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Abstract 

 

 The type III secretion system (T3SS) provides many Gram-negative pathogens a 

tool to initiate, maintain and proliferate infection in the host.  The T3SS is a syringe-like 

apparatus composed of a base that transverses the bacterial membranes, an 

extracellular needle, a tip complex, and a translocon.  The T3SS consists of over 20 

different protein components that assemble to form a pore into the host membrane.  

The T3SS creates a pathway for the transport of bacterial effector molecules into the 

host cytoplasm.  The effector molecules hijack and manipulate the host cytoskeleton 

and cell signaling pathways to promote invasion by the bacteria, circumvention of the 

host immune system, and maintenance of infection. 

 Several Gram-negative pathogens utilize the T3SS for infection including 

Burkholderia pseudomallei (melioidosis), Salmonella typhimurium (infectious 

diarrhea/typhoid), Shigella flexneri (shigellosis), Pseudomonas aeruginosa (nosocomial 

infection), Yersinia pestis (bubonic plague), Chlamydia trachomatis (sexually 

transmitted disease), and enterohemorrahagic Escherichia coli (bloody diarrhea/urinary 

tract infection).  These pathogens pose a serious threat to public health, when 

combined they cause millions of cases of illness and deaths and constitute a huge 

economical burden to the US and the rest of the world. 

 Since its discovery and visualization about two decades ago, the bacterial T3SS 

has enticed intense scientific research focused on deciphering the assembly of the 

injectisome, its virulence mechanism and discovery or design of novel vaccines and 

anti-infectives.  The needle-tip-translocon proteins of the T3SS are potential therapeutic 
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targets because of their hydrophilicity and exposure to the extracellular space.  The 

needle and the tip proteins in Salmonella and Shigella have been characterized but the 

assembly of the translocon proteins and tip-translocon interaction has not been 

extensively studied.  This thesis explores the Burkholderia tip-translocon protein-protein 

interaction and the interaction of the translocon with a membrane.  I utilized biophysical 

techniques namely solution nuclear magnetic resonance (NMR) and circular dichroism 

(CD) spectroscopy to investigate the protein binding surfaces involved in tip-translocon 

interaction as well as the structural transition of the translocon protein on exposure to 

membrane mimic detergent micelles.  I have herein shown that the Burkholderia minor 

translocon protein BipC might be binding at the mixed α-β region of the tip protein BipD 

extrapolated from the interaction study between BipC and BipD as well as its homologs 

Salmonella SipD and Shigella IpaD.  The results help understand the interaction of the 

Burkholderia minor translocon protein with the tip protein and detergent micelles and 

thus add to the knowledge of T3SS assembly. 

 

 

 

 

 

 

 

 

 



 v	

Acknowledgements 

 

 I would foremost like to thank my family for their support and encouragement 

throughout the years.  This would not be possible without the unwavering motivation 

and confidence shown in me by my family.  They have been the cornerstone and the 

only constant during all the struggles in my life. 

 I am especially thankful to my mentor Dr. Roberto N. De Guzman for providing 

me with guidance and support during the pursuit of my Master’s degree.  He would 

always offer constructive criticism that has shaped my graduate career as well as my 

overall personality development. 

I thank my committee members Dr. Mark Richter, Dr. Susan Egan, Dr. David 

Davido, Dr. Krzysztof Kuczera, and Dr. Chris Fischer for their feedback and input that 

proved invaluable in the completion of this thesis and my graduate education. 

I would also like to thank the former members of the lab Dr. Andrew McShan and 

Dr. Kawaljit Kaur, as well as the current members of the lab Dr. Supratim Dey, 

Amritangshu Chakravarty, Pallavi Guha Biswas, and Mason Wilkinson.   

 I would like to acknowledge Dr. Justin T. Douglas and Dr. Minli Xing from the KU 

NMR core facility for their help with the NMR instruments and acquisition of data.  I 

would also like to acknowledge Dr. Philip Gao from the KU Protein Production Group for 

valuable suggestion in analyzing some of the NMR data.  

 Lastly, I thank everyone who might have influenced me in one way or the other 

during my time at the University of Kansas.  I look forward to utilizing the skills and 

lessons learned during my graduate study in the future endeavors.	



 vi	

Table of Contents 
 
Content ..................................................................................................................... Page 
Abstract ........................................................................................................................... iii 

Acknowledgements .......................................................................................................... v 

Table of contents ............................................................................................................. vi 

List of figures .................................................................................................................. viii 

List of Tables .................................................................................................................... x 

List of Abbreviations ........................................................................................................ xi 

 

Chapter 1. Introduction .................................................................................................. 1 
1.1 Introduction to the type III secretion system ........................................................... 1 

1.2 References ............................................................................................................. 7 

 

Chapter 2. Mapping of the binding surface of the minor translocon protein  
BipC on the tip protein BipD from the Burkholderia type III secretion system ...... 10 

  2.1 Introduction ............................................................................................................. 10 

  2.2 Experimental Section ............................................................................................. 12 

     2.2.1 Expression and purification of 15N-labeled and unlabeled BipC ....................... 12 

     2.2.2 NMR experiments ............................................................................................. 13 

  2.3 Results ................................................................................................................... 15 

     2.3.1 BipC overexpression and purification ............................................................... 15 

     2.3.2 15N-BipC interaction with the tip proteins by NMR ............................................ 15 

     2.3.3 15N-labeled tip proteins interaction with BipC by NMR ..................................... 16 

  2.4 Discussion .............................................................................................................. 17 

  2.5 References ............................................................................................................. 32 

 

Chapter 3. Conformational and structural changes of Burkholderia minor 
translocon protein BipC in the presence of membrane mimetic ............................. 35 
  3.1 Introduction ............................................................................................................. 35 

  3.2 Experimental Section ............................................................................................. 36 



 vii	

     3.2.1 Overexpression and purification of 15N-labeled BipC ....................................... 36 

     3.2.2 Preparation of Detergent stocks ....................................................................... 37 

     3.2.3 Secondary structure and TM prediction ........................................................... 37 

     3.2.4 Circular Dichroism experiments ....................................................................... 37 

     3.2.5 NMR titration experiments ................................................................................ 38 

  3.3 Results ................................................................................................................... 38 

     3.3.1 Secondary structure and TM prediction ........................................................... 38 

     3.3.2 Monitoring secondary structural changes of BipC by Circular Dichroism ......... 39 

     3.3.3 BipC interaction with detergents by NMR ......................................................... 40 

  3.4 Discussion .............................................................................................................. 41 

  3.5 References ............................................................................................................. 52 

 

Chapter 4. Conclusion and Future Directions ........................................................... 55 
                   References .................................................................................................. 58 

 

Addendum.  Interaction of Pseudomonas aeruginosa minor translocon protein 
PopD with detergents  .................................................................................................. 59 
  A.1 Introduction ............................................................................................................ 59 

  A.2 Experimental Section ............................................................................................. 60 

     A.2.1 Expression and purification of 15N-PopD ......................................................... 60 

     A.2.2 Secondary structure prediction ........................................................................ 61 

     A.2.3 NMR experiments ............................................................................................ 61 

  A.3 Results ................................................................................................................... 61 

     A.3.1 Expression and purification of 15N-PopD ......................................................... 61 

     A.3.2 Secondary structure prediction ........................................................................ 62 

     A.3.3 NMR study of PopD interaction with detergents .............................................. 62 

  A.4 Discussion .............................................................................................................. 62 

  A.5 References ............................................................................................................. 69 

 

 

 



 viii	

List of Figures 
 
Figure ........................................................................................................................ Page 
 
1-1     A cartoon representation of T3SS .......................................................................... 4 

1-2     A proposed model of T3SS in Burkholderia ........................................................... 5 

2-1    Comparison of the structures of the homologous tip proteins ............................... 20 

2-2    Primary sequence alignment of the homologous tip proteins ............................... 21 

2-3    SDS-PAGE Gel of 15N-BipC Purification ............................................................... 22 

2-4    Electrospray ionization mass spectrometry to verify BipC expression .................. 23 

2-5    Overlay of NMR titrations of 15N-BipC with unlabeled BipD35-301 ........................... 24 

2-6    Overlay of NMR titrations of 15N-BipC with unlabeled SipD39-343 ........................... 25 

2-7    Overlay of NMR titrations of 15N-BipC with unlabeled IpaD38-332 ........................... 26 

2-8    Overlay of NMR titrations of 15N-SipD39-343 with unlabeled BipC ........................... 27 

2-9    Overlay of NMR titrations of ILV-SipD39-343 with unlabeled BipC ........................... 28 

2-10  Quantification of peak intensity of 15N and ILV-SipD39-343 with BipC ..................... 29 

2-11  Overlay of NMR titrations of 15N-IpaD38-332 with unlabeled BipC ........................... 30 

2-12  Quantification of peak intensity of 15N-IpaD38-332 with unlabeled BipC .................. 31 

3-1     A cartoon representation of the minor translocon protein .................................... 43 

3-2    Secondary structure prediction of Burkholderia minor translocon protein ............. 44 

3-3    Hydropathy plots predicting TM regions for the minor translocon proteins ........... 45 

3-4    Primary sequence alignment of the minor translocon proteins ............................. 46 

3-5    Circular Dichroism analysis of BipC in DPC .......................................................... 47 

3-6    Circular Dichroism analysis of BipC in LMPG ....................................................... 48 

3-7    Comparison of NMR titration of BipC with DPC .................................................... 49 

3-8    Comparison of NMR titration of BipC with LMPG ................................................. 50 

A1     Purification Gel of 15N-PopD ................................................................................. 64 

A2     Electrospray ionization mass spectrometry to verify PopD purification ................ 65 

A3     Secondary structure prediction of PopD from Pseudomonas aeruginosa ............ 66 

A4     Comparison of NMR spectra of 15N-PopD titrated with DPC at 30 °C .................. 67 



 ix	

A5     Comparison of NMR spectra of 15N-PopD titrated with DPC at 30 °C showing the 

two trp residues .............................................................................................................. 68 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 x	

List of tables 
 

Table 1-1 List of homologous proteins of T3SS of various Gram-negative pathogens .... 6 

Table 3-2 Estimation of secondary structure of BipC by Dichroweb using CDSSTR 

algorithm ......................................................................................................................... 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi	

List of Abbreviations 

 

T3SS Type III Secretion System 

EPEC Enteropathogenic Escherichia coli 

GB1 Streptococcus protein G B1 domain 

TEV Tobacco Etch Virus 

IPTG Isopropyl-β-D-thiogalactopyrandoside 

LB Lysogeny Broth 

TB Terrific Broth 

NMR Nuclear Magnetic Resonance 

TROSY Transverse Optimized Relaxation Spectroscopy 

HSQC Heteronuclear Single Quantum Coherence 

CD Circular Dichroism 

CMC Critical Micelle Concentration 

DPC Dodecylphosphocholine 

LMPG Lyso-myristoylphosphatidylglycerol 

T3SA Type III Secretion Apparatus 

MCS Multiple cloning site 

Ni-NTA Nickel-nitrilotriacetic acid 

TM Transmembrane 

 

 



 1	

Chapter 1: Introduction  

 

1.1.  Introduction to the type III secretion system 

 Bacterial pathogens interact with host to cause disease and in the process have 

evolved different strategies to overcome host defense systems 1.  These pathogens 

utilize various virulence factors to undermine the host cell response in order to establish 

infection 2.  The interaction between bacterial pathogens and their hosts is a tug of war 

in which both try to outsmart each other and in the process evolve new infection and 

defense mechanisms 3, 4.  Bacterial pathogens have evolved protein secretion apparati 

that deliver virulence effector molecules into the host cell sabotaging host cellular 

processes such as cytoskeleton rearrangement and cell signaling pathways 3, 4.  

 The secretion of proteins in Gram-positive bacteria is carried out through the 

general secretory pathway in a sec-dependent manner 1, 5.  Many Gram-negative 

bacteria have evolved specialized secretion systems to overcome the hurdle posed by 

the presence of an outer membrane 1, 5.  One such system is the type III secretion 

system (T3SS) that shares similarity with the flagellar assembly apparatus 6, 7.  This 

secretion apparatus is harbored by animal pathogens including the causative agents of 

melioidosis (Burkholderia pseudomallei), infectious diarrhea/enteric fever (Salmonella 

typhimurium), shigellosis (Shigella flexneri), nosocomial infections (Pseudomonas 

aeruginosa), plague (Yersinia pestis), and bloody diarrhea/urinary tract infection 

(enterohemorrahagic Escherichia coli) as well as plant pathogens such as Erwinia spp, 

and Xanthomonas spp 4, 8, 9.  Additionally, the evolution of antibacterial resistance in 

these pathogens presents a global threat to human health 10, 11, 12.  Pathogens like 
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Yersinia and Burkholderia are listed as Category A and Category B potential bio-threat 

agents, respectively, by the Centers for Disease Control and Prevention as well as the 

National Institute of Allergy and Infectious Diseases13, 14, 15.  As such, the understanding 

of the structural and functional aspects of T3SS in pathogenesis is vital to the 

development of novel vaccines, anti-infectives and alternative therapeutics.  

 Burkholderia pseudomallei is a Gram-negative pathogen and the causative agent 

of melioidosis.  It has been identified to harbor three T3SS encoding genetic loci in 

distinct pathogenicity islands 16, 17, 18, 19.  Of these, the T3SS1 and T3SS2 share 

homology to the plant pathogens Ralstonia solanacearum and Xanthomonas spp while 

T3SS3 is homologous to the Inv/Mxi-Spa systems of Salmonella and Shigella involved 

in infection in animals 16, 17. 

 The T3SS broadly consists of a base traversing the bacterial inner and outer 

membranes, a needle extending into the extracellular space, a tip protein, and a 

translocon pore into the host membrane formed by two translocator proteins (Fig. 1-1).  

The T3SSs in Burkholderia and other bacterial species are structurally and functionally 

conserved systems made up of more than 20 different proteins 20, 21, 22 (Table 1-1 and 

Figure 1-2).  The two translocon proteins are essential for the formation of an opening 

into the host cell establishing a conduit enabling the export of virulence effector 

molecules into the host cytoplasm.  The structures of the N-terminal domains of the 

major translocon proteins SipB from Salmonella and IpaB from Shigella are known 23.  

Others have shown the interaction between the major translocon proteins from 

Salmonella and Shigella and their respective tip proteins 24, 25.    
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 The minor translocon protein is important in puncturing a pore into the host 

membrane and is indispensable for bacterial capacity to cause infection 26, 27.  The 

interaction of the minor translocon proteins with the tip proteins and the host membrane 

is not known.  This thesis investigates the tip-translocon protein-protein interaction and 

the translocon-membrane interaction by nuclear magnetic resonance (NMR) and 

circular dichroism (CD) spectroscopy.  Chapter 2 of this thesis describes the interaction 

of the Burkholderia minor translocon protein BipC with the Burkholderia tip protein BipD 

and its homologs Salmonella SipD and Shigella IpaD while Chapter 3 is dedicated to 

the characterization of BipC interaction with membrane mimetic detergents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4	

 

 

	
	
	

	
	
	
Figure 1-1.  A cartoon representation of T3SS in Gram-negative pathogens including 

Burkholderia.  The syringe-like apparatus consists of a base embedded in the inner and 

outer bacterial membranes, an extracellular needle, a tip complex, and a translocon. 
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Figure. 1-2.  A proposed model of T3SS in Burkholderia.  The different components of 

T3SS are color-coded and are not drawn to scale.  This figure is taken from Sun et al 1.  
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Table 1-1. List of homologous proteins of T3SS of various Gram-negative 
pathogens.  Compiled and adapted from Sun et al, Trends Microbiol, 2010 and 
Chatterjee et al, Biochemistry, 2010. 
 

Role Burkholderia Salmonella Shigella Yersinia EPEC Pseudomonas 

translocon BipB SipB IpaB YopB EspB PopB 

translocon BipC SipC IpaC YopD EspD PopD 

needle tip BipD SipD IpaD LcrV EspA PcrV 

needle BsaL PrgI MxiH YscF EscF PscF 

OM ring BsaO InvG MxiD YscC EscC PscC 

inner rod BsaK PrgJ MxiI YscI EscI PscI 

IM ring BsaJ/BsaM PrgK/PrgH MxiJ/Mxi
G 

YscJ/Ys
cD 

EscJ/Es
cD 

PscJ/PscD 

export 
apparatus 

BsaW SpaP Spa24 YscR EscR PscR 

BsaX SpaQ Spa9 YscS EscS PscS 

BsaY SpaR Spa29 YscT EscT PscT 

BsaZ SpaS Spa40 YscU EscU PscU 

BsaQ InvA MxiA YscV EscV PcrD 

ATPase BsaS InvC Spa47 YscN EscN PscN 
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Chapter 2: Mapping of the binding surface of the minor translocon protein BipC 

on the tip protein BipD from the Burkholderia type III secretion system 

 

2.1.  Introduction 

Burkholderia pseudomallei is a Gram-negative pathogen that infects a wide 

range of hosts from plants to animals, including humans 1, 2.  It is the causative agent of 

melioidosis that is prevalent and endemic in South-east Asia and north Australia 1, 2.  

The clinical manifestation of melioidosis includes joint pain, acute or chronic pneumonia, 

septic shock, and organ abscess 1, 3.  The primary mode of infection is through direct 

contact with contaminated soil and water but one can also get the infection by inhaling 

contaminated dust and water droplets.  Thus, it has been listed as a potential category 

B bioterrorism agent by the US Centers for Disease Control and Prevention 1, 4.  Lack of 

vaccines and the emergence of antibacterial resistant strains pose a major risk to public 

health particularly in areas hyperendemic for melioidosis-related septicemia 5.  

Burkholderia pseudomallei like many other Gram-negative pathogens uses a common 

mechanism of infection, the type III secretion system (T3SS) 6.  The T3SS is a syringe 

like nano-injector that consists of a base spanning the bacterial inner and outer 

membranes, an extracellular needle protruding out of the cell, a tip protein, and a 

translocon that assembles a pore into the host membrane and thus forms a conduit for 

the passage of bacterial virulence effectors from within the bacteria directly into the host 

cell 7.  Three T3SSs have been identified in Burkholderia pseudomallei 8, 9, 10.  T3SS1 

and T3SS2 are homologous to the plant pathogens Ralstonia solanacearum and 



 11	

Xanthomonas spp while T3SS3 is homologous to the Inv/Mxi-Spa systems of 

Salmonella and Shigella and is required for infection in animals 8, 9, 10. 

The T3SS has gained the attention of scientific research since its discovery 

about two decades ago 11.  The understanding of the T3SS is important to decode the 

structure-function relationship, mechanism of infection, and discovery of small molecule 

inhibitors that will specifically target protein-protein interactions required for the 

assembly of this nano-injector.  The external hydrophilic part of the T3SS in particular 

offers a potential target for the discovery of small molecule inhibitors 12.  The structures 

of the needle and the tip proteins are known in well-studied systems such as 

Salmonella, Shigella, and Burkholderia 13.  The homologous tip proteins from 

Salmonella (SipD), Shigella (IpaD), and Burkholderia (BipD) contain an N-terminal ⍺-

helical hairpin, a central-coiled-coil domain, and a distal region of mixed ⍺-helices and 

β-strands (Figure 2-1) 13.  The Burkholderia BipD shares ~26% identity and ~39% 

similarity to Salmonela SipD while ~26% identity and ~37% similarity to Shigella IpaD 14, 

15, 16 (Figure 2-2).  However, the structures of the translocons and the interaction 

between the tip and the translocons, particularly the minor translocon is not known.  My 

work involves elucidating the tip-translocon interaction, and in this study I have provided 

evidence that the minor translocon BipC from Burkholderia may be binding at the mixed 

α-β domain of the tip protein, BipD from Burkholderia and its homologs Salmonella SipD 

and Shigella IpaD.     
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2.2.  Experimental Section 

 

2.2.1.  Expression and purification of 15N-and ILV-labeled and unlabeled BipC, 

SipD, and IpaD 

Full length BipC was cloned and amplified from Burkholderia pseudomallei strain 

K96243 and subsequently sub-cloned into pET-22b using the NdeI and BamHI cloning 

sites (Dr. Supratim Dey).  The tip proteins SipD39-343 and IpaD38-332 from Salmonella 

typhimurium strain SL1344 and Shigella flexneri respectively were previously subconed 

into a modiefied pET-21a expression vector 13, 17.  All the protein constructs contain an 

N-terminal 6X-His tag, GB1 (B1 domain of the immunoglobulin binding protein G) 

solubility tag, and a TEV (Tobacco etch virus) protease cleavage site 18.  The BipC 

construct was transformed into E. coli BL21-CodonPlus (DE3)-RIPL strain (Agilent 

technologies).  SipD39-343 and IpaD38-332 were transformed into E. coli BL21 (DE3)-DNAY 

cells.  Uniformly 15N-labeled BipC, SipD39-343 and IpaD38-332 were expressed in 1 liter of 

1X Minimal media at 37 °C using the antibiotics, 100 ug/mL carbenicllin and 25 ug/mL 

chloramphenicol supplemented with 1 g/L 15NH4Cl as the sole source of nitrogen 19 until 

an OD600 ~ 0.8 after which the culture was induced with 1 mM IPTG (isopropyl –D-1-

thiogalactopyranoside) and grown overnight at 15 °C.  For ILV-labeling the cell cultures 

were supplemented with ~0.5 mg of alpha-ketobutyric acid (labels the single terminal 

methyl 13Cδ of isoleucine) and ~100 mg of alpha-ketoisovaleric acid (labels the terminal 

methyl 13Cδ of leucine and 13Cϒ of valine) at on OD600 ~0.4.  Unlabeled BipC, SipD39-343 

and IpaD38-332 were expressed in 1 liter of lysogeny broth (LB) or terrific broth (TB) 

media 19 at 37 °C using the antibiotics, 100 ug/mL carbenicllin and 25 ug/mL 
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chloramphenicol until an OD600 ~ 0.8 after which the cultures were induced with 1 mM 

IPTG.  The next day, cells were harvested by centrifugation at ~3300 rcf for ~10 mins, 

re-suspended in binding buffer containing 5 mM imidazole, 20 mM Tris-HCl, 500 mM 

NaCl, pH 8.0, and 0.2 mM phenylmethanesulfonyl fluoride and lysed by sonication.   

The sonicated cell cultures were centrifuged at ~20000 rcf for ~ 10 mins to 

remove any non-lysed cell debris from the cell lysate, mixed with ~ 0.1 mM 

polyethylenimine (PEI) solution to precipitate DNA matter and centrifuged again at 

~20000 rcf for ~ 10 min to separate the soluble protein fractions from the DNA 

precipitate.  The soluble fractions were then loaded on to a nickel affinity column packed 

with nickel-nitrilotriacetic acid (Ni-NTA) resin, washed three times with a buffer 

containing 20 mM Tris-HCl, 500 mM NaCl, 10mM imidazole, pH 8.0 to rid the column of 

non-binding contaminating proteins followed by elution of the 6X-His-GB1-BipC with 20 

mM Tris-HCl, 500 mM NaCl, 250 mM imidazole, pH 8.0 elution buffer.  The elution 

fraction containing the fusion protein was treated with TEV protease 20, 21 overnight in 

20 mM Tris-HCl (pH8.0), 0.5 mM EDTA, 1 mM DTT, and 20 mM NaCl.  

The TEV cleaved protein fraction was loaded on to a nickel affinity column, and 

then washed twice with a buffer containing 20 mM Tris-HCl, 500 mM NaCl, 40 mM 

imidazole to elute the cleaved BipC followed by the elution of the 6X-His-GB1 tag with 

20 mM Tris HCl, 500 mM NaCl, 250 mM imidazole, pH 8.0.  The wash fraction 

containing the BipC protein was exchanged by dialysis into NMR buffer (20 mM 

phosphate, 100 mM NaCl, pH 6.8) twice and then concentrated using Millipore 

centrifugal filter units with a 3000 MW cut off limit.  The concentration of BipC was 
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estimated by the Bradford assay. The identification of BipC was verified by SDS PAGE 

gel electrophoresis and mass spectrometry. 

 

2.2.2.  NMR experiments 

15N-BipC titration with unlabeled BipD, SipD and IpaD 

All NMR spectra were acquired using a Bruker Advance 800 MHz spectrometer 

equipped with a cryogenic triple resonance probe.  NMR data were processed using 

NMRPipe 22 and analyzed using NMRView 23.  The acquisition parameters were 40 

scans with 15N sweep width of 30 ppm centered at 118 ppm and 1H sweep width of 18 

ppm centered at 4.7 ppm, 2048 1H complex points, and 400 15N complex points.  

Protein samples at varying molar ratios were prepared in NMR buffer (20mM 

phosphate, pH 6.8, 100mM NaCl, 10% D2O), 500uL samples were placed in shigemi 

tubes and two dimensional 1H-15N-TROSY 24 experiments were recorded at 20 °C.  

 

ILV- labeled BipC titration with unlabeled SipD 

ILV-labeled BipC was titrated with unlabeled SipD dissolved in NMR buffer 

(20mM phosphate, pH 6.8, 100mM NaCl, 10% D2O) to acquire two-dimensional 1H-13C 

HSQC spectra at 20 °C.  The acquisition parameters used to acquire the 2D HSQC data 

were 16 scans, 1024 1H complex points and 180 13C complex points with 1H sweep 

width of 12 ppm centered at 4.7 ppm, and 13C sweep width of 22 ppm centered at 15 

ppm. 
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15N and ILV-labeled SipD and IpaD titration with unlabeled BipC 

 Two dimensional 1H-15N-TROSY 24 experiments were recorded for 0.1mM 15N 

and ILV-labeled SipD39-343 in NMR buffer (20mM phosphate, pH 6.8, 100mM NaCl, 10% 

D2O) titrated with increasing concentrations of unlabeled BipC at 30 °C.  The previously 

assigned amide peak list of SipD 25 was used to map the binding surface on the 

available PDB crystal structure of SipD (PDB ID: 3NZZ).  The perturbed peaks from the 

ILV-titration experiments were also mapped onto the structure of SipD using previously 

ILV-assigned peak list of SipD 26. 

Similarly, 0.13mM 15N-labeled IpaD38-332 was titrated with increasing 

concentrations of unlabeled BipC and the perturbed residues mapped onto the crystal 

structure of IpaD (PDB ID: 2J0O) using the previously assigned peak list of IpaD 27.  

  

2.3 Results 

 

2.3.1.  BipC overexpression and purification 

Uniformly 15N-labeled BipC was overexpressed as a recombinant protein fused 

with His6-GB1-TEV at the N-terminus in minimal media supplemented with 15NH4Cl.  

The BipC construct expression was checked and verified by running the samples on an 

SDS polyacrylamide (PAGE) gel followed by purification from the soluble fraction by 

nickel affinity chromatography. The SDS PAGE and comassie blue staining verified 

efficient TEV cleavage separating the His6-GB1 tag from the purified BipC protein 

(Figure 2-3).  The purified BipC protein was also verified by mass spectrometry analysis 

(Figure 2-4). 
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2.3.2.  15N/ILV-labeled BipC interaction with the tip proteins shown by NMR 

The titration experiments for 15N-labeled Burkholderia minor translocon protein 

BipC titrated with increasing concentrations of the unlabeled tip protein BipD35-301 

showed peak perturbation in the fast exchange NMR timescale as changes in peak 

position were observed indicating weak interaction (Figure 2-5).  Similarly, the titration 

of 15N-labeled BipC with BipD homologs, Salmonella SipD and Shigella IpaD showed 

perturbation of the same peaks and some new peaks in the fast exchange NMR 

timescale, although the chemical shift perturbation was on a smaller scale for SipD39-343 

and IpaD38-332 compared to BipD35-301 (Figure 2-6 and Figure 2-7).  The difference in the 

extent of chemical shift perturbation could be due to the fact that BipD is the natural 

binding partner of BipC whereas SipD and IpaD are homologs from different bacterial 

species with only ~27% sequence identity.  Therefore BipC perhaps binds 

comparatively stronger to BipD than either SipD or IpaD.  The ILV-labeled BipC did not 

yield a good NMR spectrum as the majority of the Isoleucine, Leucine, and Valine peaks 

were missing and the resolution was poor.  The titration of ILV-labeled BipC with 

unlabeled-SipD did not improve the spectral quality.  As a result, ILV-labeled BipC 

titrations with the tip proteins were not further investigated. 

 

2.3.3.  15N-labeled tip protein interaction with BipC shown by NMR 

The 15N-labeled Salmonella tip protein SipD39-343 titrated with unlabeled 

Burkholderia minor translocon protein BipC showed peak perturbation in the 

intermediate exchange on NMR timescale, as there were clear indications of reduction 

in peak intensities (Figure 2-8).  The reduced peak intensity in the intermediate 
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exchange results due to a peak broadening phenomenon on interaction with BipC.  The 

broader peaks and thus reduced peak intensity is observed when the exchange rate is 

in the range of the chemical shift difference between the bound and unbound state of 

the protein.  The extent of perturbation was analyzed by quantifying the peak intensity 

ratio of the highest molar ratio to the lowest molar ratio titration.  The peaks that were 

most perturbed were then mapped onto the structure of SipD (Figure 2-10).  Likewise, 

the ILV-labeled SipD39-343 titration with unlabeled BipC generated peak perturbation in 

the intermediate exchange on NMR timescale (Figure 2-9). The perturbed peaks were 

analyzed, quantified, and subsequently mapped on to the structure of SipD (Figure 2-

10).  Most of the highly perturbed residues from the 15N and the ILV titration 

experiments were located in the distal region of SipD in the mixed ⍺-β region while a 

few peaks also mapped on the coiled-coil domain.   

Similarly, 15N-labeled Shigella tip protein IpaD38-332 was also titrated with 

increasing concentrations of unlabeled BipC. The peak perturbation was observed in 

the intermediate exchange on NMR timescale and the resulting peak intensities were 

quantified and mapped onto the structure of IpaD (Figure 2-11 and Figure 2-12).  As 

previously found with SipD, most of the perturbed residues mapped to the distal region 

of IpaD in the mixed ⍺-β region but some residues were located in the coiled-coil 

domain. 

 

2.4.  Discussion 

 The 15N-labeled Burkholderia minor translocon protein BipC was titrated with the 

homologous tip proteins BipD35-301, SipD39-343, and IpaD38-332 from Burkholderia, 
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Salmonella and Shigella respectively, at varying concentrations.  The results provide 

evidence that BipC perhaps binds to the three tip proteins using a common binding 

surface, as the same peaks on BipC were perturbed in the titration experiments with the 

three tip proteins.  Furthermore, the peak perturbations were observed in the fast 

exchange on NMR timescale, which indicates weak interaction.  The bottleneck in this 

study at this juncture was that those peaks from BipC could not be identified because 

the NMR peak assignment of BipC is lacking.  The reverse titration of 15N-labeled BipD 

with unlabeled BipC was not feasible because the NMR spectrum of BipD has not been 

assigned either.  

 The alternative strategy used to overcome this dilemma was to titrate 15N and 

ILV-labeled tip proteins SipD39-343 and IpaD38-332 with unlabeled BipC.  Burkholderia 

BipD is homologous to Salmonella SipD and Shigella IpaD.  BipD shares ~26% identity 

and ~39% similarity to SipD while ~27% identity and ~ 37% similarity to IpaD14, 15, 16 

(Figure 2-2).  The NMR assignments for SipD39-343 and IpaD38-332 are available 25, 26, 27.  

The 15N and ILV-labeled SipD39-343 titration with unlabeled BipC yielded peak 

perturbations in the intermediate exchange NMR timescale indicating weak interaction. 

The peaks that showed the highest perturbation were quantified, analyzed and then 

mapped onto the structure of SipD39-343.  The most perturbed peaks mapped onto the 

distal region of SipD39-343 in the mixed α-β region while a few peaks were also located 

in the coiled-coil domain. 

 Likewise, titration experiments with 15N-labeled IpaD38-332 and unlabeled BipC 

were also performed.  As seen previously with SipD, the peak perturbations were in the 

intermediate exchange on NMR timescale.  While there were some peaks that mapped 
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onto the distal coiled-coil region, most of the perturbed peaks clustered at the mixed α-β 

region of IpaD38-332.  Also, majority of the affected residues from SipD and IpaD display 

either full conservation or similarity (charged, polar, hydrophobic) to each other and/or 

BipD.  This suggests the presence of these residues at or near the tip-minor translocon 

binding interface. 

 To conclude, by using NMR, I investigated the interaction between the 

Burkholderia minor translocon protein BipC and the Burkholderia tip protein BipD as 

well as its homologs Salmonella SipD and Shigella IpaD.  The outcome of this study 

suggests that BipC might be binding to the distal region likely at the α-β mixed region of 

the tip proteins.  This study provides insight about the possible binding site of the minor 

translocon protein BipC on the tip protein BipD.  The result of this study is significant as 

the binding site of the major translocon SipB has been shown to be located in this mixed 

α-β region of the tip protein SipD in Salmonella 26 and our finding suggests that BipC 

might also bind near the same interface.  This would bring the two translocon proteins 

spatially in close proximity for interaction with one another, crucial for T3SS pore 

formation and function.  

 Additional experiments are needed to corroborate and validate the finding of this 

study regarding the tip-minor translocon interaction.  Site-specific mutations introduced 

in the mixed α-β region of BipD and NMR or fluorescence based interaction studies with 

BipC would provide details of the tip-minor translocon interaction.  Cell invasion assays 

for the wild type and the mutant tip proteins (mutations in the mixed α-β region) will also 

help establish any disruption in the T3SS assembly due to the introduced mutations in 
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that region.  Other experiments could include assigning the NMR spectrum of BipD and 

BipC that will allow the direct identification of the amino acids at the interacting surface.  
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Figure 2-1.  Comparison of the structures of the homologous tip poteins. (A) IpaD from 

Shigella  (B) BipD from Burkholderia  (C) SipD from Salmonella.  All three tip proteins 

have an N-terminal α-helical hairpin (shown in blue), a central coiled-coil domain (shown 

in gray) and a mixed α-β domain (shown in green).  The top half of the proteins is 

referred to as the distal region and faces opposite to the bacterial surface while the 

bottom half referred to as the proximal region faces the bacterial surface.  The figure is 

adapted from Chatterjee et al 13. 
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Figure 2-2.  Primary sequence alignment of the homologous tip proteins BipD, SipD 

and IpaD from Burkholderia, Salmonella and Shigella respectively using Clustal Omega 
21. The figure was generated using ESPript 3.0 24.  
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Figure 2-3.  SDS-PAGE Gel of 15N-BipC Purification.  (A) Ni2+- affinity chromatography 

purification of 15N-BipC before TEV cleavage.  The purified 15N-BipC fused to His6-GB1-

TEV tag (~ 53.5kDa) is seen in the elution fraction.  (B) Ni2+- affinity chromatography 

purification of 15N-BipC after TEV cleavage. The cleaved and purified 15N-BipC (~ 

44.5kDa) is seen in wash1 fraction while His6-GB1-TEV tag (~ 9kDa) is seen in the 

elution fraction.  (FT= flow through, W1= wash1, W2= wash2, W3= wash3, E= elution, 

MW=ladder). 
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Figure 2-4. Electrospray ionization mass spectrometry to verify BipC expression. 
The theoretical and observed mass of BipC is shown in the figure to account for the 

difference in the mass due to 15N labeling of BipC. 
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Figure 2-5.  (A) Overlay of NMR titrations of 15N-BipC with unlabeled BipD35-301 at 

varying concentrations.  (B) Expanded view of some peaks for clarity showing change in 

peak position. 
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Figure 2-6.  (A) Overlay of NMR titrations of 15N-BipC with unlabeled SipD39-343 at 

varying concentrations.  (B) Expanded view of some peaks for clarity showing change in 

peak position. 
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Figure 2-7.  (A) Overlay of NMR titrations of 15N-BipC with unlabeled IpaD38-332 at 

varying concentrations.  (B) Expanded view of some peaks for clarity showing change in 

peak position. 
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Figure 2-8.  (A) Overlay of NMR titrations of 15N-SipD39-343 with unlabeled BipC at 

varying concentrations.  (B) Expanded view of some peaks for clarity showing change in 

peak intensity. 
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Figure 2-9.  (A) Overlay of NMR titrations of ILV-SipD39-343 with unlabeled BipC at 

varying concentrations.  (B) Expanded view of some peaks for clarity showing change in 

peak intensity. 
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Figure 2-10.  Quantification of peak intensity of 15N and ILV-SipD39-343 titrated with 

unlabeled BipC.  (A) Peak intensity analysis of 15N-SipD39-343 with unlabeled BipC at the 

titration ratio of 1:3 compared to 1:0.  (B) Peak intensity analysis of ILV-SipD39-343 with 

unlabeled BipC at the titration ratio of 1:3 compared to 1:0.  Gray line represents the 

average intensity value and the Red line represents the standard deviation subtracted 

from the average and was used as the threshold value. 
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Figure 2-11.  (A) Overlay of NMR titrations of 15N-IpaD38-332 with unlabeled BipC at 

varying concentrations.  (B) Expanded view of some peaks for clarity showing change in 

peak intensity. 
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Figure 2-12.  Quantification of peak intensity of 15N-IpaD38-332 with unlabeled BipC.  

Peak intensity analysis of 15N-IpaD38-332 with unlabeled BipC at the titration ratio of 1:2 

compared to 1:0. Perturbed residues, in red are mapped on to the structure of IpaD.  

Gray line represents the average intensity value and the Red line represents the 

standard deviation subtracted from the average and was used as the threshold value.  
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Chapter 3: Conformational and structural changes of Burkholderia minor 

translocon protein BipC in the presence of membrane mimetic detergents 

 

3.1.  Introduction 

The type III secretion system (T3SS) plays an important role in the pathogenesis 

of many pathogenic Gram-negative bacteria 1.  The T3SS is a syringe-like apparatus 

assembled from over 20 different proteins 2, 3 (Figure 1-1 and 1-2).  There are two 

translocon proteins called the major and the minor translocon proteins based on their 

respective molecular weights, that are essential for the formation of the transmembrane 

channel allowing the export of effector molecules (Figure 1-2). The minor translocon 

proteins of the type III secretion system are transmembrane proteins that are mostly 

helical with a single predicted transmembrane domain 4 (Figure 3-1 and 3-2).   

The minor translocon proteins from Salmonella and Shigella have been shown to 

interact and insert into host membrane and liposomes and are vital for the export of 

virulence effector molecules into the host 5, 6, 7.  The minor translocon protein from 

Burkholderia, BipC, has not been well characterized and the information on its 

interaction with membrane is unknown and is the subject of study in this chapter.   

BipC is the minor translocon protein of Burkholderia pseudomallei 8.  A BipC 

construct has been successfully cloned, expressed and purified in our lab (Dr. Supratim 

Dey).  Secondary structure prediction using the Network Protein Sequence Analysis 

(NPS@) server, predicts BipC to be extensively helical 9 (Figure 3-2).  The NMR study 

of the BipC construct shows a narrow dispersion of < 1 ppm (Figure 2-5).  This narrow 

dispersion is consistent with its predicted extensive α-helical structure, as mostly α-
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helical proteins generally display narrow 1H chemical shift dispersion due to the 

exposure of the amino acids in the helices to similar local chemical environment 10.  On 

the other hand, the secondary structural analysis using CD spectroscopy herein shows 

BipC to be mostly random coil with partial α-helix that is in contradiction with its 

predicted vastly helical structure. 

Thus, in this chapter I looked at the conformational and structural changes in the 

Burkholderia minor translocon protein BipC in the presence of different membrane 

mimetic detergents, dodecylphosphocholine (DPC), and lyso-

myristoylphosphatidylglycerol (LMPG) by NMR and CD spectroscopy.  The above two 

detergents were selected for this study because they resemble the structure of the 

phospholipids in the lipid bilayers, retain and maintain protein structure and function, 

and yield good NMR spectra 10, 11.  Thus, both DPC and LMPG have been widely used 

as suitable membrane mimicking detergents of choice for structural and functional 

studies of membrane proteins 10, 11, 12, 13. 

 

3.2.  Experimental Section 

 

3.2.1.  Overexpression and purification of 15N-labeled BipC  

 Uniformly 15N-labeled full length BipC was expressed and purified as described in 

Chapter 2.  Briefly, BipC construct with an N-terminal His6-GB1 and TEV protease tag 

was overexpressed in E.coli BL21-CodonPlus (DE3)-RIPL strain.  The bacterial cells 

were then harvested by centrifugation, lysed by sonication and the protein was purified 

by nickel affinity chromatography twice, the second time following the cleavage of the 
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His6-GB1 tag.  15N-labeled BipC fractions were pooled together, concentrated using a 

commercial Amicon 3K filter unit, and protein concentration estimated by Bradford 

assay. 

 

3.2.2.  Preparation of detergent stocks 

The stock solutions were prepared for DPC and LMPG in NMR buffer (20 mM 

phosphate, 100 mM NaCl, pH 6.8) for NMR titration experiments and in water for CD 

spectroscopy experiments.  The stock detergent solutions were solubilized by repeated 

freeze thaw cycles in liquid nitrogen or -80 °C until the solution became clear after which 

the stocks were kept at 4 °C for long-term storage.  

 

3.2.3.  Secondary structure and TM prediction 

 The network protein sequence analysis (NPS@) Web server was employed to 

estimate the secondary structure of BipC 9.  The hydrophobicity plots of Burkholderia 

BipC and its homologs Salmonella SipC and Shigella IpaC were created using the 

Dense Alignment Surface (DAS) transmembrane prediction server to predict the 

transmembrane (TM) domain of the minor translocon proteins 14.  Clustal Omega online 

server was used to align the protein sequences 15 and the alignment results were 

processed and an alignment figure generated using ESPript 3.0 16.    

 

3.2.4.  Circular Dichroism experiments 

Data were acquired using a Jasco J-815 spectropolarimeter.  All samples were 

prepared in water to a final volume of 3 mL.  The protein concentration used was 
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0.05mg/mL titrated with increasing concentrations of the DPC and LMPG ranging from 

below to above their respective CMCs of 1.1 mM and 0.3 mM.  All CD spectra were 

acquired in triplicate in a quartz cuvette with a path length of 10 cm and scanning speed 

of 50 nm/min.  Dichroweb server was used to estimate the secondary structure of BipC 

using the CDSSTR algorithm 17, 18. 

 

3.2.5.  NMR titration experiments 

The titration experiments were carried out with 15N-labeled BipC titrated with 

different concentrations of the detergents.  The titration concentrations used for DPC 

were below and above the CMC of 1.1mM of DPC, and at and above the CMC of 

0.3mM of LMPG 19.  All NMR data were collected using a Bruker Advance 800 MHz 

spectrometer equipped with a cryogenic triple resonance probe.  The acquisition 

parameters were 40 scans, 2048 1H complex points, and 400 15N complex points. The 

15N sweep width was 30 ppm centered at 118 ppm and the 1H sweep width was 18 ppm 

centered at 4.7 ppm.  The NMR data were processed and analyzed by using NMRPipe 

20 and NMRView 21.  

 

3.3.  Results 

 

3.3.1.  Secondary structure and TM prediction 

 The NPS@ Web server predicted BipC to have extensive helices 9 (Figure 3-2).  

The DAS TM prediction 14 server did not show a clear transmembrane region for BipC 

above the strict cut off value (Figure 3-3).  On the other hand, BipC homologs 
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Salmonella SipC and Shigella IpaC, both showed a well predicted transmembrane 

region above the strict cut off value (Figure 3-3).  The discrepancy in the TM prediction 

was investigated further by aligning the sequences of BipC, SipC and IpaC using 

Clustal Omega server 15.  The alignment result showed the presence of a combination 

of charged and polar residues in BipC in the predicted transmembrane region for its 

homologs SipC and IpaC, which might be why prediction servers did not yield a well 

predicted TM region for BipC (Figure 3-4).  

 

3.3.2.  Monitoring secondary structural changes of BipC by Circular Dichroism 

 The CD analysis of BipC construct used in this study showed a predominantly 

random coil conformation with some helicity (Figure 3-5 and 3-6).  IpaC, the minor 

translocon protein from Shigella also shows a similar CD spectrum 6.  The titration 

experiments by CD spectroscopy in this chapter showed that BipC gained in α-helicity in 

the presence of increasing concentrations of both detergents, DPC and LMPG.   

 The BipC construct in the absence of DPC showed a minimum at ~200 nm and a 

slight minimum at ~222 nm which is characteristic of a protein that is mostly random coil 

with partial helical content (Figure 3-5).  As BipC was titrated with increasing 

concentrations of DPC, there was a significant shift in its secondary structure from 

random coil to mostly α-helical evident by the minima shift from ~200 nm towards ~208 

nm 22.  This structural change was more pronounced as the DPC concentration reached 

above its CMC value suggesting BipC interaction and possible insertion into DPC 

micelles.  The molar ellipticity ratio (θ222/θ208) is another parameter that indicates 

interhelical contacts 23.  Extensive inter-helical contacts as in coiled-coil show a θ222/θ208 
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ratio of 1.0 and above while isolated helices show a θ222/θ208 of ~0.8 23.  The titration of 

BipC with DPC increased its θ222/θ208 ratio from ~0.55 to ~0.69 indicative of absence of 

any extensive helical contacts as in coiled-coil.  The secondary structure estimation 

from the CD data using CDSSTR algorithm by Dichroweb server showed a significant 

increase in helix content of BipC up to 5mM DPC and a slight decrease thereafter 

(Table 2A). 

  BipC titration experiments with LMPG also corroborate the results obtained with 

DPC.  There was a marked shift in the CD spectrum of BipC in the presence of LMPG 

as seen from the shift in the minima from ~ 200 nm towards ~208 nm 22.  The θ222/θ208 

ratio increased from ~0.55 to ~0.78 signifying lack of inter-helical contacts and probable 

isolated helices.  The one observation that was different from the DPC experiment was 

that the structural transition was apparent even at a concentration that was below the 

CMC of 0.3 mM of LMPG (Figure 3-6).  The structural change evident from the CD 

spectra was also supported by an increase in the helical content of BipC with increasing 

LMPG concentration as estimated by Dichroweb server using CDSSTR algorithm 

(Table 2B).  

 

3.3.3.  BipC interaction with detergents by NMR 

To study the interaction of BipC with the detergents, uniformly 15N-labeled BipC 

was titrated with two detergents, DPC and LMPG and probed by NMR.  The NMR 

spectrum of 15N-labeled BipC in the presence of 0.5 mM DPC, which is below the CMC 

of 1.1 mM of DPC, does not show major changes in peak chemical shift values (Figure 

3-7 and 3-8).  As I titrated 15N-labeled BipC with 25 mM DPC, which is above the CMC 
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of DPC, a significant peak broadening as well as peak loss was observed (Figure 3-7 

and 3-8).  About 75 peaks out of approximately 302 15N-BipC amide peaks showed 

large deviation in peak positions in the presence of DPC above its CMC signifying 

potential conformational changes in BipC (Figure 3-8).  

In a similar manner, the effect of LMPG on 15N-labeled BipC was studied.  15N-

labeled BipC showed no significant peak perturbation at the CMC concentration of 0.3 

mM LMPG while it displayed substantial chemical shift perturbation evident by deviation 

in peak position as well as reduced peak intensities of several amide peaks leading to 

significant peak loss at a titration concentration above the CMC of LMPG (Figure 3-9 

and 3-10).  As seen with DPC, over 70 peaks out of approximately 302 15N-BipC amide 

peaks showed large change in peak positions and or intensity in the presence of LMPG 

above its CMC indicating potential conformational changes in BipC (Figure 3-10).   

 

3.4.  Discussion 

BipC is the Burkholderia minor translocon protein but it lacks a clearly predicted 

transmembrane region as opposed to its homologs Salmonella SipC and Shigella IpaC 

using TM prediction servers (Figure 3-3).  When the primary sequence of BipC was 

aligned, and compared to SipC and IpaC, it was found that BipC harbors charged and 

polar residues in the TM region predicted for SipC and IpaC (Figure 3-4).  The overall 

number of charged amino acids in BipC is also much larger than either SipC or IpaC.  

This could also explain why BipC is expressed and purified as a soluble protein 

whereas SipC and IpaC are insoluble in the absence of their chaperones.  
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Secondary structure prediction using NPS@ Web server predicted BipC to be 

vastly helical 9 (Figure 3-2) whereas the CD spectrum of BipC construct used in this 

study showed a predominantly random coil conformation with some helicity (Figure 3-5 

and 3-6).  Similar CD spectrum has been reported for IpaC 6.  To investigate this 

disparity, I employed titration experiments to study the secondary structural changes of 

BipC in the absence and presence of varying concentrations of DPC and LMPG 

detergents by CD spectroscopy.  The CD data clearly show a secondary structural 

transition from a random coil to a helical protein (Figure 3-5 and 3-6).  The secondary 

structure estimation by the CDSSTR algorithm using the Dichroweb server also showed 

increased α-helicity for BipC in detergent micelles (Table 3-2). 

The NMR study also suggests interaction of BipC with the detergents.  The 

significant peak loss observed in the presence of the detergents above the CMC 

concentration indicates probable insertion of BipC into the detergent micelles.  As BipC 

inserts into the detergent micelles, its tumbling rate might be reduced which leads to the 

peak broadening and peak loss observed in the spectra (Figure 3-7 to Figure 3-10).  

This difference in the NMR spectrum of BipC and extensive pek perturbation shown by 

a majority of the amide peaks in the presence of detergents demonstrates a change in 

the conformation and structure of BipC. 

In summary, the biophysical study carried out herein showed a major 

conformational and structural change in BipC when titrated with membrane mimetic 

detergents.  This has added to the knowledge that is available about the structural 

assembly of T3SS.  As such, it will be interesting to investigate the implication of these 
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structural changes in BipC in its ability to interact with its binding partners and form a 

functional T3SS.   
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Figure 3-1.  A cartoon representation of the T3SS minor translocon protein showing the 

single predicted transmembrane (TM) region. 
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Figure 3-2.  Secondary structure prediction of Burkholderia minor translocon protein 

BipC using the Network Protein Sequence Analysis (NPS@) Web server 9. 
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Figure 3-3.  Comparison of the predicted hydropathy plots for the minor transocon 

proteins Burkholderia BipC, Shigella IpaC and Salmonella SipC using DAS Prediction 

Server 14.	
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Figure 3-4.  Primary sequence alignment of minor translocons BipC, SipC and IpaC 

from Burkholderia, Salmonella and Shigella respectively.  The green bracket highlights 

the predicted TM region for SipC and IpaC showing BipC harboring charged and polar 

residues in that region.  Sequences were aligned using CLustal Omega 15 and the figure 

generated using ESPript 3.0 16.	
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Figure 3-5.  Circular Dichroism analysis of BipC in DPC.  Each titration ratio is color 

coded as shown in legend.  (A) CD spectra of BipC titrated with increasing 

concentrations of DPC.  (B) The molar ellipticity ratio of θ222/θ208 for the titration of BipC 

with DPC. 
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Figure 3-6.  Circular Dichroism analysis of BipC in LMPG.  Each titration ratio is color 

coded as shown in legend.  (A) CD spectra of BipC titrated with increasing 

concentrations of LMPG.  (B) The molar ellipticity ratio of θ222/θ208 for the titration of 

BipC with LMPG.  
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Figure 3-7.  Comparison of NMR spectra of 15N-BipC titrated with increasing 

concentrations of DPC.  (A) NMR spectrum of 0.2mM BipC in the absence of DPC.  (B) 
NMR spectrum of 0.2mM BipC in the presence of 0.5mM DPC.  (C) NMR spectrum of 

0.2mM BipC in the presence of 25mM DPC.	
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Figure 3-8.  Overlay of NMR titrations of 15N-BipC titrated with increasing 

concentrations of DPC.  15N-BipC titration with 25 mM DPC (above its CMC of 1.1 mM) 

causes significant conformational change evident from observed shift in peak position 

and or reduced peak intensity (shown with arrows).	
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Figure 3-9.  Comparison of NMR spectra of 15N-BipC titrated with increasing 

concentrations of LMPG.  (A) NMR spectrum of 0.2mM BipC in the absence of LMPG.  

(B) NMR spectrum of 0.2mM BipC in the presence of 0.3mM LMPG.  (C) NMR 

spectrum of 0.2mM BipC in the presence of 3mM LMPG.		
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Figure 3-10.  Overlay of NMR titrations of 15N-BipC titrated with increasing 

concentrations of LMPG.  15N-BipC titration with 3 mM DPC (above its CMC of 0.3 mM) 

causes significant conformational change evident from observed shift in peak position 

and or reduced peak intensity (shown with arrows). 
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Table 3-2. Estimation of the secondary structures of BipC by the Dichroweb using the 

CDSSTR algorithm 17, 18.  (A) Secondary structure of BipC in the absence and presence 

of increasing concentration of DPC.  (B) Secondary structure of BipC in the absence 

and presence of increasing concentration of LMPG. 

 

A 
DPC conc. Helix Strand Turns Unordered Total 

0mM DPC 0.10 0.29 0.25 0.34 0.98 

0.2mM 
DPC 

0.11 0.30 0.25 0.34 1 

1.1mM 
DPC 

0.13 0.28 0.26 0.33 1 

5mM DPC 0.37 0.14 0.22 0.27 1 

10mM DPC 0.24 0.23 0.23 0.29 0.99 

15mM DPC 0.24 0.20 0.26 0.30 1 

 
B 
LMPG 
conc. 

Helix Strand Turns Unordered Total 

0mM 
LMPG 

0.09 0.30 0.25 0.35 0.99 

0.1mM 
LMPG 

0.13 0.31 0.24 0.32 1 

0.3mM 
LMPG 

0.21 0.23 0.27 0.29 1 

1mM 
LMPG 

0.38 0.14 0.22 0.27 1.01 

3mM 
LMPG 

0.38 0.15 0.21 0.26 1 
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Chapter 4: Conclusion and Future Directions 

 

 The T3SS is a common mechanism utilized by many Gram-negative pathogens 

to initiate, maintain and spread infection in the host.  Some clinically important 

pathogens that require the assembly of T3SS for infection and the disease associated 

with them include Burkholderia pseudomallei (melioidosis), Salmonella typhimurium 

(gastroenteritis), Shigella flexneri (shigellosis), Pseudomonas aeruginosa (nosocomial 

pneumonia), Yersinia pestis (plague), Chlamydia trachomatis (sexually transmitted 

disease), and pathogenic strains of Escherichia coli called enterohemorrahagic E. coli 

(bloody diarrhea/urinary tract infection) 1.  The emergence of anti-bacterial resistant 

strains of these pathogens has added another dimension to their versatility of causing 

infection and threatens the public health immensely around the world 2, 3, 4, 5.  In the 

current scenario, the exposure of the T3SS on bacterial surface makes it a potential 

target for developing vaccines and anti-infectives that would disrupt the assembly of the 

T3SS 6.  

 In this thesis, I used NMR to investigate the interaction between the Burkholderia 

tip protein BipD and its homologs Salmonella SipD and Shigella IpaD with the 

Burkholderia minor translocon protein BipC.  The outcome of this study suggests that 

BipC might be binding to the distal region of the tip proteins at the α-β mixed region and 

perhaps the top part of the coiled-coil domain.  This study provides insight about the 

possible binding site of the minor translocon protein BipC on the tip protein BipD.  The 

result of this study is significant as the binding site of the major translocon in Salmonella 

has been shown to be located on this mixed α-β region 7 and the finding from the 
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experiments described in this thesis suggests that BipC might also bind near the same 

interface.  This would bring the two translocon proteins spatially in close proximity for 

interaction with one another essential for the formation of a translocon and T3SS 

function.  

 More information is needed to corroborate and validate this finding, and elucidate 

the tip-translocon interaction and the interaction between the major and the minor 

translocon proteins.  Future experiments may include introducing site-specific point 

mutations in the mixed α-β region of BipD and studying the interaction with BipC by 

NMR.  Another route would be to assign the NMR spectrum of BipD and BipC that will 

allow the direct identification of the interacting surface.  Cell invasion assays for the wild 

type and the mutant tip proteins (mutations in the mixed α-β region) will also help 

establish any disruption in the T3SS assembly and function due to the introduced 

mutations in that region. 

 The interaction study of BipC with detergent micelles using NMR suggests that 

BipC perhaps goes in to the micelle using its single transmembrane domain.  This 

conclusion is based on the observation that as the concentration of the detergents 

reached above their respective CMC values, there was significant peak broadening and 

peak loss as seen in the 15N-BipC spectrum (Figure 3-7 and 3-8). 

 Also, the CD experiments showed significant alterations in the secondary 

structure of BipC.  BipC in the absence of detergents resembles a mostly random coil 

with partial helical structure whereas in the presence of the detergents it acquired a 

vastly helical structure apparent from the changes in the BipC CD spectra minima at 

increasing concentrations of the detergents (Figure 3-5 and 3-6).  The initial random coil 
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structure may indicate the native unfolded structure of BipC in the absence of its 

chaperone when it is initially secreted through the type III secretory apparatus (T3SA) 

for assembly.  BipC then perhaps acquires a helical structure upon insertion into a 

membrane-like environment.  

 Overall this study provided evidence supporting a major conformational and 

structural shift in BipC in the presence of membrane mimetic detergents.  This calls for 

a functional assay where the binding activity of BipC can be compared in the presence 

and absence of a suitable membrane mimic.  The binding of BipC to the tip protein BipD 

or the major translocon BipB can be studied in detergent micelles by electron 

paramagnetic resonance (EPR) spectroscopy or fluorescence spectroscopy methods, 

which are more sensitive than NMR.  This will require site-directed mutagenesis to 

introduce cysteine point mutations for label attachment, a fluorophore label for 

fluorescence or a MTSL spin label for EPR analysis.  These interaction studies will shed 

light on the impact of the structural changes of BipC on its ability to bind to other 

proteins required for the assembly of a functional T3SS. 
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Addendum: Interaction of Pseudomonas aeruginosa minor translocon protein 

PopD with detergents 

 

A.1.  Introduction 

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen and a 

causative agent of nosocomial infections in immunocompromised patients 1.  

Pseudomonas aeruginosa employs the T3SS to cause acute or chronic infection in the 

host and multidrug resistance in Pseudomonas has become a major impediment in the 

treatment of infected patients 1 .  Due to the critical role of T3SS in virulence and its 

exposure on the bacterial surface, it is an appealing target for novel therapeutics 

development 2.  Targeting T3SS would also lessen the selection pressure on the 

bacteria for drug resistance as it would render the bacteria avirulent rather than having 

a bactericidal effect 3.  This strategy would also be beneficial to the preservation of 

normal flora that are essential in keeping the pathogens in check 3.         

  Structural and interaction studies in Shigella, Pseudomonas, and Yersinia have 

revealed that the major and minor translocon proteins of the T3SS might bind to the 

same binding region on their common chaperones 4, 5.  Still, the structure of 

Pseudomonas minor translocon protein PopD and its interaction with membrane is 

unknown.  The NMR study of the translocon proteins is limited because of lack of good 

NMR data, which could be due to their large size, intrinsically disordered regions, 

dynamics due to intrinsic flexibility, and the absence of their natural membrane 

environment 6, 7.  This chapter examines into the interaction of PopD with membrane 
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mimic detergents by NMR spectroscopy with the future goal of studying protein-protein 

interaction. 

 

A.2.  Experimental Section 

 

A.2.1.  Expression and purification of 15N-PopD 

 PopD and its chaperone PcrH were previously sub-cloned into pET-DUET1 8 by 

a graduate student in the lab (Dr. Andrew McShan) based on a previously reported 

protocol 8.  The plasmid construct had an N-terminal His6 fused to PcrH subcloned in 

multiple cloning site 1 (MCS1) and PopD in MCS2.  PcrH-PopD complex was expressed 

in E. coli BL21 (DE3) DNAY cells in 1 L of 1X M9 minimal media with 100 ug/mL 

carbenicillin and 30 ug/mL kanamycin for antibiotic selection supplemented with 1 g/L 

15NH4Cl for uniform amide backbone labeling.  The cells were grown at 37 °C until an 

OD600~0.8 after which the protein expression was induced with 0.5 mM IPTG overnight 

at 15 °C.  Bacterial cells were harvested by centrifugation at ~4000 rpm for 10 min, re-

suspended in binding buffer (20 mM Tris-HCl, 5 mM imidazole, 500 mM NaCl, pH 8.0, 

and 0.2mM phenylmethanesulfonyl fluoride), and lysed by sonication on ice.  Cell debris 

were removed by centrifugation at 13000 rpm for ~10 min with 0.1 mM PEI solution.  

The soluble PopD-PcrH complex was purified by gravity flow using Ni2+-affinity 

chromatography on Ni-NTA (nickel-nitrilotriacetic acid) resin packed column.  The 

complex was separated by incubation in binding buffer containing 6 M urea overnight 

followed by stepwise complete removal of urea using binding buffer containing 

decreasing concentration of urea.  The separated proteins were purified again by Ni2+-
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affinity chromatography.  The purified PopD was pooled, dialyzed into NMR buffer and 

concentrated using Amicon Ultra 3K filtration units.  The protein concentration was 

determined by reading the absorbance at 280 nm. 

 

A.2.2.  Secondary structure prediction  

 The secondary structure of PopD was predicted using the NPS@ web server.  

The consensus secondary structure prediction was based on the results of four 

algorithms DSC, MLRC, PHD, and Predator. 

 

A.2.3.  NMR experiments 

 NMR data were acquired on a Bruker Advance 800 MHz spectrometer with a 

cryogenic triple resonance probe.  The protein concentration used for all experiments 

was 0.4 mM.  The typical acquisition parameters were 2048 15N complex points, 128 1H 

complex points, 48 scans at 30 °C.  The sweep width for 15N was 30 ppm centered at 

118 ppm and for 1H it was 18 ppm centered at 4.7 ppm.  NMR data were processed 

using NMRPipe 9 and analyzed using NMRView 10.  

 

A.3.  Results 

 

A.3.1.  Expression and purification of 15N-PopD 

 PopD and PcrH were co-expressed from a pET-DUET expression system that 

yielded good expression of the proteins.  After first Ni2+-affinity purification, the complex 

was subjected to separation in the presence of 6 M urea.  After the separation, the 
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protein solution was purified again and the minor translcon protein PopD was collected 

in Wash fraction with 5 mM imidazole while His6-PcrH was collected in the Elution 

fraction with 250 mM imidazole.  The purified protein was verified by SDS PAGE and 

coomassie blue staining methods as well as by mass spectrometry (Figure A1 and A2). 

 

A.3.2.  Secondary structure prediction 

 The online web server NPS@ was employed to predicted a consensus 

secondary structure using four different algorithms 11.  PopD is predicted to be 

predominantly α-helical.  The N-terminal PopD is predicted to contain higher percentage 

of random coil suggesting disordered region while the C-terminal region is more 

structured and helical (Figure A3). 

 

A.3.3.  NMR study of PopD interaction with detergents 

 PopD yielded a collapsed NMR spectrum with chemical shift dispersion > 1 ppm 

in the absence of detergents (Figure A4).  The NMR also didn’t produce peaks for all 

the amino acids of PopD.  NMR titration of PopD with 25 mM DPC (above CMC of 1.1 

mM) slightly improved the peak resolution and increased the number of peaks 

observed.  As PopD was titrated with even higher concentration of DPC (~200 mM), the 

NMR spectrum showed further improvement in peak resolution and increased number 

of observed peaks.  Two trp residues were also observed in the presence of DPC 

detergent above its CMC concentration (Figure A5).  
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A.4.  Discussion 

 Minor translocon proteins are membrane associated proteins and are difficult to 

express in soluble form.  Others have shown that minor translocon proteins express in 

the soluble fraction as a complex with native chaperone proteins 8.  Therefore, PopD 

was expressed from a bicistronic construct in pET-DUET1 vector 8, 12, 13.  The co-

expression of PopD and PcrH allowed good expression of PopD.  The complex was 

separated using 6M urea 8 that was verified by SDS-PAGE (Figure A1) and mass 

spectrometry analysis (Figure A2).   

 The NMR experiment of PopD in the absence and presence of the detergent, 

DPC were acquired and compared.  PopD in the absence of DPC shows narrow 

chemical shift dispersion (Figure A4) and significant numbers of amide peaks were 

missing from the spectrum characteristic of partially folded or helical proteins lacking 

significant tertiary fold 14.  The absence of majority of the amide peaks and poor 

resolution could be due to the presence of significant disordered regions in PopD, 

intrinsic dynamics due to flexibility, and the absence of chaperones or membrane 

environment to stabilize the structure.  This is supported by the secondary structure 

prediction result, which shows PopD to vastly consist of random coil at the extreme N-

terminal region (Figure A3).  One possible solution could be to truncate the protein at 

the terminal ends to observe any improvement in its NMR spectrum.  Reconstitution of 

PopD into DPC micelles improved the peak resolution and yielded a greater number of 

observed peaks but still more than half of PopD peaks were not observed.  The 

visualization of the two tryptophan residues suggests a conformational change and a 

probable gain of some structure in the detergent micelles (Figure A5).  
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 Future experiments to address the difficulties in the above experiments would be 

to screen a number of detergents or detergent-lipid mixtures to get a good quality NMR 

data.  Also, other labeling strategies such as ILV-labeling or specific amino acid amide 

or side chain labeling could aid in the identification of the NMR peaks.  Determination of 

a suitable membrane mimic would be a critical step for structural and interaction studies 

of PopD with the other components of Pseudomonas T3SS.   
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Figure A1. Purification Gel of PopD.  (A) First Ni2+- affinity purification of PopD-PcrH 

complex.  (B) Second Ni2+- affinity purification of PopD after denaturation step to 

separate the PopD-PcrH complex.  (MW= ladder, FT= flow through, W1= wash1, W2= 

wash2, W3= wash3, E= elution.  Molecular weight of PopD= 31.3kDa and PcrH= 

19.5kDa). 
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Figure A2. Electrospray ionization mass spectrometry to verify PopD purification.  The 

theoretical and observed mass of PopD is shown in the figure to account for the 

difference in the mass due to 15N labeling of PopD. 

 



 71	

 
 
Figure A3. Secondary structure prediction of PopD from Pseudomonas aeruginosa. 
Secondary structure of PopD is predicted using NPS@ Web server employing four 

algorithms DSC, MLRC, PHD, Predator, and a consensus structure from all four 

algorithms is shown 11.  
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Figure A4.  Comparison of NMR spectra of 15N-PopD titrated with DPC at 30 °C. 
15N-PopD in the absence of DPC (left panel), 15N-PopD titrated with 25mM of DPC 

(middle panel), and 15N-PopD titrated with 200mM DPC (right panel). 
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Figure A5.  Comparison of NMR spectra of 15N-PopD titrated with DPC at 30 °C 

showing the tryptophan residues.  15N-PopD in the absence of DPC (left panel), 15N-

PopD titrated with 25mM of DPC (middle panel), and 15N-PopD titrated with 200mM 

DPC (right panel).  
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