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Abstract

In 2016, Fermilab Accelerator and Technology Facility (FAST) conducted an exper-

iment to generate a discrete and potentially tunable hard X-ray channeling radiation

emissions in the 40 - 150 KeV energy range using a new 50 MeV rated linear ac-

celerator. There are two current models (one-dimensional (1-D) Planar and the two-

dimensional (2-D) Axial model) that numerically simulate the physics involved in

generating channeling radiation. FAST decided to use the 1-D Planar model in de-

signing the experiment using a diamond crystal lattice with a (110) plane orientation.

However, this study shows that the 1-D Planar model is fraught with inconsistencies

and applies excessive approximations. Using this approach will obfuscate the analysis

in properly identifying the mechanisms that generate these discrete energy emissions.

The 2-D Axial model would be a much better model to properly predict spectrum

emission energies. However, the 2-D Axial model is complex and appears to also con-

tain unnecessary approximations as well. This study’s goal was to develop a better

2-D Generic model for the experiment based on a more fundamental and accurate ap-

proach than the existing 2-D Axial model. Unfortunately, the FAST experiment was

unable to generate channeling radiation data. Thus, this study had to compare its 2-D

Generic model predictions with published experimental results that were based on the

2-D Axial model. Our 2-D Generic model produced a rich amount of spectrum. But,

ultimately, it had poor agreement with these published experimental data results. On

the other hand, the 2-D Axial model provided very good agreement with their pub-

lished experimental data. The failure for this new 2-D Generic model indicates two

possibilities. First, the accelerator’s electron beam distribution of the transverse mo-
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mentum to the beam direction directly impacts spectrum data. In all published results,

this beam transverse momentum distribution is unknown. Therefore, if this transverse

momentum distribution was published, then a more definitive conclusion can be made

on whether this model agrees with the published experimental data or not. Second,

since this model is based on a more fundamental concept, the 2-D Generic model

should have very good agreement. However, since the model is unable to accurately

predict discrete channeling emission energies, this discrepancy indicates that there are

perhaps additional mechanisms unaccounted for in the generation of channeling radi-

ation.
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Chapter 1

Introduction

There has been over several years a push in physics in generating high energy light sources such

as SLACs Linac Coherent Light Source and Jefferson Lab’s Free-Electron Laser to name a few

[11, 12]. The ability to generate such high energy light sources such as hard X-rays has a potential

for numerous applications in industry. SLAC and Jefferson’s facilities have large infrastructures

to produce these light sources. However, other promising high energy light sources such as PXR

[13] and Channeling radiation produced from an accelerated beam interacting with a crystal lattice

at some specific orientation only require small compact infrastructure for prototype development.

Potentially, these infrastructures that generate PXR or Channeling radiation could be reduced down

in size to compact, portable high energy light sources. Because of the potential for having a high

return for its value, Fermilab Accelerator Science and Technology (FAST) facility conducted an

experiment to produce channeling radiation with beam energies at around 40 to 45 MeV using a

diamond with a (110) planar orientation.

If a relativistic electron traveling along a direction is nearly aligned with a specific orienta-

tion of the crystal, it will channel through the crystal rather than generating Bremsstrahlung from

random interactions with ions located within the crystal. This electron channeling through the

crystal generates discrete energy emissions which is called channeling radiation. When the elec-

tron’s alignment angle with the crystal’s defined lattice orientation is small enough, the electron’s
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momentum can be projected into two components: p‖ to p⊥ where p‖ is aligned exactly with the

defined crystal lattice orientation. The transverse kinetic energy, p2
⊥/2γm, where gamma is the

Lorentz relativistic factor and m is the mass of the electron, is small enough to become bounded

within the transverse potential which is perpendicular to the crystal orientation. While transiting

through the crystal, these transverse bounded electron eigenstates decay to lower energies which

then generate hard X-rays in the 10KeV to 150KeV range and even higher depending on the elec-

tron’s energy.

Through the course of this research, we have found that there are basically two existing models

(one-dimensional Planar model and two-dimensional Axial model) that are based on Lindhard’s

explanation for channeling radiation [14]. The one-dimensional (1-D) Planar model is considered a

separate and distinct model from the two-dimensional (2-D) Axial model. Both predict channeling

radiation but the physics required to generate the transverse potential which bounds the electron’s

transverse motion are based on different phenomenological reasons.

Because there exist a working numerical Mathematica program that was based on the 1-D Pla-

nar model[15], the channeling experiment at FAST then based its design on the 1-D Planar model.

However, this research submits that the 1-D Planar model is inconsistent an applies unnecessary

approximations in predicting the discrete channeling radiation emission energies. In fact, in using

the 1-D Planar model, it is unclear what specific mechanism is generating the discrete emissions.

Hence, data collected and the subsequent data analysis viability are suspected. On the other hand,

the 2-D Axial model is a much better model; but it is too complex and also incorporates unneces-

sary approximation although less severely then the 1-D Planar model. Because of this, the main

goal of this research was to develop a more accurate 2-D Generic model in predicting channeling

radiation.

Since the experiment at FAST was unable to generate channeling radiation data, this research

had to use previous published experimental findings that were based on the 2-D Axial model. To

measure the adequacy of our new model, we used these published data to compare with our model’s

prediction. The 2-D Generic Model was based on a more fundamental approach and also a more
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accurate calculation as compared to the existing 2-D Axial approach. Therefore, we expected to

see very good agreements with published experimental data. However, this was found not to be

true. In fact, compared to our 2-D Generic model, the legacy 2-D Axial model had very good

agreement to experimental data. Our model appeared to have very poor to inadequate agreements

to these same published experimental data.

There are possibly two general reasons for this new 2-D Generic model failing to agree with

experimental data. The 2-D Generic model produced a rich spectrum. However, for channeling

radiation, the spectrum is highly dependent on the accelerator’s electron beam momentum distri-

bution. Specifically, the distribution of the transverse momentum to the beam’s direction directly

impacts the probability that the beam occupies certain bound channeling states. In all the public

data, the beam’s transverse momentum distribution is unknown. Hence, without knowing this dis-

tribution, it is not clear yet whether our 2-D Generic model is valid or not. Second, assuming that

beam transverse momentum distribution is not the problem, it is surprising that this 2-D Generic

model fails to agree with the experimental data. This new model is based on very fundamental

physics and avoids unnecessary approximations. Yet, the legacy 2-D Axial model is apparently

the better model. This discrepancy implies that some additional physics in generating channeling

radiation is perhaps missing.

Finally, during this research, this study also focused on calibrating the high energy photon

detector, X123CdTe made by AMPTEK. The procedures used and the problems that arose with

calibrating the detector for channeling experiments maybe relevant for other experimentalist in

this area. In particular, characterizing this particular detector’s saturation as it relates to channeling

or similar PXR experiments may also be useful.
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Chapter 2

Background

2.1 Background

This study is about electrons, transported within an accelerator beam moving in a specific beam

direction with relativistic speeds, colliding with a crystal lattice located in the beam path. Since

the crystal lattice has a specific structure, the ions located within the structure can have a common

axis or a common plane. Since the lattice is also periodic, a specifically defined plane of ions or a

specifically defined axis of ions are nearly infinite in number. Consequently, the infinite number of

planes are periodic in position with each other. This periodicity structure also applies to the axis

of ions or just individual ions within the lattice. Since these planes or axes are well known and

defined, we can align the beam direction to be parallel to a specific axis direction within the lattice

structure. The specific crystal lattice axis or plane alignment with the beam’s direction is called

the crystal orientation. If the beam direction is nicely aligned with certain lattice orientations and

the electron’s transverse momentum perpendicular to the beam direction is small enough, then the

beam electrons, called a bunch, will channel through the crystal rather than colliding with the ions

and creating Bremsstrahlung radiation. Instead, the electrons channeling through the crystal create

discrete, highly coherent and energetic photon radiation emissions called channeling radiation.

Lindhard’s paper in the 1960s provided an initial classical approach in explaining these coherent

radiation emissions [14]. However, later studies have shown that quantum mechanisms better
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explains the physics in producing the channeling radiation spectrum’s specific line energies and

width.

Within a crystal lattice, depending on the lattice structure’s geometry, a number of ions within

that unit lattice can lie on a common plane. Or, more specifically, a number of ions could lie on

a common line, generally called a Single-String of ions, with a specific direction designated as an

2-D Axial direction [hkl]. Figure 2.1 illustrates three lattice plane orientations of interest in this

study: (100), (110), and (111) planes that these ions could lie on. Or, more specifically, the ions

could lie on specific lines having directions [hkl] as depicted in Figure 2.2.

Figure 2.1: Using the miller indices, these three plots describe (hkl) plane. The three most impor-
tant planes of interest in this study and depicted in this figure are the (100), (110) and the (111)
planes.

Figure 2.2: Using the miller indices, these three plots describe which [hkl] axis or 2-D Axial
vectors is perpendicular to the (hkl) plane. The three most important 2-D Axial vectors of interest
in this study and depicted in this figure are the [100], [110] and the [111] axial vectors. Note, the
axial vector [001] depicted above would be perpendicular to the (001) plane.

Per convention, a plane is defined as (hkl) and a line with a direction is defined as [hkl] where h, k,

and l are integers. The symbol [hkl] is also called and axial vector.
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In order to understand the merits of this study’s approach in determining channeling radiation,

this chapter requires a review of the conventional thoughts and approaches that explain the un-

derlying physics of explaining channeling radiation. Unfortunately, these explanations may have

shackled any further progress in this area. In our study, we are not shackled by conventional

thought. Consequently, we can provide a more precise approach in explaining the physics and in

numerically solving the channeling radiation. This review of the background specifically focuses

on the well known and often used two-dimensional axial channeling model method which is both

applied and explained in Andersen, Klein and Chouffani’s papers. This study specifically compares

its model, the two-dimensional model, against the 2-D Axial channeling models approach.

2.2 2D Axial Model Methodology in Determining Channeling Radiation [1],

[2], [3]

Before discussing this study’s approach for calculating channeling radiation, a short discussion

is required to illustrate the 2D axial model view towards solving channeling radiation. Linhard’s

hypothesis initially revolved around the affects on an incident electron interacting with a single-

string of ion’s that lie on a common line with an axial direction [hkl] [14]. The string of ion

charges is approximated as a continuous charge along the string’s axial direction. If the electron’s

direction of motion was primarily parallel to the single-string axial direction, the transverse motion

of the electron could be in a bound state from the potential generated from the continuous line

charge. This continuous positively charged axial line generates what is conventionally called the

axial continuum potential. More precisely, the single-string axial potential is a radially symmetric

potential perpendicular to the axial line charge. Figure 2.3 shows the string of blue ion positions

along a line direction [hkl] conventionally called an axial direction. The blue hash marks simulate

the positive ion charges that are smeared along the line containing the single-string of ions to create

a continuum line charge. The potential V, generated from this continuum charged line is a field

transverse to the axial direction. V can be expressed as V (x,y) where x, y are such that x̂ and ŷ

6



v⊥ << c

vz ≈ c e−e−

Lattice Axial [hkl]
1

y

x z || [hkl]

Figure 2.3: The blue circles represents a string of ions along a line or Single-String of Ions. The
hashed blue line which overlays on top of the ions approximates the continuum charge of the line
if all the ion charges were smeared along the line having an axial [hkl] direction. This continuum
charge along the [hkl] lines creates a rotationally symmetric potential transverse to [hkl]. The
electron with Vz ‖ [hkl] and a transverse velocity V⊥ which is perpendicular to [hkl] interacts with
the rotationally symmetric potential generated by the continuum charge.

are perpendicular to [hkl]. Or, V is expressed in polar coordinates as V (~r⊥,θ) where~r⊥(x,y) is per-

pendicular to [hkl]. Since the electron beam direction, ẑ is parallel to the defined axial direction, the

potential’s z dependency is insignificant when compared to the projected relativistic beam’s kinetic

energy along the z-axis. This dependency is then conveniently averaged out along the z-axis.

A key parameter used in Lindhard’s approach is the critical angle between the incident electron

direction and the axial Single-String (S-S) direction [hkl]. In order for the electron’s motion in the

transverse direction to be bounded, the transverse kinetic energy of the electron,m|~v⊥|2
2 , must be

less than the magnitude of the axial S-S transverse potential. Expressed in terms of the electron

momentum’s magnitude P = |~P| and the critical angle, θc, the bounded states must satisfy

P2θ 2
c

2m
≤ |V (x,y)|= |V (r,φ)| (2.1)

where tan(θ)≈ θ ≈P⊥/P‖ and θ is the angle between vecP and ~P‖. The electron momentum is ~P=

~P⊥+~P‖ where ~P⊥ is the transverse component and ~P‖ is the longitudinal component relative to the

[hkl] axial direction. Since only the electron momentum’s longitudinal component is relativistic,
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P⊥ << P‖ ≈ P is satisfied. Therefore, the critical angle,

θc ≈
P⊥
P

(2.2)

must be small enough to ensure a transverse state is bound for channeling condition. The radiation

induced from the decay from a higher bound state to a lower bound state is referred to as the

two dimensional (2-D) [hkl] Axial model approximation of channeling radiation. From this two

dimensional (2-D) [hkl] axial potential, the decay from a higher bound state to a lower bound state

is the generated discrete channeling radiation.

Since this is a lattice structure, there naturally exist multiple S-S continuous line charges lo-

cated within a cubic lattice cell. Figure 2.4 illustrates multiple axial S-S in a cubic cell and the

geometry between adjacent S-S’s and electron beam direction. Note, the electron beam’s ẑ com-

ponent or longitudinal direction is defined as the beam direction and is parallel to [hkl]. In this

2-D Axial model approach, they chose to construct a new coordinate system based on the [hkl]

lattice orientation to describe the lattice and its corresponding potential. From this new coordinate

construction, determining the periodicity lengths and subsequently the reciprocal lattice vectors is

not a trivial process.

v⊥ << c

vz ≈ c e−

e−

x̂⊥[hkl]

ŷ⊥[hkl]

ẑ ||[hkl]

Lattice Axial [hkl]

v⊥ << c

vz ≈ c

e−

ẑ ‖ [hkl]

ŷ

x̂

Axial String [hkl]

Figure 2.4: On the left figure, the electron depicted in red is entering a lattice of continuum
charge of Single-String of ions with a relativistic vz⊥ [hkl]. The right figure shows how this
same electron, in red, must interact with three of the Single-String ions within the lattice
which are each generating rotational symmetric potentials.
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A similar approach is applied for ions that lie on the same (hkl) plane. The ions’ positive

charge are smeared uniformly over the plane within the cubic cell. The positively charged plane

in turn generates a potential field dependent only on the coordinate axis which is perpendicular to

that (hkl) plane. Again, relative to the plane’s orientation, the new coordinate system is constructed

and the determination of periodicity lengths and reciprocal lattice vectors suffer the same nontrivial

difficulties as the 2-D Axial model. Like the S-S axial [hkl] configuration, Figure 2.5 depicts an

v⊥ << c

vz ≈ c e−

e−

x ||(hkl)

y⊥(hkl)

z ||(hkl)

Lattice Plane (hkl)

Figure 2.5: The red ball represents the electron traveling along relativistic vz ‖ (hkl) plane. The blue balls repre-
sents ions located on a common blue plane. The blue plane represents the ions charged smeared uniformly on the
plane to approximate a continuum charged (hkl) plane. The potential generated from a plane is only dependent
on the perpendicular distance from the plane.

electron incident on a crystal relative to a specific (hkl) plane containing ions. Using the same

line of reasoning, if the critical angle parameter, θc is small enough to satisfy P2θ 2
c

2m ≤ |V (y)|, then

existing transverse bound electron states will eventually decay thus generating channeling radia-

tion. Since the crystal is a lattice, there are also multiple approximated charge planes set periodi-

cally which the electron must also interact with collectively. The radiation induced from the decay

from a higher bound state to a lower bound state is referred to as the one-dimensional (1D) planar

approximation of channeling radiation.

In both the 1-D Planar and 2-D Axial model approximations, the 2-D Axial model approxima-

tion should be the more accurate model. In the 2-D Axial approximation, the lattice interaction
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potential with the electron beam is a function of the transverse coordinates x and y, V(x,y). On the

other hand, the planar potential is a function of a single coordinate, y, V(y). Reducing to just one

coordinate indicates loss of information and thus a less accurate approximation of the channeling

radiation production. Therefore, the focus of this paper is primarily to construct a two-dimensional

potential that recognizes the value of the lattice orientation but dispenses with the artificial con-

struction of Single String lattice or planar lattices to generate channeling radiation.

For clarity, this study identifies five authors that basically apply the same approach in numer-

ically calculating both the planar and 2-D Axial approximation of channeling radiation. In the

1960s, Lindhard developed a classical approach for approximating both 2-D Axial and 1-D Planar

radiation using the physical constructs discussed earlier. Later, in the 1970’s, this 2-D Axial/1-D

Planar construct could be more properly modeled using quantum mechanics to predict channeling

radiation’s discrete emissions at low beam energies. From 1981 to 1999, several papers applying

nearly the same numerical quantum mechanics calculation have successfully approximated both

planar and 2-D Axial channeling radiation. Specifically, Andersen papers [1, 16, 17], Klein’s pa-

per [2] which cites Andersen’s works, Chouffani paper [9], which also cites Andersen’s papers and

Genz paper [5] which cites Kleins paper, all developed what this dissertation refers to as the 2-D

Axial-Planar model approach in numerically calculating both planar and 2-D Axial approximation

of channeling radiation. As recently as in 2006, Azadegan [4] applied successfully this same planar

approach in calculating the planar approximation of the channeling radiation.

Although the 2-D Axial model approximation should reflect the physics of the channeling ra-

diation production more accurately, planar approximations appear to be utilized more often. There

are by far more papers that discuss planar calculations than 2-D Axial calculations. As recently as

2016, Fermilab’s FAST facility relied on 1-D Planar approximation to guide the analysis of their

experiment’s channeling radiation spectrum. This study suggests that our two dimensional approx-

imation should be the algorithm of choice in calculating channeling radiation spectrum. However,

the 2-D Axial channeling model approximation referred to in this paper is overly structured, in-

flexible, and contains inadequate approximations. Our study’s two dimensional approach is not
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shackled by these limitations.

2.3 Proposed More Fundamental and Universal 2D Approach towards De-

termining Channeling Radiation

Lattice crystalsstructure, periodicity, lattice constants and etc. are well defined in the original

coordinate system. In turn, with these well defined parameters, the calculation of the lattice’s three

dimensional interaction potential in its original coordinates is straight forward and simple. Since

lattices are periodic, we can easily Fourier expand the lattice potential in terms of the lattice’s

well defined reciprocal lattice vectors in the original coordinate system. However, the lattice 3-

D potentials expressed in the original coordinate system are generally not posed to adequately

determine the transverse potential relative to the beam’s direction. Generally, the beam’s direction

is out of alignment with the original lattice coordinate system such as figure 2.6 (a). But, the

beam direction by design, is aligned with a specific plane or axial alignment of ions, Fig. 2.6 (b).

Therefore, to get the beam coordinates aligned with the specific lattice plane or axial direction,

we apply rotations to the original lattice coordinate system to align with the beam’s curvilinear

coordinate system.
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e−

e−
Conventional Lattice Orientation

v⊥ << c
vz << c e−

e−

ŷ⊥ [hkl]& x̂

x̂ ⊥ [hkl]
ẑ||[hkl]

Lattice [hkl]

Figure 2.6: Fig. 2.6(a) depicts the incident electron depicted in red arriving out of align-
ment with the original lattice coordinate axes. Fig. 2.6(b) shows after rotation, the electron
direction, the new lattice coordinates, and the ion structure are all conveniently aligned. In
both figures 2.6(a) and 2.6(b), blue balls indicate ions at fixed locations within the lattice.

As Lindhard recognized, the structure of ions within the lattice can generate unique transverse

potentials relative to the electron beam’s direction.

At this point we modify slightly on how to look at the physics of channeling radiation. At rel-

ativistic speeds along the z direction [hkl], the crystal length along the z-axis contracts from the

electron’s perspective. Figures 2.7a through 2.7d describes this Lorentz contraction of the crystal

lengths along z[hkl] as the electron approaches the speed of light, c. Eventually, the three dimen-

sional lattice pancakes down into a two dimensional lattice which is transverse to z[hkl] direction.

In figure 2.7.a, we can see that both the left and right vertical planes have the same periodicity of

ions in both the x and y direction. On the other hand, the center plane exhibits a larger ion period-

icity in the y direction. As the beam approaches c, the lattice contracts along the z[hkl] until all three

planes merge into one single plane, Fig. 2.7.d. The contracted ions either merge into a larger ion or

create a fundamental change in the traverse lattice periodicity. And, based on the same constraints

discussed earlier, the lab frame generated potential’s z dependency has negligible affects on the

electron’s motion in the z[hkl]. Therefore, the potential of interest that generates channeling
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2.7.a 2.7.b

2.7.c 2.7.d

Figure 2.7: Blue dots represents the ions with the crystal. The green planes represent the
transverse plane that these ions would perhaps lie on. The electron’s velocity is depicted
in red as a relativistic component along the longitudinal direction, ẑ ‖ [hkl] and its perpen-
dicular component v⊥ ⊥ [hkl]. As the electron’s longitudinal [hkl] speed increases toward
the speed of light from a to d, the cell contracts along [hkl] and eventually pancakes into a
single transverse plane of ions. You can see that before the cell pancaked, each transverse
plane had its own transverse periodicity. After cell pancakes into a single transverse plane,
the periodicity has changed due to contributions from the other planes.

radiation is the transverse potential generated from pancaked lattice, V[hkl](x,y). When solving the

Schrödinger equation’s energy band structure having this transverse potential, the fundamental pe-

riodicity of the potential defines the structure of the eigenwave functions and eigenenergies. These

transverse eigenwave functions, ψn(x,y) are Bloch waves where n represents the nth eigenstate and

reside within this pancaked periodic transverse structured plane, depicted in Fig. 2.8
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y

x

ψn(x,y)

2D [hkl] lattice (Electron Lab Frame)

Figure 2.8: The beam electron’s state functions Φn(x,y) operating within the Lorentz Contracted
Crystal to approximately a transverse plane, (hkl) which is perpendicular to the beam’s direction
[hkl]. The blue balls are the ions or contracted ion locations along the transverse plane. In this
construct, each ion is a point charge. The wave which interacts with these ion point charge lattice
operates transversely to the beam’s direction [hkl].

In this general review on two different outlooks about the physics of channeling radiation, there

are some clear similarities between these approaches. The electron beam’s transverse motion to

[hkl] relates to the interaction with the transverse potential of the lattice [hkl] orientation. In the 2-D

Axial model method, it views that the electron is actually interacting with an axis of ions that ap-

proximate a continuum line charge in the direction [hkl]. This requires one to construct a lattice of

Axial single-string of Ions to represent a lattice of line charges which generates a two-Dimensional

potential. Or, for a one-dimensional approximation of the potential, the convention is to construct

a lattice of planes with a continuum charge approximation in lieu of the ions located within these

planes. If the electron’s transverse momentum is small enough, the transverse potential will bound

the electron at specific energy states. But, as we shall see, this construction of either the 2-D Axial

or planar lattice to generate a transverse potential is not trivial.

In this study, as in the work of Lindhard, orientation matters. Like the 2-D Axial model ap-

proach, the orientation of the lattice relative to [hkl] is critical in generating transverse potentials

that are large enough to effectively interact with the electron to create bound states. But, instead of

constructing a new coordinate system for the lattice for each [hkl] defined, this approach uses the
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well defined original coordinates of the lattice to calculate how each ion contributes to the lattice’s

overall three-dimensional potential. The contributions of each ion’s potential to the overall poten-

tial are exact. Therefore, determining the lattice potential is relatively simple within its original

coordinates. We then just rotate the coordinates to align the new coordinates with the lattice ori-

entation of interest. Rotating the coordinates effectively aligns the beam direction with the lattice

orientation of interest. Consequently, the transverse potential relative to this orientation generates

the channeling radiation specific to this lattice orientation and beam energy. This method in gener-

ating the transverse potential is simple, direct and almost trivial when compared to the conventional

practices.

Although not specifically discussed in this chapter, this study’s approach readily identifies the

correct primitive cells to ensure that the Schrödinger equation is constructed properly with the

Bloch waves based on the potential’s fundamental periodicity. Our study does not use critical

angle θc directly as a parameter. Instead, it uses the beam’s emittance and twist parameters as the

natural approach towards determining the probability that an electron within the beam is in a bound

transverse state or not. Consequently, based on the emittance structure rather than the critical angle,

this approach can use the parameters of the beam which are well known and familiar to determine

whether channeling conditions are met and predict specific channeling energy emission lines and

intensities.

15



Chapter 3

Potential

To study the channeling radiation spectrum theoretically and computationally, the first task is to

construct a lattice potential on the two-dimensional beam transverse plane that is parallel to a

crystal plane (hkl) for an ultra-relativistic beam channeling along [hkl] crystal direction. Note

that this lattice potential is the result of a Lorentz contraction of the original three-dimensional

crystal lattice in the beam rest frame, where the crystal travels with near the speed of light along

[hkl̄] direction and the three-dimensional crystal lattice is pancaked into a two-dimensional lattice

on the (hkl) crystal plane. An accurate lattice potential is crucial in the calculation of energy

eigenstates of beam electrons in a crystal for the radiation spectrum. With a given model for the

interaction between a beam electron and individual ion in a crystal, such as the Born approximation

for scattering with Doyle-Turner fitting parameters, the question is what is the best approach, in

terms of accuracy, mathematical simplicity, and generally applicable to any crystal structure and

channeling orientation, for the construction of this lattice potential on the two-dimensional plane.

In this chapter, we will introduce a new and (we believe) the best approach for this lattice potential

calculation.

In previous studies of channeling radiation, the lattice potential is traditionally calculated using

an axial channeling model [1, 2, 9, 14] in which each string of crystal ions that is along the beam

channeling direction has to be identified and the lattice potential is calculated through a summation
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over the strings of the ions. In this direct calculation of the lattice potential, the identification of

all the strings of the ions and the geometric relationships among the strings is cumbersome and in

some cases very difficult due to a complicated geometric relationship among lattice ions along the

channeling direction and, moreover, the calculation developed for a specific channeling direction

of a certain crystal can hardly be applied to other cases because the strings of the ions are very

different with different crystal structure and different channeling direction. Therefore, only limited

cases of the channeling along certain crystal direction have been studied so far using the axial chan-

neling model without substantial approximations. In our approach, a lattice potential of the original

three-dimensional crystal is first calculated from the individual electron-ion interaction potential

in the original unit-cell coordinate of the crystal by taking the advantage of the native periodicity

of the crystal lattice. This potential for the three-dimensional lattice in the unit-cell coordinate is

then transferred into a beam coordinate that is aligned with the beam longitudinal and transverse

directions using a series of rotational coordinate transformations. Lastly, the Lorentz contraction

of the lattice can be easily accomplished mathematically by averaging the three-dimensional lat-

tice potential in the beam coordinate along the beam longitudinal direction. In this approach, the

calculation of the lattice potential is mathematically clean, systematic, and can be easily applied

to any crystal and any channeling direction. In summary, with both our method and the previous

axial channeling model, the lattice potential in the beam transverse plane is calculated in a Fourier

expansion of

V (x,y) =
∞

∑
k1=−∞

∞

∑
k2=−∞

vk1k2 ei2π(k1x/ax+k2y/ay) (3.1)

where ax and ay are the lattice constants of the primitive unit cell of the two-dimensional lattice

on the transverse plane and (x,y) are the coordinate based on the unit cell. With a given model

for the electron-ion interaction, in our approach the expansion coefficients vk1k2 are calculated sys-

tematically and exactly without any approximation, while in the axial channeling model vk1k2 are

calculated approximately and the approximation depends on the crystal structure and the channel-

ing orientation. Moreover, in our approach the calculation is generic to any crystal structure and

channeling orientation while in axial model the calculation and approximation have to be specifi-
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cally tailored for a specific crystal structure and channeling orientation. Our approach is therefore

much more accurate, flexible, and less complex in constructing the lattice potential on the beam

transverse plane as compared with the previous methods.

3.1 Formulation of the Lattice Potential in the Transverse Plane of a Ultra-

Relativistic Beam Channeling Through a Crystal

3.1.1 Interaction Between an Electron Passing by and an Ion inside a Crys-

tal

When an electron passes by an ion in a crystal, the electron is scattered by the ion due to the

interaction between the electron and ion. With the Born approximation, the scattering amplitude

can be written as [18]

fel(~Q) =− me

2π h̄2

∞̂

−∞

Vatom(~r)ei~Q·~rd~r (3.2)

where me is the electron rest mass, ~Q =~k−~k′ with~k and~k′ being the incident and scattered wave

vectors, respectively, and Vatom(~r) is the interaction potential between the electron and ion. Note

that fel is proportional to the Fourier transformation of Vatom(~r) and Eq. (3.2) provides a means to

calculate the electron-ion interaction from experimental measurements of fel(~Q),

Vatom(~r ) =−
h̄2

(2π)2me

∞̂

−∞

fel(~Q)e−i~Q·~rd~Q (3.3)

If the electron is not too close to the core of the ion, the interaction between the electron and ion is

approximately spherically symmetric and fel(~Q) depends only on Q = |~Q|. Therefore,

Vatom(~r ) =−
h̄2

meπr

∞̂

0

fel(Q)sin(Qr)QdQ (3.4)
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Table 3.1: Doyle-Turner’s fit parameters are αi and βi where i ∈ {1,2,3,4} [8] and a is the atom-
/ion’s Lattice Constant and the ion’s one dimensional atomic vibrational is 〈u〉 [4, 9, 10] .

Ion α1 [Å] α2 [Å] α3 [Å] α4 [Å] a [Å] 〈u〉[Å]

C 0.7307 1.1951 0.4563 0.1247 3.57 0.042

Si 2.1293 2.5333 0.8349 0.3216 5.4307 0.075

Ge 2.4467 2.7015 1.6157 0.6009 5.658 0.085

β1 [Å2] β2 [Å2] β3 [Å2] β4 [Å2]

C 36.9951 11.2966 2.8139 0.3456

Si 57.7748 16.4756 2.8796 0.3860

Ge 55.8930 14.3930 2.4461 0.3415

In the case of carbon, silicon, or germanium, which are the crystals usually used for the electron

channeling, the experimental data fitting of fel(Q) can be calculated with a Gaussian function as

fel(Q) =
4

∑
i=1

αie−βiQ2/(4π)2
(3.5)

where αi and βi are the Doyle-Turner fitting parameters [8], (see Table 3.1). The electron-ion

interaction potential can then be calculated by substituting Eq. (3.5) into Eq. (3.4) as

Vatom(~r ) =−
16π h̄2

me

4

∑
i=1

αi

(βi/π)3/2 e−4π2r2/βi (3.6)

3.1.2 Lattice Potential for an Electron Channeling Through a Crystal

Consider an electron channeling through a crystal with orthorhombic lattice and each unit cell

of the lattice containing n ions. Let ~r j with j = 1, · · · ,n be the local coordinates of the ions

in a unit cell, where the origin of the local coordinate is at a corner of a unit cell, and ~rm =

(m1a1, m2a2, m3a3) be the global coordinate of a unit cell, where (a1,a2,a3) are lattice constants

of the crystal and (m1,m2,m3) are integers. Table 3.2 lists the values of ~r j for cubic diamond
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lattice. Let ~X = (X1, X2, X3) be a global coordinate, referred as lattice coordinate, with the axes

of X1, X2, and X3 aligned with the [100], [010], and [001] crystal direction, respectively. When an

electron channels through the crystal, the interaction between the electron and the crystal lattice

can be calculated by a superposition of the interactions between the electron and each individual

ion as

V3D(~X ) =
∞

∑
~m=−∞

n

∑
j=1

Vatom(~X−~rm−~r j)

= −16π h̄2

me

∞

∑
~m=−∞

n

∑
j=1

4

∑
i=1

αi

(βi/π)3/2 exp
(
−4π2

βi

∣∣∣~X−~rm−~r j

∣∣∣2) (3.7)

where ~m is the lattice coordinate of a unit cell in the crystal and n is the number of ions in a unit cell.

It is obvious from Eq. (3.7) that V3D(~X ) is periodic in the crystal, i.e.V3D(~X +~rl) =V3D(~X ), where

~rl = (l1a1, l2a2, l3a3) and (l1, l2, l3) is any combination of integers. With the lattice periodicity

periodicity, V3D(~X) can be rewritten into a Fourier expansion

V3D(~X) =
∞

∑
~k=−∞

V~k ei~G·~X (3.8)

where

~G = (G1,G2,G3) = 2π (k1/a1 , k2/a2 , k3/a3) (3.9)

is the reciprocal lattice vector of the crystal and

V~k =
1

a1a2a3

a1ˆ

0

a2ˆ

0

a3ˆ

0

V3D(~X)e−i~G·~X d~X

= −16π h̄2

mev0

∞

∑
~m=−∞

N

∑
j=1

4

∑
i=1

αi

(βi/π)3/2

a1ˆ

0

dX1

a2ˆ

0

dX2

a3ˆ

0

dX3

×exp
[
−4π2

βi

∣∣∣~X−~rm−~r j

∣∣∣2− i~G ·~X
]

= −16π h̄2

mev0

∞

∑
~m=−∞

N

∑
j=1

4

∑
i=1

αi

(βi/π)3/2 I(G1,βi,x j)I(G2,βi,y j)I(G3,βi,z j) (3.10)
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with v0 = a1a2a3. In Eq. (3.10),

I(Gl,βi,x j) =

alˆ

0

e−4π2(X−mlal−x j)
2
/βi−iGlX dX

X=alξ
= al

1ˆ

0

e−(ξ−ml−x j/al)
2/2σ2

l e−i2πklξ dξ

x=ξ−ml−x j/al
= ale−i2πkl(x j/al)

1−(ml+x j/al)ˆ

−(ml+x j/al)

e−x2/2σ2
l e−i2πklx dx

where σ2
l = βi/(8π2a2

l ), and

∞

∑
~m=−∞

I(G1,βi,x j)I(G2,βi,y j)I(G3,βi,z j)

= v0

∞

∑
~m=−∞

exp
[
−i2π

(
k1x j

a1
+

k2y j

a2
+

k3z j

a3

)]

×

1−(m1+x j/a1)ˆ

−(m1+x j/a1)

dx

1−(m2+y j/a2)ˆ

−(m2+y j/a2)

dy

1−(m3+z j/a3)ˆ

−(m3+z j/a3)

dzexp
(
− x2

2σ2
1
− y2

2σ2
2
− z2

2σ2
3
− i2π~k ·~r

)

= v0 exp
[
−i2π

(
k1x j

a1
+

k2y j

a2
+

k3z j

a3

)] ∞

∑
m1=−∞

1−(m1+x j/a1)ˆ

−(m1+x j/a1)

e−x2/2σ2
1−i2πk1x dx


×

 ∞

∑
m2=−∞

1−(m2+y j/a2)ˆ

−(m2+y j/a2)

e−y2/2σ2
2−i2πk2y dy


 ∞

∑
m3=−∞

1−(m3+z j/a3)ˆ

−(m3+z j/a3)

e−z2/2σ2
3−i2πk3z dz


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Since

∞

∑
m=−∞

1−(m+x j/a1)ˆ

−(m+x j/a1)

exp
(
− x2

2σ2
1
− i2πk1x

)
dx =

−∞

∑
m=∞

1−m−x j/a1ˆ

−m−x j/a1

exp
(
− x2

2σ2
1
− i2πk1x

)
dx

N→∞
=

 −N+1−x j/a1ˆ

−N−x j/a1

+

−N+2−x j/a1ˆ

−N+1−x j/a1

+ · · ·

−1−x j/a1ˆ

−2−x j/a1

+

−x j/a1ˆ

−1−x j/a1

+

1−x j/a1ˆ

−x j/a1

+ · · ·

N+1−x j/a1ˆ

N−x j/a1


×exp

(
− x2

2σ2
1
− i2πk1x

)
dx

=

N+1−x j/a1ˆ

−N−x j/a1

e−x2/2σ2
1−i2πk1x dx N→∞

=

∞̂

−∞

e−x2/2σ2
1 e−i2πk1x dx =

√
2πσ1e−(2πk1σ1)

2/2 ,

We have

∞

∑
~m=−∞

I(G1,βi,x j)I(G2,βi,y j)I(G3,βi,z j)

= (2π)3/2
σ1σ2σ3 exp

{
−i2π

(
k1x j

a1
+

k2y j

a2
+

k3z j

a3

)
−2π

2 [(k1σ1)
2 +(k2σ2)

2 +(k3σ3)
2]}

=

(
βi

4π

)3/2

exp

{
−i2π

(
k1x j

a1
+

k2y j

a2
+

k3z j

a3

)
−βi

[(
k1

2a1

)2

+

(
k2

2a2

)2

+

(
k3

2a3

)2
]}

and

V~k = −2π h̄2

mev0

4

∑
i=1

αi exp

{
−βi

[(
k1

2a1

)2

+

(
k2

2a2

)2

+

(
k3

2a3

)2
]}

×
N

∑
j=1

exp
{
−i2π

(
k1x j

a1
+

k2y j

a2
+

k3z j

a3

)}
(3.11)

For crystals with a cubic lattice such as silicon, germanium and diamond, a1 = a2 = a3 = a and

V~k =−
2π h̄2

mev0

4

∑
i=1

αie−k2βi/(4a2)
N

∑
j=1

e−i2π~k·(~r j/a) (3.12)
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where k2 = k2
1+k2

2+k2
3. Including the Debye-Waller factor effects of lattice vibrations exp

(
−2π2k2 〈µ2〉/a2)

where 〈µ〉 is the average one dimensional ion vibration for diamond, silicon, and germanium listed

in Table 3.1. The Fourier transformation of the electron-lattice interaction potential can be calcu-

lated as

V~k =−
2π h̄2

mev0

4

∑
i=1

αie−k2λ 2
i

N

∑
j=1

exp
[
−i

2π

a

(
k1x j + k2y j + k3z j

)]
(3.13)

where λ 2
i =

(
βi +8π2 〈µ2〉)/(2a)2 , and αi and βi are the Doyle-Turner fitting parameters for

electron scattering amplitude from a single ion[8] (see Table 3.1). Note that the lattice potential

calculated from Eqs. (3.8) and (3.13) includes exactly the contributions of all the ions in a crystal

and only approximation involved is the calculation of the interaction between an electron and a

single ion using the Born approximation with the Doyle-Turner fitting parameters in Eq. (3.6).

To calculate the lattice potential V3D(~X ) numerically, the summations over~k have to be truncated.

Note that V~k decays exponentially with k2. For cubic diamond lattice, however, βi/4a2 = 0.726,

0.222, 0.055, and 0.00068 and the truncation has to be done at sufficiently larger k2 to ensure the

convergence.

Table 3.2: Ion position~r j in a unit cell of diamond where the origin of
the coordinate is at a corner of the unit cell and a is the lattice constant
of diamond [4].

j 1 2 3 4 5 6 7 8

x j/a 0 1/4 0 1/4 1/2 3/4 1/2 3/4

y j/a 0 1/4 1/2 3/4 0 1/4 1/2 3/4

z j/a 0 1/4 1/2 3/4 1/2 3/4 0 1/4

3.1.3 Lattice Potential in the Beam Transverse Plane

Consider an electron beam channeling through a crystal as the beam travels near the speed of light

along the beam longitudinal direction while the beam electrons oscillate non-relativistically in the

beam transverse plane. The lattice potential V3D(~X ) in Eqs. (3.8) and (3.13) is expressed in the

lattice coordinate ~X that is aligned with the primary crystal axes but not in the direction of the beam.
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In order to study the transverse motion of the beam electrons under the influence of the lattice

potential, however, the lattice potential in the beam transverse plane is needed. As the beam is

ultra-relativistic, moreover, the interaction between a beam electron channeling through the crystal

and the ions in the crystal is too weak to have a significant effect on the longitudinal motion of the

electron and the dependence of the lattice potential on the longitudinal coordinate of the electron

can be neglected by averaging the potential over the longitudinal direction. It is therefore necessary

to have the lattice potential expressed in the beam coordinate that is aligned with the motion of the

beam. Let~r = (x,y,z) be the beam coordinate where z is along the longitudinal direction of the

beam and (x,y) are two orthogonal coordinates in the beam transverse plane. In order to solve the

Bloch eigenfunctions and eigenenergies for the transverse motion of beam electrons in the crystal,

x and y should be along the axes of a two-dimensional primitive unit cell in the transverse plane

which has to be determined based on the periodicity of the lattice potential in the transverse plane

and may not be the same as the periodicity of the original three-dimensional lattice in that plane.

The transformation from the lattice coordinate ~X to the beam coordinate~r can be accomplished by

a 3×3 rotational matrix R,

~r = R~X (3.14)

and lattice potential V3D(~X ) in Eq. (3.8) can be rewritten in the beam coordinate as

V3D(~r ) =
∞

∑
~k=−∞

V~k exp
[
i~GT (R−1R

)
~X
]
=

∞

∑
~k=−∞

V~k exp
[
i(~GT R−1) ·~r

]
(3.15)

Note that V3D(~r ) is a different function from V3D(~X ) in general. We re-used V3D for the potential

expressed in ~r to simplify the notation. Since the crystal has also a periodic structure along the

orientations of the beam coordinate, V3D(~r ) is periodic,

V3D(x+n1b1 , y+n2b2 , z+n3b3) =V3D(x, y, z)
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where (b1,b2,b3) is the periodicities of the crystal lattice along the (x,y,z) direction, respectively,

and (n1,n2,n3) is any combination of integers. The periodicity of V3D(~r ) requires

eib1(~GT R−1)1 = eib2(~GT R−1)2 = eib3(~GT R−1)3 = 1

or

~GT R−1 = 2π (n1/b1 , n2/b2 , n3/b3 ) (3.16)

The transformation of the reciprocal lattice vector can thus be written as

(k1/a1 , k2/a2 , k3/a3 )R−1 = (n1/b1 , n2/b2 , n3/b3 ) (3.17)

The relationships between (b1,b2,b3) and (a1,a2,a3) and between (n1,n2,n3) and (k1,k2,k3) can

be solved from Eq. (3.17) with the fact that (n1,n2,n3) and (k1,k2,k3) are integers. With the

coordinate correctly aligned with the beam directions, the average of the lattice potential along the

beam longitudinal (z) direction can be calculated as

V (x, y) =
1
b3

ˆ b3

0
V3D(~r )dz

=
∞

∑
~k=−∞

V~k exp
[

i2π

(
n1x
b1

+
n2y
b2

)][
1
b3

ˆ b3

0
exp
(

i
2πn3z

b3

)
dz

]

=
∞

∑
~k=−∞

V~k exp
{

i2π

[
x
b1

n1(~k )+
y
b2

n2(~k )
]}

δn3(~k )0
(3.18)

where n1, n2, and n3 are functions of~k given in Eq. (3.17) and

1
b3

ˆ b3

0
exp
(

i
2πn3z

b3

)
dz = δn30 (3.19)

is the Kronecker delta for n3(~k ) = 0. It should be noted that the periodicity of the projected

lattice potential V (x,y) on the transverse plane could be smaller than b1 and b2 of the original

three-dimensional lattice due to the averaging of V3D(~r ) along the longitudinal direction of the
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beam. The change of the periodicity occurs when the summation over the ions in a unit cell in Eq.

(3.13) zeros V~k
∣∣
n3(~k)=0 periodically for a certain combinations of (k1,k2,k3) with n3(~k) = 0. As the

periodicity of V (x,y) is important to the calculation of the energy states of the Bloch waves for the

beam electrons, the existence of the periodic zero points of

Sions(n1(~k ), n2(~k )) =
N

∑
j=1

exp
[
−i

2π

a

(
k1x j + k2y j + k3z j

)]∣∣∣∣∣
n3(~k )=0

(3.20)

needs to be examined for each case.

3.2 Beam Channeling Along [001] Crystal Direction

3.2.1 Beam horizontal (x) axis is aligned with [100] crystal direction

Consider an electron beam channeling through a crystal with cubic diamond lattice along the [001]

crystal direction. The horizontal (x) and vertical (y) beam axes are aligned with the [100] and [010]

crystal direction, respectively. In this case, the beam coordinate (x,y,z) is aligned with the lattice

coordinate (X1,X2,X3) and no coordinate transformation is needed. After averaging over the beam

longitude direction, the lattice potential in the beam transverse plane is

V (x,y) =
∞

∑
k1=−∞

∞

∑
k2=−∞

Vk1k2 exp
[

i
2π

a
(k1x+ k2y)

]
(3.21)

where

Vk1k2 = V~k
∣∣
k3=0 =−

2π h̄2

mv0

4

∑
i=1

αie−λ 2
i (k

2
1+k2

2)
N

∑
j=1

exp
[
−i

2π

a

(
k1x j + k2y j

)]
(3.22)

With x j and y j given in Table 3.2, it can easily be checked that the summation over j in Eq. (3.22)

is nonzero only when both k1 and k2 are even. Let k1 = 2n1 and k2 = 2n2. Then

V (x,y) =
∞

∑
n1=−∞

∞

∑
n2=−∞

vn1n2 exp
[

i
2π

a/2
(n1x+n2y)

]
(3.23)
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where

vn1n2 =V(2n1)(2n2) =−
2π h̄2

mv0

4

∑
i=1

αie−4(n2
1+n2

2)λ
2
i

N

∑
j=1

exp
[
−i

2π

a/2
(
n1x j +n2y j

)]
(3.24)

The periodicity of V (x,y) is therefore a/2 in both x and y direction when x and y are along the

[100] and [010] crystal direction. The contour plot of V (x,y) potential is given in Fig. 3.1.

Figure 3.1: Contour plot of lattice potential V (ξ ,η) on beam transverse plane for
channeling of germanium with 9 MeV electron beam along [001] crystal direction,
where ξ and η are aligned with [100] and [010] crystal direction, respectively.

3.2.2 Beam horizontal (x) axis is aligned with [110] crystal direction

The coordinate in the transverse plane used for V (x,y) in Eq. (3.23) is aligned with [100] and

[010] crystal axes but not along the primitive unit cell of the two-dimensional lattice based on

the periodicity of the lattice potential in the beam transverse plane as shown in the contour plot

of V (x,y) in Fig. 3.1, where the periodicity of V (x,y) is a/2 in both [100] and [010] direction,

while the smallest periodicity of V (x,y) is a/(2
√

2) along [110] or [1̄10] direction (see Fig. 3.2).

Note that on the original (001) crystal plane of three-dimensional diamond lattice, the ions are in

body centered cubic structure with two unit-cell axes along [100] and [010] direction and, within

every four planes as a group, the (001) planes rotate 45◦ and shift by a/4 along both [100] and [010]

crystal direction with respect to each other. Due to the Lorentz contraction of the three-dimensional
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lattice along the [001] direction, all the ions in the three-dimensional lattice are projected onto a

two-dimensional plane parallel to the (001) plane and, consequently, extra ions appear on the (001)

plane and results in a reduction of the period as shown in Fig. 3.2. A coordinate transformation is

therefore needed to rotate x and y axes in Eq. (3.23) to align with [110] and [1̄10] crystal axes, i.e.

 x[100]

y[010]

=

 cos(π/4) −sin(π/4)

sin(π/4) cos(π/4)


 x[110]

y[1̄10]

 (3.25)

where
(
x[100], y[010]

)
and

(
x[110], y[1̄10]

)
are the coordinate aligned with ([100], [010]) and

(
[110], [1̄10]

)
,

respectively. To simplify the notation, we will use (x,y) for the primitive coordinate
(

x[110], y[1̄10]

)
and V[001](x,y) for the potential expressed with (x,y) =

(
x[110],y[1̄10]

)
. The lattice potential with x

and y coordinate aligned with [110] and [1̄10] crystal axes is then

V (x,y) =
∞

∑
n1=−∞

∞

∑
n2=−∞

vn1n2 exp
{

i
2π

(a/2)
√

2
[n1(x− y)+n2(x+ y)]

}
=

∞

∑
k1=−∞

∞

∑
k2=−∞

ṽk1k2 exp
[

i
2π

a/(2
√

2)
(k1x+ k2y)

]
(3.26)

where n1 = k1−k2 , n2 = k1 +k2 , and with (x j,y j) in a cubic diamond lattice given in Table (3.2)

ṽk1k2 = −2π h̄2

mv0

4

∑
i=1

αie−8λ 2
i (k

2
1+k2

2)
N

∑
j=1

exp
{
−i

2π

a/2
[
k1(x j + y j)+ k2(y j− x j)

]}

= −16π h̄2

mv0

4

∑
i=1

αie−8λ 2
i (k

2
1+k2

2) (3.27)

The periodicity of V (x,y) in Eq. (3.26) is therefore ax = ay = a/(2
√

2) in both x and y direction

which are along the [110] and [1̄10] crystal axes, respectively. Figure 3.2 plots V (x,y) in the correct

primitive cell and the relationship between primitive and non-primitive cell on the beam transverse

plane is sketched in Fig. 3.2.
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Figure 3.2: Projection of all the ions in a unit cell of diamond onto (001)
plane that is the beam transverse plane for channeling along [001] crystal
direction. Two axes of the primitive cell are along [110] abd [1̄10] direction
with the lattice constant ax = ay = a/

√
8.

Figure 3.3: Same as Fig. 3.1 but ξ and η are aligned with [110] and [1̄10] crystal direction,
respectively.
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3.3 Beam Channeling Along [110] Crystal Direction

Consider that a beam is channeling along the [110] crystal axis and the beam transverse plane is

parallel to the (110) crystal plane. The transformation R from the lattice coordinate (X1,X2,X3)

to the beam coordinate (x,y,z) can be constructed with two coordinate transformations. The first

is to rotate the (X1,X2,X3)-coordinate in the X1−X2 plane by an angle of π/4 and the resulting

coordinate is labeled as (X ′1,X
′
2,X3). The second transformation is to switch coordinate axes such

that x = X ′2, y = X3, and z = X ′1. In the final coordinate (x,y,z), x and y are along the [1̄10] and

[001] crystal axes, respectively, and z is the beam longitudinal direction and along the [1̄10] crystal

axis. The combined coordinate transformation can be obtained as
X1

X2

X3

 =
1√
2


1 −1 0

1 1 0

0 0
√

2




0 0 1

1 0 0

0 1 0




x

y

z



=
1√
2


−1 0 1

1 0 1

0
√

2 0




x

y

z

 = R−1


x

y

z

 (3.28)

The reciprocal lattice vector ~G = (2π/a)(k1, k2, k3) is transformed, from Eq. (3.17), as

(
n1

b1
,

n2

b2
,

n3

b3

)
=

(
k1

a
,

k2

a
,

k3

a

)
·R−1 =

(
k2− k1√

2a
,

k3

a
,

k1 + k2√
2a

)
(3.29)

Since (k1, k2, k3) and (n1, n2, n3) are integers, the minimal periodicity of V (x,y,z) is

(b1 , b2 , b3) =
(√

2a , a ,
√

2a
)

(3.30)

and

(n1 , n2 , n3) = (k2− k1 , k3 , k1 + k2) (3.31)
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The average of V (x,y,z) over z in Eq. (3.18) leads to n3 = k1 + k2 = 0 and, therefore,

n1 = 2k2 , n2 = k3 with k1 =−k2

The lattice potential on the beam transverse plane calculated from Eqs. (3.13) and (3.18) is then

V (x,y) =
∞

∑
k2=−∞

∞

∑
k3=−∞

Vk2k3 exp
[

i2π

(
2k2

x
b1

+ k3
y
b2

)]
(3.32)

where

Vk2k3 = V~k
∣∣
k1=−k2

=−2π h̄2

mv0

4

∑
i=1

αie−λ 2
i (2k2

2+k2
3)

N

∑
j=1

e−i2π[k2(y j−x j)+k3z j]/a (3.33)

Relabeling the summation indices in Eq. (3.32) as n1 = k2 and n2 = k3, the lattice potential on the

(110) crystal plane with x and y aligned with the [1̄10] and [001] crystal axes can be written as

V (x,y) =
∞

∑
n1=−∞

∞

∑
n2=−∞

vn1n2 exp
[

i2π

(
n1x

a/
√

2
+

n2y
a

)]
(3.34)

where

vn1n2 =−
2π h̄2

mv0

4

∑
i=1

αi e−λ 2
i (2n2

1+n2
2)

N

∑
j=1

e−i2π[n1(y j−x j)+n2z j]/a (3.35)

Since there is no additional periodic zero points in Sions(n1,n2), the period of V (x,y) are

(ax, ay) = (a/
√

2 , a)

for the x and y direction, respectively. As shown in Fig. 3.4, ax and ay are the smallest periods

of V (x,y) along two orthogonal directions in the transverse plane and, therefore, the [1̄10] and

[001] crystal axes are the axes of the primitive unit cell of the two-dimensional direct lattice in the

transverse plane when the beam is channeling along the [110] direction.
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Figure 3.4: Lattice potential V (x,y) on beam transverse plane for channeling of germanium with 9
MeV electron beam along [110] crystal direction.

3.4 Beam Channeling Along [111] Crystal Direction

Consider that the beam is channeling along the [111] crystal direction and the beam transverse

plane is parallel to the (111) crystal plane. The transformation matrix R in Eq. (3.14) can be

constructed with three consecutive transformations. The first transformation rotates the lattice

coordinate (X1,X2,X3) in the X1−X2 plane by an angle of θ1 = π/4 and the transformed coordinate

is labeled as (X ′1,X
′
2,X3). The axes of X ′1 and X ′2 are aligned with the [110] and [1̄10] crystal

direction, respectively. The second transformation is rotating (X ′1,X
′
2,X3) in the X ′1−X3 plane by

an angle of θ2 = arctan(1/
√

2) and the transformed coordinate is labeled as (X
′′
1 ,X

′
2,X

′
3). The

axes of X
′′
1 , X ′2, and X ′3 are aligned with [111],[1̄10], and [1̄1̄2] direction, respectively. The third

transformation is to switch the coordinate axes such that x = X ′2, y = X ′3, and z = X
′′
1 , where z is

the beam longitudinal coordinate and (x,y) are two orthogonal coordinates in the beam transverse
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plane. These three coordinate transformations can be expressed as


X1

X2

X3

 =


cosθ1 −sinθ1 0

sinθ1 cosθ1 0

0 0 1




cosθ2 0 −sinθ2

0 1 0

sinθ2 0 cosθ2




0 0 1

1 0 0

0 1 0




x

y

z



=
1√
6


−
√

3 −1
√

2
√

3 −1
√

2

0 2
√

2




x

y

z

 = R−1


x

y

z

 (3.36)

where sinθ2 = 1/
√

3 and cosθ2 =
√

2/3. The reciprocal lattice vector ~G = (2π/a)(k1, k2, k3) is

transformed in accordance to Eq.(3.17) as

(
n1

b1
,

n2

b2
,

n3

b3

)
=

(
k1

a
,

k2

a
,

k3

a

)
·R−1

=

(
k2− k1√

2a
,

2k3− k1− k2√
6a

,
k1 + k2 + k3√

3a

)
(3.37)

Since (k1, k2, k3) and (n1, n2, n3) are integers, the minimal periodicity of V (x,y,z) is

(b1 , b2 , b3) =
(√

2a ,
√

6a ,
√

3a
)

(3.38)

and

(n1 , n2 , n3) = (k2− k1 ,2k3− k1− k2 , k1 + k2 + k3 ) (3.39)

The average of V (x,y,z) over z in Eq. (3.18) leads to n3 = k1 + k2 + k3 = 0 and, therefore,

n1 = 2k2 + k3 and n2 = 3k3 with k1 =−(k2 + k3)

The lattice potential on the beam transverse plane calculated from Eq. (3.18) is then

V (x,y) =
∞

∑
n1=−∞

∞

∑
n2=−∞

vn1n2 exp
[

i2π

(
n1x
b1

+
n2y
b2

)]
(3.40)
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where vn1n2 is obtained from Eq. (3.13) as

vn1n2 = ∑
~k

V~k δ−(k2+k3),k1 δ(2k2+k3),n1 δ3k3,n2

= −2π h̄2

mv0
∑
k1

∑
k2

δ(2k2+k3),n1 δ3k3,n2

×
4

∑
i=1

αie−2λ 2
i (k

2
2+k2

3+k2k3)
N

∑
j=1

e−i(2π/a)[k2(y j−x j)+k3(z j−x j)] (3.41)

where δm,n is the Kronecker delta. With the ion positions (x j,y j,z j) in a cubic diamond lattice

given in Table 3.2,

N

∑
j=1

e−i(2π/a)[k2(y j−x j)+k3(z j−x j)] =


0 , for k2 = odd or k3 = odd

8 , for k2 = even and k3 = even
(3.42)

Let k2 = 2l1 and k3 = 2l2 and Eq. (3.41) becomes

vn1n2 = −16π h̄2

mv0

∞

∑
l1=−∞

∞

∑
l2=−∞

δ2(2l1+l2),n1 δ6l2,n2

4

∑
i=1

αie−8λ 2
i (l

2
1+l2

2+l1l2) (3.43)

where vn1n2 6= 0 only when n1 = 2(2l1 + l2) and n2 = 6l2, where l2 and 2l1 + l2 are any positive or

negative integers. Because the periodicity of vn1n2 6= 0 is 2 for n1 and 6 for n2, the periodicity of

the lattice potential on the beam transverse plane is reduced from the original (b1,b2) in Eq. (3.38)

to

ax = b1/2 = a/
√

2 and ay = b2/6 = a/
√

6 (3.44)

and

V (x,y) =
∞

∑
m1=−∞

∞

∑
m2=−∞

ṽm1m2 exp
[

i2π

(
m1x
ax

+
m2y
ay

)]
(3.45)
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where

ṽm1m2 = −16π h̄2

mv0

∞

∑
l1=−∞

∞

∑
l2=−∞

δ(2l1+l2),m1 δl2,m2

4

∑
i=1

αie−8λ 2
i (l

2
1+l2

2+l1l2)

= −16π h̄2

mv0

∞

∑
l1=−∞

δ2l1,(m1−m2)

4

∑
i=1

αie−2λ 2
i (m

2
1+3m2

2)

=


−16π h̄2

mv0

4

∑
i=1

αie−2λ 2
i (m

2
1+3m2

2) , for mod(m1−m2,2) = 0

0 , otherwise

(3.46)

As shown in Fig.3.5, there are two identical potential wells that are centered at a diagonal line

of a unit cell of V (x,y) in the transverse plane. Since the periodicity of V (x,y) along x and y

direction are different in this case, ax and ay are the smallest periods of V (x,y) along two orthogonal

directions on the transverse plane and, therefore, [1̄10] and [1̄1̄2] crystal axes are two orthogonal

axes of the unit cell of the direct lattice in the transverse plane when the beam is channeling along

the [111] crystal direction.

Figure 3.5: Lattice potential V (x,y) on beam transverse plane for channeling of germanium
with 9 MeV electron beam along [111] crystal direction.
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3.5 Convergence in the Truncation of Fourier Series of V (x,y) and Compar-

ison with the Results from Axial Channeling Model

In all the cases, the lattice potential on the transverse plane is calculated in the form of

V (x,y) =
∞

∑
k1=−∞

∞

∑
k2=−∞

vk1k2 ei2π(k1x/ax+k2y/ay) (3.47)

where vk1k2 decays exponentially with k2
1 and k2

2 as

vk1k2 ∼ e−γ2
1 k2

1−γ2
2 k2

2

and γ1 and γ2 are constant. It is thus possible and numerically necessary to truncate the summations

in Eq. (3.47) as

V (x,y) =
kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

vk1k2 ei2π(k1x/ax+k2y/ay) (3.48)

The convergence of the truncation needs to be checked to ensure the accuracy of the calculated

potential. To study the convergence, we calculated the difference of the potential calculated based

on two difference truncations kmax,

Error-in-V (kmax) =
1

axay

ayˆ

0

axˆ

0

∣∣∣∣ V (x,y,kmax)

V (x,y,kmax +∆kmax)
−1
∣∣∣∣dxdy (3.49)

where V (x,y,kmax) and V (x,y,kmax+∆kmax) are lattice potential V (x,y) calculated with a truncation

of the Fourier series at kmax and kmax +∆kmax, respectively. Figure 3.6 plots this truncation error

as a function of kmax for different cases of the channeling studied in this work and shows a quick

convergence of the Fourier series of V (x,y) in all the cases except the channeling in [110] crystal

direction. For the case of the [110] direction, more Fourier expansion terms have to be kept, which

requires more computer resource. In this study we used kmax = 35 in all the cases for convenience,

which is adequate for the convergence of the Fourier expansion and can also be handled by modern
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desktop computers. In Fig. 3.7, the lattice potential calculated with different kmax can be compared

visually and it further confirms that the convergence of the truncation is achieved much faster at

kmax = 9 and 13 for the cases of diamond and germanium along [001] crystal direction, respectively,

and at a slower rate of kmax = 25 and 35 for the case of germanium along the [111] and [110]

direction, respectively.

The lattice potential for the cases of [001] and [110] direction has previously been studied us-

ing the axial channeling model [3, 2] and the convergence of the Fourier expansion of V (x,y) was

suggested to be much faster than in our calculation for the same cases. With the axial channeling

model, for example, the total number of terms needed for the Fourier expansion is only 631 in

the case of germanium along the [110] direction [3], while our calculation requires kmax = 35 or

larger for the convergence which yields a minimum of (2kmax + 1)2 = 5041 terms in the Fourier

expansion of V (x,y). It should be noted that the Fourier expansion coefficients vk1k2 in Eq. (3.48)

are calculated from an electron-ion interaction model without any approximation in our method.

In the axial channeling model, however, vk1k2 are calculated starting from the same electron-ion

interaction model but approximately. Since the Fourier expansion of V (x,y) is unique, the only

explanation for a substantially smaller value of kmax in the axial channel model is that the approxi-

mation used in the axial channeling model may distort vk1k2 significantly and the decay rate of vk1k2

is significantly altered. The lattice potential calculated previously with the axial channeling model

is, therefore, not reliable for studying the channeling radiation spectrum.
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Figure 3.6: Truncation error of the Fourier expansion of V (x,y) in Eq. (3.48) v.s. kmax, which
is calculated using Eq. (3.49) with ∆kmax = 4 for channeling of diamond along the [001]
direction (top-left figure) and for channeling of germanium along [001] (top-right figure),
[111] (bottom-left figure), and [110] (bottom-right figure) crystal direction, respectively. In
the rest of this study, we used kmax = 35 that is marked with a vertical grey line in the figures.
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Figure 3.7: Lattice potential V (ξ ,η) with ξ = x/ax and η = y/ay in Eq. (3.48) calculated
with different kmax for channeling of diamond along the [001] direction (top-left figure) and for
channeling of germanium along [001] (top-right figure), [111] (bottom-left figure), and [110]
(bottom-right figure) crystal direction, respectively. In all the cases, the curves with the two
largest values of kmax overlap each other, which suggests the convergence of Eq. (3.48).
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Chapter 4

Schroedinger Equation and Selection

Matrix Construction and Spectrum

Analysis

To understand the channeling radiation spectrum, in this chapter, the Bloch eigenstates for the

transverse motion of beam electrons are calculated for an ultra-relativistic beam channeling through

a crystal along [001], [110], and [111] crystal direction and the transition spectrum of the beam elec-

trons between the eigenstates is studied. The transition spectrum has previously been studied for

the cases of channeling along [001] and [110] direction [1, 2, 3]. Because of the use of a rota-

tional symmetry approximation on the lattice potential in their analysis for the transition spectrum,

however, the validity of the transition spectrum obtained in those studies is very limited. In our

study, the Fourier expansion of the Bloch eigenstates on the two-dimensional transverse plane is

solved numerically from the Schrödinger equation with a Fourier expansion of the lattice poten-

tial and without any additional approximation. With much more accurate solutions for the Bloch

eigenstates, we discovered that the parity symmetry of the Bloch eigenfunctions determines the

selection rule of the dipole transitions between the Bloch eigenstates in the cases of the channeling

along [001] and [111] crystal direction. For the case of the channeling along [110] crystal direc-
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tion, there is no systematic forbidden transition between the Bloch eigenstates due to a lack of

sufficient symmetry in the lattice potential on the beam transverse plane. The transition probability

was calculated for all the bounded Bloch eigenstates with a discretized mesh in the first Brillouin

zone for the energy spectrum of the channeling radiation.

4.1 Eigenstates for the Transverse Motion of Beam Electrons in a Crystal

Lattice

4.1.1 Lattice potential on the transverse plane in the beam rest frame

To solve the eigenstates of the transverse motion of beam electrons that travel with almost the

speed of light in the longitudinal direction through a crystal, it is convenient to work in the rest

frame of the beam. For that purpose, we need to transfer the lattice potential of the crystal on the

beam transverse plane from the lab frame to the beam rest frame. Let the z-axis be the longitudinal

direction and x and y be the coordinates on the transverse plane of the beam. The beam travels

in the z direction with a relativistic velocity (0,0,vz ' c) in the lab frame. For an electron in the

beam with velocity ~v = (vx,vy,vz) in the lab frame, the motion on the beam transverse plane is

non-relativistic, vx << c and vy << c, while vz is the velocity of the beam approximately. The

Lorentz transformation for an electromagnetic field from the lab frame to the beam rest frame is

[19, 20]

(φ ′ ,~A′) = (γφ −βγAz , Ax , Ay , -βγφ + γAz) (4.1)

where (φ ′,~A′) and (φ ,~A) are the electric scalar and magnetic vector potential in the beam rest

frame and lab frame, respectively, β is the ratio of the beam speed to the speed of light, and

γ = 1/
√

1−β 2. In the lab frame, the lattice potential of a crystal contains only the electric field

and, therefore, ~A = 0. With an ultra-relativistic beam, β ' 1 and

(φ ′ ,~A′)' (γφ ,0 , 0 ,−γφ) (4.2)
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Since the beam electrons travel with almost the speed of light in the longitudinal direction, the per-

turbation from the lattice potential results in little effect on the longitudinal motion of the electrons.

As the beam electrons move non-relativistically in the beam transverse plane, the lattice potential

could perturb the transverse motion of the electrons significantly when the beam passes through

a crystal. For the transverse motion of the electrons, the Lorentz force in the rest frame can be

written as

(F ′x , F ′y) = e
(

∇φ
′+

~v ′

c
×∇×~A′

)
x,y
'−γe(∂x , ∂y)φ (4.3)

where~v ′ = (vx,vy,0) is the velocity of the electrons in the beam rest frame. In the beam rest frame,

therefore, the lattice potential for the transverse motion of the electrons is simply boosted by the

relativistic factor γ of the beam,

V ′(x,y)' γV (x,y) (4.4)

where V (x,y) = eφ(x,y) is the lattice potential of a crystal in the beam transverse plane in the lab

frame.

4.1.2 Schrödinger equation for the transverse motion of beam electrons in a

crystal lattice

In the beam rest frame, the Hamiltonian for the transverse motion of the electrons of an ultra-

relativistic beam in a crystal is

H(x,y, px, py) =
1

2me

(
p2

x + p2
y
)
+ γV (x,y) , (4.5)

where V (x,y) is the lattice potential of a crystal in the beam transverse plane in the lab frame, and

the corresponding Schrödinger equation is

−
(

h̄2

2me

)[
d2Ψ(x,y)

dx2 +
d2Ψ(x,y)

dy2

]
+ γV (x,y)Ψ(x,y) = EΨ(x,y) (4.6)
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Because of the periodicity of the crystal lattice, V (x,y) is a periodic potential in the transverse (x-y)

plane of the beam. Let ax and ay be the minimum periodicity of V (x,y) in the x and y direction,

respectively, i.e.

V (x,y) =V (x+ax,y) =V (x,y+ay) (4.7)

where ax and ay are the lattice constants of the primitive cell (minimum-area cell) of a two-

dimensional lattice that is the projection of the original three-dimensional crystal lattice to the

beam transverse plane (see Chapter 3). With a periodic potential, the solution of the Schrödinger

equation must be in the form of Bloch eigenfunctions (Bloch theorem) [21],

Ψ(x,y) =
1

2π
u(x,y)ei(Ωxx+Ωyy) (4.8)

where u(x,y) has the period of V (x,y), i.e. u(x,y) = u(x+ax,y) = u(x,y+ay),

(Ωx , Ωy) = 2π

(
l1

Nax
,

l2
Nay

)
∀ (l1, l2) = 0,±1,±2, . . . (4.9)

is called crystal wave vector and N is the number of the primitive cells along either the x or y axis

of the two-dimensional lattice on the beam transverse plane. Since N → ∞, l1/N and l2/N are in

fact continuous in a range of (−∞,∞). It should be noticed that ax and ay have to be determined

with the potential function V (x,y) as detailed in Chapter 3 and may not necessarily be the same

as the lattice periodicity on a crystal plane of the original three-dimensional crystal because of the

projection. The correct identification of ax and ay is important to solving the eigenstates of the

Schrödinger equation. Some of previous works [4] mistakenly used the periodicity of the crystal

plane of the original three-dimensional lattice and, consequently, the eigenstates they obtained

could be wrong.

Since u(x,y) is a periodic function, it can be expanded into a Fourier series of

u(x,y) =
∞

∑
k2=−∞

∞

∑
k1=−∞

Ck1,k2ei2π(k1x/ax+k2y/ay) (4.10)
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and the Bloch eigenfunctions in Eq. (4.8) can be rewritten as

Ψ =
1

2π

∞

∑
k2=−∞

∞

∑
k1=−∞

Ck1,k2 ei2π[(k1+kx+Q1)x/ax+(k2+ky+Q2)y/ay]

=
1

2π

∞

∑
n2=−∞

∞

∑
n1=−∞

Cn1−kx,n2−ky ei2π[(n1+Q1)ξ+(n2+Q2)η ] (4.11)

where (l1, l2)/N = (kx +Q1,ky +Q2), kx and ky are integers, (Q1,Q2) are the fractional part of

(l1, l2)/N, (n1,n2) = (k1 + kx,k2 + ky), and (ξ ,η) = (x/ax,y/ay) are the coordinate on the beam

transverse plane scaled with the lattice constant. It is convenient to choose (kx,ky) in such way that

Q1 and Q2 are in the first Brillouin zone,

− 1
2
≤ (Q1, Q2)<

1
2

(4.12)

With the lattice potential in the Fourier expansion of (see Chapter 3),

V (ξ ,η) =
∞

∑
k2=−∞

∞

∑
k1=−∞

Vk1k2 ei2π(k1ξ+k2η) (4.13)

and the Bloch eigenfunction in Eq. (4.11), the Schrödinger equation in Eq. (4.6) can be written as

a Fourier expansion of

∞

∑
k1,k2=−∞

[
(k1 +Q1)

2 +

(
ax

ay

)2

(k2 +Q2)
2

]
Ck1−kx,k2−ky ei2π(k1ξ+k2η)

+
∞

∑
l1,l2=−∞

Ṽl1l2

∞

∑
k1,k2=−∞

Ck1−kx,k2−ky ei2π[(l1+k1)ξ+(l2+k2)η ]

=
E
ε

∞

∑
k1,k2=−∞

Ck1−kx,k2−ky ei2π(k1ξ+k2η) (4.14)

where ε = h̄2/(2mea2
x) and Ṽl1l2 = γVl1l2/ε . With the orthogonal condition of ei2π(k1ξ+k2η), Eq.
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(4.14) can be expressed as an infinite-dimensional matrix equation,

[
(k1 +Q1)

2 +

(
ax

ay

)2

(k2 +Q2)
2− E

ε

]
Ck1−kx,k2−ky =−

∞

∑
l1,l2=−∞

Ṽk1−l1,k2−l2 Cl1−kx,l2−ky (4.15)

Since this equation does not depend on kx and ky, the eigenfunction
{

Ck1−kx,k2−ky

∣∣ k1,k2
}

and

eigen-energy E are independent of (kx,ky) and, therefore, only the case of kx = ky = 0 is needed.

Note that Ψ with kx = ky = 0 are the Bloch eigenfunctions in the first Brillouin zone. To solve

Eq. (4.15), the infinite-dimensional matrix Vk1k2 needs to be truncated. As shown in Chapter 3,

Vk1k2 decays exponentially with k1 and k2 in a Gaussian function and the expansion of the lattice

potential can be truncated at k1 = kmax or k2 = kmax. Hence, the Bloch eigenfunction in Eq. (4.11)

can be truncated at kmax as

Ψ =
1

2π

kmax

∑
k2=−kmax

kmax

∑
k1=−kmax

Ck1,k2 ei2π[(k1+Q1)ξ+(k2+Q2)η ] (4.16)

where kx = ky = 0 in Eq. (4.11). With the truncation and kx = ky = 0, the Schrödinger equation in

Eq. (4.15) becomes a (2kmax +1)2-dimensional matrix equation,

kmax

∑
l1,l2=−kmax

{[
(k1 +Q1)

2 +

(
ax

ay

)2

(k2 +Q2)
2− E

ε

]
δl1k1δl2k2 +Ṽk1−l1,k2−l2

}
Cl1,l2 = 0 (4.17)

where −kmax ≤ (k1,k2)≤ kmax. Equation (4.17) is an eigenvalue problem,

M ·v = λv (4.18)
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where λ = E/ε , v is a (2kmax +1)2-dimensional vector

v =
(
C−kmax,−kmax , C−(kmax−1),−kmax , · · · ,C(kmax−1),−kmax ,Ckmax,−kmax ,

C−kmax,−(kmax−1), · · · Ckmax,−(kmax−1) ,

· · ·

C−kmax,kmax , · · · Ckmax,kmax

)T
,

and M is a (2kmax +1)2× (2kmax +1)2 matrix

Mi j =

[
(k1 +Q1)

2 +

(
ax

ay

)2

(k2 +Q2)
2

]
δl1k1δl2k2 +Ṽk1−l1,k2−l2

with

i = (2kmax +1)(l2 + kmax)+(l1 + kmax +1)

j = (2kmax +1)(k2 + kmax)+(k1 + kmax +1)

The eigenenergies En(~Q) and eigenvectors {Ck1k2(
~Q,n)} with n = 1, · · · ,(2kmax + 1)2 can be ob-

tained by diagonalizing M at different values of (Q1,Q2) numerically. It should be noted that

the choice of kmax needs to be tested for numerical convergence and depends on the type of crys-

tal as well as the beam channeling direction. For diamond, for example, kmax = 9 is found to be

sufficient when the beam is channeling in [001] crystal direction. For germanium, on the other

hand, kmax = 35 is needed for the numerical convergence when the channeling is in [110] crystal

direction. For this study, we used a C++ library for linear algebra called Armadillo for the diago-

nalization of M [22]. Since Eq. (4.17) is symmetric for the reflection of Q1 or Q2, Q1 −→−Q1 or

Q2 −→−Q2, the Bloch eigenfunction u(x,y) and eigenenergy E are the same for the positive and

negative values of (Q1,Q2) and, therefore, solving the Schrödinger equation needs to be done for

each value of (Q1,Q2) in the first quadrant of the Brillouin zone, (Q1,Q2) ∈ [0,1/2]⊗ [0,1/2].

46



The normalization and orthogonal condition of the Bloch eigenfunctions is

〈
~Q′,m

∣∣∣~Q,n
〉
= ∑

k1,k2

∑
l1,l2

Ck1,k2(
~Q,n)C∗l1,l2(

~Q′,m)

× 1
2π

∞̂

−∞

ei2π(k1−l1+Q1−Q′1)ξ dξ
1

2π

∞̂

−∞

ei2π(k2−l2+Q2−Q′2)η dη

= ∑
k1,k2

∑
l1,l2

Ck1,k2(
~Q,n)C∗l1,l2(

~Q′,m)δ (k1− l1 +Q1−Q′1)δ (k2− l2 +Q2−Q′2)

= ∑
k1,k2

∑
l1,l2

Ck1,k2(
~Q,n)C∗l1,l2(

~Q′,m)δk1l1δk2l2δ
(
Q1−Q′1

)
δ
(
Q2−Q′2

)
= δnm δ

(
Q1−Q′1

)
δ
(
Q2−Q′2

)
(4.19)

where ~Q = ~Q′ and ~k =~l because (Q1, Q2) and (Q′1, Q′2) are fractions while ~l and ~k are integer

vectors. The normalization and orthogonal condition of the Bloch eigenstates thus requires

kmax

∑
k1,k2=−kmax

Ck1,k2(
~Q,n)C∗k1,k2

(~Q,m) = vT
n ·vm = δnm (4.20)

where vm is the mth eigenvector of Eq. (4.18).

4.1.3 Numerical results of eigenenergies and eigenfunctions

We have studied several cases of the beam channeling with different beam energy, different chan-

neling direction, and different crystal. The results are compared with all the available data from

previous studies by Klein and Chouffani [2, 9]. Table 4.1 lists the parameters of the beam and

crystal used in our study.
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Table 4.1: Crystals, channeling directions, and beam energies (MeV) used in this
study, where ax and ay are the lattice constants of the primitive cell of the two-
dimensional lattice on the beam transverse plane and a is the lattice constant of the
crystal cubic lattice.

crystal beam direction ax ay beam energy

diamond [001] a/
√

8 a/
√

8

16.9

30.5

54.5

germanium

[001] a/
√

8 a/
√

8 9.0

[110] a/
√

2 a 9.0

[111] a/
√

2 a/
√

6 9.0

4.1.3.1 Numerical errors in solving matrix equation (4.18)

To solve the Bloch eigenstates from Eq. (4.18), one needs to diagonalize a large hermitian matrix

M numerically. The numerical error needs to be checked to ensure the accuracy of the obtained

eigenstates and the orthogonality of the obtained eigenvectors. The normalization and orthogonal

condition of the eigenvectors {vn} of M is 〈vm|vn〉 = δmn where δmn is the Kronecker delta. We

thus measure the orthogonal and normalization error by

orthogonal error = |〈vm|vn〉| , ∀ m 6= n (4.21)

normalization error = | 〈vm|vm〉−1| (4.22)

To check the numerical convergence of the solution of Eq. (4.18), we measure how close a numer-

ical approximation of an eigenstate with which M vm ≈ λmvm is to an exact eigenstate with which

M vm = λmvm. We define the convergence error as

convergence error =
∣∣∣∣ 1
λm
〈vm |M |vm〉−1

∣∣∣∣ (4.23)
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Figures (4.1, 4.2, 4.3) plot the normalization, orthogonal, and convergence errors for different

eigenstates calculated for the cases of 9 MeV beam channeling through germanium lattice along

[001], [110], and [111] crystal direction. Since the eigenstates with a positive eigenenergy gener-

ally do not contribute to channeling radiation, all the eigenstates with a negative eigenenergy plus a

few eigenstates with a positive eigenenergy are included in the figures. In all cases of three channel-

ing directions, the average normalization errors are below 10−6 with standard deviations at 10−7 or

smaller (see Fig. 1). The error is sufficiently small and, therefore, the numerically-obtained eigen-

states is normalized. For the orthogonal error, we calculated the orthogonal condition between the

ground state (n = 1) and the mth eigenstate. As shown in Fig. 2, the orthogonal error is below

10−6 in all the cases, which is sufficiently small to validate orthogonal condition. It can also be

seen in Fig. 4.3 that the convergence error is less than 10−6 for all the obtained eigenstates, which

is sufficiently small to satisfy convergence.

Figure 4.1: log | 〈vm|vm〉 − 1| of the normalization error v.s. m of eigenstate vm for the cases
of 9 MeV beam channeling through germanium lattice along [001], [110], and [111] crystal
direction. The average and standard deviation of the normalization error over all the eigenstates
are ∼ 10−7−10−6 and ∼ 10−7, respectively.

Figure 4.2: log | 〈vm|vn〉 | of the orthogonal error with n = 1 (ground state) v.s. m of eigenstate
vm for the cases of 9 MeV beam channeling through germanium lattice along [001], [110], and
[111] crystal direction.
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Figure 4.3: log(|〈vm |M |vm〉/λm−1|) of the convergence error v.s. m of eigenstate vm for the
cases of 9 MeV beam channeling through germanium lattice along [001], [110], and [111] crystal
direction. The average and standard deviation of the normalization error over all the eigenstates
are ∼ 10−7−10−6 and ∼ 10−7, respectively.

4.1.3.2 Eigenenergy for the transverse motion of beam electrons channeling through a Crys-

tal

In this section, we will study the energy spectrum for the transverse motion of beam electrons

channeling through a crystal with different beam energy and different crystal orientation for the

channeling. Note that the eigenstates with an energy that is below the maximum (top of the po-

tential well) of lattice potential V (x,y) are the bounded states and are relevant to the channeling

radiation. The discussion will be focused on the bounded states.

a. Channeling through diamond along [001] crystal direction with different

beam energy

In Fig. 4.4, the eigenenergies at Q1 = Q2 = 0 in the lab frame for channeling of diamond along

[001] crystal direction were plotted for three different beam energy, 16.9 (γ = 33.1), 30.5 (γ = 59.7)

and 54.5 MeV (γ = 106.7), respectively. To help us to visualize which eigenstates contribute to

the channeling radiation, the lattice potential in the beam rest frame γV (ξ ,η) as a function of

ξ = η was also plotted in Fig. 4.4, where the scaled variables ξ = x/ax and η = y/ay was used for

convenience. Note that the beam electrons are in bounded (unbounded) states for their transverse

motion if they are at eigenstates that have eigenenergies lower (higher) than the maximum of

γV (ξ ,η). The bounded states are the primary contributors to the channeling radiation. In this case,

γV (ξ ,η) reaches its maximum at the boundary of the unit cell of the lattice at |η |= |ξ |= 1/2 in
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Fig. 4.4. As the beam energy increases, as shown in Fig. 4.4, the eigenenergies decrease (more

negative) and the number of the bounded states increases. The increase of the bounded states

provides more possibilities of photon emissions from the transitions between different bounded

states. Moreover, the bounded states near the maximum of γV (ξ ,η) becomes more and more

dense as the beam energy increases and, consequently, the photon emission lines from those states

could be bundled together to form a broadened spectral line. Figure 4.4 also shows that the energy

separations between excited (n > 1) and ground (n = 1) state increases with the beam energy and,

therefore, the photon emission lines shift toward higher energy as the beam energy increases. With

the additional relativistic doppler effect, this energy increase of the radiation spectral lines with the

beam energy is even more significant when the radiation is observed in the lab frame.

The channeling radiation of diamond lattice along [001] direction with those three cases of the

beam energy has also been studied theoretically by Klein et. al. using axial channeling model [2].

As it has been discussed in Chapter 3, our calculation of the lattice potential is exact without any

approximation from a model of single electron-ion interaction and more efficient mathematically as

compared with the axial channeling model in which the potential was obtained approximately. In

order to compare our result of the energy spectrum with Klein’s prediction, the energy separations

between excited (n > 1) states and the ground (n = 1) state are listed in Table 4.2, where the energy

separations is calculated as

∆n = (En−E1)/γ (4.24)

since the eigenenergy calculated in Klein’s paper is En/γ with En being our notation of the eigenen-

ergy. As shown in Table 4.2, the results from two different calculations are not close. The discrep-

ancy is especially pronounced at the n = 2 and n = 3 states which is important to channeling

radiation and becomes more significant as the beam energy increases. It should be noted that both

calculations of the lattice potential and the numerical solution of the Bloch eigenstates can affect

the accuracy of the result. In our case, the lattice potential is exactly calculated without any approx-

imation from the model of single electron-ion interaction and the accuracy of the Bloch eigenstates

was carefully checked by the error analysis in Section 4.1.3.1. Since the detail calculation of the
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Bloch eigenstates was not discussed in Klein’s paper, it is not clear whether any additional nu-

merical approximations were used for solving the eigenstates and what the numerical accuracy is

[2].

Figure 4.4: Three plots generated from our Generic Model: γV (ξ ,η)&En vs ξ = η . The
red lines represent eigenenergies at Q1 = Q2 = 0 of the transverse motion in the beam
rest frame for the channeling of diamond lattice along [001] crystal direction, where the
beam energy is 16.9, 30.5, and 54.5 MeV, respectively. Blue curve is the lattice potential
γV (ξ ,η) in the beam rest frame as a function of ξ = η , where ξ = x/ax and η = y/ay

with ax = ay = a/
√

8 and a being the diamond lattice constant. The fourth plot shows
Klein’s Axial Model’s predicted eigenenergies, En [KeV], in black lines for the same three
beam energies[2]. The cyan lines depict the maximum potential energy for the respective
labframe potential. All eigenstates below these cyan lines are bounded states.
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Table 4.2: Energy separations ∆n = (En−E1)/γ between the nth excited states and the ground
state at Q1 = Q2 = 0 of the transverse motion in the beam rest frame for the channeling of
diamond lattice along [001] crystal direction, where the beam energy is 16.9, 30.5, and 54.5
MeV, respectively. Columns labeled with “Klein” and “Our” are from Klein’s paper and our
generic model result, respectively, and the “difference” is the percentage difference of the
results from two studies. The unit of ∆n is eV.

16.9 MeV 30.5 MeV 54.5 MeV

Klein Ours difference Klein Ours difference Klein Ours difference

∆2 26.46 24.49 8.0% 23.63 21.60 9.4% 21.86 18.12 20.7%

∆3 34.67 34.8 .4% 41.48 33.67 23.2% 49.23 30.53 61.3%

∆4 41.97 39.27 6.9% 39.26 37.25 5.4% 36.3 32.92 10.3%

∆5 45.71 39.44 15.9% 43.33 42.44 2.1% 36.67 40.07 8.5%

Figure 4.5: Visual comparision of Eigenenergies of our generic model depicted in red
lines and Klein’s predictions in black lines. For each beam energy 16.9, 30.5 and 54.5MeV,
there are two columns: (A) and (B). Column (A) represents the Generic Model predicted
eigenenergies in red lines. Column (B) is Klein’s Axial Model’s predicted eigenergies in
black lines. Q1 = Q2 = 0 of the transverse motion in the beam rest frame diamond lattice
along [001]. All Eigenenergies below the cyan line are bounded states.
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Table 4.3: Eigenenergies En/γ at Q1 =Q2 = 0 of the transverse motion in the beam rest frame
for the channeling of diamond lattice along [001] crystal direction, where the beam energy is
16.9, 30.5, and 54.5 MeV, respectively. Columns labeled with “Klein” and “Ours” are from
Klein’s paper and our generic model result, respectively. The unit of En is eV.

16.9 MeV 30.5 MeV 54.5 MeV

Klein Ours Klein Ours Klein Ours

E1 -51.37 -59.38 -58.18 -66.53 -65.93 -72.437

E2 -24.91 -34.88 -34.55 -44.93 -44.07 -54.33

E3 -16.7 -24.58 -23.51 -32.86 -30.74 -41.91

E4 -9.4 -20.11 -18.92 -29.29 -29.63 -39.52

E5 -5.66 -19.94 -14.85 -24.09 -29.26 -32.37

E6 -16.35 -8.81 -19.19 -22.59 -28.32

E7 -13.90 -9.18 -18.98 -19.26 -26.51

E8 -12.19 -7.69 -17.37 -17.04 -25.01

E9 -11.85 -5.51 -17.00 -21.28
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Figure 4.6: Eigenenergies (red lines) at Q1 = Q2 = 0 of the transverse motion in the beam
rest frame for the channeling of germanium lattice along [001], [110], and [111] crys-
tal direction, respectively. The beam energy is 9 MeV. Blue curve is the lattice potential
γV (ξ ,η) in the beam rest frame as a function of ξ at η = 0 or η at ξ = 0, where ξ = x/ax
and η = y/ay. The values of (ax,ay) are given in Table 1.

b. Channeling through germanium with 9 MeV beam along different crystal

direction

To examine the effect of crystal orientation to the channeling radiation, we studied the cases of

the channeling through germanium along [001], [110], and [111] crystal direction with 9 MeV

beam energy. Figure 4.6 plots the calculated eigenenergies at Q1 = Q2 = 0. Note that the lattice

potential for the [110] direction contains two potential wells in each unit cell (−1/2 ≤ η < 1/2)

of the lattice on the beam transverse plane and the potential wells are much deeper than that in

the cases of the [001] and [111] direction. In the case of the [110] direction, as shown in Fig.

4.6, the energy separation between the excited states and the ground state is substantially larger as
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compared with the other two cases and, consequently, the frequencies of the photon emission are

much higher. Near the maximum of lattice potential V (x,y), moreover, there are more bounded

states densely bundled together to form a quasi energy band in the case of the [110] direction,

which could result in a broadened photon emission line of the transition from those states to a

lower energy eigenstate. The more bounded states in the case of the [110] direction also provide

more possibilities of photon emissions. The case of the [110] crystal direction with 9 MeV beam

is, therefore, very similar to the case of the [001] crystal direction with higher, such as 54.4 MeV,

beam energy as it can be seen by comparing Figs. 4.4 and 4.6.

c. Degeneracy of eigenenergy states

The Bloch eigenenergy states are highly degenerate in general, especially in the cases of channel-

ing along [111] and [110] crystal direction of diamond or germanium. Table 4.4 lists the number of

degenerate states of the bounded Bloch eigenenergy states solved from Eq. (4.17) for the channel-

ing of germanium with a 9 MeV beam along [001], [111], and [110] crystal direction, respectively.

For the [111] case of the indexed eigenstate n = 7, it has a 4-fold degeneracy using a labeling

convention, n(i): 7(1), 7(2), 7(3) and 7(4) where i is the index of the sequential numbering of

degeneracies within state un. Among those three cases, the [001] and [110] lattice potential are the

least and most complicated, respectively, in terms of the number of potential wells in a unit cell and

the degree of symmetry. The degree of degeneracy in the Bloch eigenstates is apparently related

to the complexity of the lattice potential. The degeneracy of the eigenstates could be beneficial

to channeling radiation by providing more possibilities of allowed transitions of beam electrons

between different energy states.
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Table 4.4: Number of degenerate states of the bounded Bloch eigenenergy states un(i) at
Q1 = Q2 = 0 for the channeling of germanium with a 9 MeV beam along [001], [111],
and [110] crystal crystal direction, respectively, where n = 1 is of the ground state. For
example, the [111] eigenstate at n = 7 has a 4-fold degeneracy.

n 1 2 3 4 5 6 7 8 9 10 11

degeneracy

[001] 1 2 1 2 2 1 2 2 2 1 4

[111] 2 4 2 4 4 6 4 4 2 1 4

[110] 4 8 4 8 8 8 4 8 2 8 4

d. ~Q-Dependence of eigenenergy

In many cases in condensed matter physics, the energy bands for the electrons in crystals depend

strongly on the crystal wave vector ~Q because the lattice potential is usually a small perturbation

as compared with the kinetic energy of the electron [see Schrödinger equation in Eq. (4.14)]. In

the case of the beam channeling, due to the relativistic motion of the beam the lattice potential

γV (ξ ,η) dominates the kinetic energy of the transverse motion of the beam electrons and, there-

fore, the energy eigenstates do not depend on ~Q significantly. This is especially true for those lower

energy states (n < 6 of En) that are deep inside the lattice potential well and almost independent

of ~Q. For the eigenstates with energy near the maximum of γV (ξ ,η), the ~Q-dependence could

become substantial. Figure 4.7 plots eigenenergy En with n ≥ 6 as a function of Q2 at Q1 = 0 for

the same system as in Fig. 4.6 and shows a very weak ~Q for all the bounded states. One common

feature among of this weak ~Q-dependence is that the eigenstates near the maximum of γV (ξ ,η)

become more degenerate as ~Q varies from the center (ξ = η = 0) to the boundary (ξ = 1/2 and/or

η = 1/2) of the Brillouin zone. But this ~Q-dependence of En is probably too weak to have any

significant impact on the channeling radiation. Some studies [23, 24, 25], however, indicates that

the beam electrons in those unbounded states could interact with the crystal lattice via some in-
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elastic interaction mechanism and collapse down to a lower energy state (called rechanneling) and

the beam electrons at bounded states could gain energy through some inelastic collision mecha-

nism and jump to a unbound state (called dechannelling). It is unclear if the degeneracy of the

eigenstates of bounded and unbounded states near the maximum of γV (ξ ,η) have any significant

impact on the rechanneling and dechanneling processes.

Figure 4.7: Eigenenergy En with n > 6 vs. Q2 at Q1 = 0 for the cases of Fig. 4.6. Note, the
blue horizontal line depicts the maximum potential. All eigenstates depicted in red which
are below the blue line are bounded states.
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Figure 4.8: Left figure is a unit cell of (001) crystal plane of diamond and right figure is
the projection of diamond crystal lattice onto the beam transverse plane that is parallel
to (001) crystal plane, where a is the lattice constant of diamond, small red square in the
right figure is the primitive cell on the transverse plane, and ax = ay = a/

√
8.

e. Effect of incorrect primitive cell for the lattice potential on the beam

transverse plane

For the Bloch theorem, the primitive cell with lattice constants ax and ay on the beam trans-

verse plane has to be correctly identified from the periodic lattice potential in order to solve the

Bloch eigenstates correctly. Without a correct periodicity, the Fourier expansion of the Bloch

eigenfunctions in Eq. (4.10) could be wrong. In our study, ax and ay have been carefully studied

to ensure the primitive cell (see Chapter 3). Because of Lorentz contraction along the beam di-

rection, the original three-dimensional crystal lattice is compressed into a two-dimensional lattice

on the beam transverse plane, which is similar to a projection of a three-dimensional lattice onto

a two-dimensional plane mathematically. Due to the projection, ax and ay of the two-dimensional

lattice might not necessarily be the same as the periodicity on a crystal plane of the original three-

dimensional lattice. In the case of beam channeling along [001] crystal direction of diamond, for

example, the native periodicity on the (001) crystal plane is ax = ay = a/
√

2 for diamond, where a

is the lattice constant of diamond. After the Lorentz contraction in the beam rest frame, the lattice

constants of the primitive cell on the transverse plane is, however, ax = ay = a/
√

8 in this case.

This reduction of the lattice constants can be understood as following. For the position of ions

in diamond, the (001) planes rotate 45◦ and shift by a/4 in both [100] and [010] direction with
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respect to each other within every group of four (001) crystal plane. When projecting all the (001)

planes onto the transverse plane, as shown in Fig. 4.8, the number of ion sites on the transverse

plane increases so that the lattice constants decreases.

One example of the misidentification of the primitive cell is in Azadegan 2006 paper [26] for

the calculation of channeling radiation using planar channeling model. In the planar channeling

model, the Bloch eigenstates are calculated approximately with a one-dimensional Schrödinger

equation where a one-dimensional lattice potential was obtained by averaging the two-dimensional

lattice potential along one of the transverse dimensions. In Azadegan’s calculation, the lattice

constant used for (110) planar channeling was a/
√

2 while the correct lattice constant should be

a/
√

8 when the effect of the Lorentz contraction is included. To examine the effect of this mistake,

we reproduced the Bloch eigenstates with the wrong periodicity and compared it with the correct

ones. Figure 4.9 plots the eigenenergies for both the cases of (110) planar channeling of diamond

calculated with the wrong (a/
√

2) and correct (a/
√

8) lattice constant, respectively. Two different

beam energy, 14.6 and 54 MeV, were used in the calculation. As shown in Fig. 4.9, the use of

a wrong periodicity in Bloch wavefunctions has little impact on the energy of the bounded states

while the unbounded states are quite wrong. Note that the incorrect periodicity only affects the

kinetic energy term in the Schrödinger equation [see Eq. (4.14)]. For the bounded states, the lattice

potential is dominant the Hamiltonian and an incorrect lattice constant has very little effect on the

calculated eigenstates. For the unbounded states, on the other hand, the kinetic energy term is

dominant and an incorrect lattice constant leads to incorrect eigenstates. Since only bounded states

are relevant to channeling radiation, it is accidental that a mistake in the periodicity of the Bloch

eigenstates doesn’t lead to any significant error in the energy spectrum for channeling radiation.
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Figure 4.9: Eigenenergy En for the (110) planar channeling with 14.6 MeV (left figure) and 54
MeV (right figure) beam energy. Green crosses are calculated with the wrong lattice constant
a/
√

2 and red stars are calculated with the correct lattice constant a/
√

8. The grey horizontal
line indicates the maximum of the lattice potential.

4.1.3.3 Eigenfunction for the transverse motion of beam electrons channeling through a

Crystal

The existence of any spatial symmetry in the Bloch eigenfunctions is important to the possibility of

selection rules for transitions of beam electrons between the eigenstates, which in turn determines

the radiation spectrum. Based on the axial channeling model, Chouffani, Genz, and Andersen have

suggested that the rotational symmetry of the eigenfunctions on the transverse plane is the basic

property for the channeling along the [001] and [111] direction by arguing that the first few eigen-

states are deep inside the potential well, bounded with a single string of ions along the channeling

direction and, therefore, very much localized [1, 3, 5]. With an approximation of the rotational

symmetry for the bounded Bloch eigenstates, they suggested a transition selection rule for the

photon emission of channeling radiation. Note that a single potential well in a unit cell for the

channeling along the [001] and [111] direction is approximately rotational symmetric if it is near

the bottom of the potential well. The question is, however, how localized the Bloch eigenfunctions

are. Based on our study, we have concluded that the Bloch eigenfunctions, except the ground state,

are not rotational symmetric under any reasonable approximation and the transition selection rule

based on the rotational symmetry should not be use for the channeling radiation spectrum. In the
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case of the channeling along the [110] direction, moreover, due to the existence of asymmetrical

double wells in a unit cell in the lattice potential, the Bloch eigenfunctions do not have the rota-

tional symmetry at all even at the ground state. Since the existence of the rotational symmetry is a

major disagreement between our study and all the previous channeling radiation studies based on

the axial channeling model, in the section, our discussion will be concentrated on the possibility

of the rotational symmetry in the Bloch eigenfunctions. We will also show that the parity of the

Bloch eigenfunctions is an important feature of the wavefunctions and is the primary reason of the

transition selection rules for the channeling radiation.
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Figure 4.10: The maximal variation of the lattice potential ∆V defined in Eq. (4.25) as a
function of r/ax in a unit cell on the transverse plane (left figure) and the corresponding
potential V (x,y) in contour plot (right figure) for the channeling of germanium with a 9
MeV beam along [001], [111], and [011] crystal direction, respectively, where (ax,ay) are
the lattice constants of the unit cell.

a. Possibility of the rotational symmetry in the lattice potential on the beam

transverse plane
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If a lattice potential is rotational symmetric approximately, it requires V (x,y) = V (r,φ) ' V (r),

where r =
√

x2 + y2 and φ = tan−1(y/x), x⊗y ∈ [−ax,ax)⊗ [−ay,ay), and ax and ay are the lattice

constants of the unit cell of the lattice. To determine whether the potential has the rotational

symmetry, we calculated the maximal variation of a potential with respect to φ at each given r, i.e.

∆V = max
φ∈[0,2π)

[V (r,φ)]− min
φ∈[0,2π)

[V (r,φ)] (4.25)

Figure 4.10 plots ∆V as a function of r/ax for the channeling of germanium with a 9 MeV beam

along [001], [111], and [110] crystal direction, respectively. For a comparison with the variation

of V (x,y) in a unit cell on the transverse plane, the contours of V (x,y) = constant are also included

in Fig. 4.10. As shown in Fig. 4.10, in the cases of the channeling along the [001] and [111]

direction, V (x,y) is independent of φ approximately if r < ax/4 but depends on φ substantially if

r > ax/3. In the case of the [111] direction, because of the additional potential wells at the four

corners of the unit cell, the φ -dependence of V (x,y) is especially strong if r > ax/2. In the case

of the channeling along the [110] direction, V (x,y) depends on φ strongly in whole region of the

unit cell. The rotational symmetry emphasized in the previous works [9, 5, 1] could therefore only

be possible if the eigenfunctions are confined in the region of about r < ax/4 in the case of the

channeling along the [001] and [111] direction. Due to the existence of the additional potential

wells in a unit cell in the case of the [111] direction, however, the Bloch eigenfunctions could

spread into all the potential wells and be delocalized and, consequently, the eigenfunctions could

be highly anisotropic on the transverse plane. Therefore, it is possible that only the case of the

[001] direction could be a candidate of the rotational symmetry.

b. No rotational symmetry in the bounded Bloch eigenfunctions in general

If the lattice potential is approximately rotational symmetric in a unit cell, V (x,y) ' V (r), the

Schrödinger equation for the Bloch eigenstates at Q1 = Q2 = 0 can be written in the polar coordi-
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nate (r,φ) on the transverse plane as

− h̄2

2m

[
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂φ 2

]
un(r,φ)+V (r)un(r,φ) = Enun(r,φ) (4.26)

The eigenstates can thus be written by using the separation of variables as un(r,φ) = Rnl(r)eilφ

with l = 0,1, · · · and the probability density |un(r,φ)|2 of the eigenstate is independent of φ (see

Appendix A for a derivation of un(r,φ) using separation of variables). For the beam channeling

problem, therefore, if the Schrödinger equation in Eq. (4.17) is rotationally symmetric approxi-

mately, the probability densities of the eigenstates solved from Eq. (4.17) should not depend on φ

approximately.

Figures 4.11, 4.12, and 4.13 are the contour plots of probability density |Ψn|2 of the Bloch

eigenfunctions Ψn solved from the Schrödinger equation in Eq. (4.17) with Q1 = Q2 = 0 for the

cases of the channeling germanium with a 9 MeV beam along [001], [111], and [011] crystal

direction, respectively, where all the states plotted are the bounded state and n = 1 is of the ground

state. In the case of the [001] direction, Ψn with n = 1, 3, and 6 are approximately rotational

symmetric, but among them at least Ψ3 is not confined deep inside the potential well. Moreover,

Ψn with n = 2, 4, and 5 are not rotational symmetric. This irregularity of the apparent rotational

symmetry in the wavefunctions cannot easily be explained using the axial channeling model [1, 5,

9] and the transition selection rules based on the rotational symmetry cannot be applied to all the

bounded states which are important to channeling radiation. In the case of the channeling along

the [111] direction, because of the potential wells at the center as well as corners of a unit cell, the

eigenfunctions are nonzero inside all the wells and no rotational symmetry exist even at the ground

state as shown in Fig. 4.11. As shown in Fig. 4.13, all the eigenstates in the case of the channeling

along the [110] direction are highly anisotropic on the beam transverse plane. In conclusion, the

rotational symmetry is not a basic symmetry of the system and the transition selection rules based

on the rotational symmetry is not correct for the channeling radiation spectrum.

c. Parity symmetry of the Bloch eigenfunctions
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In the cases of the channeling along [001] and [111] crystal direction, the lattice potential is an

even function in the both x and y direction in a unit cell on the beam transverse plane, i.e.V (x,y) =

V (−x,y) = V (x,−y), and the Shrödinger equation is invariant under the reflection transformation

in the both directions. The eigenfunctions could thus be an either even or odd function for the both

coordinates, i.e.

Ψ(−ξ ,η) =±Ψ(ξ ,η) and Ψ(ξ ,−η) =±Ψ(ξ ,η)

For the case of the channeling along the [110] direction, the lattice potential is reflection symmetric

only in the x direction ([1̄10] crystal direction) and, therefore, the eigenfunctions could be an either

even or odd function in the x direction, i.e.

Ψ(−ξ ,η) =±Ψ(ξ ,η)

This parity symmetry of the eigenfunctions could determine the transition selection rules for the

channeling radiation spectrum. For the Bloch eigenfunctions

Ψn,Q1,Q2(ξ ,η) =
1

2π
u(ξ ,η)ei2π(Q1ξ+Q2η)

the even (+) and odd (−) parity in ξ and η require


Ψn,Q1,Q2(−ξ ,η) = ±Ψn,−Q1,Q2(ξ ,η)

Ψn,Q1,Q2(ξ ,−η) = ±Ψn,Q1,−Q2(ξ ,η)

which yields 
u(−ξ ,η) = ±u(ξ ,η)

u(ξ ,−η) = ±u(ξ ,η)

Note that the eigenfunctions u(ξ ,η) and its associated eigenvenergies are independent of the signs
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of Q1 and Q2, the reflection symmetry in the Brillouin zone of the Schrödinger equation, see

Section (4.1.2), due to the reflection symmetry of a crystal lattice. For

u(ξ ,η) =
kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

Ck1,k2 ei2π(k1ξ+k2η)

u(−ξ ,η) =
kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

Ck1,k2 ei2π(−k1ξ+k2η)

=
kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

C−k1,k2 ei2π(k1ξ+k2η)

Therefore, the parity symmetry of the Bloch eigenfunctions requires C−k1,k2 =±Ck1,k2 and Ck1,−k2 =

±Ck1,k2 for the even (+) or odd (−) parity in ξ and η , respectively. It should be noted that when an

eigenstate un is degenerate, a numerically obtained eigenstate may not necessarily be an eigenstate

of the parity operator and, therefore, not necessarily be an even or odd function, even through it

can be since the Hamiltonian and the parity operators commute. We index a degenerate eigen-

state as un(i) where n is the label of the eigenstate and i indexes the degenerate state for state

labeled n. As we discussed in Section 4.1.3.2c, the Bloch eigenstates solved from Eq. (4.17) are

highly degenerate. From the contour plots of the probability density |Ψn|2 of the Bloch eigen-

functions solved from Eq. (4.17), one can clear see the mirror symmetry of |Ψn|2 in the x-y

plane in the cases of the [001] and [111] direction and in the x direction alone in the case of the

[110] direction (see Figs. 4.11, 4.12, and 4.13), which suggests a parity symmetry of un, where

Ψn(ξ ,η) = un(ξ ,η)e−i2π(Q1ξ+Q2η)/2π . Base on an argument of the continuity of un on the x-y

plane, one can determine the parity of the eigenfunctions from the contour plots in most cases in

Figs. 4.11, 4.12, and 4.13, but for a few cases the parity has to be determined by examining the

symmetry in {Ck1,k2} that are plotted in Fig. 4.14–4.20 for some examples. Table 4.5 lists the par-

ity of un(ξ ,η) for the first few Bloch eigenstates for the channeling along [001] and [111] crystal

direction and shows that they all have the defined parity. For the case of the channeling in [110]

crystal direction, the parity symmetry exists in the y direction, but does not exist in the x direction

because the asymmetry of of the lattice potential in that direction.
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Table 4.5: Parity of the bounded Bloch eigenstates un(i) at Q1 = Q2 = 0 for the channeling
of germanium with a 9 MeV beam along [001] and [111] crystal direction, respectively,
where n = 1 is of the ground state. The even (+) and odd (-) in x means un(i)(−x,y) =
un(i)(x,y) and un(i)(−x,y) = −un(i)(x,y), respectively, and similar in the y direction. The
numbers n(i) represents the nth eigenstate and (ith) is the sequential numbering for all the
degenerate eigenstates within the nth state. For example in [001] case, the 1st excited state
(n = 2) has two degenerate states that are labeled as 2(1) and 2(2), respectively.

parity of un(i)(x,y) for [001]

n(i) x y

1(1) even even

2(1) u2(1)(−x,−y) = +u2(1)(x,y)

2(2) u2(2)(−x,−y) =−u2(2)(x,y)

3(1) even even

4(1) even even

4(2) even even

5(1) u5(1)(−x,−y) = +u5(1)(x,y)

5(2) u5(2)(−x,−y) =−u5(2)(x,y)

6(1) even even

parity of un(i)(x,y) for [111]

n(i) x y

1(1) even even

1(2) even even

2(1) even odd

2(2) even odd

2(3) odd even

2(4) odd even

3(1) even even

3(2) even even

4(1) odd odd

4(2) odd odd

4(3) even even

4(4) even even

5(1) odd even

5(2) even odd

5(3) even odd

5(4) odd even

6(1) even odd

6(2) odd even

6(3) even odd

6(4) odd even

6(5) even even

6(6) even even
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Figure 4.11: Contour plot of probability density |Ψn|2 = 〈Ψn |Ψn〉 of the Bloch eigenfunctions
at Q1 = Q2 = 0 for the channeling of germanium with a 9 MeV beam along [001] crystal
direction, where n(i) labels all the degenerate states (i) sequentially for eigenstate “n". All the
states plotted are the bounded states and n = 1 is of the ground state.
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Figure 4.12: Same as Fig. 4.11 but for channeling along [111] crystal direction. The cases of
1(2), 2(2), 2(4), and 3(2) are similar to the cases of 1(1), 2(1), 2(3), and 3(1), respectively.
For eigenstate n≥ 4, only a few examples are plotted.
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Figure 4.13: Same as Fig. 4.11 but for channeling along [110] crystal direction, where only
an example for each eigenstate “n" are plotted.
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Figure 4.14: Ck1,k2 for Bloch eigenstate u2(2) of the case in Fig. 4.11 with n = 2 v.s. k2 at
k1 = −3 (top-left figure) and k1 = 3 (top-right figure) and v.s. k1 at k2 = −3 (bottom-left
figure) and k2 = 3 (bottom-right figure), respectively, which suggests C−k1,−k2 = −Ck1,k2 or
u2(2)(−x,−y) = −u2(2)(x,y) for the channeling in the [001] crystal direction of germanium.
In this case, Ck1,k2 is real.
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Figure 4.15: Ck1,k2 for Bloch eigenstate u5(1) of the case in Fig. 4.11 with n = 5 v.s. k2 at
k1 = −3 (top-left figure) and k1 = 3 (top-right figure) and v.s. k1 at k2 = −3 (bottom-left
figure) and k2 = 3 (bottom-right figure), respectively, which suggests C−k1,−k2 = −Ck1,k2 or
u5(1)(−x,−y) = −u5(1)(x,y) for the channeling in the [001] crystal direction of germanium.
In this case, Ck1,k2 is real.
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Figure 4.16: Ck1,k2 for Bloch eigenstate u2(1) of the case in Fig. 4.12 with n = 2 v.s. k2 at
k1 =−3 (top-left figure) and k1 = 3 (top-right figure) and v.s. k1 at k2 =−3 (bottom-left figure)
and k2 = 3 (bottom-right figure), respectively, which suggests C−k1,k2 = Ck1,k2 and Ck1,−k2 =
−Ck1,k2 or u2(1)(−x,y) = u2(1)(x,y) and u2(1)(x,−y) = −u2(1)(x,y) for the channeling in the
[111] crystal direction of germanium. In this case, Ck1,k2 is real.
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Figure 4.17: Ck1,k2 for Bloch eigenstate u4(1) of the case in Fig. 4.12 with n = 4 v.s. k1 at k2 =
−3 (left figure) and v.s. k2 at k1 =−3 (right figure), which suggests u4(1)(−x,y) =−u4(1)(x,y)
and u4(1)(x,−y) =−u4(1)(x,y) for the channeling in the [111] crystal direction of germanium.
In this case, Ck1,k2 is real.

Figure 4.18: Ck1,k2 for Bloch eigenstate u5(1) of the case in Fig. 4.12 with n= 5 v.s. k1 at k2 = 3
(left figure) and v.s. k2 at k1 = 3 (right figure), which suggests u5(1)(−x,y) =−u5(1)(x,y) and
u5(1)(x,−y) = u5(1)(x,y) for the channeling in the [111] crystal direction of germanium. In
this case, Ck1,k2 is real.
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Figure 4.19: Ck1,k2 for Bloch eigenstate u6(1) of the case in Fig. 4.12 with n = 6 v.s. k1 at
k2 = 3 (left figure) and v.s. k2 at k1 = 3 (right figure), which suggests u6(1)(−x,y) = u6(1)(x,y)
and u6(1)(x,−y) =−u6(1)(x,y) for the channeling in the [111] crystal direction of germanium.
In this case, Ck1,k2 is real.

Figure 4.20: Ck1,k2 for the complex Bloch eigenstate u4(1) of the case in Fig. 4.13 with n = 4
v.s. k1 at k2 = −10, the left and right figure are for the real and imaginary parts of Ck1,k2 ,
respectively, which suggests u4(1)(x,−y) =−u4(1)(x,y) for the channeling in the [110] crystal
direction of germanium.

4.2 Transition Probability for Channeling Radiation

In this section, we will study the transition probability of beam electrons between two eigenstates

for the transverse motion of the electrons when the beam is channeling through a crystal. This

transition probability has been studied before by Andersen, Chouffani, and Klein [1, 3, 2] using a

rotational symmetry approximation of the eigenstates in the axial channeling model. As it has been

shown in Section 4.1.3.3, the Bloch eigenstates for the transverse motion of the beam electrons

76



doesn’t have a rotational symmetry even approximately and the transition probability calculated

with the assumption of the rotational symmetry is not applicable to the cases we consider and our

result is, therefore, not consistent with the result from the previous axial channeling model [1, 3, 2].

4.2.1 Perturbation Hamiltonian

Consider a weak time-dependent perturbation of an electromagnetic (EM) field, in the beam rest

frame, the Hamiltonian for a beam electron in a crystal lattice is

H(~r, t) =
(~p− e~A/c)2

2me
+ γV (~r)+ eΦ

≈ ~p 2

2me
+ γV (~r)− e

2mec
~A ·~p+ eΦ (4.27)

where the unperturbed Hamiltonian is

H0(x,y) =
~p 2

2me
+ γV (~r)

with V (~r) being the lattice potential, (Φ(t),~A(t)) is the 4-vector potential for the perturbative EM

field, and

H1(x,y, t) =−
e

2mec
~A ·~p+ eΦ

is the perturbation. When an electron beam channels through a crystal, it produces both Brem-

strahlung and channeling radiation. The Bremsstrahlung with a wide range of frequencies would

be sufficient for generating a perturbative EM field. With the Coulumb gauge of EM wave without

free charges, the perturbative EM field can be written as

Φ = 0 and ~A = ~A0e−i(ωpt−~k·~r)

where ωp and~k are the frequency and wave vector of the EM wave, respectively. Note that the

perturbative EM wave is the same EM wave produced from the electron transition between differ-

77



ent energy eigenstates. With the maximum transition of 100 eV in the rest frame, the wave length

of ~A is roughly 2×10−6 m and is much larger than the characteristic length scale of the problem,

the lattice constant of the crystal Å which is in a scale of 10−10 m. The~r-dependence of ~A can

therefore be neglected, which is called the electric dipole approximation [18]. Considering the

electron motion on the beam transverse (x-y) plane and assuming A0x = A0y = A0, the t-dependent

perturbative Hamiltonian can thus be written as

H1(x,y, t) =
(

eh̄A0

2mec

)
cos(ωpt) Ĥ ′1

where

Ĥ ′1 =−i
(

∂

∂x
+

∂

∂y

)
=−i

(
1
ax

∂

∂ξ
+

1
ay

∂

∂η

)
(4.28)

4.2.2 Transition Probability

For the Bloch eigenstates

∣∣∣~Q,n
〉
= Ψn,~Q(ξ ,η) =

1
2π

un,~Q(ξ ,η)ei2π(Q1ξ+Q2η)

the transition probability for an electron jumping from an initial state of (n, ~Q) to a final state of

(m, ~Q′) due to the perturbation of H1 is calculated from
〈
~Q′,m

∣∣∣H1

∣∣∣~Q,n
〉

. Since the constant coef-

ficient eA0h̄/(2mec) in H1 only scales the probability overall, we can disregard it in the discussion

and the transition probability matrix can then be calculated from

〈
~Q′,m

∣∣∣ Ĥ ′1 ∣∣∣~Q,n
〉
=

ˆ
∞

−∞

Ψ
∗
m,~Q′

Ĥ ′1 Ψn,~Q dξ dη (4.29)
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where

Ĥ ′1 Ψn,~Q =
−i
2π

(
1
ax

∂

∂ξ
+

1
ay

∂

∂η

)
un,~Q(ξ ,η)ei2π(Q1ξ+Q2η)

=
−i
2π

ei2π(Q1ξ+Q2η)

(
1
ax

∂

∂ξ
+

1
ay

∂

∂η

)
un,~Q +2π

(
Q1

ax
+

Q2

ay

)
Ψn,~Q

Since the second term in Ĥ ′1Ψn,~Q vanishes in Eq. (4.29) because of the orthogonal condition

between Ψn,~Q and Ψm,~Q′ with m 6= n, Eq. (4.29) becomes

〈
~Q′,m

∣∣∣ Ĥ ′1 ∣∣∣~Q,n
〉

=
−i

(2π)2

ˆ
∞

−∞

ei2π[(Q1−Q′1)ξ+(Q2−Q′2)η ]u∗
m,~Q′

(
1
ax

∂un,~Q

∂ξ
+

1
ay

∂un,~Q

∂η

)
dξ dη (4.30)

With un,~Q solved in a Fourier expansion,

un,~Q =
kmax

∑
k1,k2=−kmax

Ck1k2(
~Q,n)ei2π(k1ξ+k2η)

the integrals in Eq. (4.30) are simply

1
(2π)2

ˆ
∞

−∞

ei2π[(Q1−Q′1)ξ+(Q2−Q′2)η ] ei2π[(k1−l1]ξ+(k2−l2)η ] dξ dη

= δk1l1δk2l2δ (Q1−Q′1)δ (Q2−Q′2) (4.31)

where (l1, l2) are the Fourier expansion indices for u∗
m,~Q′

and the separation of the delta functions

for (k1,k2, l1, l2) and (Q1,Q2,Q′1,Q
′
2) is because (k1,k2, l1, l2) are integers while (Q1,Q2,Q′1,Q

′
2)

are fractions. The transition probability matrix can therefore be written as

∣∣∣〈~Q′,m∣∣∣ Ĥ ′1 ∣∣∣~Q,n
〉∣∣∣2 = T (n,m, ~Q)δ (~Q− ~Q ′) (4.32)
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where with Eqs. (4.30) and (4.31)

T (n,m, ~Q) =

∣∣∣∣∣ 1
(2π)2

ˆ
∞

−∞

u∗
m,~Q

(
1
ax

∂un,~Q

∂ξ
+

1
ay

∂un,~Q

∂η

)
dξ dη

∣∣∣∣∣
2

=

∣∣∣∣∣ kmax

∑
k1,k2=−kmax

Ck1,k2(
~Q,n)C∗k1,k2

(~Q,m)

(
k1

ax
+

k2

ay

)∣∣∣∣∣
2

(4.33)

If the Bloch eigenfunctions of the initial state un and final state um have the same parity in both

x and y direction, T (n,m, ~Q) = 0 from Eq. (4.33) and the transition between those two states is

forbidden. A transition is only allowed between two eigenstates that have opposite parity in either x

or y direction. Tables 4.6 and 4.7 list the allowed transitions between the first six eigenenergy states

with all the degenerate eigenstates at Q1 = Q2 = 0 for the channeling of germanium with a 9 MeV

electron beam along [001] and [111] crystal direction, respectively. All the allowed transitions

listed in Tables 4.6 and 4.7 are consistent with the selection rule based on the parity of the Bloch

eigenstates listed in Table 4.5. In the case of channeling in the [110] direction, because the parity

exists only in the x direction and no other apparent symmetry exists in the y direction for the lattice

potential in a unit cell on the transverse plane, there is no true forbidden transition systematically

between the initial and final state even through a few of the transitions dominate probably because

of larger overlap of their eigenfunctions. For the total transition probability between two different

energy eigenstates disregard the difference of the degenerate states, we define

T (En,Em, ~Q) = ∑
degenerate states

of n and m



T (n,m, ~Q) (4.34)

where the summation is over all the pairs of degenerate states between eigenenergy En and Em.

Figure 4.21 shows the values of T (En,Em, ~Q) at Q1 = Q2 = 0 calculated from Eq. (4.33) with the

Block eigenfunctions obtained numerically from Eq. (4.17) for a 9 MeV electron beam channeling

through germanium along [001], [111], and [110] crystal direction, respectively. The result is
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consistent with the selection rule based on the parity of the Bloch eigenstates listed in Table 4.5

for the case of the [001] and [111] direction. In the cases of channeling in the [110] direction, the

result confirms that there is no any systematical forbidden transition between any pair of energy

eigenstates.

For the radiation spectrum observed in the lab frame, the emitted photon energy ∆E for an

electron transition from eigenstate En(~Q) to eigenstate Em(~Q) is

∆E =
En−Em

γ(1−β cosθ)
(4.35)

where the factor γ(1−β cosθ) is from the relativistic doppler effect and θ is the angle between the

beam traveling direction and the line from the beam to the observation point. For θ = 0 and β ' 1,

(1−β cosθ)−1 ' 2γ2 and ∆E ' 2γ(En−Em). In the forward radiation cone of θ ' 0, therefore,

the radiation energy is boosted relativistically by a factor of 2γ to its maximum value in terms

of angular dependence of the radiation energy. For the channeling radiation spectrum, one should

count all the probabilities of transitions between bounded Bloch eigenstates with 0≤Q1 < 1/2 and

0≤Q2 < 1/2 that yield the same radiation energy of ∆E = 2γ(En−Em) for the forward radiation.

The total transition probability for the forward radiation energy ∆E in the lab frame is thus

Tp(∆E) = ∑
All n,m,~Q with

2γ(En−Em) = ∆E±δ



T (En,Em, ~Q) (4.36)

where 2δ is the width of the energy bins in which all the possible transitions with 2γ(En−Em) =

∆E±δ are counted for the same radiation energy ∆E. Note that Tp(∆E) is the channeling radiation

spectrum when the occupation number of beam electrons on the Bloch eigenstates is uniform.
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Table 4.6: Allowed transitions between the first six eigenenergy states with all the degen-
erate eigenstates at Q1 = Q2 = 0 for the channeling of germanium with a 9 MeV electron
beam along [001] crystal direction, where n and m with bolded numbers are of the initial
and final state, respectively, and the numbers in parenthesis is the sequential numbering for
all the degenerate eigenstates. For example, the 1st excited state (m = 2) has two degener-
ate states that are labeled with number 2(1) and 2(2), respectively, and 4(2)→ 2(2) means
an allowed transition from one of n = 4 eigenstate to one of n = 2 eigenstates.

n

m
1 (1) 2 (1,2) 3 (1) 4 (1,2) 5 (1,2)

6 (1) none 6(1)→ 2(2) none none 6(1)→ 5(2)

5 (1,2) 5(2)→ 1(1) none 5(2)→ 3(1) 5(1)→ 4(1)

5(2)→ 4(2)

4 (1,2) none 4(1)→ 2(1) none

4(2)→ 2(2)

3 (1) none 3(1)→ 2(2)

2 (1,2) 2(2)→ 1(1)
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Table 4.7: Same as Table 4.6 but for the channeling along [111] crystal direction.

n

m 1 2 3 4 5

(1,2) (1,2,3,4) (1,2) (1,2,3,4) (1,2,3,4)

6

none

6(5)→ 2(2)

none

6(1)→ 4(2), 6(1)→ 4(4) 6(5)→ 5(3)

(1,2 6(5)→ 2(4) 6(2)→ 4(1), 6(2)→ 4(3) 6(5)→ 5(4)

3,4 6(6)→ 2(1) 6(3)→ 4(1), 6(3)→ 4(3) 6(6)→ 5(1)

5,6) 6(6)→ 2(3) 6(4)→ 4(2), 6(4)→ 4(4) 6(6)→ 5(2)

5
5(1)→ 1(2)

none

5(1)→ 3(2) 5(1)→ 4(2), 5(1)→ 4(4)

5(2)→ 1(2) 5(2)→ 3(2) 5(2)→ 4(2), 5(2)→ 4(4)

(1,2 5(3)→ 1(1) 5(3)→ 3(1) 5(3)→ 4(1), 5(3)→ 4(3)

3,4) 5(4)→ 1(1) 5(4)→ 3(1) 5(4)→ 4(1), 5(4)→ 4(3)

4

none

4(1)→ 2(2), 4(3)→ 2(2)

none
4(1)→ 2(4), 4(3)→ 2(4)

(1,2 4(2)→ 2(1), 4(4)→ 2(1)

3,4) 4(2)→ 2(3), 4(4)→ 2(3)

3

none

3(1)→ 2(2)

3(1)→ 2(4)

(1,2) 3(2)→ 2(1)

3(2)→ 2(3)

2
2(1)→ 1(2)

2(2)→ 1(1)

(1,2 2(3)→ 1(2)

3,4) 2(4)→ 1(1)
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Figure 4.21: Numerically calculated T (n,m, ~Q) at Q1 = Q2 = 0 for a 9 MeV electron beam
channeling through germanium along [001], [111], and [110] crystal direction, respectively,
where the values of T are scaled in such a way that the largest value in each case is 1. Initial
(n) and final (m) states are along the vertical and horizontal axis, respectively. If T is listed as
10− j, it implies 10−( j+1) < T < 10− j.
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4.3 Compare with Planar and Axial Channeling Model

The channeling radiation has traditionally been studied computationally using two different mod-

els with very different approximations, the one-dimensional planar [4] and two-dimensional axial

channeling model [9], and the results calculated from these two models are quite different. In order

to sort out the discrepancy between the planar and axial channeling model, in this study we have

developed a third approach, a two-dimensional exact calculation of the channeling radiation. Note

that all the three approaches are based on the same basic assumption that the channeling radiation

is due to the electron transitions between bounded Bloch eigenstates for the transverse motion of

beam electrons and start with the same model of single electron-ion interaction for beam electrons

in a crystal. In the planar channeling model, however, the transverse motion of beam electrons

is assumed to be all aligned in a single crystal direction during the channeling and approximated

as a one-dimensional motion. This one-dimensional approximation is valid only if the coupling

between the original two-dimensional motion of the electrons in the beam transverse plane is neg-

ligible. In the axial channeling model, on the other hand, the Bloch eigenstates for the transverse

motion of beam electrons in a crystal are solved from the two-dimensional Shrödinger equation but

with an approximate lattice potential on the transverse plane. In our approach, the Bloch eigen-

states are solved without any approximation from the two-dimensional Shrödinger equation with

an exactly calculated lattice potential. Our two-dimensional exact calculation can therefore be

used as a basis for examining the validity of the approximations in the planar and axial channeling

model.

a. Compare with Planar Channeling Model

To simplify the computational task of solving two-dimensional Schrödinger equation for the trans-

verse motion of beam electrons in a crystal, the channeling radiation has been studied approxi-

mately with a one-dimensional planar channeling model [4]. In the planar channeling model, the

transverse motion of beam electrons is approximated as a one-dimensional motion, which is valid
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only if the coupling between the original two-dimensional motion of the electrons in the trans-

verse plane is negligible. As shown by the two-dimensional solution of the Bloch eigenstates in

Figs. 4.11, 4.12, and 4.13, however, the electron motion in the transverse plane is strongly coupled

and cannot be decoupled into two independent motion (separation of variables) in two required

orthogonal directions. This strong coupling in the electron motion is because the two directions of

the transverse plane is coupled in the lattice potential that dominates the Schrödinger equation for

the transverse motion of the electrons in the crystal. The coupling between two-dimensional trans-

verse motion of the electrons is therefore not negligible and the one-dimensional planar channeling

model is likely not appropriate for studying the channeling radiation.

In order to compared with the planar channeling model, one should first understand the beam

channeling direction in the planar channeling model. In the case of (hkl) planar channeling, beam

electrons are assumed to channel through a crystal along a direction that is parallel to (hkl) crystal

planes while the transverse motion of the electrons is assumed to be one dimensional and per-

pendicular to the (hkl) plane under the influence of a periodic potential that is the average of the

lattice potential on the (hkl) plane. Let x be the coordinate along [hkl] crystal direction, the periodic

potential for the one-dimensional transverse motion is calculated from

V(hkl)(x) =
1
L2

ˆ L

0

ˆ L

0
V (x,y,z)dydz (4.37)

where V (~r ) is the three-dimensional lattice potential of the crystal, (y,z) is a pair of orthogonal co-

ordinates in the (hkl) plane, and L is the size of the crystal. Since for any rotational transformation

of (y,z) in the (hkl) plane (y,z) = R(y1,z1),

V(hkl)(x) =
1
L2

ˆ L

0

ˆ L

0
V (x,y,z)dydz =

1
L2

ˆ L

0

ˆ L

0
V (x,R(y1,z1))dy1dz1

where V (x,R(y1,z1)) is the lattice potential of the crystal in the coordinate of (x,y1,z1) and the

determinant of Jacobian of the transformation is one. The calculation of the one-dimensional po-

tential V(hkl)(x) for the planar channeling model is therefore independent of the channeling direc-
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tion as long as it is parallel to the channeling plane and, for the original three-dimensional motion

of the beam electrons in the crystal, the longitudinal motion and the other degree of freedom of the

transverse motion can be in any two orthogonal directions in the channeling plane. In the (001)

planar channeling case, for example, the one-dimensional transverse motion is along [001] crystal

direction and the beam could be channeling in [100] or [110] direction, or even not aligned with

any crystal direction as long as parallel to the (001) plane. The planar channeling model has been

studied previously for the channeling of diamond along (100), (110) and (111) crystal plane [4].

The following table 4.8 list a few possibilities of the beam channeling direction in those planar

channeling cases, where ~ez is the beam channeling direction and ~ex and ~ey are two orthogonal

directions in the beam transverse plane.

Table 4.8

~ex [100] [001] [110] [110] [11̄0] [111]

~ey [010] [11̄0] [1̄10] [001] [112̄] [1̄1̄2]

~ez [001] [110] [001] [11̄0] [111] [11̄0]

Note that~ex = [100] and~ex = [001] as well as~ex = [110] and~ex = [11̄0] are a pair of identical cases

in the planar channeling model because of the 4-fold rotational symmetry on the (001) crystal

plane of a cubic lattice. Similarly, for the three-dimensional motion of the beam electrons, the

channeling direction of~ez = [11̄0] and~ez = [01̄1] are identical to~ez = [110]. Therefore from table

4.9, results of the planar channeling model can be compared with our two-dimensional calculation

of the channeling radiation in the following manners.

Table 4.9

Crystal Plane of 1D Planar Model Beam Direction of 2D Calculation

(100) [001] or [110]

(110) [001], [110] or [111]

(111) [110]
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To compare with the results of the planar channeling model, we have therefore performed the

two-dimensional calculation of the channeling radiation for a 14.6 MeV electron beam channeling

along [001] and [110] crystal direction. Figure 4.22 plots the Bloch eigenenergies for the trans-

verse motion of beam electrons obtained from our two-dimensional exact calculation as well as the

eigenenergies from Azedegan’s calculation based on the planar channeling model [4]. As shown

in the figure, the one-dimensional approximation of the planar channeling model yields a very

different set of the bounded Bloch eigenstates. In all the cases, the one-dimensional calculation

yields many fewer bounded eigenenergy states than there should be and the energy gaps between

bounded eigenenergy states are also very different. Therefore, the one-dimensional approximation

significantly distorts the eigenstates of the transverse motion of beam electrons. In Fig. 4.23, the

transition probability calculated from Eq. (4.36) with the two-dimensional exact calculation of the

Bloch eigenstates is plotted as a function of photon energy and it shows a much richer transition

spectrum than just a few transition lines from the one-dimensional calculation. The dense transi-

tion lines of the two-dimensional calculation is due to many nearly degenerate Bloch eigenstates

especially near the maximum of the lattice potential. The major transition lines from the exact

calculation is also very different from the one-dimensional approximation. The one-dimensional

planar channeling model is therefore not appropriate for studying the channeling radiation. In Ta-

ble 4.10, the experimentally measured radiation spectrum from Azedegan’s paper [4] are compared

with the possible transition lines calculated from the one-dimensional approximation as well as the

two-dimensional exact calculation and it shows that the experimental data can be better explained

by the two-dimensional calculation. It should be noted, however, that the calculated transition

probability should not be compared with only a few measured radiation lines without the infor-

mation of the distribution of beam electrons in the transverse momentum space. The radiation

spectrum depends not only on the transition probability between the Bloch eigenstates but also on

the electron occupation on the eigenstates which depends on the transverse momentum distribution

of beam electrons.
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Figure 4.22: Eigenenergies (red horizontal lines) at ~Q = 0 for the transverse motion of beam
electrons in the beam rest frame for a 14.6 MeV beam channeling through diamond along
[001], [110], and [111] crystal direction, respectively. Top and bottom-left figures are the
results from our two-dimensional exact calculation, where the blue curve is the lattice potential
γV (ξ ,η) in the beam rest frame as a function of η at ξ =η for the [001] direction and at ξ = 0
for the [110] and [111] direction, respectively, with ξ = x/ax and η = y/ay. The values of ax
and ay are given in Table 4.1. The bottom-right figure is the results of Azedegan’s calculation
based on the planar channeling model, where only bounded or possibly bounded states are
included [4].
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Figure 4.23: Total transition probability between bounded Bloch eigenstates with ~Q ∈
[0,0.5)⊗ [0,0.5) that yield radiation energy ∆E for the channeling of diamond with a 14.6
MeV beam along [001] (top-left), [110] (top-right), and [111] (bottom-left) crystal direction,
respectively, where ∆E is in the lab frame and the width of the energy bin is 2δ = 0.05 KeV.
Tp is calculated from Eq. (4.36) with the Bloch eigenstates obtained by the two-dimensional
exact calculation. The label of n→m near the top of a peak marks a transition from eigenstate
En to eigenstate Em for that peak.
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Table 4.10: Experimentally measured radiation lines from Azadegan’s paper [4] in com-
pared with the possible transition lines between the bounded Bloch eigenstates obtained
with the one-dimensional (1D) approximation of the planar channeling model from Azade-
gan’s paper [4] and from the two-dimensional (2D) exact calculation for the channeling
of diamond with a 14.6 MeV beam along [001] and [110] crystal direction, respectively,
where the unit of photon energy ∆E is KeV in the lab frame and n→ m means a transition
from En to Em with E1 being the ground state. For the 1D planar model, the crystal plane
(hkl) labels the plane for motion of beam electrons during the channeling

1D planar model measured 2D exact calculation

Beam Transition ∆E ∆E Beam Transition ∆E

(100) 2→ 1 9.56 9.38 [001] 7→ 5 8.99 to 9.76

(110) 2→ 1 17.06 16.54 [110]

25→ 13 16.54

27→ 14 16.51

30→ 16 16.53

31→ 18 16.58

33→ 20 16.51

34→ 21 16.52

(110) 3→ 2 7.13 7.89 [110]

6→ 5 7.93

28→ 21 7.85

29→ 22 7.85

31→ 24 7.85

31→ 25 7.87

31→ 26 7.90

32→ 27 7.88

34→ 28 7.89

34→ 29 7.91

(111) 3→ 2 11.69 11.07 [110]

12→ 8 11.05

16→ 12 11.05

25→ 15 11.08

29→ 16 11.1

41→ 20 11.05

(111) 4→ 3 9.26 8.14 [110]

6→ 5 7.93

29→ 19 8.21

35→ 21 8.31

(111) 5→ 4 6.83 6.05 [110]

9→ 7 6.23

6→ 5 6.71

26→ 18 6.24

29→ 20 6.18

35→ 25 6.05
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b. Compare with Axial Channeling Model and Experimental Data

The channeling radiation spectrum has also been calculated previously using the axial channeling

model and studied experimentally for the cases of diamond along [001] crystal direction with 16.9

and 30.5 MeV beam energy [2], respectively, and along the [110] direction with 5.2 and 9 MeV

beam energy [5], respectively. For [111] crystal direction, only one experimental study has been

done with a 4 MeV beam channeling through silicon lattice [1]. To compared with the results

from the previous studies, we have calculated the total transition probability Tp(∆E) in Eq. (4.36)

between all the bounded Bloch eigenstates for those cases using our method. As shown in Figs.

4.24, 4.25, and 4.26, the transition spectrum obtained are very different from the result of the axial

channeling model in terms of both broad bands and dominate peaks of the transition probability.

For the cases of the [001] and [110] direction, the broad bands at lower energy of the transition

spectrum are due to the transitions between many Bloch eigenstates with the eigenenergies in a

nearly continuous band near the maximum of the lattice potential well. In the case of the [111]

direction, because of a very low beam energy there are only very few bounded states and there

is no continuous energy band in the bounded state. Therefore, the transition spectrum contains

only a few peaks as shown in Fig. 4.26. From the axial channeling model, on the other hand,

the transition spectrum contains only four and six possible transitions in the cases of the [001]

direction with 16.9 and 30.5 MeV beam, respectively, and only three possible transitions in the

case of the [110] direction with 5.2 and 9 MeV beam. It is not clear why there are only a small

number of transition possibilities from the axial channeling model. It could be either because

only the dominate transition peaks were discussed in their papers or due to the use of much more

strict transition selection rule based on the approximation of a rotational symmetry of the system. It

should be noted, as shown in Table 4.11, that both our calculation and the calculation with the axial

channeling model are based on the same basic channeling radiation model, in which the radiation

is assumed to be from the transitions between the Bloch eigenstates for the transverse motion of

beam electrons, and the fundamental difference in the two different treatments is the additional

approximations in the axial channeling model as our treatment is exact from the basic channeling
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radiation model to the transition spectrum. The very different transition spectrum obtained from

these two different treatments only suggests that the approximations used in the axial channeling

model is not appropriate for studying the channeling radiation with the conditions that we are

interested in.

For all the cases in Figs. 4.24, 4.25, and 4.26, the radiation spectrum was measured experimen-

tally and a few radiation peaks from the measured continuous spectrum were given in their papers

[1, 2, 5]. As shown in Figs. 4.24 and 4.25, the measured radiation peaks matches very well with

the calculated transition spectrum using the axial channeling model while those measurements do

not agree with our calculation. It is rather puzzling that the result from a more accurate calculation

does not agree with the experiments while the calculation with additional approximations matches

with the experiment nicely. Further experimental study with a better control of experimental con-

ditions such as the radiation detection conditions and beam conditions (electron distribution in the

transverse momentum space) is therefore needed to sort out this puzzle.
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Table 4.11: Similarities and differences between our two-dimensional exact calculation and the
axial and planar channeling model in the calculation of the channeling radiation.

2D exact calculation
Axial

Channeling Model

Planar

Channeling Model

basic

assumption

Channeling radiation is due to electron transitions between Bloch eigenstates for

the transverse motion of beam electrons.

single

electron-ion

interaction

Born approximation for scattering with fitting parameters from experimental data.

All three methods can also use other interaction models.

lattice

potential

in beam

transverse

plane

Potential is calculated

without any approxima-

tion and not rotationally

symmetric in the trans-

verse plane.

Potential is calculated

approximately and dif-

ferent from the one cal-

culated exactly.

Potential is only calcu-

lated along one direction

in the transverse plane

Bloch

eigenstates

Eigenstates are calculated

without any approxima-

tion and, in general, not

rotationally symmetric in

the transverse plane. The

relative numerical errors

of the calculation are un-

der 10−6.

It’s not clear how they

were obtained numeri-

cally and how large the

numerical errors are.

Eigenstates for the 1D

motion are solved from

1D Schrödinger equa-

tion

transition

probability

Transition probabilities

are calculated from 2D

eigenstates.

Transition probabilities

were discussed with the

assumption of a rota-

tional symmetry in the

eigenfunctions

Transition probabilities

are calculated from 1D

eigenstates.

radiation

spectrum
accurate 2D calculation

approximate 2D

calculation

approximate due to 1D

calculation
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Figure 4.24: Total probability of the transitions between bounded Bloch eigenstates with ~Q ∈
[0,0.5)⊗ [0,0.5) that yield radiation energy ∆E for the channeling of diamond along [001]
crystal direction with 16.9 and 30.5 MeV beam energy, respectively, where ∆E is observed in
the lab frame and the width of the energy bin is 2δ = 0.05 KeV. Left figures are the spectrum
calculated from our model with Eq. (4.36) and the right figures are the same spectrum over
plotted with the result from Klein’s calculation based on the axial channeling model (green
lines) and Klein’s experimental measurement (red lines) [2].
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Figure 4.25: Same as Fig. 4.24 but for the channeling of diamond along [110] crystal direction
with 9 and 5.2 MeV beam energy, respectively. Left figures are the spectrum calculated from
our model with Eq. (4.36) and the right figures are the same spectrum over plotted with the
result from Genz’s calculation based on the axial channeling model (green lines) and Genz’s
experimental measurement (red lines) [5].
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Figure 4.26: Same as Fig. 4.24 but for the channeling of Silicon along [111] crystal direction
with 4 MeV beam energy, where the Blue is the spectrum calculated from our model with Eq.
(4.36) and the Red is the experimental measurement from Anderson’s paper [1].
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Chapter 5

Beam Structures Affects on Channeling

Spectrum

The observed channeling radiation spectrum is determined by the transition probabilities between

the Bloch eigenstates for the transverse motion of beam electrons together with the occupation

number of the beam electrons at each eigenstate. In this chapter, we will study the electron oc-

cupation number that is determined by the distribution of the beam electrons in the transverse

momentum space. Prior to entering the crystal lattice, the beam electrons move non-relativistically

as free particles in the transverse plane. Once entering the crystal, each electron has certain prob-

abilities to occupy the Bloch eigenstates. An electron with sufficiently small (large) transverse

momentum has a high probability to occupy the bounded (unbounded) Bloch eigenstates. The

electrons at the bounded eigenstates are confined to a small region in the unit cell of the crys-

tal lattice in the transverse plane when the beam passes through the crystal and, therefore, they

are channeling through the crystal without experiencing any random scattering from the lattice.

The electrons at the unbounded eigenstates, on the other hand, are not confined in the transverse

plane and, therefore, randomly scattered by and cannot channel through the crystal. For channel-

ing radiation, we will focus only on the beam electrons at the bounded Bloch eigenstates for their

transverse motion.
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5.1 Probabilities of a beam electron at Bloch eigenstates

When an ultra-relativistic beam enters a crystal lattice, the beam electrons interact with the lattice

potential and occupy the Bloch eigenstates for the beam transverse motion of the electrons. Con-

sidering a beam electron moves with momentum ~p = (px, py) in the transverse plane in the beam

rest frame before entering the crystal, the initial wavefunction of the electron is

Φe(~p) =
1

2π
ei(pxx+pyy)/h̄

Inside the lattice potential in the transverse plane, the probabilities of the electron at the Bloch

eigenstates can be calculated by an expansion of Φe(~p) with the Bloch eigenstates,

Φe(~p) =

1/2ˆ

0

1/2ˆ

0

d~Q∑
n

〈
Φe(~p)

∣∣∣Ψn,~Q

〉
Ψn,~Q(x,y) (5.1)

where

Ψn,~Q(x,y) =
1

2π

kmax

∑
k2=−kmax

kmax

∑
k1=−kmax

Ck1,k2(
~Q ,n)ei2π[(k1+Q1)x/ax+(k2+Q2)y/ay] (5.2)

is the Bloch eigenstates in the first Brillouin zone, n numbers all the eigenenergy states including all

the degenerate eigenstats, and (ax,ay) are the lattice constants of the primitive unit cell of the lattice

in the transverse plane. Because of the symmetry of the Schrödinger equation in the Brillouin zone,

we only need the first quadrant of the Brillouin zone ~Q ∈ [0,0.5)⊗ [0,0.5) for the expansion. The

probability of the electron with transverse momentum ~p occupying the Bloch eigenstate Ψn,~Q is
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thus

∣∣∣〈Φe(~p)
∣∣∣Ψn,~Q

〉∣∣∣2 = ∣∣∣∣ˆ ∞

−∞

Φ
∗
e(~p)Ψn,~Q(x,y)dxdy

∣∣∣∣2
=

∣∣∣∣∣ kmax

∑
k1,k2=−kmax

Ck1,k2(
~Q,n)

1
(2π)2

ˆ
∞

−∞

ei2π[(k1+Q1)/ax−px/h]xdx
ˆ

∞

−∞

ei2π[(k2+Q2)/ay−py/h]ydy

∣∣∣∣∣
2

=

∣∣∣∣∣ kmax

∑
k1,k2=−kmax

Ck1,k2(
~Q,n)δ

(
px

h
− k1 +Q1

ax

)
δ

(
py

h
− k2 +Q2

ay

)∣∣∣∣∣
2

=
∣∣∣Ck1,k2(

~Q,n)
∣∣∣2
~k=~P−~Q

=
kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

∣∣∣Ck1,k2(
~Q,n)

∣∣∣2 δ

(
~k−~P+ ~Q

)
(5.3)

where ~P= (pxax , pyay)/h. The delta function in Eq. (5.3) enforces the conservation of momentum

when the electron interacts with the lattice potential, i.e. the wave vector ~p/h of an incident

electron has to match a Bloch wave vector ((k1 +Q1)/ax , (k2 +Q2)/ay) so that the electron has a

probability of
∣∣∣Ck1,k2(

~Q,n)
∣∣∣2 to occupy the eigenstate Ψn,~Q.

5.2 Occupation number of beam electrons at Bloch eigenstates

Let f (px, py) be the distribution of the transverse momentum of an electron beam with

pxmaxˆ

−pxmax

pymaxˆ

−pymax

f (px, py)d pxd py = N ,

where N is the number of electrons in the beam and pxmax and pymax are the maximal possible trans-

verse momenta of the electrons. The occupation number of the electrons at the Bloch eigenstate
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Ψn,~Q can then be calculated as

N (n, ~Q) =

pxmaxˆ

−pxmax

pymaxˆ

−pymax

∣∣∣〈Φe(~p)
∣∣∣Ψn,~Q

〉∣∣∣2 f (px, py)d pxd py

=
h2

axay

kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

∣∣∣Ck1,k2(
~Q,n)

∣∣∣2

×
P1maxˆ

−P1max

P2maxˆ

−P2max

δ

(
~k−~P+ ~Q

)
f
(

P1h
ax

,
P2h
ay

)
dP1dP2

=
h2

axay

kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

∣∣∣Ck1,k2(
~Q,n)

∣∣∣2 f
(
(k1 +Q1)h

ax
,
(k2 +Q2)h

ay

)
×H (P1max−|k1 +Q1|)H (P2max−|k2 +Q2|) (5.4)

where (P1max , P2max) = (pxmaxax , pymaxay)/h and H(z) is Heaviside step function with H(z) = 0

for z < 0 and H(z) = 1 for z ≥ 0. In the definition of the beam distribution of the transverse

momentum, pxmax and pymax are the maximal transverse momentum of the electrons in the beam

and can be controlled experimentally by designing the beam shape. If pxmax and/or pymax are

larger than the maximal transverse momentum (pc) allowed for channeling, only the electrons with

p2
x + p2

y ≤ p2
c can channel through the crystal and need to be considered in Eq. (5.4). It is, however,

not necessary to apply p2
x + p2

y ≤ p2
c in Eq. (5.4) as long as only the bounded Bloch eigenstates

are included for the calculation of the channeling radiation spectrum. It should also be noted that

the channeling condition of p2
x + p2

y ≤ p2
c is only a classical estimate of a quantum phenomenon.

In quantum mechanics, an electron with p2
x + p2

y > p2
c has still possibilities, even very small, to

occupy the bounded Bloch eigenstates and to be able to channel through the crystal without being

scattered. The electrons with p2
x + p2

y < p2
c , on the other hand, have also some probabilities to

occupy unbounded Bloch eigenstates and to be unable to channel through the crystal. Nevertheless,

the condition of p2
x + p2

y ≤ p2
c provides an estimate on the maximal beam size pxmax and pymax in

the transverse momentum space that one could design a beam for a desired electron occupation

profile at the bounded Bloch eigenstates and, in turn, for a desired channeling radiation spectrum
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without too much Bremsstrahlung noise in the radiation due to the scattering of the dechanneled

electrons. To estimate pc, we consider the condition for an electron being trapped inside the lattice

potential in the transverse plane: the energy of the transverse motion of the electron has to be

smaller than the maximum of the lattice potential, i.e. in the beam rest frame,

1
2me

(p2
x + p2

y)+ γV (x,y)≤ γVmax (5.5)

where Vmax is the maximum of the lattice potential V (x,y) and the maximal kinetic energy p2
c/2me

occurs at the minimum (Vmin) of V (x,y). Therefore

1
2me

(p2
x + p2

y)≤
1

2me
p2

c = γVmax− γVmin

and

pc =
√

2meγ (Vmax−Vmin) (5.6)

Note that pc defined here is equivalent to the definition of Lindhard’s critical angle in Eq. (2.2).

a. Uniform distribution of transverse momentum

In the case that a beam has a uniform distribution of the electrons in the transverse momentum

space,

f (px, py) =


N

4pxmax pymax
, for |px| ≤ pxmax and |py| ≤ pymax

0 , otherwise

(5.7)

The electron occupation numbers at the Bloch eigenstates are

N (n, ~Q) =
N

4P1maxP2max

kmax

∑
k1=−kmax

kmax

∑
k2=−kmax

∣∣∣Ck1,k2(
~Q,n)

∣∣∣2
×H (P1max−|k1 +Q1|)H (P2max−|k2 +Q2|) (5.8)

b. Gaussian distribution of transverse momentum

102



In the case that a beam has a Gaussian distribution of the electrons in the transverse momentum

space,

f (px, py) =
N

2πσxσy
e−(p2

x/σ2
x +p2

y/σ2
y )/2 (5.9)

where the beam width (σx,σy) in the transverse momentum space is determined from the emittance

and Courant-Synder parameters of the beam (will be discussed later). The occupation numbers of

the electron at the Bloch eigenstates are

N (n, ~Q) =
N

2πσ1σ2

kmax

∑
k1=−kmax

kmax

∑
k1=−kmax

∣∣∣Ck1,k2(
~Q,n)

∣∣∣2 e−[(k1+Q1)
2/σ2

1+(k2+Q2)
2/σ2

2 ]/2

×H (P1max−|k1 +Q1|)H (P2max−|k2 +Q2|) (5.10)

where (σ1 , σ2) = (σxax , σyay)/h. When σx >> pc and σy >> pc, the electrons in the core

(|px|< pc and |py|< pc) of the beam that can channeling through the crystal have nearly a uniform

distribution in the transverse momentum space.

5.3 Calculation of Channeling Radiation Spectrum

The channeling radiation intensity from the transitions of beam electrons from an initial Bloch

eigenstate Ψn,~Q to a final eigenstate Ψm,~Q′ is proportional to

N (n, ~Q)T (n,m, ~Q)δ (~Q′− ~Q)

which emits photons of energy ∆E = En(~Q)−Em(~Q) , where ∆E is the photon energy in the beam

rest frame. The total radiation intensity of a given photon energy can thus be obtained by summing
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over all different combinations of the initial and final states that generate the same photon energy,

I (∆E) = ∑

All bounded states

of n,m,~Q with

Em−En = ∆E



N (n, ~Q)T (n,m, ~Q) (5.11)

where the summation includes only the bounded Bloch eigenstates. Figure 5.1 plots I (∆E) cal-

culated for the channeling of diamond along [110] crystal direction, where the beam has a round

Gaussian distribution in the transverse momentum space with σx = σy = σ , and shows how the

spectrum changes with the beam width σx from σ << pc to σ > pc. As shown in the figure 5.1,

N (n, ~Q) is quite sparse when σ << pc and increases in density as σ increases. Consequently,

the radiation spectrum becomes more rich because of more electrons in different eigenstates as σ

increases. The channeling radiation spectrum can therefore be changed by shaping the beam dis-

tribution in the transverse momentum space. With a properly constructed beam distribution of the

transverse momentum, we could even have only a few specific eigenstates to be occupied which

allows for a tunable channeling radiation from a few select transitions.
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Figure 5.1: Both the left and right plot columns are from the Diamond lattice with orientation
[110] at beam energy 9.0MeV. The left column are spectrum plots in the labframe depicted in
blue that was generated from this study’s 2D Channeling model. In addition, the red lines depict
measured data and the green lines depict the Axial Channeling Model’s prediction from Genz’s
paper[5]. The right column plots the occupation probability for each bound state. From eqn.
5.11, each spectrum plot is based on its probability of occupation, N (n) which is the plot on
its immediate right. The beam structure is Gaussian with a pc/σpx = 0.906 for the top row,
pc/σpx = 40.5 for the second row, and pc/σpx = 70.5 for the bottom row. Note, for the right
sided plots, the top frame’s y-axis is one order of magnitude larger than other two frames. All
spectrum plots used a common normalizing constant. All occupation plots on the right also
used a single common normalizing constant.
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5.4 Beam Distribution of Electron Transverse Momentum

Beam emittance is the measurement of the bunch trace space area or equivalently the phase space.

For the x degree of freedom (dof), the trace space is (x’, x) where in the lab frame px ∝ x′ =

dx/dz[27].

Figure 5.2: The x and x′ are the x dof trace space of the electron’s motion where x′ = dx/dz
and z is the longitudinal relativistic beam velocity direction. The blue ellipse encloses a
fixed particle density with in that ellipse. As the electron travels along the z direction, the
ellipse orientation and minor and major axis may change but the overall area will remain the
same. The number of electrons within the ellipse does not change either which conserves
the electron trace space density. The red dots represents one electron.

In Particle accelerators, the Liouville’s theorem states that conservation of phase space is conserved[28].

The trace space area that is contained within some defined contour, C is calculated by

Area =
ˆ

C
x′dx = constant (5.12)

.

Generally but not always, the majority of the electrons with in a bunch can be enclosed in an el-

106



lipse. The shape of the ellipse may change as the bunch travels through the beam line, but the

area of the ellipse is conserved. The electron particles enclosed within the ellipse boundary never

changed and thus the particle density within the ellipse boundary does not change either.

The Courant-Snyder’s twiss parameters γtwiss, αtwiss, and βtwiss are the accelerator parameters

which describe the envelope path of any particle contained with in the ellipse, Figure (5.2) which

is described by an ellipse in Eq.(5.13)[28, 29].

(γtwissx2 +2αtwissxx′+βtwissx′2) = εx (5.13)

If the (x, x’) trace space area that the bunch occupies within this ellipse is Ax, then the geometric

emittance is defined as

εx = Ax/π (5.14)

Equation 5.14 is true because of the Courant-Snyder’s Identity for beam accelerators is

γtwissβtwiss−α
2
twiss = 1

At the interaction point where the electron interacts with the crystal within the beamline, the twiss

parameters at this point are γ∗, α∗ and β ∗ and the beam is engineered such that α∗ = 0. With this

condition, we can apply a coordinate transformation, XN = x√
β̂ ∗

and X ′N =

√
β̂ ∗x′, for defining the

ellipse equation.

XN
2 +X ′N

2
= γ̂
∗x2 + β̂

∗x′2 = (
x√
β̂ ∗

)
2
+(

√
β̂ ∗x′)

2

We assume that the probability distribution function for the distribution of electron with in

the phase space is Gaussian and assuming σXNx = σX ′Nx = σNx, with the normalization constant is
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1/2πσ2
Nx. The Probabililty Distribution Function (PDF) = f (XN ,X ′N) is:

f (XN ,X ′N) =
1

2πσ2
Nx

e
−XN

2+X ′N
2

2σ2
Nx

=
1

2πσ2
Nx

e
−

( x√
β̂∗

)2+(
√

β̂∗x′)
2

2σ2
Nx dXNdX ′N (5.15)

When calculating the average ellipse area based on the particles distribution in x and x’ is equiv-

alent to
〈

XN
2 +X ′N

2
〉
=
〈
γ∗x2 +2α∗xx′+β ∗x′2

〉
, we define this average area in the x trace space

as the rms emittance, εRMSx , as

εRMSx =

ˆ
∞

−∞

(
XN

2 +X ′N
2
)

f (XN ,X ′N)dXNdX ′N = 2σ
2
Nx

Since we can measure what the emittance is for either the x or y trace space, we can then experi-

mentally determine the value of σNx =
√

εRMSx/2. The emittance and in turn the σNx defines the

beam structure for a Gaussian based momentum distribution.

f (x′) =

√
β̂ ∗

√
2πσNx

e
− (
√

β̂∗x′)
2

2σ2
Nx dx′ (5.16)

However, since we are using momentum in calculating the probability of occupation, it is a simple

matter to transform x′ = dx/dz in terms of the momentum, px.

x′ =
dx
dz

=
1

βc
dx
dt

=
px

γmβc
(5.17)

(γmβc)dx′ = d px

where px is also the transverse momentum of in the beam electron’s rest frame. The beam distri-
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bution in the transverse momentum space is then,

f (px) =

√
β ∗√

2π(γmβc)σNx
exp

[
−
(

β ∗twiss

2σ2
Nx

)(
px

γmβc

)2
]

d px (5.18)

=
1√

2πσpx
exp

(
− p2

x
2σ2

px

)
d px (5.19)

where

σpx = σNx
γmβc√

β ∗twiss
=

√
E
2π

γmβc√
β ∗twiss

=

√
εRMSx

2
γmβc√

β ∗twiss
(5.20)

You will notice the momentum in the electron’s restframe is depicted in Eqn.(5.4) as a relativistic

momentum. To check for consistency whether this correct, we apply the Lorentz transformation,

Λ
µ

ν , to the electron’s momentum four-vector from the labframe momentum four-vector pν to the

rest frame momentum four-vector pµ . As stated earlier, in the lab frame the electron’s relativistic

velocity, vz component or beam direction, is along the [hkl] lattice orientation with ~̇z = ż[hkl]. The

electron rest frame is defined along the z component where ż[hkl] = 0. Since the eigenstate transverse

momentum is in the electron’s rest frame and the incident electron’s transverse momentum is in

the lab frame, the incident electron is not in the correct coordinate frame to be expanded in terms

of eigenstates. Therefore a Lorentz transformation Λ
µ

ν pν = pµ from the lab frame to the moving

frame four vector, pµ is required. The incident electron’s momentum four-vector in the lab frame

is

pν = (γmec,γmeẋ,γmeẏ,γmeż)

where me is the electron mass and γ is the Lorentz factor. After applying the Lorentz transfor-

mation to the restframe, the electron’s restframe’s momentum four-vector takes the form
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pµ = (mec,γmeẋ,γmeẏ,0)

Therefore, both the physical explanation for applying the Lorentz transformation and the results

of the transformation are in agreement with the trace space x’ transformation to its momentum

space px = γmeẋ. Therefore, to determine the P_Occupation, we need to know the beam’s structure

σkx in Eqn.(5.10) which is expressed in terms of the beam’s emittance and βtwiss as well as the

beam’s energy which is in terms of Lorentz factor, γ .

σkx = σpxax/(h2π) = σNx
γmβc√

β ∗twiss

ax

h2π
=

√
εRMSx

2
γmβc√

β ∗twiss

ax

h2π
(5.21)

In accelerator physics, the experimenters can manipulate the beams structure by manipulating

the emittance, βtwiss, beam energy, and even the beam momentum distribution within the ellipse’s

conserved area. From this manipulation, the experimenters than can then control to some degree

what states that can be occupied and deny other states from being occupied. This then provides

tunable capabilities in selecting the desired transition emission energies.
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Chapter 6

Detector Calibration and Pileup Mitigation

The channeling radiation experiment was conducted at the Fermilab Accelerator Science and Tech-

nology (FAST). Using a diamond crystal, the experiment was focused on generating channeling

radiation from a [110] lattice orientation. Since complications in the experiment prevented any

meaningful data, this study had no spectrum data to compare with its predictions. In this chapter,

the focus was on calibrating the X123CdTe Amptek detector used in the experiment and reduce

deadtime and pileup affects

Experimental Setup

The beamline begins with a Radio Frequency (RF) gun, two cryomodules, followed by a 4-dipole

magnetic bend chicane and then runs through the crystal interaction point (Crystal lattice orienta-

tion [110] with 165.4± 3.5µm thickness) followed by dipole magnet which steers the beam into

the beam dump. Figure 6.1 illustrates the beamline. Transverse emittance rated at 0.01− 0.1µm

with a Gaussian momentum distribution.
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Figure 6.1: RF gun focuses and accelerates the electron bunch to 4MeV into the
CC1 and CC2 superconducting accelerating crymodules which further accelerates
the electrons to 42.5MeV. Since the electrons are relativistic, electron-crystal in-
duced Bremsstrahlung and channeling radiation are collimated to a 1

γ
opening an-

gle. The induced radiation all passes into the forward detector except for a small
portion which is compton scattered, using a plastic disc (CS), into the 90 degree
detector. To reduce photon flux into the forward detector, a combination of lead
and brass collimator were also installed. Focusing quadrupoles were used along the
beamline but are not shown in this diagram.

The electron source is a 1-1/2 cell 1.3-GHz cylindrical-symmetric RF gun comprising of a Cs2Te

photo-cathode illuminated by an ultraviolet (UV, λ = 263 nanometers) [30]. The photo-cathode

drive laser illuminates the photo-cathode with a frequency that is adjustable from 1 to 3 MHz with

a 33 picosecond laser pulse length. With the drive laser set at 1 MHz, it can generate a group of

electrons called a bunch every 1µ second. Upon exiting the RF gun, the generated bunch now has

approximately 4 MeV of energy per electron.
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Figure 6.2: RF Gun, the two blue solenoid are centered on the pho-
tocathode. The microwave rectangular tubing on the left and enter-
ing near the blue solenoids are microwaves that powers the RF cavity
which accelerates the bunch to approximately 4 MeV [6].

The two superconducting accelerating cryomodules, CC1 and CC2 accelerates the bunch from 4

MeV to approximately 42.4 MeV. The macropulse duration of the RF waves which drive the RF

gun and the two cryomodules ranges from 600 to 1000µ seconds. Within each RF macro pulse,

the number of bunches generated are limited to 3000 maximum [31]. Generally, this experiment

ran approximately 240 bunches per RF macro pulse. The repetition rate (reprate) is the frequency

RF macro pulses in one second. FAST beamline can run from 1 -5 Hz reprate. In this experiment,

the reprate was set at 1 Hz.

The diamond crystal is mounted with a [110] oriention on a device called a Goniometer. The

Goniometer has three positional settings. Position one is that the beamline has no target in the

beampipe. Position two has the diamond crystal target positioned in the beamline. Position three

has the aluminum foil target inserted into the beamline.
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Figure 6.3: Goniometer apparatus with three posi-
tional states. The right most aperature is position one,
(the open position), where no target is in the beam-
line. Position two is the center aperature where the
diamond crystal target is mounted and placed into the
beamline, and the third position is the far left aper-
ature containing the aluminum foil target which is
place into the beamline[6].

When the crystal is in the beamline, the goniometer can change its pitch, yaw and vertical position

within the beam pipe to achieve the critical angle condition for channeling radiation. For this ex-

periment, instead of establishing the beam line with the crystal’s [110] axial orientation, the beam

is oriented parallel to the (110) plane which is described by the intersection of [110] and [001] axial

lines.

Both the forward detector and the 90 degree (Compton) detectors are the X123CdTe Amptek

detector. The forward detector was to calibrate alignment of the crystal with the beam, measure

the dark current’s Bremsstrahlung contributions to background, and (if possible) measure the chan-

neling radiation. Depending on the forward detector’s collimation and the magnitude of the beam
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current, signal pileup on the forward detector will most likely dominate the forward detector’s data

collection. To measure channeling radiation in the 90 degree detector, a plastic plate is placed into

the path of the generated photons. Due to Compton scattering, the photons scattered into the 90

degree detector are approximately 6 orders of magnitude less than the number of photons gen-

erated from the Bunch-Crystal interaction. As illustrated in Figure 6.1 , the forward detector is

located above the beam dump. The 90 degree detector is located approximately one meter away,

perpendicularly, from the radiation path induced from the bunch-crystal interaction. Sources of

radiation that can affect the detector’s measurement are beam dump radiation, dark current gener-

ated Bremsstrahlung radiation, background radiation, and bunch-crystal generated Bremsstrahlung

and channeling radiation. Lead block shielding is placed around the detectors to shield from beam

dump radiation and dark current induced radiation. Although the forward detector’s will receive

both dark current and bunch-crystal induced radiation, the lead shielding around the detector will

prevent these radiation from interfering with the detector solid state circuits. Consequently, due

to the beam dump’s radiation emissions, both the forward detector and the 90 Degree (Compton)

detector must be shielded from these radiation effects. Dark current are a stream of low luminosity,

low energy electrons that are continuously generated and accelerated down the beamline whether

the RF is on or off. Due to their high emittance, the stream of electrons have a high probability of

scraping the beam pipe and interacting with the crystal and the crystal’s thin copper mount which

generates Bremsstrahlung radiation into the detector. Since the energy of the dark current is rela-

tivistic at around 4 MeV with no RF pulse and approximately 44 MeV with the RF pulse is on, the

dark current induced Bremsstrahlung radiation is collimated with a 1
γ

opening angle. This means

that most of the radiation generated by the dark current is oriented along the beam line. The 90 de-

gree detector’s off center from the beam line was to mitigate or eliminate all dark current induced

radiation counts except what is plastic plate scatters into the detector’s window. Since the Chicane

is on the same side of main beamline direction as the 90 degree detector, dark current interaction

in the chicane’s beam pipe would irradiate the detector with generated Bremsstrahlung radiation.

Therefore, in this particular setup, the 90 degree detector also had to have lead shielding to protect
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it from Chicane dark current induced radiation.

The chicane was also designed to have a beam scraper at point 3. The beam scrapper would

eliminate any beam halo and also mitigate or eliminate dark current. Since the beam scrapper was

not available in this experiment, the chicane’s dipole magnets were manipulated to steer any beam

halo and dark current into the beam pipeline to scrape these unwanted electrons out of the beam.

By doing this in the chicane, the Bremsstrahlung generated from the scraping are removed from

the main beam line where the forward detector is located.

This experiment had numerous issues that had to be resolved to ensure that the conditions were

met for a successful experiment. Although not inclusive, the following is a general list of major

experimental setup issues that had to be solved or accounted for.

• Beam emittance did not exceed critical angle for channeling.

• Reduce dark current contribution to Bremsstrahlung background noise.

• Scrape any beam halo to reduce contributions to Bremsstrahlung background noise.

• Goniometer manipulation to set crystal in correct orientation.

• Shielding detectors from Beam Dump Radiation, dark current generated Bremsstrahlung

radiation, and beam halo generated Bremsstrahlung radiation.

• X123CdTe Amptek Detector calibration.

• X123CdTe Amptek Detector deadtime and pileup data corrections.

• Eliminate detector pileup from high scattered photon flux rates.

From this general list, this study specifically focused on the detector calibration and the dead-

time and pileup corrections setup issues.
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X123CdTe Amptek Detector Calibration

Detector energy calibration was already determined. The X123CdTe AMPTEK detector has the

capability to discretely vary the number of multi-channels (256, 512, 1024, 2048, 4096, and

8192)[32]. In our experiment, we selected 1024 channels. The channel to energy calibration

was [33]

Channels/KeV = 0.837×Gain (Forward Detector) (6.1)

Channels/KeV = 0.861×Gain (90 Degree Detector) (6.2)

Since the gain was adjustable, the selected gain for this experiment was set to Gain = 8.0. At this

setting, the Forward Detector’s channel to energy calibration (Calib) = 6.696 Channels/KeV.

The detector also has a Fast Channel and Slow Channel to detect and characterize the arriving

photon energy pulse. The slow channel utilizes a trapezoid pulse shaper to accurately determine the

pulse height (Photon Energy). For both channels, the peaking time is the parameter that defines the

“the time required for the shaped pulse to reach its maximum amplitude ...” [34]. The shorter the

peaking time corresponds to reducing the slow channel’s dead time. When a photon arrives at the

detector, dead time is the time required for the detector to be able to accurately record a subsequent

photon. In this detector, the slow channel’s deadtime is equal to the peaking time. If the peaking

time is too small, then the slow channel will begin to record random noise. The longer the peaking

time, then the longer the deadtime. Long deadtimes can cause pileup errors. Peaking times for the

slow channel can be 0.2µ sec to 102µsec. The fast channel also utilizes a trapezoid pulse shaper

but its peaking time is 120ns which is a great deal smaller than the slow channel. The fast channel

is designed only to detect a photon pulse and not measure its pulse height. When a photon arrives

at the detector, the fast channel allows the detector to reject any subsequent photons arriving within

the deadtime. The fast channel gives the detector the ability to significantly reduce pileup errors.

Both the slow and fast channels have specific signal thresholds. Photon signal energies that are

less than the defined threshold settings are not considered. To optimize the detector, the peaking

times and both the Fast and Slow Thresholds must eventually be determined. To determine optimal
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settings, 125 spectrums of Cobalt 57 were collected with an acquisition time of 1 hour and a gain

setting of 8. Each spectrum recorded was one out of 125 possible combinations of peaking time,

Fast Channel Threshold (THFA), and Slow Channel Threshold (TFSL). The different settings of

these three parameters are the following:

Peaking Time: [0.2µsec, 0.6µsec, 1.0µsec, 2.0µsec, 3.0µsec,]

THSL: [0.1, 0.3, 0.5, 0.7, 0.9]

THFA: [10.0, 20.0, 30.0, 40.0, 50.0]

Although the optimization for the best set of these three parameters is required, this part of the

calibration of the detector was not the focus of this study. However, these 125 Co57 spectrum files

were used to calibrate the efficiency of the detector.

Detector Efficiency

The detector efficiency determines the percentage of photons that are successfully detected and

is measured as a function of photon energy. The actual detector is made up of a variety of ma-

terials that the photons must transit through before arriving at the CdTe Active Detector Volume

(Interaction zone). Figure 6.4 illustrates that the photon must transit through a 100µm thick Beryl-

lium (Be) which is a 3× 3 area size window separating the environment from inner mechanisms

of the detector [35]. After Gamma photon transits through the Be window, it also must transit

through two materials before reaching the interaction zone. These two materials are Platinum

(Pt) Contact layer of [0.2µm] and CdTe Deal Layer which is typically suppose to be around

[0.15µm] thickness. With the exception of the interaction zone, each material that the photon

transits through, a percentage of photons are absorbed depending on the energy of the photon.
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Thermoelectric 
Cooler

Inactive Detector
Volume

Active Detector 
Volume

Dead Layer

Contact

Be Window

Collimator

Incident X-rays

Figure 6.4: Cross section view of X123 CdTe Detector: The incident X-ray photon
enters the Be window (3× 3mm with thickness of [100µm]) then passes through
Platinum (Pt) Contact Layer [0.2µm] and the CdTe Dead Layer typically [0.15µm]
thickness before interacting with CdTe Active Detector Volume with thickness “t”.
The blue arrows represent X-Rays transiting through various stages of the material.
The pink arrow indicates that the photon instead of being absorbed in the active
detector volume, the photon was scattered out of the detector and not registered.
[7].

Detector Efficiency depends on CdTe Active Volume Effective Thickness “t”. To determine each

detector’s effective Thickness “t”, we measure the ratio of two emission intensities where the de-

tector efficiency is not at 100%. Co57 has two emission peaks that means this requirement: 14.4

KeV & 122.06 KeV.
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Figure 6.5: The blue curve represents a detector efficiency curve using t = 1mm. If
the efficiency was 100% both the 14.4 KeV Peak 1 and the 122.1 KeV Co57 Peak
2 emissions would be recorded as indicated by the red bar. However, the black bar
represents the actual recording. For Peak 1 emissions, the probability of emission
is 9.8%. For the Peak 2 emissions, the probability of emissions is 85.6%. N1 would
represent the actual intensity measured for For Peak 1. Likewise, N1 is the measured
intensity for Peak 2

Although we do not know what “t” is, the blue efficiency curve in Fig. 6.5 is a good representation.

Therefore, Co57’s two emission peaks are acceptable candidates for numerically determining the

actual effective thickness of the active Detector Volume. The equation for determining the effective

thickness is:
N1

N2
=

P1P1env

P2P2env

(1− e−µ1t)

(1− e−µ2t)
≈ P1

P2

(1− e−µ1t)

(1− e−µ2t)
(6.3)

where N1 is Co57 Peak 1’s 14.4 KeV Photon measured intensity and N2 is Co57 peak 2’s 122.06

KeV photon measured intensity. P1 = 9.8% and P2 = 85.6% are the probabilities of emission for
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Peak 1 and Peak 2 respectively. The CdTe linear absorption coefficients µ1 and µ2 are based on

Peak 1 and Peak 2 emission energies respectively. P1env and P2env approximately equal to one are

the probability of photon absorption due to environment materials: Air, Be (window), Pt (contact

layer) and the CdTe (dead layer).

P1env = eµ1AirtAireµ1BetBeeµ1deadtdead eµ1ctc ≈ 1

P2env = eµ1AirtAireµ2BetBeeµ2deadtdead eµ2ctc ≈ 1

where µiAir, µiBe, µidead, and µic are the linear absorption coefficients for Air, Be (window), Pt

(contact layer) and CdTe (DeadLayer) for Peak’s i ∈ [1,2]. Likewise, the thickness of each of these

environmental materials are tAir for air and etc. for the other environmental materials. Since in

equation 6.3 all variables are either measured or known, the solving for “t” is done numerically

using the Bisection method.
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Figure 6.6: estimates the effective “t” thickness the CdTe Active Detector Volume.
100 spectrum files of Co57 emissions were recorded based on different parameters:
Peaking time, Fast Threshold, and Slow Threshold limits with a gain set at 8. For
each file, the intensity of two peaks were measured and using eqn. 6.3 were numer-
ically solved for the effective thickness “t”. Along the x-axis, every integer from 1
to 100 represents the calculated thickness for the corresponding file number. The
estimated average thickness from the numerical calculation of “t” from eqn. < t >
= 0.657mm was average over the 100 file samples with an error of ± 0.041mm

As stated earlier, over a 125 spectrum files were recorded for Co57 radioactive emission peaks.

Each spectrum recorded was one out of 125 possible combinations of peaking time, Fast Channel

Threshold (THFA), and Slow Channel Threshold (TFSL). Since the THFA threshold set at 10.0

was too low and hence noise was to high, this parameter was thrown out. This then left 100 viable

Co57 spectrum files to use to calculate the effective thickness. Nominally, the CdTe effective

thickness is designed to be approximately 1mm. However, in this forward detector, Fig. 6.6 shows

that the effective thickness was noticeably less at 0.657mm.
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Figure 6.7: is the Forward Detector’s efficiency curve with blue curve representing
Amptek’s nominal thickness of 1mm. The red efficiency curve is based on the
measured estimated effective thickness “t”

Figure 6.7 depicts the Detector’s efficiency based on the Amptek’s designed effective thickness

“t”=1mm as compared to the determined effective 〈t〉= 0.66mm

Hole Tailing Affects on Measuring Peak Intensities N1 and N2

For CdTe materials, the large Z (atomic number) has the advantage of having high stopping power

for photons. The high stopping power means that the probability of high energy photons interact-

ing with the CdTe molecule is also high. All though there are other interactions such as Compton

scattering, the primary interaction with the CdTe in the Active Detector Volume is photon energy

ionizing its electrons creating a number of electron-hole pairs equivalent to the photon energy ab-

sorbed. Under a bias voltage, these charge carriers holes(+) and electrons(-) must travel a fixed

distance before being collected. The holes drift toward the Cathode(-) and the electrons drift to-
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ward the Anode(+). The charge collection process collects both the holes (positive charge) and

electrons (negative charge) to determine the total induce charge, Q.

Q(t) =
q0

d
(electron drfit distance+hole drift distance) (6.4)

“This induced charge starts at zero when the electrons and holes are first formed by the ionizing

particle and reaches its maximum of q0 when both species have been collected[34].”

At photon energies above 50KeV, hole-tailing effects changes the photon peak’s Gaussian

structure to an increase shoulder on the low energy side of the peak. This then complicates the

process in determining the intensity of a peak. For a Gaussian structure peak, we would integrate

Full Width Half Maximum (FWHM) to determine the peak’s intensity. With hole-tailing effects,

using the FWHM integration interval would not accurately represent the peaks intensity. For a

CdTe material, when a hole and electron is produced, the electron travels faster than the hole. In

addition, due to normal impurities in the crystal, the electron and or holes can be trapped as they

move towards Anode and Cathode respectively. Due to this trapping, the life time for electron and

hole is 3µ sec and 1µ sec, respectively. From this, two results occur, at high energies, the prob-

ability of interaction through the depth of the Active Detector Volume is uniform. If the photon

interacts close to the Cathode, all the holes are generally collected and the electrons are also col-

lected. However, if the photon interacts near the Anode, all the electrons are collected but some of

the holes are not collected due to slow transit time and short lifetimes. This creates a lower charge

collection which in-turn contributes to the intensity and widening of the peaks lower energy shoul-

der side. Second, if the peaking time is small, the slow transit time of the holes will prevent full

charge collection before the detector pulse shaping is finished.
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Fig. 6.8a Fig. 6.8b

Fig. 6.8c Fig. 6.8d

Figure 6.8: illustrates that when decreasing the detector’s peaking time, hole-tailing
affects increases the shoulder width on the low energy side of the peak. Using
3.2µsec as a baseline, we decrease the peaking time and compare the two peak
spectrums of 122.4KeV. The blue curve represents 122.4KeV peak at 3.2µsec peak-
ing time. The red curve represents smaller peaking times: Fig.(6.8a) 2.0µsec,
Fig.(6.8b) 1.0µsec, Fig.(6.8c) 0.6µsec, and Fig.(6.8d) 0.2µsec. The green vertical
line delineates where red curves shoulder from hole-tailing contributions cut off.
Threshold settings for Slow and Fast Channels were set at 0.1 and 20 respectively
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Fig. 6.9a Fig. 6.9b

Fig. 6.9c Fig. 6.9d

Figure 6.9: varies the full width question (?) maximum (FW?M) from near zero
to maximum height. Integrating over the FW?M interval, the peak’s intensity is
plotted as a function of FW?M interval for various peaking time settings. Using
3.2µsec as a baseline, we decrease the peaking time and compare the peak’s inten-
sity vs FW?M for peak 3 at energy 122.4KeV. The blue curve represents intensity
vs FW?M at 3.2µsec peaking time. The red curve represents smaller peaking vs
FW?M: Fig.(6.9a) 2.0µsec, Fig.(6.9b) 1.0µsec, Fig.(6.9c) 0.6µsec, and Fig.(6.9d)
0.2µsec. The green vertical line delineates where red curves shoulder from hole-
tailing contributions cut off. As the peaking time decreases, the intensities between
the two peaking times are nearly equivalent when the integration interval is set at
around one tenth of the maximum. Threshold settings for Slow and Fast Channels
were set at 0.1 and 20 respectively.

Figure 6.8 illustrates that at high energies, hole-tailing effects increase as the peaking time

decreases. The lower energy shoulder of the peak increases and extends to lower energies as the

126



peaking time decreases. Because of the slower hole’s transit times, the lower peaking times pre-

vents sufficient time to collect the holes in the charge collection process. Figure 6.9 relies on the

assumption that the intensity for the peak 3 should be the same regardless of the peaking time.

Therefore, we compare the intensity based on the integration intervals of various FW?M. When

comparing the intensity for Peaking time 3.2 µsec versus lower peaking times, the curves diverged

at some point. For peaking times of 0.2 µsec, some where around FW.1M was sufficient for both

curves to match in intensity. Not much above that interval, the intensity curves would then diverge.

Since FW.1M worked for all peaking times, we used this interval to determine the intensities for

N1 and N2 in calculating the effective “t” thickness for the Effective Detector Volume. In addition,

Knoll indicated that using FW.1M was used to “...specify the severity of tailing ... [34]” pg 445

Knoll. Amptek also stated that FWHM and even 2FWHM may not be sufficient to determine the

intensity of the peak.

Peaking times affects on Photon Peaks at low Energies

At lower energies, we do not see the effects of hole-tailing. At lower energies, the absorption is not

uniform. Rather, at these lower energies, the interaction occurs closer to the Cathode. Hence, from

the production of electron hole pairing, the holes have a very short distance for charge collection.

Thus, peaking time and trapping of electrons and holes are insignificance. However, it appears

as peaking time decreases, the photon peak’s Gaussian curve’s FWHM increases. In addition, the

photon’s peak also appears to shifts to a higher energy. However, due to detector change in peaking

time, this also shifts the channeling zero energy. In this case, the zero channeling had shifted to the

right. If we re-calibrated for this shift, the photon energy would not change.
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Fig. 6.10a Fig. 6.10b

Fig. 6.10a Fig. 6.10b

Figure 6.10: shows the spectrum for peak 2 at 14.4KeV. The blue curve represents
Peak 2 spectrum at base line peaking time 3.2 µsec. The red curve represent four
shorter peaking times: 3 µsec, 1 µsec. 0.6 µsec, and 0.2 µsec. The Slow and
Fast Channel Thresholds were set at 0.1 and 20 respectively. As the peaking time
decreases, the FWHM increases and the photo peak shifts to a higher energy.

When comparing the baseline peaking time 3.2µsec with the lower peaks, the FWHM was

sufficient in calculating the intensities. The intensities match regardless of the peaking times. This

widening of the FWHM as the peaking time decreases is a function of insufficient time to fully

collect the charge generated from the photon. As for the shift in the photo peak, there is no clear

physical reason why this should occur.
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In summary, at lower energies, the photon peak maintains a Gaussian shape for all defined peak-

ing times. As the peaking time decreases, the detector is not able to fully collect the charge which

then widens then Gaussian curve. In addition, as the peaking time decreases, the zero channeling

channel has shifted. This requires a recalibration of the detector to determine the channel/KeV.

Parameters to reduce Detector Pileup Reduction

The X123CdTe detector utilizes both the Fast Channel and the Slow Channel to detect and char-

acterize the incident X-Ray Photon. To avoid pileup, the Slow Channel must have enough time

to be able to fully collect and measure the induced charge generated from the photon before an-

other photon arrives. If another photon arrives during this collection process, the Slow Channel

will instead recorded both photon energies as a single photon energy. This error in recording the

spectrum is called pileup. To understand how pileup can occur within this detector, we must look

at how the Slow Channel’s pulse shaper affects this process.

The slow channels pulse shaper depends on the peaking time plus the width of the flat peak.

Therefore, the deadtime for this Detector is τdead = τp + τ f lat ≈ 1.05× τp. The detector collects

the induced charge from the photon over the duration of the deadtime τdead . The amount of charge

collected at the end of this deadtime is recorded as the photon’s energy. After the deadtime has

expired, the detector is ready to detect a following photon with no risk of pileup.

As stated earlier, FAST has an adjustable 1 to 3MHz photo-cathode drive laser with a 0.33

picosecond laser pulse length. Therefore, the electron bunch length is equivalent to τpulse−width =

0.33 picoseconds. If the laser is running at 3MHZ, then the pulse gap is approximately τgap

≈ 1/3MHz = 0.33µ sec. If the laser is running at 1MHz, then pulse gap, the time between

bunches, is τgap ≈ 1µ sec. Note, the time between pulse is τpulse = τpulse−width + τpulse−gap.

Since τpulse−width << τpulse−gap, we can comfortably say that τpulse ≈ τpulse−gap. The macropulse

duration of the RF wave ranges from 600 to 1000µ sec or 0.6 to 1 millisec respectively. Each
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macropulse occurs at 1 to 5 Hz reprate.
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Figure 6.11: As the laser is generating pulses, the train of electron bunches are
accelerated within a Klystron macro RF pulse. For a 1 millisec macropulse coupled
with a 3 MHz laser, the maximum generated train of electron bunches would be
3000 with pulse gap of 0.33microsec between each bunch. This is then repeated
again at 1 to 5 Hz reprate.

Figure 6.11 illustrate the mechanics in generating a train of bunches with each bunch separated by

the defined pulse gap. In order to avoid pileup, the detector deadtime which is roughly τdead =

1.05× τp must be less than the pulse gap, τpulse−gap. Since peaking time τp is almost equal to

τdead , we will use peaking time as the parameter to reduce both deadtime and pileup errors. If the

pulse gap is 1µsec, then the peaking time must be less than 1µsec. For illustration purposes, we

will choose a peaking time of τp = 0.5µsec. Additionally, the deadtime is greater than a single
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bunch interaction time with the crystal. The crystal is 169µ meters long and the bunch is traveling

at approximately “c”. The bunch’s transit time through the crystal is 0.21 picosec. Therefore, a

single bunch total interaction time with the crystal is approximately 0.54picosec = τPulse−width +

τinteraction−time. During this 0.54 picosec, photons are generated from the bunch-crystal interac-

tion primarily through Bremsstrahlung or Channeling Radiation. Even with an interaction time

of .54picosec, it is 6 orders of magnitude smaller than the detector’s deadtime/resolution time.

Figure 6.12: shows a train of two bunches interacting separately with the crys-
tal. During the 1st bunch interaction with the crytstal, the interaction may gener-
ate photon or photons which triggers the detector to process the energy over the
deadtime/resolution time interval of 0.5 µsec. After the 1st bunch interaction, no
additional photons are generated until the 2nd bunch interacts with the crystal and
the process starts all over again. With a laser of 1MHz, the pulse gap is 1µsec in
this case.

Since the interaction time is 6 orders of magnitude smaller than the detector’s deadtime, Figure

6.12 immediately shows that if a bunch generates more than one photon, then automatic pileup

occurs. We call this automatic pileup. It is also clear that if the deadtime is greater than the pulse
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gap, pileup will also occur. To eliminate these sources of pileup, the experiment must ensure that

the peaking time is less than the pulse gap and that the number of electron’s within the bunch is

low enough to generate on average less than one photon per interaction. In addition, the detector

does not receive any photons other than from the bunch interaction with the crystal.

Let us assume that under these accelerator conditions, each bunch will generate only one pho-

ton. If the reprate is 1 second with 240 bunch train within each macro RFpulse, then for a 300sec(5

min) run, the maximum number of photons detected should be 72,000 photon counts.

Total Number Photons detected (72K) =

(
1photon
Bunch

)(
240Bunch

1sec

)
300sec (6.5)

However, if perhaps every bunch generated on average 3 photons per interaction, then the maxi-

mum number of photons detected and recorded will still remain at 72,000 in stead of the actual

incoming photon count of 216,000. The three photons generated from a single bunch interaction

would automatically pileup as just one photon measured by the detector.

This X123 CdTe detector has the ability to reject photons that arrive within the resolution time

of the first photons arrival. The detector uses the Fast Channel with a resolution time of 120

nanosec. After a photon arrives at the detector, the fast channel detects the incoming photon count.

The slow channel pulse shaper collects the photons induced charge and determines the energy of

the photon. However, if a second photon arrives before the detector resolution time is completed,

normally the slow channel will add this photon to the first photons signal and recorded it as pileup

photon. Generally, the fast channel can eliminate this second photon early arrival. The fast channel

detects the second photon and tells the detector to reject both the second and first photon’s energy

deposits if they are within the resolution time. The fast channel counts all incoming photons that

arrive outside the fast channel’s resolution time of 120 nanosec. This rejection of any photons that

arrive within the slow channels resolution time is called pile up rejection (PUR) setting. If the PUR

is on, the fast channel will trigger the rejection of any potential photons that would have pileup.

With PUR on, the fast channel provides the incoming photons. The slow channel provides a count

of only the photons that are accepted and used in the spectrum data.
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In this experiment, the bunch interaction time is several orders of magnitude smaller than the

fast channels resolution time. Consequently ,the bunch interaction time is less than both the Fast

Channel and Slow channel resolution times. Because of this, in this experiment, the fast channel

is not able to sift out the pileup photons. If the detector only receives photons from the bunch-

crystal interaction, all the photons generated from a single bunch are automatically pileup and are

considered by the detector as one photon. Therefore, assuming no photons are generated between

the pulse gap, the the photon count for both the fast and slow channels should match exactly.

In order to generate sufficient number of photon counts and to avoid pileup for a viable spec-

trum, the accelerator must generate a large number of bunch interactions with the crystal and ensure

that less than one photon on average is produced for each electron bunch.

Dark Current Considerations

Dark current generates significant background photons that will affect the fast count and slow count

spectrum. During the Klystron’s RF pulse which lasts one millisecond, dark current is accelerated

down the beam pipe line. As the electrons are accelerated, some scrape the beam pipe itself and

generate Bremsstrahlung radiation oriented down the beampipe and ultimately into the forward

detector. In addition, the high emittance dark current interacts with the crystal and the thin brass

that mounts the crystal onto the goniometer which also produces additional Bremsstrahlung into

the forward detector. With a 1 MHz laser pulse, there is sufficient time for the detector to receive

dark current generated photons between bunches. In addition, suppose the accelerator is set to only

generate 20 bunches for each RF pulse. Then after the 20 bunch has has passed through the crystal,

there still is 0.98 milliseconds remaining for the RF pulse to continue accelerating Dark Current

into the crystal and mount which generates additional Bremsstrahlung radiation into the detector.

Figure 6.12 and 6.13 illustrates the timing of this process.
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Figure 6.13: shows that after 20 bunch train generated within a one Klystron
pulse has passed, there still remains 98 percent of the RF pulse to continue
accelerating dark current into the crystal and crystal mount which generates
Bremsstrahlung background photon counts.

Figure 6.14: shows that between two bunches with a laser pulse gap of
1µ sec, there is also 1µ sec that dark current also generates bremstrahlung
radiation into the detector.

We can see from Fig.6.13 and 6.14 that dark current could be the main contributor in generat-
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ing Bremsstrahlung into the back ground spectrum signal. Efforts in this experiment were made to

mitigate dark current contributions. Since a beam scraper was not installed in the chicane’s beam-

line, the chicane was still used to reduce dark current. The dipole magnets within the chicane were

used to manipulate the beam to slightly scrap along the beam pipe in order to reduce any beam halo

as well as dark current contributions in generating Bremsstrahlung along the beamline. Since the

chicane was not in-line with the forward detector, any Bremsstrahlung generated would miss the

forward detector. For an acquisition time of 300 seconds, we were reducing the fast counts from

approximately 2600 to 615 and sometimes even lower. However, we found that the dipole currents

fluctuated throughout the experiment which caused fluctuation in the dark current which was not

continuously measured. In addition, although the chicane’s beamline was conveniently not in line

with the forward detector, the Bremsstrahlung generated from the chicane was oriented towards

the 90 degree detector. As a result, although shielding was placed to protect the detector from this

radiation, it was not sufficient and thus the 90 degree detector was unusable for this experiment.

Detector Saturation

When too much energy is deposited into the detector due to excessive photon pileup, the detector’s

slow and fast channel outputs behave erratically. Too much energy deposited within the active

detector volume creates a collected induced charge which may exceed the 2 Volts maximum input

to the Detector’s Analog Digital Converter (ADC)[36]. When the ADC input voltage is exceeded,

the detector’s outputs will be erratic and not reliable[36]. This study defines this condition as de-

tector saturation. In particular, when the detector is in saturation, both the fast and slow channel’s

recorded photon counts should be erratic and unreliable.

As stated earlier, the fast channel primary function is to detect an incoming photon. Assume

for purposes of illustration, that the detector detects photon #1 and then detects the second photon

#2 some time later. When the fast channel detects the second photon, the detector’s algorithm will

determine whether the separation time exceeds the resolution time of the first photon’s detection. If
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the separation time between the second and first photon is less than the detector’s resolution time,

then the slow channel rejects both photons when PUR is on. In this scenario, the Fast Channel will

record an output of two incoming photon counts. However, the slow channel will record an output

of zero incoming photon counts. If PUR is set to off, the Fast channel will still record the two

incoming photons. But, the slow channel will now record one incoming pileup photon instead of

zero. Therefore, in an experiment, the fast channels should always be equal to or greater than the

slow channel photon count.

In this study’s experiment, other than photons generated from the bunch-crystal interaction,

assume that no other photons are generated or present in the experiment area. Since all photons

are generated from the bunch-crystal interaction within 54 picosec, these photons all arrive within

the fast channels 120 nanosec resolution time. These bunch-crystal generated photons are auto-

matically detector pileup photons. In addition, since each bunch separation time (pulse gap) is

greater than the detector’s resolution time, the detector will not reject any bunch-crystal generated

photons. Whether the bunch generates one, two, five, twenty or 5000 photons, the fast channel will

record the entire single bunch generated photons as one incoming pileup photon count.

If a pileup photon energy creates a detector saturation condition, then the fast channel may

or may not record the incoming photons as a single count. AmpTek stated that in this condition,

the fast channel’s ability to properly record incoming pileup photons is unknown. Theoretical cal-

culations for a bunch possessing 20 picocouloumbs, the bunch interaction with the crystal would

generate over 1873 photons/bunch at 89.3KeV and 1767photons at 141.9KEV for a total of 3640

Photons/bunch. For the forward detector, at these photon numbers, saturation of the detector will

most likely occur.

However, instead of being completely erratic and unpredictable when the detector is in satura-

tion mode, the detector appears to consistently suppress the fast count numbers. Table 6.1 shows
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fast count data generated from different bunch charge settings, 60 bunches per reprate and an ac-

quisition time of 300 seconds. Table 6.1 shows that the detector is in saturation; and when in

saturation it suppresses the fast count recordings. For example, suppose a 1pC bunch generates

0.5 photons on average when it interacts with the crystal. In this beam condition and interaction

rate, the detector is not in saturation nor in an automatic pileup condition. In this case, we should

expect 9,000 photons recorded in the fast count.

9000photons =
(

0.5photon
Bunch

)(
60Bunch

1sec

)
300sec (6.6)

As we increase the bunch charge, we should expect the average count to increase. For example, lets

hypothetically say at 37pC, the bunch interaction is generating on average 0.9 photons. We should

then expect a fast count to increase to a total of 16,200 photons. Hypothetically, lets assume that

at 63pC, each bunch interaction is generating 2 photons on average but the total energy of the two

photons is insufficient to saturated the detector. In this situation, the two photons are automatic

pileup and the detector records the sum of the two photon’s energy as just one photon. In this

case, the fast count should be at its maximum of 18,000. In all these cases, we are not seeing

these performances within Table 6.1’s data. In fact, as the charge increases in Table 6.1, we do not

see any significant change in the fast counts; and in fact the fast count is significantly less then the

maximum possible fastcounts of 18,000. The detector, therefore, must be in saturation mode and is

on average consistently suppressing the fast counts. Table 6.1 indicates that the detector saturation

is suppressing fast counts by 87.2% of the the maximum possible counts of 18,000.

137



Table 6.1: Detector Saturation Suppresses Actual Fast Count.

Diamond Lattice Crystal

Bunch Charge Duration Bunch Fast Counts Predicted Fast

Counts

1pC 300sec 60 2291 18,000

37pC 300sec 60 2285 18,000

63pC 300sec 60 2328 18,000

Aluminum Foil

1pC 300sec 60 3228 18,000

35pC 300sec 60 2080 18,000

60pC 300sec 60 2059 18,000

Figure 6.15: Detector’s fast count vs bunch charge saturation curve.
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Figure 6.15 outlines what is most likely occuring with the X123CdTe detector fast counts as the

number of photon that are generated begin to approach and eventually go beyond the detector’s

saturation point. In Figure 6.15, Region I
{

Q < Qpileup
}

predicts a linear increase in fast counts as

the bunch charge, Q, increases from zero charge to Qpileup charge. Bunch charges at Qpileup gener-

ate exactly one photon per bunch. At Qpileup, the total number of fast counts is at its maximum for

the detector. Region II
{

Qpileup < Q < QSaturation
}

predicts that the saturation curve flat lines to

the number of photons equal to the total number of bunches produced during the acquisition time.

Bunch charges above Qpileup will generate, on average, more than one photon per bunch-crystal

interaction. Since the photons generated from the bunch-crystal interaction are well within the fast

channel’s resolution time, these photons are automatically pileup photons. So long as the pileup

photons do not exceed the ADC’s 2 Volt limit, no matter how many photons that are generated,

the detector will only record one photon per bunch. When the bunch charge is high enough for

the pileup photons to deposit enough energy to exceed the ADC’s 2 Volt limit, then the detector is

in saturation mode. The bunch charge that generates enough photons, on average, to saturate the

detector is called the Qsaturation charge. Region III {QSaturation < Q} represents drastic suppression

of fast count for bunch charges above QSaturation.

Initial experimental results indicates that the detector fast count vs charge data agrees with

Figure 6.15 detector saturation curve predictions. Figure 6.16 saturation curve plotted from ex-

perimental data nearly replicates the predicted curve illustrated in Figure 6.15 with some notable

discrepancies.
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Figure 6.16: Plot “A” Forward Detector’s saturation curve indicates at this charge
resolution that Qp ≈Qs. Plot “B” shows experimental data with more refine charge
resolution where Qp <Qs as predicted. Acquisition time was 300 sec for both plots.
20 Bunches with reprate = 1 MHz for Plot B, unknown for Plot A

Both plots in figure 6.16 show a steady nearly linear rise to a charge pileup Qp approximately

somewhere between 0.05pC and .08pC bunch charge. In Fig.6.16B, after Qp is reached, the fast

counts appears to flatten out until we reach saturation charge Qs = 0.12pC after which the fast

counts are suppressed due to detector saturation. Although not recorded in Fig.6.16A, the number

bunches per 1MHz reprate is 20 for Fig.6.16B. Therefore, for Fig.6.16B, we should expect a max-

imum of 6000 fast counts at the pileup charge,Qp = 0.08pC. Instead, the fast counts are at 6576

which is a discrepancy of 576 fast counts in excess. In this calculation, Dark Current back ground

signal were already removed from the fast count. However, it has been found, that dark current

contributions to the fast count fluctuate over the run of the experiment which may account for this

discrepancy. In addition, since the charge per bunch was operating at the extreme range of the

FAST capabilities, charge error is evident but not measurable in this region.

Finally, as a last check on detector’s predicted saturation curve, we measured the number of

Fast counts generated per bunch. This is a great indicator on whether the bunch charge is in region

I or II. If the bunch charge is in region III, we should have significant suppression of fast counts

in the suppression range of 80% or more. In this check, three different laser frequencies were

used: 3 MHz, 1 MHz, and 750 KHz. This in turn increased the pulse gap between bunches by
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0.33µsec, 1µsec and 1.33µsec. All three experiments used the same bunch charge of 0.055pC

which is approximately the Qpilup charge as indicated in Fig. 6.16. During these three runs, dark

current background contributions were removed from the Fast Count spectrum in Fig. 6.17.

Figure 6.17: shows for a bunch charge of 0.055pC bunch ≈ Qp, fast counts
were recorded as a function of number of bunches. Red curve depicts 3MHz
pulse laser, blue curve is the 1MHz pulse laser, and the green curve repre-
sents 750Khz pulse laser. Since the forward detector’s acquistion time for
the spectrum was 300 sec and the reprate is 1Hz, the brown curve repre-
sents 300 fast counts/bunch which is equivalent to one photon generated per
bunch-crystal interaction. Dark Current background was removed from this
plot

From Figure 6.17, the actual curves for 1MHz and 750KHz Laser lies above the theoretical

prediction of a one pileup photon generated per bunch-crystal interaction. These graphs lie ap-

proximately at the Qpileup which is the transition point between Region I and II. Key is that there

is no major suppression of fast counts, fast counts increase roughly linearly with bunch increase,
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and the fast counts also roughly equal to number of total bunches generated in the acquisition time.

Of note, as the pulse gap increases, the experimental curves positive error increases as well. The

3MHz curve shows better agreement with the theoretical max. In all three cases, there is no spe-

cific clear answer for why the as the pulse gap increases, there is more opportunity for dark current

to inject photons into the detector. However, this is not the complete answer. If dark current was

the sole source of error, we should see roughly the same error at 1 bunch as in 25 bunches per

reprate. Determining the source of this error is still not fully understood. However, we can say

that 0.055pC is still too high for executing the channeling experiment. Based on Fig.6.16 and Fig.

6.17, the analysis indicates fairly confidently that the bunch charge is at Qpilup or some where in

region II. To ensure that we are in region I, the charge must be reduced such that the curves lie

consistently below the brown curve in Fig. 6.17. Unfortunately, since we are at the limits of phys-

ically collimating the forward detector, the accelerator is unable to lower the charge below Qp ≈

0.055pC consistently to conduct the channeling experiment using the forward detector.

Pileup and Deadtime Mitigation

Due the nature of how channeling photons are generated and detected in this experiment, this

study can apply the algorithm developed by Y. Dannon, B. Sones and R. Block (DSB) to correct

for pileup and deadtime errors in the spectrum[37]. For abbreviation purposes, this correction al-

gorithm is designated as the DSB or DSB mitigation.

In order to apply DSB mitigation, the experiment must meet the following assumptions:
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1) The detector resolving time is longer than the radiation’s pulse width

which means that only one photon can be be measured per pulse.

τdeadtime > τpulse−width

2) The detector can fully recover and is ready to measure at the begin-

ning of each radiation pulse which implies that detector resolving time

must be shorter than the beam-off interval.

τdeadtime < τpulse−gap

3) There is no measured background photons or noise in between the

radiation pulses.

4) All Channeling radiation and Bremsstrahlung emissions follow the

Poisson distribution.

For Poisson statistics, ‘m’ is defined as the average mean number of photons per X-ray pulse

that can be detected by a detector with no dead time losses. No dead time losses means that no

photon was loss due to deadtime. For the X123CdTe detector, deadtime losses can occur when

the PileUp Rejection (PUR) is turned on. If the separation time of two arriving photons are less

than the detector’s deadtime≈ peaking time, then both photons are not counted and are considered

deadtime losses. The probability to detect ‘n’ photons during a single pulse is a function of the

Poisson probability distribution.

P(n,m) =
mne−m

n!
(6.7)

Figure 6.18 displays a toy spectrum with four dominate peaks. This spectrum was generated

stochastically.
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Figure 6.18: This artificially generated toyspectrum has Four Gaussian
peaks and background noise.

In figure 6.18, the DSB algorithm can characterize each peaks photon detection and background

count statistically. The probability of detecting one photon from Peak#1 and no background pho-

tons during a single pulse is

P1 = P(1,m1)P(0,mb) = m1e−mt (6.8)

where m1 equals the average number of photons detected for Peak#1 with no dead time loss for a

pulse. mt equals the average total number of photons detected without loss to dead time for one

pulse. Finally, mb1 = (mt −m1) is the average background photon counts for Peak#1 without loss

to dead time for one pulse. The probability to detect any photon without dead time loss during a

single pulse is
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Pt = 1−P(0,mt) (6.9)

From these Poisson statistics, this DSB algorithm can define what the photon rates are for

Peak#1 photons, total number of photon rates, and the actual rate.

Table 6.2: Observed and Actual Peak#1 and Total Photon Rates

Observed Rates

r1 r1 = f P1 = f m1e−mt : Observed Peak#1 photon rate in one second

rt rt = f Pt = f (1− e−mt ): Observed total photon rate in one second.

Actual Rates

n1 n1 = f m1: Actual Peak#1 photon rate in one second.

nt nt = f mt : Actual total photon rate in one second.

where f is the laser pulse frequency. Since we can measure Peak#1’s photon rate, (r1), and the

total photon rate, (rt), we can determine the actual Peak#1’s photon count, (n1) and the actual

total count, (nt). In other words, we can take observed photon count rates and apply a deadtime

correction factor to determine the actual photon count rates.

nt = f mt = f ln
(

f
f − rt

)
(6.10)

n1 =

(
f

f − rt

)
r1 (6.11)

Therefore, the deadtime correction factor for Peak#1 is
(

f
f−rt

)
.

In this particular toy spectrum scenario, Peak#3 is conveniently twice the energy of Peak#1.

Two photons with energies of Peak#1 could arrive within a laser pulse and be counted as a single

Peak#3 photon. This would be an automatic pileup. There also could be a Bremsstrahlung photon
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plus a Peak#2 photon pileup equaling to Peak#3’s energy. However, that is considered statistically

unlikely. The probability of getting a photon count in Peak#3 is

P3 = P(0,mb13)[P(2,m1)P(0,m3)+P(0,m1)P(1,m3)] (6.12)

where mb13 = mt −m1−m3 is the average background photon count minus Peak#1 and Peak#3’s

photon counts. m3 is the average number of photons detected for Peak#3 with no dead time loss

for a pulse. To interpret P(0,mb13)P(2,m1)P(0,m3) in Equation 6.12, it is the probability of two

photons from Peak#1, no photons from Peak#3, and no background photons arriving at the detector.

Likewise, P(0,mb13)P(0,m1)P(1,m3) is the probability that no photons from Peak#1, one photons

from Peak#3, and no background photons arrive at the detector.

Table 6.3: Observed and Actual Peak#3 Photon Rates

Observed Rates

r3 r3 = f P3 = f e−mt
(1

2m2
1 +m3

)
: Observed Peak#3 Photon rate in one second

Actual Rates

n3 n3 = f r3
f−rt
− 1

2

(
r1

f−rt

)2
: Actual Peak#3 photon rate in one second.

From Table 6.3, the actual photon rates from Peak#3’s n3 equation is composed of the deadtime

correction r3
f−rt

and the pileup correction 1
2

(
r1

f−rt

)2
= 1

2m2
1.

The observed and actual photon rates for Peak#2 and Peak#4 have the the same form as depicted

in Table 6.2 with the appropriate m2 and m3 average photons used instead.

DSB algorithm is tailored made for this experiment and should be used in adjusting the spec-

trum for both pileup and deadtime. In addition, in DSB study, they found that the average photon

per bunch should not exceed 3
4 per bunch. If this average is exceeded, the DSB algorithm errors

begin to dominate.
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6.1 Conclusion

There is a possibility for a second channeling experiment to be conducted at FAST. If this is the

case, as originally planned, the 90 degree detector of the Compton scattering coupled with lead or

brass collimation would lower the average number of bunches to less than one. Preferably, the 90

Degree detector should be position on the opposite side of the chicane to avoid both beam halo

and dark current induced Bremsstrahlung radiation contamination. Likewise, the 90 degree detec-

tor should be heavily shielded from any other beam induced Bremsstrahlung upstream and from

the beam dump. The positioning and shielding will ensure the rigid requirement that no photons

arrive at the detector between pulse gaps. Using the Compton scattering disk, we should be able

to reduce the average photons per bunch to less than 0.75 to meet the DSB algorithm requirement

for adjusting for pileup and deadtime errors. This criteria also eliminates any possibility of auto-

matic pileup, saturation or near saturation mode. Secondly, we now have an ability to characterize

whether the X123CdTe is in saturation or not.
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Chapter 7

Summary and Conclusion

In 2016 at the FAST/Fermilab facility, a collaborative group attempted to generate channeling

radiation in the hard X-ray, 80 to 150 KeV region, using a 165 micron thick diamond crystal and

a linear accelerator that is capable of generating almost 45 MeV beam energy. To predict the

channeling radiation spectrum generated from a beam that is parallel to a [110] axial orientation

or to a (110) crystal planar orientation, two models (2-D Axial and the 1-D Planar), have been

used to predict axial and planar channeling radiation, respectively. Since Azadegan published

excellent papers on 1-D Planar modeling for diamond, silicon, and germanium lattice along with

publishing a working 1-D Planar Mathematica program to simulate planar channeling [4, 15, 26],

the collaborative group chose to generate planar channeling radiation and use Azadegan’s program

with slight modifications [23] to numerically predict this planar channeling radiation. Although

both the 1-D planar and 2-D axial models have had good agreement with their predictions with

experimental results, this study believes that 1-D Planar model contains excessive approximations

that could generate unphysical results. We believe that a 2-D model, such as the 2-D Axial model,

is a much better approximation than any 1-D Planar model for any channeling radiation generated.

But, we also are concerned that the 2-D Axial model’s reliance on constructing single-string of ions

continuum potential and the subsequent lattice potential construction also suffers from inadequate

approximation errors and complexity. Therefore, the main focus in this research was to create
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a 2-D Model that better reflects the actual physics and reduce the approximations which appear

inherent in both the 1-D Planar and 2-D Axial model for predicting channeling radiation.

As discussed in chapter 4, the 1-D Planar model has excessive approximation and inconsis-

tencies. The two dimensional Hamiltonian which describes the electron’s transverse motion is

strongly coupled. Consequently, information is lost or distorted when one of the degrees of free-

dom is averaged out unilaterally in the transverse space. As compared to our generic 2-D model

or the 2-D Axial model, the number of eigenstates are severely reduced when using the 1-D Planar

Model. This approximation is unnecessary and validity of this 1-D Planar model is suspect. In

chapter 5.4, beam distribution f(px, py) has been shown to have great impact on the spectrum.

(11̄0) Transverse Plane

(111)
Plane

(110)
Plane

[001]

[110]
[111]

[1̄1̄2]

[11̄0]

Figure 7.1: The square box represents the (11̄0) transverse lattice plane which is the pancaked 3-D
lattice due to Lorentz contraction along [11̄0] axis. The beam [11̄0], the red dot, is going into the
page. Looking edgewise, the green line represents the (111) plane and the blue line represents the
(110) plane. The beam [11̄0] resides in both planes. As depicted in table 4.8 and 4.9, the two
orthogonal axis, which are basis coordinates for the (11̄0) Transverse Lattice plane, in this case is
the~ex = [111] and~ey = [1̄1̄2]; or it could be~ex = [110] and~ey = [001]. For the (111) and (110) 1-D
planar model, it averages out the coordinate axis [1̄1̄2] and [001], respectively.

Suppose the beam has a round Gaussian distribution, in most cases with these small accelerator ex-
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periments this is true, then the transverse momentum distribution is invariant under any coordinate

system adopted within the beam’s transverse plane. This invariance of the beam’s transverse mo-

mentum distribution creates a problem for the experimenter. For example, what is the experimenter

actually measuring in Fig. 7.1? In figure 7.1, the beam is traveling into the page with an axial direc-

tion [11̄0]. The transverse plane to this [11̄0] beam is depicted as the square (the contracted cubic

3-D lattice to a 2-D lattice) where the transverse beam’s motion resides within. The planes (111)

and (110) are seen edgewise in this figure. The beam direction [11̄0] resides in both planes which

is where the two planes intersect. Since the distribution is invariant under any basis that spans the

(11̄0) transverse plane space, the distribution does not favor any particular coordinate axis system.

Consequently, according to the 1-D Planar model, the electron beam is interacting simultaneously

with the (110) plane and the (111) plane. Table 4.10 directly shows that the same beam direction

[110], which is equivalent to [11̄0], is generating 16.54 and 7.89 KeV X-rays peaks associated to

the (110) planar model experiment and 11.07, 8.14 and 6.05 KeV X-rays peaks associated to (111)

Planar model experiment. However, under this beam [11̄0] direction, both experiments should be

measuring all these X-ray spectrum signals simultaneously. This indicates inconsistency within

this 1-D Planar model. Because of this excessive approximation and inconsistency within the 1-D

planar model, this research focused on creating a new, generic 2-D model to be used in the FAST

channeling experiment.

The 2-D Generic numerical model created in this research was an attempt to create a more

accurate, less complex, and better phenomenological beam centric model than the existing 2-D

Axial models.

Phenomenologically, the 2-D Generic Model made a clean break from the artificial construc-

tion of plane of ions or single-string of ions in explaining channeling radiation. Rather, the beam

direction determines much of the physics of the problem. Along the beam direction, the three-

dimensional lattice pancakes down into a two-dimensional transverse lattice plane. Within this

transverse lattice plane resides the electron beam’s transverse motion. Rather than artificially cre-

ating a lattice of single-string of ions, this approach looks at the contribution of each ion to the
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lattice. Lorentz contraction allows us to readily determine any periodicity changes when trans-

forming from a cubic 3-D lattice to a 2-D lattice plane. As illustrated earlier, determining the

fundamental periodicity is absolutely critical in correctly solving the Schrödinger equation for this

2-D system. In addition, since the transverse motion lies within the transverse plane of the beam,

one can also readily see the inconsistency with the 1-D Planar model (see Fig. 7.1). To expand

further on a beam centric model, the lattice coordinates are rotated to align with the accelerator

coordinates where z is the beam direction and the beam’s transverse coordinates are x and y. When

calculating the beam’s occupation of eigenstates, the beam’s emittance is used in lieu of the elec-

tron angle distribution around the critical angle [3]. Since accelerators are the primary drivers in

generating relativistic electron beams, it makes sense to align the experimental measurements with

accelerator coordinates and beam distribution emittance parameters. This also will provide a more

standard approach in comparing channeling data produce from different facilities particularly since

beam eigenstate occupation is dependent on both the beam emittance and Courant-Snyder’s twiss

parameters.

With the goal to make the 2-D Generic model more accurate than the 2-D Axial model, the new

design also became less complex and thus more usable than the 2-D Axial approach. Although

Lindhard’s single-string of Ions was the initial impetus of channeling radiation, this construct is

still an artificial configuration. Instead, this study followed along similar lines to Azadegan’s

development of the 1-D planar model[4] in developing the three dimensional lattice potential. In

our Generic model and the Planar/Axial Models, both determined the ion’s potential from electron

scattering data of the ion[1, 2, 3, 5]. Based on each ion’s location within each cubic lattice cell, we

sum each ions contribution to generate a 3-D lattice cell potential. Then, without approximations,

this study was able to sum exactly the contributions of all the lattice cells within a crystal lattice

thus generating an overall lattice potential. This is an exact calculation of the lattice potential based

on the ion’s potentials. Now that the generic lattice potential has been determined, we then simply

apply rotations to align the correct lattice orientation with the beam direction. In comparison, the

2-D Axial model development of the lattice potential is much more complex. Based on the single-
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String of ions specific axial direction, each single-string located within a unit cell contributes to

the overall unit lattice cells potential. Then, this technique must also sum the contributions of all

the cell’s potentials to generate the overall lattice potential. Although the steps are similar, in the

2-D Axial case, this model cannot apply rotation to its lattice potential to generate a new lattice

potential based on a set of single-strings which lie along a different axial direction. Hence, since we

can generate any lattice potential with ease, our generic model is less complex and can be applied

in any orientation. In addition, our generic model should be more exact than the 2-D Axial model.

Table 4.11 also clearly outlines the computational advantages that the 2-D Generic model has over

the other two models. Surprisingly, as shown with the spectrum comparison in Figures (4.24, 4.25

and 4.26), the 2-D Axial model clearly predicts the channeling radiation spectrum much better than

our Generic model. The question is why?

Figure 7.2: Visual comparison of Eigenenergies of our generic model de-
picted in red lines and Klein’s predictions in black lines. For each beam
energy 16.9, 30.5 and 54.5MeV, there are two columns: (A) and (B). Col-
umn (A) represents the Generic Model predicted eigenenergies in red lines.
Column (B) is Klein’s Axial Model’s predicted eigenergies in black lines.
Q1 =Q2 = 0 of the transverse motion in the beam rest frame diamond lattice
along [001]. All Eigenenergies below the cyan line are bounded states.

One major contributor to our model not matching with measured results is the beam configu-
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ration. Beam configuration can significantly impact on the probability that the beam will occupy

a bound state or states. None of the experiments, where we compared our results with real ex-

perimental data, indicated what the experiment’s beam configuration was. This omission of a

key parameter’s of beam emittance and twiss parameters certainly can skew how the spectrum is

generated.

Since a rigorous error analysis was accomplished with the diagonalization of the Hamiltonian

matrix, we are confident that this is not a source of the inconsistencies. The primary indicator of

inconsistencies are the eigenenergy values for the bounded eigenstates. Table 4.3 and Figure 7.2

clearly illustrate that the transition energies, ∆En,m = En−Em are not the same between Klein’s

2-D Axial Model and our 2-D Generic model. However, there is a definite pattern that is common

for both models. In all three energy cases depicted in Fig. 7.2, there is a distinct separation between

E1, E2, and E3 in both models. In addition, in both models, E3 and E4 separations are very close.

This type of similarity is also consistent at higher eigeneneriges. Since solving for the eigenstates

is not the problem, this disparity in eigenenergy separations indicates that the construction of the

2-D Generic potential is significantly different than the 2-D Axial model. Therefore, assuming

beam emittance structure is not the source of the error, the most likely source of the discrepancy is

the construction of the 2-D Generic potential.

a. Impact of using different fitting parameters for the scattering amplitude.

This study is using Doyle-Turner’s fitting parameter of the electron scattering amplitude of the

ions: carbon, silicon, and germanium [8]. Azadegan used Doyle-Turners fit data [4]. Andersen’s

paper used a four Gaussian better fit than the Doyle-Turner’s four Gaussian fit parameters [1].

Genz used an improved fit of the numerical results of Doyle-Turner [5]. Using X-ray diffraction

to determine the contribution of electrons, Klein used this information to apply corrections to the

Doyle-Turner fit parameters [2]. Finally, Chouffani used a six Gaussian to improve the fit of the

electron scattering amplitude [3]. In comparing our spectrum to data, we used Klein, Genz, and

Andersen’s published data. All three authors used a different scattering amplitude fit parameter
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than our 2-D Generic model. Since we do not have these parameters, we will use Chouffani’s

improved six Gaussian fit parameters to measure how these new fit parameters perturb our 2-D

Generic eigenenergies.

16.9 MeV 30.5 MeV 54.5 MeV

Ch DT Ch DT Ch DT

E1 -59.82 -59.38 -67.42 -66.53 -73.89 -72.437

E2 -34.64 -34.88 -44.52 -44.93 -54.00 -54.33

E3 -24.87 -24.58 -33.29 -32.86 -42.18 -41.91

E4 -20.10 -20.11 -29.14 -29.29 -39.01 -39.52

E5 -19.95 -19.94 -24.14 -24.09 -32.66 -32.37

E6 -16.25 -16.35 -19.24 -19.19 -28.24 -28.32

E7 -13.99 -13.90 -19.04 -18.98 -26.68 -26.51

E8 -12.15 -12.19 -17.22 -17.37 -24.95 -25.01

E9 -11.85 -11.85 -16.85 -17.00 -21.31 -21.28

Table 7.1: This table displays the eigenenergies for the Diamond [001] 2-D Generic
model at three different beam energies: 16.9, 30.5, and 54.5MeV. The rows define
the eigenstate En. The columns define the fitting parameters used. "Ch" represents
Chouffani’s six Gaussian fit parameters of the electron scattering amplitude. "DT"
represents Doyle-Turner’s four Gaussian fit parameters.

Table 7.1 indicates that the Chouffani’s fit parameters does not significantly perturb the eigen-

states from the Doyle-Turner generated eigenstates. As a quick check, the lab frame’s maximum

and minimum potentials for Chouffani’s fit is -10.735eV and -98.848eV. The labframe’s maxi-

mum and minimum potential for the Doyle-Turner fit is -10.583eV and -93.477eV. This indicates

that using the Chouffani fit for the diamond increases the depth of the potential. Preliminary data

indicates that these fitting parameters do not have any significant impact on the Eigenenergy dis-

tributions. However, we should also examine silicon and germanium to determine whether this
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consistent as well with these lattices.

b. Comparison of Labframe’s Potential: Klein’s 2-D Axial versus Our 2-D Generic

Klein Diamond [001] labframe 2-D Axial potential, using a different fitting parameters than

Doyle-Turner, has a maximum potential of approximately 0eV and a minimal potential of approx-

imately 86.5eV. Our potential has a much shallower minimum of -10.583 and a deeper maximum

of -93.477eV. In addition, as discussed earlier, our Fourier expansion converges much slower for

[110] and [111] compared to the 2-D Axial model. Yet, for the [001] case, our Fourier expansion

converges faster than the 2D axial model. Consequently, this difference in Fourrier convergence

rate indicates sufficient difference between the legacy 2-D Axial potential and this research 2-D

Generic potential. This reinforces the idea that the 2-D Generic potential is still the main source of

the discrepancy.

Conclusion

Assuming that the beam emittance structure is not the source for the lack of agreement in

prediction of data, this 2-D Generic model’s inadequate predictions is most likely due to the con-

struction of its potential. From a physics perspective, the construction of the lattice potential is

based on fundamental principles. Each ion provides is own contribution to the lattice cell and

subsequently towards the overall lattice potential. Although unlikely, linebroadening contributions

were not calculated in this study. Linebroadening corrections would not likely rectify the current

deficiencies in this model’s ability to generate the correct spectrum. Although it may not be the

ultimate source of the problem, the next step would be to perturb the electron’s scattering am-

plitude fit parameters to determine if this improves the comparison of the eigenenergies between

the two models. If this does improve the model’s performance, then a better fit of the scattering

amplitude should be determined. Second, we should generate a three-dimensional error surface

plot describing the error between the 2-D Axial and our 2-D Generic Potential. Depending on the
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results, if the error indicates that our potentials are consistently deeper than the 2-D Axial, then

perhaps there is some screening mechanism of the ion occurring within the lattice cell which is

being suppressed in our model. This 2-D Generic model’s lack of agreement to data is puzzling.

Solving this discrepancy should shed more light into the physics of channeling radiation.
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Appendix A

Determining Schrödinger Equation’s

Eigenstates with Rotationally Symmetric

Potentials

Solving for eigenstates with Schrödinger Equations possessing rotationally symmetric potentials

is done through separation of variables techniques. For a three dimensional rotationally symmetric

potential V (r,θ ,φ), the solution takes the form of

Ψ(r,θ ,φ) = R(r)Y (θ ,φ) where r ∈ [0,∞), θ ∈ [0,π), and φ ∈ [0,2π) (A.1)

Similar but not exactly like the spherically symmetric three dimensional potential, the two dimen-

sional cylindrical potential takes the form of V (r,φ) =V (r) Using separation of of variables,

Ψ(r,φ) = R(r)Y (φ) where φ ∈ [0,2π) (A.2)

we solve for the two dimensional Schrödinger equation, H .

− h̄2

2m

[
1
r

∂

∂ r

(
r

∂

∂ r

)
+

1
r2

∂ 2

∂φ 2

]
Ψn(r,φ)+V (r)Ψn(r,φ) = EnΨn(r,φ) (A.3)
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where the solution is

Ψn(r,φ) = Rn(r, l)eilφ where Y (φ) = eilφ (A.4)

From Eqn. A.4, the probability density for all eigenstates is independent of the rotational angle φ .

|Ψn(r,φ)|2 = |Ψn|2(r) = Rn(r, l)∗Rn(r, l) Probability Density (A.5)
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