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Abstract

In this thesis, we present the author’s joint research with Lei Song, published in [28].

We show this: Suppose X is a minimal surface, which is a ramified double covering

π : X → S, of a rational surface S, with dim | −KS| ≥ 1. And suppose L is a divisor

on S, such that L2 ≥ 7 and L · C ≥ 3 for any curve C on S. Then KX + π∗L is

base-point free and the natural map Symr(H0(KX + π∗L)) → H0(r(KX + π∗L)), is

surjective for all r ≥ 1. In particular this implies, when S is also smooth and L is an

ample line bundle on S, that KX + nπ∗L embeds X as a projectively normal variety

for all n ≥ 3.
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Chapter 1

Introduction

Let L be a very ample line bundle on a projective variety. Let φL : X → Pn be the

mapping induced by the complete linear series of L. We would like to know how simple

is this embedding. In particular we are interested in knowing various characteristics

of the homogeneous coordinate ring of the image variety. A first question is: is the

coordinate ring R of the image of X normal. For R to be normal X has to be normal

to begin with, so a prerequisite is that X is normal. After ensuring this, we only

have to check if R((0)) is normal. Also in this situation the section ring of L, R(L) =

⊕k≥0H
0(L⊗k) is the integral closure of R. Hence another way of checking normality is

checking the surjectivity of the maps Rk = Symk(H0(L))|φL(X) → H0(L⊗k) for k ≥ 1.

If it is so, the next question we are interested in knowing is: if the homogeneous ideal

of the image of X is generated as simply as possible. Since by the definition of φL,

R1 → H0(L) is bijective, the homogeneous ideal doesnot contain deg 1 forms. Hence

the homogeneous ideal I, is most simply generated when it is generated by quadratic

forms. Furthermore we are interested in the minimal free resolution of R and if it is

as simple as possible. The property of Np-ness is a measure of this simplicity. Let

0→ Fn
ψn→ · · · ψ3→ F2

ψ2→ F1
ψ1→ F0 → R→ 0
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be the minimal free resolution of R. Then we say:

• L satisfies N0 if R is normal.

• L satisfies N1 if L satisfies N0 and the homogeneous ideal I of the image of X is

generated by degree 2 forms.

• L satisfies Np if L satisfies Np−1 and the matrix corresponding to the map ψp has

linear entries, but the matrix corresponding to ψp+1 is either 0 or desnot have linear

entries.

When X is a smooth complex algebraic curve of genus g, and L is a line bundle on

X, conditions on the degree of L, imply various properties of L. By the Riemann-Roch

theorem if the degree of L is greater than or equal to 2g then L is globally generated,

and if degL ≥ 2g + 1, then L is very ample. Castelnuovo proved in the 19th century

that if degL ≥ 2g + 1, then L satisfies N0, and if degL ≥ 2g + 2 then L satisfies N1.

In the same century Noether and Enriques-Petri proved results describing precisely

when the canonical line bundle is N0, and when it N1. Generalizing the result of

Castelnuovo, Mark Green proved that if L is a line bundle on a smooth curve X and

degL ≥ 2g+1+p then L satisfies the property Np. This result is sharp. It is a result

that if L is a line bundle of degree 3 + p on an elliptic curve, then L satisfies Np but

not Np+1.

Let A be an ample line bundle on a curve. Then the line bundle KX +nA satisfies

Np if n ≥ 3 + p, by Green’s theorem mentioned above. This has suggested a possible

extension of Green’s result for line bundles of the type KX +nA to higher dimensions.
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Two conjectures in this direction, which have attracted attention are:

Conjecture 1 (Fujita [8] ). Let X be a smooth variety of dimension d, and A an

ample line bundle on X. If n ≥ d + 1, then KX + nA is globally generated, and if

n ≥ d+ 2, then KX + nA is very ample.

Conjecture 2 (Mukai). Let X be a smooth algebraic surface and A an ample line

bundle on X. If n ≥ 4 + p then L = KX + nA satisfies Np.

Fujita’s conjecture holds for d = 1 by the Riemann-Roch theorem. Reider in [29]

proved the case for d = 2. The part referring to global generation was proved in

dimension 3 by Ein and Lazarsfeld in [6], and in dimesion 4 by Kawamata in [23],

and it is open in dimension greater than 4. The very ample-ness part of the Fujita’s

Conjecture is open in dimension greater than 2.

Ein-Lazarsfeld in [5] proved that if A is a very ample line bundle on a smooth

projective variety of dimension d, then the line bundle KX +(d+1+p)A+B satisfies

Np, where B is a nef line bundle. But it seems that the methods used to prove this

result, where A is very ample donot help when A is just ample to begin with, as is

the case in the statement of Mukai’s conjecture. Much less is known about Mukai’s

conjecture. Even the simplest case p = 0, is not known in general. But results are

known in certain classes of surfaces. For geometrically ruled surfaces Butler in [4] has

proved that if n ≥ 5, then KX + nA satisfies N0, and if n ≥ 4p + 4 and p ≥ 1, then

L satisfies the property Np. When X is geometrically ruled over an elliptic curve

Homma in [20,21], proved that if n ≥ 4 then KX + nA satisfies N0. This is the lower
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bound claimed by Mukai’s conjecture for N0. She in fact characterized all line bundles

on elliptic ruled surfaces which satisfy N0. Again for a smooth elliptic ruled surface

Gallego-Purnaprajna in [9] proved that if n ≥ 2p+ 3, and p ≥ 1, then KX +nA satis-

fies Np. In particular this implies the N1 case of Mukai’s conjecture for these surfaces.

In this paper Gallego-Purnaprajna in fact characterized all line bundles on an smooth

elliptic ruled surface which satisfy N1. In [15], Gallego-Purnaprajna proved results

on higher syzygies for rational surfaces X. If X is in particular anti canonical, then

they characterized all linebundles L which satisfy the property Np. As a corollary

they proved higher syzygy analogues of Reider’s result on base point freeness and

very ampleness for these surfaces. This in particular proves Mukai’s conjecture for

an anti canonical rational surface X.

For surfaces X of Kodaira dimension 0, in [12] Gallego-Purnaprajna proved gener-

alized Mukai’s conjecture for p = 0, 1. They also showed that the line bundle KX+nA

satisfies Np for all n ≥ 2p+2 if A is an ample line bundle. For a minimal surface X of

general type, in [12] and [13] they have proved various results about projective nor-

mality and higher syzygies for line bundles on X. In particular, they showed that if

X is a minimal surface of general type, then the property Np holds for K+nB, when

B is a base point free and ample line bundle in a certain open set in Pic(X). But

the conjecture is open in it’s full generality even for the so called Horikawa surfaces

in particular and genus two fibrations in general. We now concentrate our attention

on these surfaces.

A minimal surface of general type on which Noether’s inequality is an equality

K2
X = 2pg − 4 is called a Horikawa surface. Horikawa in [22] has shown that these
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surfaces are canonical double covers of surfaces of minimal degree in particular of

degree pg − 2 in Ppg−1. It is well known that the surfaces of minimal degree are

rational. So double covers of rational surfaces are interesting cases in the study of Al-

gebraic surfaces. So one can ask a question if Mukai’s conjecture holds good for these

surfaces. We address this question in our paper [28] where we got the following result.

Theorem 1 (R-Song [28] ). Let S be an anti canonical rational surface. π : X → S

be a ramified double covering of S by a minimal surface. Let L be a line bundle on

S such that KS + L is nef and L.C ≥ 3 for each irrd. curve C in S. Then the line

bundle KX + π∗L is basepoint free and the natural map

Sr(H0(KX + π∗L))→ H0(r(KX + π∗L))

surjects for all r ≥ 1.

The condition KS + L is nef and L.C ≥ 3 is equivalent to L2 ≥ 7 and L.C ≥ 3.

We proved this in [28]. Hence the following corollary follows.

Corollary. Let S be an anti canonical rational surface, and let π : X → S be a

ramified double covering of S by a minimal smooth surface X. Let L be an ample

divisor on S. Then for every r ≥ 3, KX + rπ∗L is very ample and |KX + rπ∗L|

embeds X as a projectively normal variety.

Remark: Please note the very ampleness and the projective normality stated in the

corollary follow from the surjectivity in our theorem by the following theorem of
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Mumford.

Theorem 2 (Mumford [26] ). Let L be a line bundle on a smooth algebraic surface

X. If L is basepoint free and Sr(H0(L))→ H0(rL) is surjective for all r ≥ 0. Then

L is very ample and satisfies the property N0.

To prove the surjectivity in our theorem, we push the line bundles on X down to

S, where the verification of the surjectivity is reduced to proving surjectivity of two

multiplication maps on S. One of these surjectivities follows directly from the theorem

of Gallego-Purnaprajna proving Mukai’s conjecture for anti canonical rational surfaces

[15]. The other surjectivity is to show

H0(KS +B + L)⊗H0(KS + L)→ H0(2KS +B + 2L)

is surjective where B is a divisor such that the branch locus of π is a member of |2B|.

The surjectivity of this map can be reduced to the surjectivity of certain multiplication

maps over 2 curves on S. One curve is a member of the linear system |KS + L|, and

the other is either the fixed part of | −KS| or a member of | −KS|, when the fixed

part of it is empty.

I also have projects exploring projective normality and higher syzygies of line bundles

for surfaces of general type that are finite canonical covers of rational surfaces. An

example of these are the quadruple canonical covers of surfaces of minimal degree.

These covers behave generically from many perspectives and a successful handling of

these cases I believe will give a clue for the more general case. The methods we have
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developed so far also yield some interesting results for elliptic surfaces, which I am

also exploring.
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Chapter 2

Preliminaries

2.1 Rational maps induced by the sections of a line bundle

Let D = {(Ui, fi)} be a cartier divisor on a complex variety X. Let L = OX(D)

be the associated invertible sheaf. Then a section s ∈ Γ(Ui, L) of L over Ui is a

rational function of the form s = s′

fi
for some regular function s′ ∈ Γ(Ui,OX) If

{s0, . . . , sn} is a basis for H0(X,L). Then sj|Ui
=

s′j
fi

for some sj ∈ Γ(Ui,OX). Then

(s0, . . . , sn) = 1
fi

(s′0, . . . , s
′
n). If x is not a base-point of L we can define [s0(x) : · · · :

sn(x)] := [s′0(x) : · · · : s′n(x)]. as a homogeneous coordinate in P(H0(L)). Also if

sj =
s′′j
fl

over Ul, then for x ∈ Ui ∩ Ul,sj =
s′′j
fl(x)

=
s′j(x)

fi(x)
. So s′′j (x) = s′j(x)(fl(x)/fi(x)).

Hence [s′′1(x) : s′′2(x) · · · : s′′n(x)] = [s′0(x) : s′1(x) : · · · : s′n(x)]. So [s0(x) : s1(x) : · · · :

sn(x)] is well defined for all x ∈ X, which are not base-points of L. Hence we can

define a map φsL : U → P(H0(L)) by setting x 7→ [s0(x) : s1(x) : · · · : sn(x)], where

U = X \{base-points of L}. Please note that, the last argument also implies that the

definition of φsL does not depend upon the particular cartier divisor representation of

L, we choose to define φsL. Also if we choose a different basis for H0(L), then the

two basis are related as (t0, . . . , tn)t = A(s0, . . . , sn)t, for some element of GL(H0(L)).

Hence φtL = αA ◦ φsL, where αA, is the linear automorphism of P(H0(L)), induced by

A. So the geometric properties of φsL and φtL are same up to an automorphism of
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the image. In future we will omit the superscript s, and simply use the notation φL,

when referring to the mapping induced by L.

For a section s ∈ Γ(X,L), s 6= 0, we define an effective divisor divL(s) by defining

divL(s)|Ui
:= (s′), where s′ is as it was defined earlier. s′ = s|Ui

fi, and (s′) =

((s) + D)|Ui
. Hence divL(s) = (s) + D. Please note s ∈ Γ(X,L) if and only if

(s) + D ≥ 0. If (Ul, fl) is a representation of L over Ul, and s = s′′

fl
, then over

(Ui ∩ Ul), fi = hfl for some h ∈ (X,O∗Ui∩Ul
), and s = s′

fi
= s′′

fl
. Hence s′ = s′′h

on Ui ∩ Ul. So (s′)|(Ui∩Ul) = (s′′)|(Ui∩Ul) since (h) = 0 over Ui ∩ Ul. So divL(s) is

well defined over X. Since s′ is regular over Ui, for each i, divL(s) is effective. By

the argument we gave to show that divL(s), is well defined over X, also shows that

divL(s), is independent of the particular cartier divisor representation we choose to

calculate it. So we have divL(s) = (s)+D. In particular divL(s) is linearly equivalent

to D. If divL(s1) = divL(s2) for two distinct sections of L, then (s1) +D = (s2) +D.

So (s1/s2) = 0. So s1/s2 ∈ Γ(X,O∗X) = C∗. Conversely if D1 is an effective divisor

linearly equivalent to D, then D1 = (s) +D ≥ 0. So s ∈ Γ(X,L). and D1 = divL(s).

So divL(.) gives a 1− 1 correspondence

(H0(X,L) \ {0})/C∗ = P(H0(X,L))→ {effective divisors linearly equivalent to D}

We are just recalling here some properties of line bundles. Let us recall that

the linear system corresponding to W ⊆ H0(L) denoted by |W |, is called globally

generated or base-point free, if given any point x ∈ X, |W | has a member which

does not pass through the point x. Please note when ever we speak of a point in
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geometrical context, we mean a geometrical point, i.e a closed point. When W is

base-point free, a basis for W , induces a mapping φW : X → P(W ), similar to φL.

and the members of the linear system |W | are inverse images of the members of

|OP(W )(1)| i.e the hyper planes in P(W ). W is said to separate two points x, y ∈ X, if

|W | contains a member which passes through x but not through y, or vice versa. W

is said to separate points on X, if |W | has this property with respect to any given pair

of points x, y ∈ X. If |W | separates points on X, then φW is injective. To see see this:

let x, y be a pair of points in X, let δ ∈ |W |, separate x, y. Let H be a hyperplane in

P(W ) such that φ−1
W (H) = δ, then H separates φW (x), φW (y). W is said to separate

tangent vectors at a point x ∈ X, if the image of {s ∈ W |divW (s) passes through x}

in the cotangent space at x(i.e {ds′ ∈ mx/m
2
x|s′(x) = 0, s ∈ W}) under a local

isomorphism L|Ux → OX |Ux is surjective. Here Ux is some neighbourhood about x,

in which L has a trivialization. Hence the mapping φW is a closed immersion if and

only if |W | is base-point free, separates points in X, and separates tangent vectors

at any given point in X. If for a line bundle L, φL induces a closed immersion,

then L is said to be very ample. In this case L = φ∗L(O(1)). and the linear system

|L| = φ−1({the set of hyperplanes in P(H0(L))}).

2.2 The property N0

Let L be a very ample line bundle on X. Let V = H0(L), and φL : X → P(V ) be the

mapping induced by L. Let us choose S = C[V ], to be the homogenous coordinate

ring of P(V ). By abuse of notation let us denote the image of X, in P(V ) under φL
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by X. Let IX , be the homogeneous ideal of C[V ] defining X as projective subvariety

of P(V ). Let S(X) = S/IX , be the homogeneous coordinate ring of X. Let OX(1) =

O(1)|X . Then by the properties of φL, L = OX(1). Hence L⊗n = O(n)|X . Again

by the properties of φL, H0(X,L) = H0(P(V ),O(1))|X = S(X)1. But for n > 1,

the inclusion S(X)n = H0(P(V ),O(n))|X ⊆ H0(X,L⊗n) maynot be an equality. We

define the section ring of the line bundle L, by R(L) := ⊕k≥0H
0(L⊗k). Similarly

define R(O1) = ⊕n≥0H
0(O(n)). Then S = R(O(1)), and S(X) = R(O(1))|X . We

know S = Sym•(V ). So we have a map of graded rings Sym•(V )
|X→ S(X) ↪→ R(L).

On individual components this map is Symn(H0(L)) = H0(O(n))
|X→ H0(L⊗n). this

restriction of sections corresponds geometrically to the restriction of the linear system

of degree n hypersurfaces on P(V ) to X. i.e (|O(n)|) |X ⊆ |L⊗n|. Since X is a normal

variety, by [19] (Ex. II.5.14) R(L) is the integral closure of S(X), in it’s quotient

field. Hence the homogeneous coordinate ring of X, S(X) is normal if and only if the

map Symn(H0(L)) → H0(Ln) is surjective for all n ≥ 0, or geometrically we have

|O(n)|X = |L⊗n|. In words, every member of |L⊗n| is the intersection of a degree n

hypersurface with X.

We say a line bundle L on X, embeds X as projectively normal variety if L is very

ample, and the homogeneous coordinate ring of the image of X under φL is normal.

We also refer to this by saying that L has the property N0. So L satisfies the property

N0, if the restriction maps Symn(H0(L))→ H0(L⊗n) is surjective for all n > 0. One

way to prove this family of maps is surjective is by induction. Please observe that

we have the natural sequence of maps H0(L)⊗n → Symn(H0(L))→ H0(L⊗n). Hence

it is enough to prove H0(L)⊗n → H0(L⊗n) is surjective. Given a N > 0, suppose
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the maps for n < N are surjective. Then for n = N , the above map factorizes as

H0(L) ⊗ H0( L)⊗(N−1) → H0(L) ⊗ H0(L⊗(N−1)) → H0(L⊗N). Hence it is enough to

prove H0(L) ⊗ H0(L⊗(N−1)) ⊗ H0(L⊗N) is surjective. So to use induction we have

to prove that the family of maps H0(L) ⊗H0(L⊗n) ⊗H0(L⊗(n+1)) are surjective for

n > 0. So to test a line bundle L for N0 property, we have to check two things:

1. L is very ample.

2. The map Symn(H0(L)) → H0(L⊗n) is surjective for all n > 0 or the map

H0(L)⊗H0(L⊗n)→ H0(L⊗(n+1)) is surjective for all n > 0.

In this context the following theorem of David Mumford is useful.

Theorem 1 (Mumford). Let X be a smooth projective variety. If L is ample and

base-point free and

Symk(H0(L))→ H0(Lk)

is surjective, then L is normally generated.

Hence by the above theorem we only have to check for ampleness and base-point

freeness, and the surjectivities, to prove L satisfies N0, instead of checking for very-

ampleness of L. This is useful in the following scenario: Let π : X → Y be a finite

map of projective varieties. and L is ample and base-point free on Y , then π∗(L)

is ample and base-point free on X. But the property of very-ampleness maynot

be retained. Suppose we want to verify H0(π∗L) ⊗ H0(π∗L⊗n) → H0(π∗L⊗(n+1))

is surjective. Since π is finite, H0(π∗π
∗L) ∼= H0(π∗L). So it is enough to verify

H0(π∗π
∗L) ⊗ H0(π∗π

∗L⊗n) → H0(π∗π
∗L⊗(n+1)) is surjective. Also this map is the

natural map induced by the multplication of the associated line bundles. So testing
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π∗L for N0 on X, can be done by testing various things about π∗π
∗L on Y . This is

useful, if we are more familiar with the geometry in Y .

The following lemma is useful in checking the surjectivities, needed for verifying

N0, but generally it doesnot solve the problem completely. In particular we have

found that for the case n = 1, we have to use other techniques.

Theorem 2 (Castelnuovo-Mumford Regularity). Let F be a coherent sheaf on a

complex projective variety X, and L is a base-point free line bundle on X. Then

H0(F )⊗H0(L)→ H0(F ⊗ L)

is surjective if and only if H i(F ⊗ L−i) = 0 for all i ≥ 1.

In the above lemma, if we set F = L⊗N , for N ≥ 2, then we would have the

surjectivity we need for the case n = N , if H1(L⊗(N−1)) = 0, and H2(L⊗(N−2)) = 0.

since dimX = 2, we donot have to worry for i > 2. So if L is ample and base-point free

and H1(L⊗(n+1)) = 0 and H2(L⊗n) = 0 for all n ≥ 0, and H0(L)⊗H0(L)→ H0(L⊗2)

is surjective, then L satisfies N0.

2.3 The property Np

Suppose a linebundle L satisfies N0. So the coordinate ring R of X in P(H0(L)) is a

normal S module. A measure of ”nice”-ness of the embedding φL is, how ”simple” is

the minimal graded free resolution of R as a S−module. By Hilbert’s Syzygy theorem
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R has a minimal graded free resolution of length atmost h0(L). Let

· · · φ3→ ⊕jS(−j)β2,j φ2→ ⊕jS(−j)β1,j φ1→ S
φ0→ R→ 0

be a minimal graded free resolution of R. Since the betti numbers βi,j of a minimal

graded free resolution are an invariant of the module, we can call this resolution,

the minimal graded free resolution for our purposes. kerφ0 = IX . Clearly (φ0)0,

the degree 0 component of φ0, is an injection. By the definition of φL, there is a

1 − 1 correspondence between the linear systems |O(1)| and |L| given by restriction

to X, and H0(O(1)) → H0(L) is bijective. So (φ0)1 is also injective. So IX doesnot

have any component in degree 1. A pleasant consequence of this is that X is not

contained in a linear subspace of P(H0(L)) of lower dimension. So IX is generated

by forms of degree 2 or higher. So β1,j = 0 for j < 2. Since the maps φi, are maps

between free modules, the maps φi’s, can be represented by matrices whose entries

are homogeneous elements in S, whose degree must be atleast 1, since the resolution

is minimal. Hence β2,j = 0 for j < 3, β3,j = 0 for j < 4 and so on. So IX = kerφ0 is

most simply generated when it is generated by degree 2 forms. In this case β1,j = 0

for j 6= 2. If this is the case we say that L satisfies N1. If L satisfies N1 and if each

entry of φ2 is linear(or 0), then β2,j = 0 if j 6= 3, in this case we say L satisfies N2. We

define the property Np for p > 0, inductively as follows: L satisfies Np, if L satisfies

Np−1, and the matrix of φp has linear entries. In this case βp,j = 0 if j 6= p + 1. To

sum up L satisfies Np for p > 1, when L is very ample, the homogeneous coordinate

ring of R = φL(X), is normal, the homogeneous ideal IX defining φL(X) is generated

by quadratic elements of S, and the minimal graded free resolution of R is linear from

15



the second to the pth stage. If L satisfies Np, then the minimal graded free resolution

of R upto the pth stage will have the shape

· · · φp+1→ S(−p− 1)βp,p+1
φp→ · · · φ3→ S(−3)β2,3

φ2→ S(−2)β1,2
φ1→ S

φ0→ R→ 0

2.4 Cyclic covers of surfaces

Lazarsfeld’s Positivity in Algebraic Geometry I[24] section 4.1.B Pages 242-244, has

a very nice section describing the construction of cyclic covers. In this section we

present this construction and a few other facts we need for the computations in the

next chapter.

Let X be an affine variety, and s ∈ C[X], is a regular function on X. We want to

construct a finite cover π : Y → X, such that, there is a regular function s′ ∈ C[Y ]

on Y , which satisfies the equation s′n = π∗s. Let p1 : X ×A1 → X, be the projection

to the first coordinate. Then p#
1 : C[X] → C[X][t], is the corresponding map of the

coordinate rings. Let Y ⊂ X × A1, be the closed subset defined by the equation

tn − s = 0. Let s′ := t|Y , and let π := p1|Y : Y → X. Then π# : C[X] →

C[X][t]/(tm−s), is the corresponding map of the coordinate rings. C[X][t]/(tn−s) ∼=

C[X]⊕C[X]t⊕C[X]t2 ⊕ · · · ⊕C[X]t(n−1). So C[Y ] is a finite C[X] module of rank

n, so π is a finite map of degree n. Also s′ ∈ C[Y ] is a regular function on Y , and

s′n = π∗s. This gives a construction of a local cyclic cover.

We now construct a global cyclic cover, when X is not necessarily affine. Let L
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be a line bundle on X. Let s be a section of L⊗n, defining a divisor D := divL⊗n(s)

on X. We want to construct a finite covering π : Y → X such that π∗L, has a global

section s′ on Y , which satisfies the equation s′n = π∗s, in the section ring of π∗L,

that is in R(π∗L) := ⊕m≥0H
0(π∗L⊗m). Let p : L→ X, be the total space of the line

bundle L. Then p∗L has the tautological section” t ∈ H0(L, π∗L), which is defined

by t(l) = l, where l ∈ L. t serves as the global fibre coordinate, similar to what t

was for X ×A1, in our previous discussion. We have divπ∗L(t) is the zero section of

p : L→ X. Let

Y := divp∗L⊗n(tn − p∗s) ⊂ L

Let s′ = t|Y , and π = p|Y : Y → X. Then s′ ∈ H0(Y, π∗L) and s′n − π∗s = 0 in

H0(Y, π∗L⊗n). The following lemma collects various properties of cyclic covers, we

would need in the next chapter.

Lemma 2.1 ([24] Sec 4.1.B, Proposition 4.1.6, Remark 4.1.7. and [3] Sec I.17, Lemma

17.1 and 17.2). Let π : Y → X be as above. Then Y is a n−cyclic covering of X,

branched over D, determined by L.

1. Let D′ be the reduced divisor π−1(D) on Y . Then OY (D′) = π∗L.

2. π∗D = nD′. In particular n is the branching order along D′.

3. KY = π∗(KX ⊗ Ln−1).
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4. π∗OY = OX ⊕ L−1 ⊕ · · · ⊕ L−(n−1).

5. If X and D are nonsingular, then Y and D′ are nonsingular.

Proof. Please refer to [24] Sec 4.1.B, Proposition 4.1.6, Remark 4.1.7. and [3]

Sec I.17, Lemma 17.1 and 17.2 .
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Chapter 3

On the projective normality of double coverings

over a rational surface

In this chapter we study the projective normality of a minimal surface X which is

a ramified double covering over a rational surface S with dim | − KS| ≥ 1. This

chapter is based on [28]. We show that divisors of the form KX + rπ∗A are normally

generated, when the integer r ≥ 3. Here A is an ample divisor on S, and π is the

covering map.

In [28] our main result is,

Theorem 3.1. Let S be a rational surface with dim | −KS| ≥ 1. Let π : X → S be

a ramified double covering of S by a minimal surface X(possibly singular). Let L be

a divisor on S with the property that KS + L is nef and L.C ≥ 3 for any curve C.

Then KX + π∗L is base point free and the natural map

SrH0(KX + π∗L)→ H0(r(KX + π∗L)) (3.1)

surjects for every r ≥ 1.

Remark. The condition that KS + L is nef and L.C ≥ 3 for any curve C on S is
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equivalent to L2 ≥ 7 and L.C ≥ 3 see Proposition 3.10. Hence we have the following

corollary.

Corollary 3.1.1. Let S be rational surface with dim | − KS| ≥ 1. Let π : X → S

be a ramified double covering of S by a minimal smooth surface X. Then for every

r ≥ 3, and an ample divisor L, KX + rπ∗L is very ample and |KX + rπ∗L| embeds

X as a projectively normal variety.

The idea of the proof of theorem 3.1 is as follows. By the projection formula, the

surjectivity in the theorem can be reduced to the surjectivity of two multiplication

maps, of which the difficult one is to show

H0(KS +B + L)⊗H0(KS + L)→ H0(2KS +B + 2L)

surjects, where B is the divisor class such that the branch locus of π is a member of

|2B|. Via an appropriate commutative diagram, the surjectivity can be reduced to

surjectivity of multiplication maps over two curves in S. One curve is a member of

the linear system |KS + L|, and the other is either the fixed part of | −KS|(in case

the fixed part is not empty), or a member of | −KS|. The fixed part of | −KS| is in

general nonreduced; however its special structure enables us to proceed by induction

on the summation of coefficients of its components.
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3.1 Fixed curves, adjoint divisors on anticanonical rational

surfaces

The next two lemmas help to reduce the verification of projective normality of line

bundles on surfaces to the verification of their restriction to certain curves on surfaces.

Lemma 3.2. (Gallego and Purnaprajna [12],p.154) Let X a smooth variety, with

H1(OX) = 0. Let E be a vector bundle , and L = OX(C) be a base point free line

bundle with the property that H1(E ⊗ L−1) = 0. if the natural map H0(E|C) ⊗

H0(L|C)→ H0(E ⊗L|C) is surjective then so is the natural map H0(E)⊗H0(L)→

H0(E ⊗ L).

Proof:

Consider the following commutative diagram

0 H0(OX)⊗H0(E) H0(L)⊗H0(E) H0(L|C)⊗H0(E) 0

0 H0(E) H0(E ⊗ L) H0((E ⊗ L)|C) · · ·

got from the short exact sequence

0→ OX → L→ L|C → 0

by tensoring with H0(E) for the top row, and with E for the bottom row. the left

hand column map is commutative, because H0(OX) contains 1. the right hand column

map can be split, as follows

H0(E)⊗H0(L|C)→ H0(E|C)⊗H0(L|C)→ H0((E ⊗ L)|C)

21



The first map is surjective, when we consider the short exact sequence 0→ E⊗L−1 →

E → (E|C)→ 0, and the portion of the consequent long exact sequence

H0(E)→ H0(E|C)→ H1(E ⊗ L−1)→ · · ·

and noting H1(E ⊗ L−1) = 0, while the second map is the condition in the lemma.

Hence under the conditions of the lemma, the right hand map is surjective. Now by

snake lemma, the middle map will be surjective.

The second is the so called Green’s H0-lemma.

Lemma 3.3. (Green [16]) Let C be a smooth projective curve. Let L,M be line

bundles on C, and W ⊆ H0(L) be a basepoint free subspace, such that h1(M⊗L−1) ≤

dimW − 2, then the natural map W ⊗H0(M)→ H0(L⊗M) is surjective.

Proof: cf [16].

Let S be a surface, and KS be it’s canonical divisor. S is a rational surface if each

plurigenus of S is 0, that is Pi = 0 for all i > 0, and h1(S) = 0. This implies

h2(S) = 0. Hence on a rational surface the Riemann-Roch theorem has the form

χ(D) = 1 + D·(D−KS)
2

. A rational surface is aniticanonical if h0(−KS) ≥ 1. In this

paper we will be concerned mostly with anticanonical surfaces with h0(−KS) ≥ 2.

The rational ruled surfaces Fe for e > 0, and their blowups at less than 8 points are

of this type. In the beautiful papers [17] and [18], Brian Harbourne has given many

conditions relating the intersection numbers of line bundles with −KS, when S is an
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anticanonical rational surface, to their geometrical properties like nefness and base-

point freeness. In those papers a principal idea, is that the geometrical properties of

a nef line bundle F on an anticanonical rational surface depend upon the intersection

number, −KX · F . In the following we have collected a few of his results which we

have used, in our study. So the results are not ours, but I have tried to present them

in our context.

Lemma 3.4. ([18],Lemma II.2,Corollary II.3, Lemma II.5 ) Let X be a smooth pro-

jective rational surface. and L be a divisor on X.

1. h0(L)− h1(L) + h2(L) = 1 + (L2 −KX · L)/2

2. If L is effective then h2(L) = 0.

3. If L is nef, then h2(L) = 0 and L2 ≥ 0.

4. If L is nef, and L · −KX ≥ 0, then L is effective. In particular if −KX is

effective, then every nef divisor on X is effective.

5. If X is an anticanonical surface, and C be an effective divisor on X and let L

be any divisor on X. Then h0(OC) = h1(OC) = 1, and h0(C,L) − h1(C,L) =

−KX · L .

Proof. See [18],Lemma II.2,Corollary II.3, Lemma II.5 .

Lemma 3.5. ([18],Theorem III.1) Let X be a smooth projective rational anticanonical

surface with a numerically effective class L and let C be a nonzero section of −KX .

Let |L| = F + |M |
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1. If −KX · L ≥ 2, then h1(L) = 0 and L is base-point and hence fixed component

free.

2. If −KX · L = 1, then h1(L) = 0. If L is fixed component free, then the sections

of L have a unique base-point, which is on C.

3. If −KX · L = 0, then either F = 0( in which case L is base-point free) or F is

a smooth rational curve of self-intersection number −2, or F +KX is effective.

Proof. See [18] Theorem III.1 .

The next proposition is about fixed curves on an anticanonical rational surface,

and is probably well known to experts.

Proposition 3.6. Let S be a rational surface with dim | −KS| ≥ 1. Suppose that C

is a curve on S with h0(OS(C)) = 1. Then h1(C,OC)) = 0.

Proof. Consider the short exact sequence

0→ OS → OS(C)→ OC(C|C)→ 0

Taking the long exact sequence and noting that S is a rational surface, we have the

long exact sequence

0→ H0(OS)→ H0(OC)→ H0(OC(C|C))→

→ 0→ H1(OS(C))→ H1(OC(C|C))→ 0→ H2(OS(C))→ 0
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Hence h2(OS(C)) = 0. Using Riemann-Roch theorem for OS(C), we get h0(C)−

h1(C) + 0 = 1 + D2+D·(−KS)
2

. Hence −2h1(C) = C2 + (−KS) · C. hence 2ga − 2 =

C2 + (−KS) · C + 2KS · C ≤ 0 since (−KS · C ≥ 0) as C 6=lin −K, as h0(C) = 1,

while h0(−KS) ≥ 2. . Why is this strictly negative.

Remark (Artin, [1] Theorem 1.7). Any curve C on a smooth surface with h1(OC) = 0

has the property that for each sub-curve C ′ ⊂ C we also have h1(C ′,OC′) = 0. which

implies that C is a chain of P1’s, and the intersections are transversal.

Let |−KS| = F + |M |, where F is the fixed part of the linear system |−KS|, and

M is the moving part. In this case M is nef. hence effective by 3.4.

Lemma 3.7. Let S be an anticanonical rational surface with dim |−KS| ≥ 1. Suppose

that | − KS| has the fixed part F , and write | − KS| = F + |M |, where |M | is the

moving part . Then M.F ≥ 2.

Proof. Since dim | − KS| ≥ 1, |M | is nonempty. From the exact sequence 0 →

OS(−F ) → OS → OF → 0, we see that h0(OF ) = 1 + h1(OS(−F )). as h1(OS) = 0,

and h0(OS(−F )) = 0 as F is effective.

= 1 + h1(OS(−M))( using Serre duality )

= 1− χ(OS(−M)), as h2(OS(−M)) = h0(OS(−F )) = 0, similarly h0(OS(−M)) = 0

= −(−M)(−KS −M)

2

=
M.F

2
≥ 1
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This implies that M.F ≥ 2.

Corollary 3.7.1. Let S be an anticanonical rational surface, with nontrivial fixed

part of | − KS|. With notations as above, Suppose B is a divisor on S such that

KS +B is nef. Then H1(B − F ) = 0.

Proof We have B − F = KS + B + M , is nef, since M is nef. Also by Lemma

3.7, (B − F ).(−KS) ≥ M.(−KS) ≥ M2 + M.F ≥ M.F ≥ 2, since M2 ≥ 0. Then it

follows that H1(B − F ) = 0 by ([18], Theorem III.1)

The following is a proposition in [15], which we use in our next proposition:

Proposition 3.8. (Gallego, Purnaprajna [15],Proposition 1.10) Let X be an anti-

canonical rational surface and let L be an ample line bundle such that 1 ≤ K2
X ≤ 7.

Then −KX · L ≥ K2
X + 3 unless one of the following happens:

1. L = −KX , in which case −KX · L = K2
X

2. K2
X = 1 and L = −2KX , in which case −KX · L = K2

X + 1

3. K2
X = 1 and L = −3KX , in which case −KX · L = K2

X + 2

4. K2
X = 2 and L = −2KX , in which case −KX · L = K2

X + 2

5. KX + L is a base-point free line bundle, L is very ample and (X,L) is a conic

fibration under |KX + L|, in which case −KX · L ≥ K2
X + 2.

Proposition 3.9. Let S be an anti-canonical rational surface, and L a line bundle

on S with the property that L.C ≥ 3 for every curve C on the surface. Then (KS +

L).(−KS) ≥ 3 unless we have one of the following cases.
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1. S = P2, L = OP2(3)

2. K2
S = 1, L = −3KS. In this case −KS is ample and has a unique base point.

Proof Under the conditions in the proposition, L is nef, hence effective by 3.4. Hence

L2 ≥ 3. Now by Nakai-Moishezon criterion for ampleness L is ample. Since | −KS|

is effective L.(−KS) ≥ 3. If K2
S ≤ 0, then we have (KS +L) · (−KS) ≥ 3. Also every

rational surface is got by finite number of monoidal transformatons of the minimal

rational surfaces (P2 whose K2
P2 = 9) or (Fe for e = 0 or e ≥ 2, whose K2

Fe
= 8), and

each monoidal transformation decreases K2 by 1. So for a rational surface S, K2
S ≤ 9.

Since we have already treated the case K2
S ≤ 0, for the rest of the proof we focus on

the case 0 < K2
S ≤ 9.

1. K2
S = 9, Then S = P2, and L = OP2(m). for some m ≥ 3. In this case

KS = OP2(−3). Hence (KS + L).(−KS) ≥ 3, unless L = −KS.

2. K2
S = 8. In this case S is a rational ruled surface Fe for some e ≥ 0, and since

L is an ample line bundle on a rational ruled surface, L = aC0 + bf . Since

L.C ≥ 3⇒ −ae + b ≥ 3, and L.f ≥ 3⇒ a ≥ 3. This also ensures L.C ≥ 3 for

every curve C.

(KS + L).(−KS) = −8 + L.(−KS)

= −8 + (aC0 + bf)(2C0 + (2 + e)f)

= −8− 2ae+ 2b+ a(2 + e) = −8 + 2(b− ae) + a(2 + e)

≥ −8 + 2(3) + 2(3) = 4 since b− ae ≥ 3, e ≥ 0, a ≥ 3

3. 0 < K2
S ≤ 7. In this case by Gallego-Purnaprajna[15] Proposition 1.10, for an
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ample divisor L, (KS + L).(−KS) ≥ 3 unless one of the following cases occurs.

(a) L = −KS

(b) K2
S = 1 and L = −2KS

(c) K2
S = 1 and L = −3KS

(d) K2
S = 2 and L = −2KS

(e) KS + L is base point free , L is very ample and (S, L) is a conic fibration

over P1 under |KS + L|.

Note (b) is impossible since 3 ≤ L.(−KS) = (−2KS).(−KS) = 2K2
S = 2.

For parts (a) and (d) note that ? S is a del Pezzo surface of degree ≤ 7, so

there exists a (-1) rational curve C ⊂ S. For this curve, adjunction formula

2(0) − 2 = C2 + C · KS, give C · KS = −1. Hence L.C ≤ (−2KS).C = 2,

which contradicts the condition on L. For the case (e), (KS + L)2 = 0, since

|KS+L| gives a conic fibration. (This is so because in this case KS+L is a linear

combination of the fibers of the fibration. whose mutual and self intersections

are 0). Now (KS +L) · (−KS) = 2, so (KS +L) ·L = 2. Which implies KS +L

can’t be effective. Also hi(KS +L) = 0, since L is ample. Hence χ(KS +L) = 0.

But using the Riemann-Roch formula we get χ(KS + L) = 1 + L·(L−KS)
2

= 2,

which is a contradiction. So case (e) does not occur. So case (c) is the only

exceptional case possible. In this case since L is ample, and L = −3KS, −KS

is also ample. The assertion about the base locus of | −KS| follows from [[18],

Theorem III.1 (b)].

Proposition 3.10. Let S be an anticanonical rational surface and L be a divisor
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on S with the property that L.C ≥ 3, for any curve C on S. Then the following

are equivalent,

(a) KS + L is nef,

(b) KS + L is base-point free,

(c) L2 ≥ 7

Moreover if any of the equivalent conditions holds, then KS +L is ample, unless

KS + L = 0.

Proof (b) =⇒ (a): Since KS + L is base-point free, |KS + L| = F + M 6= ∅,

where F,M are the fixed component and the moving part of KS + L respec-

tively. Since KS + L is base-point free, F = 0 so (KS + L)2 = M2 ≥ 0. So

(KS + L).C ≥ 0 for every curve C on S.

(c) =⇒ (b) by [[29], Theorem 1].

(a) =⇒ (c). Since KS +L is nef, it is effective by 3.4. So (KS +L).L ≥ 4, since

it has to be an even number by Riemann-Roch theorem. Now (−KS) · L ≥ 3,

hence KS · L ≤ −3. So 4 ≤ (KS + L) · L ≤ L2 − 3. Finally L2 ≥ 7.

To complete the proof we have to show that KS+L is ample. We know (KS+L)2 ≥

0, since (KS +L) is nef. Just to recall this so because the cone of nef line bundles, in

the vector space of line bundles in S, is the closure of the cone of ample line bundles.

From now on we assume KS + L 6= 0. We will first show that (KS + L)2 > 0. By

Bertini’s theorem for base point free line bundles, a general member of KS + L is
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smooth, but may not be connected. Let C =
∑
Ci, be a smooth member of |KS +L|,

where Ci are the connected components of C. Suppose (KS +L)2 = 0. Then C2 = 0.

But since Ci ·Cj = 0 as C is smooth, so C2 =
∑
C2
i . But also C2

i = Ci · (KS +L) ≥ 0,

since KS + L is nef. So C2
i = (KS + L) · Ci = 0. Hence KS · Ci = −L · Ci ≤ −3. By

adjunction 2g(Ci) − 2 = C2
i + KS · Ci ≤ −3. Hence g(Ci) < 0. This is impossible

since each Ci is an smooth irreducible curve. Thus (KS +L)2 > 0, when KS +L 6= 0.

Next if C is an integral curve such that (KS+L) ·C = 0. Then KS ·C = −L ·C ≤ −3.

Since (KS +L)2 > 0, we have by the hodge index theorem C2(KS +L)2 ≤ (C · (KS +

L))2 = 0. Since C is not a multiple of KS + L, as C · (KS + L) = 0, we must have

C2 < 0. It follows that 2g(C)− 2 = C2 + C ·KS ≤ −4, since this number has to be

even. which implies g(C) < 0. This is again impossible since C is an integral curve.

Hence (KS + L) · C > 0, for any integral curve in S. Hence KS + L must be ample

by Nakai-Moishezon criterion.

Lemma 3.11. (Gallego-Purnaprajna[15],Theorem 1.3) Let X be a rational surface

aand L be an ample line bundle on X. If L is base-point free and −KX ·L ≥ 3, then

L satisfies property N0.

Proof. To show L satisfies the property N0, we have to show that Symr(H0(L))→

H0(L⊗r) is surjective for r ≥ 1. To show this, it is enough to show that

H0(rL)⊗H0(L)→ H0((r + 1)L) for all r ≥ 1

is surjective. Since L is ample and base-point free, we can choose a smooth and

irreducible curve C ∈ |L|. We want to apply 3.2 with E = rL. We need to show

H1(rL) = 0 for r ≥ 0. for r = 0, this holds since X is a rational surface. for r ≥ 1 we
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show it by induction. So let us assume H1((r − 1)L) = 0, for some r. Consider the

short exact sequence 0 → (r − 1)L → rL → OC(rL|C) → 0. then we have the long

exact sequence

· · · → H1((r − 1)L)→ H1(rL)→ H1(rL|C)→ · · ·

Now (rL) · L > L2 + L ·KX = 2g(C)− 2, since L · −KX > 0. Hence H1(rL|C) = 0.

Hence H1(rL) = 0. hence by induction for r > 0. Hence we can apply lemma 3.2.

To complete the proof of the forward implication, we have to show

H0(rL|C)⊗H0(LC)→ H0((r + 1)LC)

is surjective for all r > 0. Since −KX · L ≥ 3, we have

degLC = L2 ≥ 3 +KX · L+ L2 = 2g(C) + 1

So by Castelnuovo’s criterion for projective normality of line bundles on curves, L|C

is projectively normal. Hence

H0(rL|C)⊗H0(LC)→ H0((r + 1)LC)

is surjective for all r > 0.
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3.2 Double coverings over anticanonical rational surfaces

Let π : X → S be a ramified cyclic double covering of S, an anticanonical rational

surface by a minimal surface X, which may be singular. Let B be a divisor such

that the branch locus of π, Γ ∈ |2B|. Let R ⊂ X be the ramification locus of π.

Then the ramification divisor of π, OX(R) ∈ |(2− 1)π∗(OS(B)) = π∗OS(B)| and the

induced morphism π : R → Γ is an isomorphism, since π is a cyclic double cover.

Also π∗OX
∼= OS ⊕ OS(−B), cf [[24], p.243].

Proposition 3.12. With assumptions and notations as above we have

1. KX = π∗KS +R ∼= π∗(KS +B)

2. (KS +B) · C ≥ 0, for any curve C ⊂ S.

3. K2
S +B.KS ≤ 0; and if K2

S > 0 then K2
S +B ·KS < 0

4. B is effective.

Proof. (1) is simply Hurwitz’s formula applied to double covers.

(2) 2(KS +B) · C = π∗(KS +B) · π∗C = KX .π
∗C ≥ 0, since X is minimal.

(3) The first inequality is a special case of (2) since −KS is effective. If K2
S > 0,

and (KS + B) · KS = 0, then by Hodge index theorem (KS + B)2 ≤ 0. But

(KS + B)2 6= 0. Hence (KS + B)2 < 0. But this contradicts the nefness of KS + B.

Hence (KS +B) ·KS < 0.
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(4) Since B = (KS + B) + (−KS), and −KS is effective and KS + B is effective

by 3.4, B is effective.

Remark. Let L, M be effective line bundles on a variety X. Then there exists an

injection from H0(L) → H0(L + M). To see this consider the short exact sequence

0 → OX(−L) → OX → OL → 0, tensor this sequence with OX(L + M) to get the

exact sequence 0 → OX(M) → OX(L + M) → OL(L + M) → 0. The long exact

sequence for this short exact sequence starts with 0→ H0(M)→ H0(L+M)→ · · · .

In the setting of the previous lemma,

Lemma 3.13. Let L be a divisor on S such that L · C ≥ 2 for any curve C on S.

Then

1. KS + B + L is ample and base-point free and H1(r(KS + B + L)) = 0 for any

r ≥ 1.

2. If in addition L · (−KS) ≥ 3, then KS + B + L is very ample and normally

generated.

Proof. (1) Since KS +B is nef, and L is ample, KS +B +L is ample, since the sum

of an ample line bundle and a nef line bundle is an ample line bundle. Since (−KS)

is effective, we have

(−KS) · r(KS +B + L) = r(−KS) · (KS +B) + r(−KS) · (L) ≥ 0 + 2

The assertion about the base locus and H1 s now follow from ([18], Theorem III.1)
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(2) If L · (−KS) ≥ 3, then (−KS).(r(KS + B + L)) ≥ 3. The second assertion

in the theorem now follows from the criterion for Np property on rational surfaces in

([15], Theorem 1.3)

Remark. The sum of an ample line bundle and a nef line bundle is an ample line

bundle. clearly (N + A).C > 0, for any curve C on S. Also N · kA ≥ 0, for a k such

that kA is very ample. Hence N.A ≥ 0. Then (N+A)2 = N2 +A2 +2N ·A ≥ A2 > 0.

So by Nakai-Moishzon criterion N + A is ample. Another way to say this is, N + A

lies in the interior of the nef cone, hence is ample.

3.3 Proof of the main theorem

Lemma 3.14. Let M be an ample and base-point free divisor, on a regular anticanon-

ical rational surface S and C a curve on S, such that h0(OC) = 1, and −KS − C is

effective. Then

H i(M − C) = 0 for i > 0

Proof h2(M − C) = h0(KS + C −M). But −(KS + C),M are effective so −(KS +

C −M) is effective. hence h0(−(−KS − C +M)) = 0.

The short exact sequence

0→ OS(−C)→ OS → OC → 0

yields the long exact sequence

0→ H0(OS(−C))→ H0(OS)→ H0(OC)→ H1(OS(−C))→ 0→ · · ·
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Also h0(OS) = h0(OC) = 1 and h0(OS(−C)) = 0 since OS(C) is effective, so

h1(OS(−C)) = 0.

Now take a smooth irreducible member ∆ ∈ |M |. Such a member exists by Bertini’s

theorem, for base-point free line bundles. Tensoring the short exact sequence

0→ OS(−∆)→ OS → O∆ → 0

with ∆− C yields the short exact sequence

0→ OS(−C)→ OS(∆− C)→ O∆(∆− C)→ 0

Taking the long exact sequence we get

· · · → H1(OS(−C))→ H1(OS(M−C))→ H1(O∆(∆−C))→ H2(OS(−C))→ H2(OS(∆−C))→ · · ·

Also deg(∆−C)|∆ = (∆−C) ·∆ = (∆+KS) ·∆+(−KS−C) ·∆ > degK∆ if (−KS−

C) 6= 0, since ∆ is ample. So when −KS − C 6= 0, this implies h1(O∆(∆− C)) = 0.

Since h1(OS(−C)) = 0, this will imply h1(OS(M − C)) = 0, when −KS − C 6= 0.

If −KS−C = OS, then M−C = M+KS, and O∆(M+KS) = K∆ by adjunction.

hence h1(O∆(M − C)) = h1(K∆) = 1 by Serre duality, since ∆ is an irreducible

curve. We have h2(OS(−C)) = h2(OS(KS)) = 1, h2(OS(M − C)) = 0, as we proved

earlier,and h1(OS(−C)) = 0. Hence when KS + C = OS, the long exact sequence
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becomes

0→ H1(OS(M − C))→ H1(O∆(∆− C))→ H2(OS(−C))→ 0

now looking at the the dimensions of the last 2 terms, we can conclude thatH1(OS(M−

C)) = 0, when KS + C = 0.

Lemma 3.15. Let S be a smooth anticanonical rational surface and C a curve with

h1(OC) = 0. Put C =
∑
aiΓi, where Γi are the irreducible components of C. Let

L1, L2 be two divisors on S such that L1 · Γi > 0 for every i and L2 is ample and

base-point free. Suppose that −KS −Γi is effective for every i. Then the natural map

H0(L1|C)⊗H0(L2)→ H0((L1 + L2)|C))

is surjective.

Proof. We proceed by induction on
∑
ai. the numbers ai are positive integers. So

when
∑
ai = 1. C is isomorphic to P1. (why is C smooth.) Consider the short exact

sequence

0→ OS(−C)→ OS → OC → 0

Tensor this short exact sequence with L2 to get the short exact sequence

0→ OS(L2 − C)→ OS(L2)→ OC(L2|C)→ 0

Note that by 3.14 H1(OS(L2−C)) = 0, which when applied to the long exact sequence

induced by the last short exact sequence implies that the map H0(L2) → H0(L2|C)
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is surjective. The map in the lemma can be split as the composition of the maps

H0(L1|C)⊗H0(L2)→ H0(L1|C)⊗H0(L2|C)→ H0((L1 + L2)|C)

By what we have just said the first map in the sequence is surjective. Also noting that

on P1, ifM,N are line bundles of nonnegative degrees then the mapH0(L)⊗H0(N)→

H0(M+N) is surjective. The degree of the map degL1|C = L1 ·C > 0 by assumption

and degL2|C = L2 ·C > 0, since L2 is ample and C is a curve. so the second map in

the above sequence is also surjective.

For the general case since h1(OC) = 0, there exists a component Γ0 of C such that

Γ0 · C ≤ 1 + Γ2
0. Set C ′ = C − Γ0. we have C ′ · Γ0 ≤ 1.

Consider the decomposition sequence for C = C ′ + Γ0.

0→ OΓ0(−C ′)→ OC → OC′ → 0

This gives the commutative diagram

0 H0((L1 − C ′)|Γ0)⊗H0(L2) H0(L1|C)⊗H0(L2) H0(L1|C′)⊗H0(L2) 0

0 H0((L1 + L2 − C ′)|Γ0) H0((L1 + L2)|C) H0((L1 + L2)|C′) 0

deg((L1 − C ′)|Γ0) = (L1 − C ′) · Γ0 ≥ 0 − 1 = −1. Also by ([1], Theorem 1.7)

pa(Γ0) = h1(Γ0) = 0. So deg(L1 − C ′)|Γ0 > 2pa(Γ0) − 2. Hence h1((L1 − C ′)|Γ0) =

0. It follows that the first row is exact. Similarly so is the second one, because

(L1 + L2 −C ′) · Γ0 = (L1 −C ′) · Γ0 + L2 · Γ0 > (L1 −C ′) · Γ0, since L2 is ample. The

surjectivity of the right column map is by induction hypothesis. The left column map
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factors as

H0((L1−C ′)|Γ0)⊗H0(L2)
m1→ H0((L1−C ′)|Γ0)⊗H0(L2|Γ0)

m2→ H0((L1 +L2−C ′)|Γ0)

By lemma 3.14 H1(L2−Γ0) = 0, so the 1st map would be surjective when we consider

the long exact sequence induced by the short exact sequence 0 → OS(L2 − Γ0) →

OS(L2) → OΓ0(L2) → 0. For some reason the map m2 is also surjective. Hence the

left column map of the commutative diagram is surjective. Now by the snake lemma,

the middle map of the commutative diagram is also surjective.

Lemma 3.16. Let S be a surface and C = mΓ, where Γ is a smooth irreducible

curve with Γ2 = 0 and m ≥ 1. Let L1, L2 be two divisors on S such that L1.Γ >

max {2g(Γ), 4g(Γ)− L2 · Γ− 2h1(L2|Γ)}, and L2 is ample. Then the natural map

H0(L1|C)⊗H0(L2|C)→ H0((L1 + L2)|C)

is surjective.

Proof. For m = 1, the surjection holds good by ([4], Proposition 2.2). Since the

proposition is only true for irreducible curves, for m > 1, we proceed by induction

as in the previous lemma. Using the notations used in the previous lemma. Let

us choose Γ0 = Γ. Then Γ0.C = 0 ≤ 1 + Γ2
0. C ′ = (m − 1)Γ. We have Γ0.C

′ =

0 ≤ 1. Consider the commutative diagram in the proof of the previous lemma.

H1((L1−(m−1)Γ))|Γ) = 0 since (L1−(m−1)Γ)·Γ = L1·Γ ≥ 2g(Γ) > 2g(Γ)−2. So the
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top row of the commutative diagram is exact. Since L2 is ample, (L1 +L2−C ′) ·Γ0 >

(L1 − C ′) · Γ0 > 2g(Γ0) − 2. Hence the bottom row is exact. The right column is

exact by induction hypothesis. the left column map factors into two maps as in the

previous proof, into m2 ◦ m1. And m2 is surjective by ([4],Proposition 2.2), since

(L1 − C ′) · Γ0 = L1 · Γ, and Γ0 = Γ, is an irreducible smooth curve.

Lemma 3.17. Let S be a smooth anticanonical rational surface, and L be a divisor

on S such that KS +L is big and and base-point free. Let B′ be a divisor on S, such

that h1(B′) = 0. Also supoose (KS + L) · (B′ − 2KS) ≥ 5. Then the natural map

H0(KS + L+B′)⊗H0(KS + L)→ H0(2KS + 2L+B′)

is surjective.

Proof. We want to use 3.15. We have S is smooth andH1(OS) = 0. Let E = KS+L+

B′. Let ∆ ∈ |KS +L| be a smooth, irreducible member. Since (KS +L) is big, we can

choose a smooth ∆, which is also irreducible. Then h1((KS +L+B′)−(KS +L)) = 0.

Hence by 3.2, if

H0((KS + L+B′)|∆)⊗H0((KS + L)|∆)→ H0((2KS + 2L+B′)|∆)

is surjective, then the map in the lemma would be surjective. Also let us choose

a ∆ which is smooth(as KS + L is base-point free we can make such a choice)and

irreducible( we can make this choice as KS +L is big). Now we want to apply 3.3 to

prove the last surjectivity. ∆ is a smooth irreducible curve. (KS +L)|∆ is base-point

free as it is the restriction of a base-point free line bundle. To prove the surjectivity
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we have to prove

h1(B′|∆) ≤ h0((KS + L)|∆)− 2

Using Riemann-Roch Theorem for (KS + L)|∆,

h0((KS + L)|∆) ≥ 1 + (KS + L)2 − (KS + (KS + L)) · (KS + L) + 2

2

≥ L · (KS + L)

2

While using Serre duality,

h1(B′|∆) = h0(K∆ −B′|∆) = h0((2KS + L−B′)|∆)

.

But since B′ is effective, B′ · (KS + L) ≥ 0. So

deg(2KS +L−B′)|∆ = (2KS +L−B′) · (KS +L) ≤ (2KS +L) · (KS +L) = degK∆

Hence we have that (2KS + L− B′) is special and effective. Now Clifford’s theorem

for effective special divisors on curves tells us that

h0(2KS + L−B′) ≤ (2KS + L−B′) · (KS + L)

2
+ 1

Putting these analysis of the two sides of the inequality together

h0(KS + L)− h1(B)− 2
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≥ L · (KS + L)

2
− (2KS + L−B′) · (KS + L)

2
− 3

=
(KS + L) · (B′ − 2KS)− 6

2
≥ 5− 6

2
=
−1

2
using the condition given in the lemma

But since the betti numbers are integers. we must have h0(KS+L)−h1(B′)−2 ≥ 0.

This completes the proof.

We are now ready to prove the main theorem.

Theorem 3.18. Let S be a rational surface with dim | −KS| ≥ 1. Let π : X → S be

a ramified double covering of S by a minimal surface X(possibly singular). Let L be

a divisor on S with the property that KS + L is nef and L.C ≥ 3 for any curve C.

Then KX + π∗L is base point free and the natural map

SrH0(KX + π∗L)→ H0(r(KX + π∗L)) (3.2)

surjects for every r ≥ 1.

Proof. KS + B + L is ample and base-point free by 3.13(1). Then KX + π∗L =

π∗(KS + B + L), is base-point free, since pullback of base-point free line bundles is

base-point free. It is also ample since the pullback of ample line bundles under affine

morphisms is ample, and a finite morphism is affine.

It is clear that the surjectivity in the theorem will follow if we can prove

H0(r(KX + π∗L))⊗H0(KX + π∗L)→ H0((r + 1)(KX + π∗L))
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is surjective for all r ≥ 1.

Since π is finite, it is affine, hence for any quasicoherent sheaf F on X, Riπ∗F = 0,

for i > 0. Hence H i(F ) ∼= H i(π∗F ) for i ≥ 0. So in particular H i(r(KX + π∗L)) ∼=

H i((r)π∗(KX+π∗L)) ∼= H i((r)π∗π
∗(KS+B+L)). Hence using the projection formula

for double covers

H i(r(KX + π∗L)) ∼= H i((r)((KS +B + L)⊕ (KS + L)))

We want to use Castelnuovo-Mumford regularity Lemma, to prove surjectivity, in

the case r ≥ 2. Toward’s that end, let us verify the vanishing of the various coho-

mologies, that is needed to use the theorem. Note that L is ample, KS + L is nef,

and (KS +B + L) is ample.

hence for r = 2, i = 1, and r = 3, i = 2, (r − i) = 1, H i((r − i)(KX + π∗L)) = 0,

by Kodaira Vanishing theorem.

for r = 2, i = 2, r − i = 0, and the two cohomology groups in the direct sum are

0, since H2(OS) = 0, as S is a rational surface.

For r > 3, i ≥ 1 and r = 3, i = 1 , we can write (r − i)(KX + π∗L) = KX +

π∗L + (r − i − 1)(KX + π∗L), and π∗L + (r − i − 1)(KX + π∗L) is sum of two
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ample line bundles hence ample. In these cases Kodaira vanishing theorem will imply

H i((r − i)(KX + π∗L)) = 0.

Hence for r ≥ 2, the map

H0((r)(KX + π∗L))⊗H0(KX + π∗L)→ H0((r + 1)(KX + π∗L))

is surjective by Castelnuovo-Mumford Regularity lemma. It remains to treat the case

H0(KX + π∗L)⊗H0(KX + π∗L)→ H0(2KX + 2π∗L))

Pushing down the line bundles to S, and using the canonical isomorphism between

cohomolgy groups, verifying this surjectivity is equivalent to verifying the following

surjectivity

[H0(KS +B + L)⊕H0(KS + L)]⊗ [H0(KS +B + L)⊕H0(KS + L)]

→ H0(2KS + 2B + 2L)⊕H0(2KS + 2L+B)

looking at degrees of line bundles the above map splits into two maps

H0(KS+B+L)⊗H0(KS+B+L)⊕H0(KS+L)⊗H0(KS+L)→ H0(2KS+2B+2L)
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and

H0(KS +B+L)⊗H0(KS +L)⊕H0(KS +L)⊗H0(KS +B+L)→ H0(2KS +2L+B)

But it is enough to prove the following two maps are surjective

H0(KS +B + L)⊗H0(KS +B + L)
f1→ H0(2KS + 2B + 2L)

H0(KS +B + L)⊗H0(KS + L)
f2→ H0(2KS + 2L+B)

By 3.13(2) f1 is surjective.

To prove surjectivity of f2, we will choose a curve C0 on S, such that the rows of

the following commutative diagram are exact, and the two outside columns are exact.

Then the surjectivity of f2 will follow from Snake lemma.

0
H0(KS+L+B−C0)

⊗
H0(KS+L)

H0(KS+L+B)

⊗
H0(KS+L)

H0(KS+L+B)|C0

⊗
H0(KS+L)

0

0 H0(2KS + 2L+B − C0) H0(2KS + 2L+B) H0((2KS + 2L+B)|C0) 0

α f2 β

If KS + L = 0, then f2 is obviously surjective, so for the rest of this proof we

assume KS + L 6= 0. Thus KS + L is ample and base-point free by 3.10. we analyze

three different cases depending upon −KS.

Case I: −KS has a fixed part.

Let −KS = F + M , where F is the fixed part of −KS. Let us take C0 = F , and set

B′ = B − C0. Then B′ = B + KS + M is nef as B + KS is nef and M being the
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moving part of a line bundle is always nef, as it’s self-intersection is nonegative. Also

since S is a anticanonical rational surface, B′ is effective. Hence by Kodaira vanishing

H1(KS +L+B′) = 0, as the sum of an ample line bundle and a nef line bundle is an

ample line bundle. Hence the top row of the commutative diagram is exact in this

case. Similarly 2KS + 2L + B′ = KS + (L + B′) + (KS + L), and KS + L is ample.

So Kodaira vanishing theorem implies H1(2KS + 2L + B′) = 0. So the bottom row

is exact. Because | −KS| has nonzero fixed part , Corollary 3.9 implies H1(B′) = 0.

Now Proposition 3.10 implies that (KS +L) · (−KS) ≥ 3, as the two exceptional cases

in the corollary donot occur in our case, as KS + L 6= 0, and (why case 2 doesnot

occur). Now we can apply lemma 3.17(why ≥ 5) to conclude that α is surjective.

For the surjectivity of β we will apply lemma 3.15, with L1 = KS + L + B and

L2 = KS +L. We need to verify two conditions to be able to apply this lemma. First

h1(C0) = 0 since h0(C0) = 1( as C0 = F is the fixed part of −KS) by Proposition 3.6.

Secondly for every component Γi of C0, −KS − Γi = (C0 − Γi) +M is effective since

C0 − Γi and M are effective. Now Lemma 3.15 implies β is surjective.

Case II: −KS has no fixed part and K2
S > 0.

In this case we can directly prove that f2 is surjective, using Lemma 3.17. In this

case −KS is effective and has no fixed component. so −KS is nef. Now K2
S > 0,

implies it is big. Since B = (KS + B) + (−KS), and (KS + B) is nef, B is big

and nef. Then by ([17], Theorem 8.) we have H1(B) = 0. By Proposition 3.9,

(KS + L) · (−KS) ≥ 2(what about the second exceptional case). Since 0 6= B is
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effective, we must have (KS + L) · (B − 2KS) ≥ 5. Hence we can apply lemma 3.17

to get that f2 is surjective in this case.

Case III: −KS has no fixed part and K2
S = 0.

In this case −KS is nef, since it has no fixed component. and hence base-point

free, as S is an anticanonical rational surface by ([18], Theorem III.1(c)). Similarly

B = (KS + B) + (−KS) is nef as (KS + B) is nef, hence it is base-point free. As in

case II, if H1(B) = 0, we are done by lemma 3.17. Hence let us consider the case

H1(B) 6= 0. Then B.(−KS) = 0 by ([18], Theorem III.1). But the Hodge Index

theorem will imply B = m(−KS) for some m > 0.

Set Bk := k(−KS). We will use the commutative diagram above to prove the

surjectivity of f2 in this case. Let C0 ∈ | −KS| be a smooth member. Note we just

now proved that −KS is base-point free. We will do induction on k to show that for

all k ≥ 0, the map

αk : H0(KS + L+Bk)⊗H0(KS + L)→ H0(2KS + 2L+Bk)

is surjective.

When k = 0, this is true because ([15], Theorem 1.3) and the fact that (KS +L) ·

(−KS) ≥ 3. Suppose αk is surjective for some k ≥ 0. Since H1(KS +L+Bk) = 0 by

Kodaira vanishing as Bk = k(−KS) is nef, the top row of the diagram is surjective.
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For reasons similar to that in case I, the bottom row of the diagram is exact. then

the middle column = αk+1 would be surjective as soon as

βk+1 : H0((KS + L+BK+1)|C0)⊗H0(KS + L)→ H0((2KS + 2L+B)|C0)

is surjective.

First H1(KS + L − C0) = H1(KS + (KS + L)) = 0 by Kodaira vanishing. Let

C0 =
∑

Γi, where Γi are the smooth components. Also C2
0 =

∑
Γ2
i as Γi · Γj = 0,

since C0 is smooth. Suppose Γ2
i < 0 for some i. Then deg(Γi|Γi

) < 0. Hence

H0(OΓi
(Γi|Γi

)) = 0. Now consider the short exact sequence

0→ OS → OS(Γi)→ OΓi
(Γi|Γi

)→ 0

got by tensoring the structure sequence for Γi, with OS(Γi). Taking the long exact

sequence of this , we get H0(OS) ∼= H0(OS(Γi)). Hence Γi, must be a fixed curve. But

then it will be a component of the fixed component of | −KS|. which in our case is

empty. So Γ2
i cannot be negative, and in particular for any i. Hence 0 = C2

0 =
∑

Γ2
i ,

then forces each of the Γ2
i = 0 for each i. Hence Γi · (−KS) = 0. Now the adjunction

formula 2g(Γi) − 2 = Γ2
i + Γ ·KS = 0, gives Γi is an elliptic curve for each i. Hence

to prove Bk+1 it suffices to show

H0((KS + L+Bk+1)|Γi
)⊗H0((KS + L)|Γi

)→ H0((2KS + 2L+Bk+1)|Γi
)
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is surjective for each i. This is elementary, because

deg((KS + L+Bk+1)|Γi
) = deg((KS + L)|Γi

) = L · Γi ≥ 3 = 2g(Γi) + 1

This completes the proof for this case, and hence of the theorem.
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