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Abstract

Choosing the best criteria to place incoming college freshmen into the appropriate first

semester courses proves to be a challenge for all subject areas, but for mathematics in

particular. It is crucial that universities give students an opportunity to succeed by

avoiding placing them in courses with material that is too advanced for them, but just

as crucial, if not more, that universities do not place student in remedial classes when

they do not need them. In this study we use data from over 21,500 algebra students at a

midwestern university over eleven fall semesters to train a variety of machine learning

algorithmic models to predict whether or not students will be successful in intermedi-

ate algebra and college algebra based on their high school GPA and all four individual

components of the ACT. Of these five scores, we find that only GPA and Math ACT are

significant predictors of success in algebra courses. We implement algorithms based

in optimization, information, and metric space theories. Although they approach this

problem with different perspectives, we find they all consistently give similar accura-

cies on the testing data and similar predictions. The main conclusion of this analysis

is that a combination of GPA and Math ACT is the best predictor of success with GPA

being the most important factor. We use this information to make recommendations

for optimal initial mathematics courses based on an incoming student’s high school

GPA and Math ACT score.
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Chapter 1

Introduction to Math Placement

1.1 Current Issues on Math Placement

Placing incoming students into a mathematics course at the appropriate level is a challenge all

higher education institutions face whether community college, public university of private school.

Institutions advise students on which class is most appropriate for them by with a variety of success

indicators, including high school GPA, overall standardized test (ACT or SAT) scores, ACT/SAT

math portion scores, placement exams, student choice, or a combination of multiple indicators.

Clearly it is crucial to avoid over placement, which is placing student in courses for which they

do not know the background material. This does not give them a chance to succeed. But it is just

as critical to avoid under placement, which is placing a students in a course that is not the highest

in which the student could succeed. Studies have shown that if students are under placed, they

are less likely to continue in math (Bressoud & Hsu, 2015). When students do continue taking

math courses, far too often placing students preparatory course does not help them succeed in

subsequent mathematics courses (Bressoud & Hsu, 2015; Jaggars & Stacey, 2014). A 2015 MAA

study documents several examples of low retention in math courses, even among students who

were successful in the remedial courses in which they were placed. These cases include students

who have intentions of pursuing a STEM major (Bressoud & Hsu, 2015; Jarrett, 2000).

A 2014 study of 132 institutions considered students who were near the cutoff criteria for
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Calculus I. The study compared the Calculus I scores of the students who took Precalculus and then

Calculus as opposed to going straight to Calculus. The study showed that taking the Precalculus

course does not improve the outcome of Calculus I (Sonnert & Sadler, 2014). As summarized in

(Bressoud & Hsu, 2015),

In a recent study of over 10,000 Calculus I students across the United States, Sonnert &

Sadler (2014) compared grades in Calculus I of students with the same high school prepara-

tion in mathematics (courses taken, grades earned, SAT/ACT scores) who either had or had

not taken a post-secondary precalculus class. They found that students below the mean com-

posite secondary school preparation score did appear to benefit from precalculus, but by a

meager and not statistically significant single point on a 100-point grading scale. They also

found that for students above the mean, placement in precalculus lowered their Calculus I

grade by a statistically significant average of six points. The meager gains from precalculus

do not appear to offset the considerable risk that students directed to precalculus will not

persist to Calculus I.

Another study of students in Texas who were placed into college classes based on placement

tests shows there is no indication that remedial courses are of benefit to students (Martorell &

McFarlin, 2011). In their paper, Martorell and McFarlin state, "For a wide range of academic

outcomes and across a variety of subgroups, the estimated effects of remediation are small in

magnitude and statistically insignificant. If anything, we find some evidence that remediation

might worsen the outcomes of some students." We can see that it is crucial to place students in the

highest level course in which they might be successful.

Typically these remedial courses do not count towards a degree yet students must use their

limited time and funding to complete these courses before taking the subsequent required course.

If remedial courses are not increasing passing rates in subsequent courses and if schools are seeing

low retention rates of students moving from remedial courses, then schools need to seriously con-

sider whether students gain anything from placement in the remedial courses. Remedial courses

are not an effective or responsible use of the school or students’ resources if students are not
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placed optimally. Not only could schools retain more students in mathematics if they are able to

place them in the optimal course, but optimal placement would result in the allocation of financial

resources to students who have higher probabilities of success.

1.2 Present study: Data from over 21,500 algebra students

In this study, we consider all algebra students at a midwestern university over a period of eleven

years. The two algebra courses offered at this school are of Intermediate Algebra and College

Algebra College Algebra courses. Each fall, approximately two thousand students at this school

enroll in these algebra courses. Under the current system, incoming students are placed in their

first mathematics course based only on their score on the math component of their ACT score

or an optional placement exam. Students scoring below 18 on the math portion are placed in

Intermediate Algebra, students scoring 18-22 are placed in College Algebra and any students who

score above a 22 are placed into calculus classes. This placement system often places students in

classes that are not at the optimal level – either a class that does not challenge them or a class for

which they are not prepared.

Our goal is to find a better method of placing students into math courses. We would like

to consider more information about the incoming student, including high school GPA, overall

ACT score and other individual ACT component scores beyond just the math component. We

experiment with machine learning algorithms to find a method that will place students with the

highest chance of success. In the end we will recommend a way of weighting the most important

indicators of success so that students will have optimal outcomes in their first year mathematics

course.

The algebra program at this school has kept detailed records of each student enrolled in In-

termediate Algebra and College Algebra. For this study we choose to use data from students in

fall semesters only from Fall 2006 to Fall 2016. With approximately two thousand students per

semesters, we have data on over twenty thousand students total.

During the spring semester, students enrolled in Intermediate Algebra are primarily students

3



retaking the course and students enrolled in College Algebra are primarily moving from Interme-

diate Algebra or retaking the course. Since we would like to study students enrolled in each course

for the first time, we only consider fall semester students, which are primarily students taking their

first college level math course. The information from the algebra student data in which we are

interested is each student’s high school GPA, ACT, individual ACT components and final grade in

course. In Chapter 5 we analyze students with a unique record. That is, we consider only each

student’s first semester enrolled in algebra at this university. We drop all data on students repeating

a course or students moving to College Algebra after having taken Intermediate Algebra.

1.3 Placement Methods

A variety of success indicators for mathematics courses exist because it is difficult to develop a

single indicator that will serve all students well. In the following paragraphs, we discuss some

advantages and disadvantages to several indicators used for placement methods.

While high school math courses and grades are not easily accessible and practical to use to

place large numbers of students, high school GPA’s are readily available to placement advisors.

Critics of putting too much emphasis on high school GPA say that it is an inconsistent measure-

ment because all schools assign grades and thus GPA’s differently. This group claims the ACT/SAT

is more reliable because it is standardized across all school. Furthermore, they fear that empha-

sizing GPA hurts minorities and people of low socioeconomic status. However research show that

high school GPA is consistently the best predictor of college success in freshman year (Geiser &

Santelices, 2007; Scott-Clayton, 2012). This is likely because it is not just a measure of a student’s

proficiency, but also a measure of "motivation and perseverance," (Bowen et al., 2011), a quality

that is otherwise difficult to capture in a meaningful way.

Not only is GPA a better predictor than ACT/SAT, but it actually becomes an even stronger

predictor of success in college grades after freshman year. Furthermore, when admission deci-

sions are based on high school GPA it actually helps disadvantaged minorities more than when

the ACT/SAT are emphasized (Geiser & Santelices, 2007). The standardized tests results reveal
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that underrepresented minorities and disadvantaged students are in fact less prepared for college

than people with higher socioeconomic status, and thus fewer are admitted when ACT/SAT is

emphasized over high school GPA. (Geiser & Santelices, 2007; Rothstein, 2004)

In addition, placing students based on their ACT/SAT score alone does not give more predictive

power than considering the students’ GPA alone (Rothstein, 2004). In fact, the portion of SAT

(and presumably ACT) scores which gives the more accurate predictions of a student’s success in

college is the portion which correlates with high school demographic characteristics. The portion

orthogonal to high school demographics does not give any further predictive power. (Rothstein,

2004)

In 2011, a study actually showed a negative correlation between grades in Calculus I and ACT

scores (Reddy & Harper, 2013). This could partially be because the ACT/SAT was never intended

to be a placement exam, but instead a college readiness exam. The broad skill set measured by the

ACT/SAT is too general to be used in placing students in specific classes (Bressoud & Hsu, 2015).

Furthermore, in a study of college drop out, George Bulman found that a student’s high school

GPA carries a lot of information, but claims that adding ACT/SAT scores as a predictor does not

add any predictive power (Bulman, 2017). If this is the case for predicting whether a student will

drop out or complete college, we should also consider high school GPA when placing students into

initial math courses rather than making decisions based on ACT scores alone.

Since high school GPA and ACT/SAT scores are not often effective placement tools, many

schools administer other standardized tests specifically for placement. These are online tests which

adapt the questions given to a student based on which questions the student has answered incor-

rectly. It continues narrowing the questions until it converges on the student’s mathematics level.

Two such standardized placement test are the ACT Compass exam, which was phased out at the

end of 2016, and the College Board Accuplacer exam.

According to a paper examining the effectiveness of these placement exams by (Scott-Clayton,

2012),

...the incremental validity of placement tests relative to high school background predictors
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of success is weak, even in math. Adding test scores to a model using high school GPA/units

to predict college-level grades increases the proportion of variation explained by about 6

percentage points in math...using high school GPA/units alone as a placement screen results

in better outcomes than using placement test scores alone ..., and adding in placement test

scores results in little additional improvement.

Furthermore, by considering multiple indicators for placement rather than only standardized tests,

schools could reduce the number of students places into remedial courses by 8 to 12% while

maintaining or increasing success rates in college level courses. For these reasons, ACT phased out

the Compass exam at the end of 2016. As explained by ACT spokesman, Ed Colby, "A thorough

analysis of customer feedback, empirical evidence and postsecondary trends led us to conclude

that ACT Compass is not contributing as effectively to student placement and success as it had in

the past," (Fain, 2015).

Another commonly used placement test is ALEKS, which stands for Assessment and LEarning

in Knowledge Spaces. ALEKS is also an online test. It is an artificially intelligent learning sys-

tem which quickly assesses exactly what the student understand and does not. This placement test

differs from Compass and Accuplacer because it is free response only while the other two are mul-

tiple choice. This means that the feedback is not immediate, but often more insightful. ALEKS’

learning process includes reassessment of material which the students previously answered incor-

rectly. ALEKS provides tutoring to help the students review material on their own and reassess.

It also different in that it employs theory of Knowledge Spaces. As explain in (Bressoud & Hsu,

2015), "This theory is used to map a mathematical subject area such as the mathematics of Algebra

I to a set of items, essentially problem types, and to capture the hierarchical structure of depen-

dence among these items. It is this understanding of the dependence structure of problem types

that enables it to drill down and identify the most basic level at which a student is experiencing

difficulty."

The remediation component of ALEKS avoids the static cutoffs of other placement exams

(Hodara et al., 2012). The responsibility of background material falls to the student with support
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of review resources. Three years of data on students at the University of Illinois shows "very high

correlations between mean grades over small ALEKS score ranges and range midpoints. This

greatly outperforms the former placement policy. Similar correlations for ACT math scores were

generally much lower, less consistent year to year, and sometimes negative." (Reddy & Harper,

2013)

Futhermore, "Data analysis indicates that ALEKS scores and some subscores correlate well

with final grades and that the ALEKS-based placement program lowered failure and withdrawal

rates in nearly all the placement classes in each semester." (Reddy & Harper, 2013)

Even though ALEKS is a powerful placement tool, mathematics placement exams alone are

not sufficient in placing students into an appropriate mathematics course. A study of Connecticut

high schoolers entering directly into college showed that other statistically significant predictors

of success were number of years of mathematics, course level and gender (Moran, 2008). While

placement exams are significant predictors, including high school GPA, ACT/SAT scores, and

high school math records and other non-academic variables in addition to placement exams will

decrease false positive rates (Drake, 2010).

In considering these various studies, we may conclude that there is no single indicator which

contains all the information needed to place students. Instead, optimal placement for the highest

success rates in mathematics courses requires a combination of indicators.

1.4 Innovation of present study: Training with students’ background at-

tributes

In most education studies (and all the studies referenced in this chapter), statistical analysis is

done by traditional data models. However in the past several years, an explosion of research has

shown that machine learning can be an extremely effective tool in building algorithmic models for

predictions (Breiman, 2001). In our study we bring new insight in to the math placement problem

by employing machine learning methods outlined in Chapter 2.
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As Breiman states in his comparison of data models (models from traditional statistical analy-

sis) and algorithm models (models from a machine learning approach), "An algorithmic model can

produce more and more reliable information about the structure of the relationship between inputs

and outputs than data models." In the end, it is the relationship between the high school GPA/ACT

scores and outcome of first year college math course which we would like to know. These types

of algorithmic models based on machine learning algorithms give a variety of ways to explore this

relationship.

Some models like, logistic regression and decision trees, give high interpretability so that we

can gain a lot of insight about what information is most important, but this usually comes at a

cost of a slight loss of accuracy. Other models, like random forests and support vector machines,

have almost no interpretability. We give the models the input and the algorithm gives a classifica-

tion. These results do not come with probabilities and variables weights like models with higher

interpretability. However we can usually increase accuracy using these models. In this study we

will explore both extremes of the trade off between interpretability and accuracy in order to gain

as much information as possible about predicting an incoming student’s probability of success in

College Algebra or Intermediate Algebra.

Variables used in training: Even though references above show that ACT score is not the

optimal placement tool, because of ease of access, many schools, include the university in this

study, still choose to use ACT scores alone as a placement tool. As mentioned above, the ACT

was meant to be a college readiness assessment, not a placement tool, but since students must

take the ACT exam to apply to colleges, universities have the scores on recored an no new tests

or information is required (Bressoud & Hsu, 2015). If schools do choose to use the ACT for

placement because they are not able to use ALEKS to evaluate the optimal starting math course,

they can still consider how to take advantage of the all information the ACT does have to offer in

regards to placement.

While it may not be intuitive initially, studies have shown the English score on standardized test

are helpful indicators of success in remedial math courses. In a study of students in colleges across
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Ohio, researchers Bettinger, Evans and Pope focused on correlations between college outcomes

and individual components of the ACT. They found

...a strong correlation between higher ACT composite scores and positive college outcomes.

However, this overall correlation masks an important pattern: Mathematics and English

scores are much more tightly correlated with college success than are Reading and Science

scores. In fact, after controlling for Mathematics and English scores, Reading and Science

provide essentially no predictive power regarding college outcomes (Bettinger et al., 2013).

More specifically, the model the researchers built "predicts that a student who gets an ACT com-

posite score of 24 by getting a 26 each on the Reading and Science tests and a 22 each on the

Mathematics and English tests is 59 percent more likely to be a first-year dropout and 43 percent

more likely to drop out by the third year of college, relative to a student who gets the same ACT

composite score of 24, but with a 26 each on the Mathematics and English tests and a 22 each on

the Reading and Science tests." (Bettinger et al., 2013)

As discussed in Section 1.3 above, GPA is a far better indicator of success in college than ACT

scores. Incidentally, ACT math and English scores are also far better predictors of high school

GPA than ACT reading and science scores. Considering math and English scores and not science

and reading would have a significant impact in the way school admit students. The researchers

estimate that with this transition, up to 55% of students in Ohio would be attending a different

level school that the one they are currently attending. Furthermore, the top schools in the state

could reduce drop out rate by up to 7% by implementing this change (Bettinger et al., 2013).

A similar study was done in Texas using the Texas Academic Skills Program (TASP) scores.

Researchers were interested in knowing if components of the TASP beyond math would be signif-

icant indicators of first year mathematics course outcomes. They found that reading scores were

in fact significant indicators of success in elementary algebra courses but not in intermediate or

college algebra. Thus for lower level math courses, reading score could help make more accurate

placements. In all courses considered in the study, the combination of reading and math placed

students into courses equally as well as math alone (Preast, 1998).
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Based on studies like these, we use individual components of ACT scores along with high

school GPA to train our placement models.

Part of this work will be further developed and published elsewhere in a joint article with Dr.

Estela Gavosto.
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Chapter 2

Methods of Machine Learning

Based on previous similar work which uses machine learning to answer questions about college

education Marbouti et al. (2016), we choose eight algorithms to predict whether students will pass

(receive a grade of A, B or C) or not pass (receive a grade of D, drop, fail or withdraw) based on

their high school GPA, overall ACT exam score and scores of individual components of the ACT

exam. Machine learning algorithms are developed from several different theoretical approaches.

We chose models to come from a variety of these approaches. Logistic regression, linear discrimi-

nant analysis, and quadratic discriminant analysis are all developed from optimization theory. Both

K nearest neighbors and support vector machines take a more geometric approach based in metric

theory. Decision trees and random forests come from information theory in that their goal is to find

a minimal structure which differentiates the data. In this section we give a brief overview of how

each algorithm works and how we will implement it to analyze our data on algebra students.

2.1 Data Preprocessing

Throughout this section, we represent the data from one student by x, which is a vector of features

and we represent the target outcome (pass or fail) by y. We choose the class y = 1 to represent a

passing grade and the class y = 0 to represent a grade of D or F, a drop, or withdraw. The feature

vector x = (x1, . . . ,xn) holds numerical values of features. The data base housing data on algebra
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students has information on students before beginning college, such as high school GPA and ACT

scores as well as every exam score, homework scores and attendance record the student received

while enrolled in an algebra course. Since we would like to optimize the placement of students, in

this study, we will only use information about the students before they begin algebra courses.

In order to check the accuracy of our models, we save data for validation and testing. We

reserve 20% of the data for testing data, that is, it is used for error analysis only. This data will

not be seen in the training process. We also reserve 20% for the data for validation data. It not be

used in the initial training, but will be used for fine tuning parameters. We train the model on the

remaining 60% of the data. We will randomize the divisions in the data so that each portion has

data from all eleven semesters we are analyzing.

Before training process begins, we check for abnormalities in the data. A small number of the

students (less than 10 over the 11 semesters) reported GPA scores on a 100 point scale. These

students were removed. A large number of students did not report ACT scores. These students

were mostly international students, transfer students, or students from outside the midwest who

reported SAT scores. We remove the students with no ACT score from our study. The remaining

number of students in our study is 21607. Of these, 8874 were enrolled in Intermediate Algebra

and 12733 were enrolled in College Algebra.

Before training each model, we normalize the input features with a mean of zero and a standard

deviation of one. This is necessary because the grades and scores are on a variety of scales and we

do not want to unintentionally weight them differently. Intermediate Algebra and College Algebra

students are standardized separately.

In some models that we build, the outcome will be binary, that is the outcome has two possible

classes: one class is earning an A, B, or C and a second class is a grade of D, drop, withdraw, or

fail. However, other models actually predict the probability of being in class 1 or class 0.
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2.2 Logistic regression

Logistic regression is a discriminative classifier. Similar to linear regression, it computes an op-

timal weight vector β and take the product with the feature vector β Tx to make predictions. For

binary classification problems, with classes 0 and 1, we would like to have a probability of the data

begin in class y = 1. This is accomplished by scaling the predictions so that they are between 0

and 1. We can then choose a threshold between 0 and 1 (usually 0.5) such that if the probability

is greater than the threshold, we assign x to class 1, otherwise class 0. Note that a threshold of

0.5 is equivalent to rounding to nearest whole number to determine the class. We use the sigmoid

function

sigm(x) =
1

1+ e−x

to accomplish this scaling to between 0 and 1. Thus the probability of being in class 1 is given by

h(x) = sigm(β Tx) =
1

1+ e−β Tx

and the probability of being in class 0 is 1−h(x).

The learning problem in logistic regression is optimizing β . As shown in (Murphy, 2012),

logistic regression corresponds to the model

p(y|x,β ) = Ber(y|sigm(β Tx))

where Ber is the Bernoulli distribution. We can multiply the probabilities over all the training data

to formulate the maximum likelihood estimator,

N

∏
i=1

sigm(β Tx(i))I(y(i)=1) ·
(

1− sigm(β Tx(i))
)I(y(i)=0)

where I is the indicator function. Taking the log of this expression and negating gives a negative
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log likelihood of

NLL(β ) =−
n

∑
i=1

[
y(i)log

(
sigm

(
β

Tx(i)
))

+
(

1− y(i)
)

log
(

1− sigm
(

β
Tx(i)

))]
(2.1)

where x(i) is the feature vector and y(i) is the target of the training data point i. We would like to

minimize this function over β based on our training data.

Because this equations is not in closed form (Murphy, 2012), we must used unconstrained

optimization methods to minimize the negative log likelihood. Common methods for this are

gradient descent and Newton’s method (Ng, 2016). Both require choosing a step size α . We train

on the training data and use the validation data to optimize α based on the number of iterations we

choose.

2.3 Linear and Quadratic Discriminant analysis (LDA and QDA)

Similar to Naive Bayes Classifier, quadratic and linear discriminant analysis are generative classi-

fiers. Though the names are misleading, discriminant classifiers model p(y = c|x) and simply map

the data directly to the targets, while generative classifiers model p(y = c,x), which gives informa-

tion about how the data is generated. For generative classifiers, we calculate the class conditional

density p(x|y = c) and use Bayes’ Rule to estimate the posterior

p(y = c|x) ∝ p(y = c)p(x|y = c).

Geometrically, LDA and QDA define an ellipse for each class c which includes a certain per-

centage of the training data that falls into that class, usually 95%. To define these ellipses, we

compute the center of each class µc for the centroid of the ellipse. We also compute the covariance

matrix for each class Σc. Since Σ will be a positive semi-definite matrix, we can perform singular

value decomposition to find the eigenvalues and eigenvectors. These eigenvectors will give the

axes of the ellipse and the eigenvalues gives how much far the ellipse is stretched along the axes.
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Both LDA and QDA assume the class conditional density has a Gaussian distribution allowing

us to compute the probability of the data falling into each class ellipse

p(x|y = c) = N (x|µc,Σc) = |2πΣc|−1/2exp
(
−1
2
(x−µc)

T
Σ
−1
c (x−µc)

)
.

To classify an unseen data point x, we use the proportion given by Bayes’ Rule above. Let p(y =

c) = πc. Usually we compute πc =
Nc
N where N is the total number of training examples and Nc is

the number of training examples in class c. We compute p(y = c|x) for each class c and choose the

class with the highest probability. Since we are only choosing the highest, taking the log doesn’t

change the class we choose, but make the computation much cleaner. Then the classification

problem becomes

ŷ(x) = argmaxc [log(p(y = c))+ log(p(x|y = c))]

= argmaxc

[
πc−

1
2

log(2πΣc)−
1
2
(x−µc)

T
Σ
−1
c (x−µc)

]
.

Notice the middle term is constant over the new data x, thus we can equivalently write

ŷ(x) = argmaxc

[
πc−

1
2
(x−µc)

T
Σ
−1
c (x−µc)

]
.

If the priors are constant across classes, we may drop the first term as well. Since this leaves a

leading negative, we minimize over the opposite and again drop the meaningless constant of 1
2

ŷ(x) = argminc(x−µc)
T

Σ
−1
c (x−µc).

This result is the classifier for QDA. LDA makes the assumption that the covariance matrices

are equivalent across classes Σc = Σ to further simplify the computation to

ŷ(x) = argminc(x−µc)
T

Σ
−1(x−µc).
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2.4 Decision Tree

The name of the decision tree algorithm comes from the tree-like structure that arises in the way

the data is split based on a series of binary questions. These splits at binary questions are called

nodes. All incoming data starts at the same node, the ’root’ of the tree. If the answer is yes, the

data follows on path and if not, it follows the other path. Both paths lead to a second node and

is split again based on the answer to this new node. Each node uses only one feature. The most

important features are used early in the tree, at or near the root. The less influential features are

utilized for fine tuning at the ends of the branches or often not used at all. A target is assigned at

the very tip of each branch.

At the root of the tree, an algorithm uses all the data to assign a score to each feature. The

feature with the highest score is used to split the root. As we progress up the tree, the algorithm

to select a feature for each node is repeated, but only the subset of the data that is directed to that

node is used in the algorithm.

One major difference from what we have seen in other algorithms is that the decision tree

requires binary or discrete features, not continuous real valued features. Clearly the algebra student

data consists of real valued features. In order to implement the decision tree, we must convert these

to binary. This is not difficult by splitting each feature into multiple features. Consider the high

school GPA feature for example. It holds a real value between 0 and 4. We can choose to split this

real valued feature into six binary features by asking if the real value is greater than or equal to a

certain value between 0 and 4. Then the first of the six new features may be "the student’s high

school GPA is greater than or equal to 0.5" and take the value 0 if the statement is false and 1 if the

statement is true. The chart below summarized how this process works. The first column gives the

original feature value and the follow six columns give the corresponds binary values the six new

features take based on the original feature value.
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Original feature value ≥ 0.5 ≥ 1 ≥ 1.5 ≥ 2 ≥ 2.5 ≥ 3 ≥ 3.5

3.78 1 1 1 1 1 1 1

2.34 1 1 1 1 0 0 0

1.75 1 1 1 0 0 0 0

2.5 Naive Bayes Classifier

The Naive Bayes approach to machine learning makes use of Bayes’ Rule which gives the posterior

probability as the product of the class prior probability and the likelihood.

p(y = c|x) = p(x|y = c) · p(y = c)
p(x)

where y is the outcome and c ∈C is one of the possible classes C the outcome can fall into.

Navie Bayes further makes the ’naive’ assumption that all features are conditionally indepen-

dent from one another, that is

p(x j,xk|y = c) = p(x j|y = c)p(xk|y = c)

for all j,k ∈ {1, . . . ,n}. This impacts the likelihood and the equation above becomes

p(y = c|x1, . . . ,xn) =
p(x1, . . . ,xn|y = c) · p(y = c)

p(x)

=
p(x1|y = c)·(x2|y = c) · . . . · p(xn|y = c)p(y = c)

p(x)

=
(∏n

i=1 p(xi|y = c)) p(y = c)
p(x)

We now have a way of calculating the posterior probability p(y = c|x) given the priors p(y = c)

and p(x) and the likelihoods p(xi|y = c). To classify a new data point x, we simply calculate

p(y = c|x) for each c ∈C and choose the highest resulting probability.

It is common practice (Murphy, 2012) to use the Gaussian distribution to estimate p(xi|y = c).
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Given the training data, we select only data points which result in y = c. From these points, we

calculate a mean µic and standard deviation σic for each feature xi for i ∈ {1, . . . ,n}. The we can

compute

p(xi|y = c) = f (xi)

where f (x) is given by the probability density function of the normal distribution N (µic,σic).

To calculate p(y = c) from the training data, we simply divide p(y = c) = Nc
N where N is the

total number of data points in the training data and Nc is the number if data points in the training

data which result in y = c. To further simplify the computation, since p(x) will be a constant scalar

for each new data point x which we would like to classify, it will not influence our choice of class.

That is, since

p(y = c j)∏
n
i=1 p(xi|y = c j)

p(x)
<

p(y = ck)∏
n
i=1 p(xi|y = ck)

p(x)

=⇒ p(y = c j)
n

∏
i=1

p(xi|y = c j)< p(y = ck)
n

∏
i=1

p(xi|y = ck)

we have no need to compute the predictor prior probability in the denominator. We simply compute

the numerator and assign the new data x to the class resulting in the highest probability.

2.6 K Nearest Neighbor

The K nearest neighbor classifier (KNN) compares the features of new data with the features of

all the training data. It chooses the K most similar training data points NK and looks at the classes

these K training data points fall into. The algorithm classifies the new data by simply choosing the

class that appears most frequently in the NK training data points. Let YK be the set of classes that

the NK data takes. The likelihood can be written in terms of the Kronecker delta functions as

p(y = k|x,D,K) =
1
K ∑

y∈YK

δyk.
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The algorithm selects NK by treating the data features as vectors and computing the euclidean

distance between the new data point xnew and each training data point xi. We keep the K training

data points with the smallest distances

dist(xnew,xi) =

(
∑

j
(xnew, j− xi, j)

2

) 1
2

where i denotes the training data point and j denotes the feature.

The algorithm may be straight forward, but choosing a good value for K is not. If we choose a

value too small, we overfit the training data. If we choose a value too large, we over-simplify the

training problem and assign all new data to the most popular class in the training data.

KNN makes the assumption that all nearby data have the same target, which may not necessar-

ily be the case, but we hope it is true or learning may not be possible at all. In contrast to decision

tree, KNN weights all features evenly. This is usually not helpful. In many situations, some fea-

tures are much more important in determining the target than others. KNN does not have the power

to make use of this fact. However since we have only three features in the algebra student data,

this should pose a problem for our research.

2.7 Support Vector Machine

There are many techniques to find an optimal hyperplane which separates completely separable

data. The optimal separating hyperplane is defined to be the hyperplane which separates the data

and maximized the distance between the plane and the closest data point from each class. In the

two-class case, let the classes be represented by -1 and 1. Let β be the vector of coefficients

defining the optimal hyperplane, with β0 being the intercept. Assuming (xi,yi) be the ith training

point where xi is a vector of features and yi is the class to which the ith training example belongs.

We can then turn the optimal hyperplane question to an optimization problem as follows

maxβ ,β0,||β ||=1 M
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yi(xT
i β +β0)≥M, i = 1, . . . ,N.

This is a convex optimization problem, so typically it is solved with Lagrangian multipliers. Details

can be found in Section 4.5.2 of reference Hastie et al. (2009).

In the optimization problem above, M is called the margin and is the distance between the

hyperplane and the closest data points. Thus 2M is the width of path between the data. The data

points which lie exactly on the margin are called support vectors.

The support vector machine (SVM) provides a way to extend this separating hyperplane idea to

data that is not separable. It defines a was of measuring the overlap and minimizing it. We define

a new slack variables ξi ≥ 0 for each training data point. This variable gives the distance a point

must move to be on the correct side of the margin and thus is zero if the point is on the correct side

of the margin. The SVM then adds a new constraint on the sum ∑
N
i=1 ξi <C for some constant C.

The optimization problem above can be rewritten to eliminate the margin variable M as

minβ ,β0 ||β ||

yi(xT
i β +β0)≥ 1, i = 1, . . . ,N.

The SVM then allows for some points to lie on the wrong side of by modifying the second con-

straint to

yi(xT
i β +β0)≥ 1−ξi, i = 1, . . . ,N.

The algorithm assigns a class to new data by simply considering on which side of the hyper-

plane the data lies.

2.8 Random Forest

As the name ’forest’ implies, a random forest is a collection of decision trees. The ’random’ comes

in the way in which the trees are grown. First, the data used to train each tree is randomized. If

there are n training examples, n are randomly selected with replacement. Once the training data
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for a particular tree is selected, at each node, a randomized subset of the features used in training is

selected to make the decision for that node. The number of features selected is typically the floor

of
√

p, where p is the number of features in the entire data set, although as few as one feature can

possible be selected. Once a number is selected, it is held fixed through the entire training process.

No pruning is done on the trees Breiman (1999). The number of trees grown for the forest is

typically chosen using the validation data to test how many trees are necessary before the accuracy

levels off.

To classify new data, each tree in the forest predicts a class and casts a vote for this class.

The class with the most votes is the class to which the random forest assigns the new data. This

algorithm almost always produces higher accuracy that a single decision tree. Each individual tree

is nearly unbiased, but trees are known to be very noisy. Giving each tree one vote towards the final

classification averages out the noise. The advantage in random forests come in that the individual

trees are all independent and identically distributed. When i.i.d. random variables are averaged,

the independence means that the variance is reduced from the variance of a single random variable

σ2 to 1
N σ2 where N is the number of random variables Hastie et al. (2009). The final variance for

the random tree model takes the positive pairwise correlation of the features into account, but is

reduced by the same order of 1
N .

When analyzing the error of random forests, we find a trade-off between correlation between

trees and strength of individual trees. Accuracy of the model improves with decreased correlation

between trees and increased strength of individual trees, however correlation between trees and

strength of individual trees vary together with number of features considered at each node. Thus

when one increases so does the other. The model optimizes the number of features used for each

node based on the training examples that were not selected for a particular tree in the randomized

selection process.

Because random forests typically consist of hundreds, sometimes thousands, of trees, the data

is untrackable through the classification process. However, computation can be made to quantify

the importance of each variable in the data set. This can be done by computing what is called the
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Gini impurity index at each node. The impurity index is highest when the data at the node is split

evenly between classes and lowest when the data is all of a single class. In other words, a node is

more "pure" when previous splits have isolated data from a single class as much as possible.

To compute the importance of a variable within the data set, we consider all the nodes that

utilize that particular variable to split the data. The importance of that variable at each node can

be calculated by subtracting the Gini impurity index of the two subsequent nodes from the Gini

impurity index of the parent node. The importance per node is averaged over the entire forest and

results in the overall importance of the variable. We compare these average Gini decreases of all

variables. This can be used for dimensionality reduction by training a random forest model with

say M variables and selecting m << M of the most important variables according to the average

Gini decrease results. We then train a new random forest with only these m variables.

2.9 Feature Engineering and Dimensionality Reduction: Principal Compo-

nent Analysis

Often manipulating the data before inputting it into a machine learning algorithm can raise ac-

curacy of a model. This process is called feature engineering and is most often approached by

constructing new features from the original features. These new features can produce more sepa-

rability in the data so that patterns can be more easily recognized by algorithms. In this study we

consider a method of feature engineering called principal component analysis (PCA).

PCA is an unsupervised method, meaning it is not necessary to know to which class a data

point is assigned to implement the method (unlike all previous algorithms, which require the class

labels to train models). PCA is derived from singular value decomposition (SVD) Hastie et al.

(2009). Let X be an n× p matrix with all input feature information but not class labels where n is

the number of data points we have and p is the number of features. Assume the features have been

normalized and thus are centered so that means are zero. Then each row of X contains all p feature

values for a particular training example.
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We can use SVD to write

X = UΣVT

where U is n× p, Σ is p× p, and V is p×n. The columns of U and V form orthonormal bases The

column spaces of U and of V span the column and row space of X and row space of X respectively.

The matrix Σ is a diagonal matrix.

Consider the covariance matrix

S =
XT X
n−1

.

Substituting the SVD we can obtain the eigen decomposition of XT X

XT X =
(
UΣVT)T UΣVT

= VΣ
T UT UΣVT

= VΣ
2VT .

Thus we can see that the columns of V are the eigenvectors, called principal components, of

the covariance matrix. The eigenvalues λ j can be written in terms of the singular values s j of Σ by

λ j =
s2

j
n−1 .

The first principal component gives the direction which captures the maximum variance in the

data. That is, if the data were projected onto this vector, it would have the maximum separability.

The principal components are listed in descending order of variance explained. We can plot the

principal components along the x axis and fraction of variance explain on the y axis in what is

called a scree plot. This visual is used to determine how many of the principal components are

need to explain the variance in the data.

The data in X is mapped to the orthogonal space defined by the principal components. The

values of each principal component become new feature values for each data point. Thus we

have engineered new features which are linear combinations of the original features. At this point

the number of principal components is p, but because they are now listed in order of variance
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explained, we may drop features, beginning with the last one, without losing valuable information.

In fact, we often eliminate meaningless variance when we drop portion of these new features so

that only the most informative features remain.
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Chapter 3

Machine Learning applied to data on

college students

Although traditional data models still make up the vast majority of predictive models in the field

of education, many have had success with algorithmic models as well. One study (Marbouti et al.,

2016) similar to our study was conducted in 2016. Researchers analyzed machine learning algo-

rithmic models which predict at-risk college students in standards based grading courses. They

trained binary classification models to predict whether a student will pass or fail a class.

Similar to our study, the researchers experimented with logistic regression, support vector ma-

chines, decision trees, Näive Bayes classifiers, and K nearest neighbor (KNN) clustering. They

considered multi-layer perceptron (neural networks) in addition to the models we use in our study.

They used logistic regression (which can also be considered as a data model) as their baseline

model with which to compare all other models. Logistic regression alone predicted 92.6% of stu-

dents correctly. The researchers were able to improve on this with several models, the best of

which was KNN which predicted 94.9% of students correctly.

When we consider accuracy of pass and fail predictions separately, KNN performs with 99.7%

accuracy on students who pass the class. The 0.3% of students who were predicted to fail when

they actually passed all passed with only a C. However with only 34.5% accuracy in students
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predicted to fail, KNN is the worst model for predicting students who will not pass. While helpful

in identifying students who will pass the course, it is not effecting in predicting at-risk students.

Table 3.1 shows a similar summary for other models.

Model Overall Accuracy Pass Accuracy Fail Accuracy

Logistic Regression 92.6% 95.3% 58.6%

KNN 94.9% 99.7% 34.5%

Multi-layer Perceptron 93.1% 96.7% 48.3%

Decision Tree 92.3% 96.1% 44.8%

Näive Bayes’ 86.9% 87.0% 86.2%

Support Vector Machine 87.2% 88.4% 72.4%

Ensamble 92.1% 93.9% 69%

Table 3.1: Model accuracy comparison (Marbouti et al., 2016)

Another such study looked at engineering students in a dynamics course (Huang & Fang,

2013). The goal was to predict the binary outcome (pass or fail) of the course mid-semester.

The training data consisted of test grades for the dynamics course, GPA, final grades in four pre-

requisite courses and of course the pass/fail result of the dynamics course for 323 students over

four semesters. The researchers considered four machine learning models: multiple linear regres-

sion, multi-layer perceptron (neural network), radial basis function neural network, and support

vector machine. The study shows that if the goal is to predict the success of the class overall, the

simplest model, multiple linear regression, with only GPA as a predictor will do just as well as

other models. However if the goal is to predict whether an individual student will be successful in

the course, the SVM model with all predictors available before the midterm exam has the highest

overall accuracy at 64%.

The study trained model for multiple points throughout the semester. Prior to the start of

the semester, a model with students’ GPA and final grades of four prerequisite courses does not

predict significantly better that GPA alone. Both predict near 50% accuracy. After the first of three

midterm exams, the SVM model predicts with 59.1% accuracy. After the second midterm, the
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accuracy increases to 61.3% and after the third midterm the accuracy jumps to 64.0%.

Another recent study which employed machine learning algorithms explored how different

students respond to collaborative learning–the "flipped classroom" style of teaching (Cen et al.,

2016). "We explore the predictability of academic performance based on the mechanics of in-

teractions during live collaborative learning. The aim is to predict how well the group is likely

to perform given all available individual and group historical evidence as well as live interaction

patterns." The study divides students into classes based on how the learn from this style and make

predictions on how new students will learn in this environment based on other characteristics of

the students.

A similar study predicted how student would learn from education games (Barata et al., 2016).

The researcher’s used algorithmic models and feature engineering to answer the following ques-

tions:

1. Is there a subset of relevant features that can be used to predict the student type in the data

sample?

2. Can the relevant feature set be used to predict the students? class in another instance of the

course?

3. Can student types be predicted by midterm?
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Chapter 4

Results and Method Comparison

4.1 Descriptive Statistics

Before normalizing the data and examining the variety of predictive models discussed in Chapter

2, we would like to gain insight into the data by comparing GPA scores and ACT scores of student

groups. We separate the students based on whether or not they passed a course and compute the

average, median and standard deviations of GPA and Math ACT scores. These are showing in

Table 4.1. The differences in the ACT averages and percent changes are shown in Tables 4.2

and 4.3. In contrast, we see a higher separability in the students who passed and failed when we

consider GPA. This is shown in the Table 4.4.
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Score and student group Average Median Standard deviation

GPA of all Int. Algebra students 3.03 3.08 0.56

GPA of Int. Algebra failing students 2.86 2.9 0.56

GPA of Int. Algebra passing students 3.18 3.22 0.50

GPA of all College Algebra students 3.22 3.3 0.57

GPA of College Algebra failing students 3.01 3.05 0.59

GPA of College Algebra passing students 3.39 3.46 0.49

Math ACT of all Int. Algebra students 18.6 19 2.1

Math ACT of Int. Algebra failing students 18.2 18 2.2

Math ACT of Int. Algebra passing students 18.9 19 1.9

Math ACT of all College Algebra students 22.4 23 2.7

Math ACT of College Algebra failing students 21.7 22 3.0

Math ACT of College Algebra passing students 22.9 23 2.3

Table 4.1: Descriptive statistics for student groups

ACT Component: Math English Science Reading

Difference in average score (out of 36): 0.65 0.75 0.57 0.16

Percent difference: 1.8% 2.1% 1.6% 0.5%

Table 4.2: Differences in average ACT scores of Intermediate Algebra students who passed vs.
failed

ACT Component: Math English Science Reading

Difference in average score (out of 36): 1.25 0.91 0.72 0.38

Percent difference: 3.6% 2.5% 2.0% 1.1%

Table 4.3: Differences in average ACT scores of College Algebra students who passed vs. failed
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Average GPA (pass) Average GPA (fail) Difference Percent difference

Intermediate Algebra: 3.18 2.86 0.32 8.0%

College Algebra: 3.39 3.01 0.39 9.6%

Table 4.4: Differences in average GPA scores students who passed vs. failed

To help visualize the data, we plot the GPA against the ACT scores of individual students in

Figures 4.1 and 4.2. Teal points correspond to students who passed the course and coral points

correspond to students who did not. The large dots represent the average of all the corresponding

students. The ellipses designate the area in which each type of student lies with 95% confidence.

The plots are done with normalized data so that GPA and ACT scores are on the same scale. This

way we can more easily compare the separability due to GPA and due to ACT scores.
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Intermediate Algebra 95% confidence ellipses

Figure 4.1: Ellipses show separation between students who passed and students who failed Inter-
mediate Algebra. The x axis shows normalized high school GPA and the y axis shows normalized
ACT scores. The ellipse represents 95% confidence.
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College Algebra 95% confidence ellipses

Figure 4.2: Ellipses show separation between students who passed and students who failed College
Algebra. The x axis shows normalized high school GPA and the y axis shows normalized ACT
scores. The ellipse represents 95% confidence.
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Student data convergence to average: To more easily view all the data points together, we

separate the students based on whether or not they passed the course, and take averages of small

counts of students. We then plot a single data point for each of these averaged groups. This results

in data that is much more separable, shown in Figures 4.3 - 4.8.

Averages of 5 students

Figure 4.3: Each data point represents the average of 5 students, all of which passed or all of
which failed.
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Averages of 10 students

Figure 4.4: Each data point represents the average of 10 students, all of which passed or all of
which failed.

Averages of 15 students

Figure 4.5: Each data point represents the average of 15 students, all of which passed or all of
which failed.
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Averages of 20 students

Figure 4.6: Each data point represents the average of 20 students, all of which passed or all of
which failed.

Averages of 25 students

Figure 4.7: Each data point represents the average of 25 students, all of which passed or all of
which failed.
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Averages of 30 students

Figure 4.8: Each data point represents the average of 30 students, all of which passed or all of
which failed.

It is also helpful to divide students based on their Math ACT and GPA scores and consider what

percent of each group passed and failed. These numbers are given in bar graphs in Figures 4.9 -

4.12. In these graphs we can see that the percent of students passing increases slightly with increas-

ing ACT but increases dramatically with increasing GPA. The total number of students are given

in the gray graphs. Because most of the students in College Algebra scoring 21 of less are students

who previously took Intermediate Algebra, we do not consider them in the increase/decreasing bar

graphs.
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Intermediate Algebra students divided by Math ACT score

Figure 4.9: Percent of Intermediate Algebra students who pass and fail divided by Math ACT
scores. The percent of students passing increases from 27.7% of students with a score of 15 to
62.0% of students with a score of 25.
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College Algebra students divided by Math ACT score

Figure 4.10: Percent of College Algebra students who pass and fail divided by Math ACT scores.
The percent of students passing increases from 55.8% of students with a score of 22 to 67.1% of
students with a score of 25.
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Intermediate Algebra students divided by high school GPA score

Figure 4.11: Percent of Intermediate Algebra students who pass and fail divided by GPA score
ranges. The percent of students passing increases from 17.1% of students with a GPA of 2.0 to
2.25 to 81.7% of students with a score of 3.75 to 4.0.

College Algebra students divided by high school GPA score

Figure 4.12: Percent of College Algebra students who pass and fail divided by GPA score ranges.
The percent of students passing increases from 16.5% of students with a GPA of 2.0 to 2.25 to
82.3% of students with a score of 3.75 to 4.0.
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15 16 17 18 19 20 21

3.75 - 4.0 0.1% 0.3% 0.6% 0.9% 1.1% 1.1% 1.4%

3.5 - 3.74 0.3% 1.0% 1.7% 2.1% 2.1% 2.1% 2.3%

3.25 - 3.49 0.7% 1.8% 2.9% 3.4% 3.3% 2.9% 2.8%

3.0 - 3.24 0.7% 2.4% 3.5% 3.3% 3.8% 3.3% 2.9%

2.75 - 2.99 0.9% 2.2% 3.3% 3.0% 2.8% 2.4% 2.3%

2.5- 2.74 0.7% 1.7% 2.3% 2.2% 1.9% 1.9% 1.8%

2.25 - 2.49 0.3% 0.8% 1.2% 1.0% 0.9% 0.9% 0.8%

<2.25 0.3% 0.6% 0.8% 0.6% 1.0% 0.9% 0.8%

Table 4.5: Percent of Intermediate Algebra students with Math ACT/GPA combinations. This
table represents 95% of the Intermediate Algebra data. The remainder either had a Math ACT
score greater than 21 but opted to take Intermediate Algebra anyway or had a Math ACT lower
than 15, but this was a negligible number of students.

Putting the information from the bar graph together, we create a table with Math ACT scores

along the x axis and GPA ranges along the y axis. At each cell in the grid, we give the percentage of

the total students that fall into that cell. This is show in Tables 4.5 and 4.6. Then we compute the

probability that the students in each particular cell will pass the course. This is shown in Tables 4.8

and 4.9.

The analysis in this section all indicates that GPA separates passing students from failing stu-

dents more definitely than Math ACT score. We see this first from comparing the percent change

in scores in averages among passing and failing students. While average Math ACT score changes

by only 1.8% for Intermediate Algebra and 3.6% for College Algebra, average GPA changes by

8.0% for Intermediate Algebra and 9.6% for College Algebra. The higher separability that GPA

gives compared to any other ACT component can be visualized in Figures 4.1 and 4.2. Notice that

there is more separation horizontally than vertically, especially in ACT English and ACT Reading

but also in ACT Math and ACT Science.

In the averaged student data convergence, we notice that GPA converges much faster than Math

ACT. Especially in Figure 4.8 we see in College Algebra the passing and failing students each fall
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22 23 24 25

3.75 - 4.0 2.1% 3.0% 3.8% 4.3%

3.5 - 2.8% 3.0% 4.1% 3.6%

3.25 3.2% 3.6% 3.9% 2.8%

3.0 3.0% 3.0% 3.1% 2.1%

2.75 2.2% 2.2% 2.1% 1.5%

2.5 1.3% 1.4% 1.3% 1.0%

2.25 0.6% 0.9% 0.7% 0.4%

<2.25 0.6% 0.6% 0.7% 0.4%

Table 4.6: Percent of College Algebra students with Math ACT/GPA combinations. Just under
70% of all students in College Algebra fall into the Math ACT/GPA grid shown here. Just over 5%
have Math ACT scores greater than 25 and the remaining students have Math ACT scores below
22, meaning they likely took Intermediate Algebra post high school at the university of our present
study or elsewhere

x≥ 75%

0.75 > x≥ 50%

50% > x≥ 25%

25% > x

Table 4.7: Legend for color scheme where x is the percent of students in each cell who pass the
course.
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15 16 17 18 19 20 21

3.75 42.86% 76.00% 82.14% 87.34 % 84.85% 89.69% 84.68%

3.5 45.16% 64.13% 73.47% 73.77% 68.48% 82.98% 76.35%

3.25 33.90% 55.83% 53.08% 61.07% 71.53% 69.29% 74.70%

3.0 31.75% 43.87% 56.49% 55.02% 67.07% 69.90% 64.45%

2.75 31.58% 31.82% 40.55% 45.32% 52.02% 54.76% 57.21%

2.5 13.33% 31.76% 32.00% 42.35% 37.95% 43.45% 43.95%

2.25 12.90% 13.33% 24.27% 40.77% 25.00% 29.87% 28.38%

<2.25 20.00% 24.07% 18.67% 26.00% 32.61% 12.99% 18.67%

Table 4.8: Percent of Intermediate Algebra students who pass Intermediate Algebra in each of the
Math ACT and GPA combinations.

22 23 24 25

3.75 83.97% 83.81% 83.20% 84.27%

3.5 72.85% 73.11% 74.03% 75.60%

3.25 61.08% 65.21% 68.48% 66.20%

3.0 51.73% 57.52% 57.47% 57.99%

2.75 38.55% 42.18% 51.52% 51.87%

2.5 28.83% 34.86% 43.37% 42.86%

2.25 22.22% 21.30% 25.58% 28.30%

<2.25 21.33% 21.92% 20.00% 21.43%

Table 4.9: Percent of College Algebra students who pass College Algebra in each of the Math
ACT and GPA combinations.
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into a narrow GPA column but there is still large variation in Math ACT with a large overlap. This

shows that GPA more precisely identifies passing and failing students. The bar graphs with percent

of students passing and failing with each ACT score/GPA range further confirm that GPA is a more

important predictor of success. Notice that students have a much more dramatic increase in passing

rates with increase GPA than with increasing Math ACT. Finally, when we put this information

together in Tables 4.8 and 4.9 we see that while higher Math ACT scores does positively impact

percent of students passing the course, the general cutoffs are horizontal, meaning that GPA is a

heavier weight in passing rates than Math ACT.
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4.2 Principal Component Analysis

Using principal component analysis (PCA), we can map the original variables to new variables

which are orthogonal. This maximizes the separability in the data. The new variables, which

are features called components, are linear combinations of the original variables. They are listed

in terms of how much of the variance in the data each one explains. The direction of the first

component is chosen to maximize the explained variance. PCA results from the Intermediate

Algebra and College Algebra data are shown in Tables 4.10 and 4.11 respectively and scree plots

for the new features are shown in Figure 4.13.

Intermediate Algebra PC1 PC2 PC3 PC4 PC5

Proportion of Variance 0.49 0.20 0.14 0.10 0.07

Cumulative Proportion 0.49 0.69 0.83 0.93 1.00000

Table 4.10: Intermediate Algebra variance explained by PCA features

PCA feature scree plots

Figure 4.13: Intermediate Algebra scree plot is on the left and College Algebra scree plot is on
the right. Scree plots show the fraction of total variance explained by each principal component.
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College Algebra PC1 PC2 PC3 PC4 PC5

Proportion of Variance 0.51 0.18 0.15 0.09 0.06

Cumulative Proportion 0.51 0.70 0.85 0.94 1.00

Table 4.11: College Algebra variance explained by PCA features

Using the new PCA variables, we again would like to visualize the data to see if more separation

between students who pass and students who fail appears. The maximum amount of separation

we will see in two dimensions occurs in plotting principal component (PC) 1 and PC 2. For

separability comparison, we also plot PC 3 against PC 4 in Figure 4.14. In Section 4.4 we further

analyze models resulting from training with PCA components. We will compare these models to

the models trained on normalized features.
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PCA plots showing separability of data

Figure 4.14: PCA features for Intermediate Algebra data are shown on the top row and for College
Algebra data are shown on the bottom row. Since PCA features are ordered in terms of amount of
variance explained, the most separability in two dimensions comes in plotting the first two features
and almost no separability comes in plotting the next two features.
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4.3 Model Comparison

We train each of the models discussed in Chapter 3 on 60% of the data from 2006 to 2016. Some

models require additional parameters and these are selected based on the validation data. We

then make predictions on the testing data with each model and check these predictions against

the actual outcomes. We compute accuracy by dividing the number of testing data points that the

model predicted correctly by the total number of testing data points. Table 4.12 shows the resulting

accuracies.

Model: Int. Algebra accuracy College Algebra accuracy

Logistic Regression 65.5% 68.5%

Linear Discriminant Analysis 65.3% 68.4%

Quadratic Discriminant Analysis 64.7% 67.3%

Decision Tree 65.2% 66.9%

Naive Bayes 64.8% 57.5%

K Nearest Neighbors 65.1% 68.5%

Support Vector Machine 65.3% 68.4%

Random Forest 64.9% 68.4%

Table 4.12: Model accuracies with normalized data

For Intermediate Algebra, 65.5% is the maximum accuracy we reach in the testing data. This

was achieved by logistic regression. However the lowest accuracy was 64.7%, a difference of only

0.8% in accuracy, so all Intermediate Algebra models perform approximately equivalently.

For College Algebra, 68.5% accuracy is the maximum accuracy, achieved by both logistic

regression and KNN. The LDA, SVM, and random forest models are all within 0.4% of the max-

imum accuracy. The only model that performs significantly worse than the other models is Naive

Bayes. This is likely because the main assumption necessary for Naive Bayes is that all features are

independent. Clearly in our case, GPA is correlated with ACT scores and individual ACT scores

are correlated with each other. Thus the independence assumption is false and we expect Naive
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Bayes to perform poorly.

In other studies referenced in Chapter 3, there was more variance in the accuracies of difference

models. With the exception of Naive Bayes in College Algebra, all models for both Intermediate

Algebra and College Algebra are very consistent in accuracies. This is likely because of the mas-

sive data set we use in training.

We would like to consider not only overall accuracies of models, but accuracy in predicting

passing students and accuracy in predicting failing students individually. As shown in a study

referenced in Chapter 3 by Marbouti et al. (2016), even though Naive Bayes performs the worst

overall, it is by far the best model in predicting failing students. We show results of passing and

failing accuracies from our study in Tables 4.13 and 4.14.

Model Overall Accuracy Pass Accuracy Fail Accuracy

Logistic Regression 65.5% 73.1% 57.3%

Linear Discriminant Analysis 65.3% 75.2% 54.5%

Quadratic Discriminant Analysis 64.7% 79.0% 48.0%

Decision Tree 65.2% 70.5% 59.5%

Näive Bayes’ 64.8% 79.3% 48.9%

K Nearest Neighbors 65.1% 72.3% 57.3%

Support Vector Machine 65.3% 72.9% 56.8%

Random Forest 64.9% 73.4% 56.8%

Table 4.13: Intermediate Algebra model accuracies of passing students and of failing students
compared to overall accuracy.

For Intermediate Algebra, all models give passing accuracies between 70% and 80% with the

maximum accuracies achieved by QDA and Naive Bayes. However these two give the lowest

failing accuacies. All failing accuracies are between 48% and60% with the highest achieved by

the decision tree.

For College Algebra, all models give passing accuracies between 75% and 82% except the

decision tree, which has accuracy of 67.5%. However the decision tree gives the highest failing
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Model Overall Accuracy Pass Accuracy Fail Accuracy

Logistic Regression 68.5% 77.3% 56.6%

Linear Discriminant Analysis 68.4% 79.1% 53.9%

Quadratic Discriminant Analysis 67.3% 81.2% 49.4%

Decision Tree 66.9% 67.5% 66.0%

Näive Bayes’ 57.5% 81.0% 49.0%

K Nearest Neighbors 68.5% 76.6% 57.7%

Support Vector Machine 68.4% 78.0% 55.6%

Random Forest 68.4% 75.0% 58.5%

Table 4.14: College Algebra model accuracies of passing students and of failing students com-
pared to overall accuracy.

accuracy at 66.0%. The closest to the decision tree is the random forest with 58.5% accuracy.

Again, the models with the highest passing accuracies are also the models with the lowest failing

accuracies.
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Model Precision Recall F1 Score

Logistic Regression 0.65 0.77 0.70

Linear Discriminant Analysis 0.64 0.75 0.69

Quadratic Discriminant Analysis 0.63 0.79 0.70

Decision Tree 0.65 0.70 0.68

Näive Bayes’ 0.63 0.79 0.70

K Nearest Neighbors 0.65 0.72 0.68

Support Vector Machine 0.65 0.73 0.69

Random Forest 0.65 0.74 0.69

Table 4.15: Comparing Intermediate Algebra models with F1 scores

To further compare the performance of our models, we compute the precision, recall and F1

score defined by

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

F1 score =
2 ·precision · recall
precision + recall

.

Precision gives proportion of students predicted to pass who actually did pass. Recall gives the

proportion of students who passed the class that the model predicted correctly. The F1 scores gives

the harmonic mean of the two proportions. We would like to find the model that maximizes both

precision and recall, and thus we would like to maximize the F1 score. Tables 4.15 and 4.16 gives

these results.

Like we saw in comparing accuracies in models, the F1 scores are incredibly consistent be-

tween models. This is probably a result of the large data set.
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Model Precision Recall F1 Score

Logistic Regression 0.71 0.77 0.74

Linear Discriminant Analysis 0.70 0.79 0.74

Quadratic Discriminant Analysis 0.68 0.81 0.74

Decision Tree 0.73 0.68 0.70

Näive Bayes’ 0.68 0.81 0.74

K Nearest Neighbors 0.71 0.77 0.74

Support Vector Machine 0.70 0.78 0.74

Random Forest 0.71 0.77 0.74

Table 4.16: Comparing College Algebra models with F1 scores

4.4 Principal Component Analysis Results

We train each of the models discussed in Chapter 2 again with the PCA features. Results are

shown in Table 4.17. Most models show a slight improvement with PCA features. The random

forest model gives the best result for both Intermediate Algebra and College Algebra with 67.1%

and 70.0% respectively. However the slight improvements in accuracy are not enough to make

up for the loss in interpretability. Since each PC is a linear combination of the original variables,

we do not gain information about algebra students by seeing how models weight PC’s or by the

importance models give to PC’s. By keeping original variables it is clear which scores are most

important in placing students based on results of models like logistic regression and LDA. For this

reason we continue analysis with original variables and not PCA features.

In the remaining sections of this chapter, we look more closely at most of the models. We

choose to do no further analysis on QDA because any insight this model give would be similar to

LDA, but LDA has slightly higher accuracy. We also choose to do no further analysis on Naive

Bayes because the model does not provide more interesting insight.
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Model: Int. Algebra accuracy College Algebra accuracy

Logistic Regression 65.2% 69.4%

Linear Discriminant Analysis 65.0% 69.2%

Quadratic Discriminant Analysis 64.1% 67.7%

Decision Tree 64.1% 67.2%

Naive Bayes 53.8% 68.1%

K Nearest Neighbors 64.1% 68.2%

Support Vector Machine 65.8% 69.9%

Random Forest 67.1% 70.0%

Table 4.17: Comparison of model accuracies with PCA features

4.5 Interpreting Logistic Regression

Intermediate Algebra: We consider several combinations of available features for training a lo-

gistic regression model and making predictions on the testing data. Table 4.18 shows the resulting

coefficients and accuracies of each model. After the second model with GPA and all four ACT

components, variable are removed in order of lowest absolute z-score. Thus Science ACT is re-

moved first because it is the least significant. The asterisk denotes variables that are statistically

significant (absolute value of z-score > 2).

Note that because the data was normalized before training, the negative coefficients assigned

to the ACT reading score do not signify a negative correlation, but instead a smaller increase in

odds. In the second model with GPA and all four individual ACT components, all variables except

the Science ACT are statistically significant, however the accuracy is maximized at 65.5% with

the model using GPA and Math ACT only. For simplicity of model and since we do not lose any

accuracy, we will do further analysis with the GPA and Math ACT only model. Notice that when

we train a model using GPA only, we lose only 1.5% accuracy over the GPA and Math ACT model,

but when we train a model using Math ACT only, we lose 8.2% accuracy compared to the GPA

and Math ACT model.
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GPA ACT Math English Reading Science Accuracy

0.75* 0.13* - - - - 64.3%

0.73* - 0.26* 0.17* -0.29* 0.11 64.8%

0.73* - 0.29* 0.19* -0.25* - 64.3%

0.74* - 0.33* - -0.14* - 65.0%

0.74* - 0.29* - - - 65.5%

0.76* - - - - - 64.0%

- - 0.33* - - - 57.3%

Table 4.18: Each row in the table represents a logistic regression model trained on Intermediate
Algebra data. We train the models with different combinations of variables and compare accura-
cies. The numbers are the resulting coefficients for variables.

The full resulting logistic regression model for Intermediate Algebra with only GPA and Math

ACT is

ŷ = 0.13+0.74 ·GPA +0.29 ·Math ACT.

Since optimizing in the logistic regression algorithm requires taking the log of the maximum like-

lihood estimate (MLE), we must consider the coefficients of the final model as exponents of e in

order to pull meaning from them. This computation give in increase in odds for a since unit increase

in the corresponding variable. However the variables were normalized, so a since unit increase in

the trained model corresponds to the standard deviation of that variable (that is an increase of one

unit unstandardized). Then we can find the increase in odds which results in an increase of one unit

of the original variable by dividing the increase in odds by the unstandardized increase of one unit.

Thus when a student’s GPA increases by one points, say from a 2.25 to 3.25, the student’s odds in

passing Intermediate Algebra increase 3.75 times. When a student’s Math ACT score increases by

one point, say from a 19 to a 20, the student’s odds in passing Intermediate Algebra increase 0.64

times. This is summarized in the Table 4.19.

College Algebra: As with the Intermediate Algebra models, we consider several combinations

of available features for training a logistic regression model and making predictions on the testing
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Coefficient Increase in odds Un-standardized increase of one unit Slope

GPA 0.74 e0.74 = 2.10 0.56 3.75

Math ACT 0.29 e0.29 = 1.34 2.08 0.64

Table 4.19: Interpreting coefficients in Intermediate Algebra logistic regression model

GPA ACT Math English Reading Science Accuracy

0.88* 0.11* - - - - 65.9%

0.88* - 0.37* 0.02 -0.22* 0.06 69.4%

0.88* - 0.37* - -0.21* 0.06 69.5%

0.88* - 0.40* - -0.18* - 68.9%

0.85* - 0.34* - - - 68.5%

0.92* - - - - - 66.5%

- - 0.45* - - - 61.9%

Table 4.20: Each row in the table represents a logistic regression model trained on College Algebra
data. We train the models with different combinations of variables and compare accuracies. The
numbers are the resulting coefficients for variables.

data. Table 4.20 below shows the resulting coefficients and accuracies of each model. The asterisk

denotes variables that are statistically significant (absolute value of z-score > 2).

In the second model with GPA and all four individual ACT components both the English ACT

and Science ACT are not significant contributors to the model. Again, we remove these com-

ponents one at a time in order of least significant (lowest absolute z-score). The model which

maximized the accuracy at 69.5% with GPA and three ACT components, however this is only 1%

higher than the GPA and Math ACT only model, so for simplicity, we do further analysis with the

GPA and Math ACT only model. With GPA alone we lose 2% accuracy and with ACT math only

we lose 6.6% accuracy.

The resulting logistic regression model for College Algebra with only GPA and Math ACT is

ŷ = 0.22+0.85 ·GPA +0.34 ·Math ACT.
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Coefficient Increase in odds Un-standardized increase of one unit Slope

GPA 0.85 e0.85 = 2.34 0.56 4.18

Math 0.34 e0.34 = 1.40 2.70 0.52

Table 4.21: Interpreting coefficients in College Algebra logistic regression model

Weights of coefficients in logistic regression models

Figure 4.15: GPA is weighted 2.6 times more than Math ACT in the Intermediate Algebra model
and 2.5 times more than Math ACT in College Algebra.

We interpret the coefficients here in the same way as the Intermediate Algebra coefficients–we

compute the increase in odds of passing per increase of a single unit of each variable. Results are

shown in Table 4.21. Figure 4.15 shows the weights of each coefficient in the logistic regression

models.

Based on the models with only GPA and ACT Math, we compute the probabilities of passing

Intermediate Algebra and 101 for a variety of GPA/ACT Math combinations. Results are shown in

Table 4.23 and Table 4.24. A legend for the color scheme in these two tables and the remainder of

the paper is given in Table 4.22.

The Intermediate Algebra model is valid for students with a Math ACT < 22 because it has

little or no training data for students with a Math ACT ≥ 22. Since students in algebra courses at

the university of our present study have always been placed based on Math ACT score and 22 was
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x≥ 0.75

0.75 > x≥ 0.50

0.50 > x≥ 0.25

0.25 > x

Table 4.22: Legend for color scheme where x is the probability of passing a course.

15 16 17 18 19 20 21

3.75 0.64 0.67 0.70 0.73 0.76 0.78 0.80

3.5 0.56 0.60 0.63 0.66 0.69 0.72 0.75

3.25 0.48 0.52 0.55 0.58 0.62 0.65 0.68

3.0 0.40 0.43 0.47 0.50 0.54 0.57 0.60

2.75 0.33 0.36 0.39 0.42 0.46 0.49 0.52

2.5 0.26 0.28 0.31 0.34 0.38 0.41 0.44

2.25 0.20 0.22 0.25 0.27 0.30 0.33 0.36

2.0 0.15 0.17 0.19 0.21 0.24 0.26 0.29

Table 4.23: Probability of passing Intermediate Algebra based on logistic regression model. Math
ACT is given along the x axis and GPA score along the y axis.

22 23 24 25

3.75 0.72 0.75 0.77 0.79

3.5 0.64 0.67 0.70 0.72

3.25 0.55 0.58 0.61 0.64

3.0 0.46 0.49 0.52 0.55

2.75 0.37 0.40 0.43 0.46

2.5 0.28 0.31 0.34 0.37

2.25 0.21 0.24 0.26 0.29

2.0 0.16 0.18 0.19 0.22

Table 4.24: Probability of passing College Algebra based on logistic regression model. Math ACT
is given along the x axis and GPA score along the y axis.
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the cutoff for College Algebra, only students with ≤ 22 were placed into Intermediate Algebra.

Thus models have very little or no training data for students with Math ACT > 22.

We see a similar issue in the College Algebra model. Students with a Math ACT score≥ 26 are

able to enroll in calculus. Thus we do not have enough training data to make accurate predictions

about students scoring above a 25. Students in College Algebra who have a Math ACT score

below 22 must have taken Intermediate Algebra or Intermediate Algebra at another institution, so

our training data does not have examples of students who are taking a college math course for the

first time. Thus we show only the probabilities of passing College Algebra for students with Math

ACT scores greater than 21.
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PCA features Int. Algebra accuracy Col. Algebra accuracy

1 56.9% 60.6%

2 64.6% 67.4%

3 65.2% 69.4%

4 65.1% 69.3%

5 64.8% 69.4%

6 64.8% 69.5%

Table 4.25: Optimizing number of PCA features in logistic regression model

In hopes of minimizing some of the variance in the data, we train another logistic regression

model for each course using the data from the average of 10 students shown in Figure 4.4. This

data produced the models

ŷ =−0.90+5.40 ·GPA +7.06 ·Math ACT

and

ŷ =−0.22+7.90 ·GPA +2.22 ·Math ACT

for Intermediate Algebra and College Algebra respectively. Both models are on a much larger scale

than the original models. The ratio of the College Algebra coefficients is 3.56 which is larger than

the ratio the ratio of the original coefficient. The Intermediate Algebra model actually gives more

weight to Math ACT than GPA. This is the only time we see this in all our analysis. The weight

given to Math ACT is 1.3 times the weight given to GPA. The accuracies of these models on the

test data are 64.4% and 67.9% respectively. Both are accuracies are approximately 1% lower than

the accuracies produced by the original logistic regression models.

We also consider logistic regression models with PCA features. We use validation data to op-

timize the number of PCA features to use in training the model. Table 4.25 shows accuracies each

number of features produces. Features are removed in reverse order so that features explaining the

least variance are removed first. We find that using the first three of the six principal components

58



is optimal. We do not gain any more accuracy by adding principal components 4, 5, and 6.

As we expected from Section 4.1 analysis, logistic regression models weight GPA heavier that

Math ACT. We see the importance of GPA in multiple way in logistic regression, most convincingly

from the facts that the GPA only model is more accurate than the Math ACT only model and the

coefficients given to GPA are multiple times larger than the coefficients given to Math ACT.

4.6 Interpreting Linear Discriminant Analysis

In Table 4.26, we can see that a model trained with GPA and all four ACT components does not

do significantly better than a model trained with only GPA and Math ACT. We choose to do all

analysis in this section with the model trained with only GPA and Math ACT. The simplicity of

this model with only two variables allows us to continue the GPA/Math ACT prediction grids in

two dimensions.

GPA and Math ACT only GPA and all four ACT components

Intermediate Algebra 65.3% 64.0%

College Algebra 68.4% 69.0%

Table 4.26: Compare accuracies of LDA models trained with only GPA and Math ACT vs. GPA
and all four ACT components

The resulting model trained with normalized Intermediate Algebra data is

ŷ = 0.92 ·GPA +0.42 ·Math ACT.

The model trained with normalized College Algebra data is

ŷ = 0.90 ·GPA +0.45 ·Math ACT.

The GPA coefficient is 2.2 times the Math ACT coefficient in the Intermediate Algebra model

and 2.0 times the Math ACT coefficient in the College Algebra model. Thus the Math ACT is
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Weights of coefficients in LDA models

Figure 4.16: GPA is weighted 2.2 times more than Math ACT in the Intermediate Algebra model
and 2.0 times more than Math ACT in College Algebra.

less important when deciding if a student will pass Intermediate Algebra than College Algebra.

Figure 4.16 shows the weights of each coefficient.

Just as we did for the logistic regression models, we compute the probabilities of passing

Intermediate Algebra and College Algebra for a variety of GPA/ACT Math combinations. Results

are shown in Table 4.27 and Table 4.28.

As in logistic regression, LDA assigns coefficients to GPA which are more than double the

coefficients assigned to Math ACT, confirming that GPA is the more important predictor.
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Table 4.27: Probability of passing Intermediate Algebra based on LDA model. Math ACT is given
along the x axis and GPA score along the y axis.

15 16 17 18 19 20 21

3.75 0.62 0.65 0.68 0.71 0.74 0.76 0.79

3.5 0.55 0.58 0.62 0.65 0.68 0.71 0.73

3.25 0.48 0.51 0.55 0.58 0.61 0.64 0.68

3.0 0.41 0.44 0.48 0.51 0.54 0.58 0.61

2.75 0.34 0.37 0.41 0.44 0.47 0.51 0.54

2.5 0.28 0.31 0.34 0.37 0.40 0.44 0.47

2.25 0.23 0.25 0.28 0.31 0.34 0.37 0.40

2.0 0.18 0.20 0.23 0.25 0.28 0.31 0.34

Table 4.28: Probability of passing College Algebra based on LDA model. Math ACT is given
along the x axis and GPA score along the y axis.

22 23 24 25

3.75 0.71 0.74 0.76 0.79

3.5 0.54 0.57 0.61 0.64

3.25 0.52 0.56 0.59 0.62

3.0 0.44 0.48 0.51 0.54

2.75 0.40 0.43 0.46 0.50

2.5 0.29 0.32 0.35 0.38

2.25 0.23 0.25 0.28 0.31

2.0 0.20 0.22 0.24 0.27
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4.7 Interpreting Decision Trees and Random Forests

No matter how many of the ACT features are given to the model, the same decision tree grows

using only GPA and Math ACT to make decisions at nodes. The shape of the trees for Intermediate

Algebra and College Algebra are the same. They both divide based on GPA at the root and then

again by GPA on the branch which students with a higher GPA follow. The final splits is based on

Math ACT.

For Intermediate Algebra, the first node splits the students at a normalized GPA of -0.2, below

the normalized mean of zero. This translates to a GPA of 2.91 on the 4.0 scale. The students who

have a GPA < 2.91 are all predicted to fail Intermediate Algebra. This student group is 37% of In-

termediate Algebra students. Of the students that have a GPA > 2.91, they are splits again based on

a normalized GPA of 0.64, which translates to 3.39 on a 4.0 scale. The students with a GPA > 3.39

are all predicted to pass Intermediate Algebra. This is 25% of all Intermediate Algebra students.

The remaining students with 2.91 < GPA < 3.39 are split once more based on a normalized Math

ACT score of -1, which corresponds to a score of 17 on the 36 point scale. Students with a Math

ACT ≥ 17 are predicted to pass Intermediate Algebra. 32% of the Intermediate Algebra students

follow this branch. Students with a Math ACT < 17 are predicted to fail. Only 6% of Intermediate

Algebra students follow this branch. This tree has an accuracy of 63.2% on the testing data.

For College Algebra, the first node splits the students at a normalized GPA of -0.078, which

translates to a GPA of 3.27 on the 4.0 scale. The students who have a GPA < 3.27 are all predicted

to fail College Algebra. This student group is 42% of College Algebra students. Of the students

that have a GPA > 3.27, they are splits again based on a normalized GPA of 0.6, which translates to

3.57 on a 4.0 scale. The students with a GPA > 3.57 are all predicted to pass College Algebra. This

is 29% of all College Algebra students. The remaining students with 2.27 < GPA < 3.57 are split

once more based on a normalized Math ACT score of -1.1, which corresponds to a score of 19 on

the 36 point scale. Students with a Math ACT ≥ 19 are predicted to pass College Algebra. 25% of

the College Algebra students follow this branch. Students with a Math ACT < 19 are predicted to

fail. Only 5% of College Algebra students follow this branch. This tree has an accuracy of 67.9%
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Decision Tree Models

Figure 4.17: The tree for Intermediate Algebra is on the left and the tree for College Algebra is on
the right.

on the testing data.
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GPA and Math ACT only GPA and all four ACT components

Intermediate Algebra 64.9% 64.6%

College Algebra 68.4% 70.0%

Table 4.29: Compare accuracies of random forest models trained with only GPA and Math ACT
vs. GPA and all four ACT components

Even though the decision tree is exactly the same whether we use only GPA and Math ACT or

if we use GPA and all four components of the ACT, the random forest will not be exactly the same

because only a randomized subset of the variables are used to train each node. The differences

are shown in Table 4.29. Since using all four components does not improve Intermediate Algebra

accuracies at all and only a 1.6% difference in College Algebra accuracies, we do predictions using

the model trained on only GPA and Math ACT. However we do analyze importance of features with

GPA and all four ACT components at the end of this section.

Unlike the models we have interpreted so far, the random forest models give only the final

prediction, not a probability that the prediction is correct. In Table 4.30 and 4.31 we show the

predictions for the same GPA and Math ACT combinations we have considered in other models. A

result of 1 means that a student with this combination of GPA and Math ACT is predicted to pass

and a result of 0 means they are not.

15 16 17 18 19 20 21
3.75 0 1 1 1 1 1 1
3.5 0 1 0 1 1 1 1

3.25 0 0 1 1 1 1 1
3.0 0 0 1 1 1 1 1

2.75 0 0 0 0 0 0 1
2.5 0 0 0 0 0 0 0

2.25 0 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0

Table 4.30: Intermediate Algebra outcome predictions based on random forest model. Math ACT
is given along the x axis and GPA score along the y axis.

Both models point toward GPA being more significant than Math ACT. The decision tree uses

GPA for the first two splits and Math ACT only for fine tuning at the tip of one branch. Classifi-
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22 23 24 25
3.75 1 1 1 1
3.5 1 1 1 1

3.25 1 1 1 1
3.0 0 1 0 0

2.75 0 0 0 0
2.5 0 0 0 0

2.25 0 0 0 0
2.0 0 0 0 0

Table 4.31: College Algebra outcome predictions based on random forest model. Math ACT is
given along the x axis and GPA score along the y axis.

cations in Table 4.30 and especially in Table 4.30 indicate that splits between passing and failing

students are almost completely horizontal, meaning almost completely dependent on GPA.
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4.8 K Nearest Neighbors Results

As with other models, we begin by comparing the model accuracies of a model trained with only

GPA and Math ACT vs. a model trained with GPA and all four components of the ACT. We find

again, as shown in Table 4.32, that adding the extra components does not significantly impact the

accuracy of the model so we do further analysis with the GPA and Math ACT only model.

GPA and Math ACT only GPA and all four ACT components

Intermediate Algebra 65.1% 64.0%

College Algebra 68.5% 68.2%

Table 4.32: Compare accuracies of KNN models trained with only GPA and Math ACT vs. GPA
and all four ACT components

Figures 4.33 and 4.34 show predictions KNN gives for the GPA and Math ACT grids.

15 16 17 18 19 20 21

3.75 1 1 1 1 1 1 1
3.5 1 1 1 1 1 1 1

3.25 0 1 1 1 1 1 1
3.0 0 0 1 0 1 1 1

2.75 0 0 0 0 0 1 0
2.5 0 0 0 0 0 0 0

2.25 0 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0

Table 4.33: Intermediate Algebra outcome predictions based on KNN model. Math ACT is given
along the x axis and GPA score along the y axis.

The separation in both the Intermediate Algebra and College Algebra tables are almost com-

pletely horizontal, which indicates that the outcomes depend much more heavily on GPA and on

Math ACT.
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22 23 24 25

3.75 1 1 1 1
3.5 1 1 1 1

3.25 1 1 1 1
3.0 0 1 0 1

2.75 0 0 0 0
2.5 0 0 0 0

2.25 0 0 0 0
2.0 0 0 0 0

Table 4.34: College Algebra outcome predictions based on KNN model. Math ACT is given along
the x axis and GPA score along the y axis.

4.9 Support Vector Machine Results

As with other models, we begin by comparing the model accuracies of a model trained with only

GPA and Math ACT vs. a model trained with GPA and all four components of the ACT. We find

again, as shown in Table 4.35, that adding the extra components does not significantly impact the

accuracy of the model so we do further analysis with the GPA and Math ACT only model.

GPA and Math ACT only GPA and all four ACT components

Intermediate Algebra 65.3% 65.1%

College Algebra 68.4% 68.7%

Table 4.35: Compare accuracies of SVM models trained with only GPA and Math ACT vs. GPA
and all four ACT components

Even though the SVM is a model with low interpretability, we will include Tables 4.36 and 4.37

with predictions of passing or failing given particular combinations of GPA and Math ACT because

SVM it produces the best accuracy in the testing data. The SVM does not return a probability of

passing like logistic regression and LDA do. It returns only the final prediction of pass or fail.

A result of 1 means that a student with this combination of GPA and Math ACT is predicted

to pass and a result of 0 means they are not. The 0’s in the lower right corner of the Intermediate

Algebra predictions are most likely a result of having very little training data in this region. Since

students with Math ACT > 22 are placed into College Algebra, the model does not have many
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(maybe no) examples in training.

15 16 17 18 19 20 21

3.75 1 1 1 1 1 1 1
3.5 0 1 1 1 1 1 1

3.25 0 0 1 1 1 1 1
3.0 0 0 0 1 1 1 1

2.75 0 0 0 0 0 1 1
2.5 0 0 0 0 0 0 0

2.25 0 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0

Table 4.36: Intermediate Algebra outcome predictions based on SVM model. Math ACT is given
along the x axis and GPA score along the y axis.

22 23 24 25

3.75 1 1 1 1
3.5 1 1 1 1

3.25 1 1 1 1
3.0 0 1 1 1

2.75 0 0 0 0
2.5 0 0 0 0

2.25 0 0 0 0
2.0 0 0 0 0

Table 4.37: College Algebra outcome predictions based on SVM model. Math ACT is given along
the x axis and GPA score along the y axis.

SVM produces the same pattern we have seen with other models. Intermediate Algebra data

separation between passing and failing students depends heavily on GPA but is also impacted by

Math ACT score. College Algebra data separation between passing and failing students depends

almost exclusively on GPA.
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Chapter 5

Overall Conclusions and Further Analysis

5.1 Remove repeating students from data set

A number of students retake algebra courses multiple times. For our purpose of placing new,

incoming students, we could be more accurate if we consider a data set with only first-time college

algebra students at the university. Based on the 11 years of fall semester data we use in this study,

9.3% of Intermediate Algebra students are repeaters and 11.9% of College Algebra students are

repeaters. More significant than students repeating the same course are students moving from

Intermediate Algebra to College Algebra. If we would only like to consider first-time algebra

students, we must remove repeaters and all the students from the College Algebra data set that

have taken Intermediate Algebra. This subset consists of 22.6% of all the College Algebra students

considered in this study. This changes the make-up of the College Algebra students by mostly

removing the students who have a Math ACT scores < 22 because these are the students originally

placed in Intermediate Algebra. Figure 5.1 shows the new counts of College Algebra students by

Math ACT scores. The counts of students with Math ACT scores from 22 to 25 decreased slightly,

but the counts of students with Math ACT scores less than 22 each decreased by about half.

Table 5.1 shows descriptive statistics for Intermediate Algebra students without repeaters and

College Algebra students without repeaters or students previously enrolled in Intermediate Alge-

bra. Tables 5.2 and 5.3 show the differences between average scores of passing students and failing
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College Algebra student counts by Math ACT score

Figure 5.1: The number of students with Math ACT scores less than 22 decreases when we remove
students who have taken Intermediate Algebra.

students. They give the percents change on the 4.0 scale for GPA and 36 point scale for Math ACT

When we train a logistic regression model on the remaining 90.7% of the Intermediate Algebra

data we find the following equation

ŷ = 0.18+0.68 ·GPA +0.27 ·Math ACT.

The GPA coefficient is now 2.5 times the Math ACT coefficient, compared the the original model

in Chapter 4 which weighted GPA 2.6 times more than Math ACT. Thus removing the students who

are retaking Intermediate Algebra does not change the model significantly. This model produces

67.0% accuracy on the testing data. This is an increase from the 65.5% accuracy the original model

in Chapter 4 achieved. We then make predictions on students with GPA/Math ACT combinations

shown in Figure 5.4. Notice that this table is computed differently from the tables in Chapter 4

because GPA predictions are shown in a range. This was achieved by taking predictions at 6 points

within each range and averaging the probabilities. The GPA intervals between points were 0.05

and both endpoints are included in each averaged prediction.

When we remove all the repeating students and the students who have taken Intermediate
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Score and student group Average Median Standard deviation

GPA of all Int. Algebra students 3.06 3.09 1.2

GPA of Int. Algebra failing students 2.91 2.91 1.5

GPA of Int. Algebra passing students 3.20 3.24 0.8

GPA of all College Algebra students 3.30 3.35 1.2

GPA of College Algebra failing students 3.05 3.11 0.6

GPA of College Algebra passing students 3.46 3.50 2.0

Math ACT of all Int. Algebra students 18.6 19 2.1

Math ACT of Int. Algebra failing students 18.3 18 2.2

Math ACT of Int. Algebra passing students 18.8 19 1.9

Math ACT of all College Algebra students 23.0 23 2.3

Math ACT of College Algebra failing students 22.6 23 2.5

Math ACT of College Algebra passing students 23.2 24 2.0

Table 5.1: Descriptive statistics for student groups without repeat students

Average GPA (pass) Average GPA (fail) Diff. Percent of 4.0

Int. Algebra: 3.20 2.91 0.29 7.3%

Col. Algebra: 3.46 3.05 0.41 10.3%

Table 5.2: Differences in average GPA scores without repeat students

Average Math Average Math Difference Percent change

ACT (pass) ACT (fail)

Int. Algebra: 18.8 18.3 0.5 1.4%

Col. Algebra: 23.2 22.6 0.6 1.7%

Table 5.3: Differences in average GPA scores students without repeat students
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15 16 17 18 19 20 21

3.76 - 4.0 0.68 0.70 0.73 0.76 0.78 0.80 0.82

3.51 - 3.75 0.61 0.64 0.67 0.70 0.72 0.75 0.77

3.26 - 3.5 0.53 0.57 0.60 0.63 0.66 0.69 0.71

3.01 - 3.25 0.46 0.49 0.52 0.55 0.59 0.62 0.65

2.76 - 3.0 0.38 0.41 0.45 0.48 0.51 0.54 0.58

2.51 - 2.75 0.31 0.34 0.37 0.40 0.44 0.47 0.50

2.26 - 2.5 0.25 0.28 0.30 0.33 0.36 0.39 0.42

2.01 - 2.25 0.20 0.22 0.24 0.27 0.30 0.32 0.35

Table 5.4: Predictions on first time Intermediate Algebra students. Every cell is the average of six
probabilities computed based on six points (including end points) in the corresponding GPA range.

Algebra from the College Algebra data set and train a logistic regression model on the remaining

77.3% of the data we find the following equation

ŷ = 0.52+0.76 ·GPA +0.20 ·Math ACT.

The GPA coefficient is now 3.8 times the Intermediate Algebra coefficient. Since the original

model in Chapter 4 weighted the GPA coefficient 2.5 times more than the Math ACT coefficient,

this is a significant change. This model achieves 69.1% accuracy compared to the 68.5% accuracy

achieved by the original model. Table 5.5 gives probabilities the of passing College Algebra given

by this model. Probabilities here were averaged in exactly the same way as Table 5.4.
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22 23 24 25

3.76 - 4.0 0.80 0.81 0.82 0.83

3.51 - 3.75 0.74 0.75 0.76 0.78

3.26 - 3.5 0.66 0.68 0.70 0.71

3.01 - 3.25 0.59 0.60 0.62 0.64

2.76 - 3.0 0.50 0.52 0.54 0.56

2.51 - 2.75 0.42 0.44 0.46 0.47

2.26 - 2.5 0.34 0.36 0.37 0.39

2.01 - 2.25 0.27 0.28 0.30 0.31

Table 5.5: Predictions on first time Intermediate Algebra students. Every cell is the average of six
probabilities computed based on six points (including end points) in the corresponding GPA range.

5.2 Recommendations for algebra course placement

We would like to make recommendations to improve the success rate of students in these courses.

All models show that high school GPA is more important than Math ACT scores when predicting

whether or not a student will pass Intermediate Algebra or College Algebra. Since the university

is currently places students based only on Math ACT scores, we recommend that they take high

school GPA into account as well when making placement decisions. This could be done by choos-

ing a College Algebra cutoff chance of passing and using the percent chances of passing based on

logistic regression model in Figure 4.24 or LDA model in Figure 4.28. For example, if the GPA

and Math ACT combination falls into a cell with a chance of passing that is higher than 50%, then

the student will be placed in College Algebra and otherwise in Intermediate Algebra.

In Table 5.7 we make recommendations based on the results of the logistic regression models

in Section 5.1. We choose this model because we would like to assume that we are placing students

taking algebra for the first time at the university. A color legend with course we recommend the

student takes along with criteria we base this choice on is given in Table 5.6.

For comparison we also include tables showing how students were placed historically. Ta-

ble 5.8 shows how students were placed before Fall 2016 and Table 5.9 shows the recent change in
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Color Recommendation Criteria

Calculus Enhanced ≥ 0.75 probability of passing Col. Algebra

Col. Algebra ≥ 0.50 probability of passing Col. Algebra

or ≥ 0.75 probability of passing Int. Algebra

Col. Algebra Enhanced ≥ 0.32 probability of passing Col. Algebra

or ≥ 0.50 probability of passing Int. Algebra

Int. Algebra < 0.32 probability of passing Col. Algebra

or ≥ 0.32 probability of passing Int. Algebra

Int. Algebra with supplemental work < 0.32 probability of passing Int. Algebra

Table 5.6: Legend for color scheme for student placement and criteria for placement

≤ 15 16 17 18 19 20 21 22 23 24 25

3.76 - 4.0 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.80 0.81 0.82 0.83

3.51 - 3.75 0.61 0.64 0.67 0.70 0.72 0.75 0.77 0.74 0.75 0.76 0.78

3.26 - 3.50 0.53 0.57 0.60 0.63 0.66 0.69 0.71 0.66 0.68 0.70 0.71

3.01 - 3.25 0.46 0.49 0.52 0.55 0.59 0.62 0.65 0.59 0.60 0.62 0.64

2.76 - 3.0 0.38 0.41 0.45 0.48 0.51 0.54 0.58 0.50 0.52 0.54 0.56

2.51 - 2.75 0.31 0.34 0.37 0.40 0.44 0.47 0.50 0.42 0.44 0.46 0.47

2.26 - 2.50 0.25 0.28 0.30 0.33 0.36 0.39 0.42 0.34 0.36 0.37 0.39

≤ 2.0 0.20 0.22 0.24 0.27 0.30 0.32 0.35 0.27 0.28 0.30 0.31

Table 5.7: Recommendation for student placement based on logistic regression models with only
students taking algebra for the first time at the university. Each cell with an ACT Math score from
15 to 21 shows the probability of passing Intermediate Algebra and each cell with an ACT Math
score from 22 to 25 shows the probability of passing College Algebra.
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≤ 15 16 17 18 19 20 21 22 23 24 25

3.76 - 4.0

3.51 - 3.75

3.26 - 3.50

3.01 - 3.25

2.76 - 3.0

2.51 - 2.75

2.26 - 2.50

≤ 2.0

Table 5.8: Placement method used before Fall 2016

placement that moves in the direction of our recommendations.

≤ 15 16 17 18 19 20 21 22 23 24 25

3.76 - 4.0

3.51 - 3.75

3.26 - 3.50

3.01 - 3.25

2.76 - 3.0

2.51 - 2.75

2.26 - 2.50

≤ 2.0

Table 5.9: Placement method used Fall 2016

5.3 Future Work

In the same way that we considered individual components of the ACT in this project, it may be

helpful to consider students’ GPA from each year of high school individually. Studies have shown

that in general, the later years of high school have far more predictive power than earlier years
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(Bulman, 2017).

In Bulman’s study, he found that, "one additional GPA point in 11th grade is associated with an

increase of 16 percentage points in the probability of graduating from a state university, compared

to an increase of 5 percentage points for a GPA point in 9th grade. Similarly, the later GPA point

is five times more predictive of dropping out of college within two years. Giving greater weight to

more recent performance is likely to improve the expected outcomes of selected students...Giving

equal weight to each grade level necessarily discards a large amount of information stemming from

substantial variation in student performance over the four years of high school. (Bulman, 2017)"

The university in our study may find that this applies to mathematics courses too and incorpo-

rating only junior and senior year high school GPA’s may give even better predictions that a single

GPA over all four years of high school.

We may be able to further improve the models given in this paper by eliminating a subset of

the training data. In remedial courses in institutions across the country, student participation is an

issue. The data base of algebra students for our present study contains attendance records for all

students. It could be useful to calculate the percent of student who never attend class in the first

month of the semester. This is likely to be a significant percentage. We would like to remove this

subset of students and retrain all models given in this study. This may reduce some of the variation

and help make more accurate predictions for the student who do choose to attend class. Since we

cannot predict which students will be the ones who enroll but do not attend class, we simply train

the model on the students who do participate in the course and make predictions about incoming

students assuming they attend class.

We would also be interested in making predictions mid-semester about students’ success in

courses. The algebra student database contains data on attendance, homework and exams for every

student. The algebra courses contain five units throughout the semester. We would be interested to

know whether we can predict if a student will pass the course with information from only the first

unit. We would also be interested to know if there is a way to predicted whether an Intermediate

Algebra student might pass College Algebra.
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Appendix A

Appendix

All programming for this thesis was done in R via RStudio. The packages used to clean, process,

visualize, and model data are the following:

• tidyr

• xtable

• car

• caret

• stats

• MASS

• rpart

• rpart.plot

• rattle

• e1071

• plyr

• class

• randomForest

• ggplot2

• psych

• reshape2
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