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Abstract 

 

The purpose of this study is to develop a psychometrics of standard-setting for the 

Bookmark standard-setting procedure. Using simulated and real data, the error variance of 

Bookmark cutscores is modeled as a function of both within-group and between-group variance. 

Fully Bayesian methods are then used to estimate the total error variance associated with 

Bookmark cutscores. The results of the study suggest that the estimates of error variance for the 

proposed method tend to be larger than those calculated using traditional methods. Consequently, 

the confidence intervals were more likely to include the “true” cutscore in the simulation study. 

Because the result of a standard-setting study is almost always a recommendation rather than a 

final cutscore, one goal is to provide policymakers with a more accurate representation of the 

amount of uncertainty around a panel’s recommendation. 
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Chapter I: Introduction 

Statement of Problem 

The Bookmark standard-setting method has become an increasingly popular method for 

setting cutscores on large-scale educational tests in the United States. Federal policy under the 

Elementary and Secondary Education Act of 1965, recently reauthorized as the Every Student 

Succeeds Act (ESSA), requires that each state’s academic standards include at least three 

performance levels into which students may be classified by the statewide assessment system. 

Those assessment systems are almost always asked to serve multiple purposes, including 

providing measures of student growth and allowing for differentiated feedback to be provided at 

the school, district, and state levels. In this testing environment, the Bookmark method has been 

attractive to states in part because it can easily incorporate multiple cutscores as well as a high 

degree of input from the teachers expected to be most familiar with student performance. 

Although the Bookmark method has been in use for two decades, relatively little research 

exists to support the inference that the cutscores recommended by panelists truly represent the 

expected scores of examinees at each intended performance level. The Bookmark method 

requires panelists to make estimates of estimates of performance for examinees within a very 

narrow range of ability, but few studies exist to demonstrate that panelists are actually able to do 

so with much accuracy (and the studies that do exist tend to suggest the opposite). 

Purpose 

The purpose of this study is to develop a psychometrics of cutscores that are set using the 

Bookmark method. A model-based approach to evaluating Angoff standard-setting results was 

introduced by Skorupski and Fitzpatrick (2014) and Skorupski, Zhao, Fitzpatrick, and Chen 
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(2015). Their general framework, which the authors termed “Cutscore Distribution Theory” 

(CDT), enabled more accurate estimates of the error associated with recommended cutscores 

than have been calculated using traditional approaches. CDT models the uncertainty associated 

with cutscores as a function of both panelist consistency and accuracy, while traditional 

approaches tend to focus only on consistency.  

The results of standard-setting studies nearly always serve as a recommendation to a 

policy-making body (such as a state department of education) rather than the final cutscore(s). 

The goal in modeling the error around cutscores, therefore, is to estimate more accurate 

confidence intervals around panelists’ recommendations. Because the Bookmark method has 

become increasingly popular in large-scale educational testing, this study aims to extend CDT to 

Bookmark standard-setting studies.  

Data and Variables 

This study uses both simulated and real data. The real data were collected as part of an 

operational standard-setting study for a statewide general summative assessment program in 

English Language Arts (ELA) and Mathematics. In both the simulation and real data studies, the 

dependent variables are the standard errors of measurement of the recommended Bookmark 

cutscores calculated using different model of error. The primary independent variables are the 

amounts of within-group and between-group variance of the panelist ratings. 

Research Questions 

The following research questions are addressed in this study: 

1. How will the width and location of the 95% credible intervals of the model-based 

compare with the 95% confidence intervals from the traditional method? 
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2. How similar will cutscore estimates from the model-based method be to those 

calculated using the traditional method? 

3. How does changing the total number of panelists or the number of groups affect the 

estimates from the model-based and traditional methods? 

Hypotheses 

Modeling both within- and between-group variance will allow more accurate estimation 

of the error associated with cutscore recommendations than can be estimated using only the 

overall variance. Based on the results of previous studies with the Angoff standard-setting 

method (Skorupski & Fitzpatrick, 2014; Skorupski et al., 2015) cutscore error is expected to 

increase as panelists are less consistent, and as the number of panelists increases. 

Research Expectations 

Although most methodological research on standard-setting over the past several decades 

points out how difficult it is for panelists to estimate conditional item difficulties accurately, few 

established standard-setting methods attempt to account for panelist inaccuracy when calculating 

and reporting recommended cutscores. The confidence intervals around cutscore 

recommendations are typically viewed as a window within which a policymaking body may set 

the final cutscore. This research is expected to show how that window may narrow or widen as 

Bookmark panelists are more or less accurate, respectively, in their estimates of performance for 

borderline examinees. The traditional method of calculating standard errors of Bookmark 

cutscores uses only the consistency among the full sample of panelists’ Bookmark placements. 

This study attempts to capitalize on the fact that Bookmark panelists typically work in small 
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groups or tables in order to model the overall variance as coming from two sources: variation 

among panelists at the same table, and differences between tables. 

Summary 

This research addresses the problem of estimating the error variance associated with 

cutscores set using the Bookmark standard-setting method. Current methods of estimating this 

error account for only within-sample variability. As a result, the confidence intervals within 

which final cutscores are selected may be too narrow, thereby reducing the chance that the final 

cutscores are closely aligned with the actual level of performance the cutscores are intended to 

reflect. The aim of this study is to take advantage of the structure of a typical Bookmark sample 

in order to construct a model of cutscores that allows for more accurate estimation of their 

uncertainty. One primary goal of this research is to allow practitioners to establish cutscores 

more closely aligned with panelists’ estimates of borderline performance. 
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Chapter II: Literature Review 

Standard-Setting Background  

Purpose of standard-setting. Standard-setting in psychological measurement typically 

refers to setting cutscores on tests for the purposes of making decisions (e.g., Cizek, Bunch, & 

Koons, 2004). Loomis defines standard-setting as “a process of translating a performance 

standard to a score scale” (2012, p. 108). Generally speaking, standard-setting methods describe 

a set of procedures for defining construct-based performance categories and then translating 

those to actual scores on the test (Kane, 1994). The categorization may be as simple as a pass/fail 

decision, or it may involve placing examinees into one of several classifications (e.g., “Below 

Basic,” “Basic,” “Proficient,” or “Advanced”). Cizek (1996) emphasizes that standard setting is a 

research endeavor that should be evaluated with the same rigor applied to any other research 

study, including the choice of method and its implementation. Unlike many other methodological 

questions in psychological measurement, however, research on standard-setting methods is 

complicated by the fact that researchers tend not to expect much consistency across 

implementations of a particular method. Indeed, much of the existing work on standard-setting 

explicitly states that there is no “true” cutscore to be discovered by a standard-setting panel. 

Rather, standard-setting panelists are expected to use their individual opinions and expertise to 

inform their judgments. As Cizek et al. (2004) explain: 

It is now a widely accepted tenet of measurement theory that the work of standard-setting 

panels is not to search for a knowable boundary between categories that exist. Instead, 

standard-setting procedures enable participants to bring to bear their judgments in such a 

way as to translate policy decisions…into locations on a score scale; it is these 

translations that create the effective performance categories. This translation and creation 
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are seldom, if ever, purely statistical, impartial, apolitical, or ideologically neutral 

activities. (pp. 32–33, emphasis in original) 

The idea of translation underscores the need to differentiate terminology related to 

cutscores. Kane (1994) carefully distinguishes “passing scores” from “performance standards.”  

The passing score (i.e., cutscore) is on the scale of the test; it is intended to correspond with 

some adequate level of the construct being measured (i.e., the performance standard). In other 

words, “the performance standard is the conceptual version of the desired level of competence, 

and the passing score is the operational version” (Kane, 1994, p. 426). This distinction appeared 

to be blurred in early tests that claimed to be “criterion-referenced,” in which acceptable 

performance was defined, for example, as getting two-thirds of the items correct (Glass, 1978).  

Arbitrariness of cutscores. There can be a great deal of variability across different 

standard-setting methods and panels. As Linn (2003) concluded: 

The variability in the percentage of students who are labeled proficient or above due to 

the context in which the standards are set, the choice of judges, and the choice of method 

to set the standards is, in each instance, so large that the term proficient becomes 

meaningless. (p. 12) 

Linn (2003) argued against the “standards-based reporting” that has become 

commonplace in educational measurement. He maintained that we should reserve standard-

setting for situations in which the need for performance categories is clear (e.g., licensure or 

certification). However, Linn acknowledges that as long as laws dictate the setting and reporting 

of performance categorizes, they will continue to be used. As such, many researchers have 

proposed ways of evaluating the standard-setting process to ensure that it is as defensible as 

possible (e.g., Engelhard, 2011; Hambleton, 2001; Hambleton & Pitoniak, 2006; Jaeger, 1988; 

Kane, 1994; Lee & Lewis, 2008; Reckase, 2006). 
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Kane (1994) identifies two assumptions related to passing scores and performance 

standards: the descriptive assumption and the policy assumption. Evidence supporting these two 

assumptions is part of the interpretive argument for the validity of any interpretations made on 

the basis of the passing scores. The descriptive assumption—that the cutscore corresponds to 

some specified level of performance—is not inherently arbitrary. To the extent that the test is 

reliably measuring a construct on which there is a well-defined performance standard, it may be 

reasonable to assume that a given performance standard can be tied to a specific point on the test 

score scale. In contrast, the policy assumption claims simply that “the performance standard is 

appropriate, given the purpose of the decision” (p. 435). Kane argues that the “unavoidable 

arbitrariness in standard setting” (p. 427) stems from this second assumption. For many 

psychological tests there is not a good reason to value one performance standard over another 

that is slightly higher or slightly lower. Kane defines this source of arbitrariness as separate from 

the actual translation of a performance standard to the scale of the test. To say that a cutscore is 

arbitrary is essentially to say that the policy assumption is not well met.  

Accordingly, much of the criticism of standard-setting is criticism of the policy 

assumption itself. Glass (1978) argues that it is impossible to specify any criterion-based 

threshold that makes a meaningful distinction between performances. According to Glass, the 

fields of psychology and education have not adequately defined the concept of “mastery” or 

expertise in a way that allows us to tell masters or experts from non-masters or non-experts 

reliably. Setting standards on tests, in Glass’s opinion, implies precise measurement of a 

construct that is vague at best and certainly not well understood. Therefore, such categorizations 

are inherently arbitrary. 
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Glass (1978) made the same distinction that Kane (1994) did much later: that there is a 

difference between the cutscore and the performance standard. He felt that the imprecision of 

language about criterion-referenced measurement at the time created the impression that 

cutscores are more grounded than they really are. Glass’s point was not that it is impossible to 

make comparisons among test performances, but simply that it is impossible to place a cutscore 

or threshold at a point that differentiates acceptable from unacceptable performance in anything 

but an arbitrary way. To place a cutscore is to dichotomize (what we usually assume to be) a 

continuum. If we are unsure that clearly defined categories exist, according to Glass, it makes 

little sense to search for their demarcation line. Glass argues that human behaviors are more 

complex than can be accounted for by our construct definitions, and the fact that there will 

always be people who are misclassified by an established test threshold poses a serious threat to 

the validity of cutscore interpretations.  

Other experts, however, do not believe standard-setting is necessarily undermined by the 

fact that performance standards are often arbitrary (e.g., Hambleton, 1978; Popham, 1978; van 

der Linden, 1982). In a response to Glass (1978), Popham (1978) points to wine tasting and art 

criticism as just two examples of judgmental tasks that can still be accomplished with a high 

degree of consistency and defensibility. Popham argues that standard-setting is judgmental but 

not “mindless and capricious” (p. 298). Hambleton (1978), too, argues that the term “arbitrary” 

need not have a negative connotation as it pertains to standard-setting. As van der Linden (1982) 

summarized: 

There are many other instances in which arbitrary choices have to be made in which 

deliberate, defensible results are obtained. What should be avoided is capricious standard 

setting, that is, standard setting in which the learning objectives are inconsistently 
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translated into the cutoff score and, in fact, erratic standards of mastery are obtained. (p. 

295) 

In addition, Glass’s (1978) argument that categorization is arbitrary does not make it 

unnecessary. Mehrens and Cizek (2012), for example, claim that many of the decisions that are 

informed at least in part by test scores are inherently categorical. They point to college 

admissions, employee selection, and professional licensure as just a few examples of cases when 

categorical decisions must be made. “Proponents of setting performance standards accept the 

position,” they argue, “…that for a given purpose a level of knowledge, skill, or ability exists 

that is too low to tolerate” (p. 35). The judgmental, arbitrary aspect of standard-setting is in 

determining “how low is too low?”  

Defensibility of cutscores. Reasonable people can have differing definitions of a 

performance standard, so there is no reason to expect them to agree on precisely the same test 

score (Kane, 1994). The purpose of any standard-setting method is not to locate the “true” cut 

score; in most cases no such score exists. Instead, we might simply hope “to show that the 

proposed standard is reasonable” (Kane, 1994, p. 457). Perhaps the most important product of 

any standard setting study, therefore, is a compelling body of evidence that the chosen cutscore 

is reasonably appropriate given the inferences we wish it to inform. 

The evidentiary burden for a given cutscore depends to some degree on the stakes of the 

test. Tests that are used to deny employment or admission are more likely to face legal 

challenges, for example, and will require an extensive body of evidence that will stand up to 

rigorous examination in court. 

In addition to considering issues of fairness and opportunity to learn, U.S. courts have 

examined whether professional standards (such as the Standards for Educational and 
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Psychological Testing (AERA, APA, & NCME, 2014; hereafter Standards) or the Equal 

Employment Opportunity Commission Guidelines (EEOC, 1978)) were adhered to when 

evaluating the defensibility of cutscores (Mehrens & Popham, 1992; Phillips, 2012). Thorough 

documentation of the standard-setting plans, processes, and decisions can help to show that 

cutscores (and the inferences they are used to inform) are legally and psychometrically 

defensible (Phillips, 2012). Contrary to Glass’s (1978) argument, the courts have generally 

regarded judgmental standard-setting methods as acceptable (Mehrens & Popham, 1992). 

It is important to point out that although standard-setting methods are not designed to 

“discover” the cutscore, this paper adopts the position of Cutscore Distribution Theory (CDT; 

Skorupski et al., 2015) that there is a parameter to be estimated: 

In standard setting, it is often assumed that there is no “true” cutscore; we rely on the 

informed judgment of expert panelists, but we don’t necessarily conceive of a cutscore 

that “should” be found. CDT proceeds by rejecting that notion in favor of an asymptotic 

definition of a “true cutscore.” The development of this idea is conceptually very similar 

to assumptions made in deriving Classical Test Theory. (p. 5) 

In this sense, a panel’s recommended cutscore may be viewed as an estimate of the cutscore that 

would be set by the population of qualified panelists (see Cizek (1993), however, for a criticism 

of this “parameter estimation paradigm”). Although not always highlighted by standard-setting 

research, the result of most standard-setting studies is a recommended cutscore that is presented 

to the policymaking body that makes the final decision. For example, the results of NAEP 

standard-setting studies are recommended cutscores taken to the National Assessment Governing 

Board, which decides the final cutscores (Loomis, 2012). The policymaking body typically 

considers several pieces of information in addition to the recommended cutscore itself, including 
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impact data, performance on other similar tests, and panelists’ self-evaluations of how well they 

understood the process (Loomis, 2012). Part of establishing defensible cutscores, therefore, is 

developing methodology that quantifies and minimizes error in the panelists’ recommendations 

in order to provide the final decision-makers with the most useful information. 

Standard-Setting Methods 

Jaeger (1989) described standard-setting methods as either “test-centered” or “examinee-

centered,” a classification that Kane (1994; 1998) also incorporated1. Test-centered methods ask 

panelists to focus on the test or items on the test, while examinee-centered methods ask panelists 

to make decisions about examinees (Kane, 1994). This schema was expanded by Hambleton, 

Jaeger, Plake, and Mills (2000) to account for newer methods that were not easily classifiable as 

either test- or examinee-centered. Because the focus of the current study is on one particular test-

centered method (Bookmark), this paper will use the Jaeger (1989) classification system for 

convenience, but see Hambleton and Pitoniak (2006) for a list of methods classified using one 

dimension of the Hambleton et al. (2000) schema. 

Although Kane (1998) recommends using examinee-centered methods for performance 

tests and test-centered methods for more objectively scored tasks, he acknowledges that little 

research has been conducted to support this belief. 

Examinee-centered methods. Examinee-centered methods ask standard-setting panelists 

to make judgments about the performance of examinees. After examinees have been classified, 

the cutscore is placed at the point that maintains the classifications. Because the focus of the 

                                                      
1 Although Jaeger’s classification of methods as either examinee- or test-centered is still widely cited in standard-
setting research, Cizek and Bunch (2007) point out that all judgmental methods require panelists to consider both 
examinees and test items, and “methods differ primarily in the degree to which one or the other focus is explicitly 
emphasized” (p. 105). This paper will adopt Jaeger’s classification scheme for the sake of custom. 
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current study is on the Bookmark method (a test-centered approach), this section will be limited 

to brief descriptions of a few of the most common examinee-centered procedures. The reader is 

referred to Cizek and Bunch (2007) and Cizek (2012) for more details on examinee-centered 

methods. 

Body of Work method. The Body of Work (BoW; Kingston, Kahl, Sweeney, & Bay, 

2001) method was developed specifically to be used for assessments with constructed-response 

or other complex tasks that are not well suited to traditional item-rating procedures. BoW 

panelists are asked to evaluate and make a holistic judgment about an examinee work sample 

(such as an essay or portfolio). According to Kingston and Tiemann (2012), the BoW method 

was developed to elicit judgments that teachers are already comfortable making (as opposed to 

the often-unfamiliar task of judging item difficulty). Zieky, Perie, and Livingston (2008) note 

that although the BoW method can work with mixed-format tests that include some multiple-

choice items, it is ill-suited for tests with many such items. 

The BoW method is an iterative procedure. In addition to a training round, the process 

includes a “range-finding” round and a “pin-pointing” round (e.g., Cizek & Bunch, 2007; 

Kingston & Tiemann, 2012; Zieky et al., 2008). BoW panelists work with entire samples of 

examinee work (e.g., essays or work products), assigning each sample to a performance level. In 

the range-finding round, panelists work independently. A range of possible cutscores is identified 

by reviewing actual test scores of the samples placed into each category. In the pin-pointing 

round, panelists repeat the process, but evaluate only samples with actual scores in the identified 

range. Kingston & Tiemann (2012) and Zieky et al. (2008) advise using new samples for the pin-

pointing round, although Cizek and Bunch (2007) state that range-finding samples may be 

included. For both the range-finding and pin-pointing rounds, the panelists should not be aware 
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of any of the actual scores of the work samples. Once BoW data are collected, logistic regression 

appears to be the preferred method for calculating actual cutscores (e.g., Cizek & Bunch, 2006; 

Kingston & Tiemann, 2012; Zieky et al., 2008). 

Contrasting Groups method. The Contrasting Groups method (Berk, 1976) asks panelists 

first to classify examinees (typically a small subset of all test-takers) into groups (e.g., 

“masters/nonmasters,” or “passers/failers”). The classification could presumably be done before 

or after the examinees take the test, so long as the panelists do not know the examinees’ test 

scores when they make their judgments. Those classifications are then used to create empirical 

score distributions for each group. A cutscore is calculated that minimizes the misclassifications 

of those same examinees, assuming that the judged classifications are accurate. 

As noted by Cizek and Bunch (2007), the described procedure is not likely to be so 

straightforward in practice. Limited sample sizes and messy raw score distributions may 

necessitate some sort of smoothing procedure before selecting a cutscore. Furthermore, Berk’s 

(1976) original description of the method described creating mastery/nonmastery groups on the 

basis of whether students had received instruction in the domain to be tested. Although the 

method can be (and has been) extended to rely on panelist judgment to classify students, doing 

so is certain to strain our assumption that the classification is accurate. Hambleton, 

Swaminathan, Algina, and Coulson (1978) pointed out that the Contrasting Groups procedure is 

only useful to the extent that this assumption is met. 

Borderline Group method. The Borderline Group method (Zieky & Livingston, 1977) is 

similar to the Contrasting Groups method, except that panelists identify one group of 

“borderline” examinees rather than classifying each examinee into one of two groups. The 

cutscore is the median test score for the group of borderline examinees. Although the cutscore 
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depends only on the borderline group, panelists are usually asked to classify examinees into three 

groups (e.g., adequate, inadequate, and borderline; Cizek & Bunch, 2007; Livingston & Zieky, 

1982). 

As with the Contrasting Groups method, the Borderline Group method still relies heavily 

on the ability of the panelists to identify borderline examinees accurately. The effect of 

misclassified examinees—whose scores may lie at the extremes of the group distribution—is 

mitigated by using the median rather than the mean as the cutscore (Livingston & Zieky, 1982). 

Test-centered methods. Test-centered methods ask standard-setting panelists to make 

judgments about aspects of the test itself (usually the items on the test). Typically, panelists 

review the test and try to predict the performance of a hypothetical examinee. This paper will not 

attempt to mention the many different test-centered methods and modifications to those 

procedures, but will rather describe a few of the most widely cited methods. For a more 

extensive listing and description of methods, see Cizek and Bunch (2007) and Cizek (2012). 

Nedelsky method. In the procedure proposed by Nedelsky (1954), panelists are shown a 

multiple-choice item and asked to estimate how many of the options a minimally proficient 

examinee will know are incorrect. The reciprocal of the number of remaining options is summed 

across all items on the test to determine the cut score. That is, if a minimally proficient examinee 

will know one option is incorrect on a four-option multiple-choice item, then the reciprocal of 

the remaining options (1/3) represents the probability that he will answer the item correctly (and 

the sum of these reciprocals for the entire test represents his probable score). The technique is 

limited in that it can be applied only to multiple-choice items and that it assumes examinees will 

guess randomly among all plausible options. In a comparison of the Nedelsky and Angoff 

methods, van der Linden (1982) argued that this assumption of Nedelsky is unlikely to be met in 



22 

 

all circumstances. Also, because there are a limited number of values a four- or five-option item 

can take, inconsistency among panelists can substantially affect the variability of the resulting 

cut scores. 

Ebel method. The Ebel (1972) method first asks panelists to make a judgment about both 

the difficulty and the relevance of each item. The panelists categorize each item on each 

dimension such that every item is cross-classified in a table. In other words, each item would be 

placed in one of three difficulty categories (easy, medium, and hard) and one of four relevance 

categories (essential, important, acceptable, and questionable). The judgments are summarized in 

a table (in the current example, the table would have 12 cells: three difficulty categories by four 

relevance categories). Each individual item judgment is tabled; that is, if 5 panelists classify 50 

items, the sum across all 12 cells in the table will be 250. After tabulating the judgments, the 

panelists are asked to judge what percentage of items in each cell the borderline examinee should 

answer correctly. For each cell in the table, that percentage is multiplied by the number of items 

in the cell, and that product is summed over all cells. Finally, the cutscore is calculated by 

dividing that sum by the total number of judgments (in this case, 250) to yield a percentage 

correct score. 

Despite the ease of calculations with the Ebel method, it has several disadvantages. For 

example, Poggio (1984) reports that the process is very time-consuming, and that the inclusion of 

the “questionable” category can make panelists uneasy. As Cizek (2007) explains, it is 

reasonable for panelists to wonder why items they deem as having questionable relevance should 

be included on the exam, which may weaken the overall validity argument for using the test to 

classify examinees. However, as Meskauskas (1976) noted: 

One gathers the impression that Ebel is not committed to the particular descriptors used 

along the two dimensions. Many test constructors may wish to use somewhat different 
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descriptors, as the inclusion, in a test, of a category of items judged of questionable 

relevance seems hard to defend. (p. 138) 

Meskauskas also points out, though, that the relevance and difficulty dimensions are likely to be 

correlated, and that requiring separate judgments about the percentage of items in each category 

necessary to pass the test is “entirely arbitrary” (p. 138) without some evidence to support the 

practice. Cizek and Bunch (2007) report that the method is used mainly for classroom 

assessments in the fields of medicine and healthcare. 

Angoff method. One of the most commonly applied standard-setting methods was 

proposed by Angoff (1971)2, in which panelists are shown items on a test and asked to estimate 

whether a minimally proficient person would get that item correct. In a footnote, Angoff 

proposed a modification to this procedure, in which the panelists are asked to estimate the 

probability with which a minimally proficient person would select the correct answer. The sum 

of these conditional probabilities for all items on the test equals the estimated number of items 

correct for the minimally proficient examinee, which is then averaged across all panelists to 

determine a mean estimate. This probability-based modification has received the most attention 

in the literature and seems to be the most common in practice; this paper will use the term 

“Angoff method” to refer to the probability estimate method. 

Angoff’s footnote describing the probability-based procedure provides a general outline 

but contains little detail: 

In effect, the judges would think of a number of minimally acceptable persons, 

instead of only one such person, and would estimate the proportion of minimally 

acceptable persons who would answer the item correctly. The sum of these 

                                                      
2 Although the procedure bears his name, Angoff attributed it to Ledyard Tucker (Cizek & Bunch, 2007). 
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probabilities, or proportions, would then represent the minimally acceptable score. 

(Angoff, 1971, p. 515) 

Because Angoff did not provide a more detailed description of the procedure, subsequent 

researchers have modified or clarified aspects of it to increase the consistency of the ratings and 

to help ensure the accuracy of the results. In a review of empirical studies on Angoff methods, 

Brandon (2004) identified a five-step process common among published Angoff-based methods: 

1. select panelists, 

2. train panelists, 

3. define the performance criterion, 

4. estimate performance of examinees at this level for each item, and 

5. review empirical item information and discuss ratings. 

In most studies, panelists work independently, assigning judgments without feedback 

from the researcher or other panelists. Brandon notes that the completion of step 5 typically 

concludes one “round” of standard setting, and that many researchers have implemented a two- 

or three-round process. Incorporating such an iterative procedure allows panelists to review and 

revise their original ratings after examining previous item performance data and/or discussing 

their ratings as a group. 

Bookmark method. The Bookmark standard-setting method was developed as an IRT-

based procedure that was particularly well-suited to the mixed format tests with multiple 

cutscores that became common in educational assessment in the 1990s (Lewis, Mitzel, Mercado, 

& Schulz, 2012; Mitzel, Lewis, Patz, & Green, 2001). In a Bookmark standard-setting study, 

panelists are presented with a booklet of items ordered from easiest to hardest and then asked to 

place a marker (or bookmark) to separate the items that minimally proficient examinees (MPEs) 
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likely will have mastered from those that MPEs likely will not have mastered. The cutscore is 

then calculated using the IRT scale location of the item or items near the bookmark (Lewis et al., 

2012). 

The ordered item booklet. A primary feature of the Bookmark method is the ordered item 

booklet (OIB). The OIB contains one item per page, with the items ordered from easiest to 

hardest. Item difficulty is usually determined by IRT estimates (such as item b-parameters), but 

the Bookmark method can also be implemented without the use of IRT. For example, 

Buckendahl, Smith, Impara, and Plake (2002) described a Bookmark study that ordered items 

according to their p-values. No matter the metric used to estimate difficulty, the items within the 

OIB should be carefully selected to span the range of both content and difficulty that are 

represented by the test (Cizek & Bunch, 2007). The OIB may be a single complete test form or a 

representative sample of items from a larger item pool. Because cutscores are calculated by 

mapping item difficulty onto examinee ability, the OIB should be constructed so that no large 

“gaps” in difficulty exist between adjacent items. For this reason, items from an intact test form 

might need to be augmented with additional items to bridge gaps in item difficulty in an OIB 

(Cizek & Bunch, 2007). Mitzel et al. (2001) state that OIBs usually span a range of 80 to 110 

score points, noting that this would make the OIB longer than most educational tests. 

One advantage of the Bookmark method is that it can easily incorporate a variety of item 

types beyond traditional selected response items. Dichotomously scored items appear only once 

in the OIB, but polytomous items will appear once for each possible score point above zero 

(Cizek & Bunch, 2007). For example, an item with possible scores of 0, 1/3, 2/3, and 1 would 

appear as three separate pages in the OIB, with their locations within the booklet determined by 



26 

 

the difficulty of obtaining each non-zero score point (estimated using a polytomous IRT model, 

for example).  

Cizek and Bunch (2007) provide a detailed description of the OIB and the kind of 

information that is typically provided by the OIB. In addition to the item itself, each page in the 

OIB may also provide the key to the item and statistical information (such as the scale value 

associated with the item’s difficulty). If some items within the OIB have a common stimulus 

(e.g., a reading passage), then the stimulus material is provided to panelists as well. 

A typical round of a Bookmark procedure. As is the case with many other standard-

setting methods, a Bookmark study is an iterative process typically comprising three rounds 

(Mitzel et al., 2001). Although some activities may be included only in specific rounds (e.g., 

presentation of impact data) or vary slightly by round (e.g., discussion of bookmark placements 

with small table groups vs. with the whole sample), the general procedure of panelists placing 

their bookmarks is very similar in each round. Before panelists begin the actual Bookmark 

process, they should be very familiar with both the performance level descriptors that define 

typical students in each category, and they should also carefully develop “borderline 

performance” descriptors that further help them to define the target population (Zieky et al., 

2008). 

In each round, panelists review each item in the OIB and are encouraged to consider and 

discuss the knowledge and skills that are required to answer each item correctly. Mitzel et al. 

(2001) recommend that discussions in round 1 be limited to the concept of “mastery” rather than 

on actual performance levels in order “to make the first round of judgments as uncontaminated 

as possible by others’ opinions” (p. 253). For polytomously scored items, panelists consider what 

is required to attain the given score point. 
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As panelists work through their OIBs, they are asked to place a bookmark to separate 

items that a borderline examinee would probably have mastered from items a borderline 

examinee probably would not have mastered. The notion of “probable mastery” should be 

carefully defined by the meeting facilitators to ensure panelists have a common definition (Zieky 

et al., 2008; see the next section for a discussion of response probability values). After panelists 

have placed their initial bookmarks, they should review at least a few more items beyond that 

point to ensure the items after the bookmark are generally not expected to be mastered by 

borderline examinees (Zieky et al., 2008). If panelists simply stop at the first encounter of a 

“non-mastery” item, the cutscore may be biased downward by a specific item. This is especially 

true if panelists view items within the OIB as being “out of order” in some regions (e.g., Cizek & 

Bunch, 2007). 

After panelists have placed their bookmarks, they review and discuss their placements 

(either in small groups or as a whole panel) and are encouraged to build consensus about the 

knowledge and skills required of the items in the OIB. Impact data (i.e., the percentage of 

examinees in each category) are usually presented after round 2, based on the mean or median 

bookmark location of the group after the second round of bookmark placement (Mitzel et al., 

2001). For larger studies, the discussion in round 3 shifts from small-table discussions to whole-

panel discussion. After the round 3 discussion, panelists make their final bookmark placements, 

and the final recommended cutscores and impact data are presented to the panel (Mitzel et al., 

2001). In each round, panelists may change the location of their bookmark placement or maintain 

the same placement from the previous round (Karantonis & Sireci, 2006). 

Selection of a response probability value. Much of the research on the Bookmark method 

has focused on the idea of “mastery” as it is presented to Bookmark panelists. In a typical 
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Bookmark standard-setting study, panelists are asked to review items in the OIB and, for each 

item, ask themselves whether an MPE would have a 0.67 probability of answering it correctly 

(or, in the case of a polytomous item, obtaining at least that particular score). Lewis et al. (2012) 

argue that although any probability value could be used in theory, a response probability of 0.67 

(RP67) is relatively easy for panelists to understand (e.g., “a two-in-three chance”) and is similar 

to the way teachers tend to think about mastery of a given task. However, those authors note that 

the choice of RP value has been a point of much discussion in the literature. Huynh (2006) 

argues that the RP value should correspond with the scale location of an examinee who would be 

expected to answer the item correctly, or the point at which the information of a correct response 

is maximized. For the Rasch and 2PL IRT models, that point corresponds to a probability of 

0.67. Wang (2003) argued that a value of 0.5 (RP50) is more appropriate in a Rasch context, 

although Huynh (2006) explained that their results were not actually at odds and instead depend 

on the type of information one wishes to maximize. 

In theory, the selection of an RP value should not affect the cutscore. Panelists using a 

higher RP value would place their bookmarks sooner in the OIB than panelists using a lower 

one, but the performance standard (and the test score to which it is translated) are theoretically 

identical (Hambleton & Pitoniak, 2006). In practice, however, differences can occur that demand 

careful consideration. For one thing, unless the Rasch model is used, the rank order of items by 

difficulty may not be the same at RP50 as at RP80, for example (Beretvas, 2004). Such 

differences may have an effect on where panelists place their bookmarks in the OIB. On a related 

note, the differences in scale locations between adjacent items in the OIB may not be the same 

for different RP values even if their difficulty ordering is the same, which could also affect the 

resulting cutscore calculation. Another problem is that Bookmark panelists may behave or view 
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their task differently with different RP values. In order to place their Bookmarks in a location 

consistent with the desired performance standard, panelists need to understand and internalize 

the RP value being applied. To that end, using RP67 seems to be most appropriate. For example, 

panelists in a Mapmark standard-setting (a procedure similar to Bookmark) study felt more 

comfortable using RP67 than RP50 (Williams & Schulz, 2005). Similarly, a study by the 

National Research Council (2005) found that panelists preferred RP67 to either RP50 or RP80. 

After reviewing relevant literature, Lewis et al. (2012) conclude that “the once controversial 

question related to RP criteria seems to be reduced to considering values anchored for the most 

part between RP65 and RP70” (p. 235). For the sake of easier understanding by panelists, those 

authors recommend RP67 (i.e., 2/3 probability). 

Methodological Research on Standard-Setting. 

Regardless of the method selected, the results of a standard-setting study may still vary 

from study to study. The following sections highlight some of the methodological research 

factors that can influence the defensibility of cutscores. 

Panelist selection. This paper will follow the lead of Jaeger (1991) and exclude standard-

setting panelists “whose authority to establish test standards derives from position rather than 

qualification” (p. 3). As Jaeger explains, standards set by such panelists tend to be established 

normatively or simply by tradition. Criterion-referenced tests, on the other hand, are 

“deliberately constructed to yield measurements that are directly interpretable in terms of 

specified performance standards” (Glaser & Nitko, 1971, p. 653). Most high-stakes educational 

and professional tests require standards that are explicitly linked to performance standards. We 

rely on the judgment of experts to establish such links (Jaeger, 1991). 
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In selecting panelists for standard-setting, then, it becomes important to consider what 

makes one an expert. Jaeger (1991) reviewed standard-setting literature and identified several 

characteristics of expertise that may be required in various standard-setting applications. For 

example, in most educational situations, standard-setting panelists should be very familiar with 

both the content of the test and the population of students who will take it. In that case, 

experienced teachers of a particular subject at a particular grade-level may be most qualified to 

identify minimally competent performance. For a professional licensure examination, experts 

may be those professionals who already hold the license themselves but who are still familiar 

with the skills and abilities of entry-level practitioners (Jaeger, 1991). 

In addition to considering whom to select, it is also important to consider how many 

experts will be on a standard-setting panel. As Jaeger (1991) points out, this is essentially a 

question of sample size. As such, he recommends that “the number of judges sampled should be 

sufficiently large so that the magnitude of most estimation errors will be tolerable” (p. 5). Using 

a variety of criteria and existing test scales, Jaeger shows that this number may range from 

around 13 to as many as 87. It may be unfeasible, of course, to use very large numbers of 

panelists, and the exact number of panelists required will depend somewhat on the stakes of the 

decision being made and the precision of the test itself (with higher-stakes tests likely requiring 

larger samples of panelists than lower-stakes ones). Berk (1996) reports that most standard-

setting panels comprise between 5 and 20 panelists. Raymond and Reid (2001) reviewed much 

of the same literature and concluded that panels of 10 to 15 panelists would be acceptably 

dependable in most situations, although they admit that there will be exceptions to that rule. For 

example, standard-setting panels for NAEP increased in 1993 from approximately 20 to 30 
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panelists per grade level for operational tests, although that panel was then split into two panels 

of 15 (Loomis, 2012). 

Panelist training. Standard-setting can be a cognitively challenging process that is often 

completely unfamiliar to the panelists we rely upon. Unfortunately, there is relatively little 

research on how well panelists understand what is being asked of them (e.g., Plake, 2008; 

Skorupski, 2012). The research that does exist on panelists’ understanding of the standard-setting 

process tends to confirm that panelists do not fully understand or are uncomfortable with their 

task. Hein and Skaggs (2009) found that a group of Bookmark panelists often deviated from the 

procedure for placing their bookmarks and tended to rely on external factors rather than their 

individual judgment. In addition, many of the panelists in that study expressed discomfort with 

the task of defining a single cut-off point, especially when they perceived items in the OIB to be 

out of order in terms of difficulty.  In another qualitative study, McGinty (2005) found that 

Angoff panelists were also influenced by factors external to the test, and “felt a tension between 

the desire to set high standards and the desire to be viewed by the public as doing a good job [of 

teaching]” (p. 280). The goal of training activities is to ensure that panelists feel comfortable 

with their task and that their judgments are not unduly influenced by extraneous factors. 

Hambleton and Skorupski (2005) found that panelists’ understanding of their task 

increased as the study proceeded, but that most panelists seemed to be confused in the early 

rounds. In a review of literature on panelists’ understanding of standard-setting, Skorupski 

(2012) concludes that more time should be devoted to training panelists to ensure that they are 

adhering to the method being used. 

Training for standard-setting panelists typically consists of activities that take place 

before the actual standard-setting process itself and that are intended to orient the panelists to 
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their task (Reid, 1991). The amount and type of training required can depend on the standard-

setting method being used as well as the make-up and qualifications of the panelists themselves 

(Raymond & Reid, 2001). Although panelist training is intended in part to increase the precision 

of cutscores by increasing panelist consistency (e.g., Clauser, Swanson, & Harik, 2002), the goal 

is “not to make panelists reach consensus and not to bias their judgments” (Loomis, 2012, p. 

109). Rather, the goal of training is to ensure that panelists understand the standard-setting 

method and are making well-informed judgments. 

 Panelists surveyed before a standard-setting study using the item-mapping method 

showed little agreement about what was expected of them or even what the performance 

standards should be (Skorupski & Hambleton, 2005). Although those results come from a single 

sample, it is clear that adequate training is crucial if we wish to assume that panelists are 

attending to the same factors to make their judgments or are operating from the same definition 

of the performance standard. Even after training, panelists may differ in the way they allow 

external considerations (e.g., impact data or the performance of their own students) to affect their 

ratings (Ferdous & Plake, 2005). 

Training activities are typically conducted on-site immediately before the standard-

setting study itself, but can also include materials and information provided to panelists in 

advance of the meeting. Raymond and Reid (2001) describe examples of panelist training used 

for an educational test and a professional licensure test, and identify the following broad 

categories of training activities: (a) contextualizing the standard-setting; (b) defining a reference 

group on which to base judgments; (c) practice activities. Those authors also note that providing 

various types of feedback (e.g., item performance or impact data) may be considered part of 

panelist training as well. 
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Training activities that help provide context to panelists may include describing the 

background, purpose, and consequences of the test itself (Loomis, 2012; Raymond & Reid, 

2001). They might also include asking panelists to take the test themselves to familiarize 

themselves with the content and format of the assessment as it will be encountered by examinees.  

Defining the reference group usually involves the thorough review of the performance 

level descriptors (PLDs) that describe the knowledge and skills of typical students in each 

performance category (e.g., Loomis, 2012). Berk (1996) proposed asking panelists to build on 

existing PLDs to construct detailed operational definitions of the PLDs that will help them to 

interpret their final cutscores. (Although it is possible that PLDs could be developed in 

conjunction with a standard-setting meeting, Egan, Schneider, and Ferrara (2012) point out that 

federal peer review guidance under NCLB required PLDs to be developed before standard-

setting.)  Panelists’ perception of the reference group is affected by the descriptions that are 

developed as part of training, with more detailed descriptions leading to increased agreement in 

the panelists’ own descriptions of borderline examinees (Giraud, Impara, & Plake, 2005). A 

panelist in one study, for example, reported she was able to internalize and make judgments 

using the group definition of borderline proficiency, despite the fact that she disagreed with the 

performance standard (Giraud & Impara, 2005). Ensuring that panelists are all using the same 

definition of “borderline proficiency” will help to reduce error in their recommendations and 

lead to stronger interpretations of the cutscore. 

Reid (1991) proposed three criteria for evaluating whether training has been effective: 1) 

ratings produced by individual panelists should be stable over time, 2) ratings should be 

consistent with relative item difficulties, and 3) ratings should reflect realistic expectations about 

the performance of examinees. 
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Panelist accuracy. Van der Linden (1982) used the term “intrajudge inconsistency” to 

describe “when the judge specifies probabilities of success on the items which are incompatible 

with each other and, consequently, imply different standards” (p. 296). To avoid confusion with 

consistency across panelists, Skorupski and Fitzpatrick (2014) refer to intrajudge consistency as 

“judge accuracy.” Unless otherwise stated, this paper will follow their lead and use the term 

“panelist accuracy” to describe how closely panelists’ estimates of examinee performance align 

with actual examinee performance. 

The ability of standard-setting panelists to predict item performance for groups of 

examinees has been shown to improve by providing training, allowing the panelists to discuss 

their ratings, and providing normative data (e.g., item p-values). Teachers who were not provided 

training or allowed to discuss their ratings were more accurate at predicting overall item 

difficulty than at predicting item difficulty for a group of “borderline” students, and they 

systematically underestimated the performance of borderline students (Impara & Plake, 1998). 

Van de Watering and van der Rijt (2006) also found that teachers were mostly poor judges of 

item performance for borderline examinees, although the teachers in that study tended to 

overestimate student performance. As in the Impara and Plake (1998) study, the teachers in the 

van de Watering and van der Rijt (2006) study were not provided training. However, panelists 

who were provided with focused training and allowed to discuss their ratings were quite accurate 

in estimating the performance of borderline examinees (Plake & Impara, 2001). Accordingly, the 

covariance between empirical performance and estimated performance has been shown to 

increase substantially when panelists are allowed to review performance data and discuss their 

ratings between rounds (Busch & Jaeger, 1990). Showing panelists the proportion of examinees 
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(or a group of examinees) that responded correctly to an item may decrease the cognitive 

demand of estimating probability for a hypothetical examinee. 

Panelist consistency. Several studies have evaluated different modifications to the 

Angoff method that are intended to increase panelist consistency. Among the modifications 

studied are accounting for the effects of panelist expertise level (Norcini, Shea, & Kanya, 1988), 

training the standard-setting panelists (e.g., Clauser, Swanson, & Harik, 2002), and using a 

common definition of minimum competence (Fehrmann, Woehr, & Arthur, 1991). 

The consistency of panelists in a standard-setting study is of primary importance to the 

current study because the traditional measure of error variance of a cutscore is calculated as the 

standard error of the mean cutscore recommendation. That is, more consistent the 

recommendations among the panel lead to smaller estimates of error variance of the cutscore. 

Many of the procedures implemented in standard-setting studies (e.g., multiple rounds of 

ratings, providing feedback to panelists, etc.) are therefore intended to increase the consistency 

of judgments across a panel. However, even a highly reliable cutscore can be inappropriate for 

several different reasons (Kane, 1994). For example, if one influential panelist dominates the 

discussion, panelists’ final ratings may be quite consistent with one another while still being 

inappropriate given the performance standard.  

Modeling Standard-Setting Data 

Standard-setting studies may be evaluated on a number of criteria to support the validity 

of how we interpret the resulting standards. Kane (1994) groups the evidence required for such 

support into three categories: a) procedural, b) internal, and c) external. Internal validity evidence 

is the type most relevant to the proposed study, although evidence in all three categories is 

critical to document. According to Kane, 
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The internal checks on validity focus on the consistency of the results of the standard-

setting study, in particular the consistency of the judges in translating the performance 

standard into a passing score. Therefore, they provide an empirical check mainly on the 

descriptive assumption, which posits a correspondence between the performance standard 

and the passing score. (p. 448) 

Calculating the standard error of cutscores. The focus of internal validity checks 

described by Kane is the precision of the cutscore, which can be quantified with an estimate of 

its standard error (e.g., Kane, 1994). A small standard error—although no guarantee that a 

cutscore is appropriate—at least suggests that we would be more likely to get a similar result if 

we were to repeat the study. A relatively large standard error, on the other hand, will almost 

always undermine our confidence in the cutscore. 

As mentioned previously, the result of a standard-setting study is usually a 

recommendation to the policymaking body that ultimately decides the cutscore. An estimate of 

the standard error of the recommended cutscore can help establish a confidence interval within 

which the policymaker may adjust the recommended cutscore (e.g., Cizek & Bunch, 2007). The 

Standards (AERA, APA, & NCME, 2014) also specify that the variability of the cutscore itself 

should be reported: 

Standard 5.21 

When proposed score interpretations involve one or more cut scores, the rationale and 

procedures used for establishing cut scores should be documented clearly. 

Comment: … Where applicable, variability over participants should be reported. 

Whenever feasible, an estimate should be provided of the amount of variation in cut 
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scores that might be expected if the standard-setting procedure were replicated with a 

comparable standard-setting panel. (pp. 107–108) 

Kane mentions two methods by which the standard error of a cutscore may be estimated: 

1) conducting multiple standard-setting studies, and 2) conducting a generalizability study to 

estimate variance components for different facets of a single standard-setting study. A 

hybridization of those two approaches in which two groups of panelists receive orientation and 

training together but complete the rest of the process separately (Hambleton & Pitoniak, 2006) is 

also possible and appears to be the procedure used for NAEP assessments (Loomis, 2012). 

Conducting two completely separate studies is likely to be cost- and resource-prohibitive for 

most testing programs, and so this study will consider only efforts to estimate the standard error 

resulting from a single standard-setting study. 

Hambleton and Pitoniak (2006) classify most internal evidence of validity for standard-

setting as falling into one of three categories: 1) consistency within method, 2) intrapanelist 

consistency, and 3) interpanelist consistency. The first of these is a more holistic estimate 

focused on the results of a standard-setting study (or what those authors termed “across-panel 

consistency” (p. 458)). Intra- and interpanelist consistency, on the other hand, refer to the 

reliability of the panelists themselves, individually (intrapanelist consistency) and as a panel 

(interpanelist consistency). 

Several different approaches to calculating the standard error of cutscores have been 

developed, focused mainly on the notion of intrapanelist consistency, interpanelist consistency, 

or both. The traditional approach to calculate the standard error of judgment is to use the 

standard error of the mean for the individual panelists’ standards (e.g., Jaeger, 1991). A 

generalizability theory (G-Theory; Cronbach, Glaser, Nanda, & Rajaratnam, 1972) approach 
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developed by Brennan and Lockwood (1980) provides three different estimates of the standard 

error, depending on whether the results are intended to generalize over samples of panelists, 

items, or both. It should be noted that when generalizing over samples of panelists for a fixed set 

of items, the G-Theory standard error is equivalent to the traditional measure. Kane and Wilson 

(1984) extended the G-Theory approach to account for non-zero correlation between 

measurement error and standard-setting error. A G-Theory approach has also been applied to 

both item-rating (e.g., Angoff) and item-mapping (e.g., Bookmark) standard-setting methods to 

include generalization over rounds of the study as well as designs with panelists nested within 

table groups or items nested within item “pools” (Yin & Sconing, 2008).  

Models for standard-setting. A number of researchers have proposed frameworks or 

models through which to evaluate the data provided by standard-setting panels. Such models can 

help researchers and practitioners to assess the defensibility of cutscores and may help them to 

know where to focus efforts to improve the standard-setting process. For example, van der 

Linden (1982) incorporated a Rasch model analysis to evaluate intrapanelist consistency. Such 

an approach could help to identify panelists whose judgments do not seem to be consistent with 

their overall recommended passing score. Kane (1987) presented a statistic for evaluating the fit 

of an IRT model to standard-setting data and introduced three methods for calculating cutscores 

using IRT, assuming that the data fit the model. Kane cautioned, however, that there is no 

inherent reason to assume standard-setting data fit an IRT (or any other) model, and so this 

assumption must be tested empirically before using such models to calculate a cutscore. As 

mentioned in the previous section, several authors have applied G-Theory to standard-setting 

data in order to account for and quantify the possible sources of error that affect the 
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recommended cutscore (e.g., Brennan, 1995; Brennan & Lockwood, 1980; Kane & Wilson, 

1984).  

In addition to modeling overall error, several studies have specifically addressed the 

variability of standard-setting panelists themselves. Both Jaeger (1988) and Engelhard and 

Anderson (1998) proposed methods for evaluating standard-setting judgments that can identify 

panelists with aberrant patterns of judgment. Engelhard has applied a many-faceted Rasch 

(MFR) model to evaluate both Angoff data (2009) and Bookmark data (2011). The MFR 

approach allows the evaluation of judgments on a number of factors, including panelist severity 

and presence of a halo effect. Although these methods can provide feedback about the variability 

of the panelists themselves—which can be valuable information to the body responsible for 

setting the final cutscores, they do not directly address the appropriateness of the cutscore itself. 

Reckase (2006) proposes a theory of standard-setting and describes what he calls a 

standard-setting panelist’s “intended cut score” (ICS). The ICS is the cutscore that a panelist 

would recommend if he were perfectly consistent in the way he translated the policy definition of 

a performance level to a score on the reporting scale. The estimation of the ICS is, in Reckase’s 

view, the goal of standard-setting. His proposed framework is intended to allow evaluation of the 

effectiveness of a standard-setting method at recovering a panelist’s ICS. Although standard-

setting is typically a group process, Reckase focuses on the recovery of the ICS for an individual 

panelist. The ICS is assumed to be the driving factor of the standard setting process, regardless of 

the specific procedure employed. The closeness of the ICS to the actual policy definition, despite 

being an essential question of validity, is not considered. Reckase proposed three criteria for 

evaluating a standard-setting methodology: 1) whether the ICS is recovered if a panelist is 

perfectly consistent in making the required judgments, 2) whether the estimate of the ICS is 



40 

 

unbiased over many theoretical replications of the standard-setting process, and 3) whether the 

standard deviation of this theoretical distribution of estimated ICSs is “as small as possible” (p. 

6), with the acceptable magnitude of such variability depending on how the cut score is used. Of 

the many potential sources of error that might influence cutscore recommendations, Reckase 

considers only errors in judgments when panelists are working independently. 

One limitation of Reckase’s framework is that it assumes standard-setting panelists 

understand their task (Schulz, 2006). The question of whether panelists understand what is being 

asked of them is a primary validity concern in standard-setting work. Schulz argues that the 

relative ease of understanding by panelists using one method may be an important advantage 

over competing methods, but Reckase’s framework does not permit such distinctions. Schulz 

also points out that a small standard deviation of estimated ICSs might suggest, for example, that 

panelists are not using their individual judgment, or that discussions are being dominated by only 

a few panelists. Evaluating standard-setting methods by this third criterion, in Schulz’s opinion, 

will not adequately take into account how a method might rely on or encourage individual 

variability. On a related note, Schulz points out that although Reckase’s framework provides a 

model for an individual panelist’s ICS, the actual cut score recommendation resulting from a 

standard setting procedure is a group mean or median. Schulz believes that a model of standard 

setting must take into account the (intentional) dependence among ratings (e.g., through 

subsequent rounds of rating) for an accurate estimation of the standard error of the final 

recommendation. 

More recently, a psychometrics of standard-setting, termed “Cutscore Distribution 

Theory” (CDT; Skorupski & Fitzpatrick, 2014; Skorupski, Zhao, Fitzpatrick, & Chen, 2015), has 

been proposed for the Angoff method. CDT considers two separate sources of error for Angoff 
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panelists: accuracy and consistency. Accuracy is defined as the correlation between a panelist’s 

item ratings and the true conditional p-values of the items for a borderline examinee. 

Consistency is the correlation among panelists’ item ratings. The traditional measure of standard 

error in an Angoff study considers only consistency, but Skorupski and his colleagues point out 

that panelists may be consistent in their ratings but still not very accurate in terms of estimating 

the true conditional probabilities of success. Simulated results show that the size of standard 

error can be over- or underestimated as panelists are more or less accurate in estimating these 

conditional probabilities. Using real data, Skorupski et al. (2015) also demonstrated how 

accuracy may be estimated in an operational setting using empirical item performance and the 

Rasch model to estimate the vector of true conditional probabilities. 

Bayesian Estimation 

Because the methods in this study employ Bayesian methods, a brief review of their 

history is given below, along with a discussion of the differences between Bayesian and more 

traditional “frequentist” approaches. 

Bayesian data analysis was developed in large part on the basis of writings by the 

Reverend Thomas Bayes and Pierre Simon Laplace, in the 18th and early 19th century (Gelman, 

Carlin, Stern, & Rubin, 2004). Early work on probability treated statistical parameters as given 

and focused on determining the probability of observing specific data, given those parameters. In 

independent work, both Bayes and Laplace are credited with “inverting” this probability 

statement, or focusing on the probability distribution of the parameters, given the observed data 

(Gelman et al., 2004).  

Bayes’ Rule. The foundation of Bayesian statistical inference is Bayes’ Rule or Bayes 

Theorem, presented in Gelman et al. (2004) as: 
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where 

• ( | )p y  is the posterior density, or the probability of the parameters θ given observed 

data y; 

• ( | )p y   is the likelihood function (i.e., the sampling distribution), or the probability 

of y, given θ;  

• ( , )p y  is the joint probability distribution of θ and y; 

• ( )p   is the prior distribution of the parameters;  

• ( )p y  is the marginal distribution of the data, or the distribution of y over all possible 

values of θ. 

Having the marginal distribution in the denominator makes the posterior a proper density (i.e., its 

sum is 1). However, as Gelman et al. (2004) explain, the marginal distribution may be 

considered a constant and, therefore, omitted, yielding an alternative form of Bayes’ rule: 

( | ) ( ) ( | )p y p p y   , 

which states that the posterior is proportional to the product of the prior and the likelihood.  

Bayesian vs. Frequentist approaches. Bayesian statistical analysis and more typical, so-

called “frequentist” methods are fundamentally different in their approach. Sir Ronald Fisher, 

who developed the analysis of variance (ANOVA), wrote in his 1925 book Statistical Methods 

for Research Workers that “the theory of inverse probability is founded upon an error, and must 

be wholly rejected” (Fisher, 1925, p. 10). Under the frequentist paradigm, a researcher’s question 

can be framed as “How likely are my data, given certain parameters?” For example, an ANOVA 

from the frequentist perspective might be employed to determine how likely an observed group 
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difference is, given that their true difference is 0. If the F-test result suggests the observed 

difference is sufficiently unlikely (say, a 5% chance), then the researcher rejects the null 

hypothesis and concludes that the groups are, indeed, different. Among the underlying 

assumptions for this particular technique is that the residual variance is normally distributed with 

an expected value of 0. Although different statistical methods are more or less sensitive to 

violations or such assumptions (see, for example, Glass, Peckham, and Sanders, 1972, for a 

review and discussion of the practical consequences), the point here is that they are implicit, 

typically accepted as true when deciding to use a particular analytic method. 

In contrast, a Bayesian researcher approaching the same problem might ask, “How likely 

are true group differences to have a certain value, given the data?” To answer this question, the 

Bayesian analyst specifies both a prior distribution and a likelihood function. The prior 

represents the researcher’s belief about how the parameters are distributed in the population. In 

the absence of data, the posterior distribution is defined by the prior; as observations accumulate, 

the influence of the prior is reduced. As Box and Tiao (1973/1992) explain: 

A prior distribution, which is supposed to represent what is known about unknown 

parameters before the data is available, plays an important role in Bayesian analysis. 

Such a distribution can be used to represent prior knowledge or relative ignorance. In 

problems of scientific inference we would usually, were it possible, like the data “to 

speak for themselves.” Consequently, it is usually appropriate to conduct the analysis as 

if a state of ignorance existed a priori. (p. 2) 

The likelihood function “is the function through which the data y modifies prior 

knowledge of θ; it can therefore be regarded as representing the information about θ coming 

from the data,” (Box & Tiao, 1973/1992, p. 11, emphasis in original).  
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Chapter III: Methods 

This study extends Cutscore Distribution Theory (Skorupski & Fitzpatrick, 2014) to the 

Bookmark standard-setting method. The error variance of cutscores set using the modified 

Angoff method was shown to be a function of panelist consistency, panelist accuracy, and 

sample size. The goal of this study is to apply that concept to the Bookmark method. Because an 

advantage of the Bookmark method is to order items by difficulty (thereby increasing the 

accuracy of panelists), this study focuses on consistency and sample size, with consistency 

partitioned into both within-group and between-group components. Study 1 will use simulated 

data to determine the relationship between the standard error of Bookmark cutscores and panelist 

consistency and sample size. Study 2 will apply the same methodology to real standard-setting 

data to compare the CDT error variance to that calculated using traditional methods. 

Study 1 

Data generation. All data for Study 1 were generated and analyzed in R (R Core Team, 

2014).  

A 100-item test was simulated by generating 100 true a-, b-, and c-parameters under the 

3PL IRT model (Birnbaum, 1968). Generating distributions were Uniform (lower bound=0.5, 

upper bound=2.0) for the a-parameters and Beta (α=5, β=20) for the c-parameters. To ensure an 

even distribution of item difficulty values (as in an OIB consisting of an augmented test form), 

the b-parameters were an evenly spaced sequence of 100 numbers from -3.0 to 3.0. True item 

parameters were fixed across all conditions and replications. 

A Bookmark standard-setting study was simulated to establish three cutscores on the test. 

The true cutscores on the latent scale were assumed to be known, and were fixed at -0.5, 0.5, and 
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1.5 across all conditions.  For each condition, a total sample of Nt panelists were simulated by 

generating Ni intended cutscores (ICSs) in each of Ng groups for each of the three cuts. ICSs are 

simulated to account for two sources of variability: group-level variation, which will be referred 

to as bias, and individual variation within a group, referred to as inconsistency, in the following 

manner: 

 
, , (0, )g k r bBias N  ,  
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 where  

• b  is the SD of true bias,  

• c  is the SD of true consistency,  

• *

k  is the true latent ability value associated with cutscore k, 

• 
, , ,i g k rICS is the intended cutscore for panelist i in group g at cutscore k within replication 

r, and 

• a and b are the lower and upper bounds, respectively, of the truncated normal 

distribution.  

In other words, for each replication, the ICSs were drawn randomly from a normal distribution 

centered at the true cut value plus the group-level bias, with a variance of 2

c . To ensure that ICS 

values would be generated such that 
, , ,i g k rICS was always less than 

, ,( 1),i g k rICS 
, the two higher 

cuts were drawn from truncated normal distributions, with a lower bound at the preceding 

cutscore. Additionally, 
, ,g k rBias  was regenerated if 

*

, ,( )k g k rBias   is less than or equal to 

*

1 , 1,( )k g k rBias   . 
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 The process of panelists working through OIBs was simulated by first re-ordering the 

items. For IRT models other than the Rasch model, the ordering of items by difficulty may vary 

by examinee ability. As in operational Bookmark studies, the items in this study were ordered by 

their Bookmark difficulty level (BDL) values, which are the   values that correspond with a 

response probability of 2/3 (RP67). The BDL for each item j was calculated using the true item 

parameters and RP = 2/3: 

 

1
log

j

j j

j

RP

RP c
BDL b

a

 
       

 After reordering the items by their BDL values, a true conditional probability value P 

was calculated for each panelist in each group, for each item, at each of the panselist’s three ICS 

values. Next, for each 
, , ,i g j kP  value, a vector of 30 random uniform draws between 0 and 1 was 

generated. If at least 20 (i.e., two-thirds) of those values are less than 
, , ,i g j kP , then the panelist 

received a 1 (“yes”) for that item for that cutscore; if fewer than 20 of the values are less than 

, , ,i g j kP , the panalist received a 0 (“no”). This procedure is intended to simulate the typical 

instructions to Bookmark panelists, namely to imagine a group of 30 borderline examinees and 

decide whether at least two-thirds of them would answer the item correctly. The result of this 

process is a set of three matrices per group (one for each cutscore) of 1s and 0s, with a row for 

each panelist and a column for each item, in BDL order. 

 Next, bookmark placement locations were calculated for each panelist. Because 

Bookmark panelists are typically instructed to continue past the first “no” item, the bookmark 

locations were determined starting with the first item and looking for the earliest sequence 

beginning with 0 in which the subsequent four items contained no more than a single 1. Such a 
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procedure placed a bookmark at the first position of any of the following four sequences: 01000, 

00100, 00010, or 0000X (where X can equal 0 or 1). For example, consider the following vector 

for first 10 items for a particular panelist: 

1111100100 

The bookmark location assigned to this panelist would be 6, because the earliest sequence 00100 

begins at item 6. In the case that such a sequence does not occur, the values for the last three 

items were examined. If the last three items were all 0s, the bookmark location was the third-to-

last item. If not, but the last two items were 0s, the bookmark location was the second-to-last 

item. Likewise, if the last item was 0 but the second-to-last item is not, the bookmark location 

was at the last item. Finally, if a bookmark location still did not exist (meaning that no such 

sequence existed and the last item had a value of 1), then the bookmark location was the last item 

plus one (i.e., 101). Thus, the lowest possible bookmark location was 1 (e.g., if the vector for a 

panelist was all 0s) and the highest bookmark location was 101 (indicating that a panelist 

believes the borderline examinees should have mastered all items in the OIB). 

Traditional bookmark cutscore calculation. Traditional bookmark cutscores were 

calculated by converting each bookmark placements to corresponding values on the latent ability 

scale, , ,

*
i g k , for each panelist i in group g for each cutscore k. Unless the mean bookmark 

location was the first or last item, the latent value was calculated as the average of the BDL 

values for the bookmark item and the item immediately preceding it in the OIB (i.e., the next 

easiest item). If the mean bookmark location was 1 or 101, the latent cutscore was simply the 

BDL for the first or last item, respectively. The mean bookmark location across all Nt panelists 

was the traditional bookmark cutscore.  
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 The traditional standard error and 95% confidence intervals of the bookmark cutscores 

were calculated as 

 , ,
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Cutscore Distribution Theory bookmark cutscore estimation. CDT bookmark 

cutscores were estimated using a fully Bayesian approach to model two main sources of 

uncertainty: between-group bias and within-group inconsistency. Each panelist’s bookmark 

placement was converted to an implied vector of item responses for an examinee with ability at 

the cutscore. In other words, each panelist’s bookmark placement implies a Guttman vector, with 

1s for the first item through the item immediately preceding the bookmark location, and 0s for 

the bookmark item and all subsequent items. The likelihood for each panelist’s implied item 

response x was specified as a Bernoulli trial, and the model for their probability was modified 

3PL IRT, as follows: 
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where 

• xi,g,j,k is the implied item response for panelist i in group g for item j at cutscore k,  

• pi,g,j,k is the probability of a correct response for each item, with subscripts as above, 

• aj and cj are the known 3PL a- and c- parameters for item j, and 
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• bRPj is the bookmark difficulty level (BDL) for item j, calculated from known 3PL item 

parameters and a response probability (RP) value of 2/3. 

 

The model here is a modified 3PL IRT, using item BDLs instead of their b-parameters. 

The item parameters provided to OpenBUGS are the same parameters used to generate the data, 

and are treated as known. In a real-data application (as in Study 2), parameter estimates from a 

previous calibration will be treated as known values. An alternative method would be to estimate 

new item parameters using panelists’ implied item response vectors; however, scaling the test in 

this way would place panelists’ ability estimates on a separate scale from the one used for 

examinees, making direct comparisons difficult. By using a modified IRT model for panelist 

estimates, the CDT methodology assumes that panelists interact with items in the same way that 

examinees do, and the assumption that Bookmark data fit an IRT model is untested (for example, 

see Kane, 1987, for a similar discussion). However, the model used here was chosen in part to 

ensure that panelists’ ability estimates would be on the same scale as examinee ability estimates. 

The effect of the modified IRT model is to shift each item’s item characteristic curve to 

the right while maintaining its shape. The primary estimand of interest is 
, ,i g k , which is 

interpreted as the ability level a panelist has in mind when making bookmark placements. The 

priors for the ability parameters are as follows: 

 , , ( , )i g k N C gΣ ,  

 
,( ,0.001)k kC N •

  

 , , ,

*
g k g k • , and 

 
1( , )Wishart K

gΣ , 
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where 

• kC  is the CDT estimate for cutscore k, 

•   is a K×K identity matrix, 

•  K is the total number of cutscores, and 

• , ,

*
g k•  is the mean ability estimate from group g for cutscore k, calculated using the 

traditional method. 

In other words, the prior for individual panelists’ ability estimates is multivariate normal, with a 

mean vector equal to the K CDT cutscore estimates, and a separate variance/covariance matrix 

for each group. The prior for the cutscore estimate Ck is intentionally uninformative, with its 

mean determined by the data and a precision of 0.001.  

 Model parameters for each of the 100 replications within each study condition were 

estimated in OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) using the R2OpenBUGS 

package (Sturtz, Ligges, & Gelman, 2005). For each replication, the posterior mean of Ck was 

saved as the CDT cutscore estimate, and the 2.5th and 97.5th percentiles of the posterior were 

saved as the lower and upper bounds, respectively, of the 95% credible interval. 

Condition summaries. For each condition, the traditional and CDT cutscores and error 

estimates were compared with the true cutscore values of -0.5, 0.5, and 1.5. The “accuracy rate” 

for each method was calculated as the percentage of replications in which the true cutscore was 

included in the 95% confidence interval (for the traditional method) or 95% credible interval (for 

the CDT method). 
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Study 2 

In Study 2, the estimation methodology of Study 1 was applied to data collected as part 

of an operational standard-setting study using a modified Bookmark procedure. The data are 

from an operational statewide testing program that set cutscores on English Language Arts 

(ELA) and Mathematics tests for grades 3 through 8 and high school during the summer of 2015. 

The standard setting study employed an extended Bookmark procedure, which was similar to the 

typical implementation of the Bookmark procedure except for the treatment of certain testlet-

type groups of questions (e.g., a series of items about a single reading passage). There were also 

differences in the way items were scaled and OIBs were constructed, which are briefly described 

in the Results chapter.  

Panelists in each grade-by-subject combination were tasked with setting three cutscores 

in order to define four performance levels. Rather than setting cutscores sequentially (as was 

simulated in Study 1), the operational study asked panelists to set Cutscore 2 first, followed by 

Cutscore 1 (the lowest cutscore), and the Cutscore 3 (the highest cutscore). Cutscore 2 was 

associated with the highest stakes for this testing program, and so starting with Cutscore 2 was 

intended to ensure that panelist fatigue would not influence their process. The study incorporated 

three rounds of the Bookmark process, in addition to a variety of training activities meant to 

orient panelists to the task and help define the “borderline” student at each cutscore. Panelists 

worked individually in round 1, followed by small group discussion and round 2 bookmark 

placements, followed by total sample discussion and round 3 (final) bookmark placements. The 

operational study also included a “vertical articulation” procedure at the conclusion in order to 

reconcile any potential discrepancies in cutscores across grade levels. For the purpose of this 

study, any changes after vertical articulation were not included. 
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The items that formed the OIBs were scaled using the 2-PL IRT model (Birnbaum, 

1968). The data available for Study 2 included the item parameters, the item locations in the 

ordered item booklets, the panelist bookmark placements after each round, and the panelist 

identifiers from each table  (i.e., small group) that could be used to determine which group each 

panelist belonged to. For the sake of simplicity, only the final (round 3) bookmark placements 

were used here. Results of Study 2 were compared with both the Study 1 results and the results 

using typical Bookmark standard errors. 
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Chapter IV: Results 

Results of the simulation study are presented below, followed by results from the study 

using real data. For each study condition, results for cutscores calculated using the Traditional 

Mean method are compared with those calculated using the CDT method. 

Study 1 

Condition summaries. The primary outcomes of interest in Study 1 were the 95% 

confidence interval (for the Traditional method) and 95% credible interval (for the CDT method) 

around the cutscore estimates of the respective methods. (For the sake of simplicity, both will be 

referred to as 95% CIs.) Plots of the estimated cutscores and their 95% CI are presented in the 

Appendix, in Figures A.1 through A.204. The top figure on each page shows results for the 

Traditional method for a single condition, and the bottom figure shows results for the CDT 

method for a single condition. The x-axis in each plot is the ability metric, and the vertical dotted 

lines indicate the three true cutscores of -0.5, 0.5, and 1.5. The 100 replications within each 

condition are represented on the y-axis. For each cutscore, the dots represent the cutscore 

estimate for that replication, and the lines through it indicate the 95% CI around the estimate. 

The colors indicate whether the true cutscore is within the 95% CI for that replication. For 

Cutscore 1, blue means the CI includes the true cut, and orange means it does not; for Cutscore 

2, black means the CI includes the true cut, and green means it does not; for Cutscore 3, purple 

means the CI includes the true cut, and red means it does not. Note that in order to keep the x-

axes consistent across plots and still distinguishable among replications, a few data points fall 

outside the plotting area. 
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Summary statistics across all 100 replications for each condition are also presented in the 

Appendix, in Tables A.1 through A.18. The results under each condition for Cutscore 1 are given 

in Tables A.1 through A.6, those for Cutscore 2 in Tables A.7 through A.12, and those for 

Cutscore 3 in Tables A.13 through A.18. In each table, the first four columns list the number of 

panelists per group (NI), the number of groups (NG), and the data-generating values of the 

variance of bias and the variance of consistency. The Cutscore Mean columns give the mean and 

SD of the cutscores calculated using the Traditional Mean method and the CDT method. The 

next two columns provide the same information about the error variance estimates calculated 

under each method, and the final two columns provide the “accuracy rate,” or the percentage of 

replications wherein the true cutscore was included within the 95% credible or confidence 

interval. Due to the high number of conditions and the size of these tables, the same data are also 

presented graphically in the sections that follow. 

Recovery of true cutscores. The following sections summarize the recovery of each true 

cutscore by each estimation method. In general, the differences between the true and estimated 

cutscores depended more on the estimation method than the variance of consistency or bias. 

Cutscore 1. Results for Cutscore 1 are given in Tables 1 through 6. The true value of 

Cutscore 1 was -0.5. For all conditions, the Traditional method overestimated the true cutscore 

by about 0.1, a difference that was fairly consistent as the total number of simulated panelists 

increased from 8 to 64. 

Figure 1 presents plots of the mean cutscore estimates for each method against the 

variance of consistency with one group of eight panelists. (By definition, there is no bias in this 

condition because there is only one group.) The left plot shows that the Traditional estimates 

change very little as the variance of consistency increases. On the right, the CDT estimates get 
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slightly worse as the variance of consistency changes from 0 to 0.3. Figure 2 plots the same data 

for one group of 16 panelists, with the general trends being very similar to those in Figure 1. 

With no group-level bias, the Traditional method appears less influenced by increasing levels of 

within-group consistency than the CDT method. 

 

Figure 1. Mean Cutscore 1 estimates for each method with 1 group of 8 panelists. 
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Figure 2. Mean Cutscore 1 estimates for each method with 1 group of 16 panelists. 

 

Figures 3 through 8 present similar plots for each sample-size condition, except that the 

variance of bias is on the x-axis, and the data are grouped by the level of inconsistency. These 

plots help show that group-level bias has almost no effect on the mean estimates for the 

Traditional method, but that the CDT estimates tend to improve as bias, the number of groups, 

and the number of panelists within each group increase. Inconsistency also seems to have a 

greater effect on the CDT estimates, as they generally improved as the level of consistency 

variance increased.  
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Figure 3. Mean Cutscore 1 estimates for each method with 2 groups of 8 panelists. 

 

 

Figure 4. Mean Cutscore 1 estimates for each method with 3 groups of 8 panelists. 

 



58 

 

 

Figure 5. Mean Cutscore 1 estimates for each method with 4 groups of 8 panelists. 

 

 

 

Figure 6. Mean Cutscore 1 estimates for each method with 2 groups of 16 panelists. 
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Figure 7. Mean Cutscore 1 estimates for each method with 3 groups of 16 panelists. 

 

 

Figure 8. Mean Cutscore 1 estimates for each method with 4 groups of 16 panelists. 

 

Cutscore 2. Results for Cutscore 2 are given in Tables 7 through 12. The true value of 

Cutscore 2 was 0.5. As with Cutscore 1, the Traditional method always overestimated the true 
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cutscore. However, the CDT estimates for Cutscore 2 appeared to be more influenced by the 

levels of inconsistency and bias, and tended to be closer to the true cutscore. 

Figures 9 and 10 present plots of the mean cutscore estimates for each method against the 

variance of consistency with one group of eight panelists, and then one group of 16 panelists. 

(By definition, there is no bias in this condition because there is only one group.) For both 

methods, the cutscore estimates increased as the variance of consistency increased. However, 

because the Traditional estimate was already overestimating the cutscore, the increase means that 

the Traditional estimates are worse as the panelists are less consistent. With one group of 

panelists, neither method was affected much by increasing the sample size from eight to 16. 

 

 

 

Figure 9. Mean Cutscore 2 estimates for each method with 1 group of 8 panelists. 
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Figure 10. Mean Cutscore 2 estimates for each method with 1 group of 16 panelists. 

 

Figures 11 through 16 present similar plots for each sample-size condition, except that 

the variance of bias is on the x-axis, and the data are grouped by the level of inconsistency. 

Unlike the results for Cutscore 1, the results for Cutscore 2 show that the effects of bias and 

inconsistency on mean cutscore estimates were very similar for each method, with the only real 

difference being their “starting point.” The lines in the plots are nearly parallel within each 

method and across method, suggesting no real method effect for on cutscore recovery for 

Cutscore 2. 
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Figure 11. Mean Cutscore 2 recovery for each method with 2 group of 8 panelists. 

 

 

Figure 12. Mean Cutscore 2 recovery for each method with 3 groups of 8 panelists. 
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Figure 13. Mean Cutscore 2 recovery for each method with 4 groups of 8 panelists. 

 

 

Figure 14. Mean Cutscore 2 recovery for each method with 2 groups of 16 panelists. 
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Figure 15. Mean Cutscore 2 recovery for each method with 3 groups of 16 panelists. 

 

 

Figure 16. Mean Cutscore 2 recovery for each method with 4 groups of 16 panelists. 

 

Cutscore 3. Results for Cutscore 3 are given in Tables 13 through 18. The true value of 

Cutscore 3 was 1.5. Unlike the results for Cutscores 1 and 2, the mean estimates of Cutscore 3 

for each method were quite similar. 
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Figures 17 and 18 present plots of the mean cutscore estimates for each method against 

the variance of consistency with one group of eight panelists, and then one group of 16 panelists. 

(By definition, there is no bias in this condition because there is only one group.) These two plots 

show that the estimation methods produced very similar results for Cutscore 3, with the CDT 

estimates slightly more affected by the highest level of inconsistency than the Traditional 

method. 

 

 

Figure 17. Mean Cutscore 3 recovery for each method with 1 group of 8 panelists. 
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Figure 18. Mean Cutscore 3 recovery for each method with 1 group of 16 panelists. 

 

Figures 18 through 24 present similar plots for each sample-size condition, except that 

the variance of bias is on the x-axis, and the data are grouped by the level of inconsistency. As 

with Cutscore 2, the results for Cutscore 3 show that the trends for both methods was very 

similar. In general, both methods produced better estimates of Cutscore 3 than Cutscores 1 or 2, 

which might suggest the presence of a ceiling effect, as Cutscore 3 is the furthest Cutscore from 

the mean item difficulty value. For both methods, the mean cutscore estimates got worse as the 

level of inconsistency increased. 
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Figure 19. Mean Cutscore 3 recovery for each method with 2 groups of 8 panelists. 

 

 

Figure 20. Mean Cutscore 3 recovery for each method with 3 groups of 8 panelists. 
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Figure 21. Mean Cutscore 3 recovery for each method with 4 groups of 8 panelists. 

 

 

Figure 22. Mean Cutscore 3 recovery for each method with 2 groups of 16 panelists. 
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Figure 23. Mean Cutscore 3 recovery for each method with 3 groups of 16 panelists. 

 

 

Figure 24. Mean Cutscore 3 recovery for each method with 4 groups of 16 panelists. 

 

Cutscore error variance. The following sections summarize the estimates of error 

variance associated with the cutscore estimate for each method, for each cutscore. 
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Cutscore 1. Results for Cutscore 1 are presented in condition summary Tables 1 through 

6, and results for each condition are shown in Figures 25 through 30. The data-generating model 

implies that the two non-random components of error variance (variance of bias and the variance 

of consistency) should be additive, so that the “true” error variance should be their sum. 

However, because the simulated bookmark placements were forced to be ordered, the actual 

error variance in each condition is smaller than the expected value of 2

b  + 2

c . This discrepancy 

is discussed further in Chapter V. 

Figures 25 and 26 are plots of the error variance estimates under each method with only 

one group of judges. The plots in these two figures show a roughly linear increase in error 

variance estimates under each method as the variance of consistency increases. Also, the error 

variance estimates decreased by nearly 50% by doubling the sample size, from 8 to 16 panelists. 

The CDT estimates are always larger than the Traditional estimates, although both are much 

smaller than their expected values (which in this case are the consistency variance values 

themselves). 
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Figure 25. Cutscore 1 error variance estimates for each method, with 1 group of 8 panelists. 

 

 

Figure 26. Cutscore 1 error variance estimates for each method, with 1 group of 16 panelists. 

 

Figures 27 through 32 present the error variance estimates for the multiple-group 

conditions. With three or four groups of panelists, the results for both estimation methods were 

similar, although the CDT method produced larger estimates of error variance and appeared 



72 

 

slightly more influenced by increased bias. With two groups, however, the CDT method was 

much more influenced by the group-level bias than the Traditional method. As was the case with 

a single group, the estimates of error variance decreased as the group size increased from eight to 

16 panelists. 

 

 

Figure 27. Cutscore 1 error variance estimates for each method, with 2 groups of 8 panelists. 
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Figure 28. Cutscore 1 error variance estimates for each method, with 3 groups of 8 panelists. 

 

 

Figure 29. Cutscore 1 error variance estimates for each method, with 4 groups of 8 panelists. 
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Figure 30. Cutscore 1 error variance estimates for each method, with 2 groups of 16 panelists. 

 

 

Figure 31. Cutscore 1 error variance estimates for each method, with 3 groups of 16 panelists. 
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Figure 32. Cutscore 1 error variance estimates for each method, with 4 groups of 16 panelists. 

 

Cutscore 2. Results for Cutscore 2 are presented in condition summary Tables 7 through 

12, and results for each condition are shown in Figures 33 through 40. 

Figures 33 and 34 are plots of the error variance estimates under each method with only 

one group of judges. The plots in these two figures show a roughly linear increase in error 

variance estimates under each method as the variance of consistency increases. As with Cutscore 

1, the error variance estimates decreased substantially when the size of the panel was doubled. 
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Figure 33. Cutscore 2 error variance estimates for each method, with 1 group of 8 panelists. 

 

 

Figure 34. Cutscore 2 error variance estimates for each method, with 1 group of 16 panelists. 

 

Figures 35 through 40 present the error variance estimates for Cutscore 2 in the multiple-

group conditions. As with Cutscore 1, the most discrepant results between the two methods 

occurred in the conditions with two groups of panelists, where the CDT method was again more 
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heavily influence by the group-level bias than the Traditional method. In particular, the two-

group conditions were most influenced by bias when the within-group consistency value was 0. 

 

 

Figure 35. Cutscore 2 error variance estimates for each method, with 2 groups of 8 panelists. 

 

 

Figure 36. Cutscore 2 error variance estimates for each method, with 3 groups of 8 panelists. 
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Figure 37. Cutscore 2 error variance estimates for each method, with 4 groups of 8 panelists. 

 

 

Figure 38. Cutscore 2 error variance estimates for each method, with 2 groups of 16 panelists. 
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Figure 39. Cutscore 2 error variance estimates for each method, with 3 groups of 16 panelists. 

 

 

Figure 40. Cutscore 2 error variance estimates for each method, with 4 groups of 16 panelists. 

 

Cutscore 3. Results for Cutscore 3 are presented in condition summary Tables 13 through 

18, and results for each condition are shown in Figures 41 through 48. 
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Figures 41 and 42 are plots of the error variance estimates under each method with only 

one group of judges. The results for the single-group conditions for Cutscore 3 are very similar 

to the same conditions for Cutscores 1 and 2. 

 

 

Figure 41. Cutscore 3 error variance estimates for each method, with 1 group of 8 panelists. 
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Figure 42. Cutscore 3 error variance estimates for each method, with 1 group of 16 panelists. 

 

Figures 43 through 48 are plots of the Cutscore 3 error variance estimates for the 

multiple-group conditions. The results are similar to those of Cutscore 2, with the CDT estimates 

more influenced by the amount of bias, particular with only two groups and no within-group 

variance. 
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Figure 43. Cutscore 3 error variance estimates for each method, with 2 groups of 8 panelists. 

 

 

Figure 44. Cutscore 3 error variance estimates for each method, with 3 groups of 8 panelists. 
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Figure 45. Cutscore 3 error variance estimates for each method, with 4 groups of 8 panelists. 

 

 

Figure 46. Cutscore 3 error variance estimates for each method, with 2 groups of 16 panelists. 
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Figure 47. Cutscore 3 error variance estimates for each method, with 3 groups of 16 panelists. 

 

 

Figure 48. Cutscore 3 error variance estimates for each method, with 4 groups of 16 panelists. 

 

Accuracy rates. As described in Chapter III, the accuracy rates presented in Tables 1 

through 18 are simply the percentage of replications within each condition wherein the 95% 

confidence interval (for the Traditional method) or 95% credible interval (for the CDT method) 
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contained the true cutscore. For the sake of simplicity, “C.I.” is used to describe either type of 

interval.  

Cutscore 1. Accuracy rates for Cutscore 1 using the Traditional method ranged from 1% 

to 89%, with a mean of 54.3%. Using the CDT method, accuracy rates ranged from 18% to 

100%, with a mean of 67.4%. The CDT method had higher accuracy rates in 92 of the 104 total 

conditions for Cutscore 1, while the Traditional method had a higher accuracy rate in 10 

conditions. Of the 10 conditions in which the Traditional method had a higher accuracy rate, 

seven were conditions where the true variance of bias was 0. 

Cutscore 2. Accuracy rates for Cutscore 2 using the Traditional method ranged from 0% 

to 86%, with a mean of 38.2%, while the CDT accuracy rates ranged from 38% to 100%, with a 

mean of 73.2%. The CDT method had higher accuracy rates in all 104 conditions for Cutscore 2. 

Cutscore 3. Accuracy rates for Cutscore 3 using the Traditional method ranged from 4% 

to 86%, with a mean of 37.1%, while the CDT accuracy rates ranged from 13% to 100%, with a 

mean of 62.9%. As with Cutscore 2, the CDT method had higher accuracy rates in all 104 

conditions for Cutscore 3. 

Study 2 

The second part of the studies reported here is an application of the Study 1 methodology 

to a real dataset. The data came from an operational standard-setting study for a large-scale state 

assessment program. As described in the methods section, data from two subjects (ELA and 

Mathematics) and several grade levels were available. However, the operational study employed 

a modified Bookmark procedure that varied from the traditional implementation in the way item 

difficulty values were calculated for ordering the OIBs. Due to these discrepancies, the panelists 

saw the items in a different order than what was suggested by the item b-parameters. Rather than 
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relying on the operational results—which will be potentially confounded by the differences in 

methodology—the results reported here come from the single grade and subject in which the 

OIB order did match the b-parameter order. For the purpose of this research, the traditional 

cutscores calculated for this study may not match the ones calculated operationally, and were 

instead estimated using methods identical to those used in Study 1. The item a- and b-parameters 

and panelist bookmark placements were incorporated into methodology described in Chapter III. 

Despite the modifications to the scaling and estimation procedures employed in the operational 

study, the instructions to the panelists were typical of Bookmark standard-setting studies. As 

with the simulation study, the real panelists set three cutscores to identify four performance 

levels. The panelists began with Cutscore 2, as it was associated with the highest stakes. 

Descriptive statistics by group are presented in Table 19. The within-group variance in 

Group 1 was consistent for all three cutscores, and lower than the Group 2 variance at each 

cutscore. The Group 2 within-group variance was large for Cutscores 1 and 3, and relatively 

small for Cutscore 2. 

Table 20 presents the cutscores and error variance estimates for each cut under the 

traditional method and the CDT method. Note that the cutscores for the Traditional method in 

Table 20 match the “Overall” cutscores in Table 19. The CDT cutscore estimates were lower for 

Cutscore 1 and higher for the Cutscores 2 and 3 than those calculated with the traditional 

method, a finding that is fairly consistent with the simulation study results. The error variance 

estimates produced by each method were very similar for Cutscore 1, but larger with the CDT 

method for Cutscores 2 and 3. 

The 95% confidence interval (for the traditional method) and 95% credible interval (for 

the CDT method) are presented in Table 21. As with the error variance estimates, these show that 
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CDT produces similar estimates for the first cutscore, but larger and less certain estimates for 

cutscores 2 and 3. Importantly, note that the Traditional cutscore estimate is always at the exact 

center of the 95% C.I., while the CDT estimate is not. 

 

Table 1. Mean cutscores (and SD) for each group and overall. 

 Group 1 Group 2 Total 

N 8 7 15 

Cut 1 
0.06 

(0.23) 

-0.99 

(0.93) 

-0.43 

(0.82) 

Cut 2 
1.03 

(0.19) 

0.67 

(0.47) 

0.86 

(0.39) 

Cut 3 
1.68 

(0.25) 

2.76 

(1.17) 

2.18 

(0.97) 

 

Table 2. Cutscores and error variance estimates for each cutscore and method. 

  Cut 1 Cut 2 Cut 3 

Cutscores 
Traditional -0.43 0.86 2.18 

CDT -0.51 1.29 2.71 

𝜎̂𝐸
2

 Traditional 0.046 0.010 0.062 

CDT 0.049 0.039 0.085 

 

Table 3. 95% C.I. for each method for each cutscore. 

 Traditional CDT 

 Lower Upper Lower Upper 

Cut 1 -0.85 -0.01 -1.00 -0.11 

Cut 2 0.67 1.06 0.89 1.66 

Cut 3 1.69 2.67 2.21 3.33 
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Chapter V: Discussion 

The studies described here were conducted to try to develop a psychometrics of cutscores 

set using the Bookmark standard-setting method. Because the cutscores established during a 

standard-setting study are typically considered a recommendation rather than a final result, the 

amount of uncertainty around those cutscores carries great practical significance. Policy-making 

bodies that set the final cutscore often use the confidence intervals around a recommended 

cutscore as a justification for adjusting it slightly upward or downward (e.g., Cizek & Bunch, 

2007). 

Traditionally, the error variance around Bookmark cutscore recommendations has been 

estimated as a function of the consistency of the individual members of the standard-setting 

panel (i.e., the standard error of the mean recommendation). The current study attempted to 

improve that estimate through two main differences from the traditional methodology: 1) 

calculating both within- and between-group variance components, taking advantage of the fact 

that most standard-setting studies ask panelists to work in small-groups as part of the study 

design, and 2) estimating the variance components using Bayesian analysis. It was hypothesized 

that incorporating group-level variance in estimating cutscores would allow for more accurate 

estimates of the true amount of variance among the population of possible standard-setting 

panelists. By incorporating Bayesian estimation, the proposed methodology may be viewed as an 

extension of Cutscore Distribution Theory (CDT; Skorupski & Fitzpatrick, 2014; Skorupski, 

Zhao, Fitzpatrick, & Chen, 2015), which described a model-based method for estimating 

cutscores set by the modified Angoff method. 

Study 1 was a simulation study conducted to compare the CDT method results with 

traditional results, varying the size of the standard-setting sample, the number of groups within 
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which the panelists worked, and the size of the population-level variance within each group and 

between different groups. Study 2 applied the estimation methodology of Study 1 to the results 

of a real Bookmark standard-setting study. 

Together, the two studies were designed to address three main research questions, which 

were presented in Chapter 1. Question 1 addresses the similarity of the 95% CIs between the 

traditional method and the proposed CDT method. Question 2 focuses on the cutscore estimates 

from each method. Question 3 asks how the estimates from each method are affected by the size 

of the panel and the number of groups. In this chapter, the results of each study are discussed 

separately, followed by some general conclusions and implications, as well as considerations for 

further research. 

Study 1 

The first study used simulated data to compare the CDT cutscore and error variance 

estimates to those calculated using traditional methods. Four independent variables were 

manipulated: the variance of bias (i.e., between-group variance) and consistency (i.e., within-

group variance) of the simulated panelists’ intended cutscores in the data-generating model; the 

number of simulated panelists per group; and the number of groups. The conditions were fully 

crossed, except for conditions with only one group (in which case the between-group variance 

could only be zero). The dependent variables of interest were the cutscore and error variance 

estimates under each method. Each condition was replicated 100 times, and the reported 

outcomes for each condition were averaged across replications. 

Coverage of 95% CIs. The primary variables of interest in the simulation study were the 

95% CIs around each cutscore estimate. Because the outcome of a typical Bookmark study is a 

recommendation rather than a final cutscore, these CIs are often presented to the policymaking 
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body as a window within which to adjust the recommended cutscore up or down. As is evident 

from Figures A.1 through A.204 in the Appendix, the CDT method always produced larger CIs 

than the traditional method. As a result, those CIs also included the true cutscore more often than 

those of the traditional SEM method. 

The difference is perhaps most striking in the conditions in which there was little to no 

variance in the panelists’ intended cutscores. For example, Figures A.1 and A.2, along with 

Table A.1, show the results of all 100 replications for the condition with one group of eight 

panelists, where the generating variances of bias and consistency were 0. The only differences in 

bookmark placements across the sample were due to random error through the stochastic process 

by which the panelist “item responses” were generated. In this condition, the traditional CIs were 

expected to be small—which they were, compared with the CDT CIs—but they often missed the 

mark, and included the true values for Cutscores 1, 2, and 3 in just 47%, 66%, and 81% of the 

replications, respectively. The CDT method produced much larger estimates of error variance, 

resulting in 95% CIs that included the true cutscore in 100% of the replications for all three 

cutscores. Even though the simulated panelists in this condition were very consistent, the fact 

that the sample size was small and the study used only one group resulted in more uncertainty in 

the model-based approach than is accounted for in the traditional calculation. 

Recovery of true cutscores. The traditional and CDT methods varied in their recovery of 

the true cutscores by the placement of the true cutscores along the ability continuum, and the 

method differences in cutscore estimates appeared to be fairly predictable when viewed as a 

whole. The traditional method overestimated all three true cutscores for every condition, while 

the CDT method estimates appeared to be biased outward. That is, the CDT method 

underestimated the lowest cutscore, overestimated the highest cutscore, and was very close to the 
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most central cutscore (whether the estimate was high or low depended on the variances of bias 

and consistency). 

Although these results require follow-up study to examine the CDT cutscore recovery 

across a broad range of true cutscores, the trend observed here suggests that the CDT model may 

need improvement when multiple cutscores are being set. The multivariate normal prior, in 

particular, may act to increase—or even simply equalize—the differences among the three 

cutscores. In some testing situations, it might be reasonable to expect roughly even spacing 

between cutscores along the ability continuum. In many cases, especially when many cutscores 

are being set on the same test, a wide dispersion of cutscores may even be preferable. For 

example, if multiple cutcores fall toward the high end of the scale (e.g., cutscores for 

“Proficient” and “Advanced” performance levels) it is possible that the difference between them 

is not much larger than one or two conditional standard errors of measurement for the test. In that 

case, though, it is probably preferable to address the dispersion of cutscores during panelist 

training activities or between standard-setting rounds, rather than asking the model to “fix” 

things after the fact. Ideally, the standard-setting model will let the panelists’ bookmark 

placements speak for themselves. The largest sample size tested in Study 1 consisted of 64 

panelists, which is much larger than a typical Bookmark standard-setting panel. Such a large 

sample should be more than enough to let the data outweigh the influence of the prior, but the 

same trends in cutscore estimates were observed in this condition as they were in conditions with 

smaller sample sizes. The CDT model presented here incorporates a very non-informative prior, 

and so specifying priors to ensure that results fall within a more “reasonable” range of values—

say, -3 and +3—may improve the cutscore recovery results while still being theoretically 

defensible. 
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If the CDT method were to be used in an operational setting, it is plausible that the 

cutscore recommendations would still be calculated in the traditional way, with CDT used only 

for calculation of the error bands to be used by the policymaking body. This sort of hybrid 

approach to calculating standard-setting outcomes may be more amenable to stakeholders and 

psychometricians alike, especially if there is a desire to maintain consistency with previous 

standard-setting results. 

Error variance estimates. The estimates of error variance were more consistent between 

methods than the estimates of cutscores, with the CDT estimates being larger than the traditional 

estimates for all three cutscores, and were often several times larger. For all conditions, it was 

clear that the variance of bias had a greater impact on the CDT error variance estimates than on 

the traditional estimates. The data-generating bias values—which reflect the true amount of 

between-group variance in panelists’ intended cutscores—are modeled explicitly by CDT but are 

not directly accounted for in the traditional SEM formula. The CDT results were therefore 

expected to be more influenced by the level of bias, but it was also clear that the presence of both 

group-level bias and within-group inconsistency nearly off-set each other in many cases using 

the traditional method. The slopes of the lines in Figures 25 through 48 for the traditional method 

become close to zero as total panelist sample size increases, suggesting that a large value for 

group-level variance may be “absorbed” by collapsing the estimates across groups. By 

incorporating the multi-level design of a typical standard-setting study, the CDT method 

attempts to partition the variance into separate components, which is intended to produce a more 

accurate representation of the total amount of uncertainty about the cutscore. In practice, it is 

possible that some panelists—especially, perhaps, those with more extreme ICS values—will 

yield to the group consensus and adjust their bookmark placements up or down, ultimately 
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resulting in panelists within a group looking more similar than panelists across groups. Although 

standard-setting studies try to mitigate this possibility by allowing for full sample discussion 

before the final round of standard-setting study, there may be more movement of individual 

bookmark placements between rounds 1 and 2 (i.e., from panelists working individually to 

working and discussing as part of their small groups) than there is between rounds 2 and 3.  

The CDT error variance estimates are generally larger than those of the traditional 

method, but both methods underestimated the true error variance. The fact that neither method 

was able to recover the true amount of variability in the generating distributions was not 

altogether surprising. One main difference between the Bookmark method and other test-

centered standard-setting methods is that it produces a much smaller amount of data. In an 

Angoff standard-setting study, for example, there is one data point per item, per panelist, per 

cutscore. Using the Study 1 design, that amounts to 300 data points per panelist, a number that 

multiplies again if multiple rounds are used. By contrast, the Bookmark panelists simulated here 

produced only 3 data points each (one per cutscore). Therefore, whatever uncertainty panelists 

may have about the difficulty of individual items is masked by requiring only one estimate. 

Although this is generally viewed as a strength of the Bookmark method because it can be less 

time-consuming for panelists (and for analysts who record the data), it is also true that we have 

far less information about panelists’ level of certainty in their judgments. With multiple 

cutscores—which are currently mandated for the large-scale summative assessment systems in 

the U.S.—and the fact that those cutscores are forced both to be ordered and to fall within the 

boundaries of the ordered item booklet, there is simply less variability that can be recovered in 

the typical implementation of a Bookmark study. It is possible that panelists vary a great deal in 
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their intended cutscores, but much of that variability will be lost if they need to translate those 

ICSs to a point within a range of, say, 20 or 30 items in an OIB. 

Sample size. The sample sizes used in the simulation study were chosen to fit within the 

ranges of typical recommendations in standard-setting literature (e.g., Berk, 1996; Jaeger, 1991; 

Raymond & Reid, 2001). Those sources suggest anywhere from 5 to more than 80 panelists, with 

the mode seeming to be somewhere between 10 and 20. The smallest sample size in this study, 

one group of 8 panelists, was intended to be small but still defensible for a large-scale testing 

program. (The operational standard-setting study from which the Study 2 data were gathered 

stipulated that the study could not proceed if a grade had fewer than seven panelists.) Working 

upward from 8, groups of 16 were convenient as they allowed direct comparisons based solely 

on the groupings (e.g., two groups of 8 versus one group of 16). The largest sample size, four 

groups of 16 panelists, is likely to be larger than what would be practical for most operational 

standard-setting studies. Most standard-setting panels for large-scale assessments seem to 

comprise around 15 panelists who work in two or three small groups. Although multiple groups 

of 16 panelists are unlikely to be used in practice, fully crossing the numbers of groups and 

panelists per group allows for examining how much (if any) accuracy is gained by either method 

with very large samples, as well as making comparisons among different groupings of the same 

total number of panelists. In any case, the largest sample here (64 panelists) is still within the 

largest recommendation in the literature (87 panelists; Jaeger, 1991). 

 As expected, the width of the 95% CIs decreased for the for both methods as the number 

of panelists increased. As is evident from the figures in the Appendix, though, smaller standard 

errors do not necessarily mean better confidence intervals. For example, with three groups of 8 

panelists and the true variance of bias and consistency both equal to 0.2 (Figures A.57 and A.58), 
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the 95% CIs for Cutscores 2 and 3 included the true cutscore more often than the same condition 

but with four groups of 8 panelists (Figures A.89 and A.90). Increasing the sample size does not 

lead to more accurate CIs if the cutscore estimate itself is too high or too low. Again, this was 

true for both the CDT and traditional methods, and the better coverage of the CDT credible 

intervals (compared with the traditional CIs) in either condition is a product of their being wider 

to begin with. 

However, a purported advantage of the CDT method is that it takes advantage of the 

small-group structure of a typical Bookmark panel. For the sake of comparison, see Figures A.5, 

A.6, A.101, and A.102. These figures show the same results for the Traditional and CDT 

methods, respectively, for zero variance conditions with two groups of 8 panelists (A.5. and 

A.6), and one group of 16 panelists (A.101 and A.102). Note that figures A.5 and A.101 are 

identical—because the data were generated using seeded random values, the bookmark 

placements across these two conditions were the same for the 16 total panelists. The traditional 

method ignores the groupings of panelists, and so there is no improvement (or worsening) in 

estimation by using grouped data. The CDT method, however, produced larger CIs when 

accounting for two small groups of panelists rather than one overall sample. Accounting for the 

nested design does not “improve” cutscore estimates in the sense that the mean values change 

much, but it does produce improved CIs in the sense that they are more likely to include the true 

cutscore. In other words, group differences may contribute to the overall uncertainty about a 

cutscore recommendation, and yet are ignored by the traditional method. When the panelists 

within a group are more similar than the total sample in their cutscore recommendations, it 

suggests a group effect is present. When this is the case, we should have less confidence that 
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panelists are relying on their own judgment, which in turn gives us less confidence in the 

cutscore recommendation.  

Study 2 

The real data study was included in this research mainly as a “proof of concept” and to 

see how the CDT method would perform compared with the traditional method in a real data 

setting. Although results were calculated from only a single grade and subject, some important 

conclusions may be drawn. 

First, the real data results reiterated that the CDT method produces wider CIs than the 

traditional method, as the CDT method produced larger cutscores for all three cutscores. 

However, while the simulated results tended to be fairly consistent across the three cutscores 

within a condition, the real data results were not. In fact, the CIs for Cutscores 1 and 3 were quite 

similar between the two methods (with those of the CDT method being slightly wider), but the 

Cutscore 2 CI from the CDT method was about twice as wide as that of the traditional method 

(0.77 versus 0.39). As a whole, these results are encouraging, as they reveal that the CDT 

method does not simply produce estimates that are much larger than the traditional methods, 

with the size of the CIs instead being driven by the data themselves. 

It is also evident from the real data results that the CDT credible intervals are not 

symmetric about the cutscore estimate. This is an important point, and one that is not readily 

apparent from the simulation study results. None of the three CDT cutscore estimates in Study 2 

is centered between the upper and lower bounds of the CIs, while the traditional estimates are—

by definition—centered exactly. The fact that the CDT credible intervals are not required to be 

symmetric is a potentially strong advantage of the CDT method in an operational setting. For 

example, it makes little sense for a CI to include scores that are not possible on a test (e.g., a 
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theta value above the one associated with a perfect score), but the traditional method CIs could 

include such scores. By using a model-based approach, we can calculate CIs that are more 

practically useful. The CDT credible intervals here tend to be fairly symmetric, perhaps due to 

the fact that a multivariate normal prior was used. Less restrictive priors may help this advantage 

to be more pronounced, and demonstrate the need for further study. 

It is interesting that the cutscore associated with the largest CDT credible interval 

(Cutscore 2) had the smallest observed variance among the panelists. The cutscore estimates 

from each group for Cutscore 2 were closer together than those for the other two cutscores, and 

so it seems reasonable to expect the error variance to be smaller for this cutscore. Indeed, Groups 

1 and 2 were about a scale unit apart for both Cutscores 1 and 3, but the difference was less than 

half that for Cutscore 2. The group-level variance was fairly consistent for Group 1 across all 

three cutscores. However, the variance in Group 2 was about twice as large for Cutscores 1 and 3 

than for Cutscore 2. It may be that the wide dispersion of bookmark placements for the lowest 

and highest cutscores effectually “forced” the middle cutscore into a tighter window. Ultimately, 

more research is needed before claiming the CDT method to be more accurate in this case. But it 

may be reasonable to expect a panel to be “consistently uncertain” about a series of cutscores, 

rather than much more certain about one cutscore than the others. Such results could also 

indicate that the performance levels above and below Cutscore 2 were more clearly defined than 

the ones separated by the other two cutscores—a plausible notion since this was the “high-

stakes” cutscore. Although the CDT method treats multiple cutscores as fitting the same model, 

in practice panelists may not view multiple cutscores to be so connected, particularly when those 

cutscores carry different stakes.   
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Limitations 

In addition to those already discussed, some of the limitations of this research are listed 

and briefly discussed in this section. Although the CDT method overall was promising, the 

results here suggest that the Bayesian model proposed here—particularly the multivariate normal 

prior assigned to panelists’ intended cutscores—may need refinement before the CDT 

methodology is ready to be applied in an operational setting.  

Aside from the Bayesian estimation itself, the main difference between CDT and the 

traditional method is that CDT attempts to model group-level variance as well as within-group 

variance. The traditional method considers only the consistency of the full sample of judges, with 

no regard paid to group-level variance in the calculation of final cutscore recommendations. In 

theory, however, the two models should be equivalent in the conditions where NG = 1, which was 

not the case in these results. This suggests that the Bayesian estimation method itself may need 

to be improved. The multivariate normal prior placed on panelists’ estimates may be overly 

influential with three cutscores being calculated, and a study which simplifies the data here to a 

single cutscore would be particularly helpful. 

Another factor that made the error variance estimates for both the CDT and traditional 

methods appear to underestimate the true error variance was that the amount of variance in the 

sample was generally smaller than what the data-generating model would imply. For every 

condition within the simulation study, the true amount of cutscore error variance across 

replications was expected to be the sum of the generating variances of consistency (i.e., within-

group variance) and bias (i.e., between-group variance). For example, in the conditions where 

2

c and 2

b were both equal to 0.2, the expected variability across all 100 replications was 

expected to be 0.4. However, the expected variance of the panelists’ ICSs was rarely reflective of 
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the variance of their simulated bookmark placements, particularly for the Cutscores 2 and 3. The 

ICS values for these cutscores were generated using truncated normal distributions, which 

effectively reduced the total variance across replications. Likewise, the process of rejecting 

“illegal” bias values (i.e., bias values that would not have allowed ordered cutscores) also 

reduced the total true variance in the samples. Nevertheless, the “actual” true variance in each 

condition was still much larger than the CDT estimates (except when the true variances of bias 

and consistency were 0). Refinements to the CDT method should focus on recovering the error 

variance components more completely. 

Conclusions & Implications 

The simulated and real data studies described here provide some support for a model-

based method of describing the uncertainty involved in the Bookmark standard-setting process. 

Building upon Bayesian methods of estimating the error variance of Angoff cutscores (Skorupski 

et al., 2015), Cutscore Distribution Theory (CDT) for the Bookmark method proposes a 

psychometrics of Bookmark cutscores that attempts to model both within-group and between-

group variance in the bookmark process in order to estimate more accurate confidence intervals 

around cutscore estimates. Although much of the extant standard-setting literature focuses on 

calculation of the cutscores themselves, this line of research is more focused on how the 

uncertainty around them is calculated. The error bands around the cutscore recommendations 

carry a great deal of practical importance, as policymakers often adjust a panel’s 

recommendation upward or downward (e.g., after reviewing impact data, or to help reconcile 

discrepancies from year to year or even across grade levels). The current research, therefore, is 

not intended to reduce the error variance around cutscores, but simply to estimate it more 

accurately. 



100 

 

The results of these studies also suggest some broad recommendations for implementing 

a Bookmark standard-setting study, and provide some groundwork for additional research. The 

CDT results showed that dividing panelists into two groups produces larger estimates of error 

variance than with one, three, or four groups. If two groups are very far apart in their 

recommended cutscore, it is not readily apparent which group is closer to the “true” cutscore. 

Dividing panelists into three or four groups may allow for a better estimation of the group-level 

bias, and therefore a better estimate of the true cutscore. (Using more groups with fewer panelists 

per group may also mitigate the possibility of a few dominant panelists overly influencing a 

panel.) Further research into panelist structure—particularly with real data—appears warranted. 

Additional studies should also examine the effect of varying the placement of the true cutscore 

on the CDT cutscore estimates. Such research might simplify the design used here by looking 

only at a single cutscore. Restricting the study to one cutscore would eliminate the need for 

truncation in the data-generation process, as well as the use of a multivariate normal prior. 

The most promising aspect of the CDT methodology was its ability to generate 95% 

credible intervals that included the true cutscore more often, and often much more often, than the 

traditional method. Although part of that is certainly a byproduct of simply producing larger CIs, 

the real data results indicate that the CDT method is capable of producing CIs similar to those of 

the traditional method. Ultimately, the goal of the proposed methodology is to provide a 

psychometrics of cutscores in order to model standard-setting results. For the Bookmark method, 

model-based cutscores should be preferable to averaging the distance between item difficulty 

values, as is typically done under the traditional method. The results described here suggest that 

modeling cutscores in this way produces more accurate cutscore recommendations, in the sense 

that they are more likely to reflect the opinions of a population of potential standard-setting 
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panelists. Again, the goal of this research is not so much to improve cutscore estimation as it is to 

give policymakers a more accurate representation of the uncertainty involved in the standard-

setting process. 
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Appendix 

OpenBUGS script for Cutscore Distribution Theory Estimates 

model { 

#Specify likelihood and model 

for (i in 1:(N*N.cut*NG*n) ) { 

datamat1[i] ~ dbern(p[R[i], K[i], G[i], J[i]]) 

p[R[i], K[i], G[i], J[i]] <-  

 (c[i]) + ((1-c[i])/(1+exp(-a[i]*(theta[G[i], R[i], K[i]]-b.RP[i])))) 

} 

#Prior for panelists is multivariate normal. 

for (g in 1:NG) { 

for (i in 1:N) { 

theta[g, i, 1:N.cut] ~ dmnorm(mu.cut[ , g], T[ g, , ]) 

} 

} 

 

### Hyperparameters for panelist theta values. 

### Expected value is from data (mean across panelists). 

for (g in 1:NG) { 

for (k in 1:N.cut) { 

mu.cut[k, g] <- CUT[k] 

hyper.mu.g[k,g] <- mean(ind.theta.cut.r[ , k, g]) 

} 

} 

 

for (k in 1:N.cut) { 

  hyper.mu[k] <- mean(hyper.mu.g[k, ])  

  CUT[k] ~ dnorm(hyper.mu[k], 0.001) 

} 

 

### sig is the estimated V/C matrix. 

for (g in 1:NG) { 

for (k in 1:N.cut) { 

for (m in 1:N.cut) { 

sig[g, k, m] <- 2*INV[ g, k, m] 

} 

} 

} 

 

### Variance/covariance matrix is inverse-Wishart. 

for (g in 1:NG) { 

INV[g, 1:N.cut, 1:N.cut] <- inverse(T[ g, , ]) 

T[g, 1:N.cut, 1:N.cut] ~ dwish(rho[ , ], N.cut) 

} 

} 
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Figure A.1. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.2. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.3. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

Figure A.4. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.1. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.2. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.3. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

Figure A.4. NI = 8, NG = 1, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.5. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.6. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.7. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.8. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.9. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.10. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.11. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.12. NI = 8, NG = 2, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.13. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.14. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.15. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.16. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.17. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.18. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.19. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.20. NI = 8, NG = 2, σ2
B = 0.1, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.21. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.22. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.23. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.24. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.25. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.26. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.27. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.28. NI = 8, NG = 2, σ2
B = 0.2, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.29. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.30. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.31. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.32. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.33. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.34. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.35. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.36. NI = 8, NG = 2, σ2
B = 0.3, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.37. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.38. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.39. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.40. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.41. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.42. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.43. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.44. NI = 8, NG = 3, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.45. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.46. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.47. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.48. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.49. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.50. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.51. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.52. NI = 8, NG = 3, σ2
B = 0.1, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.53. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.54. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.55. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.56. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.57. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.58. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.59. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.60. NI = 8, NG = 3, σ2
B = 0.2, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.61. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.62. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.63. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.64. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.65. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.66. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.67. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.68. NI = 8, NG = 3, σ2
B = 0.3, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.69. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.70. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.71. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.72. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.73. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.74. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 

  



152 

 

 

Figure A.75. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.76. NI = 8, NG = 4, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.77. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.78. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.79. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.80. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.81. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.82. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.83. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.84. NI = 8, NG = 4, σ2
B = 0.1, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.85. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.86. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.87. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.88. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.89. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.90. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.91. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.92. NI = 8, NG = 4, σ2
B = 0.2, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.93. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.0; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.94. NI = 8, NG = 4 σ2
B = 0.3, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.95. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.1; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.96. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 
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Figure A.97. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.2; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

Figure A.98. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. Dotted 

lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; orange, 

green and red indicated CIs that do not include the true cutscore. 

  



164 

 

 

Figure A.99. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.3; Traditional cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.100. NI = 8, NG = 4, σ2
B = 0.3, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.101. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.102. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

  



166 

 

 

Figure A.103. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.104. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.105. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.106. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.107. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.108. NI = 16, NG = 1, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.109. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.110. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.111. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.112. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.113. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.114. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.115. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.116. NI = 16, NG = 2, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.117. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.118. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.119. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.120. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.121. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.122. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 

  



176 

 

 

Figure A.123. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.124. NI = 16, NG = 2, σ2
B = 0.1, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.125. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.126. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.127. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.128. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.129. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.130. NI = 16, NG = 2 σ2
B = 0.2, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.131. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.132. NI = 16, NG = 2, σ2
B = 0.2, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.133. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.134. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.135. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.136. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.137. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.138. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.139. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.140. NI = 16, NG = 2, σ2
B = 0.3, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.141. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.142. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.143. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.144. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.145. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.146. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.147. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.148. NI = 16, NG = 3, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.149. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.150. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.151. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.152. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.153. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.154. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.155. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.156. NI = 16, NG = 3, σ2
B = 0.1, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.157. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.158. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.159. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.160. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.161. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.162. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.163. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.164. NI = 16, NG = 3, σ2
B = 0.2, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.165. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.166. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.167. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.168. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.169. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.170. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.171. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.172. NI = 16, NG = 3, σ2
B = 0.3, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.173. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.174. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.175. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.176. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.177. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.178. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.179. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.180. NI = 16, NG = 4, σ2
B = 0.0, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.181. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.182. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.183. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.184. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.185. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.186. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.187. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.188. NI = 16, NG = 4, σ2
B = 0.1, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.189. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.190. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.191. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.192. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.193. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.194. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.195. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.196. NI = 16, NG = 4, σ2
B = 0.2, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.197. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.0; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.198. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.0; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.199. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.1; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.200. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.1; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.201. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.2; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.202. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.2; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Figure A.203. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.3; Traditional cutscore estimates and confidence 

intervals. Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true 

cutscore; orange, green and red indicated CIs that do not include the true cutscore. 

 

 

Figure A.204. NI = 16, NG = 4, σ2
B = 0.3, σ2

C = 0.3; CDT cutscore estimates and confidence intervals. 

Dotted lines indicate true cutscores. Blue, black, and purple represent CIs that include the true cutscore; 

orange, green and red indicated CIs that do not include the true cutscore. 
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Table A.4. Results for Cutscore 1, with 1 and 2 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 

1 N/A 

0.0 
-0.386 
(0.055) 

-0.607 
(0.071) 

0.003 
(0.001) 

0.040 
(0.002) 

47% 100% 

0.1 
-0.397 
(0.125) 

-0.630 
(0.139) 

0.018 
(0.011) 

0.056 
(0.012) 

86% 99% 

0.2 
-0.387 
(0.160) 

-0.623 
(0.180) 

0.033 
(0.019) 

0.073 
(0.024) 

82% 100% 

0.3 
-0.402 
(0.184) 

-0.648 
(0.215) 

0.046 
(0.022) 

0.094 
(0.038) 

89% 98% 

 

0.0 

0.0 
-0.394 
(0.043) 

-0.620 
(0.053) 

0.002 
(0.001) 

0.017 
(0.001) 

33% 99% 

0.1 
-0.402 
(0.095) 

-0.638 
(0.111) 

0.009 
(0.003) 

0.023 
(0.004) 

82% 96% 

0.2 
-0.401 
(0.126) 

-0.638 
(0.144) 

0.016 
(0.005) 

0.030 
(0.006) 

86% 96% 

0.3 
-0.398 
(0.154) 

-0.632 
(0.169) 

0.022 
(0.007) 

0.036 
(0.010) 

85% 91% 

0.1 

0.0 
-0.401 
(0.223) 

-0.629 
(0.260) 

0.005 
(0.004) 

0.035 
(0.028) 

44% 72% 

0.1 
-0.397 
(0.238) 

-0.625 
(0.268) 

0.012 
(0.005) 

0.039 
(0.021) 

56% 77% 

0.2 
-0.398 
(0.260) 

-0.624 
(0.299) 

0.019 
(0.007) 

0.047 
(0.026) 

59% 79% 

0.3 
-0.388 
(0.261) 

-0.611 
(0.304) 

0.025 
(0.009) 

0.052 
(0.027) 

68% 79% 

0.2 

0.0 
-0.395 
(0.320) 

-0.621 
(0.358) 

0.008 
(0.007) 

0.060 
(0.065) 

38% 69% 

0.1 
-0.391 
(0.322) 

-0.601 
(0.351) 

0.016 
(0.009) 

0.063 
(0.056) 

49% 73% 

0.2 
-0.401 
(0.338) 

-0.610 
(0.402) 

0.022 
(0.010) 

0.069 
(0.061) 

51% 73% 

0.3 
-0.409 
(0.342) 

-0.618 
(0.392) 

0.028 
(0.011) 

0.071 
(0.058) 

65% 79% 

0.3 

0.0 
-0.399 
(0.388) 

-0.626 
(0.430) 

0.011 
(0.010) 

0.089 
(0.091) 

35% 68% 

0.1 
-0.402 
(0.400) 

-0.604 
(0.442) 

0.019 
(0.012) 

0.092 
(0.099) 

43% 67% 

0.2 
-0.404 
(0.406) 

-0.603 
(0.451) 

0.025 
(0.013) 

0.087 
(0.094) 

52% 69% 

0.3 
-0.415 
(0.408) 

-0.605 
(0.478) 

0.032 
(0.014) 

0.097 
(0.092) 

57% 75% 
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Table A.5. Results for Cutscore 1, with 3 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 3 

0.0 

0.0 -0.398 
(0.035) 

-0.623 

(0.043) 

0.001 

(<0.001) 

0.010 

(<0.001) 

18% 95% 

0.1 -0.402 

(0.078) 

-0.634 

(0.090) 

0.006 

(0.002) 

0.014 

(0.002) 

74% 89% 

0.2 -0.408 

(0.102) 

-0.642 

(0.118) 

0.011 

(0.003) 

0.018 

(0.003) 

84% 82% 

0.3 -0.392 

(0.121) 

-0.614 

(0.138) 

0.015 

(0.004) 

0.022 

(0.005) 

88% 89% 

0.1 

0.0 -0.391 

(0.177) 

-0.618 

(0.214) 

0.004 

(0.003) 

0.020 

(0.008) 

42% 70% 

0.1 -0.393 

(0.184) 

-0.624 

(0.219) 

0.009 

(0.004) 

0.023 

(0.008) 

56% 73% 

0.2 -0.392 

(0.202) 

-0.609 

(0.231) 

0.013 

(0.004) 

0.028 

(0.011) 

64% 73% 

0.3 -0.384 

(0.210) 

-0.595 

(0.251) 

0.017 

(0.005) 

0.032 

(0.011) 

70% 75% 

0.2 

0.0 -0.387 

(0.251) 

-0.616 

(0.316) 

0.007 

(0.005) 

0.028 

(0.015) 

46% 65% 

0.1 -0.386 

(0.258) 

-0.601 

(0.312) 

0.012 

(0.006) 

0.032 

(0.017) 
53% 71% 

0.2 -0.393 

(0.268) 

-0.602 

(0.324) 

0.016 

(0.007) 

0.036 

(0.018) 

57% 68% 

0.3 -0.391 

(0.281) 

-0.585 

(0.347) 

0.020 

(0.007) 

0.038 

(0.014) 

61% 67% 

0.3 

0.0 -0.389 

(0.303) 

-0.616 

(0.388) 

0.010 

(0.007) 

0.034 

(0.022) 

44% 63% 

0.1 -0.398 

(0.311) 

-0.599 

(0.377) 

0.015 

(0.008) 

0.040 

(0.026) 

53% 65% 

0.2 -0.392 

(0.313) 

-0.590 

(0.375) 

0.019 

(0.008) 

0.043 

(0.026) 

60% 64% 

0.3 -0.394 

(0.339) 

-0.584 

(0.406) 

0.024 

(0.009) 

0.048 

(0.027) 

60% 66% 
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Table A.6. Results for Cutscore 1, with 4 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 4 

0.0 

0.0 -0.398 
(0.031) 

-0.633 
(0.038) 

0.001 
(<0.001) 

0.007 
(<0.001) 

9% 77% 

0.1 -0.403 

(0.071) 

-0.645 
(0.083) 

0.004 
(0.001) 

0.010 
(0.001) 

69% 70% 

0.2 -0.412 
(0.083) 

-0.657 
(0.096) 

0.008 
(0.002) 

0.013 
(0.002) 

82% 78% 

0.3 -0.390 
(0.105) 

-0.631 
(0.125) 

0.011 
(0.003) 

0.016 
(0.003) 

76% 83% 

0.1 

0.0 -0.391 
(0.143) 

-0.629 
(0.180) 

0.003 
(0.002) 

0.014 
(0.004) 

48% 68% 

0.1 -0.396 
(0.148) 

-0.632 
(0.183) 

0.007 
(0.002) 

0.017 
(0.005) 

69% 70% 

0.2 -0.391 
(0.160) 

-0.610 
(0.195) 

0.010 
(0.003) 

0.019 
(0.005) 

71% 75% 

0.3 -0.388 
(0.167) 

-0.605 
(0.206) 

0.013 
(0.003) 

0.023 
(0.007) 

70% 77% 

0.2 

0.0 -0.387 
(0.201) 

-0.619 
(0.261) 

0.006 
(0.003) 

0.022 
(0.013) 

49% 61% 

0.1 -0.381 
(0.203) 

-0.600 
(0.252) 

0.009 
(0.003) 

0.024 
(0.013) 

61% 68% 

0.2 -0.388 
(0.213) 

-0.580 
(0.263) 

0.013 
(0.004) 

0.026 
(0.010) 

64% 70% 

0.3 -0.385 
(0.215) 

-0.578 
(0.286) 

0.016 
(0.004) 

0.030 
(0.018) 

68% 66% 

0.3 

0.0 -0.389 
(0.243) 

-0.618 
(0.334) 

0.008 
(0.005) 

0.027 
(0.020) 

51% 59% 

0.1 -0.393 
(0.250) 

-0.599 
(0.321) 

0.011 
(0.005) 

0.030 
(0.019) 

59% 63% 

0.2 -0.388 
(0.254) 

-0.577 
(0.318) 

0.014 
(0.005) 

0.030 
(0.014) 

60% 66% 

0.3 -0.398 
(0.269) 

-0.597 
(0.314) 

0.018 
(0.006) 

0.036 
(0.022) 

68% 71% 
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Table A.7. Results for Cutscore 1, with 1 and 2 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 

1 N/A 

0.0 
-0.394 
(0.043) 

-0.621 
(0.053) 

0.002 
(0.001) 

0.012 
(<0.001) 

33% 97% 

0.1 
-0.402 
(0.095) 

-0.637 
(0.108) 

0.009 
(0.003) 

0.019 
(0.003) 

82% 89% 

0.2 
-0.401 
(0.126) 

-0.640 
(0.142) 

0.016 
(0.005) 

0.026 
(0.006) 

86% 92% 

0.3 
-0.398 
(0.154) 

-0.642 
(0.173) 

0.022 
(0.007) 

0.034 
(0.010) 

85% 88% 

2 

0.0 

0.0 
-0.398 
(0.031) 

-0.625 
(0.037) 

0.001 
(<0.001) 

0.010 
(0.035) 

9% 69% 

0.1 
-0.403 
(0.071) 

-0.638 
(0.081) 

0.004 
(0.001) 

0.008 
(0.001) 

69% 69% 

0.2 
-0.412 
(0.083) 

-0.649 
(0.095) 

0.008 
(0.002) 

0.012 
(0.002) 

82% 78% 

0.3 
-0.390 
(0.105) 

-0.627 
(0.125) 

0.011 
(0.003) 

0.015 
(0.003) 

76% 83% 

0.1 

0.0 
-0.399 
(0.221) 

-0.611 
(0.255) 

0.002 
(0.002) 

0.040 
(0.158) 

32% 56% 

0.1 
-0.399 
(0.227) 

-0.614 
(0.260) 

0.006 
(0.002) 

0.020 
(0.019) 

48% 63% 

0.2 
-0.397 
(0.234) 

-0.620 
(0.266) 

0.009 
(0.003) 

0.019 
(0.011) 

53% 63% 

0.3 
-0.381 
(0.240) 

-0.594 
(0.283) 

0.013 
(0.003) 

0.024 
(0.012) 

59% 67% 

2 

0.0 
-0.402 
(0.315) 

-0.603 
(0.361) 

0.004 
(0.004) 

0.052 
(0.097) 

27% 52% 

0.1 
-0.400 
(0.305) 

-0.601 
(0.357) 

0.007 
(0.004) 

0.032 
(0.034) 

38% 57% 

0.2 
-0.403 
(0.309) 

-0.611 
(0.359) 

0.011 
(0.004) 

0.032 
(0.030) 

44% 61% 

0.3 
-0.395 
(0.307) 

-0.590 
(0.364) 

0.013 
(0.005) 

0.031 
(0.022) 

52% 64% 

0.3 

0.0 
-0.403 
(0.386) 

-0.591 
(0.439) 

0.005 
(0.005) 

0.079 
(0.174) 

28% 49% 

0.1 
-0.408 
(0.381) 

-0.608 
(0.456) 

0.008 
(0.006) 

0.057 
(0.080) 

34% 51% 

0.2 
-0.400 
(0.376) 

-0.604 
(0.444) 

0.012 
(0.005) 

0.042 
(0.060) 

44% 55% 

0.3 
-0.409 
(0.395) 

-0.579 
(0.491) 

0.015 
(0.006) 

0.037 
(0.027) 

45% 58% 

  



221 

 

 

Table A.8. Results for Cutscore 1, with 3 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 3 

0.0 

0.0 -0.397 
(0.025) 

-0.626 
(0.031) 

0.001 
(<0.001) 

0.004 
(0.000) 

5% 40% 

0.1 -0.408 
(0.058) 

-0.644 
(0.066) 

0.003 
(0.001) 

0.006 
(0.001) 

57% 49% 

0.2 -0.410 
(0.067) 

-0.647 
(0.075) 

0.005 
(0.001) 

0.008 
(0.001) 

79% 62% 

0.3 -0.392 
(0.083) 

-0.624 
(0.098) 

0.007 
(0.002) 

0.010 
(0.002) 

71% 73% 

0.1 

0.0 -0.392 
(0.169) 

-0.623 
(0.220) 

0.002 
(0.001) 

0.009 
(0.004) 

34% 51% 

0.1 -0.394 
(0.183) 

-0.628 
(0.223) 

0.004 
(0.001) 

0.011 
(0.005) 

42% 51% 

0.2 -0.394 
(0.187) 

-0.623 
(0.228) 

0.006 
(0.002) 

0.013 
(0.005) 

53% 61% 

0.3 -0.382 
(0.193) 

-0.603 
(0.239) 

0.009 
(0.002) 

0.016 
(0.006) 

58% 69% 

0.2 

0.0 -0.392 
(0.243) 

-0.611 
(0.324) 

0.003 
(0.003) 

0.014 
(0.011) 

37% 48% 

0.1 -0.393 
(0.247) 

-0.602 
(0.315) 

0.006 
(0.003) 

0.017 
(0.012) 

43% 55% 

0.2 -0.395 
(0.251) 

-0.606 
(0.301) 

0.008 
(0.003) 

0.018 
(0.011) 

49% 62% 

0.3 -0.389 
(0.240) 

-0.589 
(0.292) 

0.010 
(0.003) 

0.021 
(0.014) 

52% 65% 

0.3 

0.0 -0.391 
(0.300) 

-0.616 
(0.405) 

0.005 
(0.004) 

0.020 
(0.028) 

34% 42% 

0.1 -0.396 
(0.303) 

-0.619 
(0.395) 

0.007 
(0.004) 

0.022 
(0.021) 

41% 49% 

0.2 -0.389 
(0.302) 

-0.587 
(0.385) 

0.009 
(0.004) 

0.022 
(0.015) 

46% 52% 

0.3 -0.398 
(0.302) 

-0.594 
(0.383) 

0.011 
(0.004) 

0.026 
(0.027) 

43% 56% 
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Table A.9. Results for Cutscore 1, with 4 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 4 

0.0 

0.0 -0.395 
(0.021) 

-0.621 
(0.026) 

<0.001 
(<0.001) 

0.003 
(<0.001) 

1% 18% 

0.1 -0.401 
(0.051) 

-0.633 
(0.059) 

0.002 
(<0.001) 

0.004 
(<0.001) 

44% 39% 

0.2 -0.408 
(0.062) 

-0.641 
(0.071) 

0.004 
(0.001) 

0.005 
(0.001) 

69% 54% 

0.3 -0.398 
(0.067) 

-0.632 
(0.082) 

0.005 
(0.001) 

0.007 
(0.001) 

75% 63% 

0.1 

0.0 -0.389 
(0.135) 

-0.610 
(0.187) 

0.002 
(0.001) 

0.007 
(0.003) 

34% 51% 

0.1 -0.393 
(0.147) 

-0.617 
(0.185) 

0.003 
(0.001) 

0.008 
(0.004) 

45% 54% 

0.2 -0.394 
(0.145) 

-0.623 
(0.192) 

0.005 
(0.001) 

0.010 
(0.003) 

53% 57% 

0.3 -0.388 
(0.150) 

-0.609 
(0.189) 

0.006 
(0.001) 

0.012 
(0.005) 

63% 65% 

0.2 

0.0 -0.386 
(0.195) 

-0.591 
(0.286) 

0.003 
(0.002) 

0.010 
(0.009) 

37% 49% 

0.1 -0.387 
(0.201) 

-0.604 
(0.274) 

0.004 
(0.002) 

0.012 
(0.009) 

48% 51% 

0.2 -0.393 
(0.202) 

-0.593 
(0.266) 

0.006 
(0.002) 

0.014 
(0.009) 

56% 56% 

0.3 -0.388 
(0.196) 

-0.595 
(0.253) 

0.007 
(0.002) 

0.015 
(0.010) 

52% 56% 

0.3 

0.0 -0.383 
(0.241) 

-0.586 
(0.365) 

0.004 
(0.002) 

0.013 
(0.015) 

38% 44% 

0.1 -0.393 
(0.235) 

-0.586 
(0.336) 

0.005 
(0.002) 

0.015 
(0.010) 

45% 49% 

0.2 -0.387 
(0.238) 

-0.578 
(0.332) 

0.007 
(0.003) 

0.017 
(0.016) 

51% 48% 

0.3 -0.390 
(0.249) 

-0.574 
(0.334) 

0.008 
(0.003) 

0.018 
(0.012) 

52% 57% 
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Table A.10. Results for Cutscore 2, with 1 and 2 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 

1 N/A 

0.0 
0.582 

(0.056) 
0.396 

(0.073) 
0.003 

(0.002) 
0.037 

(0.002) 
66% 100% 

0.1 
0.623 

(0.110) 
0.460 

(0.126) 
0.015 

(0.009) 
0.050 

(0.010) 
84% 100% 

0.2 
0.649 

(0.132) 
0.498 

(0.150) 
0.024 

(0.014) 
0.061 

(0.016) 
86% 100% 

0.3 
0.704 

(0.156) 
0.565 

(0.174) 
0.037 

(0.020) 
0.078 

(0.025) 
82% 98% 

 

0.0 

0.0 
0.583 

(0.043) 
0.405 

(0.055) 
0.002 

(0.001) 
0.016 

(0.001) 
44% 100% 

0.1 
0.624 

(0.076) 
0.462 

(0.091) 
0.007 

(0.003) 
0.021 

(0.003) 
65% 100% 

0.2 
0.666 

(0.115) 
0.516 

(0.129) 
0.012 

(0.004) 
0.025 

(0.005) 
67% 98% 

0.3 
0.717 

(0.136) 
0.583 

(0.148) 
0.017 

(0.006) 
0.030 

(0.007) 
63% 94% 

0.1 

0.0 
0.611 

(0.208) 
0.449 

(0.248) 
0.004 

(0.003) 
0.030 

(0.020) 
40% 77% 

0.1 
0.646 

(0.219) 
0.494 

(0.256) 
0.009 

(0.004) 
0.033 

(0.015) 
50% 81% 

0.2 
0.687 

(0.222) 
0.553 

(0.262) 
0.014 

(0.005) 
0.036 

(0.015) 
55% 83% 

0.3 
0.730 

(0.239) 
0.599 

(0.272) 
0.020 

(0.008) 
0.040 

(0.014) 
58% 85% 

0.2 

0.0 
0.648 

(0.288) 
0.495 

(0.337) 
0.006 

(0.006) 
0.050 

(0.053) 
32% 68% 

0.1 
0.688 

(0.297) 
0.549 

(0.345) 
0.011 

(0.006) 
0.047 

(0.030) 
48% 75% 

0.2 
0.732 

(0.297) 
0.599 

(0.349) 
0.016 

(0.008) 
0.047 

(0.029) 
46% 77% 

0.3 
0.761 

(0.304) 
0.634 

(0.337) 
0.022 

(0.009) 
0.052 

(0.029) 
52% 77% 

0.3 

0.0 
0.682 

(0.349) 
0.541 

(0.405) 
0.009 

(0.010) 
0.083 

(0.107) 
33% 68% 

0.1 
0.731 

(0.357) 
0.612 

(0.421) 
0.014 

(0.008) 
0.065 

(0.054) 
38% 68% 

0.2 
0.771 

(0.352) 
0.656 

(0.419) 
0.018 

(0.009) 
0.061 

(0.051) 
41% 69% 

0.3 
0.808 

(0.357) 
0.687 

(0.419) 
0.025 

(0.011) 
0.068 

(0.045) 
47% 72% 
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Table A.11. Results for Cutscore 2, with 3 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 3 

0.0 

0.0 0.587 
(0.034) 

0.406 
(0.043) 

0.001 
(<0.001) 

0.009 
(<0.001) 

31% 100% 

0.1 0.622 

(0.067) 

0.456 
(0.078) 

0.005 
(0.001) 

0.012 
(0.001) 

59% 99% 

0.2 0.660 
(0.091) 

0.506 
(0.103) 

0.008 
(0.003) 

0.016 
(0.003) 

61% 97% 

0.3 0.707 
(0.112) 

0.567 
(0.122) 

0.011 
(0.003) 

0.018 
(0.004) 

50% 95% 

0.1 

0.0 0.607 
(0.165) 

0.432 
(0.199) 

0.003 
(0.002) 

0.018 
(0.006) 

38% 67% 

0.1 0.650 
(0.176) 

0.488 
(0.208) 

0.007 
(0.003) 

0.021 
(0.006) 

45% 81% 

0.2 0.690 
(0.172) 

0.539 
(0.198) 

0.010 
(0.003) 

0.023 
(0.008) 

48% 89% 

0.3 0.733 
(0.189) 

0.596 
(0.215) 

0.014 
(0.004) 

0.027 
(0.009) 

47% 86% 

0.2 

0.0 0.655 
(0.235) 

0.488 
(0.295) 

0.005 
(0.004) 

0.025 
(0.013) 

31% 63% 

0.1 0.688 
(0.243) 

0.532 
(0.289) 

0.009 
(0.005) 

0.028 
(0.013) 

41% 71% 

0.2 0.729 
(0.241) 

0.580 
(0.266) 

0.012 
(0.006) 

0.031 
(0.015) 

46% 79% 

0.3 0.776 
(0.235) 

0.627 
(0.267) 

0.016 
(0.006) 

0.032 
(0.012) 

42% 78% 

0.3 

0.0 0.698 
(0.284) 

0.539 
(0.360) 

0.008 
(0.006) 

0.032 
(0.024) 

28% 61% 

0.1 0.742 
(0.283) 

0.589 
(0.342) 

0.011 
(0.006) 

0.032 
(0.016) 

32% 65% 

0.2 0.774 
(0.276) 

0.624 
(0.319) 

0.014 
(0.007) 

0.035 
(0.024) 

37% 68% 

0.3 0.824 
(0.282) 

0.678 
(0.327) 

0.017 
(0.007) 

0.038 
(0.020) 

38% 70% 
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Table A.12. Results for Cutscore 2, with 4 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 4 

0.0 

0.0 0.589 
(0.030) 

0.413 
(0.037) 

0.001 
(<0.001) 

0.007 
(<0.001) 

15% 96% 

0.1 0.622 
(0.054) 

0.460 
(0.062) 

0.004 
(0.001) 

0.009 
(0.001) 

48% 100% 

0.2 0.665 
(0.074) 

0.513 
(0.091) 

0.006 
(0.002) 

0.012 
(0.002) 

44% 99% 

0.3 0.708 
(0.095) 

0.566 
(0.113) 

0.009 
(0.002) 

0.014 
(0.002) 

37% 93% 

0.1 

0.0 0.621 
(0.145) 

0.454 
(0.186) 

0.003 
(0.002) 

0.014 
(0.004) 

36% 72% 

0.1 0.650 
(0.147) 

0.494 
(0.170) 

0.005 
(0.002) 

0.016 
(0.006) 

48% 83% 

0.2 0.694 
(0.149) 

0.561 
(0.187) 

0.008 
(0.003) 

0.017 
(0.004) 

46% 84% 

0.3 0.731 
(0.154) 

0.602 
(0.179) 

0.010 
(0.003) 

0.019 
(0.005) 

42% 85% 

0.2 

0.0 0.658 
(0.211) 

0.496 
(0.264) 

0.004 
(0.003) 

0.019 
(0.008) 

33% 65% 

0.1 0.690 
(0.203) 

0.530 
(0.245) 

0.007 
(0.003) 

0.021 
(0.009) 

42% 70% 

0.2 0.745 
(0.205) 

0.594 
(0.234) 

0.009 
(0.003) 

0.021 
(0.007) 

39% 70% 

0.3 0.789 
(0.194) 

0.648 
(0.232) 

0.012 
(0.004) 

0.024 
(0.010) 

41% 73% 

0.3 

0.0 0.704 
(0.251) 

0.543 
(0.326) 

0.006 
(0.004) 

0.025 
(0.015) 

31% 60% 

0.1 0.747 
(0.251) 

0.590 
(0.319) 

0.008 
(0.004) 

0.025 
(0.012) 

35% 64% 

0.2 0.786 
(0.244) 

0.638 
(0.297) 

0.011 
(0.004) 

0.025 
(0.010) 

36% 63% 

0.3 0.842 
(0.240) 

0.697 
(0.303) 

0.013 
(0.005) 

0.027 
(0.012) 

31% 64% 
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Table A.13. Results for Cutscore 2, with 1 and 2 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 

1 N/A 

0.0 
0.583 

(0.043) 
0.403 

(0.055) 
0.002 

(0.001) 
0.012 

(0.001) 
44% 98% 

0.1 
0.624 

(0.076) 
0.464 

(0.090) 
0.007 

(0.003) 
0.017 

(0.003) 
65% 100% 

0.2 
0.666 

(0.115) 
0.521 

(0.134) 
0.012 

(0.004) 
0.023 

(0.005) 
67% 99% 

0.3 
0.717 

(0.136) 
0.586 

(0.153) 
0.017 

(0.006) 
0.030 

(0.007) 
63% 91% 

2 

0.0 

0.0 
0.589 

(0.030) 
0.414 

(0.038) 
0.001 

(<0.001) 
0.008 

(0.023) 
15% 94% 

0.1 
0.622 

(0.054) 
0.463 

(0.062) 
0.004 

(0.001) 
0.008 

(0.001) 
48% 99% 

0.2 
0.665 

(0.074) 
0.518 

(0.089) 
0.006 

(0.002) 
0.010 

(0.002) 
44% 98% 

0.3 
0.708 

(0.095) 
0.570 

(0.111) 
0.009 

(0.002) 
0.013 

(0.002) 
37% 92% 

0.1 

0.0 
0.618 

(0.201) 
0.460 

(0.247) 
0.002 

(0.002) 
0.039 

(0.207) 
30% 53% 

0.1 
0.659 

(0.198) 
0.524 

(0.247) 
0.005 

(0.002) 
0.015 

(0.009) 
45% 63% 

0.2 
0.686 

(0.203) 
0.557 

(0.254) 
0.007 

(0.002) 
0.015 

(0.007) 
44% 63% 

0.3 
0.747 

(0.203) 
0.626 

(0.254) 
0.010 

(0.003) 
0.018 

(0.007) 
41% 64% 

2 

0.0 
0.650 

(0.286) 
0.499 

(0.348) 
0.003 

(0.003) 
0.044 

(0.084) 
25% 48% 

0.1 
0.688 

(0.285) 
0.561 

(0.348) 
0.006 

(0.003) 
0.027 

(0.037) 
34% 57% 

0.2 
0.725 

(0.280) 
0.586 

(0.358) 
0.008 

(0.003) 
0.024 

(0.023) 
42% 55% 

0.3 
0.781 

(0.278) 
0.657 

(0.344) 
0.011 

(0.004) 
0.025 

(0.020) 
35% 57% 

0.3 

0.0 
0.686 

(0.347) 
0.541 

(0.418) 
0.004 

(0.004) 
0.076 

(0.212) 
25% 51% 

0.1 
0.726 

(0.347) 
0.588 

(0.433) 
0.007 

(0.004) 
0.039 

(0.056) 
36% 50% 

0.2 
0.771 

(0.341) 
0.623 

(0.434) 
0.009 

(0.005) 
0.035 

(0.055) 
36% 50% 

0.3 
0.818 

(0.335) 
0.702 

(0.411) 
0.012 

(0.005) 
0.032 

(0.035) 
37% 45% 
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Table A.14. Results for Cutscore 2, with 3 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 3 

0.0 

0.0 0.590 
(0.026) 

0.414 
(0.033) 

0.001 
(<0.001) 

0.003 
(<0.001) 

9% 82% 

0.1 0.622 
(0.045) 

0.461 
(0.054) 

0.002 
(<0.001) 

0.005 
(<0.001) 

24% 96% 

0.2 0.661 
(0.059) 

0.510 
(0.071) 

0.004 
(0.001) 

0.006 
(0.001) 

24% 98% 

0.3 0.701 
(0.079) 

0.559 
(0.097) 

0.006 
(0.001) 

0.008 
(0.001) 

22% 89% 

0.1 

0.0 0.607 
(0.172) 

0.434 
(0.222) 

0.002 
(0.001) 

0.008 
(0.003) 

18% 51% 

0.1 0.640 
(0.165) 

0.492 
(0.207) 

0.003 
(0.001) 

0.009 
(0.004) 

34% 57% 

0.2 0.675 
(0.162) 

0.524 
(0.209) 

0.005 
(0.001) 

0.011 
(0.004) 

38% 62% 

0.3 0.733 
(0.159) 

0.588 
(0.204) 

0.007 
(0.002) 

0.012 
(0.004) 

31% 60% 

0.2 

0.0 0.646 
(0.241) 

0.478 
(0.312) 

0.003 
(0.002) 

0.011 
(0.007) 

22% 49% 

0.1 0.686 
(0.233) 

0.530 
(0.288) 

0.004 
(0.002) 

0.013 
(0.010) 

28% 54% 

0.2 0.725 
(0.230) 

0.566 
(0.284) 

0.006 
(0.002) 

0.015 
(0.009) 

30% 58% 

0.3 0.787 
(0.227) 

0.649 
(0.289) 

0.008 
(0.002) 

0.015 
(0.006) 

29% 55% 

0.3 

0.0 0.689 
(0.283) 

0.530 
(0.376) 

0.004 
(0.003) 

0.015 
(0.013) 

19% 43% 

0.1 0.732 
(0.281) 

0.573 
(0.344) 

0.005 
(0.003) 

0.017 
(0.016) 

20% 44% 

0.2 0.771 
(0.281) 

0.618 
(0.344) 

0.007 
(0.003) 

0.017 
(0.009) 

23% 49% 

0.3 0.823 
(0.269) 

0.670 
(0.316) 

0.009 
(0.003) 

0.018 
(0.008) 

24% 48% 
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Table A.15. Results for Cutscore 2, with 4 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 4 

0.0 

0.0 0.591 
(0.019) 

0.414 
(0.025) 

<0.001 
(<0.001) 

0.003 
(<0.001) 

0% 77% 

0.1 0.619 
(0.039) 

0.459 
(0.047) 

0.002 
(<0.001) 

0.004 
(<0.001) 

18% 94% 

0.2 0.660 
(0.056) 

0.510 
(0.065) 

0.003 
(0.001) 

0.005 
(0.001) 

19% 97% 

0.3 0.698 
(0.066) 

0.556 
(0.077) 

0.004 
(0.001) 

0.006 
(0.001) 

12% 92% 

0.1 

0.0 0.622 
(0.145) 

0.448 
(0.191) 

0.001 
(0.001) 

0.007 
(0.003) 

27% 50% 

0.1 0.653 
(0.148) 

0.497 
(0.184) 

0.003 
(0.001) 

0.007 
(0.003) 

32% 63% 

0.2 0.690 
(0.141) 

0.535 
(0.177) 

0.004 
(0.001) 

0.009 
(0.003) 

36% 66% 

0.3 0.752 
(0.141) 

0.606 
(0.184) 

0.005 
(0.001) 

0.010 
(0.003) 

27% 62% 

0.2 

0.0 0.658 
(0.207) 

0.483 
(0.273) 

0.002 
(0.001) 

0.010 
(0.006) 

25% 43% 

0.1 0.691 
(0.195) 

0.520 
(0.251) 

0.003 
(0.001) 

0.010 
(0.005) 

28% 52% 

0.2 0.738 
(0.193) 

0.575 
(0.247) 

0.005 
(0.001) 

0.012 
(0.006) 

29% 52% 

0.3 0.796 
(0.188) 

0.651 
(0.238) 

0.006 
(0.002) 

0.012 
(0.004) 

29% 52% 

0.3 

0.0 0.700 
(0.247) 

0.538 
(0.345) 

0.003 
(0.002) 

0.012 
(0.008) 

27% 38% 

0.1 0.745 
(0.241) 

0.582 
(0.319) 

0.004 
(0.002) 

0.013 
(0.007) 

25% 49% 

0.2 0.787 
(0.235) 

0.611 
(0.298) 

0.005 
(0.002) 

0.014 
(0.010) 

29% 52% 

0.3 0.839 
(0.224) 

0.672 
(0.280) 

0.007 
(0.002) 

0.014 
(0.006) 

28% 50% 
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Table A.16. Results for Cutscore 3, with 1 and 2 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 

1 N/A 

0.0 
1.595 

(0.059) 
1.596 

(0.054) 
0005 

(0.002) 
0.036 

(0.002) 
81% 100% 

0.1 
1.590 

(0.120) 
1.593 

(0.134) 
0.017 

(0.009) 
0.049 

(0.011) 
86% 100% 

0.2 
1.649 

(0.171) 
1.661 

(0.196) 
0.028 

(0.014) 
0.065 

(0.028) 
77% 95% 

0.3 
1.728 

(0.188) 
1.763 

(0.229) 
0.037 

(0.020) 
0.087 

(0.056) 
71% 93% 

 

0.0 

0.0 
1.601 

(0.053) 
1.597 

(0.048) 
0.003 

(0.001) 
0.016 

(0.001) 
47% 100% 

0.1 
1.611 

(0.085) 
1.609 

(0.095) 
0.009 

(0.003) 
0.021 

(0.003) 
80% 96% 

0.2 
1.658 

(0.116) 
1.656 

(0.135) 
0.014 

(0.005) 
0.027 

(0.007) 
70% 92% 

0.3 
1.738 

(0.118) 
1.742 

(0.144) 
0.019 

(0.006) 
0.033 

(0.010) 
57% 79% 

0.1 

0.0 
1.641 

(0.220) 
1.642 

(0.240) 
0.005 

(0.004) 
0.035 

(0.035) 
40% 79% 

0.1 
1.677 

(0.216) 
1.677 

(0.256) 
0.011 

(0.004) 
0.037 

(0.021) 
46% 79% 

0.2 
1.737 

(0.211) 
1.736 

(0.264) 
0.016 

(0.006) 
0.043 

(0.023) 
51% 75% 

0.3 
1.804 

(0.209) 
1.812 

(0.254) 
0.021 

(0.007) 
0.047 

(0.020) 
43% 64% 

0.2 

0.0 
1.685 

(0.304) 
1.693 

(0.350) 
0.007 

(0.006) 
0.059 

(0.060) 
32% 71% 

0.1 
1.717 

(0.302) 
1.729 

(0.349) 
0.012 

(0.006) 
0.053 

(0.043) 
40% 66% 

0.2 
1.793 

(0.284) 
1.789 

(0.339) 
0.018 

(0.007) 
0.059 

(0.050) 
42% 68% 

0.3 
1.846 

(0.286) 
1.855 

(0.357) 
0.022 

(0.007) 
0.062 

(0.036) 
41% 61% 

0.3 

0.0 
1.743 

(0.366) 
1.744 

(0.409) 
0.010 

(0.009) 
0.094 

(0.104) 
30% 64% 

0.1 
1.782 

(0.362) 
1.784 

(0.429) 
0.015 

(0.009) 
0.080 

(0.076) 
36% 62% 

0.2 
1.840 

(0.347) 
1.833 

(0.406) 
0.018 

(0.008) 
0.073 

(0.074) 
39% 65% 

0.3 
1.900 

(0.336) 
1.903 

(0.434) 
0.024 

(0.009) 
0.093 

(0.099) 
35% 61% 
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Table A.17. Results for Cutscore 3, with 3 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 3 

0.0 

0.0 1.601 
(0.046) 

1.600 
(0.041) 

0.002 
(<0.001) 

0.010 
(<0.001) 

32% 100% 

0.1 1.612 
(0.064) 

1.607 
(0.072) 

0.006 
(0.002) 

0.013 
(0.002) 

73% 93% 

0.2 1.663 
(0.086) 

1.661 
(0.105) 

0.009 
(0.003) 

0.017 
(0.004) 

64% 84% 

0.3 1.734 
(0.101) 

1.748 
(0.128) 

0.012 
(0.003) 

0.020 
(0.005) 

40% 60% 

0.1 

0.0 1.623 
(0.172) 

1.617 
(0.201) 

0.004 
(0.003) 

0.019 
(0.008) 

39% 78% 

0.1 1.668 
(0.171) 

1.652 
(0.214) 

0.008 
(0.003) 

0.022 
(0.008) 

51% 76% 

0.2 1.719 
(0.176) 

1.703 
(0.220) 

0.011 
(0.004) 

0.028 
(0.013) 

51% 72% 

0.3 1.797 
(0.173) 

1.785 
(0.222) 

0.014 
(0.004) 

0.031 
(0.012) 

37% 64% 

0.2 

0.0 1.672 
(0.245) 

1.657 
(0.315) 

0.006 
(0.004) 

0.026 
(0.013) 

33% 65% 

0.1 1.712 
(0.248) 

1.682 
(0.308) 

0.010 
(0.004) 

0.032 
(0.031) 

42% 66% 

0.2 1.782 
(0.243) 

1.755 
(0.284) 

0.013 
(0.005) 

0.034 
(0.016) 

40% 64% 

0.3 1.853 
(0.235) 

1.816 
(0.281) 

0.016 
(0.004) 

0.037 
(0.015) 

34% 58% 

0.3 

0.0 1.721 
(0.294) 

1.700 
(0.383) 

0.008 
(0.006) 

0.035 
(0.024) 

32% 59% 

0.1 1.762 
(0.298) 

1.722 
(0.369) 

0.011 
(0.006) 

0.039 
(0.029) 

35% 59% 

0.2 1.834 
(0.294) 

1.799 
(0.354) 

0.013 
(0.005) 

0.040 
(0.021) 

35% 61% 

0.3 1.897 
(0.276) 

1.844 
(0.354) 

0.017 
(0.006) 

0.045 
(0.024) 

29% 57% 
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Table A.18. Results for Cutscore 3, with 4 groups of 8 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

8 4 

0.0 

0.0 1.598 
(0.038) 

1.595 
(0.033) 

0.001 
(<0.001) 

0.007 
(<0.001) 

27% 100% 

0.1 1.610 
(0.059) 

1.605 
(0.066) 

0.004 
(0.001) 

0.010 
(0.001) 

59% 96% 

0.2 1.669 
(0.072) 

1.666 
(0.086) 

0.007 
(0.002) 

0.013 
(0.002) 

45% 74% 

0.3 1.735 
(0.087) 

1.739 
(0.107) 

0.009 
(0.002) 

0.015 
(0.003) 

30% 51% 

0.1 

0.0 1.612 
(0.159) 

1.606 
(0.192) 

0.003 
(0.002) 

0.014 
(0.005) 

42% 72% 

0.1 1.652 
(0.154) 

1.633 
(0.191) 

0.006 
(0.002) 

0.018 
(0.007) 

46% 72% 

0.2 1.710 
(0.146) 

1.692 
(0.185) 

0.008 
(0.002) 

0.019 
(0.007) 

41% 68% 

0.3 1.791 
(0.146) 

1.781 
(0.186) 

0.010 
(0.003) 

0.022 
(0.008) 

26% 50% 

0.2 

0.0 1.655 
(0.214) 

1.641 
(0.287) 

0.005 
(0.003) 

0.022 
(0.012) 

39% 60% 

0.1 1.705 
(0.211) 

1.670 
(0.259) 

0.007 
(0.003) 

0.024 
(0.013) 

39% 64% 

0.2 1.773 
(0.192) 

1.742 
(0.229) 

0.009 
(0.003) 

0.024 
(0.010) 

36% 61% 

0.3 1.833 
(0.191) 

1.799 
(0.250) 

0.012 
(0.003) 

0.028 
(0.012) 

28% 51% 

0.3 

0.0 1.709 
(0.256) 

1.696 
(0.366) 

0.007 
(0.004) 

0.026 
(0.015) 

35% 54% 

0.1 1.759 
(0.246) 

1.730 
(0.328) 

0.009 
(0.004) 

0.029 
(0.016) 

38% 56% 

0.2 1.824 
(0.240) 

1.777 
(0.296) 

0.011 
(0.004) 

0.031 
(0.016) 

29% 63% 

0.3 1.886 
(0.238) 

1.832 
(0.316) 

0.013 
(0.004) 

0.033 
(0.015) 

27% 54% 
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Table A.19. Results for Cutscore 3, with 1 and 2 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 

1 N/A 

0.0 
1.601 

(0.053) 
1.599 

(0.048) 
0.003 

(0.001) 
0.012 

(<0.001) 
47% 99% 

0.1 
1.611 

(0.085) 
1.612 

(0.097) 
0.009 

(0.003) 
0.019 

(0.003) 
80% 94% 

0.2 
1.658 

(0.116) 
1.667 

(0.133) 
0.014 

(0.005) 
0.026 

(0.007) 
70% 85% 

0.3 
1.738 

(0.118) 
1.768 

(0.140) 
0.019 

(0.006) 
0.035 

(0.013) 
57% 79% 

2 

0.0 

0.0 
1.598 

(0.038) 
1.596 

(0.033) 
0.001 

(<0.001) 
0.006 

(0.001) 
27% 92% 

0.1 
1.610 

(0.059) 
1.606 

(0.065) 
0.004 

(0.001) 
0.008 

(0.001) 
59% 90% 

0.2 
1.669 

(0.072) 
1.674 

(0.086) 
0.007 

(0.002) 
0.011 

(0.002) 
45% 68% 

0.3 
1.735 

(0.087) 
1.755 

(0.107) 
0.009 

(0.002) 
0.014 

(0.003) 
30% 44% 

0.1 

0.0 
1.633 

(0.215) 
1.630 

(0.238) 
0.002 

(0.002) 
0.023 

(0.040) 
24% 58% 

0.1 
1.663 

(0.207) 
1.666 

(0.240) 
0.005 

(0.002) 
0.017 

(0.011) 
36% 58% 

0.2 
1.720 

(0.202) 
1.720 

(0.234) 
0.008 

(0.002) 
0.019 

(0.010) 
37% 56% 

0.3 
1.792 

(0.188) 
1.811 

(0.231) 
0.010 

(0.002) 
0.022 

(0.010) 
27% 46% 

2 

0.0 
1.676 

(0.310) 
1.668 

(0.367) 
0.004 

(0.003) 
0.044 

(0.057) 
18% 52% 

0.1 
1.717 

(0.290) 
1.712 

(0.325) 
0.006 

(0.003) 
0.033 

(0.039) 
28% 55% 

0.2 
1.770 

(0.274) 
1.752 

(0.312) 
0.008 

(0.003) 
0.027 

(0.022) 
31% 55% 

0.3 
1.841 

(0.272) 
1.830 

(0.336) 
0.010 

(0.003) 
0.031 

(0.021) 
30% 47% 

0.3 

0.0 
1.738 

(0.370) 
1.725 

(0.450) 
0.005 

(0.004) 
0.069 

(0.113) 
19% 46% 

0.1 
1.780 

(0.354) 
1.745 

(0.409) 
0.007 

(0.004) 
0.046 

(0.060) 
23% 54% 

0.2 
1.829 

(0.342) 
1.794 

(0.407) 
0.009 

(0.003) 
0.041 

(0.058) 
24% 47% 

0.3 
1.905 

(0.326) 
1.890 

(0.420) 
0.011 

(0.004) 
0.041 

(0.042) 
27% 44% 
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Table A.20. Results for Cutscore 3, with 3 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 3 

0.0 

0.0 1.601 
(0.031) 

1.597 
(0.028) 

0.001 
(<0.001) 

0.003 
(<0.001) 

8% 75% 

0.1 1.612 
(0.054) 

1.605 
(0.060) 

0.003 
(0.001) 

0.005 
(0.001) 

44% 70% 

0.2 1.664 
(0.062) 

1.661 
(0.075) 

0.004 
(0.001) 

0.007 
(0.001) 

28% 52% 

0.3 1.731 
(0.074) 

1.744 
(0.088) 

0.006 
(0.001) 

0.009 
(0.002) 

12% 22% 

0.1 

0.0 1.623 
(0.171) 

1.603 
(0.212) 

0.002 
(0.001) 

0.008 
(0.004) 

28% 57% 

0.1 1.656 
(0.168) 

1.627 
(0.206) 

0.004 
(0.001) 

0.010 
(0.004) 

39% 57% 

0.2 1.717 
(0.166) 

1.703 
(0.199) 

0.005 
(0.001) 

0.012 
(0.005) 

37% 51% 

0.3 1.783 
(0.152) 

1.776 
(0.183) 

0.006 
(0.001) 

0.013 
(0.005) 

24% 42% 

0.2 

0.0 1.669 
(0.240) 

1.628 
(0.320) 

0.003 
(0.002) 

0.014 
(0.013) 

25% 50% 

0.1 1.710 
(0.238) 

1.657 
(0.306) 

0.005 
(0.002) 

0.015 
(0.010) 

28% 51% 

0.2 1.763 
(0.214) 

1.720 
(0.274) 

0.006 
(0.002) 

0.016 
(0.009) 

31% 50% 

0.3 1.839 
(0.216) 

1.799 
(0.270) 

0.007 
(0.002) 

0.019 
(0.009) 

25% 47% 

0.3 

0.0 1.714 
(0.289) 

1.668 
(0.398) 

0.004 
(0.003) 

0.020 
(0.030) 

24% 45% 

0.1 1.762 
(0.284) 

1.700 
(0.375) 

0.005 
(0.003) 

0.021 
(0.027) 

25% 46% 

0.2 1.821 
(0.262) 

1.763 
(0.343) 

0.007 
(0.002) 

0.020 
(0.014) 

29% 45% 

0.3 1.886 
(0.258) 

1.809 
(0.334) 

0.008 
(0.002) 

0.024 
(0.017) 

24% 46% 

 

  



234 

 

Table A.21. Results for Cutscore 3, with 4 groups of 16 panelists. 

    
Mean Cutscore  

(SD) 
Mean 𝜎̂𝐸

2
 

(SD) 
Accuracy Rate 

NI NG 𝜎𝑏𝑖𝑎𝑠
2  𝜎𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

2  Trad. CDT Trad. CDT Trad. CDT 

16 4 

0.0 

0.0 1.594 
(0.027) 

1.592 
(0.024) 

0.001 
(<0.001) 

0.003 
(<0.001) 

4% 72% 

0.1 1.607 
(0.043) 

1.600 
(0.048) 

0.002 
(<0.001) 

0.004 
(<0.001) 

37% 66% 

0.2 1.662 
(0.057) 

1.660 
(0.071) 

0.003 
(0.001) 

0.005 
(0.001) 

18% 45% 

0.3 1.727 
(0.060) 

1.741 
(0.077) 

0.004 
(0.001) 

0.007 
(0.001) 

6% 13% 

0.1 

0.0 1.611 
(0.148) 

1.595 
(0.189) 

0.002 
(0.001) 

0.007 
(0.005) 

32% 53% 

0.1 1.645 
(0.151) 

1.618 
(0.193) 

0.003 
(0.001) 

0.008 
(0.004) 

41% 54% 

0.2 1.709 
(0.132) 

1.691 
(0.177) 

0.004 
(0.001) 

0.009 
(0.003) 

29% 51% 

0.3 1.777 
(0.133) 

1.761 
(0.174) 

0.005 
(0.001) 

0.010 
(0.004) 

13% 36% 

0.2 

0.0 1.654 
(0.205) 

1.624 
(0.286) 

0.002 
(0.001) 

0.011 
(0.011) 

28% 47% 

0.1 1.703 
(0.199) 

1.652 
(0.275) 

0.004 
(0.001) 

0.012 
(0.010) 

35% 51% 

0.2 1.755 
(0.185) 

1.706 
(0.252) 

0.005 
(0.001) 

0.013 
(0.007) 

28% 48% 

0.3 1.828 
(0.181) 

1.795 
(0.238) 

0.006 
(0.001) 

0.015 
(0.009) 

16% 36% 

0.3 

0.0 1.708 
(0.249) 

1.699 
(0.392) 

0.003 
(0.002) 

0.013 
(0.015) 

29% 41% 

0.1 1.763 
(0.239) 

1.715 
(0.345) 

0.004 
(0.002) 

0.015 
(0.015) 

28% 38% 

0.2 1.820 
(0.234) 

1.754 
(0.309) 

0.005 
(0.002) 

0.016 
(0.012) 

25% 46% 

0.3 1.898 
(0.219) 

1.826 
(0.295) 

0.006 
(0.002) 

0.018 
(0.015) 

17% 42% 

 

 


