time level t = tn+1.

4. Apply the moving mesh FE method (detailed in Subsection 2.5.1) with un
h, T n

h , and T n+1
h

to obtain the new solution un+1
h at time level t = tn+1.

5. Repeat steps 2 to 4 until the final time t = tn f is reached.
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Chapter 3

The UE-Method: An embedding numerical

solution for the U-formulation of PME

In this chapter, we present some numerical observations and results from applying the moving

mesh method developed in Chapter 2 to the embedded U-formulated IBVP


ut = ∇ · (|u|m∇u), in Ω× (t0,T ]

u(xxx, t0) = u0(xxx), on Ω

u(xxx, t) = 0, on ∂Ω× (t0,T ] ,

(3.1)

where the fixed domain Ω is sufficiently large as to contain the solution’s support at all time t ∈

(t0,T ]. For convenience, this approach can be termed the “UE-method” (where “U” stands for the

U-formulation, and “E” the embedding approach). One of the major advantages of this embedding

approach is that we do not need to explicitly trace the boundary via Darcy’s law (cf. (2.13)) at each

time level (This task has been a major challenge for our research, as we will see in Chapter 4.) This

consequently enables us to apply the method to PME with more complex supports, including those

that are nonconvex, and having tricky corners and cusps, as will be seen in the numerical examples

in Sections 3.1, 3.2, and 3.3.
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3.1 The Barenblatt-Pattle numerical solution

Our research findings indicate that parameter τ (cf. (2.44)), parameter m of PME, and the choice

of the metric tensor M play sensitive roles in our numerical method, and we would like to illustrate

the effects of these in this section. In the following experiments, we measure the accuracy of the

UE-method using the Barenblatt-Pattle solution (2.14), where the error |uh− u| of the numerical

solution is considered in the global L2 norm, namely

‖uh−u‖L2(t0,T ;L2(Ω)) =

(ˆ T

t0

ˆ
Ω

(uh−u)2(xxx, t)dxxxdt
) 1

2

. (3.2)

We have chosen the L2-norm since various works on numerical solution for PME have utilized the

same norm in their error estimates (e.g. (1.6) of [16]). Unless otherwise noticed, we use r0 = 0.5,

T = (t0 +0.1)/2, τ = 10−4, and ∆tmax = 10−4 in the subsequent numerical experiments.

Recall that τ is a parameter which is used in the MMPDE (2.44) to adjust the responsiveness

of mesh movement to any change in the metric tensor M(xxx, t) (cf. Subsection 2.5.2). In order to

see the effect of this parameter on our method, we apply the numerical procedures on Hessian-

based adaptive meshes (which, as we shall demonstrate later, are more optimal for accuracy and

convergence order). Fig. 3.1 shows convergence histories for τ = 10−2,10−3, and 10−4, with the

cases of m = 1 and m = 2. It is noticeable that for both of these cases, when τ = 10−2,10−3, the

convergence order decreases as the meshes become finer, whereas a second order of convergence is

steadfastly held for τ = 10−4 over the same range of mesh sizes. This phenomenon suggests that in

order to maintain a decent accuracy and convergence order, the concentration of mesh points due

to Hessian-based adaptivity needs to follow very closely at a sufficient speed with the movement

of the free boundary.

We also would like to know how the method is affected, when applied under each of the three

meshing strategies (cf. Subsection 2.5.2). To this end, we conduct several experiments with the

method where τ is chosen sufficiently small (i.e. τ = 10−4), and where the maximum allowed time

step ∆tmax ≤ 10−2. Convergence histories for the cases m = 1 and m = 2 are given in Fig. 3.2. For
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Figure 3.1: Convergence history for different values of τ .

the case m = 1, where the solution does not have a steep slope at the free boundary, the order of

convergence is approximately 1.5 (i.e. of O
(
1/
√

N
)1.5

) for the uniform and the arclength-based

adaptive meshes (with little or no distinction in performance between the two). However, for the

case m = 2, where the slope of the solution is very steep/infinite near/at the free boundary, the

order of convergence is reduced to 1 for these two same meshing strategies, with the arclength-

based mesh producing a slightly more accurate solution than the other. On the other hand, for the

Hessian-based adaptive meshes, there is a major breakthrough as we have observed a second-order

convergence for both cases, as seen in Fig. 3.2.

We know from Theorem 2.3.1 that a Barenblatt-Pattle solution u is only H1(supp(u)) for m= 1,

and is even less regular for m > 1 (i.e. u∈W 1, m
m−1−ε(supp(u)), for some ε > 0). From the standard

result for FE method on a fixed mesh, we do not expect the order of convergence of our method

for these special solutions to be higher than one. Yet despite all these, our method on uniform

and arclength-based moving meshes have shown a higher-than-expected convergence rate (of 1.5)

for m = 1, and more surprisingly the optimal second-order convergence for both cases of m = 1

and m = 2 for Hessian-based adaptive meshes. At the present, though we do not have rigorous

justifications for this result, we would like to make two relevant observations which support it
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to certain degree. First, we observe that the Hessian-based adaptivity concentrates mesh points

more densely around the free boundary than the uniform and arclength-based meshing strategies;

this is illustrated by the corresponding representative meshes in Fig. 3.3. Secondly, though the

Barenblatt-Pattle solution has a lower regularity when considered on a larger domain containing

the free boundary (cf. Theorem 2.3.1, pg. 20), it is indeed infinitely smooth within its support (i.e

for each compact set K ∈ supp(u), u ∈C∞(K)). Moreover, from the work of [27], it is known that

the error from a linear interpolation on an M-uniform mesh (cf. Pg. 33) of a polygonal domain D,

where M associates with the Hessian-based adaptivity (as shown in (2.38)), is given by

‖u−Π1u‖L2(D) ≤CN−1
∥∥∥√det(|H(u)|)

∥∥∥
L

2
3 (D)

+h.o.t., (3.3)

where h.o.t. stands for higher order terms. From Theorem 2.3.2, we know that equation (3.3) is

indeed satisfied for Barenblatt-Pattle solutions within their positive regions (i.e. their supports). By

this, we may expect a second-order convergence (i.e. of O(N−1)) of the method for these solutions

if the linear interpolation is only considered within their support. Even though this observation

does not apply directly to our situation, where the domain is larger than the solution’s support, it

offers some insights into the observed phenomenon.

So far, we have seen how parameters τ and the three meshing strategies affect our solution.

We would like to perform a similar evaluation for PME parameter m. As we have learned from

section 2.3, that the higher m is, the steeper the gradient of a Barenblatt-Pattle solution will be at

its free boundary, which will make numerical simulation more challenging. Indeed, on a uniform

mesh, the order of convergence declines as m gets higher, as one can see from the convergence

histories in Fig. 3.4a for cases m = 1,2, and 3. This is indeed qualitatively consistent with many

FE error estimates on quasi-uniform meshes found in literature on numerical solution of PME, as

exemplified by Eqn. (1.3), (1.4), (1.6), and (1.7) (see also [16, 17, 38, 40]). However, for the

Hessian-adaptive meshes, a second-order convergence is observed for all of these three cases as

seen in Fig. 3.4b, which suggests that the rate of convergence is independent of m, even though the

44



10
3

10
4

10
5

N

10
-6

10
-5

10
-4

10
-3

L
2
 E

rr
o

r

Uniform mesh

Arclength-based

Hessian-based

First Order

Second Order

(a) m = 1

10
3

10
4

10
5

N

10
-4

10
-3

L
2
 E

rr
o

r

Uniform mesh

Arclength-based

Hessian-based

First Order

Second Order

(b) m = 2

Figure 3.2: Convergence history for the three meshing strategies as N (the number of the elements)
increases.

magnitude of errors gets higher as m increases.

Example 3.1.1 (Barenblatt-Pattle solution). We apply the UE-method on a Hessian adaptive

mesh with N = 25600,

τ = 10−4 , and ∆tmax = 10−3

to (1.2) where

m = 3 , r0 = 0.5 , and T = 0.1 .

The final mesh along with the computed solution are given in Fig. 3.5. Notice the very steep slope

of the solution at the free boundary at the final time. This irregularity in the solution has caused

some unwanted oscillations at the boundary, as seen in Fig. 3.6. A solution toward removing these

oscillations could be an implementation of the Discontinuous Galerkin method (as in [49]) or a

monotone scheme which preserves the discrete maximum principle (as in [37]).
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3.2 Application to problems with complex solution’s support

In their work [49], Zhang and Wu develop a numerical method for PME via the local discontinuous

Galerkin (LDG) approach. Not only is their method quite accurate (up to order three within the

support of solution), it is also quite flexible in simulating PME solutions with complex support and

those which exhibit the waiting time phenomenon. Since the numerical results shown in [49] are

all in 1D, we would like to experiment our UE-method with the 2D equivalents of some of these

examples. We are motivated to do so by the fact that because the method does not require the

explicit tracing of the free boundary via Darcy’s law, it will leave much room and flexibility for

simulating solutions with extraordinary geometry in their supports. We will demonstrate the idea

in the next three examples.

Example 3.2.1. The first example models the movement and interaction of two columns of a

substance (e.g. ideal gas), which are initially separate and with the same height. The model is the

IBVP (1.2) with

m = 5, Ω = (−5.5,5.5)× (−5.5,5.5),

and

u0(x,y) =


1, for (x,y) ∈ (0.5,3)× (0.5,3)

1, for (x,y) ∈ (−3,−0.5)× (−3,−0.5)

0, otherwise.

(3.4)

Here, we apply our UE-method with Hessian-based adaptivity, and a typical adaptive mesh and the

corresponding numerical solution for selected time instants are shown in Fig. 3.8. We can observe

that as time evolves, the support of the two columns of substance expands monotonically (i.e. it is

noncontracting, cf. Pg. 17), and merges into one bigger region in a finite time. Moreover, since

the slope of the solution is steep at the free boundary, the adaptive method dictates and maintains a

concentration of mesh points around the free boundary throughout the time. It is important to note

that the mesh remains nonsingular for the whole time, especially during the period when the two

separate columns merge into one. Furthermore, we observe that the free boundary of the solution,
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though starts out with some square corners, becomes smoother in the progression of time; this

phenomenon has been discovered and proven in PME literature (e.g., see [42, 46]).

Example 3.2.2. The following example is similar to the previous one, however with a slightly

modified initial solution

u0(x,y) =


1, for (x,y) ∈ (0.5,3)× (0.5,3)

1.5, for (x,y) ∈ (−3,−0.5)× (−3,−0.5)

0, otherwise ,

(3.5)

so that one of the columns of substance is given some extra height. A typical adaptive mesh and the

corresponding solution at selected time instants are shown in Fig. 3.9. As before, the mesh points

are attracted to and remain around the free boundary as time evolves. But unlike the previous

example where the two columns start with same height and expands with the same rate in their

supports, in this example, the support of the column with greater initial height expands faster than

the other. This indeed makes the overall support of the solution expand faster than that of the

previous example; in particular, the merging of the two separate columns takes place at an earlier

time than that in Example 3.2.1.

Example 3.2.3. In this example, we consider a smooth solution on a donut-like nonconvex

domain first seen in the work of Baines et al. [5]. The model is the IBVP (1.2) with

m = 2, Ω = (−2,2)× (−2,2),
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and

u0(x,y) =



√
0.252− (

√
x2 + y2−0.75)2, for

√
x2 + y2 ∈ [0.5,1] and (x < 0 or y < 0)√

0.252− x2− (y−0.75)2, for x2 +(y−0.75)2 ≤ 0.252 and x≥ 0√
0.252− (x−0.75)2− y2, for (x−0.75)2 + y2 ≤ 0.252 and y≥ 0

0, otherwise.
(3.6)

Here, we apply our UE-method with Hessian-based adaptivity, and typical adaptive meshes and

their corresponding numerical solutions are shown in Fig. 3.10. Here, we observe the self merg-

ing/closing of the support, for which the method experiences no mesh singularity.

Example 3.2.4 (Waiting-time phenomenon). From Subsection 2.2.2 (pg. 18), we recall that

PME exhibits the waiting-time phenomenon for a certain type of initial solutions. To see this, we

consider an IBVP 
ut = ∇ · (8|u|7∇u), in Ω× (t0,T ]

u(xxx, t0) = u0(xxx), on Ω

u(xxx, t) = 0, on ∂Ω× (t0,T ]

(3.7)

with

Ω = (−π,π)× (−π,π) ,

and the initial solution

u0(x,y) =


cos(

√
x2 + y2), for

√
x2 + y2 ≤ π

2

0, otherwise.
(3.8)

Notice that the PME in (3.7) has been slightly modified from its original form in IBVP (1.2), in

order to make this example comparable to its 1D counterpart in the work of Zhang and Wu [49].
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We observe that

∇cos7(
√

x2 + y2) =−7 cos6(
√

x2 + y2) sin(
√

x2 + y2)√
x2 + y2

x

y


vanishes at

√
x2 + y2 = π

2 , and hence by Darcy’s law (2.13), we do not expect the free boundary to

move initially. Fig. 3.12 shows a few typical adaptive meshes and their corresponding solutions. In

Fig. 3.11, we also show the cross section in the plane y = 0 of a computed solution at various time

instants. A closer look (with the dash lines in Fig. 3.11 for indicating the initial free boundary)

suggests that the free boundary of the solution does not move until around t = 10. Before the

waiting time expires, the solution is steepening over a smaller region within the support. Such

region of steepening continues to expand to eventually cover the entire support. Then, when the

solution is sufficiently steep at the boundary, the support begins to expand (i.e. the free boundary

begins to move), marking the end of the waiting time period. The results are consistent with the

waiting time example in [49].

3.3 Numerical experiment for PME with variable exponent and

absorption

In the previous section, we have demonstrated the robustness of our embedding moving mesh

method with respect to its ability to simulate PME solutions with more complex supports. In this

section, we would like to demonstrate that the method’s robustness also extends to more general

forms of the IBVP (1.2) as well. In particular, we will apply our method to PME with absorption

and/or variable exponents,

ut = ∇ · (uγ
∇u)−λuσ , Ω× (t0,T ] (3.9)
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subject to a homogeneous Dirichlet boundary condition and an initial condition. Here, γ = γ(xxx, t)

and σ = σ(xxx, t) are nonnegative bounded functions and λ is a constant. PME in the form of (3.9)

arises in continuum mechanics to model the motion of a barotropic gas through a porous medium,

where the pressure is dependent on the density and temperature [1].

Like the standard PME in (1.2), PME (3.9) with constant exponents has been studied exten-

sively; e.g., see [32, 42]. Nevertheless, very few theoretical results have been found for the case

with variable exponents [1, 34]; for example, there is no theoretical result on the movement of

the free boundary (cf. (2.13)), although the solution to (3.9) is known to have the property of fi-

nite propagation. In addition, there have been very few numerical works regarding such situation,

besides the very recent works of Duque et al. [13, 14, 15].

Example 3.3.1 (Constant exponents with absorption). We first consider an example with an

absorption term, in particular the PDE (3.9) with

λ = 1, γ = 2, σ = 0.1, Ω = (−1.5π,1.5π)× (−1.5π,1.5π) ,

and the initial solution

u0 =


|sin(

√
x2 + y2)|, for

√
x2 + y2 ∈ (π

6 ,π)

0.5, for
√

x2 + y2 ∈ [0, π

6 )

0, otherwise.

This example is the two-dimensional generalization of a one-dimensional example in [49] that

shows a splitting phenomenon in the middle of the solution after a finite time. Once again,

the UE-method with Hessian-based adaptivity is applied, by which we can observe the splitting

phenomenon as shown through the adaptive meshes and corresponding numerical solutions in

Fig. 3.13. Indeed, as time evolves, we see that the solution gets lower and the support expands on

the outer boundary, and the initial dimple on the top eventually goes down and “punches” through

the xy-plane, making a visible hole in the support. This exhibits an interesting feature due to a
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presence of the absorption term.

Example 3.3.2 (Variable exponent without absorption). The following example considers a

“hole-filling” phenomenon exhibited by PDE (3.9) where

λ = 0, γ =
(x

2

)2
+
(y

2

)2
+1.1, Ω = (−2,2)× (−2,2) ,

with initial solution

u0 =


−sin(2π

√
x2 + y2), for 0.5 <

√
x2 + y2 < 1

0, otherwise.

This example has been studied and simulated by Duque et al. in [13, 15], where the support of the

solution has a hole in the middle which disappears in a finite time. In computation, we again use

our UE-method with a Hessian-based adaptivity, by which we observe the mentioned phenomenon

as seen through the adaptive meshes and corresponding numerical solutions in Fig. 3.14 over the

time period of t ∈ [0,0.2].

The result appears to have better resolution than that in [13] where a uniform mesh has been

used. Moreover, our method works just fine through the closing of the inside hole (cf. Fig. 3.14)

whereas the method in [15] which explicitly traces the free boundary encounters the mesh singu-

larity problem near the time when the hole is closing.

Example 3.3.3 (Waiting-time for variable exponent without absorption). The following exam-

ple, which has been studied in [15], considers a PME with variable exponent where a waiting time

phenomenon (similar to Example 3.2.4) is also exhibited. Here the model is of IBVP (1.2) for

t ∈ [0,1], where

λ = 0, γ = 2− x− y, Ω = (−1.5,1.5)× (−1.5,1.5) ,
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with an initial solution

u0 =


5(0.25− x2− y2), for

√
x2 + y2 < 0.5

0, otherwise.

The UE-method with Hessian-based adaptivity is used, from which we have the moving meshes

and corresponding numerical solutions shown in Fig. 3.15. We can see that the given variation of

the exponent causes the free boundary to expand anisotropically and the solution to have different

steepness along the free boundary. Moreover, a closer examination of the results confirms the

waiting time phenomenon, where the interface in the region {(x,y) : x+ y ≤ 0} does not move

until a finite time has elapsed. Fig. 3.16 show the cross sections of the numerical solutions in the

plane y = x at various instants of time. In the figure, the dashed line refers to the position of the

initial interface, where the waiting time phenomenon eventually occurs.

Example 3.3.4 (Variable exponents with absorption). The following example, taken from [14],

considers the IBVP (3.9) which has time dependent exponents, where

λ = 1, γ =
x2 + y2

t2 +1
, σ = x2 + y2 +1+ e−t , Ω = (−1.5,1.5)× (−1.5,1.5) ,

with initial solution

u0 =


cos(2π(x2 + y2)), for

√
x2 + y2 < 0.5

0, otherwise.

We take t ∈ [0,0.1]. The numerical results are shown in Fig. 3.17, and they are comparable with

those in [14].
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3.4 Some results for 3D setting

The UE-method of this chapter can be extended to the 3D setting. For example, Fig 3.7 shows

a convergence history for the method applied to (3.1) having the Barenblatt-Pattle solutions and

equipped with Hessian-based mesh adaptation, for cases of m = 1,2, and 3. Currently, our com-

puting resources only allow a simulation on coarser meshes, for which the method shows a first

order convergence. This is nonetheless consistent with the results for 2D, as seen in Fig. 3.4b, as

we note that the method there converges with a less-than-optimal order on coarse meshes, whereas

the second order convergence happens only on finer meshes.
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Figure 3.3: The meshes (closer view near (-0.35, -0.35)) and computed solutions at t = T obtained
with uniform and arclength- and Hessian-based adaptive meshes (N = 25600).
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Figure 3.4: Convergence history for the UE-method applied on uniform and Hessian-based meshes.
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Figure 3.5: Example 3.1.1. The final mesh (close view near (-0.35, -0.35)) and computed solution
for m = 3 with the Hessian-based mesh adaptation (N = 25600).

55



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.6 -0.59 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52 -0.51 -0.5

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 3.6: Observation of oscillations in the UE-method.

10
4

10
5

N

10
-4

10
-3

L
2
 E

rr
o
r

m = 1.0

m = 2.0

m = 3.0

First Order

Second Order
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Figure 3.8: Example 3.2.1. An adaptive mesh and the corresponding computed solution at various
time instants (N = 14400).
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Figure 3.9: Example 3.2.2. An adaptive mesh and the corresponding computed solution at various
time instants (N = 14400).
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Figure 3.10: Example 3.2.3. A computed solution is shown at various time instants (N = 10000).
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Figure 3.11: Example 3.2.4. The cross section at y = 0 of a computed solution is shown at various
time instants.

60



(a) t = 0.1 (b) t = 0.1

(c) t = 0.5 (d) t = 0.5

(e) t = 5 (f) t = 5

(g) t = 18.01 (h) t = 18.01

Figure 3.12: Example 3.2.4. A computed solution is shown at various time instants (N = 40000).
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Figure 3.13: Example 3.3.1. An adaptive mesh and the corresponding solution at various time
instants (N = 40000).
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Figure 3.14: Example 3.3.2. An adaptive mesh and the corresponding solution at various time
instants (N = 25600).
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Figure 3.15: Example 3.3.3. An adaptive mesh and the corresponding solution at various time
instants (N = 25600).
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Figure 3.16: Example 3.3.3. The cross section at y = x of a computed solution is shown at various
time instants.
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Figure 3.17: Example 3.3.4. An adaptive mesh and the corresponding solution at various time
instants (N = 25600).
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Chapter 4

The U-method: A nonembedding numerical

solution for the U-formulation of PME

In Chapter 3, we have presented an embedding moving mesh method for solving the PME (1.2).

Even though the method has a few great advantages in terms of its robustness (i.e. applicable

to complicated domains) and flexibility (i.e extendable to a more general PME), it also has two

major weaknesses. The first one is the loss of regularity as a consequence of extending the so-

lution beyond its natural support. Though our UE-method improves the convergence order via

the Hessian-based adaptivity (cf. Fig. 3.4b), it does so by clustering the mesh nodes towards the

boundary, which causes some elements near the boundary to be very flat (i.e. with volume almost

zero, cf. Fig 3.3). This in effect increases the condition number of the mass matrix B(XXX) in system

(2.34), which makes the solution of the DAE more challenging. Another weakness of the embed-

ding method is the higher consumption of computer memory and CPU time due to the requirement

of extraneous mesh points outside the solution’s support.

In this chapter, we present our “U-method” for solving the IBVP (1.2) by the nonembedding

approach (cf. Section 2.5), where “U” stands for the U-formulation of PME (cf. Pg. 1). Since

the method only discretizes within the support of solution, it eliminates the need for extraneous

mesh points and reduction in the solution’s regularity, thus having great potentials in overcoming
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the aforementioned disadvantages. We recall from Section 2.5.4 that in order to implement the

nonembedding technique, the original IBVP (1.2) needs to be modified into



ut = ∇ · (|u|m∇u) , in Ω(t) , t ∈ (t0,T ]

u(xxx, t0) = u0(xxx) , in Ω(t0)

u(xxx, t) = 0 , on Γ(t) := ∂Ω(t) , t ∈ (t0,T ] ,

Γ′(t) = lim
xxx→Γ(t)−

−∇

(
|u|m(xxx, t)

m

)
· n̂nn in (t0,T ] ,

(4.1)

where Darcy’s law is included to account for the boundary movements. In order to evaluate the

accuracy of our method, we use Barenblatt-Pattle solutions, and measure the error in L2-norm, i.e.

‖uh−u‖L2(t0,T ;L2(Ω̃)) =

(ˆ T

t0

ˆ
Ω̃

(uh−u)2(xxx, t)dxxxdt
) 1

2

, (4.2)

where Ω̃ is a fixed domain containing Ω(T ). For these solutions, unless otherwise stated, we will

let the final time be

T =
0.1+ t0

2
,

where t0 is given in (2.15).

Before presenting the main numerical results, we would like to perform some numerical exper-

iments and make observations regarding the following components of our method:

1. τ: We would like to see how τ (cf. Subsection 2.5.2, pg. 36), a parameter for specifying

how fast the mesh movement will react to any change in the metric tensor M (cf. Subsection

2.5.2, Pg. 33), affects the mesh movements and the overall accuracy of the solution.

2. ∆tmax: We seek to observe how the size of the largest time step

∆tmax = max
n=1, ... ,n f

(tn− tn−1) , (4.3)

allowed in our method affects the solution.
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3. M(xxx): We would like to compare between the meshing strategies which are specified by dif-

ferent choices of the metric tensor M, as seen in (2.36), (2.37), and (2.38) of subsection 2.5.2.

Namely, we would like to understand how the solution is affected if simulated on a uniform

mesh, and on a mesh generated under the arclength-based or Hessian-based adaptivity.

4.1 Effect of τ

As indicated in subsection 2.5.2 (pg. 36), the value of the time-scaling parameter τ dictates how

fast the mesh points will move in regard to changes in solution, in the metric tensor M, and in the

size of the solution’s support.

We begin applying our numerical method for (4.1) where m = 1, with a rather standard choice

of τ = 10−2, where M = I, and the free boundary is given exactly at each time level according

to the Barenblatt-Pattle solution (2.14). However, some difficulties have arisen with this choice

of τ . First, we observe that the method’s convergence order, though starting out with a second-

order rate for coarser meshes, declines very quickly as the meshes get finer (Fig. 4.1b). We then

decide to take a closer look at a representative mesh in one particular experiment, and observe that

the distance between the boundary nodes to their nearest interior nodes are much greater than the

diameter of any interior element (one with no vertices on the boundary). Hence, with this typical

value for τ , the interior vertices could not keep up with the movement of the free boundary; this

motivates us to use a smaller value for τ . Indeed, using a faster scaling of mesh movement by

setting, for example τ = 10−4, causes the mesh to remain uniform throughout the computation

(See the mesh in Fig. 4.2a), which, as opposed to the former case, produces a better convergence

result (Fig. 4.2b). This investigation suggests that a smaller value of τ is more conducive for the

free boundary problem, which brings about a better overall accuracy. Besides the option of using

a generic value e.g. τ = 10−4 or τ = 10−5, we can make this parameter adaptive to the mesh, such

as

τ = min
{

10−3,
10−1

N

}
. (4.4)
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Figure 4.1: Effects of τ = 10−2 on mesh movement and accuracy for the U-method.

This suggestion is based on the convergence history in Fig. 4.1b, where the convergence order

declines gradually as the mesh gets finer. For the rest of the chapter, unless otherwise noticed, we

will use formula (4.4) as a standard choice for the parameter τ of our method.

4.2 Effect of ∆∆∆tttmax

At this current stage of our research, Darcy’s law

Γ
′(t) = lim

xxx→Γ(t)−
−∇

(
|u|m(xxx, t)

m

)
· n̂nn , in (t0,T ]

is splitted from the bigger system (See the chart in (2.48) of Section 2.5.4), and is discretized and

computed, e.g. at time t = tn, by the simple forward Euler scheme given by (cf. Pg. 39)

Γn+1−Γn

tn+1− tn
=−∇h

(
|un

h|
m

m

)
· n̂nn , (4.5)

where ∇h(·) represents an approximation of limxxx→Γ(tn)−∇(·) at t = tn, and n̂nn denotes the unit out-

ward normal to the boundary (See Fig. 2.6). We find through a straightforward analysis that this
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Figure 4.2: Effects of τ = 10−4 on mesh movement and accuracy for the U-method.

splitting technique indeed introduces the error terms

O(h2)+O(∆tmax)O(h) (4.6)

into the numerical solution, where h is the diameter of the largest element of Th and ∆tmax is the

largest time step allowed (as defined in (4.3)). This implies that if we move the boundary points

via Darcy’s law with such scheme, the convergence order deteriorates for larger maximum time

step for very fine meshes. This implies the necessity of using a smaller time step.

For a confirmation, we again consider the Barenblatt-Pattle solution and apply our method in

several experiments where the maximum time steps are no greater than 10−3,10−4, and 10−5,

respectively. Again, we use a uniform mesh with boundary points given exactly at each time level,

and other parameters chosen appropriately. Fig. 4.3 shows the convergence histories for cases

m = 1 and m = 2. It demonstrates that too big a time step reduces the accuracy and order of

convergence for very fine meshes, while a sufficiently small time step gives an optimal (second-

order) convergence behavior.

Remark 4.2.1. We might improve the method’s independence on the size of average time step

through using a solution predictor at each iteration. Namely, before performing the iteration, with
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Figure 4.3: Convergence history of the method for various fixed maximal time steps (original
formulation).

the mesh being fixed, we solve for the solution at the next time level, and use this solution to aide

with the estimation of the next solution on the moving mesh.

4.3 Effect of mesh adaptation strategies

In this section, we would like to observe how different mesh adaptation strategies affect our numer-

ical solution. Recall from subsection 2.5.2 that we have three major choices of the metric tensor M,

given in equations (2.36), (2.37), and (2.38), by which the MMPDE method generates a uniform

mesh, an arclength-based adaptive mesh, and a Hessian-based adaptive mesh, respectively.

In order to observe the performance of each of these meshing strategies, we apply our method,

with appropriately chosen parameters, to the IBVP (4.1), where exact Barenblatt-Pattle solutions

are known. Again, for simplicity, the boundary at each time level is given exactly (with formula

(2.14)), so that our evaluation of these strategies will not be unnecessarily interfered with boundary

error.

As one may expect, the U-method applied with an adaptive strategy is more accurate than the

same on an uniform mesh. Moreover, between the two approaches of adaptivity, the Hessian-
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Figure 4.4: Convergence history of the U-method for the three meshing strategies.

based strategy produces, in most situations, better results than the arclength-based one (See Fig.

4.4). The exception is for the case m = 1 and other situations where the solution does not have a

steep front. In such cases, the performance of these three approaches is similar to one another (See

Fig. 4.4a). On the other hand, for the case m= 2, where the solution has a steep front (i.e. the slope

tends to infinity as one approaches the boundary from the inside), there is a significant deviation

in performance between these there approaches (See Fig. 4.4b). For the nonadaptive (uniform

mesh) approach, the convergence order is less than one, which is undesirable. For the arclength-

based approach, we observe a first-order convergence, which is still less than the optimal rate. On

the other hand, for the Hessian-based method, there is a major breakthrough, as a convergence

of second order, which is optimal for a linear FE method, is observed providing that the mesh is

not so fine (it is possible that a smaller time step will be required for achieving a second-order

convergence over finer meshes).

Remark 4.3.1. From the results of subsections 4.1, 4.2, and 4.3, we observe that in order to

apply our method effectively to find a numerical solution for (4.1), it is practical that we use

1. A sufficiently small value for τ (e.g. τ = 10−4, 10−5, or the adaptive formula in (4.4)),
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2. A sufficiently small ∆tmax between the time levels, and

3. The adaptive meshing strategy based on the solution’s Hessian.

4.4 Effect of PME parameter m on the solution

We know from some error estimates (e.g. (1.3), (1.4), (1.6), and (1.7)) in the Introduction (Chapter

1) that for various numerical methods of PME on a fixed mesh, the convergence order deteriorates

as parameter m gets higher. Hence, it is imperative to observe and understand the effect of this

parameter on the accuracy of our method. For this purpose, we will again use the Barenblatt-

Pattle solution (2.14) to evaluate the accuracy, where it can be verified analytically that the higher

the value of m is, the steeper the slope of the Barenblatt-Pattle solution will be near/at its free

boundary. Indeed, for m > 1, the slope of the solution at the free boundary is infinite, whereas

for the case m = 1, it is finite. For these reasons, we should expect that the higher m is, the more

challenging it will be for numerical simulation. For a confirmation, we apply our U-method to

(4.1) and choose (cf. Remark 4.3.1)

τ = 10−5 , ∆tmax = 10−5 , and Hessian-based mesh adaptation

for four cases

m = 1 , m = 1.5 , m = 2 , and m = 3 .

Moreover, we again prescribe the boundary points exactly according to the formula in (2.14) for

a more reliable assessment. A convergence history is given in Fig. 4.5a. We observe that for a

sufficiently small time step (e.g in this case, ∆tmax = 10−5) the accuracy of our method does not

depend on parameter m. Even though the magnitude of the error increases as m increases, the

method exhibits a second-order convergence for each of these four cases.
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4.5 Numerical examples

In this section, we present some numerical results of our U-method as applied to problem (4.1).

For each of these experiments, the boundary is computed numerically via Darcy’s law, with the

scheme given by (4.5). Moreover, following remark 4.3.1, we will use our method with the choice

of

τ = min
{

10−3,
10−1

N

}
, ∆tmax = 10−4 ,

and a Hessian-based mesh adaptation.

Example 4.5.1 (Barenblatt-Pattle solution). We apply our nonembedding moving mesh U-

method to problem (4.1) where the initial solution is the Barenblatt-Pattle solution (2.14). Fig.

4.5b shows convergence histories for cases of m = 1,1.5,2, and 3. Notice that due to the presence

of boundary errors from the discretization of Darcy’s law, the accuracy of the method is slightly

reduced, with order of convergence gradually decreases as m increases. This is in contrast with

the scenario where the boundary points are given exactly by (2.14) (see Fig. 4.5a), by which the

method produces more accurate results and maintains consistently a second-order convergence.

Thus, we see here that a major key for a precise simulation of PME is a precise tracing its free

boundary. More research is much needed in this direction.

In Fig. 4.6 and 4.7, we show plots of a representative mesh and its corresponding numerical

solution for the case m = 3. Notice that the slope of the solution is very steep near the boundary,

and also that the mesh is quite anisotropic (i.e. having almost flat elements), as seen through a

close-up view in Fig. 4.6b.

Example 4.5.2 (Waiting-time phenomenon). Similar to the simulation of the waiting time phe-

nomenon of the UE-method in Chapter 3 (see Example 3.2.4), we present an analogous experiment

by applying the U-method to (4.1) where m = 3, and the initial solution is given by (cf. (3.8))

u0(x,y) =


cos(

√
x2 + y2), for

√
x2 + y2 ≤ π

2

0, otherwise.
(4.7)
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Figure 4.5: Convergence history of the U-method.
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Figure 4.6: Plot of a representative mesh of the U-method for m = 3 (N = 5763).
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Figure 4.7: Plot of a representative numerical solution by the U-method for m = 3 (N = 5763).

In Fig. 4.8, we present the representative meshes and their corresponding numerical solutions. A

reference circle is drawn for each plot of solution to indicate the initial boundary, which verifies

the waiting time. For a more detailed verification, we also plot the cross section in the plane y = 0

of the solution at various time instants in Fig. 4.9. A careful look suggests that the boundary starts

moving at around t = 1.4.

Example 4.5.3 (Complex domain). In this example, we apply our U-method to (4.1) with m= 1

and

u0(x,y)=



25
[
0.252− (

√
x2 + y2−0.75)2

] 3
2
, for

√
x2 + y2 ∈ [0.5,1] and (x < 0 or y < 0)

25
[
0.252− x2− (y−0.75)2] 3

2 , for x2 +(y−0.75)2 ≤ 0.252 and x≥ 0

25
[
0.252− (x−0.75)2− y2] 3

2 , for (x−0.75)2 + y2 ≤ 0.252 and y≥ 0

0, otherwise.

The partial donut-shaped support pertaining to this initial solution is first seen in the paper of

Baines et al. [5]. Fig. 4.10 shows the mesh and its corresponding solution at selected time instants.

77



Since the solution is smooth over its support, we have used the boundary-based adaptivity for the

MMPDE method, with the choice of M given in (2.39), where α = 10−6 and r = 1
2 , in order to

focus more mesh points toward the boundary. We observe that the mesh’s evolution is comparable

to the results in [5].
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Figure 4.8: Example 4.5.2. A computed solution is shown at various time instants (N = 3743).
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Figure 4.9: Example 4.5.2. The cross section at y = 0 of a computed solution is shown at various
time instants.
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Figure 4.10: Example 4.5.3. A computed solution is shown at various time instants (N = 3242).
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Chapter 5

The V-method: A nonembedding numerical

solution for the V-formulation of PME

In Chapter 4, we have developed a nonembedding adaptive moving mesh method (the U-method)

for IBVP (1.2) in order to resolve some weaknesses associating with the embedding UE-method of

Chapter 3. In particular, we discretize only in the support of the solution to avoid having extraneous

points beyond the solution’s free boundary, and also to avoid a necessary reduction in the solution’s

regularity. Though some progress has been made by the same method, the great challenge remains

for a highly irregular solution, e.g. one with very steep/infinite slope near/at the free boundary.

For such situations, it is highly difficult to trace the boundary precisely with Darcy’s law, since the

error in solution is much larger near its free boundary.

In this chapter, we would like to apply a similar numerical method for PME, but in a slightly

different direction. Recall that in Chapter 4, the nonembedding method requires us to incorporate
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Darcy’s law into the original IBVP (1.2), so that it is modified into the following U-formulation



ut = ∇ · (|u|m∇u) , in Ω(t) , t ∈ (t0,T ]

u(xxx, t0) = u0(xxx) , in Ω(t0)

u(xxx, t) = 0 , on Γ(t) := ∂Ω(t) , t ∈ (t0,T ] ,

Γ′(t) = lim
xxx→Γ(t)−

−∇

(
|u|m(xxx, t)

m

)
· n̂nn in (t0,T ] .

(5.1)

We also recall that the Barenblatt-Pattle solution for PME (cf. Eqn. (2.14)), by which we measure

the accuracy of our method, have very steep/infinite slope near/at its free boundary whenever

m > 1, and causes very great challenges for our numerical method. Mathematical studies on PME

(e.g. see [46]) show that while the PME solution u can have very low regularity over its support,

its “Mathematician’s pressure” defined by |u|
m

m is very smooth. We would like to find PME solution

(e.g. for (5.1)) indirectly via finding a solution for this pressure instead. To this end, let us denote

v :=
|u|m

m
(5.2)

and seek to transform the original PME

ut = ∇ · (|u|m∇u) (5.3)

to be in terms of v only. From (5.2), we have

u = m
1
m v

1
m .

Further,

ut = ∇ · (|u|m∇u) ,

∂

∂ t
(m

1
m v

1
m ) = ∇ · (mv∇(m

1
m v

1
m )) ,
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m
1
m

1
m

v
1
m−1vt = m

1
m ∇ · (mv

1
m

v
1
m−1

∇v) ,

v
1
m−1vt = m∇ · (v

1
m ∇v) ,

v
1
m−1vt = m[∇(v

1
m ) ·∇v+ v

1
m ∆v] ,

v
1
m−1vt = v

1
m−1

∇v ·∇v+mv
1
m ∆v ,

v
1
m−1vt = v

1
m−1

∇v ·∇v+mv
1
m−1v∆v ,

vt = |∇v|2 +mv∆v ,

or

vt = mv∆v+ |∇v|2 ,

vt = ∇ · (mv∇v)− (m−1)|∇v|2 . (5.4)

Hence, we can use (5.4) to rewrite the IBVP (5.1) into the “V-formulation” of PME as



vt = ∇ · (mv∇v)− (m−1)|∇v|2 , in Ω(t), t ∈ (t0,T ]

v(xxx, t0) = v0(xxx) := (u0(xxx))m

m , in Ω(t0)

v(xxx, t) = 0 , on Γ(t) := ∂Ω(t) , t ∈ (t0,T ]

Γ′(t) = lim
xxx→Γ(t)−

−∇(v(xxx, t)) · n̂nn , in (t0,T ] .

(5.5)

Thus, our moving mesh method applied to this system will be called the “V-method.”

System (5.5) also admits a slightly modified form of Barenblatt-Pattle solution (cf. Eqn.

(2.14)), and is given by

v(r, t) =


1

mλ dm(t)

(
1−
(

r
r0λ (t)

)2
)
, for |r| ≤ r0λ (t)

0, for |r|> r0λ (t)

(5.6)
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Figure 5.1: The V-formulated Barenblatt-Pattle solutions for PME.

where

r = |xxx|, λ (t) =
(

t
t0

) 1
2+dm

, t0 =
r2

0m
2(2+dm)

. (5.7)

As expected, these special V-formulated Barenblatt-Pattle solutions of PME are very smooth on

their support for any parameter m. A few examples of these can be seen in the plots of Fig. 5.1.

As in the previous chapters (for the UE- and U-methods), we will rely on these modified spe-

cial solutions for benchmarking our method, with the L2-norm error measurement given in (4.2) of

Chapter 4. Similar to the previous discussion in Chapter 4, before presenting the main numerical

results, we would like to make a parallel (and comparative) investigation on the roles of the pa-

rameters and meshing strategies known to be sensitive to the first nonembedding method. Namely,

we are interested in the effects of τ , ∆tmax, and the choice of the metric tensor M on our method in

this situation (see Chapter 4, Pg. 68 and the associating references for a more detailed elaboration

on these components). In the following computations, unless stated otherwise, we will assume

the final time T in (5.5) is given by T = (t0 + 0.1)/2, where t0 is given in (5.7), and also that the

largest time step to be no greater than 10−3 (i.e. ∆tmax = 10−3). Additionally, unlike the previous

chapter where we let the boundary points be given exactly for these investigations, we will move

the boundary points through Darcy’s law with a forward-Euler scheme

Γ
n+1
h −Γn

h
tn+1− tn

=−∇h (v) · n̂nn , (5.8)
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where ∇h(·) represents a scheme for approximating limxxx→Γh(tn)−∇(·) at time t = tn, and n̂nn repre-

sents the unit outward normal to the boundary (See Fig. 2.6).

5.1 Effect of τ

Recall that though the modified Barenblatt-Pattle solutions in (5.6) are more regular within their

support than their original counterparts (cf. Eqn (2.14)), and though they do not have steep slopes

near/at the edges of their supports, their free boundaries are nevertheless moving. Unless the

interior points are made to follow the boundary points sufficiently fast, it will result in the loss

of accuracy as we have seen in the previous method (cf. Section 4.1, especially Fig. 4.1). This

indeed is the case, as we can see in Fig. 5.2 the representative meshes from two computations with

τ = 10−2 and τ = 10−4. Notice that, similar to the situation of Section 4.1, when the value of τ

is not sufficiently small (as to make the mesh points react faster to the change in the metric tensor

M(xxx, t)), the interior points could not keep up with the movement of the free boundary (see Fig.

5.2a), and result in a loss of accuracy as indicated by the corresponding convergence history in

Fig. 5.3 (cf. Fig. 4.1 for the previous method). On the other hand, a smaller value for τ such as

10−4 helps the interior points to follow closely with the free boundary (see Fig. 5.2b), and result

in a greater convergence result as seen in the convergence history for the same case in Fig. 5.3.

We further notice from the same figure that even for the case of τ = 10−2, the convergence order

only breaks down for finer meshes. As a practical implementation, from now on, unless otherwise

specified, we will use the following adaptive formula for τ (cf. (4.4)) given by

τ = min
{

10−3,
10−1

N

}
. (5.9)
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Figure 5.2: Effect of different values of τ on the outcome of the moving mesh (m = 2).

5.2 Effect of ∆∆∆tttmax

As we continue to follow the research pattern of the previous chapter, we would like to investigate

the role of the largest allowed time step (cf. Eqn. (4.3))

∆tmax = max
n=1, ... ,n f

(tn− tn−1)

in our current numerical method. Since the modified Barenblatt-Pattle solutions are very smooth

for each m > 1, we will only investigate for the case of m = 3. We will also use the Hessian-

based adaptive meshes, and the choice of τ in (5.9) for these experiments. Fig. 5.4 show the

convergence histories for the cases of ∆tmax = 10−2,10−3,10−4, and 10−5. It turns out that for

each of these upper bounds of the time steps, the method performs well and exhibits a second-

order convergence. Nevertheless, the convergence histories for cases of ∆tmax = 10−4, and 10−5

appear to be more stable.
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Figure 5.3: Convergence histories for two different choices of τ (m = 2).

5.3 Effect of mesh adaptation strategies

Recall from Chapter 4, that the U-method, when applied to the IBVP (4.1) with m > 1 and having

Barenblatt-Pattle solution, performs differently for different adaptive strategies. In particular, the

method performed on adaptive meshes outperforms the same on a uniform mesh. Also between the

two adaptive strategies, the Hessian-based adaptivity surpasses the arclength-based one in accuracy

and convergence order (cf Section 4.3, and Fig. 4.4b). This great contrast between the mesh

adaptation strategies could be accounted for by the peculiar nature of some of these Barenblatt-

Pattle solutions, in that they have very steep/infinite slope near/at their free boundaries for m > 1.

On the other hand, we have also learned from MMPDE theory (e.g. see [26]) that in situations

where the PDE solution is sufficiently smooth, no clear advantage might be gained through mesh

adaptation, as the mesh remains largely uniform throughout the computation process regardless

of the adaptive methods (For example, the Hessian-based adaptive mesh in Fig. 5.5a for the case

m = 3). In fact, we recall a similar situation in Section 4.3, where the performance between the

three mesh adaptation strategies is indistinguishable for the case m = 1 of PME, for which the

Barenblatt-Pattle solution does not have steep slope at its free boundary.
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Figure 5.4: Convergence histories for different choices of ∆tmax (m = 3).

For our new V-formulation, the modified Barenblatt-Pattle solutions are very smooth over their

supports, including at their free boundaries for m > 1. Hence, we do not expect significant differ-

ences between these mesh adaptation strategies for our method, when applied to the IBVP (5.5)

which have these special solutions. This observation is indeed confirmed through the three con-

vergence histories in Fig. 5.6, which correspond to the three meshing strategies. These numerical

experiments have been conducted with m = 3, ∆tmax = 10−4, and a choice of τ according to (5.9).

Ironically, the Hessian-based adaptivity in this case performs slightly worse than the same method

applied on the uniform and arclength-based meshes.

Remark 5.3.1. In certain situations where we need to concentrate more mesh points at the

boundary, we might use a boundary-based metric tensor introduced in (2.39) such as

M(xxx) =
1

U2 +10−8 I , (5.10)

by which the MMPDE method clusters the mesh points toward regions where the solution is small,

and hence towards the free boundary. A representative mesh based on this tensor is given in Fig.

5.5b, with a corresponding convergence history given in Fig. 5.7b.

89



-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

y

(a) Hessian-based adaptive mesh.
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Figure 5.5: Representative meshes for the Hessian-based and boundary-based mesh adaptations.

5.4 Effect of PME parameter m on the solution

From the previous chapter, we have known that the parameter m of PME in (1.2) (cf. (2.46)) can

greatly affect the performance of our moving mesh method. In particular, when the method is

applied on uniform meshes, the order of convergence steadily declines as m gets higher, which in-

deed confirm various error estimations found in the research community. On the other hand, when

the method is equipped with Hessian-based adaptivity, the order of convergence is not affected

(providing that the boundary points are traced precisely), though the magnitude of the L2-error

gets higher as m increases. Again, since the modified Barenblatt-Pattle solutions in our case are

very smooth over their supports, we expect a good convergence order for our method with the new

formulation of the IBVP (5.5). Indeed, this is the case, as the convergence histories for the cases

m = 2,3,4 and 5 in Fig. 5.7a show a second-order convergence for all of these. It is worth pointing

out that contrary to the previous results for the original formulation (cf. Section 4.4 and Fig. 4.5b),

this this situation, the magnitude of the L2-error decreases as m increases. We also present in Fig.

5.7b a convergence history for the method when applied with the tensor (5.10) given in Remark

5.3.1. We observe that clustering the mesh points toward the boundary in this manner slightly im-
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Figure 5.6: Convergence histories for different adaptation strategies.

proves the convergence behavior of the method over fine meshes (comparing with the convergence

history for the Hessian-based adaptivity in Fig. 5.7a, where a slight reduction in convergence order

is observed for fine meshes).

5.5 Numerical examples

In this section, we present some numerical examples to demonstrate the V-method.

Example 5.5.1 (Barenblatt-Pattle solution). In this example, we apply the V-method to IBVP

(5.5), where

m = 3 , r0 = 0.5 , and T ≈ 0.07 .

Further, we use a Hessian-based adaptive mesh with N = 10171,

τ = min
{

10−3,
10−1

N

}
, and ∆tmax = 10−3 .

In Fig. 5.8, plots of the mesh and its associated solution at the final time are given. Notice that

the mesh points are not clustered toward the free boundary, and the solution is not steep at such
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Figure 5.7: Convergence histories for different parameters m for two methods of moving mesh.

location (contrast with Fig. 4.6 of the U-method in Chapter 4). We also consider the results of the

same method applied with the metric tensor given in (5.10), where the mesh nodes are deliberately

clustered towards the free boundary. Fig. 5.9 shows the mesh and its associated solution given by

this boundary-based adaptivity.

Example 5.5.2 (Waiting time phenomenon). From PME literature, we know that for some spe-

cial initial solutions, the IBVP (5.5) exhibits the waiting-time phenomenon, where the free bound-

ary does not move initially until a finite amount of time has elapsed. Such is the case for the initial

solution

v0(x,y) =


1
m cosm

(√
x2 + y2

)
, for

√
x2 + y2 ≤ π

2

0, otherwise.
(5.11)

We observe that

∇

(
1
m

cosm
(√

x2 + y2
))

=−cosm−1(
√

x2 + y2) sin(
√

x2 + y2)√
x2 + y2

x

y

 ,

vanishes at
√

x2 + y2 = π

2 . Therefore, according to Darcy’s law given in (5.5), we should not

expect the free boundary to move initially. Here, we experiment our V-method for the case m = 2.
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Figure 5.8: Example 5.5.1. The final mesh (close view near (-0.35, -0.35)) and computed solution
for m = 3 with the Hessian-based mesh adaptation (N = 10171).

In Fig. 5.11, we plot a few typical meshes and their associated solutions (with the contrasting

circles for representing the initial boundary). To further demonstrate and confirm the waiting-time

phenomenon, we also plot the cross section (in the plane y = 0) of the solution at various time

instants in Fig. 5.12 (where the dashed lines indicate the position of the initial boundary). A closer

look suggests that the free boundary does not start moving until around t = 0.2.

Example 5.5.3 (Complex domain). In this example, we apply our V-method to (5.5), with m= 2

and

v0(x,y)=



25
[
0.252− (

√
x2 + y2−0.75)2

] 3
2
, for

√
x2 + y2 ∈ [0.5,1] and (x < 0 or y < 0)

25
[
0.252− x2− (y−0.75)2] 3

2 , for x2 +(y−0.75)2 ≤ 0.252 and x≥ 0

25
[
0.252− (x−0.75)2− y2] 3

2 , for (x−0.75)2 + y2 ≤ 0.252 and y≥ 0

0, otherwise.
(5.12)

Here, we would like to cluster more mesh points toward the free boundary, and therefore have used
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(a) Mesh. (b) Computed solution.

Figure 5.9: Example 5.5.1. The final mesh and computed solution for m = 3 (N = 40459). The
mesh nodes are deliberately clustered toward the free boundary.

the boundary-based adaptivity for the MMPDE method with M given in (2.39), where α = 10−6

and r = 1
2 . The partial donut-shaped support pertaining to this initial solution is first seen in the

paper of Baines et al. (see [5]). Fig. 5.13 shows the representative meshes and their corresponding

solutions. Here, the mesh’s evolution is also comparable to the result in [5] (See also Example

4.5.3 in Chapter 4).

5.6 A discussion on the VE-method

We have seen from Chapter 3 that though the UE-method for PME has some disadvantages in

terms of computer memory and solution regularity, it is nonetheless quite accurate (if equipped

with a Hessian-based adaptivity) and also very flexible with complicated domains. On the other

hand, though the U-method of Chapter 4 and the V-method of this chapter have improved on

the weaknesses of the UE-method, they are not as quite robust with more complicated domains.

These considerations have encouraged us to explore the “VE-method”–an application of our mov-

ing mesh method with embedding approach to the V-formulation of PME, with the hope that the

robustness toward complex domains of an embedding method in combination with a high regular-
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ity in solution of the V-formulation will produce favorable results. Specifically, we would like to

consider the IBVP 
vt = ∇ · (mv∇v)− (m−1)|∇v|2 , in Ω× (t0,T ]

v(xxx, t0) = v0(xxx) , on Ω

v(xxx, t) = 0 , on ∂Ω× (t0,T ] ,

(5.13)

where Ω is sufficiently large to contain the support of v(xxx, t), for all t ∈ (t0,T ]. Here, by carrying

out the VE-method equipped with the Hessian-based adaptivity (similar to that of the UE-method

of Chapter 3), and by using the modified Barenblatt-Pattle solution in (5.6) for benchmarking, the

method’s performance is shown through the convergence histories given in Fig. 5.10 (where the

error is measured in the L2-norm given in (3.2)). We notice that the convergence order is about 1.5,

and declines quickly as the mesh gets finer. Currently, we have not yet found an explanation for

the drastic decline of performance. More investigations are required for further understanding.
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Figure 5.10: The VE-method: Convergence histories for different values of m.
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Figure 5.11: Example 5.5.2. A computed solution is shown at various time instants (N = 4011).
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Figure 5.12: Example 5.5.2. The cross section at y = 0 of a computed solution is shown at various
time instants (N = 4011).
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Figure 5.13: Example 5.5.3. A computed solution is shown at various time instants (N = 3242).
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Chapter 6

Conclusion and further remarks

6.1 Conclusion

In this dissertation, we have developed a numerical method for solving numerically the porous

medium equation (PME), and in particular, its associated IBVP (1.2). After having understood

some peculiar properties associated with such systems, we strongly believe that due to the pres-

ence of a free boundary which moves with finite speed, a moving mesh finite element method is

potentially more efficient and robust than many others. Moreover, since there are special chal-

lenges associated with the PME, most notoriously the lack of regularity of the solution at the free

boundary, a moving mesh approach combined with an adaptive method will likely yield more ac-

curate results, with better convergence order. Due to these considerations, we have studied three

adaptive moving mesh FE methods, where the mesh generation strategy is based on the MMPDE

method of Huang et al. [25, 26].

For the first method–called UE-method, we consider the original IBVP (1.2) and choose a do-

main sufficiently large as to contain the support of the solution for the duration of the simulation.

Hence, for this “immersed-boundary” or “embedding” method, the free boundary itself is part of

the solution, and there is no need to trace it explicitly as we have to do for the nonembedding

methods of Chapters 4 and 5. The method performs well when applied to the Barenblatt-Pattle
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solutions, which produces second-order convergence for the cases m = 1,2, and 3; this surprising

performance is in spite of the reduction of the solution’s regularity by its extension beyond its sup-

port. Though more memory is required for accommodating the mesh points outside the solution’s

support, the method is quite robust, and capable of handling more complicated structures in the

geometry of the solution, and also in the PDE itself. In particular, the simulations of the waiting

time (cf. Example 3.2.4), of PME solution with complex support (cf. Examples 3.2.1, 3.2.2, and

3.2.3), and of PME with a variable exponent (i.e. m = γ(xxx)) and/or absorption term (cf. Example

3.3.2, 3.3.3, and 3.3.4) have yielded a good success.

The second method, presented in Chapter 4, which we have also termed the nonembedding

method or U-method, seeks to overcome the two weaknesses of the embedding UE-method (i.e.

The necessary reduction of solution’s regularity, and the requirement for extraneous points outside

solution’s support). This method, which has been used commonly by other researchers in the

recent years, only discretizes within the support of the PME solution, where the boundary points

of the mesh are moved manually via Darcy’s law (cf. (2.13)) at each time level. We apply the

B-M-P splitting strategy to our discrete system, where we solve separately, yet sequentially, the

boundary equation (from the forward-Euler discretization of Darcy’s law), the mesh equations

(from the MMPDE method), and the physical equations (from the FE discretization of PME on

the moving mesh). Such splitting strategy is advantageous since the mesh and physical equations

have different structures, and it is prudent for us to deal with these separately. The method has

been demonstrated to produce a second-order convergence (cf. Fig. 4.5a), even for PME with

parameters m > 1, provided that the movement of the boundary is traced precisely. However, if

the free boundary is not traced precisely (especially for solutions with steep slope near/at the free

boundary), there is a reduction in convergence order of the method over fine meshes (cf. Fig. 4.5b).

Therefore, more research on how to improve the precision of boundary movement is much needed.

Another shortcoming of the U-method (and also the subsequent V-method) at the present is its

lack of robustness for more complicated domains when compared to the UE-method, especially

in a situation where two parts of the solution’s support come into contact with one another (as in
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Examples 3.2.1, 3.2.2, and 3.2.3). Further research is also needed for to overcome this particular

issue.

The third method–termed the V-method, discussed in Chapter 5, is essentially the same as

the U-method, except that we seek PME solution indirectly by solving for its “Mathematician ’s

pressure” (5.2) through the modified IBVP (5.5). The modified Barenblatt-Pattle solutions (cf.

(5.6)) corresponding to this new setting are very smooth at their free boundaries (see Fig. 5.1).

In particular, the gradient of each of these is not steep/infinite at its free boundary, and therefore

the boundary movement computation via Darcy’s law is more accurate, even with the lower-order

forward Euler scheme as in (5.8). The method achieves a second order convergence for all the

parameters m considered in our study (cf. Fig. 5.7a), with the L2-error magnitude decreases as

m increases. Furthermore, in applications where the mesh nodes are preferred to be clustered

toward the boundary, we may use the special boundary-based metric tensor given in (5.10) with

the MMPDE method for the purpose.

All together, these three methods show an advancement in the state of the art for the numerical

solution of PME.

6.2 Future Research

The following topics are interesting and quite needed for improving the progress of numerical

solution for PME and other free boundary problems.

• Boundary movement: As we have noticed in Section 4.5, the accuracy of the nonembedding

U-method, especially when applied to PME solution with low regularity at the boundary, is

highly dependent on the precision of the boundary movement governed by Darcy’s law (cf.

Fig. 4.5). In particular, for such situations, a lower-order approximation of the free boundary

leads to a loss of accuracy for our method over very fine meshes. Therefore, we need to

develop a better method to trace the boundary points more precisely.

• Degenerate mesh: For the U-method in Chapter 4, we know that if the solution has very
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steep gradient at the free boundary, the Hessian-based MMPDE adaptation will push the

mesh points toward the same location. While this behavior greatly improves the accuracy

and even the convergence order for our method, it also has its weaknesses. As we have

seen in Fig. 4.6b, when the mesh points move too close to the boundary, the mesh elements

near/at the same boundary tend to be very flat, making the mesh become anisotropic (and

almost degenerate). As a consequence, it is more challenging to recover the Hessian of

the solution, making mesh generation more difficult. Hence, more research is needed to

overcome this shortcoming.

• Higher dimensions: We have not yet seen a PME result in a higher-dimensional setting.

For a future project, we would like to study the numerical solution of PME in three or higher

dimensions.

• Other nonlinear problems: Though much progress has been made for a numerical method

for solving PME, this PDE is still a simple example of other more general nonlinear and/or

free boundary problems. We would like to explore and improve our method towards being

more capable for handling such problems.

• The VE-formulation: Currently, we have some difficulties in applying the embedding

method to the V-formulation (cf. Section 5.6). In particular, our VE-method breaks down for

very fine meshes. Further research is required for understanding and overcoming the issue.
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filtration. Z̆. Vyčisl. Mat. i Mat. Fiz., 7:440–444, 1967.

[30] L. Kamenski. Anisotropic Mesh Adaptation Based on Hessian Recovery and A Posteriori

Error Estimates. PhD thesis, TU Darmstadt, 2009.

[31] L. Kamenski and W. Huang. How a nonconvergent recovered Hessian works in mesh adap-

tation. SIAM J. Numer. Anal., 52:1692–1708, 2014. (arXiv:1211.2877).

[32] B. F. Knerr. The behavior of the support of solutions of the equation of nonlinear heat con-

duction with absorption in one dimension. Trans. Amer. Math. Soc., 249:409–424, 1979.

[33] R. Li, T. Tang, and P. W. Zhang. Moving mesh methods in multiple dimensions based on

harmonic maps. J. Comput. Phys., 170:562–588, 2001.

[34] S. Lian, W. Gao, C. Cao, and H. Yuan. Study of the solutions to a model porous medium

equation with variable exponent of nonlinearity. J. Math. Anal. Appl., 342:27–38, 2008.

[35] G. J. Liao and D. Anderson. A new approach to grid generation. Appl. Anal., 44:285–298,

1992.

[36] K. Miller and R. Miller. Moving finite elements I. SIAM J. Numer. Anal., 18:1019–1032,

1981.

[37] C. Ngo and W. Huang. Monotone finite difference schemes for anisotropic diffusion problems

via nonnegative directional splittings. Comm. Comput. Phys., 19:473–495, 2016.

[38] R. H. Nochetto and C. Verdi. Approximation of degenerate parabolic problems using numer-

ical integration. SIAM J. Numer. Anal., 25:784–814, 1988.

107



[39] O. A. Oleı̆nik, A. S. Kalašinkov, and Y. Čžou. The Cauchy problem and boundary problems
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