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Abstract

Electromagnetic, radiative, and plasma processes around black holes in ac-

tive galaxies determine how relativistic jets are launched and the efficiency

at which the black hole energy is extracted via the Blandford-Znajek mech-

anism, which converts the black hole rotational energy into Poynting flux.

The crucial assumption is the force-free condition, which is the presence of

plasma with a density at or above the Goldreich-Julian density. Unlike neu-

tron stars, which in principle can supply electrons from their surface, black

holes cannot supply plasma at all, they are only a sink. Therefore, the plasma

needed must be generated in situ.

The essential process is the plasma production via an electron-position cas-

cade in the so-called “gap” region in the force-freemagnetosphere around the

black hole. This multi-stage process, involving particle acceleration, photon

Compton up-scattering, and production of electron-positron secondaries, is

explored numerically by computing the radial development of the entire cas-

cade.

It is shown how the electron-positron plasma production depends on the

black hole mass and spin, the energy density of the ambient photons, and

seedmagnetic field strength. Presented is the full, two-dimensional structure

of the gap, alongwith empirical scaling relations for the two-dimensional gap

structure. Observational predictions for X-ray and γ-ray fluxes and spectra,

which can be compared with observations of the inner regions near jets and

iii



estimations of the structure of the gaps in several galaxies, e.g., Messier 87,

using the empirical scaling relations are discussed.
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Chapter 1

Introduction

A brief history of extragalactic astronomy begins in 1750 when Thomas Wright specu-

lated that some nebulaewere not part of theMilkyWay galaxy, but independent galaxies

(Wright, 1750). Wright’s work was expanded upon by Kant five years later (Kant, 1755)

and then ignored for the better part of a century. In 1842, François Arago brought Kant’s

work to astronomer’s attention and the extragalactic hypothesis gained momentum in

the scientific community (Beckmann & Shrader, 2012). In 1913, the first observational

evidence supporting a nebula outside of the Milky Way was reported by Vesto Slipher.

He observed redshifted lines moving relative to our galaxy at velocities exceeding the

MilkyWay’s escape velocity (Slipher, 1913). Soon after more observations supporting ex-

tragalactic objects were published (Curtis, 1920; Hubble, 1926). Carl Seyfert discovered

the first evidence for active nuclei in galaxies. He found spectra of six galaxies, show-

ing high-excitation nuclear emission lines superposed on a star-like spectrum (Seyfert,

1943). He observed that a subset of galaxies showed broad emission lines, while another

subset only had narrow emission lines. An early hypothesis was that a large number of

stars would explain Seyfert’s data. Over a decade later, Woltjer showed that the observed

emissions concentredwithin the central 100 pc of the galaxywould require amass on the

order of 108M�(Woltjer, 1959). Which led to the idea that at center of these galaxies there
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is a very large mass onto which the surrounding disk of gas accretes; and further, the

accretion is then what is primarily emitting (Hoyle & Fowler, 1963). Finally, in 1964, the

idea of a black hole at the center of an AGN was proposed (Zel’dovich & Novikov, 1964;

Salpeter, 1964).

1.1 Terms and Constants

Unless otherwise stated, all equations and expressions with be in cgs units. Here, a list

of relevant physical quantities and definitions is provided for reference.

1.1.1 Lengths

• 1 AU ≈ 1.5× 1013cm = an astronomical unit, which is the distance between the earth

and the sun.

• 1 pc = 2.06× 105AU = 3.1× 1018cm = a parsec, which is the distance to a star with a

parallax equal to one arc-second.

1.1.2 Time

• 1 year = 3× 107s

• H −10 ≈ 1.4× 1010years = Hubble time, which is the approximate age of the universe.

1.1.3 Solar Units

• M� = 1.988× 1033g = mass of the sun.

• L� = 3.848× 1033ergs/s = luminosity of the sun.
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1.1.4 Constants

Symbol Numerical Value Name

c 2.99792× 1010cm/s speed of light

G 6.673× 10−8 dyne cm2/g2 gravitational constant

h 6.62607× 10−27ergs s Planck constant

e 4.803× 10−10g1/2cm3/2/s2 elementary charge

me 9.109× 10−28g mass of an electron (or positron)

mp 1.3806× 10−24g mass of a proton

σT 6.652× 10−25cm2 Thomson cross-section

σ 5.67× 10−5ergs/(cm2K 4s) Stefan-Boltzman constant

k 1.3806× 10−16ergs/K Boltzman constant

1eV 1.602× 10−12ergs electron Volts

Table 1.1: A list of relevant and useful physical constants.

1.2 Research Overview

I think it is helpful tohaveapictureof the thedestinationbefore starting. There are a sub-

stantial amount of models to fit the observational data of active galactic nuclei (AGN).

Of thesemodels, the Blandford-Znajekmechanism to extract rotational energy from the

black hole is ubiquitous. One assumption the Blandford-Znajekmechanism uses is that

the environment near the black hole is plasma rich and force-free. This work examines

a plasma cascade process, illustrated in Figure 1.1, that allows the environment around

the black hole to become force-free. It is a natural outcome of the general relativistic

environment of the magnetosphere around a spinning (Kerr) black hole.

There is a surface in themagnetosphere around a Kerr black hole that has the plasma
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Figure 1.1: A toy model used to illustrate the cascade process inside of the gap region. In
this example, a seed positron is accelerated by the electric field. The positron then in-
verse Compton scatters with a background photon. The up-scattered photon then pair
produces with another background photon. This process continues until the magneto-
sphere is filled with plasma.

density needed for the magnetosphere to be force-free go to zero. This allows for an

under-dense region (gap) to form. This gap will continue to grow unless a plasma pro-

duction process inside of the gap stops its growth.

Once the gap forms, it has an electric field that is parallel to the magnetic field. Let

there be only one charge in the gap, and it will be accelerated by the electric field. The

charge then inverse Compton scatters with a background photon, possibly from the ac-

cretion disk. If enough energy was imparted to the up-scattered photon, it can pair pro-

duce with another background photon. This has taken the amount of charge in the gap

from one to three, and these three charges are accelerated and continue the process un-

til there is a sufficient amount of plasma for the electric field to be zero. At this point the

plasma density is sufficient for the magnetosphere to be force-free.

Understanding the structure of the gap (electric field profile, outgoing photon flux,
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peak Lorentz factor, etc.) allows for insight into how the interplay between the available

background energy, black hole spin and mass, and ambient magnetic field effects the

efficiency of energy extraction from the rotation of the black hole. The outgoing current

density and photon flux also can be used with leptonic jet models and observations to

put constraints on the environment around the black hole.
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Chapter 2

Active Galactic Nuclei

Black holes are in the center of galaxies and, in particular, active galaxies. AGN turn grav-

itational energy (via accretion) and rotational energy (via the Blandford-Znajek process)

into mechanical energy and Poynting flux. The emission from the accretion disk can be

observed in some AGN; an example is the “Big Blue Bump” that is peaked in the UV and

comes from thermal emission from thedisk (Czerny&Elvis, 1987; Koratkar&Blaes, 1999).

Amodel for the accretion disks around AGNs was developed by Shakura and Sunyaev in

1973. The model consists of a geometrically thin, optically thick disk (Shakura & Sun-

yaev, 1973) (for a detailed treatment of the accretion disk see Section 2.4). As observation

capabilities has improved across the electromagnetic spectrum, many different objects

have been observed that appear to have an active nucleus.

2.1 AGN Taxonomy

Radio galaxy is a all-encompassing term for bright radio sources. They are usually giant

elliptical galaxies that are viewed edge on. The dusty torus may screen-out blackbody

emission from the accretion disk, but is a strong synchrotron emitter (Peterson, 1997;

Matsuda et al., 2011). The difference between subclasses of radio loud AGN, Fanaroff

6



Figure 2.1: NGC 4258 is a spiral galaxy approximately 2.5 × 107l y from Earth, it is also
known as M106. This is a composite photo. The visible light is shown in gold, the in-
frared light is shown in red, the radio light is shown in purple, and X-ray is shown in
blue. (Credit: X-ray: NASA/CXC/Univ. of Maryland/A.S. Wilson et al. Optical: Pal.Obs.
DSS; IR: NASA/JPL-Caltech; VLA: NRAO/AUI/NSF).
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and Riley Class I (FRI) and Fanaroff and Riley Class II (FRII), is that FRIs are low powered

and FRII are high powered. FRI radio galaxies have radio emission that is concentrated

at the core, i.e., brightness decreasing with distance from core. FRIs are core-dominated

because the jet is slower and less powerful than FRII, and interactsmore readily with the

environment (Beckmann & Shrader, 2012). FRII radio galaxies are less abundant than

than FRIs, but more luminous. FRII’s jets are thousands of times more powerful than

FRI’s jets, so they travel through the surrounding medium and form giant radio lobes

(Beckmann & Shrader, 2012). Their primary emission comes from hot spots and radio

lobes (Rusinek et al., 2017). For FRI theX-ray emission from the kpc-jets canbe explained

as synchrotron emissions (Krawczynski & Treister, 2013). X-ray bright spots imply parti-

cle acceleration in the jet. FRII have a radio to X-ray spectrum that cannot be character-

ized with a single synchrotron component. Instead a synchrotron self-Compton model

is needed.

Seyferts are spiral galaxies with strong nuclear emission. They look like a normal,

distant spiral galaxies with a star superimposed in the center. Seyferts are distinguished

spectroscopically by the presence of strong, high-ionization emission lines. Seyferts are

usually less luminous and at lower redshift than quasars. The ‘type’ I or II classification

used to distinguish low and high powered Fanaroff and Riley AGN is not the same as the

‘type’ applied to Seyfert galaxies. Type I AGN have broad-line emission, whereas Type II

AGN have narrow-line emission (Peterson, 1997).

Quasi-stellar object (QSO) is a bright, distant AGN. They differ observationally from

Seyferts in that the host galaxy is visually obscured. They have similar spectra to Seyferts,

but the stellar absorption features are weak and the narrow-lines are weaker relative to

the broad-lines (Peterson, 1997; Beckmann & Shrader, 2012).

Blazars are themost energetic classofAGN.TheyareAGNwith relativistic jetspointed

towards Earth, producing both synchrotron and inverse Compton γ-rays. They are ex-

tremely variable over short timescales (Aleksić et al., 2012). Blazars are sometimes sepa-
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rated into two subtypes based on the strength of their emission lines, FSRQs (Flat Spec-

trum Radio Quasars) and BL Lac (BL Lacertae) objects. FRI and FRII jets can be are clas-

sified as blazars. FRIs are correlated with BL Lac objects and FRIIs with FSRQs (Fanaroff

& Riley, 1974; Hogan et al., 2011). I found astrobites (https://astrobites.org/guides/

galaxy-and-agn-types/) helpful in understanding the different AGN classifications.

2.1.1 Radio Loudness

AGN can be split into two distinct categories based on the radio emissions: radio loud

and radio quiet. Radio loud AGN can produce jets. One question is what are the physical

differences between radio loud and radio quiet AGN, and can this difference provide a

mechanism for the launching of jets. Stawarz in 2010 studied difference in accretion rate

and black holemass between radio loud and radio quiet AGN. The results from the study

are shown in Figures 2.2 and 2.3. The radio “loudness” parameter for both figures is

R ≡ LνR/LνB ' 105(LR/LB ) (2.1)

where the 4400Ånuclear B-band luminosities are LB ≡ νB LνB , assuming that the bolomet-

ric disk luminosities are on average related to the accretion luminosities by Lacc ' 10×LB

and LR ≡ νR LνR is the 5GHz total luminosities. The accretion rate parameter is

λ ≡ Lacc/LEdd (2.2)

where LEdd ' 1038(Mbh/M�) erg/s is the Eddington luminosity.

Figure 2.2 shows how radio “loudness” is related to accretion rates. One can see that

the “loudness” increaseswithdecreasing λ. There also seems tobe a saturation at lowac-

cretion rates, λ < 10−3. This anti-correlation with accretion rate trend is followed by both

the radio loud and radio quiet sources. Figure 2.3 shows the radio “loudness” depen-
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dence on black hole mass. It can be easily recognized that AGN with Mbh > 108M� reach

values of “ loudness” up to > 1000 times higher than AGN with Mbh < 108M�. This result

seems to be in agreement with some previous studies (McLure & Jarvis, 2004); however,

others report conflicting results (Ho, 2002; Urry &Woo, 2002).

360 Stawarz

Figure 2. The same as in figure 1, except for the radio and optical lumi-
nosities expressed in the Eddington units. Here spiral- and elliptical-hosted
objects are denoted by different colors. Note that at high accretion rates,
LB/LEdd > 10−3, the elliptical-hosted AGN populated both radio loud (up-
per) and radio quiet (lower) sequences, and this corresponds to the ‘classical’
radio loudness dichotomy of quasars (Ivezić et al. 2002).

Figure 3. Different classes of AGN on the radio loudness — accretion rate
plane, R − λ.

and that this trend is followed separately by the two radio loud and radio-quiet
sequences. Such an anti-correlation has been found before (but only for “radio
quiet” sources) by Ho (2002). The other point to emphasize here is that the stan-
dard criterium of a “radio loud” object introduced for quasars, namely R > 10,
is not meaningful when applied to low-power AGN hosted by spiral galaxies
(such as Seyferts or LINERs), since basically all of them at λ < 10−2 are char-

Figure 2.2: The dependance of the radio “loudness” parameter on the accretion rate. The
dashed line indicates the separation between radio loud and radio quiet sources. This
figure is from (Stawarz, 2010).

As will be shown in Chapter 7, large black hole masses will have a more efficient

plasma cascade, thus allowing the Blandford-Znajek mechanism to extract energy from

the rotation of the black hole. In the “spin paradigm,” the black holes in AGNwith “loud-

ness,” R < 10, are assumed to spin slowly (a ≤ 0.1). In the AGNwithR > 10, the black holes

are assumed to spin rapidly (a ' 1) (Wilson & Colbert, 1995; Hughes & Blandford, 2003).
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Radio–Quiet vs Radio–Loud AGN 361

Figure 4. Dependance of the radio loudness parameter R on the black hole
mass MBH .

acterized by R > 10 after a careful substraction of the starlight component from
the observed optical flux (see the discussion in Ho 2002).

Finally, figure 4 illustrate how the radio loudness depend on the black hole
mass within the discussed sample. In particular, this figure shows that AGN
with MBH > 108 M⊙ seem to reach values of the radio loudness parameter up
to > 1000 times larger than AGN with MBH < 108 M⊙. This finding has to
be taken with caution, however, noting the conflicting claims in the literature
regarding R − MBH dependance. For example, Ho (2002) did not find any
obvious relation between these parameters for a sample of Seyferts, LINERs,
and optically selected (radio quiet) quasars. Similar negative result has been
obtained by Woo & Urry (2002), who analyzed a sample of optically and radio
selected quasars. On the other hand, McLure & Jarvis (2004) argued that
not only the radio loudness parameter, but also the total radio power of SDSS
quasars depends on the black hole mass.

3. What makes the difference?

As shown in the previous section, radio (jet) luminosity of elliptical-hosted AGN
is a monotonic function of the accretion power (even though at very high ac-
cretion rates the jet production is quenched in the case of optically selected,
PG quasars). However, spiral-hosted AGN follow an analogous trend, but with
much different normalization. Namely, spiral-hosted sources (Seyferts and LIN-
ERs) are characterized by radio powers on average ∼ 1000 times lower than
the elliptical-hosted objects (FR Is, BLRGs, RL QSOs) with the same accretion
power! This indicates that yet another parameter in addition to the accretion
rate must play a role in determining the jet production efficiency in different
types of AGN, and that this parameter is related to the properties of the host
galaxy. So why is the efficiency of the jet production much larger in elliptical-
hosted AGN than in spiral-hosted AGN, as noted previously by Xu et al. (1999)?

Figure 2.3: The dependance of the radio “loudness” parameter on the black hole mass.
Where Msun ≡M� = 1.988× 1033 g. This figure is from (Stawarz, 2010).

2.2 Emission from the Accretion Disk

AGN identification is done through piecing together their spectral energy distributions

across the electromagnetic spectrum. One type of emission directly from the accretion

disk is blackbody that forms the “Big Blue Bump” and it is peaked in the UV (Czerny

& Elvis, 1987; Koratkar & Blaes, 1999). The accretion disk can be partially covered by a

corona of hot, thermalmaterial. Comptonization occurs in the hot corona andproduces

emissions that extend into thehardX-rays. There are alternativemodels for theobserved

X-ray emission. One is the “lamp-post model” where an X-ray source is illuminating the

disk from above (Henri & Petrucci, 1997; Malzac et al., 1998). Other alternative models

are hot inner disk flow (Ichimaru, 1977; Narayan et al., 2002) and a structured multilayer

corona (Galeev et al., 1979). In the X-ray spectra of some AGN, there is a broad emission
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line around ∼ 6.4 keV (in the AGN frame). This line is from fluorescence Fe K-α emission

of iron in the inner accretion disk. The iron is excited by hard X-rays (Fabian et al., 1989;

Reynolds &Nowak, 2003; Ross & Fabian, 2007). The shape of the line is fromgravitational

redshift combined with a kinetic blue shift from the rotation of the disk. Analysis of the

Fe K-α line in MCG 06-30-15 indicates a spin per unit mass of the black hole of a > 0.987

(Brenneman & Reynolds, 2006).

A representation of spectrum seen in different types of AGN is shown in Figure 2.2.

Figure 2.5 shows a typical spectrum from a jet-disk model. Both of these figures can be

compared to an actual spectrum shown of 3C 273 in Figure 2.6. 3C 273 is a great example

of adoublehumpspectrum from the synchrotronemissionat lower energies and inverse

Compton at higher energies (see Figures 2.6 & 2.9).

AGN have narrow and broad emission from clouds of interstellar material orbiting

the black hole at different distances (Véron-Cetty & Véron, 2000). In low-density regions

around AGN, ne ∼ 103 cm−3, the emission-line spectra have narrow-lines. These narrow-

lines have Doppler widths around 500 km/s and an ionization parameter on the order

U (H ) ∼ 10−2. The NLR can be optically thin for the hydrogen Lyman continuum. Some

prominent optical emission lines are [O III] and Hα+[N II]. The NLR are located at dis-

tances on the order of 100 parsecs (∼ 300l y ) from the black hole. The BRL are at distances

on the order of 10l y (∼ 3 parsecs) from the black hole. In high-density regions around

AGN, ne > 109 cm−3, the emission-line spectra have broad-lines. These broad-lines have

Doppler widths from 1000 km/s to 25000 km/s, and the ionization parameter is similar

to the NRL. There are strong lines of [H I], [Mg II], and [Fe II]. Observations of the BRL

emission combined with the emission for the disk can be used to estimate the mass of

the black hole based on reverberation mapping (Peterson, 2007; Kaspi et al., 2007). Re-

verberation mapping uses the widths of the BLR lines to find a constraint on the orbital

velocities of the cloudsnear theblackhole. This information is thencombinedwithmea-

sured lag times between variation of the continuumflux from the accretion disk and the

12
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1999 PASP, 111:1–30

Fig. 1.—Schematic representation of the broadband continuum spectral energy distribution seen in the different types of AGNs. The radio-quiet spectrum can
be divided into three major components: the infrared bump, which is thought to arise from reprocessing of the UV emission by dust in a range of temperatures
and at a range of distances; the Big Blue Bump, which is directly related to the main energy production mechanism and may be due to an accretion disk; and
the X-ray region, which can be interpreted as the high-energy continuation of the Big Blue Bump together with a Comptonized power law with fluorescence and
reflection from “cold” material.

geometry is spherical, but such flows are generally very in-
efficient radiators unless there is some internal source of dis-
sipation, e.g., shocks (Mészáros & Ostriker 1983). Observa-
tions on larger scales than the central accretion flow suggest
that spherical symmetry is probably broken and that a well-
defined axis is present in the central engine. These include the
evidence for large-scale gaseous disks as discussed above, as
well the presence of jets in both radio-loud and radio-quiet
AGNs (Livio 1997; Blundell & Beasley 1998). The axis is
generally believed to be associated with the angular momentum
of the accretion flow and the hole itself. The specific angular
momentum of gas in the central regions of galaxies generally
greatly exceeds that of a particle in a circular orbit near the
black hole (∼RGc). To have less than this critical value of an-
gular momentum, material 1 pc away from a 108 M, black
hole would require nonradial velocity components less than!1
km s!1. Centrifugal forces on material of fixed specific angular
momentum vary with radius r as r!3, while gravity varies as
r!2. Therefore, unless angular momentum is transported out-
ward on a dynamical timescale as material flows inward from
large scales down to the black hole, the flow must become
rotationally supported and form an accretion disk. As first
pointed out by Salpeter (1964) and Zeldovich & Novikov
(1964), accretion disks can provide a high efficiency of matter-

to-energy conversion in a very small volume. The outward
transport of angular momentum occurs slowly through poorly
understood dissipative processes (“viscosity”), thereby con-
verting a significant fraction of gravitational energy into heat,
magnetic fields, and/or outflowing kinetic energy. It is this
largely theoretical reasoning that has made disks so ubiquitous
as models of the central parts of the accretion flow in AGNs.
The most common assumption about the state of the plasma

within the disk is that it is optically thick and thermal. This
immediately implies that a substantial fraction of the bolometric
power should be in the form of UV photons: a blackbody
emitting at a significant fraction of the Eddington luminosity
on size scales associated with supermassive black holes has a
temperature in the UV range. In fact, a lot of power in AGNs
is emitted in the optical/UV region of the spectrum (the Big
Blue Bump), but the full spectral energy distribution (SED) is
rather more complicated than that. As shown in Figure 1, the
overall broadband AGN continuum is relatively flat in nFn and
extends over nearly 7 orders of magnitude in frequency, which
implies that approximately the same amount of energy is emit-
ted per decade of frequency. For radio-quiet AGNs, this broad-
band spectrum can be divided into three major components:
the infrared bump, the Big Blue Bump, and the X-ray region.
The Big Blue Bump (BBB) continuum component in AGNs

Figure 2.4: Representation of the broadband continuum spectral energy distribution
seen in the different types of AGN. The radio quiet spectrum can be divided into three
major components: the infrared bump, which comes from reprocessing of the UV
emission by dust; the Big Blue Bump, which is due to the accretion disk; and the X-
ray region,which is aComptonizedpower law. This figure is from (Koratkar&Blaes, 1999)
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Figure 4. Jet–disc model for the highest angular resolution SED compiled in this work for a quiescent state. For the purposes of modelling, the optical-to-UV
range, which is extracted from an aperture radius of 0.15 arcsec (12 pc), is taken as an upper limit to the core emission, and the power-law of the synchrotron
spectrum is fixed at p = 2.5; the resulting model fit is based on the VLBI and X-ray data only, which are taken as representative of the core emission. The
modelling of the X-ray spectrum – 2002 Chandra spectrum – is shown in the small panel.

Figure 5. Jet–disc model for the highest angular resolution SED. The only difference with the model in Fig. 4 is the contribution of the disc, which in this case
is forced to be equal to that inferred from the 0.4 arcsec SED in quiescent mode. The fit of the Chandra data is the same as that in Fig. 4 and is not shown. For
illustrative purposes, the ALMA data are added in this figure. They show that the emission from the highest ALMA frequencies reaches similar levels as the
VLBI data at 1.2 mm, illustrating the transition from the optically thin to the optically thick region in the jet.

in July 2002 in all the SEDs, regardless of angular resolution
and M87 state (see Section 3.1 for reasoning). The model fits
the Chandra photon event spectrum after being folded through
detector space using the program ISIS (Houck & Denicola 2000).
The photon event spectrum was extracted within an aperture radius
of 0.005 centred on the core of M87. Model fits to this Chandra
spectrum are shown in all cases in Fig. 3. Moreover, to account for
variability, the model result is compared with the average of the two
Chandra observations used in this work; namely, from the years
2000 and 2002. For that purpose, the average fluxes at 1 and 10 keV

from these two years are plotted in all the figures and compared
with the model fit in Fig. 3.

The parameters that are fixed in all the models are as follows:
the fraction of accelerated electrons, set to 0.6, the outer radius of
the accretion disc to 200 Rg, gravitational radius, the maximum
distance in the jet along which the electrons are accelerated,
zmax = 1019 cm. We further assume that the energy density in
protons and thermal pressure is the same. This assumption has a
direct impact on the estimated Nj; if assuming instead the number
density in protons and electrons to be equal, Nj increases by

c� 2016 RAS, MNRAS 000, 1–??

Figure 2.5: A jet–disk model for spectral energy distributions that is a fit of the Chan-
dra data. For illustrative purposes, the ALMA (Atacama Large Millimeter/submillimeter
Array) data is added. This shows that the emission from the highest ALMA frequencies
reaches similar levels as the VLBI (Very-long-baseline interferometry) data at 1.2 mm,
illustrating the transition from the optically thin to the optically thick region in the jet.
This figure is from (Prieto & Fernández-Ontiveros, 2016).
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Figure 2.6: The spectrum from 3C 273. One can see synchrotron emission at lower en-
ergies and inverse Compton at higher energies. Credit: NASA via M.A. Catanese (Iowa
State University).
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BLR flux. The BLR emission comes from reprocessing the continuum flux from the disk;

therefore the lag time can be used to estimate the distance of the BLR clouds from the

black hole. The distance from the black hole and the orbital velocity of the clouds that

make up the BLR are used to estimate the black hole mass.

2.3 Jets

The term jet was first applied to an astronomical object in 1954 (Baade & Minkowski,

1954) to the “protrusion” out of the core of the nearby galaxy M87. Astrophysical jets are

collimated, supersonic flows of plasma accelerated by compact objects. When astro-

physical jets have ionized matter moving close to c , they are called relativistic jets. Jets

are observed perpendicular to some AGN. The composition of jets is uncertain due to

the dominance of non-thermal continuum emission from the jets which leads to a lack

of detectable lines. The energy and momentum of jets is initially dominated by Poynt-

ing flux. At larger distances the electromagnetic energy is transferred to the particles.

The environment directly around the black hole at the center of AGNs is highly magne-

tized. Therefore, unless the plasma is highly collisional, the plasma supply to the inner

jet cannot come from the accretion disk. The energy fueling the jet and the initial plasma

supply for the jet have to be powered by the supermassive black hole. Electrons inside of

the jet emit low-energy synchrotron emission and high-energy inverse-Compton emis-

sion. The high-energy emission can come from synchrotron self-Compton or external

inverse Compton emission. The photons for the eternal inverse Compton process can

come from theBLR, thermal photons from the disk, or even the cosmicmicrowave back-

ground.

The jet is launchedby thecombinedeffect of thermalpressure, centrifugal forces, and

the Blandford-Znajek process. The Blandford-Znajek process involves the conversion
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Figure 2.7: M87: An elliptical galaxy about 6× 107l y from Earth, also known as NGC 4486.
M87 is one of the nearest and is themost well studied relativistic jets. This figure is from
NASA and The Hubble Heritage Team (STScI/AURA).
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of rotational energy (Blandford & Znajek, 1977). Blandford and Payne in 1982 proposed

a jet launching model that showed a jet can be launched magneto-centrifugally from

the surface of an accretion disk (Blandford & Payne, 1982). In some jets, “knots” can be

observed. The origin of the knots is not fully understood, but many believe they arise

fromMHD instabilities and shocks. The appearance of “superluminal motion” of knots

is a consequence of the jet being relativistic. The knots, of course, are not moving with

a velocity greater than c ; they appear to due to geometrical effects, see Figure 2.8. The

knots in the jet emit light via synchrotron and inverse-Compton so one can think of the

knot as a source of light at location A and at location B . The knot is moving with velocity

v~ at an angle θ~ with respect to the observer. Let the time it takes for the knot to travel

between A and B be unity and β~ ≡ v~/c . Then the transverse speed of the knot that is

observed is

vobserver =
v~ sinθ~

1− β~ cosθ~
(2.3)

As an example, letting θ~ = π/12 yields a vobserver = c for v~ ≈ 0.82c .

There are different jet models to explain observations of variable high-energy (TeV)

emissions. Thesemodels can be split into two different categories: leptonic models and

hadronic jet models. One model for producing TeV emission in jets is via synchrotron

self-Compton radiation from relativistically moving plasma blobs (Georganopoulos &

Kazanas, 2003). This model has the upstream energetic electrons interact with the syn-

chrotron seed photons produced in the deceleration of blobs (Levinson, 2007). This

occurs when multiple emission zones with changing line-of-sight directions mini-blob

models. Another model is the jets-in-a-jet or jet-to-counterjet for the TeV flares (Gian-

nios et al., 2010; Kovalev et al., 2007). This occurs when there is radial jet stratification

and a fast inner core and slower outer layer. The final leptonic model that I will discuss

has many similarities to the first hadronic model that will be discussed. This leptonic

model has synchrotron emission from electrons produced in the inner regions of the jet

that provide photons to produce inverse Compton emission from the fastest electrons
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v~✓~

A
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tA

tB
dA

dA � (tB � tA)v~ cos ✓~

�tobserver = 1 � (tB � tA)�~ cos ✓~

v~ sin ✓~

Figure 2.8: The red rectangle represents the knot inside at the jet moving at a velocity v~
at an angle θ~ with respect to the observer who is represented by the stick figure. The
knot is at position A at time tA in the knot’s reference frame and then the knot is at the
position B at time tB in the knot’s reference frame.
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Therefore, the X-ray spectrum of Mrk 421 hardens toward high
fluxes. Using the best-fit model we then derived the X-ray SED
for each data group.

For the gamma-ray spectral fits, a bin size of 0.1667 in log10(E )
was adopted for the medium- and high-flux groups, and a wider
bin size of 0.4 was adopted for the low-flux group. As shown
in Figure 12, the low-flux SED still has very large error bars.
The first energy bin corresponds to an energy of !260 GeV.
The gamma-ray spectra can all be satisfactorily fit by a power law,
with a photon index of 2:84 " 0:58, 2:71 " 0:15, and 2:60 "
0:11 for the low-, medium-, and high-flux groups, respectively.
The errors bars only include statistical contributions. For the pur-
pose of comparison with some of the published results, we also
fitted the spectra with a cutoff power law (see, e.g., Krennrich
et al. 2002) but with the cutoff energy fixed at 4.96 TeV. The
photon index is 2:73 " 0:56, 2:40 " 0:18, and 2:11 " 0:14 for
the low-, medium-, and high-flux groups, respectively. Like the
X-ray spectrum, therefore, the TeV spectrum also seems to harden
toward high fluxes, although the uncertainty here is quite large.

Finally, we searched for radio and optical observations that
fall in one of the groups and computed the average fluxes to com-
plete the SED for the group. Given the fact that Mrk 421 did not
vary as significantly at these wavelengths, we believe that the
derived SEDs are quite reliable. Figure 12 summarizes the results.

3.3. Spectral Modeling

We experimented with using a one-zone SSC model (see
Krawczynski et al. [2004] for a detailed description of the code,
which we revised to use the adopted cosmological parameters)
to fit the measured flux-averaged SEDs. Briefly, the model cal-
culates the SED of a spherical blob of radius R. The blob moves
down the conical jet with a Lorentz factor !. The emitting re-
gion is filled with relativistic electrons with a broken power-law
spectral distribution: Se / E#p1 for Emin < E < Eb, and Se /

E#p2 for Eb $ E < Emax (although the code does not evolve the
electron spectrum self-consistently). The model accounts for
the attenuation of the very high energy !-rays by the diffuse in-
frared background (as modeled by MacMinn & Primack 1996).
We first found an initial ‘‘best fit’’ to each SED by visual

inspections. We then performed a systematic grid search around
the best fit that involves the parameters magnetic field B in the
range of 0.045–0.45 G, Doppler factor " in 10–20, p1 in 1.8–
2.2, p2 in 2.9–3.7, log Eb in 9.9–12.2, log Emax in 9.9–12.2, and
the normalization (we) of Se in 0.00675–0.44325 ergs cm#3.
Variability constraints (see x 4) were taken into account in the
choice of some of the parameter ranges. All other parameters
in the model (e.g., R) were fixed at the nominal values deter-
mined by the visual inspections. We found roughly where the
global #2 minimum lies, through a coarse-grid search, and then
conducted a finer-grid search through much smaller parameter
ranges around the minimum to find the best fit. Figure 11 shows
the results for the high-flux group. It is apparent that the model
severely underestimates the radio and optical fluxes. Large de-
viations are also apparent at TeVenergies. We should stress that
our grid searches are by no means exhaustive. However, the
results should be adequate for revealing gross discrepancies
between the model and the data.

Fig. 11.—Spectral energy distribution of Mrk 421. It was derived from the
high-flux data group (see text). The solid line shows the best fit to the data with a
one-zone SSC model (see text): " ¼ 14, B ¼ 0:26 G, R ¼ 0:7 ; 1016 cm, we ¼
0:086 ergs cm#3, p1 ¼ 2:05, p2 ¼ 3:4, log (Eb) ¼ 11:0, log (Emin) ¼ 6:5, and
log (Emax) ¼ 11:6. All energies (E’s) are in units of eV. Note large deviations at
both very low and high frequencies.

Fig. 12.—Spectral energy distributions of Mrk 421 at different X-ray fluxes:
low (triangles), medium (squares), and high (circles). Fits to the SEDs with
a multizone SSC model (see text) are also shown, with a long-dashed line for
the low-flux group and a solid line for both the medium-flux and high-flux
groups. Parameters used: for the low-flux group, " ¼ 10:0, B ¼ 0:405 G, R ¼
0:7 ;1016 cm, we ¼ 0:13777 ergs cm#3, and the electron spectral distribution
(broken power law): p1 ¼ 2:05, p2 ¼ 3:6, log (Eb) ¼ 10:34 eV, log (Emin) ¼
6:5, and log (Emax) ¼ 11:22; for the medium-flux group: " ¼ 17:8, B ¼ 0:102 G,
R ¼ 1:0 ; 1016 cm, we ¼ 0:03192 ergs cm#3, p1 ¼ 2:05, p2 ¼ 3:4, log (Eb) ¼
10:98, log (Emin) ¼ 6:5, and log (Emax) ¼ 11:55; for the high-flux group, two
zones are needed to fit the X-ray and gamma-ray spectra: zone 1, " ¼ 14,
B ¼ 0:046 G, R ¼ 0:7 ;1016 cm, we ¼ 0:28 ergs cm#3, p1 ¼ 2:0, p2 ¼ 3:0,
log (Eb) ¼ 11:5, log (Emin) ¼ 6:5, and log (Emax) ¼ 12:5; zone 2, " ¼ 14, B ¼
0:11 G, R ¼ 1:5 ;1016 cm, we ¼ 0:025 ergs cm#3, p1 ¼ 2:0, p2 ¼ 3:0,
log (Eb) ¼ 11:0, log (Emin) ¼ 6:5, and log (Emax) ¼ 11:6; plus two additional
zones for fitting the radio and optical spectra: radio (dotted line), " ¼ 14,
B ¼ 0:003 G, R ¼ 8:0 ; 1017 cm, we ¼ 0:000012 ergs cm#3, p1 ¼ 2:05, p2 ¼
3:4, log (Eb) ¼ 11:0, log (Emin) ¼ 6:5, and log (Emax) ¼ 11:5; optical (dashed
line), " ¼ 15, B ¼ 0:055 G, R ¼ 1:6 ; 1017 cm, we ¼ 0:00012 ergs cm#3,
p1 ¼ 2:05, p2 ¼ 3:4, log (Eb) ¼ 10:0, log (Emin) ¼ 6:5, and log (Emax) ¼ 11:0.
All energies (E’s) are in units of eV.

BxAŻyAżEJOWSKI ET AL.138 Vol. 630

Figure 2.9:
Left: Spectral energy distribution of Mrk 421. The solid line shows the best fit to the data
with a one-zone synchrotron self-Comptonmodel.
Right: Spectral energy distributions of Mrk 421 at different X-ray fluxes: low (triangles),
medium (squares), and high (circles). Fits to the SEDs with a multizone synchrotron
self-Comptonmodel are also shown,with a long-dashed line for the low-flux groupanda
solid line for both themedium-fluxandhigh-fluxgroups. This figure is from(Blażejowski
et al., 2005).
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in the jet. The electrons of the upstream (faster flow) upscatter the low-energy photons

produced in the slower, downstream part of the flow, i.e. the TeV emission in the jet

is inverse Compton emission from the base of the jet (Perlman & Kazanas, 2005). One

hadronic jet model uses proton synchrotron emission to dominate the photon supply

for inverse Compton emission. Thesemodels are sometimes referred to as synchrotron-

proton blazarmodels (Reimer et al., 2004). Another jetmodel that involves hadrons uses

emissions fromproton-protoncollisions (Barkov et al., 2010). Inorder tohave theneeded

proton density, a star or dense gas cloud needs to penetrate the jet on the scale of tens of

black hole radii (Rieger & Aharonian, 2012). Protons are approximately 2000 times heav-

ier than electron; therefore their magnetic deflection is minimal along with their syn-

chrotron losses. Protons can interact with the background photon field and produce

pions.

p +γ→ p + π0

p +γ→ p + π±
(2.4)

The neutral pions decay into γ-rays; and the charged pions produce electron-positron

pairs.

π±→ µ±→ e± (2.5)

At very large energies, there is a cutoff that canbeattributed to several differentmech-

anisms. There could be absorption near the γ-ray source; or there could be absorption

in intergalactic space by background IR radiation fields (Dermer & Schlickeiser, 1994;

Mucke & Protheroe, 2001). Figure 2.10 is an example of these cutoff energies for Markar-

ian 421.
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Fig. 1.— Mrk 421 spectra at di↵erent flux levels averaged for data over the 2000/2001

season. The spectra have been fit by a power law with a fixed exponential cuto↵ at 4.3 TeV

(Krennrich et al. 2001). The fits produce acceptable goodness of fit (�2) values. The shaded

areas indicate the systematic errors on the flux measurements.

Figure 2.10: Mrk 421 spectra at different flux levels averaged for data from 2000-2001. The
spectra have beenfit by apower lawwith afixed exponential cutoff at 4.3 TeV. The shaded
areas indicate the systematic errors on the fluxmeasurements. This figure is from (Kren-
nrich et al., 2002).

22



Crimean Astrophysical Observatory, Ukraine; the 0.6 m SMARTS
consortium telescope at the Cerro Tololo Inter-American Obser-
vatory, Chile; and the 0.7 m Meniscus Telescope of Abastumani
Astrophysical Observatory in Abastumani, Republic of Georgia.
We checked the data for consistency using overlapping measure-
ments from different telescopes and applied corrections, if neces-
sary, to adjust to the LT system. We processed the data from the
LT, Perkins Telescope, Crimean Astrophysical Observatory, and
Abastumani Astrophysical Observatory in the same manner, us-
ing comparison stars 2, 7, and 9 fromGonzalez-Perez et al. (2001)
to determine the magnitudes in the R band. The frequency of op-
tical measurements over the !10 yr span presented here is, on
average, 2Y3 observations per week. Over a 3 month period be-
tween 2005March and June,we obtained about 100 data points, i.e.,
almost one per day (‘‘longlook’’ data). Another subset (‘‘medium’’)
contains !100 points over 200 days between 2004 January and
July. Figure 2 displays these segments along with the entire 10 yr
light curve. The optical data are given in Table 3.

We have compiled a 14.5 GHz light curve (Fig. 3) with data
from the 26 m antenna of the University of Michigan Radio As-
tronomyObservatory. Details of the calibration and analysis tech-
niques are described in Aller et al. (1985). The flux scale is set by
observations of Cas A (Baars et al. 1977). The sampling fre-
quency was usually of the order of once per week. An exception
is a span of about 190 days between 2005 March and September
when we obtained 60 measurements, averaging one observation
every !3 days (‘‘medium’’ data). The radio data are given in
Table 4.

2.2. UltraYHigh-Resolution Images
with the Very Long Baseline Array

Starting in 2001May, we observed 3C 279with the Very Long
Baseline Array (VLBA) at roughlymonthly intervals, with some
gaps of 2Y4 months. The sequence of images from these data
(Fig. 4) provides a dynamic view of the jet at an angular reso-
lution of !0.1 mas.We processed the data in the samemanner as
described in Jorstad et al. (2005). For epochs from 1995 to 2001,
we use the images and results of Lister et al. (1998),Wehrle et al.
(2001), and Jorstad et al. (2001, 2005). We model the brightness
distribution at each epoch with multiple circular Gaussian com-
ponents using the taskmodelfit of the software packageDIFMAP
(Shepherd 1997). At each of the 80 epochs of VLBA observa-
tion since 1996, this represents the jet emission downstreamof the
core by a sequence of knots (also referred to as ‘‘components’’),

Fig. 1.—X-ray (2Y10 keV) data on different timescales. In the top panel, the
arrows show the times of superluminal ejections, and the line segments perpen-
dicular to the arrows show the uncertainties in the times of ejection.

Fig. 2.—Optical (R-band) data on different timescales.

TABLE 3

Optical (R-Band) Light-Curve Data

MJD1 Mag. Error Flux Density2 Error

46.9514............. 14.383 0.007 5.837 0.038

71.7330............. 15.170 0.032 2.827 0.082

86.6356............. 15.386 0.032 2.317 0.067

91.6813............. 14.740 0.032 4.201 0.122

100.6226........... 14.878 0.032 3.700 0.107

Notes.—Table 3 is published in its entirety in the electronic edition of the
Astrophysical Journal. A portion is shown here for guidance regarding its form
and content.

1 MJD = Julian date " 2,450,000.
2 In units of millijanskys.

CORRELATED MULTIYWAVE BAND VARIABILITY IN 3C 279 81No. 1, 2008

Figure 2.11: Left: X-ray data on different timescales for 3C 279. In the top panel, the ar-
rows show the times of superluminal ejections, and the line segments perpendicular to
the arrows show the uncertainties in the times of ejection.
Right: Optical (R-band) data on different timescales for 3C 279. This figure is from (Chat-
terjee et al., 2008).

Variability in jet emission is useful to constrain the size of the emitting region. Let R

be the size of the emitting region and the minimum variability time-scale be tmin.

R < ctmin(Γ(1− β cosθ)(1+ z ))−1 (2.6)

where z is redshift, Γ is the bulk Lorentz factor in the jet, and θ the angle of the jet with

respect to the line of sight. Calculating the size of the emitting region allows one to eval-

uate at which distance from the central black hole the jet originates. Figures 2.11 and 2.12

show the variability of 3C 279 which has an estimated emitting region of light days and

> 0.1 pc from the black hole (Hayashida et al., 2015).
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Fig. 5.—Angular separation from the core vs. epoch of all knots brighter
than 100 mJy within 2.0 mas of the core. The black lines indicate the motion of
each knot (denoted by a given color of data points) listed in Table 5. A knot is
identified through continuity of the trajectory from one epoch to the next. The
diameter of each symbol is proportional to the logarithm of the flux density of the
knot, as determined by model fitting of the VLBA data.

Fig. 6.—Variation of X-ray flux, optical flux, radio flux, and position angle
of the jet from 1996 to 2008. The circled data points in the bottom panel are the
epochs shown in Fig. 7.

Fig. 7.—VLBA images at one epoch during each year of 11 yr monitoring.
The images are convolved with the beam of size 0:38 ; 0:14mas at P:A: ¼ "9#.
The map peak is 17.0 Jy beam"1. The contour levels are 0.15, 0.3, 0.6, . . . , 76.8
percent of the peak. The angular scale given at the bottom is in milliarcseconds.
The circled points in Fig. 6 (bottom) correspond to these images.

Figure 2.12: Variation of X-ray flux, optical flux, radio flux, and position angle of the jet
from 1996 to 2008 for 3C 279. The circled data points in the bottom panel are the epochs
shown. This figure is from (Chatterjee et al., 2008).
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2.3.1 Synchrotron Radiation

Charged particles accelerated by amagnetic field will radiate. If those particles aremov-

ing non-relativisticly the radiation is cyclotron radiation and if they aremoving relativis-

ticly it is synchrotron radiation. Charge particles gyrate around the magnetic field lines

with a frequency

ωB =
qB

Γmc
, (2.7)

where Γ is the Lorentz factor of the charge. The acceleration is perpendicular to the ve-

locity, so the total emitted radiation is (Rybicki & Lightman, 1979)

P =
2q2

3c3
Γ
4 q2B2

Γ2m2c2
v 2
⊥

=
2
3r 2e c β2⊥Γ

2B2,

(2.8)

where re = q2/(me c2) is the classical electron radius. Let α be the angle between the field

lines and the velocity of the charge, which is called the pitch angle. Now averaging over

all angles for a given β

〈β2⊥〉 = β2

4π

ˆ
sin2αdΩ =

2β2
3 . (2.9)

The power radiated can be expressed as

P =
4
3σT c β2Γ2B, (2.10)

where the Thomson cross section, σT = 8πr 2e /3 and the magnetic energy density is B =

B2/(8π).
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2.4 Accretion Disk

At themost basic level, active galactic nuclei are systemsdefinedbyblack hole accretion.

In order to understand the different aspects of AGN, it is necessary to understand the

physics of the accretion disk.

Assume a Newtonian accretion disk around a black hole of mass M with a constant

accretion rate of Ṁ . The angularmomentum, l , of a ring orbiting the black hole at radius

r with a mass m is

l =mrvφ. (2.11)

The azimuthal velocity of the ring, vφ, is related to the angular velocity, Ω, by

vφ = rΩ =

√
G M

r
. (2.12)

Assume the disk thickness is 2h and define the surface mass density Σ to be

Σ =

ˆ h

−h
ρdz = 2h ρ, (2.13)

where z is the height perpendicular to the disk and ρ is the density measured at z = 0.

The rate at which the angular momentum is removed from the disk is

J̇ = Ṁ
√

G M r . (2.14)

This is the torque between two adjacent rings. For steady-state, J̇ = Ṁ
√

G M rdisk, where

rdisk is the radius of the disk. Likewise, the accretion rate for a steady-state is

Ṁ = 2πrΣvr . (2.15)
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Now defining fφ to be the viscous stress in the φ direction by a ring at r on a ring at r dr ,

fφ = 3ηΩ/2 =
3η
2

√
G M

r 3
, (2.16)

where η is the coefficient of dynamic viscosity. Turning our attention to conservation of

angularmomentum. Let J̇ − be the rate at which the black hole takes in angularmomen-

tum and J̇ + be the rate of angular momentum transport across radius r .

J̇ + = Ṁ
√

G M r,

J̇ − = Ṁ
√

G M rinner,
(2.17)

where rinner is the innermost orbital of the disk (Section 11.1 provides a discussion on the

innermost stable circular orbit for Kerr black holes). Angular momentum conservation

requires that the net torque exerted equal the net rate of change of angular momentum.

The viscous stress, fφ, is the force per area, which can be easily expressed as torque.

4πfφr 2h = Ṁ
√

G M (r − rinner). (2.18)

Equation 2.18 assumes the black hole perfectly consumes the angular momentum. For

the non-ideal situation, J̇ − = βṀ
√

G M rinner, where β ≤ 1. The coefficient of dynamic vis-

cosity in turbulent motion is

η ∼ ρvturbιturb, (2.19)

where vturb is the characteristic velocity of the turbulence and ιturb is the characteristic

size of the turbulence. Assume vturb < cs and ιturb < h, where cs is the speed of sound.

Rewriting fφ (Netzer, 2006),

fφ = 3ρvturbιturbΩ/2 < 3ρcs hΩ/2. (2.20)
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Now expressing the viscous stress in terms of pressure P

fφ = αP, (2.21)

where α is a nondimensional viscosity parameter and 0 ≤ α ≤ 1. This definition of fφ is

referred to as “α-disk models”.

2.4.1 Energy Conservation

Now turning to energy conservation. The energy released is determined by the work

done by the torque and the loss of gravitational energy. This energy loss is radiated away.

The change in energy due to torque is

d(L J̇ ) = d( J̇Ω) = d(G M Ṁ /r ), (2.22)

and the change in energy due to gravitational loss is

d(Lgrav) = d(G M Ṁ /(2r ). (2.23)

Combining Equations 2.22 and 2.23 and differentiating yields

dL

dr
=
3G M Ṁ

2r 2

{
1−

√
rinner

r

}
. (2.24)

The non-relativistic limit of the total power radiated is

L =
G M Ṁ

2rinner
. (2.25)
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The emissivity per unit area from the top and bottom faces of the disk is

F (r ) = 3G M Ṁ

8πr 3

{
1−

√
rinner

r

}
. (2.26)

Now assuming the disk is a blackbody, F (r ) = σT 4, where

T (r ) =
(3G M Ṁ

8σπr 3

{
1−

√
rinner

r

})1/4
, (2.27)

σ is the Stephan-Boltzmann constant, and T is temperature. Each ring emits its own

blackbody leading to a multicolor blackbody spectrum.

2.4.2 Disk Geometry

Assume that in the accretion disk there is no net motion in the vertical direction. This

allows one to equate the vertical gravitational force and the vertical pressure gradient,

i.e., vertical momentum conservation.

dP

dz
= −

ρG M z

r 3
= −ρΩ2z . (2.28)

Now assume the pressure is dominated by the gas pressure, Pgas = ρc2s , then

dP

dz
= c2s

dρ

dz
= −ρΩ2z . (2.29)

A solution for ρ is

ρ = ρ0e−z2/h2
, (2.30)

where ρ0 is the value of ρ at z = 0.

dP

dz
= −

2c2s ρ0z

h2 e−z2/h2
= −

2c2s ρz

h2 = −ρΩ2z . (2.31)
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Therefore, for a thin disk,

h '
cs

Ω
=

cs

vφ/r
,

h

r
'

cs

vφ
� 1.

(2.32)

This sets the scale for which disk thicknesses this thin disk model is applicable.

2.4.3 Radiation Transport

A source of photon absorption in the disk is bremsstrahlung (or “free-free” transitions).

Other sourcesmay be “bound-bound” line transitions and photoionization (or “bound-

free” transitions). Take the frequency-averaged, Rosseland mean absorption opacity to

be κ̄abs. The Rosseland mean opacity is (Shapiro & Teukolsky, 1983),

1
κ
≡

´ ∞
0 κ−1ν (dεP

ν /dT )dν´ ∞
0 (dεP

ν /dT )dν ,

εP
ν =

8πhν3

c3

[
e

hν
kT − 1

]−1
,

(2.33)

where ν is the frequency, κν is the absorption opacity at a particular frequency, and T is

temperature. εP
ν is the specific energy density, and the P signifies the Planck function.

The Rosseland mean opacity for “free-free” absorption is

κ̄ff = (6.45× 1022) fe fi Z 2

A
ḡffρT −3.5[cm2/g ], (2.34)

where A is the atomic weight, Z is the charge of the ions, ḡff is the frequency averaged

Gaunt factor for free-free transitions, and fe and fi are the fraction of electrons and ions,

respectively (Shapiro & Teukolsky, 1983). The Rosseland mean opacity for “bound-free”
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absorption is

κ̄bf = (4.34× 1025)ḡbfH (1+X )ρT −3.5[cm2/g ], (2.35)

where X represents the mass fraction of hydrogen, H represents the mass fraction of

heavyelements (Li andheavier), and ḡbf is the frequencyaveragedGaunt factor forbound-

free transitions (Shapiro & Teukolsky, 1983).

The main source of photon scattering is Thomson scattering,

κ̄scat =
σT ne

ρ
= 0.4fe [cm2/g ],

σT =
8π
3

(
e 2

me c2

)2
,

(2.36)

where σT is the Thomson cross-section, ne is the free electron density, and fe (as stated

above) is the number of electrons per baryon. The total Rosseland mean opacity is

κ̄−1(ρ,T ) = κ̄−1scat+ κ̄−1abs. (2.37)

Using this opacity, we can express the optical depth as

τ =

ˆ h

0
κ̄ ρdz ≈ κ̄(ρ,T )Σ, (2.38)

where Σmaintains its definition from Equation 2.13. For the vertical photon flux,

F (r, z ) = −c

3
d(aT 4)

dτ
, (2.39)

where a = 4σ/c , and σ is the Stephan-Boltzmann constant. Using finite differences for

the differential,

F (r ) ≈ acT 4

κ̄Σ
. (2.40)

Equation 2.40 yields the surface photon flux for τ > 1, optically thick disks. For optically
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thin disks, the function for the photon flux becomes

F (r ) ≈ hΛ(ρ,T ), (2.41)

where Λ is the emissivity in the disk. The thin disk region of the disk is dominated by

thermal bremsstrahlung and Comptonization.

2.5 Spectrum of a Thin Disk Model

The accretion disk can be divided into three regions of varying r : inner, middle, and

outer (Shapiro & Teukolsky, 1983). In the outer region gas pressure dominates, and the

opacity is determined by the free-free absorption. In the middle region the gas pressure

still dominates the radiation pressure, but the opacity is due to Thomson scattering. In

the inner region the radiation pressure dominates, and Thomson scattering determines

the opacity. For the outer region the optical depth is τ̄ff. Photons of a particular energy

are created at a depth of δz with τνff ∼ 1 where ν signifies the frequency of the photon

τνff ∼ κ
ν
ffρδz ∼ 1. (2.42)

The intensity of the radiation is

Iν ∼ j νffδz ∼
j νff
κνffρ
= Bν(Ts ), (2.43)

where Bν is the Plank function, Ts is the temperature at the disk surface, and j νff is the

free-free emissivity (Netzer, 2006). Defining further,

Bν(T ) = 2hν3

c2

[
e

hν
kT − 1

]−1
,

Bν(T ) = jν
κν ρ
−→ Kirchhoff’s law.

(2.44)
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The outward photon flux through the disk surface is

Fν =

ˆ π/2

0
Iν cosθdΩsolid ∼ 2πBν(Ts ). (2.45)

F =

ˆ ∞
0

Fνdν ∼ aT 4
s . (2.46)

This yields a blackbody spectrum for κ̄ff � κscat. Having investigated the absorption

dominated outer region, the leaves the middle and inner (Thomson scattering) regions

to be explored. For the scattering dominated region, let δz \ be the depth were the pho-

ton was created from free-free emission and δs be the path length of the random-walk

the photon takes during scattering

τνff ∼ κ
ν
ffρδs ∼ 1. (2.47)

The intensity of the radiation is

Iν ∼ jνδz \ . (2.48)

If Nνs is the number of scatterings and λscat is the mean free path for scattering,

Nνs = δs/λscat . (2.49)

Therefore the net vertical distance traveled is

δz \ = λscat
√

Nνs . (2.50)

Rewriting δz ,

δz \ ∼ (κscatκνffρ2)−1/2. (2.51)
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Re-expressing in terms of δz for comparison to Equation 2.43

δz \ ∼ δz
√
κνff/κ

ν
scat. (2.52)

Substituting the result into Equation 2.48

Iν ∼
j νff
κνff

√
κνff
κscat

∼ Bν(Ts )
√

κνff
κscat
. (2.53)

The outward photon flux is

Fν =

ˆ π/2

0
Iν cosθdΩsolid ∼ 2πBν(Ts )

√
κνff
κscat

∝

(
hν

kTs

)3/2
e−

hν
2kTs

(
e

hν
kTs − 1

)−1/2
, (2.54)

for κνff� κscat. This yields a modified blackbody spectral distribution. The effective tem-

perature of themodified blackbody is higher than a normal blackbody, i.e., the energy of

theoutgoingphotons is higher in the scatteringdominated region than in the absorption

dominated region.

Photoionization equilibrium occurs when the rate of photoionization is equal to the

rate of recombination. The ionization parameter quantifies this balance:

U =
Q ion(H )
4πr 2cne

.

Q ion(H ) =
ˆ

Lν
hν

dν.

(2.55)

HereQ ion(H ) is thenumberofH ionizingphotoncreatedper secondandne is thenumber

density of electrons (Shapiro & Teukolsky, 1983).

2.5.1 Other AccretionModels

At luminosities less than a few percent of the Eddington limit, black holes can accrete

via an advection-dominated accretion flow (ADAF) (Ichimaru, 1977; Rees et al., 1982).
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ADAF can be convectively unstable and become convection-dominated accretion flows

(CDAF) (Begelman&Meier, 1982; Narayan& Yi, 1994). CDAFs have a very different struc-

ture than ADAFs (Stone et al., 1999). In the numerical simulations, the Reynolds stress

due to convection is negative, which means convection moves angular momentum in-

ward rather than outward (Ryu & Goodman, 1992; Stone & Balbus, 1996; Narayan et al.,

2000). In the case of a CDAF, convection is so strong that the angular momentum trans-

port inwards is nearly equal to the outward transport by viscosity (Igumenshchev et al.,

2000; Quataert & Gruzinov, 2000). This leads to an almost static accretion flow; there-

fore some of the gas forms convective eddies and does not accrete onto the black hole.

Consequently, the mass accretion rate in a CDAF is smaller than in an ADAF.

The spectral models of CDAFs that Ball et al. presented in 2001 are similar to the

advection-dominated inflow/outflows solution (ADIOS) models (see Figure 2.13). The

highamountofbremsstrahlungemission in theX-rayand the lowamountof synchrotron

emission in the radio are characteristic of density profiles flatter than the ADAF scaling

of ρ ∝ r−3/2 (could be either CDAF or ADIOS). The similarities in the spectra of ADIOS

and CDAFmodels implies that direct observation of outflowing gas would be needed to

confirm the ADIOS or CDAFmodel, one way or the other (Ball et al., 2001). The primary

difference between the CDAF andADIOSmodels is that the CDAFmodels have a unique

radial density profile (ρ ∝ r−1/2), instead of a family of profiles (ρ ∝ r−3/2+p with 0 < p < 1)

as in an ADIOS (Ball et al., 2001).
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FIG. 4a FIG. 4b

FIG. 4.ÈComparison of ADAF and CDAF model spectra ; for the CDAF models. The accretion rates in the models have been adjusted so that theg
c
\ 1

1 keV luminosities are equal to either 1037 ergs s~1 or 1040 ergs s~1 (solid circles). (a) : Models with d \ 0.01. The ADAF models (solid curves)
correspond, from above, to and (5.2, [ 3.64), respectively, and the CDAF models (dashed curves) correspond to(log rout, log m5 ) \ (4.9, [ 2.74)

and (4.7, [ 6.37), respectively. (b) : Models with d \ 0.5. The ADAF models (solid curves) correspond to(log rout, log m5 ) \ (2.9, [ 3.75)
and (5.6, [ 4.20), respectively, and the CDAF models (dashed curves) correspond to and(log rout, log m5 ) \ (5.5, [ 3.53) (log rout , log m5 ) \ (3.3, [ 4.26)

(4.7, [ 6.37), respectively.

radiated by the CDAF at large radii as thermal bremsstrah-
lung emission : Figure 2 showsL CDAF \ g

c
L

c
\ g

c
v
c
M0 c2.

results spanning a range of from 0.01 to 1. If is as smallg
c

g
cas 0.01 or even smaller, an accreting black hole would have

a very small X-ray luminosity from thermal bremsstrahlung
emission and would be extremely difficult to observe. This
might explain highly underluminous galactic nuclei such as
that in our own Galaxy. For models with low a relevantg

c
,

question is what happens to the part of the energy con-
vected outwards that is not radiated, If[(1 [ g

c
)L

c
B L

c
].

this energy is transported out to an external medium and
radiated there, that contribution may dominate the
observed spectrum (assuming the beam of the telescope is
larger than the size of the emitting region). The luminosity
of the source would then be larger than we have predicted
and the spectrum would be softer.

The spectral models of CDAFs presented here are quali-
tatively similar to the ADIOS (ADAF]wind) models pre-
sented by DM and QN. The relative prominence of
bremsstrahlung emission in the X-ray band and the sup-
pression of synchrotron emission in the radio (as suggested
by observations ; see DM) are characteristic of density pro-
Ðles Ñatter than the ADAF scaling of o P r~3@2 (be they
CDAF or ADIOS). In fact, the qualitative similarity of
ADIOS and CDAF spectra implies that direct signatures of
outÑowing gas (and measurements of outÑow mass rates)
would be needed to conÐrm the ADIOS model. The
primary di†erence between the CDAF and ADIOS models
is that we have a unique radial density proÐle (o P r~1@2) in
a CDAF, instead of a family of models (o P r~3@2`p with
0 \ p \ 1) in an ADIOS; also, the energy which powers
bremsstrahlung emission at large radii is provided by con-
vective transport from small radii in a CDAF, rather than
by local viscous dissipation in an ADIOS.

All the models presented in this paper correspond to a
two-temperature plasma. For the models with d \ 0.5,
however, the temperatures of the ions and electrons are
similar, di†ering by less than a factor of 10. We have com-
puted models with a one-temperature plasma, assuming
that some plasma process other than Coulomb collisions
rapidly equilibrates the ion and electron temperatures (see
Begelman & Chiueh 1988). The results are not very di†erent
from those obtained with two-temperature models with
d \ 0.5. Comptonization does, however, become more
important relative to bremsstrahlung, especially for low
values of In addition, the synchrotron emission in theg

c
.

radio is somewhat more prominent.
An important assumption of our analysis is that the elec-

trons are thermal. Because of the low density in a CDAF,
thermalization through Coulomb collisions and synchro-
tron self-absorption is virtually nonexistent (see Mahade-
van & Quataert 1997) ; it is therefore possible to retain a
power-law distribution of electrons. Moreover, such non-
thermal acceleration is expected in the collisionless magne-
tized plasmas present in CDAFs. A power-law tail of
electrons would signiÐcantly modify the predicted synchro-
tron spectrum (e.g., Mahadevan 1998 ; Psaltis, &O" zel,
Narayan 2000). In addition, the power-law electrons could
contribute to X-ray emission through either synchrotron or
nonthermal inverse Compton emission. Depending on the
uncertain efficiency of electron acceleration, this non-
thermal emission could be more important than brems-
strahlung emission, particularly for small values of g

c
.

Models in which thin accretion disks ““ evaporate ÏÏ to
form hot inner Ñows have received considerable attention in
the context of dwarf novae (Meyer & Meyer-Hofmeister
1994), soft X-ray transients in quiescence (Narayan,
McClintock, & Yi 1996 ; Honma 1996 ; Meyer, Liu, &

Figure 2.13: Comparison of ADAF and CDAF model spectra. The accretion rates in the
models have been adjusted so that the 1 keV luminosities are equal to either 1037 ergs/s or
1040 ergs/s (solid circles). The ADAF models are the solid curves, and the CDAF models
are the dashed curves. δ is the fraction of the viscous dissipation goes directly into heat-
ing the electrons, which impacts synchrotron radiation and Compton scattering. This
figure is from (Ball et al., 2001).

2.6 AGNUnification

There are attempts to unify all AGN as a single type of astrophysical object. The differ-

ences inAGN type 1 and type 2 canbe explainedby geometrical obscuration of the center

of the galaxy viewed at different inclination angles (Antonucci, 1993). Likewise, differ-

ences in accretion rate can account for different emission spectra and power outputs. In

other words, the differing observations of AGN power output and spectra is due to each

galaxy having a unique combination of black hole mass, spin, and accretion rates and

the line of sight being fixed at Earth. The unified model consists of a black hole with an

accretion disk that radiates. The disk is surrounded by BRLs andNRLs consisting of high

and lower velocity gas, respectively. A dusty torus may obscure parts of the accretion

disk and BLR. At large viewing angles the torus obscures the inner regions, and it looks

like Type 2 Seyferts, narrow-line FRI, and FRII. Closer to line of sight, the torus does not

36



The AGN phenomenon Volker Beckmann

BL Lac FSRQ

BLRG,
Type I 
QSO

NLRG,
Type II 
QSO

BLRG

NLRG

Seyfert 2

Seyfert 1

transmitted

scattered

absorbed

reflected

narrow line region

broad line region

black hole

accretion disc

electron plasma

dusty absorber

ra
d

io
-l

o
u

d
 (

R
L

) 
A

G
N

ra
d

io
-q

u
ie

t 
(R

Q
) 

A
G

N

high powerlow power

jet

Figure 1: Schematic representation of our understanding of the AGN phenomenon in the unified scheme
[1]. The type of object we see depends on the viewing angle, whether or not the AGN produces a significant
jet emission, and how powerful the central engine is. Note that radio loud objects are generally thought to
display symmetric jet emission. Graphic courtesy of Marie-Luise Menzel (MPE).

binaries and the super massive black holes. The Ultra-luminous X-ray sources (ULX) are candi-
date examples of intermediate mass black holes (IMBH; [16]) which could help bridge the gap,
but further study and in particular improved classification of their non-X-ray counterparts will be
necessary to settle this question. Other LLAGN classes need to be separated beyond ambiguity
from the non-active galaxies. In particular H II galaxies and LINER tend to become indistinguish-
able below some signal-to-noise threshold [17]. The forthcoming large survey telescopes surveys
should bring clarification. Finally, the illusive link between AGN and non-active super massive
black holes, like Sgr A* in our very own galaxy, needs to be understood.

AGN research remains a rich field, worthy of our investments of time, energies and talents that
will continue to provide unexpected future insights into the nature of the Universe we live in.

Acknowledgement: We thank the anonymous referee for the constructive comments.
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Figure 2.14: A representation of the unified AGN theory (Beckmann& Shrader, 2012). The
type of AGN we observe depends on the viewing angle, on the presence of a jet, and on
the power of the central engine.
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obscure the BLR, and it looks like Type 1 Seyferts, radio quiet QSOs, radio quasars, and

FRSQs. For viewing angles looking directly at the nucleus, the relativistically beamed

non-thermal continuum emission for the jet dominates, and it’s a blazar with BL Lac

objects being a subclass of blazars (see Figure 2.14).
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Chapter 3

Theoretical Background

3.1 Blandford-ZnajekMechanism

In 1977, Blandford and Znajek proposed that the energy needed to power relativistic jets

could be supplied by rotating black holes. The energy stored in the mass of a black hole

canonly be transformed into electromagnetic energy viaHawking radiation, which is in-

effective for powering jets. The rotational energy of a black hole can be transformed into

electromagnetic energy if the black hole is in amagnetic field and themagnetosphere is

force-free. In the Blanford-Znajek mechanism a rotating black hole in a force-free mag-

netosphere acts like aunipolar inductor; extracting rotational energy from theblackhole

and converting it into Poynting flux. The minimum charge density needed for the mag-

netosphere to be force-free is the Goldreich-Julian charge density.

The sections below will cover theory that is relevant to the Blanford- Znajek process.

3.1.1 Unipolar Inductor

The Blanford-Znajek process treats the black hole like a conductor spinning in a mag-

netic field, e.g., a unipolar inductor. This section will describe the physics of a unipolar

inductor so one can have a better understanding of how energy is extracted from the
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black hole. Beginning with Faraday’s Law of Induction:

∇×E = −∂B
∂t
, (3.1)

the physics of a unipolar inductor is very similar to a Faraday disk or a magnetic break.

The difference is that for the unipolar inductor, the moving conductor is also magnetic.

For amoving conductor, E+v×B/c acts as an effective electric field and thus drives cur-

rent. The EMF (E ) in a closed loop (	) is (Landau & Lifshitz, 1960),

E =

˛
	
(E+v×B/c ) ·dl. (3.2)

⌦

O

AB

C

Figure 3.1: The wires (solid orange lines) are stationary, A and C can slide around the
magnetized, conducting sphere to keep the circuit stationary. The dotted lines are for
reference only, the entire sphere is a conductor and has a radius rh .

An illustrative toy problem (see Figure 3.1) is when the axes of the dipolar magnetic

field and rotation are aligned. Solving for the EMF between the pole and equator and
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making a substitution, Equation 3.2 becomes

E =
1
c

ˆ
ABC

(Ω× r)×B ·dl. (3.3)

Since E is independent of the path of integration, one can instead integrate along AOC .

Along the segment AO , Ω ‖ r, therefore the cross product is zero, which leaves only the

segmentOC :

E =
1
c

ˆ rh

0
BΩr dr =

BΩrh
2

2c
. (3.4)

The Poynting vector is

S = c

4πE×B, (3.5)

where, E = v×B/c .

S = 1
4π (v×B)×cB (3.6)

=
1
4π [c (v ·B)B−c (B ·B)v] . (3.7)

Substituting v =Ω× r

=
1
4π

[
cr · (B×Ω)B−B2(Ω× r)] , (3.8)

Since Ω ‖ B, the cross product is zero, and

S = −cB2(Ω× r)
4π =

−cB2ΩF r sinθ
4π φ̂. (3.9)

3.2 Force-Free

A plasma is force-free when the Lorentz force is zero:

ρE+ J×B = 0. (3.10)
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One solution to this is trivial, E = 0 and J = 0. Another solution is when E = 0 and the

magnetic pressure gradient part of J×B exactly counter-balances the tensionpart of J×B

(Cravens, 1997). This can be seen using Ampère’s law,

J×B = 1
4π (∇×B)×B = −∇

(
B2

8π

)
+

1
4πB · ∇B = 0, (3.11)

where B2/8π is the magnetic pressure and B · ∇B/4π is the magnetic tension force. This

formulation gives one a good physical picture. Another way to expresses the force-free

condition is

(ρE+ J×B = 0) ·B −→ E ·B = 0. (3.12)

The quantity E ·B is invariant, which is convenient when dealing with black holes.

3.2.1 Goldreich Julian Charge Density

In 1969, Goldreich and Julian were investigating pulsars. They started with the assump-

tion that the magnetosphere around a spinning neutron star was a vacuum; they go on

to show that this is physically impossible. Their argument is as follows: the neutron star

has an aligned dipole magnetic field,

Boutside = BR3
(cosθ

r 3
r̂+ sinθ2r 3

θ̂

)
, (3.13)

where I use “outside” and “inside” to signify if the electric or magnetic field is inside or

outside of of the neutron star. The magnetic field at the surface of the star is

Br
inside = B

(
cosθr̂+ sinθ2 θ̂

)
. (3.14)
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Since themagnetic dipole and axis of rotation are aligned, v =ΩF×r. The star is assumed

to be a perfect conductor, so E+v×B/c = 0. After taking the cross-product,

Einside =
RΩF B sinθ

c

(
sinθ

2 r̂−cosθθ̂
)
. (3.15)

The tangential electric field should be continuous across the surface of the neutron star.

Eθoutside =
∂

∂θ

[
−

RΩF B sin2 θ
2c

]
, (3.16)

which can be simplified using a Legendre polynomial.

Eθoutside =
∂

∂θ

[
RΩF B

3c
P2(cosθ)

]
. (3.17)

Now going back to the assumption that outside of the neutron star is vacuum, Eoutside =

−∇φ, where ∇2φ = 0. Using this and Equation 3.17,

φ = −
R5ΩF B

3cr 3
P2(cosθ), (3.18)

where the 1/r 3 comes from the radial component. Using Equations 3.13, 3.17, and 3.18,

E ·B = −ΩF R

c

(R

r

)7
B2 cos3 θ. (3.19)

Recal that inside of the pulsar, E ·B = 0. This discrepancy leads to a huge electric field at

the surface of the neutron star. The electric field outside of the star at the surface is

Er(R) = −∇rφ =
RΩF B

c
P2(cosθ). (3.20)

Solving for the electric field at the surface (r = R) and at θ = π, gives 3RΩB/(2c ). Doing a
quick approximation to compare the electric force to the gravitational force shows that

43



the electric force is strong enough to overcome gravity and rip charges from the surface

of the neutron star.
eRΩF B/c

G M m/R2 � 1. (3.21)

After showing a vacuum solution doesn’t work, Goldreich and Julian found a steady state

solution for the charge density in a highly conductive, corotating magnetosphere.

E = −v×B
c
= −

(ΩF× r)×B
c

= −
ΩF r sinθ

c
φ̂×B, (3.22)

where θ is the angle between ΩF and r and φ̂ is the azimuthal unit vector. For a steady

state solution, ∂E/∂t = 0. Plugging the current density, J = ρv, and v = φ̂ΩF r sinθ into

Ampère’s law,

∇×B = 4πρΩF r sinθ
c

φ̂ = ∇ ·EΩF r sinθ
c

φ̂. (3.23)

Now taking the divergence of Equation 3.22,

∇ ·E = −∇ ·
(
ΩF r sinθ

c
φ̂×B

)
= −

[
B ·

(
∇×
ΩF r sinθ

c
φ̂

)
−
ΩF r sinθ

c
φ̂ · (∇×B)

]
. (3.24)

Substituting Equation 3.23 into Equation 3.24 yields

∇ ·E = −
[
B ·

(
∇×
ΩF r sinθ

c
φ̂

)
−
ΩF r sinθ

c
φ̂ ·

(
∇ ·EΩF r sinθ

c
φ̂

)]
(3.25)

= −


B ·

(
∇×
ΩF r sinθ

c
φ̂

)
−∇ ·E

(
ΩF r sinθ

c

)2
. (3.26)

Further simplification gives

∇ ·E = −B ·
(
∇×
ΩF r sinθ

c
φ̂

) [ 1
1− (ΩF r sinθ/c )2

]
. (3.27)
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Since

B ·
(
∇×ΩF r sinθφ̂

)
= B · (∇×v) = B · (2ΩF), (3.28)

one can write

∇ ·E = −2ΩF ·B
c

[ 1
1− (ΩF r sinθ/c )2

]
, (3.29)

with the Goldreich-Julian charge density taking the form to first order

ρG J ' −
ΩF ·B
2πc

. (3.30)

Examining a dipole magnetic field, B = BR3(2cosθr̂+ sinθθ̂)/r 3, yields

ρG J =
BR3ΩF

2πr 3c
(1−3cos2 θ). (3.31)

3.2.2 The Black Hole Magnetosphere

A black hole is a fully general relativistic object. In order to find the charge density in the

magnetosphere around a black hole, onemay expressE andB in a 3+1 spacetime formu-

lation. Again, this model assumes a stationary, axisymmetric, force-freemagnetosphere

around a Kerr black hole with mass M and angular momentum J . The Boyer-Lindquist

coordinates (t, r, θ, φ) with the two scalar functions α and ω are (Thorne et al., 1986):

ds 2 =
(
$2ω2−α2

)
dt 2−2ω$2dφdt +

ρ2

∆
dr 2+ ρ2dθ2+$2dφ2, (3.32)

α =
ρ

Σ

√
∆, (3.33)

ω =
2aG M r

cΣ2
. (3.34)

where

ρ2 = r 2+a2 cos2 θ, (3.35)
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∆ = r 2+a2−2M r/c2, (3.36)

Σ
2 = (r 2+a2)2−a2

∆sin2 θ, (3.37)

$ =
Σ

ρ
sinθ. (3.38)

Here the spin parameter of the black hole is a ≡ J/M c and the black hole radius is rH =

G M/c2+
[�

G M/c2
�2
−a2

] 1/2
. The redshift factor or the lapse function is α and ω is the an-

gular velocity of the zero angular momentum observers (ZAMO), which coincides with

uniform rotation of the black hole and vanishes at infinity. α is called the lapse function

because it is the amount of time that elapses for the ZAMO during the passage of global

time equal to unity.

The exact solution for B for a Kerr black hole in a uniform magnetic field is (Thorne

&MacDonald, 1982),

B = B

2Σ sinθ

[
∂

∂θ

(Σ2−4a2M r )sin2 θ
ρ2

r̂ −
√
∆
∂

∂r

(Σ2−4a2M r )sin2 θ
ρ2

θ̂

]
. (3.39)

The poloidal magnetic field can be written (Macdonald, 1984) in terms of the magnetic

flux function, Ψ,

Bp =
∇Ψ× φ̂

2π$ . (3.40)

Then using the force-free condition to find the poloidal electric field,

Ep =
ΩF −ω

2παc
∇Ψ, (3.41)

where the velocity of the magnetic field lines from the ZAMO’s reference frame is

vF =
(ΩF −ω)$

α
φ̂. (3.42)
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Finally expressing the Goldreich-Julian charge density around black hole,

ρG J =
1
4π∇ ·Ep = −

1
4π∇ ·

(
ΩF −ω

2παc
∇Ψ

)
. (3.43)
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Chapter 4

Plasma Cascade

As shown in the previous chapter, the charge density needed for the magnetosphere to

be force-free is:

ρG J = −
1
4π∇ ·

(
ΩF −ω

2παc
∇Ψ

)
. (4.1)

There exists a surface where ρG J = 0, see Figure 4.1. In a force-free magnetosphere, this

“null surface" has the potential to create a region with a strong electric field, E‖, that is

parallel to the magnetic field. The charge deficit around the “null surface" allows E‖ to

emerge. This region will be simply referred to as the gap. Inside of the gap, the Poisson

equation is:

∇ ·E‖ = 4π (ρe − ρG J ), (4.2)

where the charge density, ρe ≡ e (n+ −n−), is viewed in the corotating frame of the mag-

netic field and is the difference between positive (n+) and negative (n−) charges. As orig-

inally suggested in (Blandford&Znajek, 1977), an electron-positron cascade is needed to

maintain a force-freemagnetosphere around theblackhole. Chargedparticles are accel-

erated by E‖ inside of the gap. These accelerated particles can inverse Compton scatter

with background photons, e.g., from the accretion disk. This interaction may produce

γ-rays, which can then collide with additional background photons and potentially pro-
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Figure 4.1: Theblackhole radius is set toone. Theblue regionsand the red/yellow regions
signify the plasma densities. The red, solid line is the surfacewhere ρG J goes to zero. The
green, dash-dotted line is the ergoshphere. The light gray, long-dashed lines represent
the inner and outer light cylinder. And finally, the dark gray, short-dashed lines display
the geometry of the magnetic field lines.
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duce electron-positron pairs. The pairs that are produced in turn are accelerated and

repeat the process until the magnetosphere is filled.

4.1 Electric Field and Charge Acceleration

In the gap, there is insufficient plasma to screen out an electric field, which leads to the

emergence of E‖. Consider the case where Bp is perpendicular to the surface of the black

hole. This is the most efficient geometry for the cascade.

∇ ·E‖ = 4π
�
e

�
n+(x, θ)−n−(x, θ)�− ρG J (x, θ)	, (4.3)

where x is perpendicular to the null surface and zero at the center of the gap, i.e., x =

(r − r0), with r0 being the null surface. As will be shown, the gap is considerably smaller

than rH ; therefore, one can expand ρG J (x, θ) around x = 0, the center of the gap. The

expansion coefficient, A(θ) = ∂r (ρG J (x, θ)) at x = 0, can be solved analytically for a given

θ. For simplicity, the geometry is reduced to one dimension and the Poisson equation is

rewritten,
dE‖
dx
= 4π �

e
�
n+(x)−n−(x)�−Aθx

�
, (4.4)

where Aθ is the plasma expansion coefficient at a particular angle.

Inside of the gap, the electrons-positrons will be accelerated by the E‖ field. Themo-

tion of a single charge can be determined by:

me c2
dΓ

dx
= e E‖(x)−

(
Γ
2(x)− 1) σT Ub, (4.5)

where Γ, σT , andUb are the Lorentz factor of the e±, the Thomson cross section, and the

energy density of the background photon field, respectively. These accelerated charges

can produce γ-ray photons via inverse Compton scattering with background photons
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(Beskin et al., 1992; Hirotani & Okamoto, 1998). The newly created γ-rays can now pair

produce by colliding with another background photon, and the process continues until

the charge density inside of the gap reaches ρG J , i.e., the electric field goes to zero.

4.2 Radiation

Electromagnetic radiation can be produced and interact with the environment in many

different ways. For the region inside of the gap, the radiation processes that are of im-

portance are inverse Compton scattering and pair production.

4.2.1 Compton Scattering

Compton scattering describes the interaction between photons and charged particles.

The photon imparts energy to the charged particle. The energy loss of the photon is

∆E = hc/∆λ with ∆λ = h/(mc )(1 − cosθ) where θ is the angle between the photon and

charged particle and m is themass of the charge particle. The energy of the photon after

interaction is therefore,

Ef =
Ei

1+Ei/(mc2)(1−cosθ), (4.6)

with Ei and Ef are the photon’s incoming and outgoing energy, respectively.

The cross-section for a high energy system is characterized by the Klein-Nishina for-

muladerivedbyusingquantumelectrodynamics. For the followingequations theenergy

of incoming photon is expressed in units of the rest mass energy of the charged particle,

ε = Ei/(mc2). Using the classical electron radius, re = q2/(mc2), the associated differential

cross-section is
dσ

dΩ
=
1
2r 2e f (ε, θ) (f (ε, θ)2+ f (ε, θ)−1− sin2 θ) , (4.7)

with

f (ε, θ) = 1
1+ ε(1+cosθ) . (4.8)
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The total Klein-Nishina cross-section is (e.g., Rybicki & Lightman 1979)

σK N =
3σT

4

{ 1+ ε
ε3

[2ε(1+ ε)
1+2ε − ln(1+2ε)

]
+
ln(1+2ε)

2ε −
1+3ε

(1+2ε)2
}
, (4.9)

where σT is the Thomson cross-section:

σT = 2π
ˆ π

o

dσ

dΩ
sinθdθ =

8π
3 r 2e =

8π
3

(
q2

mc2

)2
. (4.10)

For an electron, σT ' 6.653× 10−25cm2.

4.2.2 Inverse Compton Scattering

In Compton scattering a charged particle gains energy from interacting with a photon.

The reverse of this process is simply called inverse Compton scattering. The Compton

redistribution function is

ηc =

ˆ εmax

εmin
σK N (εsΓ)dNs

dεs
δ(εγ −Γ2εs )dεs . (4.11)

The model of the gap assumes a power law representation of the background spectral

number density per dε.
dNs

dεs
=

2−α
ε2−αmax− ε

2−α
min

Ub

me c2
ε−αs , (4.12)

where εmax = 0.2 and εmin = 8× 10−6, which correspond to 102 keV and 4.1 eV, respectively.

This gives a range of background photons from hard X-rays to microwave for the accel-

erated charges with which to inverse Compton scatter. The background energy density,

Ub , can be estimated in terms of the Eddington luminosity, Ledd (Hirotani & Okamoto,

1998),

Ub '
Lb

4πc (5rH )2 = 1.5× 10
6
( 108M�

M

) (
Lb

Ledd

) ergs
cm3 . (4.13)

52



The Eddington luminosity is the luminosity when there is balance between the force

of radiation acting outward and the gravitational force acting inward. The maximum

luminosity that the black hole can have without ejecting ionized hydrogen via radiation

pressure is

Ledd =
4πcG M mH

σT
' 1.25× 1046

(
M

108M�

) ergs
s . (4.14)

4.2.3 Pair Production

When the energy of two photons exceeds the rest mass energy of a particle and its anti-

particle, then pair production can occur. Conservation lawsmust bemaintained; there-

fore energy, momentum, angular momentum, electric charge, and lepton numbermust

be conserved. Since photons are not leptons and are neutral, total charge and lepton

number for the pair must be zero. The pairs that can be produced via photon collisions

are electron-positron (e±), muon and anti-muon, and tau and anti-tau. The minimum

energy needed to produce e± is 1022 keV. If a γ-ray with energy me c2εγ collides with a

background photonwith an energyme c2εs , then to produce an e± pair the energiesmust

satisfy:

εγεs ≥ 2/(1−µ), (4.15)

where µ is the cosine of the angle between the colliding photons. The cross-section for

electron-photon interactions expressed in terms of kinematic invariants is (Berestetskǐı

et al., 1971)

dσ

dt
=

8πr 2e m2

(s −m2)2


(
m2

s −m2 +
m2

u −m2

)2
+

(
m2

s −m2 +
m2

u −m2

)
−
1
4

(
s −m2

u −m2 +
u −m2

s −m2

)
, (4.16)

53



where the kinematic invariants in units c = 1 are

s = (p +k )2 = (p′+k ′)2 =m2+2pk =m2+2p′k ′

t = (p −p′)2 = (k ′−k )2 = 2(m2−pp′) = −2kk ′

u = (p −k ′)2 = p′−k )2 =m2−2pk ′ =m2−2p′k

s +t +u = 2m2.

(4.17)

Here p and k are the 4-momentum of the electron and photon before the collision and

p′ and k ′ are their 4-momentum after the collision (Berestetskǐı et al., 1971). Applying

Equation 4.16 to a photon-photon collision,

σp =
πr 2e
2 (1−v 2)

[
(3−v 4) ln

( 1+v

1−v

)
−2v (2−v 2)

]
, (4.18)

where

v (µ, εγ, εs ) =
√
1− 2

1−µ

1
εγεs
. (4.19)

Expressed in terms of the Thompson cross-section,

σp =
3
16σT (1−v 2)

[
(3−v 4) ln

( 1+v

1−v

)
−2v (2−v 2)

]
. (4.20)

The angle-averaged pair production redistribution function is (Berestetskǐı et al., 1971),

ηp(εγ) = 1
2

ˆ 1

−1
dµ

ˆ εmax

2/(εγ−εγµ)
σp

dNs

dεs
dεs . (4.21)

4.3 Current Density and γ-ray Production

Now contemplating the continuity equations for e±, consider the case where positrons

flow outward along the equator and current flows toward the black hole at the axis of
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rotation. The continuity equations are:

±
d

dx




n±(x)
√
1− 1
Γ2(x)



=

ˆ ∞
0
ηp(εγ) �

F +(x, εγ)+F −(x, εγ)�dεγ, (4.22)

where ηp is the angle-averaged pair production redistribution function and F ± are the

number densities of the γ-rays traveling in the ±x direction. At the boundary of the gap,

E‖ must go to zero. This only happens when j0 = jcritical, where j0 is defined by:

j0 ≡ e
�
n+(x)+n−(x)�

√
1− 1/Γ2(x). (4.23)

The critical current density is the constant outflow from the gap. The γ-ray distribution

functions, F ±, obey:

±
∂

∂x
F ±(x, εγ) = ηc (εγ, Γ(x))n±(x)

√
1+ 1
Γ2(x) −ηp(εγ)F ±(x, εγ), (4.24)

where ηc is the Compton redistribution function (Hirotani &Okamoto, 1998). In order to

numerically solve for the γ-ray distribution, εγ needs to be split into energy bins. Let ξi

and ξi−1 be the upper and lower limits of the i th normalized energy bin. This allows one

to rewrite the integral in Equation 4.22 as a summation of

ˆ ξi

ξi−1
ηp(εγ)F ±(x, εγ)dεγ . (4.25)

Defining

ηp, i ≡ ηp(ξi + ξi−1
2 ), (4.26)

and

f ±i (x) ≡
ˆ ξi

ξi−1
F ±(x, εγ)dεγ, (4.27)
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re-expressing Equation 4.22 as

±
d

dx




n±(x)
√
1− 1
Γ2(x)



=

m∑
i=1

ηp, i
�
f +i (x)+ f −i (x)�, (4.28)

where m is the number of normalized energy bins. Making a similar approximation as

in Equation 4.27 for ηc ,

ηc, i (Γ(x)) ≡
ˆ ξi

ξi−1
ηc

�
εγ, Γ(x)�dεγ, (4.29)

allows one to express Equation 4.24 as

±
d

dx
f ±i (x) = ηc, i (Γ(x))n±(x)

√
1+ 1
Γ2(x) −ηp, i f ±(x). (4.30)

Splitting εγ intom discrete energy bins leaves one with 2m+3 ordinary differential equa-

tions (ODEs). Exploiting the symmetry in the gap and determining appropriate bound-

ary conditions will allow one to examine the structure of the gap.

4.4 Boundary Conditions

The assumptions of symmetry that are used are as follows:

E‖(x) = E‖(−x)
Γ(x) = Γ(−x)

n+(x) = n−(−x)
F +(x) = F −(−x).

(4.31)

These assumptions are appropriate as long as the gap width stays small, < 1%, of the

black hole radius. Using these symmetries allows one to set the boundary conditions at

the center of the gap and the edge of the gap, which allows one to only integrate over half
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of the gap and to obtain a full solution. Using Eq. 4.5 with E‖(x) = E‖(−x) and Γ(x) = Γ(−x)
at x = 0 gives a boundary condition on E‖:

E‖ =
σT Ub

e
(Γ2− 1). (4.32)

Using Eq. 4.23 with n+(x) = n−(−x) at x = 0 gives another boundary condition.

2n+
√
1− 1
Γ2
=

j0
e
. (4.33)

Using F +(x) = F −(−x) at x = 0 gives another boundary condition.

f +i = f −i . (4.34)

The boundary of the gap is defined as the position when the plasma density in the gap

is equal to ρG J . Using Equation 4.3 at x =H gives a boundary condition on E‖.

E‖ = 0. (4.35)

E‖ should go to zero smoothly at the boundary; therefore, dE‖/dx = 0 at x =H . Using this

condition and Equation 4.23 at x =H gives another boundary condition.

j0

(
1− 1
Γ2

)−1/2
−Aθx = 0. (4.36)

All of the charged particles are created inside of the gap; therefore, no charges should

enter into the gap. Using n− = 0 and Equation 4.23 at x =H gives another boundary con-

dition.

n+
√
1− 1
Γ2
=

j0
e
. (4.37)
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Boundary Condition Equation Used Assumptions Boundary

E‖ = (Γ2− 1)σT Ub/e me c2dΓ/dx = e E‖ −
�
Γ2− 1�

σT Ub
E‖(x) = E‖(−x) &
Γ(x) = Γ(−x) x = 0

2n+
√
1− 1/Γ2 = j0/e j0 = e [n+(x)+n−(x)]√1− 1/Γ2(x) n+(x) = n−(−x) x = 0

f +i = f −i f ±i (x) ≡ ´ ξi

ξi−1
F ±(x, εγ)dεγ F +(x) = F −(−x) x = 0

E‖ = 0 dE‖/dx = 4π [e (n+−n−)− ρG J ] ρgap = ρG J x =H

n +
√
1− 1/Γ2 = j0/e j0 = e [n+(x)+n−(x)]√1− 1/Γ2(x) n−(x) = 0 x =H

j0
�1− 1/Γ2�−1/2

−Ax = 0 j0 = e [n+(x)+n−(x)]√1− 1/Γ2(x) dE‖/dx = 0 x =H

f −i = 0 f −i (x) ≡ ´ ξi

ξi−1
F −(x, εγ)dεγ F −(x) = 0 x =H

Table 4.1: A complete overview of the boundary conditions and assumptions used to
arrive at them.

All up-scatered photons are created inside of the gap. Assuming none will be coming

into the gap gives another boundary condition.

f −i = 0. (4.38)

This provides 2m+5 boundary conditions for 2m+3 ODEs and 2 constants: j0 and H .

These boundary conditions have be summarized in Table 4.1 for reference and clarity.
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Chapter 5

Computational Methods

This chapter covers the numerical methods used to solve the coupled ODEs, as well as

any issues that arose and preliminary results.

5.1 Expressing Equations in terms of Current Density

The ability to arrive at a solution to the system of ODE’s has a strong dependence on j0.

Figure 5.1 shows the numerical convergence’s dependence on j0. In order to easily adjust

j0 to find convergence, re-expressing the equations in terms of current density instead

of number density is useful. Restating the definition from Equation 4.23 and defining a

new function for the difference between the inward and outward current densities.

j0 ≡ e
�
n+(x)+n−(x)�

√
1− 1/Γ2(x). (5.1)

jdiff(x) ≡ e
�
n+(x)−n−(x)�

√
1− 1/Γ2(x). (5.2)

Using these definitions allows one to write Equations 4.28 as,
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Numerical Solution

3

where ✏max and ✏min are the cutoff energies for the spectrum. In future studies different spectra will be examined.
In order to solve the ODEs one can divide the �-ray energy range into bins [3]. I use 13 energy bins to approximate

the �-ray distribution. This leaves 29 ODEs to numerically solve using the assumptions that E} and � are symmetric
around x “ 0. These assumptions yield the following boundary condition: d�{dx “ 0 at x “ 0, which simply means
that the charges are undergoing the largest acceleration at x “ 0. An equivalent expression is

E} “ �T Ub

e
�2 at x “ 0 . (12)

Another assumption based on symmetry is n`pxq “ n´p´xq, meaning that charge number densities are symmetric in
the gap. At x “ 0, this leads to the condition

2n`
ˆ

1 ´ 1

�2

˙1{2
“ j0

e
. (13)

Finally, in order to ensure the force-free condition, E} “ 0 at x “ H. Also, all charges and �-rays originate inside of
the gap and conditions of a continuous charge distribution are assumed. With these conditions, one can choose a
particular A, which sets the physics for the black hole, and then adjust j0 until the condition, E} “ 0 is met.

III. PRELIMINARY RESULTS

Now that we have the basic equations that govern the behavior inside of the gap, we can numerically solve them
and investigate the structure of the gap. Using symmetry, we solve all ODEs from x “ 0 to x “ H, where H is
the gap half width. Figure 1 shows the dependency of E} on j0, where we use jcrt as the current that satisfies the
boundary condition that E} “ 0 at x “ H. Small deviations from jcrt, yield solutions that do not satisfy the boundary
conditions for E}.

Figure 1: The variation of E} as a function of the position along the field line when Ub “ 106 [ergs cm´3] and the photon index,
↵ “ 2.0. The position has be normalize by 0.00001rh, where rh “ 1013.5 [cm] is the radius of the black hole. The solid line
represents the solution with the critical current density j0 “ jcrt, this is the solution where dE}{dx “ 0 at x “ H. The dashed
and dotted lines correspond to j0 “ 0.996jcrt and j0 “ 1.05jcrt, respectively.

To illustrate the structure on the gap, figure 2 has solutions of E} for a fixed Ub “ 106 [ergs cm´3] and varying
spectral indies, ↵ “ 2.5, 2.0, and 1.5. E} reaches it maximum value at the center of the gap, which is to be expected

~Ek

Figure 5.1: The j0 = jcrt dependence of the solution to E‖. This shows E‖ as a function of
the position along the field line for an arbitrary Aθ. The center of the gap is at zero.
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d

dx

{�
n+−n−

�√1− 1/Γ2(x)
}
=

d

dx

jdiff(x)
e
= 2

m∑
i=1

ηp, i
�
f +i (x)+ f −i (x)�, (5.3)

d

dx

{�
n++n−

�√1− 1/Γ2(x)
}
=

d

dx

j0
e
= 0. (5.4)

This shows, as stated previously, that j0 is a constant. The two boundary conditions that

were dependent on n+ (Equations 4.33 & 4.37) can be reworked and take the form

jdiff(0) = 0, (5.5)

jdiff(H ) = j0. (5.6)

Now instead of having to adjust n± separately at each boundary, one just has to adjust

jdiff to satisfy the boundary conditions.

Similarly, Equations 4.30 can be reformulated in terms of current density.

df +i
dx
−

df −i
dx
= ηc, i (Γ(x)) j0

e
−ηp, i

�
f +i (x)+ f −i (x)�, (5.7)

df +i
dx
+

df −i
dx
= ηc, i (Γ(x)) jdiff(x)

e
−ηp, i

�
f +i (x)− f −i (x)� . (5.8)

The two boundary conditions that are dependent on f ± (Equations 4.34 & 4.38) can be

rewritten as,

f +i − f −i = 0 (5.9)

f +i − f −i = f +i + f −i . (5.10)

After integration, one wants f ±i and not f +i ± f −i , which can be easily found,

f +i =
(f +i + f −i )+ (f +i − f −i )

2 (5.11)

f −i =
(f +i + f −i )− (f +i − f −i )

2 . (5.12)
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And Equation 4.4 becomes

dE‖
dx
= 4π

[
jdiff(x)

(
1− 1/Γ2(x))−1/2−Aθx

]
. (5.13)

The new Equation 5.13 does not require rewritten boundary conditions because E‖ at

x = 0 does not have a n± dependence and E‖ at x = H was already expressed in terms

of j0. Numerically solving the equations expressed in terms of current density makes

adjusting j0 to arrive at a solution straight forward.

5.2 Determining the Energy Bins for the γ-rays

In pair production, for γ-ray photons to be produced,

εγ >
2

εs (1−µ), (5.14)

where, as a reminder, µ is the cosine of the angle between εγ and εs . Theminimumvalue

for a pair producing γ-ray is, therefore, 1/εmax. This is intuitive: themost energetic back-

ground photon is able to pair producewith the least energetic γ-ray. Using this to set the

lower limit of the lowest energy bin yields,

ξ0me c2 =
me c2

εmax
' 2.56 MeV. (5.15)

The range of energy bins for εγ that is used is determined to be large enough so long as

ξm > Γ
2
maxεmax, which is the largest value for εγ that will satisfy the Dirac delta function

in Equation 4.11. Due to the power law nature of the spectrum, a power law spacing for

the energy bins is used,

ξi =
2i/2

εmax
. (5.16)

Typically, the number of energy bins needed is less that 50.
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5.3 Numerical Integration

The systemofODEs are not completely defined at one boundary, instead their boundary

conditions are split over two boundaries. One method is to begin by setting the mass,

spin, magnetic field strength, and background energy density. Then choose what angle

(θ) to integrate along and set the initial guess for Γ(0) and f −i (0). Integration was done

using the 4th order Runge-Kutta method (RK4) and using a shooting method to satisfy

the boundary conditions.

5.3.1 Runge-Kutta Method

The form of a generic 1D differential equation is,

dy

dx
= f (x, y ), y (0) = y0. (5.17)

One can numerically solve Equation 5.17 using a RK4. The Runge-Kutta fourth order

method has the form,

yi+1 = yi + (a1k1+a2k2+a3k3+a4k4), (5.18)

where

k1 = hf (xi, yi )
k2 = hf (xi +α2h, yi + β2k1)
k3 = hf (xi +α3h, yi + β3k2)

k4 = hf (xi +α4h, yi + β4k3).

(5.19)

One needs to solve for 10 unknowns (a1, a2, a3, a4, α2, α3, α4, β2, β3, and β4). Begin looking

for the unknowns by taking a Taylor expansion of yi+1 = y (xi +h). The Taylor expansion
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yields,

y (xi +h) = y (xi )+hy ′(xi )+ 1
2!h

2y ′′(xi )+ 1
3!h

3y ′′′(xi )+ 1
4!h

4y ′′′′(xi )+O(h5). (5.20)

Substituting, f (x, y ) for y ′,

yi+1 = yi +hf (xi, yi )+ h2

2 f ′(xi, yi )+ h3

6 f ′′(xi, yi )+ h4

24 f ′′′(xi, yi )+O(h5). (5.21)

Next Taylor expand Equation 5.18 and compare to Equation 5.21. Match terms and solve

for the 10 unknowns. A common solution and the one used is,

yi+1 = yi + (k1+2k2+2k3+k4)/6+O(h5). (5.22)

5.3.2 Shooting Method

Insure the boundary conditions aremet by using RK4 to integrate from the center of the

gap (x = 0) to the boundary of the gap (x = H ) and checking that E‖ goes to zero. Then

one checks to see if dE‖/dx also goes to zero. If not, Γ(0) is adjusted, and the integration

from the center of the gap is done again. This is repeated until dE‖/dx is zero. Once the

conditions of E‖ = 0 and dE‖/dx = 0 at x = H are met, one checks that the f −i (H ) are zero.
If not, adjust f −i (0) and integrate again while checking that dE‖/dx still goes to zero after

each integration. This is repeated until f −i (H ) = 0 is satisfied for all f −i (H ). The pseudo-
code illustrating this loop structure follows below.
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while f −i (0) , 0 do
while dE‖/dx , 0 do
while E > 0 and E < Eprev do
RK4

end while
if E < 0 then
Increase Γ(0)

else
Decrease Γ(0)

end if
end while
if f −i > 0 then
Decrease f −i (0)

else
Increase f −i (0)

end if
end while

5.4 1D Results

After writing the code, it is always necessary to check andmake sure the results for a run

work and to optimize accordingly. The structure of the gap for a preliminary run shown

inFigure 5.2 is for a single 1D solution for anarbitraryAθ. Andanexampleof the solution’s

sensitivity on the value of j0 is shown in Figure 5.1.
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Figure 5.2: The structure of the gap starting in the upper left and going clockwise, the fig-
ures show thevariationofE‖, Lorentz factor, chargenumberdensity, andphotonnumber
density as a function of the position along the field line for an arbitrary value of Aθ. The
center of the gap is at zero. The red and blue lines signify motion away from and toward
the black hole, respectively.

After optimizing the 1Dcode, a 2Dsolver for the structureof thegapwas implemented

by finding a new Aθ before each 1D run. In order to find a proper Aθ, ρG J needs to be ex-

panded about its position where ρG J = 0. The code implemented solves ρG J (r0, θ) = 0 for
r0, given θ. This r0 is then used to find Aθ. Similarly, an implementation for runs that vary

mass, spin, ormagnetic field strength require Aθ to be computedbefore each 1D run. The

pseudo-code illustrating the loop structure for a 2D run that varies themass of the black

hole is shown below.
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θ = θstart initial θ
M =Mstart initial mass
B = B magnetic field
a = a spin
r0 = rH initial guess for the radius where ρG J = 0
δM = δM the step size parameter for mass
δθ = δθ the step size parameter for θ
while M <Mfinish do
while θ < θfinish do
while ρ , 0 do
ρ = ρG J (r0, θ,M, B, a)
if ρ , 0 then
Adjust r0

end if
end while
A = Aθ(r0, θ,M, B, a)
while boundary conditions are not satisfied do
RK4

end while
θ = θ+ δθ · θ

end while
M =M + δM ·M

end while
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Chapter 6

Structure of the Gap

6.1 Detailed Structure of the Gap

The 2D structure of the gap allows one to examine the inclination angle at which the

plasma cascade process is most efficient. The width of the gap can be used as a proxy

for efficiency of the cascade process. The maximum Lorentz factor can be used as a

proxy for the available energy in the cascade process. In Figures 6.1, 6.2, 6.3, & 6.5, the

size of the gap relative to the black hole radius is not to scale, but it is reflective of the

actual shape of the gap. The peak Lorentz factor, as shown in Figure 6.1 is 1950 at θ = 0.

The corresponding electric field strength at θ = 0 is 160 V/m and is also the peak electric

field. The gap width is at it’s minimum value at θ = 0 as well. This is strong evidence

that the cascade process is most efficient along the axis of rotation. Figure 6.4 shows the

spectral transition through the gap. Each line is a snapshot in space of the up-scattered

Compton spectrum in the gap. Looking closely at the tail, one can see slight softening of

the spectrum before it exits the gap. Figure 6.5 illustrates the outgoing energy flux of the

γ-rays that are from the Comptonization of the ambient photons.
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Figure 6.1: Lorentz factor versus polar angle. This solution is for a maximumly spinning
black hole of mass, 107M� with a magnetic field strength of 104 Gauss and an ambient
energy density of 106 ergs/cm3.
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electric field
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Figure 6.2: The parallel electric field versus polar angle. This solution is for amaximumly
spinning black hole of mass, 107M� with a magnetic field strength of 104 Gauss and an
ambient energy density of 106 ergs/cm3.
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charge density
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Figure 6.3: The charge density versus polar angle. This solution is for amaximumly spin-
ningblackholeofmass, 107M�withamagneticfield strengthof 104Gaussandanambient
energy density of 106 ergs/cm3.
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Figure 6.4: The spectral transition from the inner boundary of the gap through the center
of the gap (bold dashed line) and the outer boundary of the gap (bold solid line). Starting
at 12% of the gap width after the inner (closest to the black hole) boundary, 14 spectral
lines are shown. The 8 lines under the dashed line are all equally spaced and from the
inner side of the gap. The 4 lines between the dashed line and solid line are all from the
outer part of the gap and equally spaced.

6.2 Adjustable Parameters

Themodel has four parameters that canbe adjusted: themass and spin of the blackhole,

the seed magnetic field, and the available background energy density. By changing the

magnetic field,mass, or spin; the physical change to themodel is in ρG J . By changing the
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Figure 6.5: The outgoing energy flux from theup-scatteredphotons as a functionof polar
angle. This solution is for a black hole mass of 107M� with a magnetic field strength of
104 Gauss and an ambient energy density of 106 ergs/cm3
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background energy density, the physical changes to themodel are in the angle-averaged

pair production redistribution function and the Compton redistribution function. By

changing theseparameters one cangain insight intohow they effect thedifferent aspects

of the cascade process, i.e., the gap width, the peak Lorentz factor, maximum electric

field, etc.
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Chapter 7

Mass

7.1 Varying the Black Hole Mass

Changing themass of the black hole changes the ρG J , and therefore, Aθ in the onedimen-

sional model. Changing the mass and observing how the structure of the gap changes

gives one insight into the conditions needed to produce AGN. Figure 7.2 shows how the

size of the gap changes with mass and angle. The energy stored in the kinetic energy of

the charges as a function of angle can be seen in Figure 7.1. These figures detail how the

kinetic energy of the charges and the size of the gap relate. Normalizing the gap width

and Lorentz factor to one at the axis of rotation (Figures 7.4 & 7.3), one can see that the

mass is invariantwith respect to θ, while the gap is thin. Overlaid on the results in Figures

7.1, 7.2, 7.3, 7.4, 7.6, & 7.7 are exponential fits as a functionof θ. Thefits are summarized in

Table 7.1. These fits are useful, for example, in estimating the change in available energy

as a function of inclination angle. Since the results are mass invariant, one can extrap-

olate these fits to any size black hole as long as the resulting gap width remains small.

The gap half width as a function of θ is H ∝ e 7.4θ (Ford et al., 2017). Figure 7.4 clearly il-

lustrates how at large θ
(
∼ cos−1

{
1/
√
3

}
, see Equation 3.31

)
the gap width increases up to

∼ 1.7 times: its smallest width (at θ = 0). The maximum Lorentz factor as a function of
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θ is Γmax ∝ −e 5.4θ. As θ increases, the available kinetic energy in the gap drops by up to

∼ 50% at large θ. Similarly, the maximum electric field strength’s angular dependence is

Emax ∝ e 7.4θ (Ford et al., 2017).
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Figure 7.1: Lorentz factor versus polar angle. The three curves represent the change in
Lorentz factor as polar angle increase going away from the axis of rotation for three dif-
ferent masses and their corresponding fits represented with dashed lines. From the top
down themasses are 106M�, 107M�, and 108M�. And similarly, the fits from the top down
are −11e 5.9θ +7.0× 103, −6.3e 5.0θ + 1.9× 103, and −1.6e 5.2θ +6.1× 102.
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Figure 7.2: The width of half of the gap in centimeters versus polar angle. The three
curves represent the change in the gap width as polar angle increase going away from
the axis of rotations for three different masses and their corresponding fits represented
with dashed lines. From the top down the masses are 108M�, 107M�, and 106M�. And
similarly, the fits from the top down are 1.3× 107e 8.1θ + 4.1× 1010, 7.1× 106e 7.2θ + 1.2× 1010,
and 4.5× 105e 9.0θ +4.1× 109.
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Figure 7.3: The Lorentz factor normalized at the axis of rotation versus the polar angle.
An exponential fit of all three masses is −2.5× 10−3e 5.4θ + 1. This demonstrates that for a
thin gap the available kinetic energy as a function of polar angle is invariant relative to
the mass of the black hole.
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Figure 7.4: Thewidth of half of the gap normalized at the axis of rotation versus the polar
angle. An exponential fit of all three masses is 5.2× 10−4e 7.4θ + 1. This demonstrates that
the efficiency of the cascade process as a function of polar angle, while the gap is thin, is
invariant relative to the mass of the black hole.

Similarly, Figures 7.7 illustrates the drop off in outgoing photon energy flux as a func-

tion of θ,
´

Fνdν ∝ −e 4.2θ (Ford et al., 2017). As θ increases, the outgoing energy flux drops

by almost 95% at large θ. Figure 7.5 shows the outgoing spectrum of the g amma-rays

that were produced in the gap via inverse Compton scattering.
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Figure 7.5: The outgoing spectrum for the different masses. From the top down the
masses are 108M�, 107M�, and 106M�.
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Figure 7.6: The total outgoing energy flux from the up-scattered photons versus polar
angle. The three curves represent the change in the gap width as polar angle increase
going away from the axis of rotations for three differentmasses and their corresponding
fits represented with dashed lines. From the top down themasses are 106M�, 107M�, and
108M�. And similarly, the fits from the top down are 1.5× 1013 − 4.5× 1011e 3.6θ, 1.4× 1011 −
2.8× 109e 4.0θ, and 1.8× 109−4.4× 107e 3.8θ.
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Figure 7.7: The outgoing photon energy density normalized at the axis of rotation versus
the polar angle. An exponential fit of all three masses is −1.7× 10−2e 4.2θ + 1. This demon-
strates that for a thin gap the change in the outgoing energy flux as a function of theta
scales with the mass of the black hole.

Figure 7.8 takes Figure 4.1 and overlays the gap for the varying black holemasses. This

is to scale and shows how large the gap is with respect to the black hole environment.
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Figure 7.8: The black hole radius has been set to one and the gap widths are shown to
scale. This is to illustrate the relative size of the gap to the black hole.

By increasing the gap width by an order of magnitude, Figure 7.9 illustrates the vary-

ing gap sizes with mass.
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Figure 7.9: The black hole radius has been set to one and the gap widths have been in-
creased by an order of magnitude for illustration. One can see that as the black hole
mass decreases, the gap width with respect to the black hole radius increases. This is a
sign that the plasma cascade is less efficient for lower mass black holes.
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Figure 7.10: The ? is a place holder that represents the maximum Lorentz factor, max-
imum electric field, gap width, and photon energy flux. Each physical quantity is nor-
malized to it’s minimum value and then plotted with respect to the mass of the black
hole on a log-log scale.

After probing the structure of the gap over several orders of magnitude in black hole

mass, one can find relationships between relevant physical parameters and black hole
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mass:

H = 3.2× 106
[

M

M�

]0.51
cm,

Γmax = 9.2× 106
[

M

M�

]−0.52
,

Emax = 3.5× 109
[

M

M�

]−1.05
V/m,

ˆ
Fνdν = 2.0× 1046

[
M

M�

]−4.5
MeV/cm2/s.

(7.1)

Figure 7.10 shows these parameters plotted with respect to the mass of the black hole

on a log-log scale after being normalized by their minimum value over the shown mass

range. These relationships allow one to estimate the energy output, energy available,

cascade efficiency, etc. for anymaximumly spinning black hole embedded in a 104Gauss

magnetic field with an available background photon energy density of 106 ergs/cm3.
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Mass Lorentz factor Gap Half Width [cm] Energy Flux [MeV/cm2/s]

106M� 7.0× 103− 11e 5.9θ 4.5× 105e 9.0θ +4.1× 109 1.5× 1013−4.5× 1011e 3.6θ

107M� 1.9× 103−6.3e 5.0θ 7.1× 106e 7.2θ + 1.2× 1010 1.4× 1011−2.8× 109e 4.0θ

108M� 6.1× 102− 1.6e 5.2θ 1.3× 107e 8.1θ +4.1× 1010 1.8× 109−4.4× 107e 3.8θ

all 1−2.5× 10−3e 5.4θ 5.2× 10−4e 7.4θ + 1 1− 1.7× 10−2e 4.2θ

Table 7.1: Angular fits for the peak Lorentz factor, gap half width, and outgoing photon
energy flux. These fits are shown on Figures 7.1, 7.2, 7.3, 7.4, 7.6, and 7.7.
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Chapter 8

SeedMagnetic Field

8.1 Varying the Magnetic Field Strength

Varying the strength of the magnetic field around the black hole changes the ρG J , and

therefore, Aθ in the model. Changing the magnetic field strength and observing how the

structure of the gap changes gives one insight into the conditions needed to produce

AGN. Figure 8.2 shows how the size of the gap changes with magnetic field strength and

polar angle. The energy stored in the kinetic energy of the charges versus θ can be seen

in Figure 8.1. These figures detail how the kinetic energy of the charges and the size of the

gap relate. Normalizing the gap width and Lorentz factor to one at the axis of rotation

(Figures 8.4 & 8.3) one can see that the magnetic field strength is invariant with respect

to angle, while the gap is thin. Overlaid on the results in Figures 8.1, 8.2, 8.3, 8.4, 8.6, & 8.7

are exponential fits as a function of θ. The fits are summarized in Table 8.1. These fits are

useful, for example, in estimating the change in gap width as a function of inclination

angle. Since the results aremagnetic field invariant, one can extrapolate these fits to any

magnetic field strength as long as the resulting gap width remains small. The gap width

as a function of θ is H ∝ e 5.3θ (Ford et al., 2017). Figure 8.4 clearly illustrates how at large

θ the gap width increases up to ∼ 1.6 times: its smallest width (at θ = 0). The maximum
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Lorentz factor as a function of θ is Γmax ∝−e 6.8θ (Ford et al., 2017). As θ increases, the avail-

able kinetic energy in the gap drops by ∼ 35% at large θ. Similarly, the maximum electric

field strength’s angular dependence is Emax ∝ −e 4.7θ.
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Figure 8.1: Lorentz factor versus polar angle. The three curves represent the change in
Lorentz factor as polar angle increase going away from the axis of rotations for three
differentmagnetic fields. From the top down themagnetic field strengths are 104G , 103G ,
and 102G . And similarly, the fits from the top down are−6.3e 5.0θ+2.0×103, −2.2e 5.4θ+1.0×
103, and −1.4e 5.3θ +6.1× 102.
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Figure 8.2: The width of half of the gap in centimeters versus polar angle. The three
curves represent the change in the gap width as polar angle increase going away from
the axis of rotations for three different magnetic field. From the top down the magnetic
field strengths are 102G , 103G , and 104G . And similarly, the fits from the top down are
4.2× 107e 6.8θ +4.1× 1010, 1.4× 107e 7.3θ +2.2× 1010, and 7.1× 106e 7.2θ + 1.2× 1010.
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Figure 8.3: The Lorentz factor normalized at the axis of rotation versus the polar angle.
An exponential fit of all threemagnetic field strengths is −2.3× 10−3e 6.8θ + 1. This demon-
strates how the available kinetic energy in the gap versus angle scales with themagnetic
field strength around the black hole.
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Figure 8.4: Thewidth of half of the gap normalized at the axis of rotation versus the polar
angle. An exponential fit of all three magnetic field strengths is 1.0× 10−4e 5.3θ + 1. This
demonstrates that for a thin gap the seed magnetic field strength is invariant relative to
the efficiency of the cascade process as a function of θ.
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Figure 8.6 illustrates the drop off in outgoing photon energy flux as a function of θ,
´

Fνdν ∝ −e 4.5θ. As θ increases the outgoing energy flux drops by almost 95% at large θ.

Figure 8.5 shows the spectrum of the outgoing γ-rays at the edge of the gap.
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Figure 8.5: The outgoing spectrum for the different magnetic field strengths. From the
top down they are 104 G, 103 G, and 102 G.
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Figure 8.6: The outgoing photon energy density normalized at the axis of rotation versus
the polar angle. An exponential fit of all three magnetic fields is 1−0.013e 4.5θ.
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Figure 8.7: The total outgoing energy flux from the up-scattered photons versus polar
angle. The three curves represent the change in the gap width as polar angle increase
goingaway fromtheaxis of rotations for threedifferentmagneticfield strengths and their
corresponding fits, representedwith dashed lines. From the top down themagnetic field
strengths are 104 G, 103 G, and 102 G. And similarly, the fits from the top down are for 102G
is 1.7× 109−3.3× 107e 4.1θ, for 103G is 1.6× 1010−2.7× 108e 4.2θ, and for 104G is 1.4× 1011−2.8×
109e 4.0θ.

Figure 8.8 illustrates the varying gap size with seed magnetic field strength by over-

laying the different gaps widths increased by an order of magnitude on Figure 4.1.
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Figure 8.8: The black hole radius has been set to one, and the gap widths have be in-
crease by an order of magnitude for illustration. One can see that as the magnetic field
decreases the gap width with respect to the black hole radius increases. This is a sign
that the plasma cascade is more efficient for strong magnetic fields.
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Figure 8.9: The ? is a place holder that represents the maximum Lorentz factor, maxi-
mumelectric field, gapwidth, andphoton energy flux. Eachphysical quantity is normal-
ized to its minimum value and then plotted with respect to the magnetic field strength
on a log-log scale.

After probing the structure of the gap over several orders of magnitude in magnetic

field strength, relationships between relevant physical parameters and magnetic field
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strength can be obtained:

H = 1.5× 1011
[ B

Gauss
]−0.27

cm,

Γmax = 190
[ B

Gauss
]0.25

, Emax = 1.6
[ B

Gauss
]0.49

V/m,

ˆ
Fνdν = 2.1× 107

[ B

Gauss
]0.95

MeV/cm2/s.

(8.1)

Figure 8.9 shows these parameters plotted with respect to magnetic field strength on a

log-log scale after being normalized by their minimum value over the shown magnetic

field strength range. These relationships allowone to estimate the energy output, energy

available, cascade efficiency, etc. for anymaximumly spinning black hole ofmass 107M�

with an available background photon energy density of 106 ergs/cm3 (Ford et al., 2017).
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Magnetic
Field Lorentz factor Gap Half Width [cm] Energy Flux [MeV/cm2/s]

102 G 2.0× 103−6.3e 5.0θ 4.2× 107e 6.8θ +4.1× 1010 1.7× 109−3.3× 107e 4.1θ

103 G 1.0× 103−2.2e 5.4θ 1.4× 107e 7.3θ +2.2× 1010 1.6× 1010−2.7× 108e 4.2θ

104 G 6.1× 102− 1.4e 5.3θ 7.1× 106e 7.2θ + 1.2× 1010 1.4× 1011−2.8× 109e 4.0θ

all 1−2.3× 10−3e 6.8θ 1.0× 10−4e 5.3θ + 1 1−0.013e 4.5θ

Table 8.1: Angular fits for the peak Lorentz factor, gap half width, and outgoing photon
energy flux. These fits are shown on Figures 8.1, 8.2, 8.3, 8.4, 8.6, and 8.7.
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Chapter 9

Photon Background Energy Density

9.1 Varying the Strength of the available Photon

Background Energy Density

Changing the background photon energy density around the black hole changes the en-

ergy available for e± to inverse Compton scatter with and for γ-rays to pair produce with

in the one dimensional model. ChangingUb and observing how the structure of the gap

changes gives one insight into the conditions needed to produce AGN. Figure 9.2 show

how the size of the gap changes with the background photon energy density and angle.

The energy stored in the kinetic energy of the charges can be seen in Figure 9.1. These

figures detail how the kinetic energy of the charges and the size of the gap relate. Nor-

malizing the gap width and Lorentz factor to one at the axis of rotation (Figures 9.4 &

9.3), one can see how, as a function of θ, they scale withUb while the gap is thin. Overlaid

on the results in Figures 9.1, 9.2, 9.3, 9.4, 9.6, & 9.7 are exponential fits as a function of

θ. The fits are summarized in Table 9.1. These fits are useful in estimating the change in

available energy as a function of inclination angle, estimating the outgoing γ-ray energy

flux, etc. One can extrapolate these fits to any background energy density as long as the

resulting gapwidth remains small. The gapwidth as a function of θ isH ∝ e 6.8θ. Figure 9.4
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clearly illustrates how at large θ
(
again, large ∼ cos−1

{
1/
√
3

})
the gap width increases up

to∼ 1.55 times: its smallest width (at θ = 0). ThemaximumLorentz factor as a function of

θ is Γmax ∝ −e 5.2θ (Ford et al., 2017). As θ increases, the available kinetic energy in the gap

drops by up to 45% at large θ. Similarly, the maximum electric field strength’s angular

dependence is Emax ∝ e 4.7θ (Ford et al., 2017).
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Figure 9.1: Lorentz factor versus polar angle. The three curves represent the change
in Lorentz factor as polar angle increase going away from the axis of rotations for two
different background energy densities. From the top down the Ub are 105ergs/cm3

and 106ergs/cm3. And similarly, the fits from the top down are −40e 5.4θ + 1.4× 104 and
−6.3e 5.0θ + 1.9× 103.
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Figure 9.2: The width of half of the gap in centimeters versus polar angle. The three
curves represent the change in the gap width as polar angle increases going away from
the axis of rotations for two different ambient photon energy densities. From the top
down theUb are 105ergs/cm3 and 106ergs/cm3. And similarly, the fits from the top down
are 1.2× 107e 7.4θ +2.6× 1010 and 7.1× 106e 7.2θ + 1.2× 1010
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Figure 9.3: Thewidth of half of the gap normalized at the axis of rotation versus the polar
angle. An exponential fit of both background energy densities is −2.9× 10−3e 5.2θ + 1. This
demonstrates that for a thin gap the available kinetic energy in the gap as a function of
θ is invariant relative to the background energy densities around the black hole.
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Figure 9.4: The width of half of the gap normalized at the axis of rotation versus the
polar angle. An exponential fit of both background energy densities is 7.6× 10−4e 6.8θ + 1.
This demonstrates how, while the gap is thin, the efficiency of the cascade process as a
function of θ scales with the ambient photon energy density.
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Figure 9.6 illustrates the drop-off in outgoing photon energy flux as a function of θ,
´

Fνdν ∝ −e 4.3θ (Ford et al., 2017). As θ increases, the outgoing energy flux drops by almost

90% at large θ. Figure 9.5 is a comparison of the spectral transition through the gap. Each

line is a snapshot in space of the up-scattered spectrum in the gap. The top spectral

transition plot is forUb = 105 ergs/cm3 and has a peak in its spectrum around 1000 MeV.

The bottom spectral transition plot for Ub = 106 ergs/cm3 is the same as Figure 6.4, and

has a peak in its spectrum around 10 MeV.
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Figure 9.5: A comparison of the spectral transition from the inner boundary of the gap
through the center of the gap (bold dashed line) and the outer boundary of the gap (bold
solid line). Starting at 12% of the gap width after the inner (closest to the black hole)
boundary, 14 spectral lines are shown. The 8 line under the dashed line are all equally
spaced and from the inner side of the gap. The 4 lines between the dashed line and solid
line are all from the outer part of the gap and equally spaced. The top spectral transition
plot is forUb = 105 ergs/cm3. The bottom spectral transition plot is forUb = 106 ergs/cm3

and is the same as Figure 6.4.
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Figure 9.6: The outgoing photon energy density normalized at the axis of rotation versus
the polar angle. An exponential fit of both background energy densities is 1−0.017e 4.3θ.
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Figure 9.7: The total outgoing energyflux from theup-scatteredphotons versuspolar an-
gle. The curves represent the change in the gapwidth as polar angle increase going away
from the axis of rotations for two different Ub and their corresponding fits, represented
withdashed lines. From the topdown theUb are 105 ergs/cm3 and 106 ergs/cm3. And sim-
ilarly, the fits from the top down are 1.9× 1012−6.3× 1010e 3.6θ and 1.4× 1011−2.8× 109e 4.0θ.
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Figure 9.8: The black hole radius has been set to one, and the gap widths have be in-
crease by an order of magnitude for illustration. One can see that as the magnetic field
decreases the gap width with respect to the black hole radius increases. This is a sign
that the plasma cascade is more efficient for stronger ambient photon energy densities.
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Figure 9.9: The ? is a place holder that represents the maximum Lorentz factor, maxi-
mum electric field, gap width, and photon energy flux. Each physical quantity is nor-
malized to its minimum value and then plotted with respect to the background energy
density on a log-log scale.
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After probing the structure of the gapover several orders ofmagnitude inbackground

photon energy density, one can find relationships between relevant physical parameters

and the ambient photon energy density:

H = 1.4× 1012
[

Ub

ergs/cm3

]−0.35
cm,

Γmax = 3.4× 108
[

Ub

ergs/cm3

]−0.88
,

Emax = 4.7× 106
[

Ub

ergs/cm3

]−0.75
V/m,

ˆ
Fνdν = 1.8× 1029

[
Ub

ergs/cm3

]−1.2
MeV/cm2/s].

(9.1)

Figure 9.9 shows theseparameters plottedwith respect to thebackgroundenergydensity

on a log-log scale after being normalized by their minimum value over the shown range

of Ub . These relationships allow one to estimate, for example, the full gap width versus

the black hole radius for any maximumly spinning black hole of mass 107M� embedded

in a 104 Gauss magnetic field.
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Energy
Flux Lorentz factor Gap Half Width [cm] Energy Flux [MeV/cm2/s]

105 ergscm3 1.4× 104−40e 5.4θ 1.2× 107e 7.4θ +2.6× 1010 1.9× 1012−6.3× 1010e 3.6θ

106 ergscm3 1.9× 103−6.3e 5.0θ 7.1× 106e 7.2θ + 1.2× 1010 1.0× 1010−8.4× 108e 2.6θ

all 1−2.9× 10−3e 5.2θ 7.6× 10−4e 6.8θ + 1 1−0.017e 4.3θ

Table 9.1: Angular fits for the peak Lorentz factor, gap half width, and outgoing photon
energy flux. These fits are shown on Figures 9.1, 9.2, 9.3, 9.4, 9.6, and 9.7.
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Chapter 10

Spin

10.1 Probing Over All Spins

Varying the spin of the black hole from the maximum value, 1, to the minimum value,

0, changes the Goldreich-Julian charge density, and therefore, Aθ in the model. Further-

more, as the spin of the black hole decreases, the radius of the black hole increases and

the inner edge of the gap gets closer to the horizon. Changing the spin and observing

how the structure of the gap changes gives one insight into the conditions needed to

produce AGN. Figure 10.1 show how the size of the gap changes with spin and angle. The

energy stored in the kinetic energy of the charges can be seen in Figure 10.2. These fig-

ures detail how the kinetic energy of the charges and the size of the gap relate. Overlaid

on the results in Figures 10.2, 10.1, 10.3, 10.4, 10.5, & 10.6 are exponential fits as a function

of θ. The fits are summarized in Table 10.1. These fits are useful, for example, in estimat-

ing the change in available energy as a function of inclination angle. The gap width as a

function of θ is H ∝ e 7.4θ (Ford et al., 2017). Figure 10.3 illustrates how at large θ the gap

width increases up to ∼ 1.8 times: its smallest width (at θ = 0). The maximum Lorentz

factor as a function of θ is Γmax ∝ −e 4.4θ (Ford et al., 2017). As θ increases, the available

kinetic energy in the gap drops by up to 40% at large θ. Similarly, the maximum electric
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field strength’s angular dependence is Emax ∝ −e 1.7θ (Ford et al., 2017).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 π

12

π

6

π

4

π

3

2×1010

4×1010

6×1010

8×1010

1×1011

θ [rads]

G
ap
H
al
f
W
id
th

[c
m
]

Figure 10.1: Half width of the gap versus polar angle. The 10 curves represent the change
inwidth as polar angle increase going away from the axis of rotation for 10 different spins
and their corresponding fits representedwith dashed lines. From the top down the spins
are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. And similarly, the fits from the top downare
9.7× 107e 5.8θ +2.5× 1010, 7.9× 107e 5.8θ +2.1× 1010, 5.1× 107e 6.1θ + 1.9× 1010, 4.7× 107e 6.1θ + 1.7×
1010, 4.3× 107e 6.1θ + 1.6× 1010, 3.7× 107e 6.1θ + 1.5× 1010, 3.4× 107e 6.2θ + 1.5× 1010, 2.7× 107e 6.3θ +
1.4× 1010, 1.7× 107e 6.6θ + 1.3× 1010, and 7.1× 106e 7.3θ + 1.2× 1010.
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Figure 10.2: Lorentz factor of the gap versus polar angle. The 10 curves represent the
change in width as polar angle increase going away from the axis of rotation for 10 dif-
ferent spin and their corresponding fits represented with dashed lines. From the top
down the spins are 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1. And similarly, the fits from
the top down are 1900− 6.3e 5.0θ, 940− 9.5e 4.0θ, 1100− 11e 4.0θ, 1200− 13e 4.0θ, 1300− 12e 4.1θ,
1400− 15e 4.0θ, 1500− 14e 4.1θ, 1600− 11e 4.4θ, 1700− 14e 4.2θ, and 1700− 10e 4.5θ.
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Figure 10.3: Thewidth of half of the gapnormalized at the axis of rotation versus thepolar
angle. An exponential fit of all ten spins is 5.2× 10−4e 7.4θ + 1.
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Figure 10.4: The width of half of the gap normalized at the axis of rotation versus the
polar angle. An exponential fit of all ten spins is 1−6.8× 10−3e 4.4θ.

Figure 10.5 illustrates the drop off in outgoing photon energy flux as a function of θ,
´

Fνdν ∝ −e 3.1θ (Ford et al., 2017). As θ increases, the outgoing energy flux drops by almost

90% at large θ. Figure 10.7 illustrates the varying gap size for different spins by overlay-

ing the different gapswidths increased by an order ofmagnitude on Figure 4.1. The black

hole radius for amaximumly spinning black hole is set to one. One can see that the black
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hole radius increases substantiallymore than the gapwidthwhen the spin changes from

1 to 0.9. One can also see that the gap width increases more than the black hole radius

when the spin changes from 0.3 to 0.1.
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Figure 10.5: Theoutgoingphoton energydensity normalized at the axis of rotation versus
the polar angle. An exponential fit of 10 different spins is 1.1−0.055e 3.1θ.
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Figure 10.6: The total outgoing energy flux from the up-scattered photons versus polar
angle. The three curves represent the change in the gap width as polar angle increase
going away from the axis of rotations for 10 different spins and their corresponding fits,
representedwithdashed lines. From the topdown the spins are 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,
0.3, 0.2, and 0.1. And similarly, the fits from the top down are 1.4× 1011−2.8× 109e 4.0θ, 1.0×
1010−8.4× 108e 2.6θ, 1.9× 1010− 1.6× 109e 2.6θ, 2.8× 1010−2.2× 109e 2.7θ, 3.7× 1010−3.1× 109e 2.6θ,
4.6× 1010 − 3.4× 109e 2.8θ, 5.6× 1010 − 4.0× 109e 2.8θ, 6.8× 1010 − 4.5× 109e 2.9θ, 8.0× 1010 − 4.4×
109e 3.1θ, and 9.6× 1010−4.3× 109e 3.3θ.

121



ρGJ
=0

BH

spin 1.0

1 2 3 4

1

2

3

4

ρGJ
=0

BH

spin 0.9

1 2 3 4

1

2

3

4

ρGJ
=0

BH

spin 0.7

1 2 3 4

1

2

3

4

ρGJ
=0

BH

spin 0.5

1 2 3 4

1

2

3

4

ρGJ
=0

BH

spin 0.3

1 2 3 4

1

2

3

4

ρGJ
=0

BH

spin 0.1

1 2 3 4

1

2

3

4

Figure 10.7: Gap width increased by an order of magnitude. For a maximally spinning
black hole, the radius is set to one. The plasma density is displayed in red and green.
It can be seen that, as the black hole’s spin decreases, the gap width increase and the
plasma density around the gap decreases. 122



After probing the structure of the gap over all spin, one can obtain relationships be-

tween physical parameters and a :

H = 1.3× 1010a−0.28cm,

Γmax = 1.6× 103a0.24,

Emax = 110a0.49V/m,ˆ
Fνdν = 8.3× 1010a0.96MeV/cm2/s.

(10.1)

Figure 10.8 shows these parameters plottedwith respect to a ona log-log scale after being

normalized by their minimum value over the shown mass range. These relationships

allow one to estimate the energy output, energy available, cascade efficiency, etc, for

any black hole of mass 107 embedded in a 104 Gauss magnetic field with an available

background photon energy density of 106 ergs/cm3.
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Figure 10.8: The ? is a place holder that represents the maximum Lorentz factor, max-
imum electric field, gap width, and photon energy flux. Each physical quantity is nor-
malized to itsminimum value and then plotted with respect to the spin of the black hole
on a log-log scale.
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Spin Lorentz factor Gap Half Width [cm] Energy Flux [MeV/cm2/s]

1 1900−6.3e 5.0θ 7.1× 106e 7.3θ + 1.2× 1010 1.4× 1011−2.8× 109e 4.0θ

0.9 940−9.5e 4.0θ 1.7× 107e 6.6θ + 1.3× 1010 1.0× 1010−8.4× 108e 2.6θ

0.8 1100− 11e 4.0θ 2.7× 107e 6.3θ + 1.4× 1010 1.9× 1010− 1.6× 109e 2.6θ

0.7 1200− 13e 4.0θ 3.4× 107e 6.1θ + 1.5× 1010 5.6× 1010−4.0× 109e 2.8θ

0.6 1300− 12e 4.1θ 3.7× 107e 6.1θ + 1.5× 1010 4.6× 1010−3.4× 109e 2.8θ

0.5 1400− 15e 4.0θ 4.3× 107e 6.1θ + 1.6× 1010 3.7× 1010−3.1× 109e 2.6θ

0.4 1500− 13e 4.1θ 4.7× 107e 6.1θ + 1.7× 1010 2.8× 1010−2.2× 109e 2.7θ

0.3 1600− 11e 4.4θ 5.1× 107e 6.1θ + 1.9× 1010 6.8× 1010−4.5× 109e 2.9θ

0.2 1700− 14e 4.2θ 7.9× 107e 5.8θ +2.1× 1010 8.0× 1010−4.4× 109e 3.1θ

0.1 1700− 10e 4.5θ 9.7× 107e 5.8θ +2.5× 1010 9.6× 1010−4.3× 109e 3.3θ

all 1−6.8× 10−3e 4.4θ 5.2× 10−4e 7.4θ + 1 1.1−0.055e 3.1θ

Table 10.1: Angular fits for the peak Lorentz factor, gap half width, and outgoing photon
energy flux. These fits are shown on Figures 10.1, 10.2, 10.3, 10.4, 10.5, and 10.6.
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Chapter 11

Discussion

This chapter will use the scaling relations developed above to make physical estimates

for observed galaxies.

11.1 Estimates of the Structure of the Gap

Combining the data shown in Figures 7.10, 8.9, 9.9, and 10.8 one can construct expres-

sions to estimate the structure of the gap for any mass, spin, magnetic field, and back-

ground energy density:

H ' 4.7× 108a−0.31
[

M

M�

]0.54 [ B

Gauss
]−0.27 [

Ub

ergs/cm3

]−0.22
cm, (11.1)

Γmax ' 1.6× 1011a0.24
[

M

M�

]−0.52 [ B

Gauss
]0.25 [

Ub

ergs/cm3

]−0.88
, (11.2)

Emax ' 1.2× 1012a0.49
[

M

M�

]−1.1 [ B

Gauss
]0.49 [

Ub

ergs/cm3

]−0.75
V/m, (11.3)
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ˆ
Fνdν ' 3.2× 1049a0.96

[
M

M�

]−4.5 [ B

Gauss
]0.95 [

Ub

ergs/cm3

]−1.2
MeV/cm2/s. (11.4)

By doubling Equation 11.1 and dividing by the radius of the black hole, one can relate the

efficiency of the plasma cascade process over a wide range of parameters (Figure 11.2) or

for a particular object. As a reminder, the black hole radius is rH = G M
(
1+
√
1−a2

)
/c2.

Comparing an active galaxy, e.g., M87, to an inactive galaxy, e.g., Sagittarius A, is illus-

trative. First one must estimate the background energy density from the luminosity,

Ub ' L/(4πcr 2). One can estimate r using the innermost stable circular orbit (Bardeen

et al., 1972),

risco =
G M

c2
(
3+Z2−

√(3−Z1)(Z1+2Z2+3)
)
, (11.5)

where

Z1 = 1+ *
,

3
√

ac2

G M
+ 1+ 3

√
1− ac2

G M
+
-

3
√
1− a2c4

G 2M 2 , (11.6)

Z2 =

√
3a2c2

G M
+Z1. (11.7)

The luminosity of M87 is 2.7× 1042 ergs/s (Prieto & Fernández-Ontiveros, 2016). Sgr A∗

has a luminosity of 1037 ergs/s (Genzel et al., 1994). Let the ratio of the full width of the

gap to the black hole radius be

W = 9.4× 108a−0.31
[

M

M�

]0.54 [ B

Gauss
]−0.27 

L/(4πcr 2isco)
ergs/cm3



−0.22
r−1H . (11.8)

Using amass of 109.5M�, a spin of 0.65, and amagnetic field of 15 G forM87 yieldsWM87 =

0.11 (Wang et al., 2008; Kino et al., 2014). Similarly, using a mass of 106.6M�, a spin of 0.65,

and amagnetic field of 30G for Sgr A∗ yieldsWSgr A∗ = 1.3 (Johnson et al., 2015; Dokuchaev,

2015). The order ofmagnitude difference betweenW is consistent withM87 being active

and Sgr A∗ not being active (Ford et al., 2017).
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Figure 11.1 displays the full gap width over black hole radius versus magnetic field

strength for M87 and Sgr A∗ and eight additional AGN. Tabel 11.1 contains the physical

quantities used. Figure 11.1 shows that the ratio of the full gap width to black hole radius

for AGN is < 1 for reasonable values of the magnetic field.

Figure 11.2 shows theparameter space in spin,magnetic field, andbackgroundenergy

density needed for an efficient cascade process. The red shaded regions are where the

ratio of the full gap width versus the black hole radius is ≥ 1. The surfaces displayed in

Figure 11.2 are spin= 1,Ub = 0.1,Ub = 10,Ub = 106, B = 1, B = 10, and B = 105.
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Figure 11.1: The curve for Sgr A∗ is at the top and followed by M87. Next is MCG–6-30-
15 and NGC 3783. They are followed by 1H0707-495. Next Mrk 79, Mrk 335, and SWIFT
J2127.4+5654 are clustered together. They are followed by NGC 7469 and Fairall 9. The
values for mass, spin, and energy density in Equation 11.9 are listed in Table 11.1.
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AGN Spin Mass Energy Density

M87 0.65 109.5M� 0.33 ergs/cm3

Sgr A∗ 0.65 106.6M� 2.1 ergs/cm3

MCG–6-30-15 0.98 106.65M� 3.8× 107 ergs/cm3

Fairall 9 0.65 108.41M� 8.2× 104 ergs/cm3

SWIFT J2127.4+5654 0.65 107.18M� 5.0× 106 ergs/cm3

1H0707–495 0.98 106.7M� 8.4× 107 ergs/cm3

Mrk 79 0.7 107.72M� 4.0× 105 ergs/cm3

Mrk 335 0.7 107.15M� 7.5× 106 ergs/cm3

NGC 7469 0.69 107.09M� 3.8× 107 ergs/cm3

NGC 3783 0.98 107.47M� 8.5× 104 ergs/cm3

Table 11.1: The values used to in Equation 11.9 tomake Figure 11.1 (Brenneman et al., 2011;
Prieto & Fernández-Ontiveros, 2016; Genzel et al., 1994; Wang et al., 2008; Dokuchaev,
2015).
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Figure 11.2: Contour plots of Equation 11.1 using amass of 108M�. The surfaces shown are
spin= 1, Ub = 0.1, Ub = 10, Ub = 106, B = 1, B = 10, and B = 105. The red shading represents
any value ≥ 1 for the ratio of the full gap width to the radius of the black hole.
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11.2 Estimates of the Structure of the Gap with θ

Dependence

One can also add an angular dependence to Equations 11.1, 11.2, 11.3, and 11.4. See Ap-

pendix A for the fits of the parameters verses their angular dependence.

H (θ) '
{
1.3× 106e 5.7θ +4.7× 108

}
a−0.31

[
M

M�

]0.54 [ B

Gauss
]−0.27 [

Ub

ergs/cm3

]−0.22
cm. (11.9)

Γmax(θ) '
{
1.6× 1011−8.2× 108e 4.6θ

}
a0.24

[
M

M�

]−0.52 [ B

Gauss
]0.25 [

Ub

ergs/cm3

]−0.88
. (11.10)

Emax(θ) '
{
1.2× 1012− 1.7× 1010e 4.1θ

}
a0.49

[
M

M�

]−1.1 [ B

Gauss
]0.49 [

Ub

ergs/cm3

]−0.75
V/m. (11.11)

ˆ
Fνdν(θ) '

{
1.1−0.047e 3.2θ

}
3.2× 1049a0.96

[
M

M�

]−4.5 [ B

Gauss
]0.95 [

Ub

ergs/cm3

]−1.2
MeV/cm2/s. (11.12)

Using the same example as above, M87 and Sgr A∗, one can use Equation 11.9 to make a

plot similar to Figure 7.8. Figure 11.3 shows the gapwidths ofM87 and Sgr A∗ to scalewith
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the black hole radius. The inner boundary of the gap of Sgr A∗ goes into the black hole.

Sgr A∗’s gap is too close to the event horizon to maintain the assumptions of symmetry

in Equation 4.31. Further study is needed to get a clear understanding of the structure of

the gap around Sgr A∗. However, a plausible interpretation of Figure 11.3 is that when the

gap reaches the event horizon, the cascade process becomes too inefficient. Therefore

the Blandford-Znajek process cannot power the jet.
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Figure 11.3: The black hole radius of a maximumly spinning black hole has been set to
one, and the gap widths have been left to scale. M87 has a luminosity of 2.7× 1042 ergs/s,
mass of 109.5M�, a spin of 0.65, and a magnetic field of 15 G. Sgr A∗ has a luminosity of
1037 ergs/s, mass of 106.6M�, a spin of 0.65, and a magnetic field of 30 G.
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Chapter 12

Summary

A brief summary of the novel science that has be presented is listed as a conclusion.

• The 2D structure of the gap (Chapter 6).

This shows how efficient and energetic the cascade process is as it relates

to the axis of rotation.

• Outgoing energy flux and spectrum (Chapter 6).

These are bothobservables and the shapeof the spectrumcangive insight

to the environment near the black hole.

• Varied physical parameters and probed the structure of the gap by:

– Several orders of magnitude in black hole mass (Chapter 7).

– Several orders of magnitude in magnetic field (Chapter 8).

– Two orders of magnitude in photon background energy density (Chapter 9)

– All spin (Chapter 10).

This allows one to see how different physical parameters effect the struc-

ture and the efficiency of the gap.
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• Characterize the relationship between relevant variables and obtained analytic ex-

pressions for estimating the structure of the gap (Chapter 11).

Future studies can expand upon this research by, i.e., implementing a realistic back-

ground spectrum (as apposed to the power law spectrum that has been assumed). The

expressions (Equations 11.9, 11.10, 11.11, & 11.12) introduced in Chapter 11 should provided

robust insight into the 2D structure of the gap for future investigations.
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Appendix A

Angular Fits

This appendix contains the fits for Equations 11.9, 11.10, 11.11, and 11.12. The data used

to make all of that fits are M = 108M�, M = 107M�, and M = 106M� holding B constant

at 104 G, Ub at 106 ergs/cm3, and spin at 1; B = 102 G, B = 103 G holding M constant at

107M�,Ub at 106 ergs/cm3, and spin at 1;UB = 105 ergs/cm3 holding M constant at 107M�,

B constant at 104 G, and spin at 1; spin= 0.1, spin= 0.2, spin= 0.3, spin= 0.4, spin= 0.5,

spin= 0.6, spin= 0.7, spin= 0.8, spin= 0.9 holding M constant at 107M�, B constant at 104

G, andUb at 106 ergs/cm3. Figure A.1 shows the normalized half width of the gap versus

θ with the fit overlaid on the data. Figure A.2 shows the normalized peak Lorentz factor

versus θ with the fit overlaid on the data. Figure A.3 shows the normalized peak electric

field versus θ with the fit overlaid on the data. Figure A.4 shows the normalized outgoing

energy flux from the up-scattered photons versus θ with the fit overlaid on the data.
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Figure A.1: The exponential fit for the gap half width normalized to 1 at θ = 0 as a function
of θ is 2.9× 10−3e 5.7x + 1. The data includes M = 108M�, M = 107M�, and M = 106M� holding
B constant at 104 G, Ub at 106 ergs/cm3, and spin at 1; B= 102 Ga, B= 103 G holding M
constant at 107M�,Ub at 106 ergs/cm3, and spin at 1;UB = 105 ergs/cm3 holdingM constant
at 107M�,B constant at 104G, and spin at 1; spin= 0.1, spin= 0.2, spin= 0.3, spin= 0.4, spin=
0.5, spin= 0.6, spin= 0.7, spin= 0.8, spin= 0.9 holding M constant at 107M�, B constant at
104 G, andUb at 106 ergs/cm3.
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Figure A.2: The exponential fit for the Lorentz factor, normalized to 1 at θ = 0 as a function
of θ is 1−5.1×10−3e 4.6θ. Thedata includesM = 108M�,M = 107M�, andM = 106M� holdingB
constant at 104G,Ub at 106 ergs/cm3, and spin at 1;B= 102Ga,B= 103GholdingM constant
at 107M�,Ub at 106 ergs/cm3, and spin at 1;UB = 105 ergs/cm3 holdingM constant at 107M�,
B constant at 104 G, and spin at 1; spin= 0.1, spin= 0.2, spin= 0.3, spin= 0.4, spin= 0.5,
spin= 0.6, spin= 0.7, spin= 0.8, spin= 0.9 holding M constant at 107M�, B constant at 104
G, andUb at 106 ergs/cm3.
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Figure A.3: The exponential fit for the electric field strength, normalized to 1 at θ = 0 as
a function of θ is 1−0.014e 4.1θ. The data includes M = 108M�, M = 107M�, and M = 106M�
holdingB constant at 104 G,Ub at 106 ergs/cm3, and spin at 1;B= 102 Ga,B= 103 Gholding
M constant at 107M�, Ub at 106 ergs/cm3, and spin at 1; UB = 105 ergs/cm3 holding M
constant at 107M�,B constant at 104 G, and spin at 1; spin= 0.1, spin= 0.2, spin= 0.3, spin=
0.4, spin= 0.5, spin= 0.6, spin= 0.7, spin= 0.8, spin= 0.9 holding M constant at 107M�, B
constant at 104 G, andUb at 106 ergs/cm3.
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Figure A.4: The exponential fit for the total outgoing energy flux from the up-scattered
photons, normalized to 1 at θ = 0 as a function of θ is 1.1− 0.047e 3.2θ. The data includes
M = 108M�, M = 107M�, and M = 106M� holding B constant at 104 G, Ub at 106 ergs/cm3,
and spin at 1; B= 102 Ga, B= 103 G holding M constant at 107M�, Ub at 106 ergs/cm3, and
spin at 1; UB = 105 ergs/cm3 holding M constant at 107M�, B constant at 104 G, and spin
at 1; spin= 0.1, spin= 0.2, spin= 0.3, spin= 0.4, spin= 0.5, spin= 0.6, spin= 0.7, spin= 0.8,
spin= 0.9 holding M constant at 107M�, B constant at 104 G, andUb at 106 ergs/cm3.
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Normalized Parameter Equation of the Fit

Gap Half Width 2.9× 10−3e 5.7θ + 1

Peak Lorentz factor 1−5.1× 10−3e 4.6θ

Peak Electric Field 1−0.014e 4.1θ

Outgoing Photon Flux 1.1−0.047e 3.2θ

Table A.1: Fits with respect to polar angle for normalized outgoing spectral energy flux,
peak Lorentz factor, peak electric field, and the gap half width.
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